
GPU-accelerated PIR with Client-Independent Preprocessing for Large-Scale
Applications

Daniel Günther
Technical University of Darmstadt

Maurice Heymann
Technical University of Darmstadt

Benny Pinkas
Bar-Ilan University

Thomas Schneider
Technical University of Darmstadt

Abstract
Multi-Server Private Information Retrieval (PIR) is a cryp-

tographic primitive that allows a client to securely query a
database entry from n≥ 2 non-colluding servers, which learn
no information about the query. Highly efficient PIR could
be used for large-scale applications like Compromised Cre-
dential Checking (C3) (USENIX Security’19), which allows
users to check whether their credentials have been leaked in
a data breach. However, state-of-the art PIR schemes are not
efficient enough for fast online responses at this scale.

In this work, we introduce Client-Independent Preprocess-
ing (CIP) PIR that moves n−1

n of the online computation to a
local preprocessing phase suitable for efficient batch precom-
putations. The security and online performance of CIP-PIR
improve linearly with the number of servers n. We show that
large-scale applications like C3 with PIR are practical by im-
plementing our CIP-PIR scheme using a parallelized CPU
implementation and further accelerating the huge amount of
XOR operations with GPUs. To the best of our knowledge,
this is the first multi-server PIR scheme whose preprocessing
phase is completely independent of the client, and where secu-
rity and online performance simultaneously increase with the
number of servers n. In addition, CIP-PIR is the first multi-
server PIR scheme that is accelerated by GPUs. It achieves
an improvement up to factor 2.1× over our CPU-based im-
plementation. Moreover, a client can access a database entry
of a 25 GByte database within less than 1 second.

1 Introduction

The main motivation for this work is improving the secu-
rity and privacy of large-scale applications of Private In-
formation Retrieval (PIR) like Compromised Credential
Checking (C3) [49], private blocklists in webbrowsers [34],
and COVID-19 contact tracing and epidemiological model-
ing [28]. The current state of the art of C3 implementations
must leak some information about each query (namely, about
the user’s credentials), in order to support low response la-

tency and to scale to the sizes of existing datasets. This leak-
age allows certain attacks [36].

We present a new PIR construction with offline prepro-
cessing, which hides all information about the queries and
on top reduces the response latency compared to all existing
PIR schemes. This construction works in a setting where the
responses are computed by several non-colluding servers. We
discuss in §1.3 the applicability of this setting to C3, as well
as to other applications. To further improve the amortized run-
time, we use GPUs to accelerate (a) the offline preprocessing
by batching multiple queries completely independent of the
client, and (b) large parts of the online computations.

1.1 Private Information Retrieval (PIR)

Private Information Retrieval allows to securely and privately
access data from a public database whereby the servers do not
learn any information about the query nor the accessed data.
State of the art single-server PIR protocols like SealPIR [2]
are often not efficient enough for large-scale databases as their
response time is already a couple of seconds for databases
with only a few million entries (see also Fig. 7). A C3 applica-
tion has billions of entries and requires the user to wait for the
response, so even multiple seconds are not tolerable. Hence,
we build a new multi-server PIR protocol called CIP-PIR. As
a basis, we use the RAID-PIR protocol [16, 17], which is a
multi-server PIR scheme with n ≥ 2 non-colluding servers
that extends Chor et al.’s PIR scheme [11]. Motivated by the
very fast response times required for large-scale applications,
we aim to preprocess a large part of the PIR protocol. For this,
we introduce the Client-Independent Preprocessing (CIP) PIR
model which lets the servers choose a part of the client’s query
in the RAID-PIR protocol and moves n−1

n of its computation
to an offline preprocessing phase which is even independent
of the client. Now, this phase can be batch processed for all
clients together resulting in faster amortized preprocessing
and hence total time. We also show how to compress the PIR
database to improve storage and computation in PIR which is
of independent interest.

1

We show corresponding improvements by implementing
our CIP-PIR protocol on a CPU and obtain up to factor n×
better online runtime than RAID-PIR without decreasing the
throughput. Moreover, while RAID-PIR trades security for
better performance (only less than t < n servers may collude),
the performance of the online phase of our CIP-PIR scheme
becomes independent of the corruption threshold t.

We further improve the runtime of our CIP-PIR protocol
by massively parallel computations of the preprocessing and
online computations on a GPU. The GPU-accelerated imple-
mentation highly profits from batching multiple queries in
the preprocessing phase as expensive memory transfers of
portions of the database are amortized.

1.2 Large-Scale PIR Applications
There is a high interest in efficient Private Information Re-
trieval for multiple applications. Our CIP-PIR construction
can be used in any PIR application which requires low la-
tency for large-scale data. Two important and omnipresent
applications are in the context of compromised credential
checking (C3) and the COVID-19 pandemic described below.
Further applications with these requirements are, for exam-
ple, private queries to medical and patent databases [4] and
anonymous messaging [17]. A recently proposed applica-
tion which requires low latency is to support private queries
by browsers to blocklists of malware-hosting websites, as in
Google’s “Safe Browsing” blocklist [34]. Another potential
future application, which is motivated by the push for privacy-
preserving advertising and the elimination of cross-site user
tracking, is serving advertisements to users: The goal would
be for the user’s machine to locally decide on ads that best
target the user, and then fetch these ads privately using PIR.
(Of course, this future ad system will also require additional
privacy-preserving mechanisms, such as for profiling users
interests, exposure measurement and billing.)

Compromised Credential Checking (C3). Data breaches
occur more and more in the recent years. These breaches
contain highly sensitive information about the users, e.g.,
their passwords and usernames. The most prominent breach
contains more than two billion credentials and is called Col-
lection 1-5 [27]. Thomas et al. [48] showed that 6.9% of
the breached credentials are still in use even on non-exposed
platforms. This enables credential stuffing attacks, where an
adversary compromises accounts by trying leaked passwords
on other services. Usually, the affected platforms reset their
user’s passwords of their users after an exposure, but this does
not alert the users about the risk of using the same credential
on other platforms. Hence, there is a demand for Compro-
mised Credential Checking (C3) tools [36] that allow users to
check whether their credentials are breached or not.

Popular password managers already integrate C3 services:
1password uses HaveIBeenPwnd (HIBP) [30, 46] and Last-

Pass uses ENZOIC [21, 22]. These schemes offer up to four
different query types: querying the client’s username or pass-
word, the service’s domain, and the combinations of the
client’s username and password. Thomas et al. [49] conclude
that querying the username/password combination is the best
option due to the user-friendliness, as password-only queries
would alert users too often and the other two options are too
vague (cf. [49] for further discussions). Recently, Thomas
et al. [49] published their Google Password Checkup (GPC)
tool as a Google Chrome extension that is the first C3 service
secure against malicious clients (a variant of this is now inte-
grated in Chrome, see below). They achieve this with the help
of a Private Set Intersection (PSI) protocol that enables one
party to privately check if her input is in the set of the other
party (actually this is a variant of PSI where one input set
consists of a single element only). To optimize efficiency, all
these tools run the PSI protocol only on a small subset of the
entire database, where the elements have the same prefix of
the hashed credentials. For this, the hash prefix is leaked to the
server. However, the hash prefix can be used for a credential
stuffing attack on the user’s anonymity as the server learns
in which subset the credentials would be located [36]. A PSI
protocol on the whole database would avoid such leakage, but
it is too inefficient for large-scale databases.

This attack is not only theoretical. Li et al. [36] showed that
knowledge of the credential’s hash prefix suffices to compro-
mise up to 86% of the leaked accounts within 1000 attempts
(even up to 73% of the accounts that are not included in a
data breach). To protect the user’s sensitive information, they
provide two new C3 protocols from which one still has the
leakage problem that enables credential stuffing attacks. The
other protocol was proposed in parallel by Thomas et al. [49]
and does leak no information about the user’s password since
the subset is identified by a prefix of the hashed username.
This protocol, however, has the disadvantage that the user’s
anonymity is even more vulnerable since the adversary learns
information about the username. Moreover, the protocol can
only be deployed for applications where the user can check
the existence of its username/password combination in a data
breach, while more security-aware users aim to check, if their
passwords are attacked (even if the username is not included).
In Aug. 2020, Google integrated and enabled by default this
protocol in their Chrome web browser [12]. They hold a
database of four billion leaked credentials and their deployed
protocol leaks a three byte hash prefix of the username.

Thomas et al. [49] and Li et al. [36] both suggest to use
Private Information Retrieval (PIR) to hide the hash prefix,
which yields perfect anonymity, i.e., the C3 protocol does not
allow to identify the user. However, [49] and [36] observe that
current PIR techniques are not efficient enough to be operated
in a real-world deployment. In this work, we show how to
build and use highly efficient multi-server PIR for use in C3.

2

COVID-19 Contact Tracing. Another currently relevant
example related to the COVID-19 pandemic is in the context
of contact tracing: instead of publishing the BLE ephemeral
IDs sent by COVID-19 positive persons, the application can
let users run a PIR protocol to query if they received any mes-
sage which appears in a dataset of messages sent by people
who were found to be COVID-19 positive. This application
demonstrates a potential need for very large-scale PIR, where
different entities are likely to be willing to collaborate in or-
der to support PIR. Further applications of PIR related to the
COVID-19 pandemic might be for hotspot detection [6] and
epidemiological modeling [28].

1.3 Setting and Applicability

Our model includes multiple servers, and guarantees security
as long as there is no collusion of more than some threshold
number of the servers. The usage of multiple servers seems
crucial for ensuring both scalability and security. In fact, all
large-scale C3 systems with a single server send to the server
partial information about users credentials, which, as was
shown by Li et al. [36], might compromise a large fraction of
the users.

The assumption that servers do not collude with each other
might not be credible by the public if all servers are run by
the same entity (such as Google). Therefore, servers must
be operated by multiple entities which are trusted not to col-
lude. While this is a standard assumption/requirement in the
cryptographic literature (e.g., for MPC protocols, multi-server
PIR and threshold crypto), it is unclear if this assumption al-
ways makes sense from a business perspective. There are
however, recent examples where companies are deploying
services whose security depends on non-colluding servers.
For example, Mozilla’s Firefox will use the Prio system for
gathering telemetry from browsers [13]. The second party
in this case will be ISRG – the Internet Security Research
Group, which also runs the Let’s Encrypt certificate authority,
and is therefore an entity which is trusted by Internet users
and is a separate than Mozilla.1 The additional servers can
be run by organizations with a privacy-centric mission, or by
different companies which would like to collaborate in order
to provide a service to the public.

