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Abstract. The J-PAKE protocol is a Password Authenticated Key Establishment protocol whose se-
curity rests on Diffie-Hellman key establishment and Non-Interactive Zero Knowledge proofs. It has seen
widespread deployment and has previously been proven secure, including forward secrecy, in a game-
based model. In this paper we show that this earlier proof can be re-cast in the Universal Composability
framework, thus yielding a stronger result. We also investigate the extension of such proofs to a sig-
nificantly more efficient variant of the original J-PAKE, that drops the second round Non-Interactive
Zero-Knowledge proofs, that we call sJ-PAKE. Adapting the proofs to this light-weight variant proves
highly-non trivial, and requires novel proof strategies and the introduction of the algebraic group model.
This means that J-PAKE implementations can be made more efficient by simply deleting parts of the
code while retaining security under stronger assumptions. We also investigate the security of two fur-
ther new variants that combine the efficiency gains of dropping the second round NIZK proofs with
the gains achieved by two earlier, lightweight variants: RO-J-PAKE and CRS-J-PAKE. The earlier
variants replaced the second Diffie-Hellman terms from each party by either a hash term or a CRS
term, thus removing the need for half of the NIZK proofs in the first round. The efficiency and security
assumptions of these variants are compared.
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1 Introduction

The possibility of establishing confidential channels between remote entities without having to securely
distribute key material in advance was proposed by Diffie and Hellman, [DH76]. However, mechanisms such
as Diffie-Hellman key establishment still require some mechanism to authenticate the parties participating in
the protocol to enable the parties to be sure who is at the other end of the newly established, secure channel,
and to avoid man-in-the-middle attacks. Various ways of incorporating authentication to such protocols
have been proposed, including digitally signing messages or incorporating long term key material into the
computation of the session key, as in the MTI class of protocols, [MTI86]. However, these assume some way
for the parties to be confident of the public keys associated with the other parties, thus requiring either some
form of PKI or a web of trust etc. Another possibility is the use of out-of-band channels, authenticated by
some other means such as line of sight or distance bounding, to confirm the identity of parties involved in
the protocol.

A further possibility, and the subject of this paper, is to have the parties share a (typically low entropy)
secret in advance and using this to bootstrap the authenticity of subsequently established session keys.
This idea first appears in [Mer82] and is usually referred to as Password Authenticated Key Establishment
(PAKE). The key challenge in designing a PAKE is to ensure that an attacker cannot derive sufficient
information to execute an offline dictionary attack, i.e. never gets enough to (tractably) confirm or deny in
an offline computation a guess at the password. Such attackers might be passive, simply eavesdropping, or
active, masquerading as one or more of the parties. These two attack models are actually incomparable. This
is essential as the passwords are typically low entropy and hence vulnerable to brute force attack. Of course,
online guesses are unavoidable, but such attacks are detectable by the honest parties and can be throttled
by for example limiting the number of tries.

J-PAKE introduces a novel paradigm in the design of PAKEs, inspired by the elegant algebraic cancel-
lation construction of the anonymous vote protocol proposed by Hao and Zelinsky, [HZ06]. Aside from the
basic Diffie-Hellman construction, J-PAKE relies only on ZK proofs of knowledge. We note in passing that
these ZK proofs could be replaced by commitments, but at the cost of extra rounds. J-PAKE is included
in ISO/IEC 11770-4 (2017) and is one of the most used PAKE protocols in practice. For this reason, it is
beneficial to have J-PAKE proven in Universally composable [Can01] model. Moreover, we offer a simplified
version that saves some communication and computation cost which is also beneficial, as the current users
can just take the existing implementation and do a minimal change to it and have the same efficiency for
the lower cost.

It is sometimes argued that passwords will die out and replaced by other mechanisms for authentication,
but there is little evidence of this to date. Passwords remain the foremost mechanism for authentication,
sometimes in conjunction with other mechanisms in multi-factor approaches. In particular the use of PAKEs
in access control greatly improves the security of password based authenticated channel by protecting the
passwords in transit, thus arguably giving passwords a new lease of life.

1.1 Previous work

Although, there has been an abundance of PAKE protocols, see [BM92, Wu98, Jab96, JR13, KOY01, Har15,
AP05, HR10, TWMP07, BR94, Mac02, BRRS18, HL19], in the last two decades, we mention just a represen-
tative few, relevant to our work. Starting with EKE by Bellovin and Merritt [BM92] and SPEKE [Jab96]
which were seminal but shown prone to attacks. Popularity of PAKE protocols grew as prominent complexity-
theoretic security models ([BPR00,AFP05,BMP00,CK01]) precisely defined guidelines to prove PAKE pro-
tocols secure. For instance, PAK and PPK [Mac02], SPAKE2 [AP05], J-PAKE [HR10] are proven secure in
Indistiguishability-based models [AFP05,BPR00]. Even though Indistiguishability -based models are consid-
ered to be the weakest security proofs models for PAKE(s), they still represent a high-standard bar that
a certain PAKE protocol needs to reach to be taken into consideration for practice use. A stronger model
that makes no assumptions on the passwords and captures more real-world scenarios is Universally com-
posable (UC) model designed by Canetti et al. [CK01]. SPAKE2+ [Sho20] and OPAQUE [JKX18] are some
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of the more recent protocols proven secure in the UC framework, which guarantees security under arbi-
trary protocol composition. Furthermore, one of the benefits of UC is that it provides security for strong
asymmetric PAKEs when converted from symmetric PAKEs [GMR06]. The practice has shown that having
strong asymmetric PAKEs is of greatest importance when considering PAKEs for standardization because
they are resilient to server-compromise in the client-server setting. Until recently, only protocols that could
administrate the scenario where an adversary conducts an online attack against the session by making a
password guess before that session is completed could be proven UC secure. More precisely, PAKE protocols
in which the password could be extracted from the adversary’s message before both parties hold the session
key were proven in the UC framework. For the same reason, we prove J-PAKE secure in the UC setting.
Finally, protocols SPAKE2 [AP05], SPEKE and protocols based on SPEKE [HS14, Jab97, Mac01], such as
TBSPEKE [PW17] and CPace [HL19] were the first ones proven secure in Universally Composable relaxed
model (UC-relaxed) [ABB+20]. UC relaxed model captures the same security requirements as UC model,
but allows the adversary, while making an online attack on the session, to make its password guess after that
session terminates. More concretely, protocols that have one message that corresponds to perfectly hiding
commitment to the password could be proven secure in UC -relaxed. While security proofs are desirable,
they are not vital for the protocol to be deployed in practice. A prime example of that is SRP [Wu98] which
is currently the most used PAKE protocol. In contrast to SRP, which does not have a full proof of security,
J-PAKE has a formal proof [ABM15]. Perhaps due to its simplicity and freedom from patents, J-PAKE has
seen significant real-world deployment. Its applications include the Thread protocol (in IoT) [Thr16], Pale
Moon [Pal16] and OpenSSL [Ope16] library. Early steps to make J-PAKE more efficient yielded two other
variations, CRS-J-PAKE and RO-J-PAKE [LST16] which were proven secure in a similar fashion to J-PAKE
[ABM15]. CRS-J-PAKE and RO-J-PAKE showed a true potential to be considered for deployment. How-
ever, the additional assumptions such as common reference string and full domain hash were cumbersome for
the implementation. Widely-world deployment of J-PAKE encouraged us to search for its lighter versions,
which do not need much change in the implementation. For this reason, this paper seeks further efficiency
improvements of J-PAKE by reducing the use of zero-knowledge proofs.

1.2 Our contribution

Our starting point is the optimization of J-PAKE shown in Figure 1, which we call sJ-PAKE. In comparison
to the original design, sJ-PAKE drops the zero knowledge proofs for α and β in the original protocol and
introduces a hashing step to derive the shared key. We show that further simplifications that naively omit
the zero-knowledge proofs in the first round of the protocol result in insecure protocols, and that introducing
a hashing step is also necessary, as the protocol is vulnerable to a related key attack without it.

We then consider the question of formally proving that sJ-PAKE is secure. Our results show that the
proposed optimization leads to a protocol that is surprisingly hard to prove secure and requires completely
different techniques than those used in the original proof of J-PAKE.

To highlight this fact, we first show that the use of zero-knowledge proofs of knowledge (ZK-PoK)
in J-PAKE actually allows to establish a much stronger result than that given in [ABM15]: with small
modifications to the proof, and assuming the same form of ZK-PoK protocol, we show that J-PAKE is
actually secure in the Universal Composability framework with respect to the standard ideal functionality
for PAKE protocols.5

In contrast, we could not find a close adaptation of the original proof of J-PAKE that applies to sJ-
PAKE. We give a proof that sJ-PAKE achieves game-based security and provides perfect forward secrecy
in the random oracle model, using proof techniques similar to those used for SPAKE2 [AB19]. However, in
contrast to SPAKE2, the proof must be carried out in the algebraic group model, even in the case of weak
forward secrecy. Intuitively, the reason for this is that SPAKE2 fixes a common reference string that is totally
5 In [ABM15] the underlying ZK PoK protocol is instantiated with the Schnorr protocol, which is proved to satisfy

the required form of extractability in the algebraic group model. We do not investigate how this can be done in
the UC setting, as the goal of our UC proof is only to demonstrate how strongly the original proof for J-PAKE
relies on the ZK-PoK component.
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Client C Server S

Initialization

Public information: G, g, q, σ $←− Setup(1λ); H1 : {0, 1}∗ → {0, 1}κ

Secret information: pw ∈ Zq, pw ̸= 0

x1, x2
$←− Zq x3, x4

$←− Zq

X1 ← gx1 X3 ← gx3

X2 ← gx2 X4 ← gx4

π1 ← Prv((X1, g), x1, C) π3 ← Prv((X3, g), x3, S)

π2 ← Prv((X2, g), x2, C) π4 ← Prv((X4, g), x4, S)

(C,X1, X2, π1, π2)

(S,X3, X4, π3, π4)

Abort if X4 = 1 Abort if X2 = 1

Check Ver((X3, g), π3, S) Check Ver((X1, g), π1, C)

Check Ver((X4, g), π4, S) Check Ver((X2, g), π2, C)

α← (X1X3X4)
x2pw β ← (X1X2X3)

x4pw

α

β

Key← (βX−x2pw
4 )x2 Key← (αX−x4pw

2 )x4

K ← H1(C, S,X1, X2, K ← H1(C, S,X1, X2,

X3, X4, α, β,Key, pw) X3, X4, α, β,Key, pw)

Fig. 1: The sJ-PAKE protocol. For comparison, the J-PAKE is given in Fig. 6.

out of the attacker’s control in which it is possible to embed a hard problem instance, whereas in sJ-PAKE,
the adversary has some additional power in choosing the group elements that are used to compute the secret
key.

1.3 Organization of the paper

The rest of the paper is organized as follows. In section 2, we describe evolution from J-PAKE to sJ-PAKE.
In section 3 we cover preliminaries where we give a list of definitions and security assumptions useful for
the proofs. Then in section 4 we lay out the UC proof of J-PAKE, followed by the description of the model
in section 5. We layout the game based proof of sJ-PAKE in section 6. We conclude the paper in section
7, where we compare J-PAKE and sJ-PAKE to all its variants and give a brief conclusion. In addition, we
supply proof details on UC and sJ-PAKE in Supplementary material in Sec. A and B. Finally, we provide
game-based proofs for sRO-J-PAKE and sCRS-J-PAKE as Supplementary material in Sec. D.

2 From J-PAKE to sJ-PAKE

The initial idea of our sJ-PAKE protocol was to slightly modify J-PAKE protocol by omitting NIZK proofs
in the second round and prove sJ-PAKE secure in the same fashion as Abdalla et al. in [ABM15]. Note
that removing the first round NIZK proofs leads to simple offline dictionary attacks in which the receiver
incorporates X−11 in X3 or X4 resulting in X1 cancelling out in the computation of α. However, omitting
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NIZKs in the second round and computing K = Key as in J-PAKE, leads to so called Related key attack
[AP05], where the adversary acts as a man-in-the-middle and succeeds in inducing the parties to hold a keys
with a known relationship. This scenario is not desired, as an adversary can easily create different sessions
with related key values. In Fig. 2 we show the attack, which we describe below.

Client C Adversary Server S

Public information: G, g, q, σ $←− Setup(1κ)

Secret information: pw ∈ Zp, pw ̸= 0

X1, X2, π1, π2 X3, X4, π3, π4

(C,X1, X2, π1, π2) (S,X3, X4, π3, π4)

α← (X1X3X4)
x2pw β ← (X1X2X3)

x4pw

a
$←− Zp

β′ = βga

Key← (β′X−x2pw
4 )x2 Key← (αX−x4pw

2 )x4

K ← KeyXa
2 K ← Key

Fig. 2: Related key attack if K = Key.

Out of simplicity, we demonstrate the attack between one client πC instance and one server instance πS . The
first round goes in the same manner as in J-PAKE, with an adversary just forwarding the messages. In the
second round, πC computes α and sends it to πS who also computes β and sends it to πC . Then, because
there is no proof of knowledge for β, the adversary steps in: intercepts β from πS and computes its own β′

as β′ = βga, for some a
$←− Zp and sends it to πC . Then, πC receives β′, computes Key as usual and gets

KC = KeyXa
2 , while πS computes its session key and gets KS = Key. Notice that session keys are linked,

and if the adversary tests one instance, it could obtain its session key K and all the adversary needs to do
is to compute the other party’s session key as KS = KC

Xa
2

. Furthermore, that attack works also for the other
party (with resp. to α). Therefore, to prove sJ-PAKE secure, we introduce the hashing step to derive the
session key, which is in any case good practice.

2.1 Variants of sJ-PAKE

After J-PAKE was proven secure, two of its variants were proposed, CRS-J-PAKE and RO-J-PAKE. Fur-
thermore, CRS-J-PAKE and RO-J-PAKE were proven secure analogously as their big brother in [LST16].
The significant difference between them is that both, CRS-J-PAKE and RO-J-PAKE, omit one computation
in the first round on each side, for a client-side X1 = gx1 and for a server-side X3 = gx3 . This implies that
two ZK-PoK are dropped, π1 and π3. This idea stems from the observation that x1 and x3 are not in fact
required to compute α, β and K. However, we cannot simply drop the x1 and x3 as it is essential for the
security to have additional terms in the exponents of α, β and K that are unknown to the parties (other
than the x2 unknown to S and x4 unknown to C). Thus the X1 and X3 are replaced by terms computed
as hashes or as a single CRS term. Fortunately, we can derive variants for sJ-PAKE, sCRS-J-PAKE (Fig.
9) and sRO-J-PAKE (Fig. 7) in the same manner. We describe these variants in detail in Supplementary
material in Sec. D where we also provide their security proof. We compare the efficiency with sJ-PAKE in
section 7. Keeping NIZK proofs in two rounds made both CRS-J-PAKE and RO-J-PAKE provable in the
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same fashion as [ABM15]. This is not the case with sJ-PAKE as πα and πβ are omitted in the second round,
which makes its proof very different from [ABM15] and [LST16].

3 Preliminaries

3.1 Notation

We use calligraphic letters to denote adversaries, typically A. We write d
$←− D for sampling uniformly at

random from set D and |D| to denote the number of elements in D. Let {0, 1}∗ denote the bit string of
arbitrary length while {0, 1}l stands for those of length l. When we sample elements from Zq, it is understood
that they are viewed as integers in [0 ... q-1], and all operations on these are performed mod q. Finally, let
κ denote the security parameter, and negl(κ) denote a negligible function.

3.2 Security Assumptions

We now state the security assumptions that will be used in this paper. We assume that we have a cyclic group
G of prime order q which is generated by g and which is the output of a public algorithm (G, q, g) ← G(κ)
with κ being the security parameter.

Definition 3.1. Computational Diffie-Hellman (CDH) Problem. Given gx, gy, compute gxy, where {gx, gy} ∈
G. Let the advantage of an algorithm A in solving the CDH problem be:

AdvCDHG (A) = Pr
[
x

$←− Zq : gxy = A(gx, gy)
]
.

Under the CDH assumption there exist sequences of cyclic groups G indexed by κ s.t. ∀A running in time t
polynomial in κ, AdvCDHG (A) is a negligible function.

Definition 3.2. Computational Square Diffie-Hellman (CqSDH) Problem. Given gx compute gx
2 , where

{gx, gx2} ∈ G. Let the advantage of an algorithm A in solving the CSqDH problem be:

AdvCSqDHG (A) = Pr
[
x

$←− Zq : gx
2

= A(gx)
]
.