The recent Apple/Google collaboration on an API
for COVID-19 contact tracing is an example of a col-
laboration between companies (in a different domain)
which was unimaginable until recently. This collabo-
ration shows that two competing companies can have
a strong mutual interest in offering privacy-preserving
services to their users for real-world applications. Apple
introduced in iOS14 a C3 feature for the Safari browser,

1See, for example https://blog.mozilla.org/security/2019/06/
06/next-steps-in-privacy-preserving-telemetry-with-prio/,
and the discussion in slide 132 of https://rwc.iacr.org/2020/slides/
Gibbs.pdf on finding a partner for running the second server.

that “doesn’t reveal your password information – even
to Apple” (https://www.apple.com/ios/ios-14/). Mi-
crosoft introduced a similar feature for Edge in 2021
(https://www.microsoft.com/en-us/research/blog/
password-monitor-safeguarding-passwords-in-
microsoft-edge). It is very unlikely that any of these
corporations would attempt to use a leakage in a C3 system to
steal a user’s password. However, as more users are becoming
concerned about their privacy, companies might want to
provide users with the strongest possible privacy that can
be offered using multi-server PIR. Another motivation for
participating companies, might be their will not to be liable
for knowledge of unnecessary private user data, or the fear
that company insiders could try to learn such information.

1.4 Our Contributions

We propose, implement, and benchmark CIP-PIR, an efficient
multi-server PIR protocol that is designed for large-scale ap-
plications operating multiple GBytes large databases and out-
performs recent efficient PIR implementations like PIR based
on function secret sharing [8]. Furthermore, CIP-PIR can be
used by companies who want to provide privacy-preserving
services to their customers as the underlying cryptography
is so simple that even non-experts can be convinced of its
security and correctness. For this, we design a strong new
PIR model called client-independent preprocessing, which
allows for the first time very efficient offline preprocessings
completely independent of the client, i.e., the PIR servers do
not even need to know the clients for the preprocessing. Our
main contributions are summarized as follows:

Client-Independent Preprocessing PIR Model (§3.2).
In the multi-party computation (MPC) literature the prepro-
cessing model has prevailed as it gives tremendous speedups
for the online computation by precomputing expensive cryp-
tographic operations of the same type ideally in parallel (e.g.,
somewhat homomorphic encryption in SPDZ [33]). Today,
this model is the state-of-the-art for all efficient MPC proto-
cols. In concurrent and independent work to our paper, the
preprocessing model was applied to multi-server PIR in [34]
where the server interacts with a specific client in an offline
phase to precompute some hints that are later used in the
online phase. We go one important step further: our Client-
Independent Preprocessing (CIP) PIR is for the first time
client-independent and hence can be performed even before
knowing the client(s). This allows local and parallel prepro-
cessing across all clients with significant speedups.

CIP-PIR Protocol (§3.3). We propose the first PIR
scheme in our new CIP PIR model called CIP-PIR. Our
protocol is based on the very simple RAID-PIR scheme by
Demmler et al. [16, 17] and moves a part of the client’s query
generation to the server sides. This costs and additional round
trip, but allows for very efficient offline preprocessing without
involving the client. Moreover, the preprocessing phase can

3

https://blog.mozilla.org/security/2019/06/06/next-steps-in-privacy-preserving-telemetry-with-prio/
https://blog.mozilla.org/security/2019/06/06/next-steps-in-privacy-preserving-telemetry-with-prio/
https://rwc.iacr.org/2020/slides/Gibbs.pdf
https://rwc.iacr.org/2020/slides/Gibbs.pdf
https://www.apple.com/ios/ios-14/
https://www.microsoft.com/en-us/research/blog/password-monitor-safeguarding-passwords-in-microsoft-edge
https://www.microsoft.com/en-us/research/blog/password-monitor-safeguarding-passwords-in-microsoft-edge
https://www.microsoft.com/en-us/research/blog/password-monitor-safeguarding-passwords-in-microsoft-edge

easily be batch-processed without waiting for numerous client
requests resulting in faster amortized preprocessing and hence
total time. We note that our scheme (as the original PIR by
Chor et al. [11]) has linear communication complexity, but
this is only one bit per block. In §B we show that even for a 16
TByte database and n=2 servers, our concrete communication
is only 4 MBytes and hence only 2x larger than today’s most
communication-efficient schemes with sub-linear communi-
cation complexity [8].

Database Compression in PIR (§3.4). We design and
implement two database compression techniques that are ap-
plicable to all PIR constructions. Our first compression tech-
nique is applicable to all database types and improves the
storage by factor 1.2×. Our second compression technique is
designed for special-purpose hash databases and reduces the
storage and online runtime by factor 5× for a false-positive
probability of 2−20. There are many real-world applications
for PIR on hash databases including all private set inclusion
PIR applications (e.g., medical and patient databases), C3, and
epidemiological modeling. Moreover, the GPC protocol [49]
can profit from both of our compression techniques to reduce
the database size by factor 5.9×.

CPU and GPU Implementation (§4). We implement our
CIP-PIR protocol in a highly efficient manner in C++. Our par-
allel implementations for CPUs and GPUs are of independent
interest as they are applicable also within other multi-server
PIR schemes, e.g., the linear XOR operations of PIR based on
function secret sharing [8, 9] after expanding the PIR query.

Our CPU implementation uses Intel AVX-512 intrinsics to
support XOR operations over 512 bits within one CPU cycle.
Moreover, we massively parallelize the server computation
using the OpenMP framework. We gain (using the same code-
base) for n = 2 servers up to 2× better online runtime (5×
better for n = 5 servers) than RAID-PIR [17] and 1.2× faster
amortized preprocessing time for batch size |Q|= 1000.

Our GPU implementation provides for the first time a multi-
server PIR implementation on a GPU using Nvidia’s CUDA
platform [10, 44]. We implement and benchmark two ap-
proaches for efficient parallelization: With the first one, all
CUDA blocks together compute the answer of one query,
while the second one batches incoming queries and all the
CUDA blocks process one query, separately. We gain for n =
3 servers up to 2.1× faster online runtimes than our CPU-
based CIP-PIR implementation, and 85× faster amoritzed
online and preprocessing runtime for batch size |Q|= 1000.

2 Preliminaries and Background

2.1 PIR Background
In Private Information Retrieval (PIR) as introduced in [11],
a client wishes to learn one or multiple blocks from a public
database |DB| held by n servers without revealing informa-
tion about the query. We focus on multi-server PIR schemes

since they have lower computational overhead for the servers
and the (pontentially mobile) client. In multi-server PIR the
database DB is split over n ≥ 2 servers that are assumed to
not collude and the client sends a request to each server.

PIR Model. We define a classical PIR protocol as a tuple
of algorithms (Create, Request, Response, Combine) as sum-
marized in Fig. 1 and described below:

Create is locally run once by the owner of the database
and takes as input some data D and outputs the database DBi
for each server i ∈ [n]. (Note that unlike the original PIR
constructions of [11], each server might have a different state).
A database DB is generated from the data D and a unique part
of the database denoted as DBi is sent to server i.

Request is run by the client and takes as input the index idx
of the data to access and outputs a list of queries (q0, . . . ,qn−1),
where qi is sent to server i.

Response is run by each server i. It takes the query qi as in-
put and outputs an answer ai based on the local database DBi.

The client collects the answers a0, . . . ,an−1 from the
servers and calls the Combine algorithm that outputs the de-
sired data d = D[idx].

Definition 1 (Multi-query security of PIR) A PIR scheme
with redundancy parameter/threshold 1 < t ≤ n is called se-
cure if any coalition of less than t servers does not learn any
information about the query indexes. Namely, for any data set
D, and any two sequences of (possibly not all unique) requests
R=(idx1, . . . , idxm) and R′=(idx′1, . . . , idx′m), no polynomial
time algorithm can distinguish the view of the servers in the
coalition (consisting of the requests they receive and the mes-
sages they send) when receiving the requests in R, and their
view when receiving R′.2

The original PIR protocol of Chor et al. [11] guaranteed un-
conditional security. Our protocol will ensure only computa-
tional security as is defined here, based on the basic security
assumption that pseudo-random generators exist.

A PIR scheme is called correct if the client
always recovers the correct output, namely
D[idx] = Combine(Response0(Request(idx)[0]), . . . ,
Responsen−1(Request(idx)[n−1])).

A PIR scheme must satisfy communication efficiency, by
guaranteeing that the overall communication is smaller than
sending D itself, and is only o(|D|).

2We note that the original PIR definition only protects the privacy of
the client and not the privacy of the server. Namely, it does not prevent the
client from learning more than a single data item. This property is called
“symmetric PIR” [25]. It can be ensured by encrypting each entry of the
server using a key known only to the server, and letting the client run a single
instance of an efficient oblivious pseudo-random function evaluation protocol
(OPRF) in order to learn the decryption of only a single item [23, 41].

4

Server i ∈ [n] Client

Setup Phase (once for all servers):
input: data D

DBi← Create(D)

Online Phase: input: idx

(q0, . . . ,qn−1)← Request(idx)

qi

ai← Response(qi,DBi)

ai

d← Combine(a0, . . . ,an−1)

output: d = D[idx]

Figure 1: Message flow for a classical PIR protocol. The client communicates with all n servers i ∈ [n] in parallel.

2.2 CUDA

Nvidia’s Compute Unified Device Architecture (CUDA) [10,
44] is a framework that allows to program GPUs to compute
Single Instruction, Multiple Data (SIMD) instructions and to
support direct memory access. It is a popular architecture for
highly parallelized programming run by a large number of
threads each performing simple instructions from CUDA’s
own instruction set architecture called PTX ISA. All threads
have access to a global memory that has a high storage capac-
ity, but takes at least 400 clock cycles per memory access.

The threads are grouped into multiple blocks where each
block has a shared memory among its threads. As accesses
to the shared memory are very efficient, we can apply a tech-
nique called coalescing to bundle the global memory accesses
of multiple threads into a single access within a block.

2.3 Threat Model

Throughout this work, we evaluate PIR protocols relative to
following main threat model: a coalition of honest-but-curious
PIR servers try to learn information about the client’s query.
In this threat model, servers follow the protocol correctly
while trying to learn details about the PIR query. This is
obliviously critical, since the contents of the query depends
on the underlying application, which we aim to protect by
using PIR. All PIR protocols are designed to hide queries
from coalitions of less than t servers, where t is the threshold
which should obliviously be as close as possible to the total
number of servers. (Clearly, if all PIR servers in multi-server
PIR schemes collude, they are able to reconstruct the client’s
plain query.)

3 Private Information Retrieval Extensions

We summarize the RAID-PIR scheme from [16,17] (§3.1), in-
troduce our new Client-Independent Preprocessing PIR model
(§3.2), describe our CIP-PIR scheme (§3.3), and present our
new PIR database compression technique (§3.4). We give
the security proof of CIP-PIR in §A, its complexity analysis
in §B, and details of database updates in §C.

3.1 RAID-PIR [16, 17]
Our protocol is based on RAID-PIR [16,17] which we summa-
rize next. RAID-PIR is an information-theoretic multi-server
PIR scheme based on Chor et al.’s PIR [11]. These schemes
use very efficient XOR operations and assume that a subset
of the n servers are non-colluding.

Let us first give an informal description of the scheme. In
the two-server version of Chor et al.’s PIR [11], the input
data D is split into B blocks of size b each, which results in
the database DB. If the client is interested in learning block i
it sends to the first server a random B-Bit string q0, and sends
to the second server a string q1 which is equal to q0 in all Bits
except for the i-th Bit, in which the two strings are different.
Each server computes the XOR of the blocks which corre-
spond to ‘1’ Bits in the string that it received, and sends the
resulting b-Bit block to the client. The client then computes
the XOR of the two strings it received. This result is equal to
the i-th block. The total communication with each of the n
servers is B+b Bits.

In RAID-PIR [16, 17] the B blocks are split into n chunks
and t ≤ n chunks are sent to each server, so each server
stores t/n of the database. Consequently, the client’s queries
are shorter and each server only XORs a smaller subset of the
blocks. As before, the XOR of all n queries is equal to a B-Bit
zero string with a ‘1’ Bit at the block that the client wishes

5

q0 011010 100010 011011
q1 101101 010110 100001
q2 001101 001101 101001
q3 010111 001011 001000
e 000000 000100 000000 000000

Figure 2: Example RAID-PIR queries with n = 4 servers,
B = 24 blocks, n = 4 chunks, chunk size k = B/n = 6, and
threshold t = 3. The orange cells are the flip chunks while
the white cells are the pseudo-random sub-queries. The client
requests the block at index idx = 9.

to learn. A crucial observation that is used to improve perfor-
mance is that for any specific block, out of the tk Bits (k =B/n
is the number of blocks per chunk) that instruct t servers what
to do with this block, (t−1)k Bits can be pseudo-random and
only k Bits need to be explicitly set to ensure that the result
of the XOR is correct. Therefore instead of sending a full
length string to each server, the client can send to each server
a seed that is used to compute an r−1

n fraction of the string
that the server must use. This cuts the communication from
the client to the server by factor t×. Performance can further
be improved with a time-memory tradeoff that precomputes
queries using the method of Arlazarov et al. [3] (known as the
“method of the four Russians”), and optimizing the database
layout to allow for parallel queries.

In more detail, RAID-PIR instantiates the four algorithms
for our PIR model from §2.1 as follows:

Create. In the setup phase, the input data D is split into B
blocks, each of b Bits. These blocks are grouped into n chunks.
The resulting database DB is split over n servers. The thresh-
old r with 2≤ t ≤ n specifies the number of servers that must
be corrupted to break the PIR scheme, and thus also the num-
ber of chunks that each server has to process per query. Each
server therefore receives only r chunks, which it needs for
processing queries.

Request. The client calls the Request method on input idx
to retrieve the block d = D[idx]. An example for generating
the queries q0, . . . ,q3 for n = 4 servers is given in Fig. 2. For
this, the client generates the main query e, which is a B-Bit
zero vector with a 1 at position idx = 9. This string is secret-
shared among all servers utilizing an XOR-based sharing.
This sharing is generated by sampling a κ-Bit random seed Si
for each server and using a PRG to stretch it into r−1 pseudo-
random so-called “non-flip chunks” each of size size k =
B/n Bits. Each server has a unique “flip chunk” that cancels
out all unwanted Bits from the corresponding non-flip chunks
of the other servers s.t. the XOR of all n queries results in the
client’s main query e. The client’s query qi sent to server i
then consists of the k-Bit flip chunk f lipi and the seed Si.

Response. When the server i receives a query, it calls the Re-
sponse algorithm with the query qi = (f lipi,Si) and the
database DBi as inputs. Having the seed Si, the server com-
putes its query q= f lipi||PRG(Si). Then, the server XORs all
blocks which correspond to 1 Bits in the query q. As shown
in [17], this step can be optimized by grouping some blocks
and precomputing all possible block combinations utilizing
the method of four Russians [3]. The resulting block ai is sent
back to the client.

Combine. The client calls the Combine method that com-
putes d =

⊕n−1
i=0 ai to obtain d = D[idx].

3.2 PIR with Client-Independent Preprocess-
ing (CIP-PIR)

Previous works on PIR, such as [7, 17], improve the online
computation for the server with a time-memory tradeoff that
merges and precomputes once in a setup phase parts of the
database. Then, during the Response method, the servers only
have to combine the precomputed parts depending on the
query qi. Our idea is fully compatible with this time-memory
tradeoff, but goes one significant step further.

We split the preprocessing into two parts - the database
preprocessing and the client-independent preprocessing. The
database preprocessing is a one-time precomputation step
in the setup phase that maps the database into a state that
enables the servers to compute their answer more quickly as
described in [7, 17]. We use this known optimization in our
implementation but do not include it in our presentation for
simplicity. In addition, we introduce the client-independent
preprocessing which is a client-independent routine in the
preprocessing phase that precomputes concrete parts of the
server’s answer for one query which can be used only once.
The client-independent preprocessing is of course indepen-
dent of the contents of the query and can be computed be-
fore it is received by the server. In the following, we define
our new client-independent preprocessing (CIP) PIR model,
which goes beyond the Offline/Online model of [14] as it
computes the preprocessing/online phase without involving
the client.

A PIR scheme in the CIP model is a tuple of algorithms
(Create, Preprocess, Request, Response, Combine). The pro-
tocol is shown in high-level in Fig. 3.

The Create and Combine algorithms are exactly the same
as in the original PIR model from §2.1.

Each server locally runs the Preprocess algorithm in a par-
allel thread that can be started and paused. This algorithm
takes as input the database DBi and adds query-specific tu-
ples (Si,Ai) to the queue Qi until it is full or the thread is
interrupted. The run is paused until there is new space for
more values in Qi. Si is a short seed and Ai is a part of the
server’s answer for the i-th query that depends only on Si, but
not on the query qi, i.e., Ai is independent of idx.

6

The Request algorithm takes as input the index idx of the
data item to access, and seeds S1, . . . ,Sn obtained from the n
servers, and generates queries q1, . . . ,qn. For each query, each
server i pops one pair (Si,Ai) from Qi.

Each server i calls the Response algorithm on input DBi,
Ai and the received query qi to return its answer ai.

3.3 Our CIP-PIR Protocol
RAID-PIR [16, 17] improves over Chor et al.’s scheme [11]
in terms of communication by using seeds, and in terms of
online computation by requesting each server to only touch
a subset of the database. The second improvement reduces
security as the number of servers that are allowed to collude is
reduced from n−1 to t−1, where 2≤ r ≤ n is the threshold.

The general idea of our CIP-PIR scheme is to use the RAID-
PIR scheme, but instead of having the client choose the seeds
in the Request algorithm, let the servers choose the seeds
in the Preprocess algorithm. This enables to compute in ad-
vance (t−1)/n of the XOR operations, and only the remain-
ing 1/n XOR operations are computed in the online phase,
i.e., the online computation is independent of the threshold t.
Then, the servers give the seed to the client and the proto-
col proceeds as before. Aside from the significant perfor-
mance improvement, the security of the scheme grows with
the threshold t, since the protocol allows up to t−1 servers to
collude. Since the online computation is independent of the
threshold t, the server’s online performance is not affected by
setting t = n to achieve the highest security level. These two
advantages are achieved since each server only has to pro-
cess 1/n-th of the database in the online phase. The remaining
part of the database is touched in the parallel Preprocess al-
gorithm introduced in §3.2.

Algorithm 1 Create of CIP-PIR

input: D . data D
(block0, . . . ,blockB−1)← D . split D into B blocks
k← B/n . # blocks per chunk
for all i ∈ [n] do

chunki← blockki| . . . |blockki+k−1
end for
for all i ∈ [n] do

DBi← chunki|chunki+1 mod n| . . . |chunki+t−1 mod n
end for
return DB0, . . . ,DBn−1 . database for each server

Create (Algorithm 1). In the setup phase, the input data D
is split into B blocks of b Bits each. These blocks are grouped
into n chunks of k =B/n blocks. chunki denotes the flip chunk
of server i and is the first chunk in the database DBi of server i.
Note that all servers hold the same database, but the order of
their chunks differs.

Preprocess (Algorithm 2). As depicted in Fig. 3, the server
permanently computes (seed, value)-pairs (S,A) and pushes
them to its local queue Qi. The seed S is expanded to
a k(t−1) Bit query q via a PRG. The precomputed value A
is then the XOR of all blocks from the non-flip chunks whose
corresponding Bits in the query q are set to 1. Since each
server has t − 1 non-flip chunks among the n chunks, the
preprocess algorithm precomputes (t−1)/n of the database
s.t. only 1/n of the database is left for the Response algo-
rithm (Algorithm 4) in the online phase.

Algorithm 2 Preprocess of CIP-PIR

input: DBi,Qi . database DBi, queue Qi
(chunk0, . . . ,chunkt−1)← DBi , k← B/n
DB← chunk1| . . . |chunkn−1 . all but first chunk
while Qi is not full do

S←${0,1}κ

q← PRG(Si,k(t−1)) . non-flip chunk
A← q ·DB . XOR blocks of DB corresponding to q
Qi.push(S,A) . push seed/value pair (S,A)

end while
return ai . answer of server i

Request (Algorithm 3). The Request algorithm generates
the flip chunk qi for each server i depending on the server’s
seeds Si, and the requested block index idx. Firstly, the main
query q is built by setting the idx-th Bit of a B-Bit vector to
1. Then, the client expands the seeds Si to a k(n−1) Bit sub-
query v which covers all non-flip chunks of server i. Server i
has u chunks to the left and w chunks to the right of its flip
chunk (e.g., in Fig. 2, the server with the query q2 has u =
w = 1 chunk left and right of its orange flip chunk). The
expanded sub-query v is XORed to the main query at the
respective chunks. Finally, the resulting query q is split into n
sub-queries qi that are the flip chunks for each server i.