Under the CSqDH assumption there exist sequences of cyclic groups G indexed by κ s.t. ∀A running in time
t polynomial in κ, AdvCSqDHG (A) is a negligible function.

Definition 3.3. Computational Triple Group Diffie-Hellman (CTGDH) Problem. Given gx, gy, gz, gxy,
gxz, gyz, where gxy = DH(gx, gy), gxz = DH(gx, gz), gyz = DH(gy, gz), compute gxyz, where {gx, gy, gz,
gxy, gxz, gyz, gxyz} ∈ G. Let the advantage of an algorithm A in solving the CTGDH problem be:

AdvCTGDHG (A) = Pr
[
(x, y, z)

$←− Z3
q : gxyz = A(gx, gy, gz, gxy, gyz, gxz)

]
.

Under the CTGDH assumption there exist sequences of cyclic groups G indexed by κ s.t. ∀A running in
time t polynomial in κ, AdvCTGDHG (A) is a negligible function.

Definition 3.4. Decisional Diffie-Hellman (DDH) Problem. Given (gx, gy, gz), distinguish whether z = xy
or z = r, where r is is randomly chosen from Zq and {gx, gy, gz} ∈ G. Let the advantage of a algorithm A
in solving DDH problem be:

AdvDDHG (A) = |Pr
[
(x, y)

$←− Z2
q : 1 = A(gx, gy, gxy)

]
− Pr

[
(x, y, r)

$←− Z3
q : 1 = A(gx, gy, gr)

]
|.
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Under DDH assumption there exist sequences of cyclic groups G, indexed by a security parameter κ, such
that for all A running in time t polynomial in κ, AdvDDHG (A) is a negligible function.
Definition 3.5. Decisional Square Diffie-Hellman (DSqDH) Problem. Given (gx, gz), distinguish whether
z = x2 or z = r, where r is randomly chosen from Zq and {gx, gz} ∈ G. Let the advantage of a algorithm A
in solving DSqDH problem be:

Adv
DSqDH
G (A) = |Pr

[
x

$←− Zq : 1 = A(gx, gx
2

)
]

− Pr
[
(x, r)

$←− Z2
q : 1 = A(gx, gr)

]
|.

Under DSqDH assumption there exist sequences of cyclic groups G, indexed by a security parameter κ, such
that for all A running in time t polynomial in κ, AdvDSqDH(A) is a negligible function.

The relationships between the assumptions can be found in [ABM15] and [BDZ03]. Ignoring the time for
exponentiation we have

– Adv
CSqDH
G (B) ≥ AdvCDHG (BA), where B and BA are PPT algorithms running in time t.

– AdvCDHG (B) ≥ (AdvCSqDHG (BA))2, where B and BA are PPT algorithms running in time t.
– AdvDSqDH(B) ≥ AdvDDHG (BA), where B and BA are PPT algorithms running in time t.
– AdvCTGDHG (B) ≥ AdvCDHG ((BA))3, where B and BA are PPT algorithms running in time t.

For CTGDH see also [BCP03].
Definition 3.6. SE-NIZK is a function defined by the tuple (Setup,Prv,Ver,Sim1,Sim,Extract) such that
(Setup,Prv,Ver) is a non-interactive proof system and:

– Sim1(1
κ) generates CRS crs and two trapdoors tds and tde

– Sim(crs, tds, X, l) takes crs, tds, X, some label l, and outputs a simulated proof of knowledge for X, π
– Extract(crs, tde, X, π, l) extracts a witness x for X, from valid a proof of knowledge π, considering some

label l, trapdoor tde and CRS crs, if possible. Otherwise it aborts.
(i)Unbounded zero knowledge property holds if the adversary cannot distinguish between real and simulated
proofs. We define AdvuzkNIZK() as:

Pr
[
crs

$←− Setup(1κ) : ANIZK.Prv(crs,·,·,·)(crs) = 1
]

− Pr
[
crs, tds, tde

$←− Sim1(1
κ) : ANIZK.Sim′(crs,tds,·,·)(crs) = 1

]
where NIZK.Sim′(crs, tds, X, x, l) = NIZK.Sim(crs, tds, X, l) where l is C or S. The adversary can ask at most
nsim queries to NIZK.Sim or to NIZK.Prv.

(ii) Simulation-sound extractability holds if we can extract a witness x for X, from valid a proof of knowledge
π, even when A sees simulated proofs.We define AdvextNIZK() as:

Pr
[
crs, tds, tde

$←− Sim1(1
κ);

(X,π)← ANIZK.Sim(crs,tds,·,·)(crs, tde) = 1 : NIZK.Ver(crs, X, π, l) = 1,

((X, l), π) /∈ S;R(x,NIZK.Extract(crs, tde, X, π, l)) = 0
]

where S is a set of query-response pairs ((X, l), π) for NIZK.Sim(crs, tds, ·, ·).

Definition 3.7. Given some distribution (g1, ..., gn)
$←− D, where D is a hard linear distribution in Gn, for

some n, it is computationally hard to find (µ1, ..., µn) ̸= 0 such that gµ1

1 · · · gµn
n = 1. More precisely, let

Advhard−linD (A) be

Pr
[
(g1, ...gn)

$←− D; (µ1, ..., µn)
$←− A(g1, ...gn) : gµ1

1 · · · gµn
n = 1

]
For details, we refer to [ABM15].
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3.3 Algebraic adversaries

The algebraic adversary model was introduced in [PV05] and first used constructively to prove security in
[ABM15], actually also in relation to the J-PAKE protocol. The model was further formalised as the alge-
braic group model in [FKL18]. In essence, given a prime order group G, we say that an adversary algorithm
is algebraic if whenever it outputs a group element, g ∈ G, it also outputs a discrete log representation,
r1, . . . , rk, in terms of all the group elements, g1, . . . , gk that it received so far, i.e. g = gr11 · · · g

rk
k . This gives

a model which is weaker than the generic group model and allows us to do security reductions. Further, in
the algebraic group model [FKL18] it was shown how important security assumptions such as Computational
Diffie-Hellman assumption are related to the Discrete Log assumption, see also [BFL20] for further classi-
fications. Importantly, the algebraic adversary model was used in [AB19] to prove perfect forward security
of SPAKE2. In this paper, we will need it to prove security of the sJ-PAKE protocol since without the
Zero-Knowledge Proofs from the second round terms we cannot extract the password guess directly.

3.4 Algebraic simulation-sound extractable NIZK Proof

In the original J-PAKE protocol the non-interactive zero-knowledge proofs of knowledge are instantiated as
Schnorr proofs [Sch90]. In [ABM15] it was proven that when we assume algebraic adversaries, these proofs
are algebraic simulation sound extracatable NIZK (alg-SE-NIZK). The definition of alg-SE-NIZK relies on
two conditions, namely (i) Weak algebraic simulation-sound extractability and (ii) Base indistinguishability,
for more details see [ABM15]. This definition is slightly weaker that SE-NIZK, however, as shown in [ABM15]
the security proof for J-PAKE which relied on SE-NIZK proofs, can be updated to only assume alg-SE-NIZK
proofs since all reductions were algebraic and all the bases used in the proofs were hard-linear, see Def. 3.7.
Fortunately, in our proof of sJ-PAKE below this also holds true and we can simply assume SE-NIZK proofs.
When the NIZK proofs in sJ-PAKE are instantiated as Schnorr proofs, the security proof can be updated as
in [ABM15], especially, we already assume algebraic adversaries.

4 UC Security of J-PAKE

In this section we show that the original proof of J-PAKE given in [ABM15] can be adapted with minor
modifications to show that the protocol achieves security in the Universal Composability setting [Can01].
Formally, we show that the simulator given in Figure 4 can emulate the actions of a dummy adversary
interacting with J-PAKE, while interacting with the standard ideal functionality for PAKE given in Figure 3.
We give the simulator and proof for the three-pass variant of the protocol for simplicity, where parties have
fixed roles and there is a pre-defined message flow, but the result should extend naturally to the more flexible
variant where messages can be transmitted in any order. We also note that it has been recently been pointed
out [AHH21] that the classical version of the PAKE UC functionality may not be strong enough for modular
design of higher level protocols. The reason is that the functionality allows the simulator to fix the output of
an honest party when this party is interacting with a corrupt peer, even if the password has not been leaked.
The solution proposed in [AHH21] is to treat such sessions as any other session, and require the simulator
to extract the password from messages sent by corrupt parties in order to program the output (i.e., in case
of unsuccessful extraction the output key produced by the honest party should be indistinguishable from
random). It was suggested in [AHH21] that the security proofs of most PAKE protocols will probably extend
to this case. We show that this is indeed the case for J-PAKE.

Theorem 4.1. J-PAKE UC-emulates Fpake. More precisely„ there exists a simulator that interacts with
Fpake and presents an ideal world view that no ppt environment can distinguish from the real-world view
produced by a dummy adversary interacting with J-PAKE.

Proof: The proof shows that the simulator in Figure 4 provides a view to the environment that is consistent
with that observable via the dummy adversary in the real world; more precisely, we show no ppt environment
will be able to distinguish the simulated view from the real one if the following hypotheses hold: i. the NIZK
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Session initiation
On (NewSession, sid, P, P ′, pw, role) from P , ignore this query if record ⟨sid, P, ·, ·, ·⟩ already exists. Otherwise record
⟨sid, P, P ′, pw, role⟩ marked fresh and send (NewSession, sid, P, P ′, role) to A.

Active attack

– On (TestPw, sid, P, pw∗) from A, if ∃ a fresh record ⟨sid, P, P ′, pw, ·⟩ then:
• If pw∗ = pw then mark it compromised and return “correct guess”;
• If pw∗ ̸= pw then mark it interrupted and return “wrong guess”.

Key generation
On (NewKey, sid, P,K∗) from A, if ∃ a record ⟨sid, P, P ′, pw, role⟩ not marked completed then do:

– If the record is compromised, then set K := K∗.
– If the record is fresh and ∃ a completed record ⟨sid, P ′, P, pw, role′,K′⟩ with role′ ̸= role that was fresh when P ′

output (sid,K′), then set K := K′.
– In all other cases pick K ←$ {0, 1}λ.

Finally, append K to record ⟨sid, P, P ′, pw, role⟩, mark it completed, and output (sid,K) to P .

Fig. 3: The original PAKE functionality Fpake of Canetti et al. [CHK+05].

protocol is a simulation-sound zero-knowledge proof-of-knowledge; ii. the key derivation function is a PRF;
and iii. the decisional squared Diffie-Hellman assumption holds in the underlying group (and hence also the
standard DDH assumption).

Simulation strategy. Our simulator generates messages X1 to X4 as per the protocol, but it generates
totally random values of α and β because it does not know the correct passwords. It uses its ability to
produce proofs without explicitly providing a witness in all the messages it generates, which explains why
the environment cannot trivially detect that the simulator is cheating in α and β. Moreover, the fact that
the simulator does not need to provide witnesses to generate the proofs enables us to program hard problem
instances into all the simulated messages when we prove that no adversarial strategy can efficiently catch
the simulator in its cheating.

The simulator does not interfere with passively attacked sessions, i.e., sessions which are created by the
adversary by simply relaying messages, following the protocol, from another simulated session. Moreover,
the simulator does not need to perform any form of extraction when the adversary performs a weak form
of active attack, which we call swapping, in which it only switches the order of the group elements (X1, X2)
or (X3, X4); in this case the simulator only interrupts the sessions, so that the ideal functionality chooses
completely random keys.

Finally, to deal with more general active attacks, the simulator needs to extract the discrete logarithms of
all adversarially created messages, which it does by using the NIZK protocol trapdoor. We show that, except
with negligible probability, this means that the simulator extracts a password guess from any adversarial
α or β used in an active attack: intuitively, if all the discrete logarithms of the messages sent and received
by a session are known to the simulator—which happens if the NIZK extraction does not fail—then this
determines a unique password that the simulator can recover. Once it holds a password, the simulator tests
if it is correct. For the case when the password guess is correct, we show that the simulator can compute
the correct key—i.e., the key as the adversary expects to see it based of the simulated random α or β in
that session—with overwhelming probability, which it uses to program the ideal functionality output. If the
password is incorrect, the ideal functionality will choose a totally random key.

Structure of the indistinguishability proof. To prove that this is a good simulator we need to
perform a number of steps, which closely follow the intuition of the original proof given in [ABM15]. Before
giving an outline, we should formally introduce the notions of matching and swapped sessions.
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On initialization:
(crs, tds, tde)←$ NIZK.Backdoor( )
Send crs to A
Tp ← {}; Te ← {}

On (NewSession, sid, P, P ′, role = C) from Fpake:
x1, x2 ←$ Zq ; X1 ← gx1 ; X2 ← gx2

π1 ←$ NIZK.Sim(crs, tds, (P, sid), (g,X1))
π2 ←$ NIZK.Sim(crs, tds, (P, sid), (g,X2))
Tp[X1]← (sid, P, g, x1, π1)
Tp[X2]← (sid, P, g, x2, π2)

πsid
P ← (P, P ′, X1, X2,⊥,⊥,⊥,⊥, C)

Send (P, P ′, sid, X1, π1, X2, π2)) to A

On (P ′, P, sid, X3, π3, X4, π4, β, πβ) from A:
If πsid

P ̸= (P, P ′, X1, X2,⊥,⊥,⊥,⊥, C) ignore input
If X4 = 1 then πsid

P ←⊥; return
If NIZK.Ver(crs, (P ′, sid), (g,X3), π3) =⊥

then πsid
P ←⊥; return

If NIZK.Ver(crs, (P ′, sid), (g,X4), π4) =⊥
then πsid

P ←⊥; return
If NIZK.Ver(crs, (P ′, sid), (X1X2X3, β), πβ) =⊥

then πsid
P ←⊥; return

K ←$K
xα ←$ Zq ; α← (X1X3X4)

xα

πα ←$ NIZK.Sim(crs, tds, (P, sid), (X1X3X4, α))

If πsid
P ′ = (P ′, P,X1, X2, X3, X4,⊥, β, S)

(Passive attack; do not interrupt)
Else If πsid

P ′ = (P ′, P,X1, X2, X3, X4,⊥, β, S) or
πsid
P ′ = (P ′, P,X2, X1, X3, X4,⊥, β, S) or

πsid
P ′ = (P ′, P,X1, X2, X4, X3,⊥, β, S) or

πsid
P ′ = (P ′, P,X2, X1, X4, X3,⊥, β, S)

(Swap attack; interrupt without pw)
Query TestPw(P, sid, pw =⊥)

Else
(Active attack; we need to extract a password)
x3 ← Extract(P ′, sid, g,X3, π3)
x4 ← Extract(P ′, sid, g,X4, π4)
xβ ← Extract(P ′, sid, X1X2X3, β, πβ)
If X3 ̸= gx3 ∨ X4 ̸= gx4 then ABORT
If β ̸= (X1X2X3)

xβ then ABORT
Query TestPw(P, sid, pw = xβ/x4)

If correct guess K ← PRF((αX
−x4pw
2 )x4 , sid)

Tp[α]← (P,C,X1X3X4, xα, πα)

πsid
P,C ← (P, P ′, X1, X2, X3, X4, α, β)

Send ((P ′, sid)← (α, πα)) to A
Query NewKey(P ′, sid, K)

Extract(P, sid, ĝ, X, π)

If Tp[X] = (P, sid, ĝ, x, π) return x
If Te[X] = (P, sid, ĝ, x, π) return x
x← NIZK.Extract(tde, (P, sid), (ĝ, X), π)
Te[X]← (P, sid, ĝ, x, π); return x

On (NewSession, sid, P ′, P, role = S) from Fpake:
x3, x4 ←$ Zq ; X3 ← gx3 ; X4 ← gx4

π3 ←$ NIZK.Sim(crs, tds, (sid, P ), (g,X3))
π4 ←$ NIZK.Sim(crs, tds, (sid, P ), (g,X4))
Tp[X3]← (P ′, g, x3, π3)
Tp[X4]← (P ′, g, x4, π4)

πsid
P ′ ← (P ′, P,⊥,⊥, X3, X4,⊥,⊥, S)