Algorithm 3 Request of CIP-PIR

input: idx,S0, . . . ,Sn−1 . index idx, seeds S0, . . . ,Sn−1
q← 0B . the main query consists of 1 Bit per block
q[idx] = 1, k← B/n . # blocks per chunk
for all i ∈ [n] do

v← PRG(Si,k(t−1)) . pseudo-random Bits
u←max(0, i+ t−n), w←min(i+1, i+ t−1)
q[0 : ku]← q[0 : ku]⊕ v[0 : ki]
q[k(i+1) : kw]← q[k(i+1) : kw]⊕ v[ki : k(t−1)]

end for
for all i ∈ [n] do

qi← q[ik : (i+1)k]
end for
return q0, . . . ,qn−1 . query for each server

7

Server i ∈ [n] Client

Setup Phase (once for all servers):
input: data D

DBi← Create(D)

Preprocessing Phase:
Qi← []

Start Preprocess(DBi,Qi)

Online Phase: input: idx

(Si,Ai)← Qi.pop() "hello"

Si (q0, . . . ,qn−1)← Request(idx,S0, . . . ,Sn−1)

ai← Response(qi,DBi,Ai)
qi

ai d← Combine(a0, . . . ,an−1)

output: d = D[idx]

Figure 3: Message flow for client-independent preprocessing PIR (CIP-PIR). The client communicates with all n servers i ∈ [n]
in parallel.

Algorithm 4 Response of CIP-PIR

input: qi,DBi,Ai . query qi, database DBi, precomputed
block Ai
(chunk0, . . . ,chunkt−1)← DBi . chunk0 is flip chunk
ai← Ai⊕qi · chunk0
return ai . answer of server i

Response (Algorithm 4). Server i extracts its flip chunk
from the database (chunk0 in DBi) and XORs all blocks corre-
sponding to Bits set to 1 in the query qi. The result is XORed
to the precomputed block Ai from the Preprocess algorithm
and returned to the client. Here, only one chunk, i.e., 1/n of
the database is touched, whereas the remaining (t−1)/n of
the database are already precomputed in block Ai.

Algorithm 5 Combine of CIP-PIR

input: a0, . . . ,an−1 . answers of the servers
d←

⊕n−1
i=0 ai

return d . data block d

Combine (Algorithm 5). As in RAID-PIR, the XOR of all
server answers ai is obtained as d = D[idx] =

⊕n−1
i=0 ai.

For each query, the server pops a pair and sends seed Si to
the client after obtaining its initial "hello" message.3

3An outer protocol must ensure that clients cannot run a denial of service
attack by just sending many "hello" messages which would quickly drain the
server’s queue. This can be done with proper rate limiting, e.g., using client
puzzles [31].

3.4 PIR with Database Compression

In the following, we show how to compress the database
in PIR schemes by (a) adapting a database compression
technique which was used in [47] in the context of a pri-
vate membership test, and (b) by shorting the hash values in
the database. We compute the optimal blocksize where the
amount of uploaded and downloaded data is nearly equal and
thus the total communication is minimal. We call this opti-
mization PIR with Database Compression. It can be applied
to any PIR scheme that is based on blocks.

Storing the Differences. The idea of the technique of [47]
is to first sort the entire database before it is divided into
blocks. Assume that a block has the entries (e1, . . . ,em). Since
the database is sorted, successive entries are close to each
other and thus we can store their differences instead of the
whole entries themselves, namely only store (e1,e2−e1,e3−
e2, . . . ,em − em−1). It is easy to see that the length of the
differences is smaller than the length of the entries.4 This
compression technique can be applied to any PIR scheme that
is based on blocks.

Since the client only retrieves a single block of the database,
and decompressing the entire database on the server side
would be very inefficient, we apply this compression tech-
nique independently to each block of the database. Therefore
the client does not need to know any data except for the re-

4Suppose that a set contains m items from a domain of size N. Storing
the items themselves requires m logN Bits. On the other hand, if the items
are evenly distributed, as is the case when they are generated as outputs of
a hash function, then the average distance between two successive items is
N/m, and we need to store only O(m(logN− logm)) Bits.

8

trieved block to decompress the block. For a better compres-
sion, we increase the blocksize b. Thus, we use less blocks
while the blocks become larger but are stored and sent in a
compressed way. Using larger blocks induces a tradeoff: it
increases the communication from the servers to the client,
but reduces the communication from the client to the servers.

Shorter Hashes. In C3 [49], the compromised data is rep-
resented as a 32 Bytes hash prefix, which results in a database
of 33 · |DB| Bytes. Since we only need to check for equality,
we can apply a trick from the PSI literature [18, 42, 43] and
only use the first 40+ log2 |DB| Bits of H (Hb) instead. (The
probability of a collision between the hash of the user cre-
dential and any other hash is therefore only 2−40 and hence
negligible.) For a database of size 5 billion entries this cuts
the size of each entry down to only 73 Bits, which is an im-
provement by factor 3.6×. Using a more relaxed bound on
the false error probability would result in even shorter values,
e.g., a bound of 2−20 (meaning that one in a Million users
gets a false warning) requires only 53 Bits and results in a 5×
improvement factor. This compression techniques can be used
for any PIR database whose entries consists of blocks and
hash values are used to check for equality.

Optimal Blocksize. Let b be the size of blocks after com-
pression. The total communication per server for our CIP-PIR
scheme is

C (b) = 1/8
|DB|
bn

+κ/8+b, (1)

where the first element is the size of the information sent
from the client to the server, and the last two elements are the
size of the data sent from the server. One can easily show by
derivation that C (b) has its local minimum at b̂ =

√
|DB|/8n.

Later in §5.2.2, we will show that this reduces the size of the
DB by factor 1.2× compared to the uncompressed database.
We also show that the theoretically computed values almost
perfectly match with the measured communication. Note that
Eq. 1 only calculates the communication for one server. We
can multiply C (b) by n to get the total communication among
all servers. The upload and download are both sub-linear
in |DB|.

4 GPU-Accelerated CIP-PIR

In CIP-PIR (cf. §3.3), the n servers precompute (seed, value)-
pairs in a separate thread. Since these precomputations con-
tain a huge amount of independent XOR operations, GPUs
that are built for highly parallel data processing are a natural
choice. The precomputations can be outsourced on GPU clus-
ters to support PIR applications on a large-scale. In addition,
the online phase can naturally be accelerated as well by uti-
lizing the GPU for computing the Response algorithm as it
works similarly.

In §4.1, we present two approaches for accelerating the
huge amount of XOR operations of CIP-PIR with a GPU.
In §4.2, we demonstrate how GPUs can substantially improve
the amortized runtime by batching multiple queries.

4.1 GPU-Accelerated Tuple Computation

The massive number of XOR operations are the main
cost factor of our CIP-PIR protocol. In this section, we
demonstrate two approaches for parallelizing these compu-
tations efficiently on a GPU using Nvidia’s CUDA architec-
ture (cf. §2.2).

4.1.1 All Compute One (ACO).

In this approach, all CUDA-blocks simultaneously compute a
single (seed, value)-pair together by looping over the query
and one word5 of the output is computer per thread. As the
output consists of b Bytes, we need C = db/Te CUDA-blocks,
where T denotes the number of threads in a CUDA-block. If
the GPU has more than Tpair =C ·T threads, we can compute
multiple pairs in parallel, i.e., the maximum number of pairs
that can be computed in parallel is Tmax/Tpair, where Tmax
denotes the number of threads on the GPU.

4.1.2 In-Register

In the in-register approach, each CUDA-block with Tmax
threads computes one pair, where each thread is responsi-
ble for db/Tmaxe Bytes of the b Byte output. As the thread’s
registers have the fastest memory access speed, we can ac-
celerate the computation by storing the intermediate results
in these registers. The maximum number of pairs that can be
computed in parallel is not clearly defined since GPUs with
CUDA Compute Capability 3.0 or higher can handle up to
Cmax = 231−1 CUDA-blocks. However, the maximum num-
ber of threads Tmax und the GPU are the limiting factor of this
approach as well. Thus, one can not naïvely set the amount
of CUDA-blocks to the maximum value Cmax since only a
few threads would compute on a single pair simultaneously.
Instead, we dynamically set the number of threads per CUDA-
block T and the number of CUDA-blocks C depending on the
blocksize b to significantly improve the performance.

4.2 Amortized Query Preprocessing

Batching multiple queries was already used in computational
PIR schemes [2, 24], but required waiting for multiple client
queries in IT-PIR schemes [1, 14] to collect several client
requests which increases online latency. As the preprocessing
phase of our CIP-PIR scheme is now completely independent

5The word size depends on the GPU’s architecture (4 Bytes for our
GPUs).

9

of the client, we can now for the first time batch multiple
queries without increasing online latency.

A main performance bottleneck of GPU-accelerated PIR
computation is that multiple portions of the database must be
copied into the GPU’s memory, which costs many clock cy-
cles (cf. §2.2). If we instead compute M (seed, value)-pairs in
parallel, we can amortize these times for copying the database
portions to the GPU among all M pairs. Consequently, the to-
tal runtime of CIP-PIR consisting of the online and the amor-
tized preprocessing phase for a single query, is faster than
the online phase of a RAID-PIR query, as batching multiple
queries in RAID-PIR requires to wait for multiple incoming
queries (which obviously also takes extra time). Hence, the
amortized runtime in CIP-PIR is factor 0.7× slower than in
RAID-PIR for CPU and up to 53× for GPU (cf. §5.2.1 for
details).

5 Implementation and Benchmarks

We implemented a CPU-based (cf. §3.3) and a GPU-
accelerated version (cf. §4) of our CIP-PIR protocol in C++.
We give the implementation details in §5.1 and runtimes
in §5.2.

Use-Case As use-case for our experiments, we use Compro-
mised Credential Checking (cf. §1.2), where the client obliv-
iously retrieves a block from the database and checks if her
hash computed from her username and password is contained
in it. The 32 Byte hashes are compressed to 8 Bytes (cf. §3.4).

5.1 Implementation
Our implementation consists of hree components: the
database generation, the server, and the client. We summarize
the details of the first two components next.

Database Generation. Our database consists of pseudo-
random values. This simulates the real-world deployment of
C3 and COVID-19 related applications (cf. §1.2), as hashed
values are pseudo-random as well and hence have the same
distribution. The database is stored in the RAM of the OS
and the GPU memory of the server. We created databases up
to 3.5 billion entries which suffices to cover the password
breaches in Collection 1-5 [27].

Server The online server’s main task is to answer the
client’s queries by computing the corresponding values based
on the precomputed (seed, value)-pairs. In the CPU-based
implementation, we use Intel AVX-512 intrinsics to enable
XOR operations over 512 Bits with a single CPU instruction.
On top of this, we parallelize this approach using OpenMP.
Since the server does not need the whole query to start the
answer computation, we implemented a pipelining approach

that directly processes the query while it still receives the
client’s query.

5.2 Benchmarks
We benchmark our CIP-PIR schemes as follows: In sec-
tion §5.2.1, we benchmark the amortized preprocessing run-
time for various blocksizes b. In section §5.2.2, we benchmark
our CPU-based and GPU-accelerated CIP-PIR implementa-
tions and compare them with RAID-PIR [17] on the same
codebase and the single-server SealPIR [2].

Experimental Setup. For the benchmarks, we use the fol-
lowing Amazon AWS instances: For the GPU-accelerated
CIP-PIR servers, we use p3.2xlarge instances each having
an NVIDIA Tesla V100 yielding a computational power of
7 TeraFLOPS and 16 GB of HBM2 memory with a band-
width of 900 GB/s and a wordsize of 4 Bytes. The machines
have 8 vCPUs and 61 GB RAM which is sufficient for our
use-case because we can load databases up to the size of
the GPU memory, i.e., 16 GB in total. For the CPU-based
PIR implementations, we use c5.24xlarge instances which
deliver a high performance for compute-intensive workloads.
These instances feature 2nd generation Intel Xeon 8000 series
processors with a clockspeed of up to 3.6 GHz, 96 vCPUs
and 192 GB RAM in total to provide a fair comparison to the
GPU based approach. When writing this work, the p3.2xlarge
costs 3.823 USD per hour and the c5.24xlarge 4.656 USD per
hour, so that the GPU-accelerated instance is roughly 20%
cheaper. For the client, we use a t2.large instance, which has
2 vCPUs installed and 8 GB of RAM. Between client and
servers, we measured a network bandwidth of 1 GBit/s. We
always give average execution times over 10 benchmark runs.

5.2.1 Preprocessing Phase

We first benchmark the amoritzed runtimes of the preprocess-
ing phase.

Influence of blocksize and number of pairs. In this
benchmark, depicted in Fig. 4, we measure the amortized
preprocessing runtime for the CPU-based implementation
and both parallelization techniques of the GPU-accelerated
implementation from §4.1. For this benchmark, we used
a 8 GB database consisting of 1 Mio entries of 8 Bytes
and n = 3 servers, i.e., 2/3 of the whole database is pro-
cessed in the preprocessing phase. We give benchmarks for
various blocksizes and number of simultaneous computed
(seed, value)-pairs.

CPU: The amortized runtime has no high impact on the
CPU-based implementation. The speedup of factor ≈ 1.3× is
only measurable until all threads are occupied, but afterwards,
the performance falls back to a factor of≈ 1.1× improvement
over the non-batched execution. However, the CPU-based

10

10 100 1,000

BLOCKSIZE

BATCH SIZE 10,000 100,000
210 211 212 210 211 212 210 211 212 210 211 212 210 211 212

100

101

102

A
m

or
ti

ze
d

Pr
ep

ro
ce

ss
in

g
Ti

m
e

(µ
s)

GPU: In-Register CPU
GPU: ACO

1

Figure 4: The amortized preprocessing time per (seed, value)-
pair of our CPU-based and two GPU-accelerated implemen-
tations. We use n = 3 servers, a database of 1 Mio entries and
an entry size of 8 Bytes. The blocksize is given in Bytes.

implementation scales better for larger blocksizes, so it is a
natural choice to set the blocksize b to the optimal blocksize b̂
that yields the best communication overhead (cf. §3.4).

ACO: In the ACO parallelization technique (cf. §4.1.1), all
CUDA-blocks compute one (seed, value)-pair together. We
see a significant amortized runtime improvement compared
to the CPU-based implementation. This improvement grows
with the blocksize since the ACO technique scales very good
with larger blocksizes: Each thread needs to XOR a higher
number of blocks when choosing smaller blocksizes, since
the ACO approach uses the whole GPU computational power
to evaluate one seed after another. As long as the GPU’s
threads are not occupied, we observe a massive performance
improvement as each thread processes one Byte of the block.
Unfortunately, we do not gain further amortized runtime im-
provements for more than batch size |Q| = 1000 since the
ACO technique scales only linearly with the number of pairs.
However, the ACO approach improves the CPU-based imple-
mentation up to factor 2.6× for a batch size of |Q|= 1000

In-Register: Our most optimized approach called in-
register, where the threads compute on the values inside
their registers (cf. §4.1.2), shows a clear improvement over
the ACO-based by up to factor 63× and the CPU-based
implementations by up to factor ≈ 85× for a batch size
of |Q|= 1000. This approach outperforms the amortized total
runtime including preprocessing and online time of RAID-
PIR by factor ≈ 53×. With a higher batch size and larger
blocksizes the speedup factor is still 18×. Aside from mini-
mizing the memory accesses with high costs, the in-register

1285121,024 2,048 3,072 4,096
0

1,000

2,000

3,000

Blocksize in Bytes

A
m

or
itz

ed
R

un
tim

e
(µ

s)

N = 25000000;n = 3 N = 25000000;n = 2
N = 10000000;n = 3 N = 10000000;n = 2
N = 5000000;n = 3 N = 5000000;n = 2
N = 1000000;n = 3 N = 1000000;n = 2
N = 100000;n = 3 N = 100000;n = 2

Figure 5: Runtimes for various blocksizes on the GPU-
accelerated implementation using the in-register approach.
Different colors indicate the number of entries in the database,
whereby the marks show the amount of servers (n= 2 and n=
3) used in the corresponding experiment.

approach benefits from choosing the parameter for the CUDA-
blocks dynamically based on the blocksize and the hardware
specifications. We see that the amortized runtimes grows
linearly with the number of simultaneously computed pairs.
However, it is the only approach where increasing the block-
size has a negative impact on the performance due to the
overhead of XORing more Bytes per block. An optimiza-
tion that is left for future work is pipelining where already
computed results are copied to the server’s main memory
while performing further precomputations s.t. the cost of data
transmissions can be hidden almost completely.

Best blocksize for in-register approach. In this bench-
mark, depicted in Fig. 5, we measure the preprocessing run-
time of the in-register-based implementation for various block-
sizes, database sizes, as well as n = 2 and n = 3 servers to
investigate whether an optimal blocksize for this approach
exists.

We see in Fig. 5 that each database - except for the smallest
one with only 100 000 entries - shows similar characteris-
tics for the in-register implementation: the overhead with too
small blocksizes is huge, but decreases exponentially to the
optimal blocksize. Afterwards, the runtime increases nearly
linearly with the blocksize. It is interesting to see that the
optimal blocksize scales only marginally with the size of the
database, e.g., with N = 1 Mio entries the optimal blocksize
is 512 Bytes whereas with N = 5 Mio entries it is 1 KByte.

11

5.2.2 Setup and Online Phase

We compare our CPU-based CIP-PIR implementa-
tions (cf. §5.1) in C++, our reimplementation of the
RAID-PIR protocol [16, 17] using the same codebase
(including the parallelization and pipeline optimizations
outlined in §5.1), the original Python implementation of
RAID-PIR from [16,17] in Python, and the publicly available
single-server SealPIR implementation in C++ [2].

Setup Phase. In the one-time setup phase, a random PIR
database is generated, sorted, compressed, and the precompu-
tations related to the database are processed and written to a
file. This phase is identical for RAID-PIR and CIP-PIR. For
our largest database of size 25 GB, this took roughly 84 min-
utes. The optimal blocksize, where the amount of upload and
download data is almost the same, is b̂ ≈ 88 KB, which re-
sults in roughly B = 284000 blocks. After compressing each
block as described in §3.4, the blocksize is reduced by fac-
tor ≈ 1.2× to b≈ 73 KB, which perfectly matches with the
theoretical analysis.

2 3 4 5
0

100

200

300

400

Number of Servers n

O
nl

in
e

R
un

tim
e

(m
s)

RAID-PIR [16] (t = 5) RAID-PIR [16] (t = 2)
RAID-PIR [16] (t = 4) CIP-PIR [this work]
RAID-PIR [16] (t = 3)

Figure 6: Online runtimes of our CPU-based PIR implementa-
tions for different number of servers n on a 500 MB database.
Our implementation of the RAID-PIR protocols [16, 17] uses
the same codebase as CIP-PIR. The threshold t of CIP-PIR
is set to n.

Online Phase. The main difference between CIP-PIR and
RAID-PIR is the amount of data each server has to touch in
the online phase. Concretely, a CIP-PIR server touches 1/n-th
of the database, while a RAID-PIR server with threshold 2≤
t ≤ n processes t/n of the database.6 Thus, the online time of

6Note that the total amount of computation in CIP-PIR and RAID-PIR
is exactly the same. CIP-PIR just shifts most of the computation costs to a
preprocessing phase. The online communication is equal for both protocols
and CIP-PIR just needs one more RTT, i.e., we have s slightly higher online
communication time than RAID-PIR.

5 10 15 20 25

101

102

Database Size |DB| (GB)

O
nl

in
e

R
un

tim
e

(s
)

SealPIR [2] in C++ FSS-PIR [8] in C++
RAID-PIR [16] in Python CPU-based CIP-PIR in C++
RAID-PIR in C++ GPU-accelerated CIP-PIR in C++

Figure 7: Online runtimes of PIR implementations for differ-
ent database sizes |DB| and n = 22 servers (n = 1 for single-
server SealPIR [2]). The threshold for all RAID-PIR imple-
mentations is t = 2.

our CIP-PIR protocol should improve over RAID-PIR by a
factor of t×. We observe this improvement in online runtime
also in practice, as shown in Fig. 6, where 2 to 5 servers
operate on a 500 MB database and achieve improvements
of ≈ t×.

Note that Fig. 6 shows all possible combinations of number
of servers n and threshold t for RAID-PIR, but not for CIP-
PIR as its online computation is independent of t (cf. §B).