On (P, P ′, sid, X1, π1, X2, π2) from A:
If πsid

P ′ ̸= (P ′, P,⊥,⊥, X3, X4,⊥,⊥, S) ignore input
If X2 = 1 then πsid

P ′ ←⊥; return
If NIZK.Ver(crs, (P, sid), (g,X1), π1) =⊥

then πsid
P ′ ←⊥; return

If NIZK.Ver(crs, (P, sid), (g,X2), π2) =⊥
then πsid

P ′ ←⊥; return
Extract(P ′, sid, g,X1, π1)
Extract(P ′, sid, g,X2, π2)
xβ ←$ Zq ; β ← (X1X2X3)

xβ

πβ ←$ NIZK.Sim(crs, tds, (P
′, sid), (X1X2X3, β))

Tp[β]← (P ′, sid, X1X2X3, xβ , πβ)

πsid
P ′ ← (P ′, P,X1, X2, X3, X4,⊥, β, S)

Send (P ′, P, sid, X3, π3, X4, π4, β, πβ) to A

On (P, P ′, sid, α, πα) from A:
If πsid

P ′ ̸= (P ′, P,X1, X2, X3, X4,⊥, β, S) ignore input
If NIZK.Ver(crs, (P, sid), (X1X3X4, α), πα) =⊥

then πsid
P ′ ←⊥; return

K ←$K
If πsid

P = (P, P ′, X1, X2, X3, X4, α, β, C)
(Passive attack; do not interrupt)

Else If πsid
P = (P, P ′, X1, X2, X3, X4, α, β, S) or

πsid
P ′ = (P, P ′, X2, X1, X3, X4, α, β, S) or

πsid
P ′ = (P, P ′, X1, X2, X4, X3, α, β, S) or

πsid
P ′ = (P, P ′, X2, X1, X4, X3, α, β, S)

(Swap attack; interrupt without pw)
Query TestPw(P ′, sid, pw =⊥)

Else
(Active attack; we need to extract a password)
Find (X1, P, sid, ĝ, x1, π1) in Te ∪ Tp

Find (X2, P, sid, ĝ, x2, π2) in Te ∪ Tp

xα ← Extract(P, sid, X1X3X4, α, πα)
If X1 ̸= gx1 ∨ X2 ̸= gx2 then ABORT
If α ̸= (X1X3X4)

xα then ABORT
Find (X4, P, sid, ĝ, x4, π4) in Tp

Query TestPw(P ′, sid, pw = xα/x2)

If correct guess K ← PRF((βX
−x2pw
4 )x2 , sid)

Query NewKey(P ′, sid, K)

Fig. 4: The simulator S.
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Definition 4.2 (Matching Sessions). Take a client (resp. server) session with view (X1, X2, X3, X4, α, β)
(resp. (X ′1, X

′
2, X

′
3, X

′
4, α
′, β′)). We say they are matching if their views are identical. We say they have

matching bases or are b-matching if their views match after the first two rounds, i.e., if (X1, X2, X3, X4) =
(X ′1, X

′
2, X

′
3, X

′
4).

Definition 4.3 (Swapped Sessions). Take a client (resp. server) session with view (X1, X2, X3, X4, α, β)
(resp. (X ′1, X

′
2, X

′
3, X

′
4, α
′, β′)). We say they are swapped if (α, β) = (α′, β′), (X1, X2, X3, X4) ̸= (X ′1, X

′
2,

X ′3, X
′
4), {X1, X2} = {X ′1, X ′2} and {X3, X4} = {X ′3, X ′4}. We say they have swapped bases or are b-

swapped if their views are swapped after the first two rounds, i.e., if (X1, X2, X3, X4) ̸= (X ′1, X
′
2, X

′
3, X

′
4),

{X1, X2} = {X ′1, X ′2} and {X3, X4} = {X ′3, X ′4}.

Hop 1 Modify the real-world so that i. uncorrupted parties use simulated NIZK proofs, and ii. all adversar-
ially generated proofs are subject to extraction. If extraction fails, the experiment aborts. We can reduce
any distinguishing advantage wrt the original game to breaking the security of the NIZK protocol. From
this point on, observe that both the modified real-world and the ideal-world (via the simulator) explicitly
compute the discrete logarithms of all messages exchanged in all protocol sessions, or else they abort.

Hop 2 We introduce various book-keeping modifications:
– Modify both the real and the ideal games to abort if a value Xi, for 1 ≤ i ≤ 4, is generated by an

uncorrupted party and this collides with some other such value that previously occurred in the game.
– Modify both the real and the ideal worlds to guarantee that the bases used in the computation of α

and β are binding in the following sense, Take a client session with a partial view (X1, X2, X3, X4)
and a server session with a partial view (X ′1, X

′
2, X

′
3, X

′
4), and abort if one of the two following events

occur:
• the two sessions agree on the partial view (X1X3X4, X2) = (X ′1X

′
3X
′
4, X

′
2) and they are neither

b-matched nor b-swapped.
• the two sessions agree on the partial view (X1X2X3, X4) = (X ′1X

′
2X
′
3, X

′
4) and they are neither

b-matched nor b-swapped.
Intuitively, this means that the environment cannot force the simulator to extract a password guess
from an α or β that was produced by another simulated session (recall that the simulator does not
try to extract passwords when sessions are matched or swapped).

– Abort if ever α or β is accepted that would cause two sessions to become swapped, but the derived
key is different from the key of equivalent un-swapped traces. Note that the derived key is unaffected
in the server-side if (X1, X2, X3, X4) = (X ′2, X

′
1, X

′
3, X

′
4). Similarly the derived key is unaffected in

the client-side if (X1, X2, X4, X3) = (X ′1, X
′
2, X

′
3, X

′
4). More precisely, abort if:

• α is accepted that comes from b-swapped session where (X1, X2) = (X ′2, X
′
1), or

• β is accepted that comes from b-swapped session where (X3, X4) = (X ′4, X
′
3).

Intuitively this means that, when dealing with swapped sessions from now on, the derived key always
matches the unswapped equivalent.

This hop introduces a bad-event-based hop wrt to both worlds, which is upper-bounded by excluding
collisions in simulated values using a birthday bound and a reduction to the discrete logarithm problem.6

Hop 3 Modify the real-world once more to use a random group element as the PRF key in any actively
attacked sessions where the extracted password was incorrect. Furthermore, perform the same modifica-
tion in matched or swapped sessions where the password is different on client and server. This step can
be reduced to decisional squared Diffie-Hellman using a hybrid argument across the client and server
sessions.

6 Note that this step is necessary because in future game hops we will be embedding hard problem instances in the
messages sent by uncorrupted parties in order to justify that the output keys look random; in these reductions
password extraction might fail if the bad event above was not excluded. Interestingly, this problem is not evident
from the simulator code directly: in fact, the simulator does know the discrete logarithms used for all simulated
messages as we pointed out above.
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Hop 4 Modify the real-world once more to use a random group element as the PRF key in any session that
was accepted after a passive attack, or where the adversary just performed swapping, with matching
passwords. This step can be reduced to DDH using a hybrid argument across all possible pairs of sessions
(i.e., we get a squared term in the reduction to the underlying assumption). For simplicity, each reduction
step actually uses an instance of a hard problem called decision triple group Diffie-Hellman, which is
hard iff DDH is hard.

Hop 5 Randomize all α and β generated by uncorrupted parties in the real world and to compute the output
keys for the corresponding sessions, when correct password guesses occur, as the adversary would. This
step can be reduced to DDH, again using a hybrid argument across all sessions.

Hop 6 Replace all PRF outputs that are computed from independent random keys resulting from the
previous hops with random strings. This follows from PRF security.

After all these modifications we have a perfect match between real and ideal worlds. In Appendix A we give
a more detailed description of each step in the proof, and we also discuss how the proof covers the case of
static corruptions.

5 Game-Based Security Model

We prove the sJ-PAKE protocol secure in the Real-or-Random (RoR) model [AP05] where security is defined
via games and the goal of A is to guess the bit b (chosen at the beginning of each game) i.e. to distinguish
real session keys from random strings. Unlike its weaker variant, Find-then-guess (FtG) model [BPR00], the
adversary A is allowed to ask multiple Test queries during the security experiment.
Participants and Passwords. Each participant, denoted Πi

U , is either a client C ∈ C or a server S ∈ S.
Each client C holds a password pwC , while the server S holds a vector of passwords pwS =< pwC >C∈C , such
that pwS [C] = pwC for all C ∈ C. For simplicity, we assume that passwords are independent and uniformly
distributed, drawn from the password dictionary D.
User instances. In the real world, each user is allowed to run simultaneously more than one protocol
execution, which is modelled by allowing each user an unlimited number of instances. Specifically, let Πi

C

and Πj
S denote the i-th and j-th instance of client C and server S respectively.

Protocol execution and initialization phase. The protocol P is an algorithm which defines how users
respond to messages from their environment. We allow each instance to execute P an unlimited number of
times with as many other instances as it wishes. Formally, a bit is flipped, at the beginning of the protocol.
We introduce a PPT adversary A, that has full control of the network and communicates with each instance
according to the rules of P via the following queries:

Send(U, i,m): A message m is sent to instance Πi
U , which proceeds according to P and its response –

if any – is given to A. This query models an active adversary.

Execute(C, i, S, j): This query triggers an honest run of protocol P between Πi
C and Πj

S . The transcript of
the execution is given to A . This query models a passive adversary.

Reveal(U, i): When A triggers this query it receives a session key held by Πi
U .

Test(U, i): At the beginning of the experiment, the challenger flips a coin and sets a bit b outside of the view
of A. Then, whenever A asks this query to some instance Πi

U , it obtains a following response:

1. If b = 1, A gets the real session key skiU .
2. Otherwise, A gets a random string r

$←− {0, 1}κ. For consistency, if two partnered instances, Πi
C and Πj

S ,
receive a Test query, then A gets the same random string.
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Corrupt(C, S): A receives a password pwcs shared between a pair of instances, Πi
C and Πj

S .

Partnered instances. Two instances, Πi
C and Πj

S are partnered if both accept, holding the same partner
identity (pid), transcript (sid) and the same session key (sk). More precisely, a client with (pidiC , sid

i
C , sk

i
C)

and a server with (pidjS , sid
j
S , sk

j
S) are partnered if:

1. sidiC = sidjS , skiC = skjS , pidiC=S, pidjS=C.
2. No other instance accepts with the same sid, except with the negligible probability.

We say an instance Πi
U accepts if it holds a session key sk, transcript sid and partner id pid. A client instance

can accept at most once. Two instances terminate if they accept and do not wish to send any further messages.

Freshness. We define freshness to avoid cases where Amight trivially know the bit b, chosen at the beginning
of the protocol. An instance Πi

U in protocol P is fresh if and only if the following conditions hold:
– the instance was not queried to Test or Reveal before;
– the instance accepted;
– either the instance accepted during a query to Execute or there exists more than one partner instance

or no partner instance exists and Corrupt was not called before it accepted or a unique fresh partner
instance exists

We define a function Fresh(P, i) which checks if an instance is fresh by checking all the conditions above.

Advantage of the adversary. We formally define the advantage of the adversary in successfully guessing
the bit b, against the protocol P . Let SuccRoR

P (A) be the event that A asks only Test queries to instances
Πi

U that have terminated; at some point A outputs its guess b′ and wins if b′ = b, where b is selected at the
beginning of the protocol. The advantage of A in breaking the security and guessing b is

AdvRoR
A () = 2Pr

[
SuccRoR

A ()
]
− 1

The protocol P is considered to be secure if the adversary A cannot perform any other attack than just
online password guessing during an active attack. More formally, we require that for all PPT A:

AdvRoR
A () ≤ nse

|D|
+ negl(κ)

where nse is number of Send queries, D is the password dictionary and negl(·) is a negligible function.

6 Game based security proof of sJ-PAKE

Theorem 6.1. Let sJ-PAKE be the protocol described in Fig. 1. Take an RoR attacker A against sJ-PAKE,
making at most nse, nex, nre, nco, nte queries to Send, Execute, Reveal, Corrupt, Test and RO, respectively.
For every such attacker A, there exist attackers: B4 against Computational Triple Group Diffie-Hellman
problem, B4.5.1 against Decisional Diffie-Hellman problem, B4.5.2 against Decisional Diffie-Hellman problem,
B6 against Computational Squared Diffie-Hellman problem, B7−8.1 against Decisional Squared Diffie-Hellman
problem and B9 against Computational Squared Diffie-Hellman problem such that

AdvsJPAKEA () ≤ 2nse

| D |
+

(2nse + 4nex)
2

q

+AdvuzkNIZK() + 2nseAdv
ext
NIZK()

+ nronexAdvCTGDHB4
() + AdvDDHB4.5.1

() + AdvDDHB4.5.2
()

+ nsen
2
roAdvCSqDHB6

() + 2nseAdvDSqDHB7−8.1
() + nsenroAdvCSqDHB9

()

where Advuzk and Advext are advantages for the security of the SE-NIZK, formally defined in 3.6.
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The code of all games and adversaries is given as Supplemental material E.

Proof. The proof uses a sequence of games G0, G1, . . . , G9. We follow [BPR00] by including initialize and
finalize oracles; the adversary is only allowed to call Initialize as its first query, and Finalize as its final query;
games compute their final results as a result of the call to Finalize.

The main challenge in the proof with respect to that in [ABM15] is that we cannot extract the discrete
logarithms of adversarial α and β, since ZK-PoK proofs are removed for these elements in the simplified
protocol. Instead we must use the RO queries to extract relevant information about the adversaries actions
and, in particular, to detect when the adversary is successful in a password guess attack.

The proof strategy is typical of PAKE protocols. We first modify the security game gradually until the
view of the adversary is independent of the passwords used in fresh sessions, which are the ones in which it
can obtain an advantage. Then bound the number of password guesses that the attacker can make to win
the game: in the random oracle model, this comes down to bounding the number of RO queries that can
be consistent with the trace of a fresh session. In the case of sJ-PAKE we show that, unless the adversary
solves a hard problem, only one RO query will satisfy this consistency constraint. This means that the total
number of useful password guesses is nse and hence that the adversary’s guessing advantage is at most nse

D ,
for some dictionary D. Here, we leave a remark that the proof can be extended even with passwords that
have some min-entropy m [ABM15] in which case, the adversary’s guessing advantage is at most nse

2m . We
give an overview of the sequence of games in Fig. 5.

Useful notation. For each client-server pair (C, S), the game chooses a password uniformly sampled from
a password space P, denoted pwcs. Out of simplicity, we assume that game samples the passwords uniformly
and independently. We use notation T [x] to denote access to a dictionary/table T at index x.

– Table T consists of random oracle queries (sid,Key, pw), where a query was assigned to a random value
from the game. If there was a query that T does not contain, then the game assigns a new random value
and records it, otherwise it returns the value that was previously assigned to that query.

– Table Ts consists of random oracle queries sid, without including the Key and the pw. It is just a new
simulation of T where we replace one random value with another. We call Ts for sessions where the
adversary is active.

– Table Te consists of random oracle queries (sid,Key, pwcs). We use Te for sessions where the adversary is
passive i.e. for Execute queries.

– List Corr is consisted of corrupted instances and whenever a corruption occurs, we add (C, S) the the
list. There are no fresh instances on the list Corr.

– List Tst is consisted of all instances for which A queried Test query.

Matching sessions. We define matching sessions whenever two honest instances, πi
C and πj

S , accept with
the same session transcript sid. More precisely, all sessions resulting from Execute query or matching Send
query where there was no Send query from A for that session, are matching sessions. Note, we consider all
sessions resulting from Execute query fresh.

Instance state. Each ith instance is denoted as πi
U has a tuple (e, sid,K, ac) that describes:

– e is a pair of the dlogs of Xl and Xl+1, (xl, xl+1) for l = 1, 3.
– sid is a session transcript of the form (C, S,X1, X2, X3, X4, α, β).
– K is the accepted session key.
– ac is a boolean value that indicates whether the instance accepted (ac = T) or not (ac = F).

Further in the proof, we will use πi
U .e, πi

U .sid, πi
U .K, πi

U .ac as the individual component of the state.
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G0 Original Protocol: The original protocol P .
G1 Simulate ZK-PoK proofs: For Send and Execute query use NIZK simulator to simulate proof of knowledge.
bad1 is set whenever adversary detects the difference between the simulated and real proofs.
G1.5 Extract discrete logs from adversarial proofs. For Send queries use NIZK extractor to extract witnesses
x′
1, x

′
2, x

′
3, x

′
4. bad1.5 is set whenever adversary submits the proof for which extraction fails.

G2 Force unique values: Repetition of any X values selected from the game are not allowed. bad2 is set
whenever values repeat and is bounded by the statistical term.
G3 Freshness condition: Having unique sid makes the freshness condition explicit in the game. Therefore,
instead running function Fresh and checking all conditions from freshness definition, we check for freshness in
every Send query and we add fr in each state of the instance.
G4 Randomize session keys for Execute queries: Session keys are randomized by calling Te, for passive
adversaries, and bad4 is set whenever there was a query in which correct Key has been computed using pwcs.
The probability of bad4 happening is reduced to CTGDH problem.
G4.5.1 Randomize α for Execute queries: α is randomized for all passive adversaries, and the advantage of
the adversary is reduced to DDH problem.
G4.5.2 Randomize β for Execute queries: β is randomized for all passive adversaries, and the advantage of
the adversary is reduced to DDH problem.
G5 Randomize session keys for Send queries: Session keys are randomized by calling Ts, for active
adversaries and bad5 is set whenever there was a query in which correct Key has been computed using pwcs.
bad5 is not bounded.
G6 Detect duplicates: bad6 is a sub-event of bad5 and is set whenever there are two queries with the same sid
for pw1 ̸= pw2. bad5 is not bounded and bad6 is reduced to CSqDH problem.
G7 Add algebraic representation: In Send queries with α and β, we add algebraic representation of α and
β. bad5 is not bounded.
G8 Randomize α and β for Send queries: Algebraic adversaries are introduced and hybrid argument is used
and the game is split in two hops G7−8.m.1 and G7−8.m.2, for 1 ≤ m ≤ nse.

– G7−8.m.1: We tackle the bad scenarios of α and β, for Corrupt queries. The advantage of the adversary is
reduced to DSqDH.

– G7−8.m.1: α and β are randomized.

G9 Perfect forward secrecy. There are new entries in bad5, where A asks for Corrupt query after the instances
accept but before it asks a random oracle query. bad19 may occur if there are new entries where A tests pw ̸= pwcs

in β′ (resp. α′) and asks a query with the correct key. If there was a query with the correct key and A tests
pw = pwcs then bad29 is set. bad5 is bounded by the term nse

|D| , bad19 is reduced to CSqDH problem and bad29 is
bounded by nse

|D| .

Fig. 5: Description of game-hops for sJ-PAKE
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Game 0: Original Protocol. The first game is the original security game instantiated with sJ-PAKE, so
we have

AdvsJPAKEA () =| Pr[G0 ⇒ T]− 1

2
| (1)

Game 1: Simulate ZK-PoK proofs. For SendInit-C1,SendInit-S1 and Execute queries we use SE-NIZK
to simulate the proofs of knowledge π1, π2, π3, π4 for X1, X2, X3, X4 .

Pr[G0 ⇒ T]− Pr[G1 ⇒ T] ≤ AdvuzkNIZK() (2)

Game 0 and Game 1 are the same, unless the adversary distinguishes real from simulated proofs and it does
it with the advantage AdvuzkNIZK. We show a reduction for this game in Lemma B.1. We particularly have a use
of simulated proofs of knowledge in the reductions, where we will not know the witness for a given challenge.
In this game, we additionally create a list List, where we add only values generated from honest instances,
X1 and X2 from the client side, and X3 and X4 from the server side. We need List to make a clear distinction
between the values coming from honest instances and values coming from A. This is necessary for Game 1.5,
where we will run NIZK.Extract only for adversarial values. In Game 2, we will insist on uniqueness only on
the values X1, X2, X3 and X4 that are in List.

Game 1.5: Extract discrete logs from adversarial proofs. For Send-C2 and Send-S2 queries, when-
ever A outputs a proof π for a generated X, we run NIZK.Extract(crs, tde, X, π, l) which extracts a witness
x for X, from a valid proof of knowledge π, considering label l (C or S), trapdoor tde and CRS crs. If the
extraction fails, we set bad1.5. Game 1 and Game 1.5 are the same unless bad1.5 occurs.

|Pr[G1 ⇒ T]− Pr[G1.5 ⇒ T]| ≤ Pr[G1.5 ⇒ bad1.5] (3)

The reduction in B.2, to justify this hop, guesses a pair (X,π) where the first bad1.5 happens and, when this
event occurs it submits (X,π). The probability that it chooses the correct pair where the extraction failed
with the advantage AdvextNIZK can be bound:

Pr[G1.5 ⇒ bad1.5] ≤ 2nseAdvextNIZK()

Game 2: Force unique values
Repetition of any values X1, X2, X3 or X4, previously seen is an execution is not allowed. We set bad2
whenever values, X1, X2, X3 or X4, repeat. Game 2 is the same as Game 1, unless bad2 occurs. More
precisely, we have two values for SendInit-C1 and SendInit-S1, four values for Execute queries and the size
of the group q:

Pr[G1.5 ⇒ T]− Pr[G2 ⇒ T] ≤ (2nse + 4nex)
2

q
(4)

This means that 2nse + 4nex is a maximal number of values that can repeat and we can bound the bad
event by the birthday paradox bound in case X1, X2, X3 or X4 collide. In case of a bad event, we mark an
instance for which values repeat, as ”Invalid”.

Game 3: Adding freshness.
Now that we have unique sessions and we add explicit freshness conditions for all sessions. These are initially
false, and then set to their correct value at the time the session accepts in Send-C3 and for Send-S3. A fresh
session may later become unfresh if its key is given to the adversary as a result of a Reveal query. We also
remove all bad events. This change does not affect the view of the adversary, so we have:

Pr[G3 ⇒ T] = Pr[G2 ⇒ T] (5)
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Game 4: Randomize session keys for matching sessions.
For matching sessions we no longer use the random oracle to derive the key, and use a totally random key
instead. We keep these removed entries in a new list Te. If at any point a random oracle query is placed that
could cause an inconsistency in the adversary’s view, we set a bad flag bad4. Note, for Send queries, we check
if the sessions are matching in Send-S3 and Send-C3.

|Pr[G3 ⇒ T]− Pr[G4 ⇒ T]| ≤ Pr[G4 ⇒ bad4] (6)

The reduction to justify this hop, guesses the lth Execute query where the first bad4 happens and, when this
event occurs, it solves an instance of the Computational Triple Group problem, CTGDH, so we have:

Pr[G4 ⇒ bad4] ≤ nronexAdvCTGDHB4
()

Game 4.5: Randomize alpha/beta for Execute queries.
We randomize α and β for sessions resulting from Execute queries using two intermediate games where we
first randomize α in Game 4.5.1, then β in Game 4.5.2.

Game 4.5.1 Randomize α
We randomize α in sessions resulting from Execute queries. Game 4.5.1 is indistinguishable from Game 4
unless A solves DDH problem. The reduction is shown in Lemma B.4.

|Pr[G4 ⇒ T]− Pr[G4.5.1 ⇒ T]| ≤ AdvDDHB4.5.1
()

Game 4.5.2 Randomize β
Now, we randomize β in sessions resulting from Execute queries. Game 4.5.2 is indistinguishable from Game
4.5.1 unless A solves DDH problem. The reduction is shown in Lemma B.5.

|Pr[G4.5.1 ⇒ T]− Pr[G4.5.2 ⇒ T]| ≤ AdvDDHB4.5.2
()

Game 5: Randomize session keys for Send queries.
We randomize session keys for all Send queries, i.e. for active attacks. Concretely, we no longer use the
random oracle to compute the output key of such sessions, when they are fresh, and use a totally random
key instead. We introduce a table Ts to keep track of the inputs excluded from the random oracle input. In
the case of a random oracle query that could cause an inconsistency in the adversary’s view, we set a bad
flag bad5. We naturally have:

|Pr[G4.5.2 ⇒ T]− Pr[G5 ⇒ T]| ≤ Pr[G5 ⇒ bad5]

Game 6: Detect duplicates.
Rather than checking for bad5 in the game we construct a list of random oracle queries that would cause
bad5 and, at the end of the game we divide the checking for bad5 into two sub-events. We set a new bad
flag if ever there are two entries in the list of problematic random oracle queries that are consistent with the
same sid, i.e., if there exist queries (sid,Key1, pw1) and (sid,Key2, pw2), where Key1 and Key2 are computed
correctly, for pw1 ̸= pw2. Such pair of queries we call duplicates and whenever we detect them, we set bad6.
In this event does not occur and the list of problematic queries is not empty, we set bad5. In this game by
bounding bad6, we restrict the set of executions where bad5 may occur, so we have:

Pr[G5 ⇒ bad5] ≤ Pr[G6 ⇒ bad5] + Pr[G6 ⇒ bad6]

The reduction for this game, guesses the rth session where the first bad6 happens, together with the indices
of the two problematic random oracle queries, and reduces the bad event to the Computational Square
Diffie-Hellman problem, CSqDH. This implies:

Pr[G6 ⇒ bad6] ≤ nsen
2
roAdvCSqDHB6

()
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The reduction is shown in Lemma B.6.

Game 7: Add algebraic representation.
In this hop we keep the check for bad5 as before, and we introduce algebraic adversaries by adding algebraic
representation whenever there is Send query with α or β. Therefore, we have:

Pr[G6 ⇒ bad5] = Pr[G7 ⇒ bad5]

Game 8: Randomizing α and β for Send queries.

Pr[G7 ⇒ bad5]− Pr[G8 ⇒ bad5] ≤ 2nseAdvDSqDHB7−8.1
()

We use a hybrid argument to randomize α and β for all Send queries, one session at the time. This means,
if we consider the mth session, then all sessions prior to mth will have random α and β, and for all sessions
after mth, we will compute α and β normally. We cannot randomize messages with α and β in one go,
because of the following scenario. Let us say A communicates with a client instance. In the second round,
the Client chooses α randomly and sends it to A. Then A decides to corrupt and send β′ as β′ = X

′x2pwcs
4 gs,

where s is something that only A knows. Here, we face a problem because A can fix any s it wants and our
reduction will not be able to detect what A is doing and respond with appropriate key. For this reason we
assume we are dealing with algebraic adversaries, meaning, that whenever A outputs β′, it also outputs alg′

that gives the representation of β′ in terms of other group elements it observed during the game. These group
elements are g, and honestly generated X1, X2 and α. This analysis means that any group element that A
produces can be rewritten as a representation of the form alg′ = [(ga), (Xb

1), (X
c
2), (α

d)]. We start the change
for mth session, for 1 ≤ m ≤ nse and we split the Game 8 into two games: Game 7− 8.m.1 where A sends
β′ with alg′, we compute α honestly and use alg′ to decompose β′ and Game 7−8.m.2, where we randomize α.

Game 7-8.m.1 We make the change in all instances before mth session, and for all instances after mth, we
simulate as in Game 7. Let us say, algebraic adversary corrupts the session with an honest client instance
right after it receives an honestly computed α, i.e. α = (X1X

′
3X
′
4)

x2pwcs , but before sending β′. Then A
sends β′ with alg′ = [(ga), (Xb

1), (X
c
2), (α

d)], and we use Rewrite that rewrites β′ as β′ = gaXb
1X

c
2α

d. Then,
we reduce the construction of Key = ( β′

X
′x2pwcs
4

)x2 by checking two cases:

(a) In case of Corrupt, if Xc
2α

d ̸= X
x′4pwcs
2 , then A gets a random key. Furthermore, A needs to solve a

Decisional Square Diffie-Hellman problem, DSqDH to compute the key.
(b) In case of Corrupt, if Xc

2α
d = X

x′4pwcs
2 , then the we compute the real key, i.e. Key = ( β′

X
x2pwcs
4

)x2 . Further-
more, in case (b), after rearranging the exponents we get Key = g(x2a+x1x2b) = gx2agx2x1b. Now, the final thing
we need to do in (b), is to embed α in the Key to prepare for the next hop, and we get Key = gx2a( α

1
pwcs

gx2(x′3+x′4)
)b.

We tackle the keys for fresh sessions as before. We stress that the only change in Game 7− 8.m.1 is in case
of corruption in Send-C3 or Send-S3. If that does not happen we simulate everything as in Game 7.

|Pr[G7 ⇒ T]− Pr[G7−8.m.1 ⇒ T]| ≤ 2nseAdv
DSqDH
B7−8.1

()

We reduce the advantage of the adversary in Game 7-8.m.1 to DSqDH, shown in Lemma B.7.

Game 7-8.m.2. For all instances before mth, we make the change and for all instances after mth, we
simulate as in Game 7-8.m.1. In this hop we randomize α.

|Pr[G7−8.m.1 ⇒ T ]− Pr[G7−8.m.2 ⇒ T ]| ≤ Pr[G8 ⇒ bad5]

In this game, the test bit b is perfectly hidden as in fresh sessions so the adversary has zero advantage in
noticing that α is randomized. Game 7-8.m.1. and Game 7-8.m.2. are the same unless bad5 occurs. We stress
that we do the same hybrid analysis for randomizing β.
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Game 9: Perfect forward secrecy.
In this hop, it remains to bound bad5 and address the cases where A asks for Corrupt query after the instances
accept but before it asks a random oracle query. Everything is randomized in Send and Execute, therefore
we can delay password sampling until the end or in case of corruption. Now, among new entries that might
cause bad5, there could be entries where A sends a message with β′ (resp. α′), where it tested a different
password, pw′ ̸= pwcs and then later asked a query with pwcs. In that case we set a bad flag bad19. Now, it
might also happen that A sent β′ (resp. α′) where pw′ = pwcs. In that case we set a bad flag bad29. More
precisely, we split bad5 after corruption into bad19 and bad29. Let us say, A sent β′ with alg′ and then accepted.
Then, A corrupts and asks for a random oracle query (sid,Key, pwcs). Thanks to the algebraic adversary, we
can use alg of β′ it produced in terms of g, X1, X2 and α which it observed in the game. These elements are
computed honestly, X1 = gx1 , X2 = gx2 and α = gw by the game. In another words, β′ can be rewritten as
a representation of the form alg′ = [(ga), (Xb

1), (X
c
2), (α

d)]. Therefore, we use function Rewrite to decompose
β′ to β′ = gaXb

1X
c
2α

d. Then, in case of corruption, we reduce the construction of Key = ( β′

X
′x2pwcs
4

)x2 by
checking two cases:

(a) In case of Corrupt, if gx2c ̸= X
x2pwcs
4 then pw′ ̸= pwcs and we set bad19. In this case, A needs to solve a

Computational square Diffie-Hellman problem, CSqDH to compute the correct key.

(b) In case of Corrupt, if gx2c = X
x2pwcs
4 , we set bad29. It means that pw′ = pwcs and A submitted the winning

query. To compute the key, the expressions cancel and we get Key = g(x2a+x1x2b+x2wd) = gx2(a+x1b+wd).
We check bad5 as before. Note that bad19 and bad29 are disjoint. So, we have the following bound

Pr[G8 ⇒ bad5] ≤ Pr[G9 ⇒ bad5] + Pr[G9 ⇒ bad19] + Pr[G9 ⇒ bad29]

The entries where bad5 might happen are in the list which size is now at most nse, so we have:

Pr[G9 ⇒ bad5] ≤
nse

| D |

We reduce the probability of bad19 to CSqDH and we show the reduction in Lemma B.8, where we plug in the
challenge for lth session, and guess the entry for which bad19 might have occurred. For this reason we have

Pr[G9 ⇒ bad29] ≤ nsenroAdvCSqDHB9
()

Finally, the number of remaining entries that can cause bad29 is at most nse

|D| , so we have

Pr[G9 ⇒ bad29] ≤
nse

| D |

This completes the proof and yields the bound.