We see that the runtime of querying one entry decreases
with the number of PIR servers n. At some point, however, the
client’s overhead of managing multiple connections becomes
high and the improvement of deploying many servers is re-
duced (e.g., the improvement of CIP-PIR from 2 to 3 servers
is higher than from 4 to 5 servers). Each service provider
profits from many deployed servers n as the server only
touches 1/n of the DB in the online phase. The client, how-
ever, has more work to do since she needs to handle n connec-
tions and needs to perform more XOR operations and PRG
evaluations for building the queries.

Communication. CIP-PIR and RAID-PIR have the same
amount of communication (independent of RAID-PIR’s
threshold t), but RAID-PIR has only a single round-trip while
CIP-PIR has two round-trips. For a 500 MB database, the
client uploads ≈ 17.6 KB and downloads ≈ 15 KB data with
each server. The amount of upload and download data is al-
most equal, but due to our compression from §3.4, we are not
able to choose the optimal blocksize b̂ for our database.

Comparison with other PIR implementations. In Fig. 7
we compare the online runtimes of several PIR implemen-
tations for varying database sizes. We compare the com-
munication complexity of several PIR schemes in §B. For

12

RAID-PIR [16, 17] we set the threshold to t = 2 for best effi-
ciency. CIP-PIR on a database size of |DB|= 25 GB improves
over our RAID-PIR implementation by factor ≈ 2× (≈ 4.2×
for our GPU-accelerated CIP-PIR implementation with in-
register, cf. §4.1.2). This matches what we would expect in
theory as well. Most of the online runtime is spent on the
server’s huge number of XOR operations, which we halve
in CIP-PIR. Our GPU-accelerated implementation improves
over our CPU-based implementation by factor ≈ 2.1×. More-
over, our CIP-PIR implementation outperforms the original
RAID-PIR implementation of [16,17] in Python (without par-
allelization and pipelining optimizations) by factor≈ 7.7× (≈
16.2× for our GPU-accelerated CIP-PIR implementation).

Our CPU-based CIP-PIR protocol is substantially faster
than the state-of-the-art single-server PIR scheme SealPIR [2]
by factor ≈ 16.8× (≈ 30.6× for our GPU-accelerated imple-
mentation) as shown in Fig. 7. Single-server PIR schemes are
based on expensive homomorphic encryption operations and
the server needs to touch every Bit of the database in order to
gain no information about the queried block. Unfortunately,
the current implementation of SealPIR does not implement
networking, so we only measured the computation times, but
already these were substantially slower than the total (compu-
tation + communication) times of (CIP-)RAID-PIR.

Although FSS-PIR [8] is well known for its very efficient
logarithmic upload communication complexity, our CPU-
based CIP-PIR implementation improves over the state-of-
the-art implementation of FSS-PIR [32] by factor ≈ 1.6×
in runtime (≈ 3.5× with our GPU-based implementation)
for |DB| = 25 GByte. In §B, we show that the communica-
tion complexity of CIP-PIR for retrieving a b = 1 MByte
block even from a |DB|= 16 TByte database the communica-
tion is only 4 MByte and thus only 2×more than FSS-PIR [8]
and hence the effect of network bandwidth is negligible.

6 Related Work

Multi-Server PIR. Chor et al. [11] introduced information
theoretically secure PIR and gave first constructions that use n
non-colluding servers where each server receives a query from
the client and sends a response to it. Several subsequent works
on multi-server PIR protocol [5,20,26,29] have the bottleneck
of computing in the online phase many XOR operations over
a large fraction of the database. The first multi-server PIR
scheme with logarithmic communication complexity based on
function secret sharing (FSS) via a distributed point function
was shown by Boyle et al. [8, 9]. FSS-based PIR improves
the upload communication by giving each server a distributed
function share, where all shares together are expanded into the
client’s query. Afterwards, this scheme still computes XOR
operations over the whole database which, as we show, is the
main bottleneck also in Chor et al. [11]-based PIR for large
databases, which we significantly improve in our work.

Previous works [7, 16, 17] perform an expensive one-time

offline precomputation phase for database-dependent values
reducing the online computation by a constant factor. As
client-dependent offline phases are well-established practice
in MPC, this model also found its way to the PIR literature.
In concurrent and independent work to our paper, The au-
thors of [14] introduced a new PIR model called Offline/On-
line (OO)-PIR, where the servers and the client run a prepro-
cessing phase before the client knows which database entry
she wants to access. The difference between their model and
our new CIP-PIR model is that in our protocol, the server
does the precomputations locally without even knowing the
client(s). Our protocol can be mapped into their PIR model by
moving the first message of our online phase into the prepro-
cessing phase and keeping a state of only 128 Bit for the seed
and one block per query. Our client-independent preprocess-
ing is substantially more powerful as it allows parallelization
and amortization across all clients.

Two very recent multi-server PIR protocols [34, 45] in
the OO-PIR model allow to efficiently retrieve a bit from the
database with sublinear online complexity. These schemes are
very efficient for retrieving small data but become inefficient
when large values (like truncated hashes in our C3 application)
or even files need to be downloaded. In this case, Chor et
al. [11]-based PIR protocols like our CIP-PIR, or FSS-based
PIR [9] are better suited.

GPU-accelerated PIR. The first GPU-accelerated PIR
scheme was shown by Melchor et al. [39, 40]. They utilize
GPUs to improve the runtime efficiency of their lattice-based
single-server PIR scheme by factor ≈ 10×. However, the
server needs to compute many modular multiplications, so
this scheme is still very inefficient. Mane et al. [37] replace
the modular multiplications with vector additions on a GPU
resulting in a much cheaper cost per Bit ratio.

Marueac et al. [38] develop general techniques to improve
single-server PIR schemes by using CUDA exemplarily on the
PIR protocol of Kushilevitz and Ostrovsky [35]. This scheme
requires large integer multiplications and modulo products
among the whole database, which can be perfectly parallelized
by GPUs. Another optimization introduces a preprocessing
phase that takes place before the data is copied into the GPU’s
global memory. In the preprocessing phase, each block is
padded such that the next sequence of blocks starts with a
memory address that is a multiple of 16 Bytes.

Dai et al. [15] use GPUs to improve Somewhat Ho-
momorphic Encryption (SWHE)-based single-server PIR
schemes [19]. They developed CUDA code that allows effi-
cient modular multiplications and modulus switching, which
is the main bottleneck of many single-server PIR protocols.

To the best of our knowledge, all previous works on using
GPUs to accelerate PIR were for single-server PIR which is
very compute intensive. A reason might be that multi-server
PIR schemes rely on very cheap operations like XOR s.t.
copying the relevant data into the GPU would eliminate the

13

performance improvement. In this paper, we show for the first
time in multi-server PIR how to precompute large parts of the
server’s answers independent of the client and thereby we can
benefit from GPU acceleration here as well.

Acknowledgments

This project received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 re-
search and innovation program (grant agreement No. 850990
PSOTI). It was co-funded by the Deutsche Forschungsge-
meinschaft (DFG) — SFB 1119 CROSSING/236615297 and
GRK 2050 Privacy & Trust/251805230, and by the German
Federal Ministry of Education and Research and the Hessen
State Ministry for Higher Education, Research and the Arts
within ATHENE.

This work was supported by the BIU Center for Research
in Applied Cryptography and Cyber Security in conjunction
with the Israel National Cyber Bureau in the Prime Minister’s
Office, and by the Alter Family Foundation.

References

[1] Kinan Dak Albab, Rawane Issa, Mayank Varia, and
Kalman Graffi. Batched differentially private informa-
tion retrieval. IACR Cryptology ePrint Archive, Report
2020/1596, 2020. https://ia.cr/2020/1596.

[2] Sebastian Angel, Hao Chen, Kim Laine, and Srinath
T. V. Setty. PIR with compressed queries and amortized
query processing. In S&P. IEEE, 2018.

[3] Vladimir L. Arlazarov, E. A. Dinic, M. A. Kronrod,
and I. A. Faradzev. On economical construction of the
transitive closure of an oriented graph. Journal of USSR
Academy of Sciences, 1970.

[4] Dmitri Asonov. Querying databases privately: a new
approach to private information retrieval, volume 3128
of Lecture Notes in Computer Science. Springer, 2004.

[5] Daniel Augot, Françoise Levy-Dit-Vehel, and Abdullatif
Shikfa. A storage-efficient and robust private informa-
tion retrieval scheme allowing few servers. In CANS.
Springer, 2014.

[6] Alexandros Bampoulidis, Alessandro Bruni, Lukas
Helminger, Daniel Kales, Christian Rechberger, and Ro-
man Walch. Privately connecting mobility to infectious
diseases via applied cryptography. IACR Cryptology
ePrint Archive, Report 2020/522, 2020.

[7] Amos Beimel, Yuval Ishai, and Tal Malkin. Reducing
the servers computation in private information retrieval:
PIR with preprocessing. In CRYPTO. Springer, 2000.

[8] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv
Gilboa, and Yuval Ishai. Lightweight techniques for
private heavy hitters. IEEE, 2021.

[9] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function
secret sharing. In EUROCRYPT. Springer, 2015.

[10] Stefan Brechtken. GPU and CPU acceleration of a
class of kinetic lattice group models. Computers and
Mathematics with Applications, 2014.

[11] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and
Madhu Sudan. Private information retrieval. In FOCS.
IEEE, 1995.

[12] Catalin Cimpanu. Chrome 79 released with tab freezing,
back-forward caching, and loads of security features.
https://www.zdnet.com/article/chrome-79-
released-with-tab-freezing-back-forward-
caching-and-loads-of-security-features/,
2019.

[13] Henry Corrigan-Gibbs and Dan Boneh. Prio: Private, ro-
bust, and scalable computation of aggregate statistics. In
Networked Systems Design and Implementation (NSDI).
USENIX Association, 2017.

[14] Henry Corrigan-Gibbs and Dmitry Kogan. Private infor-
mation retrieval with sublinear online time. In EURO-
CRYPT. Springer, 2020.

[15] Wei Dai, Yarkin Doröz, and Berk Sunar. Accelerating
SWHE based pirs using gpus. In FC. Springer, 2015.

[16] Daniel Demmler, Amir Herzberg, and Thomas Schnei-
der. RAID-PIR: Practical multi-server PIR. In CCSW.
ACM, 2014.

[17] Daniel Demmler, Marco Holz, and Thomas Schneider.
OnionPIR: Effective protection of sensitive metadata in
online communication networks. In ACNS. Springer,
2017.

[18] Changyu Dong, Liqun Chen, and Zikai Wen. When
private set intersection meets big data: an efficient and
scalable protocol. In CCS. ACM, 2013.