AdvsJPAKEA () ≤ 2nse

| D |
+

(2nse + 4nex)
2

q

+AdvuzkNIZK() + 2nseAdv
ext
NIZK()

+ nronexAdvCTGDHB4
() + AdvDDHB4.5.1

() + AdvDDHB4.5.2
()

+ nsen
2
roAdvCSqDHB6

() + 2nseAdvDSqDHB7−8.1
() + nsenroAdvCSqDHB9

()

⊓⊔

7 Efficiency analysis of J-PAKE, sJ-PAKE and all its variants

In this section, we only focus on J-PAKE and its variants and provide a concrete analysis of complexity
that also comes out as a result of this paper. Conversely, a comparison of J-PAKE with other known PAKE
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protocols is shown in [ABM15]. We mainly rely on empirical results and performance analysis of J-PAKE,
RO-J-PAKE, CRS-J-PAKE shown in [LST16] and convey the same analysis on sJ-PAKE, sRO-J-PAKE and
sCRS-J-PAKE. We explicitly highlight the differences in computation costs, given in Table 1, and give the
overall conclusion of which protocol(s) are the most efficient one(s). In terms of communication, J-PAKE,
weighs 6 groups elements plus 12 ZK-PoK scalars in Zq and 28 exponentiation in terms of computation which
makes J-PAKE the least efficient among them all. Then, sJ-PAKE follows with 2 ZK-PoKs dropped in the
second round, resulting in 22 exponentiation. RO-J-PAKE and CRS-J-PAKE drop 2 ZK-PoKs and 2 group el-
ements in the first round, making a total of 20 exponentiation. Here, we stress that even though the difference
in computation with sJ-PAKE is only two exponentiation, sJ-PAKE is a more desirable ”lightweight” version,
as it requires minimal changes to the current J-PAKE implementation. In contrast, the implementation of
RO-J-PAKE and CRS-J-PAKE requires more changes due to additional assumption CRS for CRS-J-PAKE
and additional cost of a hash H0 for the RO-J-PAKE. Our final analysis includes sRO-J-PAKE and sCRS-
J-PAKE. The total computation cost drops to only 14 exponentiations when dropping two ZK-PoKs in the
first round (along with two group elements) and dropping two ZK-PoKs in the second round. Compared to
J-PAKE, sRO-J-PAKE and sCRS-J-PAKE have a significant drop in exponentiation which makes the proof
of sJ-PAKE beneficial as it suggests that sRO-J-PAKE and sCRS-J-PAKE can be proven secure in the same
manner. We layout the security proof of sRO-J-PAKE and sCRS-J-PAKE in Sec. D. Furthermore, with the
sJ-PAKE protocol and its security proof, there is a stronger motivation for implementing sRO-J-PAKE and
sCRS-J-PAKE in practice.

Table 1: Comparison of Complexity of all J-PAKE(s) and and the corresponding assumptions used to prove
their security against active attackers.

Protocol Complexity Hardness
Ass.1

Forward
secrecy

Communication2 Computation
J-PAKE 6×G+ 12× Zq 28 | p |-bit exp 3 DSqDH PFS4

RO-J-PAKE 4×G+ 8× Zq 20 | p |-bit exp+2H0
5 DSqDH PFS

CRS-J-PAKE 4×G+ 8× Zq 20 | p |-bit exp DSqDH PFS
sJ-PAKE 6×G+ 8× Zq 22 | p |-bit exp CSqDH PFS
sRO-J-PAKE 4×G+ 4× Zq 14 | p |-bit exp+2H0 CSqDH PFS
sCRS-J-PAKE 4×G+ 4× Zq 14 | p |-bit exp CSqDH PFS

1 DSqDH stands for Decisional Square Diffie-Hellman, while CSqDH stands for Compu-
tational Square Diffie-Hellman
2 G denotes a group element, Zq a scalar
3 exp. denotes exponentiation in G. ZK-PoK costs three exponentiation each (one to
create and two to verify)
4 Perfect Forward Secrecy
5 H0 : {0, 1}∗ → G

7.1 Conclusion

We have presented a UC proof of the J-PAKE protocol, a significantly stronger result than previously
available: allowing the exploitation of composition theorems of the UC framework. We also provide a proof
of a lightweight version of J-PAKE, sJ-PAKE, that avoids the NIZK proofs of knowledge in the second
round, thus significantly improving the efficiency both in terms of computation and communication. We
explicitly show the challenging parts of the proof (Game 8 and Game 9) where we use algebraic adversaries
to prove perfect forward secrecy. For now, it is not clear how to incorporate algebraic adversaries in the UC
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setting, which justifies our choice for proving sJ-PAKE in Indistinguishability-based RoR model. At first
sight, sJ-PAKE seems to fill the requirements to be proven secure in relaxed UC framework [ABB+20], but
we leave it as a part of future work. Furthermore, we provide arguments that the efficiency gains of earlier
lightweight variants of J-PAKE, RO-J-PAKE and CSR-J-PAKE, that reduce the number of NIZK proofs in
the first round can be combined with those of sJ-PAKE, thus providing ultra-light variants, and we provide
game-based proofs of security for these variants too.
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A Ommitted details for UC proof

We give here a more detailed description of each step in the proof, except for the last one, which is straight-
forward. In all steps below, note that all reductions that we build to justify the game hops have full control of
the experiments and therefore know all the passwords that the environment inputs to the ideal functionality
as inputs to uncorrupted parties.
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Hop 1: NIZK security. The real-world is modified so that the CRS is generated as per the simulator
code, which means that now the game has access to simulation and extraction trapdoors. Uncorrupted
parties now use the NIZK simulator for all the generated proofs, so that they do not need to explicitly
use the corresponding discrete logarithm as witness. Furthermore, in addition to verifying all proofs, the
uncorrupted parties use the extraction trapdoor to recover the discrete logarithm of any group element
that was computed by the adversary wrt to the basis prescribed by the protocol. (Note that this means
first checking that the game does not already know the discrete log by keeping track of the proofs that
were provided to the adversary, which is exactly what the simulator is doing.) If extraction fails or gives an
incorrect result, the game aborts. We omit the details of the reduction to NIZK security, which follows the
same steps as in [ABM15]. Note that both in the ideal world and in this modified real-game, the experiments
explicitly compute (or they generate) the discrete logarithms of all protocol messages (if they do not abort).
Moreover, these discrete logarithms uniquely define passwords pwβ = xβ/x4 and pwα = xα/x2, which the
simulator extracts to check if the environment can actually compute the correct key with high probability.
Intuitively, we will show that this is only the case if the environment created α (resp. β) itself, according to
the rules of the protocol, and using the same password that it used to initialize the session to which α (resp.
β) is delivered. In all other cases the protocol key is indistinguishable from random to the adversary.

Hop 2: Remove ambiguity. We argue that the modifications introduced in this game and described above
create a bad event with negligible probability. The modification that excludes collisions on the honestly
generated Xi values introduces a statistical distance to the original games, which can be easily bounded
using a birthday bound. The remaining modifications are treated using reductions to the DL problem; in
all of these cases this implies guessing the session at which the event will occur to embed the DL problem
instance.

Let us analyze the second modification. Consider any client-side and any server-side session as above
agreeing on (X1X2X3, X4) = (X ′1X

′
2X
′
3, X

′
4). Clearly, if X3 ̸= X ′3 then the sessions are neither matched nor

swapped, so we do not need to consider this case and we proceed assuming X3 = X ′3. Suppose there is a
collision on X1X2 = X ′1X

′
2 when the two sessions are neither b-matched nor b-swapped, which means that

we know (X ′1, X
′
2) ̸= (X1, X2) and (X ′1, X

′
2) ̸= (X2, X1). This (sub)-bad event can be reduced to the DL

problem by setting (X1 = X,X2 = gx2): any offending tuple allows recovering the discrete logarithm of X
as x′1 + x′2 − x2.

Now we can extend the analysis to the full bad event. Suppose X1X2X3 = X ′1X
′
2X
′
3, but we know

X1X2 ̸= X ′1X
′
2, so it must be the case that X1 ̸= X ′1. Again we set X1 = X and we recover the discrete

logarithm as x = x′1 + x′2 + x′3 − x2 − x3. Note that this argument follows exactly as in [ABM15] and that
the exact same reasoning applies to the case (X1X3X4, X2) = (X ′1X

′
3X
′
4, X

′
2).

Interestingly, the final bad event we consider in this hop, which deals with accepting an α or β for b-
swapped sessions that leads to different derived key is not considered in [ABM15]. This is because all such
sessions can be treated there as passive attacks, since it is guaranteed that client and server use the same
password. In our case we have the possibility that passwords differ on both sides, and hence must treat
some of these sessions as in the case of active attacks, which means we will need to compute the derived
key. It is therefore important that, when b-swapping occurs, either the derived key is not changed, in which
case we can treat the sessions as passively attacked sessions, or that sessions cannot become fully swapped
(i.e., the original α or β cannot be accepted), in which case we can treat them as actively attacked sessions.
The proof of this case is simple. Suppose α is accepted that comes from a session s.t. (X1, X2) = (X ′2, X

′
1).

Then, the proof justifying α was verified using a basis X2X3X4, which differs from X1X3X4 (or else the
session would have aborted due to a collision). This implies a discrete log xα was extracted such that
α = (X1X3X4)

x2pw = (X2X3X4)
xα . This discrete logarithm permits computing the discrete logarithm of

x1 as xα(x2 + x3 + x4)/x2pw − (x3 + x4) and hence the bad event can be excluded with a reduction to the
discrete logarithm problem similarly to the reductions above. The case of β is identical.

Hop 3: Actively attacked sessions. We modify the real world so that all sessions that are neither
matched nor swapped explicitly extract a password as per the simulator code and check if the password is
correct. If not, these sessions use a uniform random element as key to the PRF. Furthermore, if they are
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matched or swapped, but use different passwords, then we also randomize the key to the PRF (but perform
no extraction). We will use a hybrid argument that first modifies all such sessions on the client side, and
then all of those on the server side. We show that any environment that can detect such a change can be
used to break Decision Squared Diffie-Hellman. This problem, which as discussed in [ABM15] is a stronger
assumption than DDH, requires an adversary to distinguish tuples of the form (gx,W ) where W is either
W = gx

2 or an independently sampled random element. We present the client-side argument first and then
only state the differences for the server side.

The reduction programs X2 = gx in the i-th client session. This means implicitly that x2 = x, and this is
the only discrete logarithm unknown to the reduction for all Xi messages occurring in the game. This means,
in particular, that α can be computed as (gx)pw(x1+x3+x4). Moreover, the output key of this session in the
case of a correct password guess in an active attack (which the reduction can check as per the simulator
code) will have the form g(x1+x3)x2x4pw. The reduction can also compute this value, as it knows all discrete
logarithms except for x2. The same applies to matching or swapped sessions with the same password.

On the other hand, if the password guess is incorrect, or if we have matched or swapped sessions with dif-
ferent passwords, the key generated by this session will be of the form (βX−x2pw

4 )x2 = gx2(xβ(x1+x2+x3)−x2x4pw),
where we know xβ ̸= pwx4. Expressing the key as a function of W we get W xβ−x4pwgxβx2(x1+x3) and it is
clear the key is completely random if W is random.

For all the other client-side sessions no problems can arise in the reduction, as it knows all the necessary
discrete logarithms. Similarly, the sessions on the server side have not yet been modified and the correct keys
can be computed using the code for uncorrupted parties.

We consider now the hybrid argument for server-side sessions. The strategy is exactly the same: the
SqDH problem instance is programmed into X4, and all the details of the reduction are the same with
appropriate renaming, except when it comes to the fact that we need to simulate client-side sessions which
have already been modified by the previous hybrid. The only relevant case is the case of actively attacked
client sessions where the reduction must perform a correct password guess, but it does not know xβ because
β was programmed by the reduction. However, in this case we know that the session is not matched nor
swapped (because extraction is taking place). We also know that the basis for β is checked as X1X2X3, which
must be equal to X ′1X

′
2X
′
3 (as otherwise the xβ would have been extracted). By our second hop, this implies

the discrete log of X4 must be known, and hence we can check the password guess as β = (X1X2X3)
x4pw

and compute a correct key, if needed.

Hop 4: Remaining passively attacked and swapped sessions. We modify the real world so that
all passively attacked or swapped sessions where the same password was used on both sides use a uniform
random element as key to the PRF (the same key is derived on both sides). We will use a hybrid argument
over all pairs (i, j) where i refers to the i-th client-side session and j indexes server side sessions. If anyone of
these two sessions is passively attacked or swapped, we replace the PRF key with a random group element.
We show that any environment that can detect such a change can be used to break Decision triple group
Diffie-Hellman. This problem, which as discussed in [ABM15] is hard if DDH is hard, requires an adversary
to distinguish tuples of the form (gx, gy, gz, gxy, gxz, gyz,W ) where W is either W = gxyz or an independent
random element.

The reduction programs X2 = gx on the client-side session and (X3, X4) = (gy, gz) on the server side. This
means implicitly that x2 = x, x3 = y and x4 = z, and therefore that α can be computed as ((gx)x1g

xygxz)pw,
whenever the sessions are matching with the same passwords. Similarly, β on the server side can be computed
as ((gz)x1g

xzgyz)pw, whenever the sessions are matching with the same password. Moreover, the derived keys
on either side can be computed as ((gxz)x1gxyz)pw, and they become totally random when gxyz is replaced
with a random element. Similar reasoning applies for when the sessions are swapped (since we know that
derived keys must be consistent with matching sessions).

Recall that all actively attacked sessions with wrong password guesses have been modified to use random
group elements as PRF keys. The same happens for matching or swapped sessions using different passwords.
However, some actively attacked sessions still give out correct keys if the passwords are correct. And it could
happen that the sessions do not match each other and they match some other sessions in the game. In all of
these cases we need to verify that the reduction can back-track and correctly simulate these sessions. First
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of all note that in all cases we can compute α and β correctly as described above. Moreover, if the sessions
are matched or swapped with any other sessions in the game, then the reduction knows enough discrete
logarithms (in those other sessions) to compute the output keys correctly.

It remains to consider the cases where these sessions turn out to be actively attacked. We need to consider
various cases (we give only the client side, as the server side works similarly). The problem, of course, is
that we do not know x2 and we might not be able to extract x3, x4 and xβ , but we do know the i-th client
session is not matching or swapping with the j-th server session, which means that at least one of X ′3, X ′4,
or β were not programmed by the reduction and therefore the discrete logarithm is known.

– Suppose xβ is known. Then the correct password check can be done in the exponents as (X ′4)
pw = gxβ .

Note also that, if the check goes through, we recover x4, which means that the correct key can be
computed as ((gx)x1gxy)x4pw.

– Suppose xβ is not known, which means β was programmed by the reduction. We know the session is not
paired nor swapped, but we know that the basis for β generation must have been the same, as otherwise
xβ would have been extracted. By our second hop this implies the discrete log of X4 must be known,
and hence we can check the password guess as β = (X1X2X3)

x4pw and compute a correct key, if needed,
just as in the previous case.

Let us see what happens in all the other sessions, after indices (i, j) to make sure the reduction can
replicate the game. It must correctly check for password guesses in actively attacked sessions and compute
the correct keys if needed, as well as compute the correct keys for yet untouched passively attacked and
swapped sessions. This is done as follows:

– For yet untouched passively attacked or passive sessions, the reduction knows the discrete logarithms of
the messages Xi generated in that session, and it also knows the password, so it can compute the correct
key. Note that in this case there is no need to perform password checks.

– For all remaining actively attacked sessions, observe that the reduction will know more information than
in the case of session i, and so the same argument applies.

Hop 5: Randomizing α and β. The details for this hop follow exactly as in [ABM15]. We give a brief
overview. The idea is to transform α and β into random values in all sessions and to compute the output keys
for the corresponding sessions, when correct password guesses occur, as the adversary would (this is what
the simulator does). For this it is crucial to observe that we have randomized the input to the PRF in all
sessions, except those in which the attacker places a correct password guess. This means that, only in these
cases will the simulation need to compute the correct output key (which the simulator then passes on to the
ideal functionality in order to match the real world). The proof again uses a hybrid argument, first over all
client-side sessions, and then over all server-side sessions. We give only the first case here. The idea is to get
a DDH challenge (X,Y, Z) and program the i-th client session to set X1 = X and X2 = Y and to compute
α = (ZYx3+x4

)pw, which gives the correct value of α if Z = CDH(X,Y ) and a random group element if Z is
uniform in the group. If a correct password guess occurs, the output key can be computed as (ZXx3

2 )x4pw.
Note that if Z is the CDH of X and Y , the computed key is consistent with the computation based on β, as
required. It is clear that the reduction can simulate all other client-side sessions and all server-side sessions
that are matching or swapped, since it only needs to compute random keys. The only problem could happen
when checking a correct password guess on the server side while not knowing the discrete logarithm for α,
but this can never occur due to our second hop.