[19] Yarkin Doröz, Berk Sunar, and Ghaith Hammouri. Band-
width efficient PIR from NTRU. In FC. Springer, 2014.

[20] Zeev Dvir and Sivakanth Gopi. 2 Server PIR with sub-
polynomial communication. In STOC. ACM, 2015.

[21] ENZOIC. Detect compromised passwords. https:
//www.enzoic.com/, 2016.

[22] ENZOIC. LastPass selects Password-
Ping for compromised credential screening.
https://www.enzoic.com/lastpass-selects-

14

https://ia.cr/2020/1596
https://www.zdnet.com/article/chrome-79-released-with-tab-freezing-back-forward-caching-and-loads-of-security-features/
https://www.zdnet.com/article/chrome-79-released-with-tab-freezing-back-forward-caching-and-loads-of-security-features/
https://www.zdnet.com/article/chrome-79-released-with-tab-freezing-back-forward-caching-and-loads-of-security-features/
https://www.enzoic.com/
https://www.enzoic.com/
https://www.enzoic.com/lastpass-selects-passwordping-for-compromised-credential-screening/

passwordping-for-compromised-credential-
screening/, 2016.

[23] Michael J. Freedman, Yuval Ishai, Benny Pinkas, and
Omer Reingold. Keyword search and oblivious pseudo-
random functions. In TCC. Springer, 2005.

[24] Craig Gentry and Shai Halevi. Compressible FHE with
applications to pir. In TCC. Springer, 2019.

[25] Yael Gertner, Yuval Ishai, Eyal Kushilevitz, and Tal
Malkin. Protecting data privacy in private information
retrieval schemes. In STOC. ACM, 1998.

[26] Ian Goldberg. Improving the robustness of private infor-
mation retrieval. In S&P. IEEE, 2007.

[27] Andy Greenberg. Hackers are passing
around a megaleak of 2.2 billion records.
https://www.wired.com/story/collection-
leak-usernames-passwords-billions/, 2019.

[28] Daniel Günther, Marco Holz, Benjamin Judkewitz, He-
len Möllering, Benny Pinkas, and Thomas Schneider.
PEM: Privacy-preserving epidemiological modeling.
IACR Cryptology ePrint Archive, Report 2020/1546,
2020. https://ia.cr/2020/1546.

[29] Ryan Henry, Yizhou Huang, and Ian Goldberg. One
(block) size fits all: PIR and SPIR with variable-length
records via multi-block queries. In NDSS. The Internet
Society, 2013.

[30] Troy Hunt. Have i been pwnd? https://
haveibeenpwned.com/, 2019.

[31] Ari Juels and John G. Brainard. Client puzzles: A cryp-
tographic countermeasure against connection depletion
attacks. In NDSS. The Internet Society, 1999.

[32] Daniel Kales. C++ dpf library. https://github.com/
dkales/dpf-cpp, 2019.

[33] Marcel Keller. MP-SPDZ: A versatile framework for
multi-party computation. In CCS. ACM, 2020.

[34] Dmitry Kogan and Henry Corrigan-Gibbs. Private block-
list lookups with checklist. IACR Cryptology ePrint
Archive, Report 2021/345, 2021. To be published at
Usenix Security 2021. https://ia.cr/2021/345.

[35] Eyal Kushilevitz and Rafail Ostrovsky. Replication is
not needed: Single database, computationally-private
information retrieval. In FOCS. IEEE, 1997.

[36] Lucy Li, Bijeeta Pal, Junade Ali, Nick Sullivan, Rahul
Chatterjee, and Thomas Ristenpart. Protocols for check-
ing compromised credentials. In CCS. ACM, 2019.

[37] Sunil B. Mane, Sandip B. Bansode, and Pradeep K.
Sinha. Optimized private information retrieval us-
ing graphics processing unit with reduced accessibility.
In International IT Conference & Exhibition (CUBE).
ACM, 2012.

[38] Mihai Maruseac, Gabriel Ghinita, Ming Ouyang, and
Razvan Rughinis. Hardware acceleration of private
information retrieval protocols using gpus. In ASAP.
IEEE, 2015.

[39] Carlos Aguilar Melchor, Benoît Crespin, Philippe Ga-
borit, Vincent Jolivet, and Pierre Rousseau. High-speed
private information retrieval computation on GPU. In
SECURWARE. IEEE, 2008.

[40] Carlos Aguilar Melchor and Philippe Gaborit. A lattice-
based computationally-efficient private information re-
trieval protocol. In Western European Workshop on
Research in Cryptology (WEWORC). Springer, 2007.

[41] Moni Naor and Benny Pinkas. Oblivious transfer and
polynomial evaluation. In STOC, 1999.

[42] Benny Pinkas, Thomas Schneider, Gil Segev, and
Michael Zohner. Phasing: Private set intersection us-
ing permutation-based hashing. In USENIX Security.
USENIX Association, 2015.

[43] Benny Pinkas, Thomas Schneider, and Michael Zohner.
Faster private set intersection based on OT extension. In
USENIX Security. USENIX Association, 2014.

[44] Shane Ryoo, Christopher I. Rodrigues, Sara S. Bagh-
sorkhi, Sam S. Stone, David B. Kirk, and Wen Mei W.
Hwu. Optimization principles and application perfor-
mance evaluation of a multithreaded GPU using CUDA.
In PPOPP. ACM, 2008.

[45] Elaine Shi, Waqar Aqeel, Balakrishnan Chandrasekaran,
and Bruce M. Maggs. Puncturable pseudorandom sets
and private information retrieval with polylogarithmic
bandwidth and sublinear time. In CRYPTO. Springer,
2021.

[46] Jeff Shiner. Finding pwned passwords with
1password. https://blog.1password.com/finding-
pwned-passwords-with-1password/, 2019.

[47] Sandeep Tamrakar, Jian Liu, Andrew Paverd, Jan-Erik
Ekberg, Benny Pinkas, and N. Asokan. The circle game:
Scalable private membership test using trusted hardware.
In ASIACCS. ACM, 2017.

[48] Kurt Thomas, Frank Li, Ali Zand, Jacob Barrett, Juri
Ranieri, Luca Invernizzi, Yarik Markov, Oxana Co-
manescu, Vijay Eranti, Angelika Moscicki, and et al.
Data breaches, phishing, or malware? Understanding
the risks of stolen credentials. In CCS. ACM, 2017.

15

https://www.enzoic.com/lastpass-selects-passwordping-for-compromised-credential-screening/
https://www.enzoic.com/lastpass-selects-passwordping-for-compromised-credential-screening/
https://www.wired.com/story/collection-leak-usernames-passwords-billions/
https://www.wired.com/story/collection-leak-usernames-passwords-billions/
https://ia.cr/2020/1546
https://haveibeenpwned.com/
https://haveibeenpwned.com/
https://github.com/dkales/dpf-cpp
https://github.com/dkales/dpf-cpp
https://ia.cr/2021/345
https:// blog.1password.com/ finding-pwned- passwords-with-1password/
https:// blog.1password.com/ finding-pwned- passwords-with-1password/

[49] Kurt Thomas, Jennifer Pullman, Kevin Yeo, Ananth
Raghunathan, Patrick Gage Kelley, Luca Invernizzi, Bor-
bala Benko, Tadek Pietraszek, Sarvar Patel, Dan Boneh,
and Elie Bursztein. Protecting accounts from creden-
tial stuffing with password breach alerting. In USENIX
Security. USENIX Association, 2019.

A Security Proof of CIP-PIR

Claim 1 RAID-PIR (cf. §3.1) is multi-query secure according
to Defintion 1 on page 4.

Proof: Let us assume first that instead of depending on a
PRG and using strings of the form PRG(Si) as the “non-flip
chunks”, the client only generates and sends truly random
strings. In this information-theoretic version of the protocol,
it holds for any block Bi that the t different shares of this
block, which consist of t− 1 shares in non-flip chunks and
one share in a flip chunk,are all uniformly distributed under
the constraint that the exclusive-or of all t shares is equal
to the client’s query. Therefore, any subset of t−1 of these
shares is uniformly distributed. Consider any coalition of
t−1 servers. The view of theseservers can be fully simulated
given their t−1 uniformly distributed shares and is therefore
independent of the client’s request.

Consider now the RAID-PIR protocol, where the non-
flip chunks are generated by a PRG. Suppose that there is
a polynomial-time algorithm D which can distinguish be-
tween the view of the coalition of the t− 1 servers for two
sequences of requests of equal length, R and R′. This algo-
rithm D is not able to distinguish between these two views in
the information-theoretic version of the protocol. Therefore,
D could be used to distinguish between outputs of the PRG
(for which it succeeds in distinguishing the two views) and
truly uniform strings (for which it does not), and thus break
the security of the PRG, contradicting the assumption that the
PRG is secure.

Claim 2 For semi-honest servers, CIP-PIR (cf. §3.3) is multi-
query secure according to Defintion 1 on page 4.

Proof: For semi-honest servers the only difference between
RAID-PIR and CIP-PIR is that in the latter protocol the non-
flip chunks of the corrupt t − 1 servers are chosen by the
servers, rather than by the client. If all the t−1 servers obtain
non-flip chunks, then obliviously these chunks are indepen-
dent of the client request since they were generated by the
servers themselves. If one of these chunks is a flip chunk sent
by the client, then its value is equal to the exclusive-or of
the query, the non-flip chunks chosen by the other corrupt
servers, and a non-flip chunk chosen by the (non-corrupt) t-th
server. That latter non-flip chunk is generated by a PRG. As
in the proof of Claim 1, the security of the PRG implies that
the value of this chunk is indistinguishable from a uniformly

random string. Therefore so is the flip chunk received by the
coalition.

Claim 3 For malicious servers, CIP-PIR (cf. §3.3) is multi-
query secure according to Defintion 1 on page 4.

Proof: All that malicious servers can do in order to affect
the information that they receive from the client is change
the seeds Si which they send to the client, for example by not
choosing the seeds uniformly at random, orby resending the
same seeds. Recall that each client request is translated, based
on seeds received from t− 1 servers, to a flip chunk which
is sent to an additional server. The flip chunk is computed as
the exclusive-or of the expansion of the t−1 seeds and the
query. If one of the corrupt servers is the recipient of the flip
chunk, then, as in the proof of Claim 2, one of the t−1 seeds
is generated by an honest server, and therefore the expanded
chunk is pseudo-random and so is the flip chunk.