Extension to Static Corruptions. The extension to static corruptions is straightforward (recall that
we are using the stronger version of the ideal PAKE functionality from [AHH21]). The simulator is extended
as follows: whenever a message is delivered from a corrupt party, the simulator just treats it as if it is part
of an active attack. In particular, it runs the extractor on it to recover the discrete logarithm (unless the
message is replayed, in which case it already knows the discrete logarithm). If extraction fails, then the
simulator aborts. When α or β is delivered from a corrupt party, the simulator extracts a password guess
such as in the case of active attacks, and it asks the functionality whether the guess is correct. If the guess is
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correct, then it programs the output of the functionality for the honest party using the correctly computed
key. Otherwise, the functionality will use a completely random key (as the password test failed). The proof
of simulator correctness extends in the following way: whenever dealing with a session that is interacting
with a corrupted party, treat it exactly as the sessions that are under active attack. With all the game hops
modified in this way, we can gradually transform the real-world with static corruptions into the ideal world
with our extended simulator.

B Reductions

We now prove auxiliary lemmas supporting the proof of Theorem D.2.
Lemma B.1. For every attacker A, there exists an attacker BuzkNIZK such that

Pr[G0 ⇒ T]− Pr[G1 ⇒ T] ≤ AdvuzkBNIZK
()

Proof. We consider BuzkNIZK attacker in Fig. 13 and we prove that the attacker distinguishes real from random
proofs with the advantage AdvuzkBNIZK

. We simulate proofs in the following queries. For SendInit-C1(C, i, S),
BuzkNIZK generates X1 = gx1 and X2 = gx2 and calls simulation oracle SimO that takes X1 and C and outputs
π1, then SimO takes X2 and C and outputs π2. For SendInit-S1(S, i, C), BuzkNIZK generates X3 = gx3 and
X4 = gx4 and calls SimO that takes X3 and S and outputs π3, then SimO takes X4 and S and outputs π4.
For Execute(C, S, i, j), BuzkNIZK generates X1 = gx1 , X2 = gx2 , X3 and π4 for X4 and calls SimO to simulate
π1, π2, π3, π4 for corresponding X1, X2, X3, and X4. The attacker interpolates between Game 0 and Game
1, meaning if it knows it is playing Game 0 it outputs 1 and if it knows it is playing Game 1, it outputs
0. ⊓⊔

Lemma B.2. For every attacker A, there exists an attacker BextNIZK such that

Pr[G1.5 ⇒ bad1.5] ≤ 2nseAdvextBNIZK
()

Proof. We consider BextNIZK attacker in Fig. 15. We set a bad flag bad1.5 whenever the extractor fails and
denote the advantage of the attacker as AdvextBNIZK

. We check if the extractor returns the correct witness in the
following queries. In Send-C2(C, i, S,X ′3, X ′4, π′3, π′4), we check if received value X ′3 comes from the adversary
(not in List) in which case we call NIZK.Extract(crt, tde, X ′3, π′3, S) which outputs a witness x′3. Now, we check
if X ′3 = gx

′
3 , in which case the witness is valid. Otherwise, either the extraction fails and bad1.5 occurred or

the witness is not valid and in either case we add the pair (X ′3, π
′
3) to ListExt. We do the same for X ′4 and in

Send-S2(S, i, C,X ′1, X ′2, π′1, π′2) for X ′1 and X ′2. At the end of the game, BextNIZK guesses one pair (X ′, π′) from
ListExt for which bad1.5 might have occurred. Since, the extractor fails with the advantage AdvextBNIZK

and we
guess one pair from ListExt, we can bound the probability of bad1.5 happening with 2nseAdvextBNIZK

. ⊓⊔

Lemma B.3. For every attacker A, there exists an attacker B4 such that

Pr[G4 ⇒ bad4] ≤ nronexAdvCTGDHB4
()

Proof. We consider a CTGDH attacker B4 in Fig 19. It gets a challenge of the form (X,Y, Z,DXY , DXZ , DY Z)
and finds CTGDH(X,Y, Z,DXY , DXZ , DY Z). The attacker uses the challenge for the lth Execute query to
compute X1 = gx1 , X2 = X, X3 = Y , X4 = Z, α = (DXY DXZX

x1)pwcs and β = (DXZDY ZZ
x1)pwcs . If

there was a query with a collision in T , we add it to the list T4. Then, when the game finishes, the reduction
guesses one query from T4 for which bad4 might have occurred. If the guess was successful, it means that
bad4 occurred and A solved CTGDH(X,Y, Z,DXY , DXZ , DY Z) so B4 can recover gxyz by computing:

gxyz =
Key

1
pwcs

Dx1

XZ

For Send queries, the attacker runs everything as in Game 4. ⊓⊔
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Lemma B.4. For every attacker A, there exists an attacker B4.5.1 such that

Pr[G4 ⇒ T]− Pr[G4.5.1 ⇒ T] ≤ AdvDDHB4.5.1
()

Proof. We consider a DDH attacker B4.5.1 in Fig 21. It gets a generalized challenge of the form (X1, . . . ,
Xnse

, Y1, . . . , Ynse
, Z1, . . . , Znse

) and submits b = 1 if (Xk, Yk, Zk) is a real DDH tuple and b = 0 if it is a
random DDH tuple, for some 1 ≤ k ≤ nex. The problem is tightly equivalent to DDH by self-reducibility.
The attacker uses the challenge for each Execute query to compute X1 = Xk, X2 = Yk, X3 = gx3 , X4 = gx4 ,
α = (ZkX

x3+x4
2 )pwcs and β = X

x4pwcs
2 g(x1+x2)x4pwcs . The attacker interpolates between Game 4 and Game

4.5.1, meaning if (Xk, Yk, Zk) is a real DDH tuple, it is playing Game 4 and otherwise it is playing Game
4.5.1. ⊓⊔

Lemma B.5. For every attacker A, there exists an attacker B4.5.2 such that

Pr[G4.5.1 ⇒ T]− Pr[G4.5.2 ⇒ T] ≤ AdvDDHB4.5.2
()

Proof. We consider a DDH attacker B4.5.2 in Fig 23. It gets a generalized challenge of the form (X1, . . . ,
Xnse

, Y1, . . . , Ynse
, Z1, . . . , Znse

) and submits b = 1 if (Xk, Yk, Zk) is a real DDH tuple and b = 0 if it is a
random DDH tuple, for some 1 ≤ k ≤ nex. The problem is tightly equivalent to DDH by self-reducibility.
The attacker uses the challenge for each Execute query to compute X1 = gx1 , X2 = gx2 , X3 = Xk, X4 = Zk,
α

$←− G and β = (ZkX
x1+x2
4 )pwcs . The attacker interpolates between Game 4.5.1 and Game 4.5.2, meaning if

(Xk, Yk, Zk) is a real DDH tuple, it is playing Game 4.5.1 and otherwise it is playing Game 4.5.2. ⊓⊔

Lemma B.6. For every attacker A, there exists an attacker B6 such that

Pr[G6 ⇒ bad6] ≤ nsen
2
roAdvCSqDHB6

()

Proof. We consider a CSqDH attacker B6 in Fig 26. The reduction B6 gets a challenge X and finds the solution
to CSqDH. The attacker guesses the lth fresh session, where it uses the challenge for SendInit-C1(C, i, S) query
to compute X1 = gx1 , X2 = X, and for Send-C2(C, i, S,X ′3, X ′4, π′3, π′4) it computes α = X

(x1+x′3+x′4)pwcs
2 .

We add all queries where bad6 might have occurred to Tbad. In the end of the game, the reduction guesses
one query from Tbad. If the guess was successful it means A solved CSqDH and B6 can recover gx

2 in the
following way:

Key1 = (
β′

Xx′4pwcs
)x = (

Xx1+x′3+x′4

Xx′4pwcs
)x = X(x1+x′3)x

′
4pw1gx

2x′4(pw1−pwcs) (1)

Key2 = (
β′

Xx′4pwcs
)x = (

Xx1+x′3+x′4

Xx′4pwcs
)x2 = X(x1+x′3)x

′
4pw2gx

2x′4(pw2−pwcs) (2)

where x is unknown. From (1) and (2) follows:

gx
2

= (
Key1

Key2X
(x1+x′3)x

′
4(pw1−pw2))

1
x′4(pw1−pw2)

We do the same procedure on the server side and we plug-in the challenge for SendInit-S1(S, i, C). Note, in
case of Corrupt query in lth session, the session is no longer fresh and bad cannot occur and it means that
the attacker made the wrong guess so we abort. ⊓⊔

Lemma B.7. For every algebraic attacker A, there exists an attacker B7−8.1 such that

Pr[G7 ⇒ T]− Pr[G7−8.m.1 ⇒ T] ≤ 2nseAdvDSqDHB7−8.1
()
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Proof. We consider a DSqDH attacker B7−8.1 in Fig 29. It gets a challenge (X,Y ) and submits b = 1
if (X,Y ) is a real DSqDH tuple or b = 0 otherwise. The attacker uses a hybrid argument and for fresh
mth session, it plugs-in the challenge for SendInit-C1(C, i, S) to compute X1 = gx1 , X2 = X, and for
Send-C2(C, i, S,X ′3, X ′4, π′3, π′4) it computes α = X

(x1+x′3+x′4)pwcs

2 . In Send-C3(C, i, S, β′, alg′) where alg′ =
[((g, a), (X1, b), (X2, c)), (α, d)], in case of Corrupt, we rewrite β′ as β′ = gaXb

1X
c
2α

d. Then we check:

(a) If Xc
2α

d ̸= X
x′4pwcs
2 the key is computed as

Key = Xa
2 (

α
1

pwcs

X
(x′3+x′4)

2

)bY (c+d(x1+x′3+x′4)pwcs−x
′
4pwcs). This means if Y = gx

2 then the key is real and random
otherwise.

(b) If Xc
2α

d = X
x′4pwcs
2 , we embed α in the key and we compute it as Key = X

(a+x1b)
2 = Xa

2 (
α

1
pw

X
(x′3+x′4)

2

)b.

A interpolates between the two games, meaning, if Y = gx
2 then it is playing Game 7, otherwise it is

playing Game 7-8.m.1.
Note, we do the same analysis on the server’s side, for SendInit-S1(S, i, C), Send-S2(S, i, C,X ′1, X ′2, π′1, π′2)
and Send-S3(S, i, C, α′, alg′), to bound problematic cases of α′ (coming from A) . ⊓⊔

Lemma B.8. For every algebraic attacker A, there exists an attacker B9 such that

Pr[G9 ⇒ bad29] ≤ nsenroAdv
CSqDH
B9

()

Proof. We consider a CSqDH attacker B9 in Fig 32. The reduction B9 gets a challenge X and finds the
solution to CSqDH. The attacker guesses the lth fresh session, where instances accept, and there was a
Corrupt query and a query (sid,Key, pwcs) where there was β′ with pw ̸= pwcs. B9 plugs-in the challenge
for SendInit-C1(C, i, S) query to compute X1 = gx1 , X2 = X, and for Send-C2(C, i, S,X ′3, X ′4, π′3, π′4) it
computes α = gw, for w

$←− Zq. We add all queries where bad19 might have occurred to T9. In the end of the
game, the reduction guesses one query from T9. If the guess was successful it means A solved CSqDH and
B9 can recover gx

2 :

gx
2

= (
Key

X(a+x1b+wd)
)

1
c−x4pwcs

We do the same procedure on the server side and we plug-in the challenge for SendInit-S1(S, i, C). ⊓⊔

C J-PAKE

The J-PAKE description. The protocol is symmetric and consists of two rounds. In the first round a Client
chooses two random values x1 and x2 from Zp and computes X1 = gx1 and X2 = gx2 . Then it generates
proof of knowledge for π1 for X1 and π2 for X2. A Server does the same, only with x3 and x4, computing
X3 = gx3 and X4 = gx4 and generating π3 and π4 for X3 and X4 respectively. Both sides exchange a tuple of
Identity, Values, Corresponding proofs, without any order who goes first. Then, both sides verify the proofs
π1, π2, π3, π4 and abort if verification fails.

In the second round, the Client computes α = g(x1+x3+x4)x2pw, along with corresponding proof πα for
exponent x2pw, and sends α and πα to the Server. The Server does the same: computes β = g(x1+x2+x3)x4pw,
generates corresponding proof πβ for exponent x4pw and sends β and πβ to the Client. Both sides verify the
proofs πα, πβ and abort if verification fails.

In the last step, the Client computes Key = (βX−x2pw
4 )x2 and the Server computes Key = (αX−x4pw

2 )x4 ,
which results in both sides holding the same key Key = g(x1+x3)x2x4pw. The session key follows as K =
H1(Key), where H1 is a hash function mapping into {0, 1}κ, with κ being the security parameter.
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Client C Server S

Initialization

Public information: G, g, q, σ $←− Setup(1κ); H1 : {0, 1}∗ → {0, 1}κ

Secret information: pw ∈ Zp, pw ̸= 0

x1, x2
$←− Zq x3, x4

$←− Zq

X1 ← gx1 X3 ← gx3

X2 ← gx2 X4 ← gx4

π1 ← Prv((X1, g), x1, C) π3 ← Prv((X3, g), x3, S)

π2 ← Prv((X2, g), x2, C) π4 ← Prv((X4, g), x4, S)

(C,X1, X2, π1, π2)

(S,X3, X4, π3, π4)

Abort if X4 = 1 Abort if X2 = 1

Check Ver((X3, g), π3, S) Check Ver((X1, g), π1, C)

Check Ver((X4, g), π4, S) Check Ver((X2, g), π2, C)

α← (X1X3X4)
x2pw β ← (X1X2X3)

x4pw

πα ← Prv((α,X1, X3, X4), x2pw, C) πβ ← Prv((β,X1, X2, X3), x4pw, S)

α,πα

β,πβ

Check Ver((β,X1X2X3), πβ , S) Check Ver((α,X1X3X4), πα, C)

Key← (βX−x2pw
4 )x2 Key← (αX−x4pw

2 )x4

K ← H1(Key) K ← H1(Key)

Fig. 6: The J-PAKE protocol

29



D Variations of s-JPAKE

In this section, we describe the sRO-J-PAKE (Fig. 7) and sCRS-J-PAKE (Fig. 9) protocols in full detail.
Moreover, we provide the security proof of both protocols in the same model as sJ-PAKE (Sec. 5). We
analyze both proofs in depth by going through games of sJ-PAKE and only point out the differences with
sJ-PAKE. For simplicity, we leave the names and the number of games, bad events and reductions the same
as the one in sJ-PAKE (Sec. 6 and Sec. B). In addition, all changes in games and reductions of sRO-J-PAKE
and sCRS-J-PAKE imply the changes in their code-based proof. Unfortunately, due to space constraints, we
do not provide code-based proof for sRO-J-PAKE and sCRS-J-PAKE. Most of the changes in the proof for
sRO-J-PAKE and sCRS-J-PAKE occur in the reductions where we plug-in challenges differently compared
to sJ-PAKE due to missing values X1 and X3. We modify the equations we use to compute the solution to
a hard problem accordingly. Lastly, we use the same assumptions as in sJ-PAKE, defined in Sec. 3.2.

For a given security parameter k, let G be a finite multiplicative group7 of prime order q, such that
|q| := k. Being the strongest assumption necessary, we will assume the Computational Square Diffie Hellman
(CSqDH, see Sec. 3.2) holds over G.

D.1 sRO-J-PAKE

Client C Server S

Initialization
Public: G, g, q; H0 : {0, 1}∗ → G; H1 : {0, 1}∗ → {0, 1}κ

Secret: pw ∈ Zq, pw ̸= 0

x1
$←− Zp x2

$←− Zp

X1 ← gx1 X2 ← gx3

π1 ← Prv((X1, g), x1, C) π2 ← Prv((X2, g), x2, S)

(C,X1, π1)

(S,X2, π2)

Abort if X2 = 1 Abort if X1 = 1

Check Ver((X2, g), π2, S) Check Ver((X1, g), π1, C)

D := H0(f(C, S,X1, X2)) D := H0(f(C, S,X1, X2))

α := (DX2)
x1pw β := (DX1)

x2pw

α

β

Key← (βX−x1pw
2 )x1 Key← (αX−x2pw

1 )x2

K ← H1(C, S,X1, X2, α, β,K, pw) K ← H1(C, S,X1, X2, α, β,K, pw)

Fig. 7: The sRO-J-PAKE protocol.