If all t−1 non-flip chunks are chosen by corrupt servers,
then the resulting flip-chunk might not hide the query (for
example, if the servers repeat using the same seeds for two
queries, the exclusive-or of the flip-chunks of the two queries
will be equal to the exclusive-or of the queries). But the flip
chunk will be sent to an additional server which is not part of
the coalition. (In order to prevent even this attack, the redun-
dancy parameter/threshold t can be set under the assumption
that at most t−2 servers collude, and therefore the flip-chunk
depends on at least one legitimate seed.)7

B Complexity Analysis of CIP-PIR

In this section we compare the communication, computation
and storage complexities of RAID-PIR [16, 17] and our new
CIP-PIR scheme (cf. §3.3). We further show experimental
delay times and storage overheads of CIP-PIR.

Complexities. Table 1 compares the communication, com-
putation and storage complexities of RAID-PIR and CIP-
PIR. To minimize the number of variables, we set the block-
size b=

√
|DB|/n which is the optimal blocksize for n servers

and database size |DB| (cf. §3.4) . The number of blocks
is B= |DB|/b= n

√
|DB| and the number of blocks per chunk

is k = B/n =
√
|DB|.

Communication. The total amount of communication is
the same in both schemes. In both schemes, a κ Bit seed is
uploaded (RAID-PIR) or downloaded (CIP-PIR). The query
for both schemes has B/n =

√
|DB| Bits and an answer from

one server has size b =
√
|DB|/n, i.e., all n answers have in

7Another solution, albeit only a heuristic one, is for the client to verify
that servers do not send it a seed which it previously received from any other
server. This solution should work in practice but does not seem to provide
provable security under the assumption of using a PRG, but rather only if we
model seed expansion to be done by a random oracle.

16

Scheme Communication RTT Server Computation (avg.) Client Computation Storage
RAID-PIR [17] n(2

√
|DB|/8n+κ/8) 1 Online: r|DB|/(2n)

√
|DB|(rn+1+1/n) |DB|r/n

CIP-PIR [this
work] n(2

√
|DB|/8n+κ/8) 2

Offline: (r−1)|DB|/(2n) √
|DB|(rn+1+1/n) |DB|r/n+ |Q|(

√
|DB|/n+κ)Online: |DB|/(2n)

Table 1: Comparison of communication, number of round trips (RTT), number of XOR operations for one server and for the client,
and storage per server for RAID-PIR [16, 17] and our CIP-PIR protocol (§3.3) with n servers holding a database of size |DB|
with threshold r and symmetric security parameter κ. The computation is based on the optimal blocksize b =

√
|DB|/n (cf. §3.4).

The preprocessing queue of our CIP-PIR protocol has |Q| entries.

DB Size (GB) Queue Size (MB) Offline Computation (s) Simultaneous Queries Delay avg. (ms)

0.8 142 214
1 23

10 96
100 1 091

4 316 1 003
1 93

10 364
100 4 619

8 447 1 996
1 176

10 737
100 8 500

Table 2: Queue sizes, offline computation times, and avg. delays until the client receives the desired block of our CIP-PIR
protocol (cf. §3.3)with n = 2 servers. The offline computation is the total time for filling the empty preprocessing queue with
|Q|= 10000 entries.

Scheme Communication Concrete (Upload + Download)
Upload Download (|DB = 16 TByte, n = 2, κ = 128)

CIP-PIR [this work] n
√
|DB|/8n nκ/8+n

√
|DB|/8n 4096 KByte

FSS-PIR [8] κ(log2(|DB|/128)+2) n
√
|DB|/8n 2052 KByte

OO-PIR [34] 2(κ log2 |DB|+1) log2(|DB|) 4
√
|DB|/8n 4107 KByte

Table 3: Online communication comparison of our CIP-PIR scheme with FSS-PIR [8] and Online-Offline (OO)-PIR [34] on
a |DB|=16 TByte database with n = 2 servers and security parameter κ = 128 Bit.

17

total size
√
|DB|. However, our CIP-PIR scheme needs one

additional round-trip to receive the seeds from the servers,
which results in slightly higher communication time.

Server Computation. The server’s average online compu-
tation in our CIP-PIR protocol is r× smaller than in RAID-
PIR. In CIP-PIR, one server processes only one chunk of
size kb = |DB|/n whereas a RAID-PIR server processes r
chunks, where r is the threshold and k is the number of blocks
per chunk. We give the average number of XOR operations
as the actual number depends on the number of 1-Bits in the
client’s query that is on average k/2 per chunk. Thus, we as-
sume that a server only needs to touch k/2 blocks per chunk.
Note that the database preprocessing (cf. §3.2) that is used
by RAID-PIR and in our implementation improves the costly
dependence on the client’s query to a constant number of
XOR operations (cf. [17] for details). This is done by building
groups of, e.g., eight blocks, precomputing all 28 linear com-
binations of the corresponding sub-query, and XOR only one
block per group depending on the query. The number of XOR
operations gets smaller with increasing threshold r as r−1
chunks are processed in the offline phase.

Client Computation. The client computation complexity
is equal for both schemes. A client XORs r times a Bit per
block, which are in total Br = rn

√
|DB| XOR operations.

After the client receives all blocks from the servers, she XORs
all of them to compute the requested block, which are in
total (n−1)b =

√
|DB|(1+1/n) XOR operations.

Storage. Finally, a (CIP-)RAID-PIR server needs to
store r/n of the database, while the CIP-PIR server addition-
ally stores |Q| (seed, value)-pairs of size b+κ =

√
|DB|/n+

κ. Setting κ = 128 Bit and |Q| � B, the storage overhead
is negligible compared to the performance gain of CIP-PIR.
Concretely, the queue size for the (seed, value)-pairs is equal
to the database size if |Q| ≈

√
|DB|.

Storage and Delays. In Table 2, we show the queue sizes,
the offline computation time, as well as the min., max., and
avg. delays of CIP-PIR.

We use three clients who in parallel flood the CIP-PIR
servers with 1, 10, and 100 queries to simulate simultaneous
queries. The min./max./avg. delay is the smallest/highest/aver-
age time a client has to wait until she obtains the desired PIR
block. The offline computation time is the total time for filling
the server’s empty preprocessing queue Q with |Q|=10 000
entries. The total storage s the sum of the database size |DB|
and the queue size |Q|.

As already observed in Table 1, the queue size grows sub-
linearly with the database size, which we can also observe
in Table 2. While the difference between the queue size of
a 0.8 GB and 4 GB (5× larger) database is 174 MB, the
difference between the 4 GB and 8 GB (only 2× larger)
database is just 125 MB. For the largest database of 8 GB, the
queue size |Q|=89 427 is equal to the database size.

The offline computation time grows linearly with the

database size (cf. Table 1), which we can approximately also
see in Table 2. A CIP-PIR server needs ≈ 34 minutes to
precompute 10 000 pairs (200 ms per pair) in the offline com-
putation for the largest database of 8 GB.

Our CIP-PIR implementation processes incoming queries
sequentially in a “first-come first-serve" manner. Thus, the
delay time until a client obtains a block highly depends on the
number of simultaneous queries as shown in Table 2. For the
8 GB database, the delay for a single query is just 176 ms, but
for 10 simultaneous queries the average delay time is 737 ms
and for 100 queries it is 8 500 ms. Hence, the real-world
performance of our PIR scheme depends on the database size
and the number of active users. Note that our servers just use
the computation power of one machine. Thomas et al. [49]
deploy their GPC tool with Google Cloud Functions, which
scales with the number of incoming queries. Integrating our
protocol in their system or optimizing our implementation
for hardware-based parallelization would yield better average
delay times.

Communication Comparison. Table 3 compares the on-
line communication complexities of our CIP-PIR scheme with
the recent FSS-PIR [8] and Online-Offline (OO)-PIR [34] im-
plementations for downloading a b̂ =

√
|DB|/8n block as

required for a PIR-based C3 protocol. The concrete values
shown in this table are computed for a |DB| = 16 TByte
database, which is three orders of magnitude larger than
GPC’s C3 database with all of our compression techniques.
For a fair comparison, we assume that these compression
techniques were applied to the other PIR schemes as well.

The novel sharing of the client’s request via a distributed
point function makes the upload very cheap in FSS-PIR. Its
download complexity, however, is identical to our CIP-PIR
scheme as each server responds with one PIR-block as well.
Overall, the communication complexity of FSS-PIR improves
over CIP-PIR only by factor ≈ 2×.

Surprisingly, the communication complexity of OO-PIR
compared to CIP-PIR is almost equal although these schemes
are conceptual completely different. In the n = 2 party setting,
using the optimal blocksize for CIP-PIR, our scheme will
always beat OO-PIR. If we would increase the blocksize,
the improvement would be even more significant as CIP-PIR
and FSS-PIR are well suited for retrieving large data or even
complete files. OO-PIR, on the other hand, is very efficient
for retrieving single bits or small data entries and would beat
CIP-PIR easily in runtime and communication complexities.
For large data items, which we need for important applications
like C3 [49] and epidemiological modeling [28], CIP-PIR is
more suited.

18

C Database Updates

The update process of CIP-PIR (§3.3) is very efficient. For
this, we add dummy entries to each block in the database
which serve as placeholders for new elements that are added
during the update process. When a database entry is added
to (replace dummy entry by new entry) or removed from (re-
place old entry by dummy entry) the database, the values from

the (seed, value)-pair queue Q need to be updated as follows:
During the update process, a subset of the database blocks
change from Bi to B′i for some indices i. In order to maintain
correct (seed, value)-pairs (s,a), the servers XOR for all those
indices the value ∆i = Bi⊕B′i to A whenever PRG(s)[i] is 1.
The latter can be computed easily as we instantiate PRG with
AES in CTR mode.

19

	Introduction
	Private Information Retrieval (PIR)
	Large-Scale PIR Applications
	Setting and Applicability
	Our Contributions

	Preliminaries and Background
	PIR Background
	CUDA
	Threat Model

	Private Information Retrieval Extensions
	RAID-PIR DHS14, DHS17
	PIR with Client-Independent Preprocessing (CIP-PIR)
	Our CIP-PIR Protocol
	PIR with Database Compression

	GPU-Accelerated CIP-PIR
	GPU-Accelerated Tuple Computation
	All Compute One (ACO).
	In-Register

	Amortized Query Preprocessing

	Implementation and Benchmarks
	Implementation
	Benchmarks
	Preprocessing Phase
	Setup and Online Phase

	Related Work
	Security Proof of CIP-PIR
	Complexity Analysis of CIP-PIR
	Database Updates