7 The group of interest is either a SFF or EC group. Throughout this paper, protocols will be presented multiplica-
tively.
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Description. Let H0 be a full-domain hash mapping {0, 1}∗ to G. H1 is a hash function from {0, 1}∗ to
{0, 1}κ. A function f is used to ensure that both parties sort values identically. Basically, D plays the role
of (X1X3). In the first round a client C generates X1 and the proof of knowledge, π1 for discrete log x1

and transmits the identity, X1 and π1 to a Server S, while S does the same computation only with X2 and
π2 and sends the identity, X2 and π2 to C. When both parties receive the message from the first round,
they compute common value D = H0(f(C, S,X1, X2)). Then C generates α = (DX2)

x1pw and sends it to S,
and at the same time S generates β = (DX1)

x2pw and sends it to C. After receiving α and β, both parties
compute the key by the protocol Key = (βX−x1pw

2 )x1 (resp. Key = (αX−x2pw
1 )x2 ). Both parties should hold

the same session key K = H1(C, S,X1, X2, α, β,Key, pw).

D.2 Security game-based proof of sRO-J-PAKE

Before the analysis of the game-based proof, we stress that adding full domain hash H0 to the proto-
col means that our simulator will have to administer two random oracles: one oracle that responds to
H1(C, S,X1, X2, α, β,Key, pw) queries8 and another oracle that responds to D = H0(f(C, S,X1, X2)) queries.
Both oracles have to make sure that responses are consistent. We define RO to respond in case A asks
H0(f(C, S,X1, X2)) in Fig. 8.

For each fresh RO query H0(f(C, S,X1, X2)) the simulator computes D := gd, where d
$←− Zp and returns D

to A. The simulator administrates all the query - response by adding them to the list. If A already asked for
H0, the simulator simply retrieves the response D from the list and gives it to A. The number of random oracle
queries to H0 we denote as nh0.

Fig. 8: Simulation of H0

As already mentioned, function D in the sRO-J-PAKE protocol substitutes X1X3 term. Thus, the only way
the security proof will work is that the simulator simulates H0 as D = gd, where it knows d. Since d is
chosen randomly to define D in Fig. 8 and x1 (resp. x2) can be extracted from the ZK-PoK, the reduction
will have all the information it needs to simulate the responses to any query that A asks. That being said,
we give a formal proof of sRO-J-PAKE (Fig. 7), and we only state the potential differences with respect to
sJ-PAKE protocol. We also refer the reader to [LST16] where the proof of RO-J-PAKE is displayed in detail
and we claim that sRO-J-PAKE has the same differences with sJ-PAKE as RO-J-PAKE has with J-PAKE.
Furthermore, we stress that we modify all games by changing X1, X2, X3 and X4 to X1, X2 and π1, π2, π3

and π4 to π1, π2 and we add the second oracle that simulates random queries for H0.

Theorem D.1. Let sRO-J-PAKE be the protocol described in Fig. 7. Take an RoR attacker A against sRO-
J-PAKE, making at most nse, nex, nre, nco, nte, nro, nho queries to Send, Execute, Reveal, Corrupt, Test and
RO, respectively. For every such attacker A, there exist attackers: B4 against Computational Triple Group
Diffie-Hellman problem, B4.5.1 against Decisional Diffie-Hellman problem, B4.5.2 against Decisional Diffie-
Hellman problem, B6 against Computational Squared Diffie-Hellman problem, B7−8.1 against Decisional

8 This oracle is already defined and administrated in sJ-PAKE proof in Sec. 6.
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Squared Diffie-Hellman problem and B9 against Computational Squared Diffie-Hellman problem such that

AdvsRO−J−PAKEA () ≤ 2nse

| D |
+

(nse + 2nex)
2

q

+AdvuzkNIZK() + 2nseAdvextNIZK()

+ nronexAdvCTGDHB4
() + AdvDDHB4.5.1

() + AdvDDHB4.5.2
()

+ nsen
2
roAdvCSqDHB6

() + 2nseAdvDSqDHB7−8.1
() + nsenroAdvCSqDHB9

()

where Advuzk and Advext are advantages for the security of the SE-NIZK, formally defined in 3.6.

Proof. Game 0: Original protocol.

AdvsRO−J−PAKEA () =| Pr[G0 ⇒ T]− 1

2
|

Game 1: Simulate ZK-PoK proofs. This game is the same as in Game 1 of sJ-PAKE, except we simulate
only proofs of knowledge of X1 and X2. Everything else stays the same. We have

Pr[G0 ⇒ T]− Pr[G1 ⇒ T] ≤ AdvuzkNIZK()

Game 1.5: Extract discrete logs from adversarial proofs. This game is the same as in Game 1.5 of
sJ-PAKE, except we extract only from adversarial proofs of knowledge π1 and π2. Everything else stays the
same. We have

|Pr[G1 ⇒ T]− Pr[G1.5 ⇒ T]| ≤ 2nseAdvextNIZK()

Game 2: Force unique values
This game is the same as in Game 2 of sJ-PAKE except we force uniqueness of X1 and X2. We bound this
change

Pr[G1.5 ⇒ T]− Pr[G2 ⇒ T] ≤ (nse + 2nex)
2

q

Game 3: Adding freshness. Description of this game is the same as in Game 3 of sJ-PAKE. There is no
change in the bound.

Pr[G3 ⇒ T] = Pr[G2 ⇒ T]

Game 4: Randomize session keys for matching sessions.
Description of this game is the same as in Game 4 of sJ-PAKE, except for the natural change of X1, X2, X3

and X4 to X1, X2. This change implies a modification in the reduction to CTGDH problem. We state the
differences with the reduction described in Lemma B.3:
Given the challenge (X,Y, Z,DXY , DXZ , DY Z), we build an attacker B4 that finds CTGDH(X,Y, Z,DXY ,
DXZ , DY Z). We plug-in the challenge in X1 = X and X2 = Y while the values Z is embedded as the output
of H0(C, S,X1, X2) and we set α = (DXY DXZ)

pwcs and β = (DXZDY Z)
pwcs . Then, when the game finishes,

the attacker guesses one query for which bad4 might have occurred. If the guess was successful, it means that
bad4 occurred and A solved CTGDH(X,Y, Z,DXY , DXZ , DY Z) so B4 can recover gxyz by computing:

gxyz = Key
1

pwcs

Therefore we have the same bound:

|Pr[G3 ⇒ T]− Pr[G4 ⇒ T]| ≤ nronexAdvCTGDHB4
()
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Game 4.5: Randomize alpha/beta for Execute queries.
Description of this game is the same as in Game 4.5 of sJ-PAKE. The only change we do is in the reduction
to DDH problem when randomizing both α and β in Games 4.5.1. and 4.5.2. We state the differences with
the reductions described in Lemma B.4 and Lemma B.5:
Given the generalized challenge (X1, ..., Xnse

, Y1, ..., Ynse
, Z1, ..., Znse

), we build attackers B4.5.1 and B4.5.2
that submit b = 1 if (Xk, Yk, Zk) is a real DDH tuple and b = 0 if it is a random DDH tuple, for some
1 ≤ k ≤ nex. The problem is tightly equivalent to DDH by self-reducibility. We plug-in the challenge in
X1 = Xk and X2 = Yk and we set α = (Xd

kZk)
pwcs (resp. β = (Y d

k Zk)
pwcs) where D is the output of

H0(C, S,X1, X2) computed as D = gd. The bounds for Game 4.5.1 and Game 4.5.1 do not change with
respect to the same games in s-JPAKE:

Pr[G4 ⇒ T]− Pr[G4.5.1 ⇒ T] ≤ AdvDDHB4.5.1
()

Pr[G4.5.1 ⇒ T]− Pr[G4.5.2 ⇒ T] ≤ AdvDDHB4.5.2
()

Game 5: Randomize session keys for Send queries. Description of this game is the same as in Game
5 of sJ-PAKE so the bound does not change:

|Pr[G4.5.2 ⇒ T]− Pr[G5 ⇒ T]| ≤ Pr[G5 ⇒ bad5]

Game 6: Detect duplicates.
Description of this game is the same as in Game 6 of sJ-PAKE, except for modification in the reduction to
CSqDH problem. We state the differences with the reduction described in Lemma B.6:
Given the challenge X, we build an attacker B6 that finds solution to CSqDH problem. Let us say that B6
plugs-in the challenge in the lth session on the clients side, in X1 = X and it sets α = X(X′2+d)pwcs , where
x′2 is the witness extracted from adversarial proof π′2 and d is the discrete log of D which represents the
output of H0(C, S,X1, X2). Then, when the game finishes, B6 guesses one query for which bad6 might have
occurred. If the guess was successful it means A solved CSqDH and B6 can recover gx

2 in the following way:

Key1 = (
β′

Xx′2pwcs
)x = (

(XD)pw1

Xx′2pwcs
)x = Xdx′2pw1gx

2x′2(pw1−pwcs) (1)

Key2 = (
β′

Xx′2pwcs
)x = (

(XD)pw2

Xx′2pwcs
)x = Xdx′2pw2gx

2x′2(pw2−pwcs) (2)

where x is unknown. From (1) and (2) follows:

gx
2

= (
Key1

Key2X
dx′2(pw1−pw2))

1
x′2(pw1−pw2)

We do the same procedure on the server side and we plug-in the challenge in X2 = X and set β = X(X′2+d)pwcs .
The bound and other remarks do not change:

Pr[G5 ⇒ bad5] ≤ Pr[G6 ⇒ bad5] + nsen
2
roAdvCSqDHB6

()

Game 7: Add algebraic representation. Description of this game is the same as in Game 7 of sJ-PAKE.
Thus, the bound does not change:

Pr[G6 ⇒ bad5] = Pr[G7 ⇒ bad5]
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Game 8: Randomizing α and β for Send queries.
Description of this game is the same as in Game 8 of sJ-PAKE. The only change we do is in the reduction
to DSqDH problem when bounding bad cases of α and β in Game 7-8.1. We state the differences with the
reduction described in Lemma B.7:
Given the challenge (X,Y )), we build an attacker B7−8.m.1 that submits b = 1 if (X,Y ) is a real DSqDH
tuple and b = 0 if it is a random DSqDH tuple. B7−8.m.1 uses a hybrid argument and for fresh mth session,
it plugs-in the challenge for the client side X1 = X and sets α = X(x′2+d)pwcs where d is selected by the
attacker and x′2 is extracted from adversarial proof of knowledge. We consider to have algebraic adversary
A and whenever it sends β′, it also sends (a, b, c), so in case of Corrupt, we rewrite β = gaXb

1α
c. Then we check:

(a) If Xb
1α

c ̸= X
x′2pwcs
1 the key is computed as

Key = Xa
1Y

(b+dpwcs) = α
a

(x′2+d)pwcs Y (b+dpwcs). This means if Y = gx
2 then the key is real and random other-

wise.

(b) If If Xb
1α

c = X
x′2pwcs
1 , we embed α in the key and we compute it as Key = α

a
(x′2+d)pwcs .

A interpolates between the two games, meaning, if Y = gx
2 then it is playing Game 7, otherwise it is playing

Game 7-8.m.1.
The analysis is the same on the server’s side. Furthermore, the bounds and other remarks for Game 7-8.1
and Game 7-8.2 do not change with respect to the same games in s-JPAKE. Thus, we have a bound for
Game 7-8.1

Pr[G7 ⇒ T]− Pr[G7−8.m.1 ⇒ T] ≤ 2AdvDSqDHB7−8.1
()

And the bound for for Game 7-8.2 where the only way that A notice the difference between the two games
if bad5 happens. Therefore, everything stays the same:

|Pr[G7−8.m.1 ⇒ T ]− Pr[G7−8.m.2 ⇒ T ]| ≤ Pr[G8 ⇒ bad5]

Game 9: Perfect Forward Secrecy.
Description of this game is the same as in Game 9 of sJ-PAKE, except for modification in the reduction to
CSqDH problem. We state the differences with the reduction described in Lemma B.8:
Given the challenge X, we build an attacker B9 that finds solution to CSqDH problem. Let us say that B9
plugs-in the challenge in the lth session on the clients side, in X1 = X and it sets α = gw, for w

$←− Zq.
When A sends β′ with (a, b, c), we rewrite it as β′ = gaXb

1α
c. Then, when the game finishes, B9 guesses one

query for which bad19 might have occurred. If the guess was successful it means A solved CSqDH and B9 can
recover gx

2 in the following way:

gx
2

= (
Key

X(a+wc)
)

1
b−x′2pwcs

We do the same procedure on the server side and we plug-in the challenge for X2 = X and set β = gw, for
w

$←− Zq. The bound and other remarks do not change:

Pr[G8 ⇒ bad5] ≤
2nse

| D |
+ nsenroAdv

CSqDH
B9

()

⊓⊔

D.3 sCRS-J-PAKE

Description. At the beginning of the protocol, sCRS-J-PAKE sets up a common reference string U (as in
CRS-J-PAKE). Basically, U plays the role of (X1X3). The first round is the same as in sRO-J-PAKE (RO-
J-PAKE), with the values X1, X3 and its proofs π1 and π3 eliminated. In the second round, after receiving
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Client C Server S

Initialization
Public: G, g, q, U ∈ G; H1 : {0, 1}∗ → {0, 1}κ

Secret: pw ∈ Zq, pw ̸= 0

x1
$←− Zp x2

$←− Zp

X1 ← gx1 X2 ← gx3

π1 ← Prv((X1, g), x1, C, U) π2 ← Prv((X2, g), x2, S, U)

(C,X1, π1)

(S,X2, π2)

Abort if X2 = 1 Abort if X1 = 1

Check Ver((X2, g), π2, S, U) Check Ver((X1, g), π1, C, U)

α := (UX2)
x1pw β := (UX1)

x2pw

α

β

Key← (βX−x1pw
2 )x1 Key← (αX−x2pw

1 )x2

K ← H1(C, S,X1, X2, α, β,Key, pw) K ← H1(C, S,X1, X2, α, β,Key, pw)

Fig. 9: The sCRS-J-PAKE protocol.

the first message, a Client computes α = (UX2)
x1pw and a Server β = (UX1)

x2pw and they exchange α and
β. Both parties compute the key as Key = (βX−x1pw

2 )x1 (resp. Key = (αX−x2pw
1 )x2) and should hold the

same session key, K = H1(C,S,X1, X2, α, β,K, pw).

D.4 Security game-based proof of sCRS-J-PAKE

Theorem D.2. Let sCRS-J-PAKE be the protocol described in Fig. 9. Take an RoR attacker A against
sCRS-J-PAKE, making at most nse, nex, nre, nco, nte queries to Send, Execute, Reveal, Corrupt, Test and
RO, respectively. For every such attacker A, there exist attackers: B4 against Computational Triple Group
Diffie-Hellman problem, B4.5.1 against Decisional Diffie-Hellman problem, B4.5.2 against Decisional Diffie-
Hellman problem, B6 against Computational Squared Diffie-Hellman problem, B7−8.1 against Decisional
Squared Diffie-Hellman problem and B9 against Computational Squared Diffie-Hellman problem such that

AdvsCRS−J−PAKEA () ≤ 2nse

| D |
+

(2nse + 4nex)
2

q

+AdvuzkNIZK() + 2nseAdv
ext
NIZK()

+ nronexAdvCTGDHB4
() + AdvDDHB4.5.1

() + AdvDDHB4.5.2
()

+ nsen
2
roAdvCSqDHB6

() + 2nseAdvDSqDHB7−8.1
() + nsenroAdvCSqDHB9

()

where Advuzk and Advext are advantages for the security of the SE-NIZK, formally defined in 3.6.

Proof. The proof of sCRS-J-PAKE is the same as sRO-J-PAKE in Sec. D.2 with the differences:

– We do not need additional random oracle to simulate H0. Instead, we have CRS U , known to both
parties.

35



– In the reduction described in Lemma B.3, we embed a challenge Z in place of U in α (resp. β)
– We add Game 3.5 (explained below) where we explicitly save discrete log of U during the execution,

needed for simulation in later hops.

Game 3.5: Keep the discrete log of the public parameter.
During the initialization phase described in Fig. 10 , the discrete log u is saved as a record (U, u) on the list
for future hops. More precisely, the simulator can retrieve the record (U, u) from the list at any time of the
execution of the protocol.

Initialization:
Choose u

$←− Zp.
Compute U = gu and save the record (u, U) to the list.
For C ∈ C, S ∈ S: pwcs

$←− P;
crs

$←− NIZK.Setup(1κ);
CRS← (G, g, q, crs);
Return U , CRS, C, S

Fig. 10: Initialization phase for sCRS-J-PAKE
⊓⊔
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E Games and adversaries for the proof of Theorem D.2.

Game 0: Original Protocol
Initialize
b

$←− {0, 1};
T ← {}; Tst ← {}; Corr ← {};

For C ∈ C, S ∈ S do pwcs
$←− P;

crs
$←− NIZK.Setup(1κ);

CRS ← (G, g, q, crs);
Return CRS;

SendInit-C1(C, i, S)

If πi
C ≠⊥ return ⊥;

x1, x2
$←− Zq ; X1 ← gx1 ; X2 ← gx2 ;

π1
$←− Prv(crs, (X1, g), x1, C);

π2
$←− Prv(crs, (X2, g), x2, C);

πi
C ← ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥, F,⊥);

Return (C,X1, X2, π1, π2);

SendInit-S1(S, i, C)

If πi
S ̸=⊥ return ⊥;

x3, x4
$←− Zq ; X3 ← gx3 ; X4 ← gx4 ;

π3
$←− Prv(crs, (X3, g), x3, S);

π4
$←− Prv(crs, (X4, g), x4, S);

πi
S ← ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥, F,⊥);

Return (S,X3, X4, π3, π4);

Send-C2(C, i, S,X′3, X′4, π′3, π′4)

If πi
C ̸= ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥, F,⊥)

return ⊥;
If X′4 = 1 then π

j
S
← Invalid;

If Ver(crs, (X′3, g), π3, S) = F then π
j
S
← Invalid;

If Ver(crs, (X′4, g), π4, S) = F then π
j
S
← Invalid;

α ← (X1X3.X′4)x2pwcs ;
πi
C ← ((x1, x2), (C, S,X1, X2, X′3, X′4, α,⊥),⊥, F,⊥

);
Return α;

Send-S2(S, i, C,X′1, X′2, π′1, π′2)

If πi
S ̸= ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥, F,⊥)

return ⊥;
If X′2 = 1 then πi

C ← Invalid;
If Ver(crs, (X′1, g), π1, C) = F then πi

C ← Invalid;
If Ver(crs, (X′2, g), π2, C) = F then πi

C ← Invalid;
β ← (X′1X′2X3)x4pwcs ;
πi
S ← ((x3, x4), (C, S,X′1, X′2, X3, X4,⊥, β),⊥, F,⊥);

Return β;

Send-C3(C, i, S, β′)
If πi

C.sid ̸= (C, S,X1, X2, X3, X4, α,⊥) then ⊥;
If πi

C ̸= ((x1, x2), sid,⊥,⊥, F, fr) return ⊥;
sid = (C, S,X1, X2, X3, X4, α, β′);

Key ← (
β′

X
′x2pwcs
4

)x2 ;

K ← H(sid, Key, pwcs);
πi
C ← ((x1, x2), sid, K, T,⊥);

Return T;

Send-S3(S, i, C, α′)
If π

j
S

.sid ̸= (C, S,X1, X2, X3, X4,⊥, β) then ⊥;

If πi
S ̸= ((x3, x4), sid,⊥,⊥, F, fr) return ⊥;

sid = (C, S,X1, X2, X3, X4, α′, β);

Key ← ( α′

X
′x4pwcs
2

)x4 ;

K ← H(sid, Key, pwcs);
πi
S ← ((x3, x4), sid, K, T,⊥);

Return T;

Execute(C, S, i, j)

If πi
C ̸=⊥ ∨π

j
S
̸=⊥ return ⊥;

x1, x2, x3, x4
$←− Zq ;

X1 = gx1 ; X2 = gx2 ; X3 = gx3 ; X4 = gx4 ;

π1
$←− Prv(crs, (X1, g), x1, C);

π2
$←− Prv(crs, (X2, g), x2, C);

π3
$←− Prv(crs, (X3, g), x3, S);

π4
$←− Prv(crs, (X4, g), x4, S);

α = g(x1+x3+x4)x2pwcs ;
β = g(x1+x2+x3)x4pwcs ;
Key = g(x1+x3)x2x4pwcs ;
sid = (C, S,X1, X2, X3, X4, α, β);
K = H(sid, Key, pwcs);
πi
C = ((x1, x2), sid, K, T);

πi
S = ((x3, x4), sid, K, T);

Return sid;

H(sid, Key, pw)
If T [sid, Key, pw] =⊥ then

T [sid, Key, pw]
$←− K;

Return T [sid, Key, pw];

Corrupt(C, S)
Corr ← Corr ∪ {(C, S)};
Return pwcs;

Reveal(U, i)

If πi
U .ac ̸= T ∨ (U, i) ∈ Tst return ⊥;

Return πi
U .K;

Test(U, i)

If Fresh(πi
U ) = F return ⊥;

K0 ← Reveal(U, i); K1
$←− K;

Tst ← Tst ∪ (U, i);
Return Kb;

Finalize(b′)
Return b = b′;

Fig. 11: Game 0
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Game 1: Simulate ZK-PoK proofs.
Initialize
b

$←− {0, 1};
T ← {}; Tst ← {}; Corr ← {}; List ← {};

For C ∈ C, S ∈ S do pwcs
$←− P;

(crs, tds, tde)
$←− NIZK.Backdoor( );

CRS ← (G, g, q, crs);
Return CRS;

SendInit-C1(C, i, S)

If πi
C ̸=⊥ return ⊥;

x1, x2
$←− Zq ; X1 ← gx1 ; X2 ← gx2 ;

π1 ← NIZK.Sim(crt, tds,X1, C);

π2 ← NIZK.Sim(crt, tds,X2, C);

List ← List ∪ {X1, X2};

πi
C ← ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥, F,⊥);

Return (C,X1, X2, π1, π2);

SendInit-S1(S, i, C)

If πi
S ̸=⊥ return ⊥;

x3, x4
$←− Zq ; X3 ← gx3 ; X4 ← gx4 ;

π3 ← NIZK.Sim(crt, tds,X3, S);

π4 ← NIZK.Sim(crt, tds,X4, S);

List ← List ∪ {X3, X4};

πi
S ← ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥, F,⊥);

Return (S,X3, X4, π3, π4);

Send-C2(C, i, S,X′3, X′4, π′3, π′4)

If πi
C ̸= ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥, F,⊥)

return ⊥;
If X′4 = 1 then π

j
S
← Invalid;

If Ver(crs, (X′3, g), π3, S) = F then π
j
S
← Invalid;

If Ver(crs, (X′4, g), π4, S) = F then π
j
S
← Invalid;

α ← (X1X′3X′4)x2pwcs ;
πi
C ← ((x1, x2), (C, S,X1, X2, X′3, X′4, α,⊥),⊥, F,⊥

);
Return α;

Send-S2(S, i, C,X′1, X′2, π′1, π′2)

If πi
S ̸= ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥, F,⊥)

return ⊥;
If X′2 = 1 then πi

C ← Invalid;
If Ver(crs, (X′1, g), π1, C) = F then πi

C ← Invalid;
If Ver(crs, (X′2, g), π2, C) = F then πi

C ← Invalid;
β ← (X′1X′2X3)x4pwcs ;
πi
S ← ((x3, x4), (C, S,X′1, X′2, X3, X4,⊥, β),⊥, F,⊥);

Return β;

Send-C3(C, i, S, β′)
If πi

C.sid ̸= (C, S,X1, X2, X3, X4, α,⊥) then ⊥;
If πi

C ̸= ((x1, x2), sid,⊥,⊥, F, fr) return ⊥;
sid = (C, S,X1, X2, X3, X4, α, β′);

Key ← (
β′

X
′x2pwcs
4

)x2 ;

K ← H(sid, Key, pwcs);
πi
C ← ((x1, x2), sid, K, T,⊥);

Return T;

Send-S3(S, i, C, α′)
If π

j
S

.sid ̸= (C, S,X1, X2, X3, X4,⊥, β) then ⊥;

If πi
S ̸= ((x3, x4), sid,⊥,⊥, F, fr) return ⊥;

sid = (C, S,X1, X2, X3, X4, α′, β);

Key ← ( α′

X
′x4pwcs
2

)x4 ;

K ← H(sid, Key, pwcs);
πi
S ← ((x3, x4), sid, K, T,⊥);

Return T;

Execute(C, S, i, j)

If πi
C ̸=⊥ ∨π

j
S
̸=⊥ return ⊥;

x1, x2, x3, x4
$←− Zq ;

X1 = gx1 ; X2 = gx2 ; X3 = gx3 ; X4 = gx4 ;

π1 ← NIZK.Sim(crt, tds,X1, C);

π2 ← NIZK.Sim(crt, tds,X2, C);

π3 ← NIZK.Sim(crt, tds,X3, S);

π4 ← NIZK.Sim(crt, tds,X4, S);

List ← List ∪ {X1, X2, X3, X4};

α = g(x1+x3+x4)x2pwcs ;
β = g(x1+x2+x3)x4pwcs ;
Key = g(x1+x3)x2x4pwcs ;
sid = (C, S,X1, X2, X3, X4, α, β);
K = H(sid, Key, pwcs);
πi
C = ((x1, x2), sid, K, T);

πi
S = ((x3, x4), sid, K, T);

Return sid;

H(sid, Key, pw)
If T [sid, Key, pw] =⊥ then

T [sid, Key, pw]
$←− K;

Return T [sid, Key, pw];

Corrupt(C, S)
Corr ← Corr ∪ {(C, S)};
Return pwcs;

Reveal(U, i)

If πi
U .ac ̸= T ∨ (U, i) ∈ Tst return ⊥;

Return πi
U .K;

Test(U, i)

If Fresh(πi
U ) = F return ⊥;

K0 ← Reveal(U, i); K1
$←− K;

Tst ← Tst ∪ (U, i);
Return Kb;

Finalize(b′)
Return b = b′;

Fig. 12: Game 1
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Reduction for Game 1
Initialize (crs)

b
$←− {0, 1};

T ← {}; Tst ← {}; Corr ← {}; List ← {};

For C ∈ C, S ∈ S do pwcs
$←− P;

CRS ← (G, g, q, crs);
Return CRS;

SendInit-C1(C, i, S)

If πi
C ̸=⊥ return ⊥;

x1, x2
$←− Zq ; X1 ← gx1 ; X2 ← gx2 ;

π1 ← SimO(X1, C);

π2 ← SimO(X2, C);

List ← List ∪ {X1, X2};
πi
C ← ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥, F,⊥);

Return (C,X1, X2, π1, π2);

SendInit-S1(S, i, C)

If πi
S ̸=⊥ return ⊥;

x3, x4
$←− Zq ; X3 ← gx3 ; X4 ← gx4 ;

π3 ← SimO(X3, S);

π4 ← SimO(X4, S);

List ← List ∪ {X3, X4};
πi
S ← ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥, F,⊥);

Return (S,X3, X4, π3, π4);

Send-C2(C, i, S,X′3, X′4, π′3, π′4)

If πi
C ̸= ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥, F,⊥)

return ⊥;
If X′4 = 1 then π

j
S
← Invalid;

If Ver(crs, (X′3, g), π3, S) = F then π
j
S
← Invalid;

If Ver(crs, (X′4, g), π4, S) = F then π
j
S
← Invalid;

α ← (X1X′3X′4)x2pwcs ;
πi
C ← ((x1, x2), (C, S,X1, X2, X′3, X′4, α,⊥),⊥, F,⊥

);
Return α;

Send-S2(S, i, C,X′1, X′2, π′1, π′2)

If πi
S ̸= ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥, F,⊥)

return ⊥;
If X′2 = 1 then πi

C ← Invalid;
If Ver(crs, (X′1, g), π1, C) = F then πi

C ← Invalid;
If Ver(crs, (X′2, g), π2, C) = F then πi

C ← Invalid;
β ← (X′1X′2X3)x4pwcs ;
πi
S ← ((x3, x4), (C, S,X′1, X′2, X3, X4,⊥, β),⊥, F,⊥);

Return β;

Send-C3(C, i, S, β′)
If πi

C.sid ̸= (C, S,X1, X2, X3, X4, α,⊥) then ⊥;
If πi

C ̸= ((x1, x2), sid,⊥,⊥, F, fr) return ⊥;
sid = (C, S,X1, X2, X3, X4, α, β′);

Key ← (
β′

X
′x2pwcs
4

)x2 ;

K ← H(sid, Key, pwcs);
πi
C ← ((x1, x2), sid, K, T,⊥);

Return T;

Send-S3(S, i, C, α′)
If π

j
S

.sid ̸= (C, S,X1, X2, X3, X4,⊥, β) then ⊥;

If πi
S ̸= ((x3, x4), sid,⊥,⊥, F, fr) return ⊥;

sid = (C, S,X1, X2, X3, X4, α′, β);

Key ← ( α′

X
′x4pwcs
2

)x4 ;

K ← H(sid, Key, pwcs);
πi
S ← ((x3, x4), sid, K, T,⊥);

Return T;

Execute(C, S, i, j)

If πi
C ̸=⊥ ∨π

j
S
̸=⊥ return ⊥;

x1, x2, x3, x4
$←− Zq ;

X1 = gx1 ; X2 = gx2 ; X3 = gx3 ; X4 = gx4 ;

π1 ← SimO(X1, C); π2 ← SimO(X2, C);

π3 ← SimO(X3, S); π4 ← SimO(X4, S);

List ← List ∪ {X1, X2, X3, X4};
α = g(x1+x3+x4)x2pwcs ;
β = g(x1+x2+x3)x4pwcs ;
Key = g(x1+x3)x2x4pwcs ;
sid = (C, S,X1, X2, X3, X4, α′, β);
K = H(sid, Key, pwcs);
πi
C = ((x1, x2), sid, K, T);

πi
S = ((x3, x4), sid, K, T);

Return sid;

H(sid, Key, pw)
If T [sid, Key, pw] =⊥ then

T [sid, Key, pw]
$←− K;

Return T [sid, Key, pw];

Corrupt(C, S)
Corr ← Corr ∪ {(C, S)};
Return pwcs;

Reveal(U, i)

If πi
U .ac ̸= T ∨ (U, i) ∈ Tst return ⊥;

Return πi
U .K;

Test(U, i)

If Fresh(πi
U ) = F return ⊥;

K0 ← Reveal(U, i); K1
$←− K;

Tst ← Tst ∪ (U, i);
Return Kb;

Finalize(b′)
If b′ = 1 return 1;
Else return 0;
Abort.

Fig. 13: Reduction for Game 1
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Game 1.5: Extract discrete logs from ad-
versarial proofs.
Initialize
b

$←− {0, 1};
T ← {}; Tst ← {}; Corr ← {}; ListExt ← {}; List ← {};

bad1.5 = T ; For C ∈ C, S ∈ S do pwcs
$←− P;

(crs, tds, tde)
$←− NIZK.Backdoor( );

CRS ← (G, g, q, crs);
Return CRS;

SendInit-C1(C, i, S)

If πi
C ̸=⊥ return ⊥;

x1, x2
$←− Zq ; X1 ← gx1 ; X2 ← gx2 ;

π1 ← NIZK.Sim(crs, tds,X1, C);
π2 ← NIZK.Sim(crs, tds,X2, C);
List ← List ∪ {X1, X2};
πi
C ← ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥, F,⊥);

Return (C, X1, X2, π1, π2);

SendInit-S1(S, i, C)

If πi
S ̸=⊥ return ⊥;

x3, x4
$←− Zq ; X3 ← gx3 ; X4 ← gx4 ;

π3 ← NIZK.Sim(crs, tds,X3, S);
π4 ← NIZK.Sim(crs, tds,X4, S);
List ← List ∪ {X3, X4};
πi
S ← ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥, F,⊥);

Return (C, X3, X4, π3, π4);

Send-C2(C, i, S,X′3, X′4, π′3, π′4)

If πi
C ̸= ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥, F,⊥)

return ⊥;
If X′4 = 1 then π

j
S
← Invalid;

If Ver(crs, (X′3, g), π′3, S) = F π
j
S
← Invalid;

If Ver(crs, (X′4, g), π′4, S) = F π
j
S
← Invalid;

If X′3 /∈ List then:

x′3 ← NIZK.Extract(crs, tde,X′3, π′3, S);

If X′3 ̸= g
x′3 then bad1.5 = T;

If X′4 /∈ List then:

x′4 ← NIZK.Extract(crs, tde,X′4, π′4, S);

If X′4 ̸= g
x′4 then bad1.5 = T;

α ← g
(x1+x′3+x′4)x2pwcs ;

πi
C ← ((x1, x2), (C, S,X1, X2, X′3, X′4, α,⊥),⊥, F,⊥

);
Return α;

Send-S2(S,i,C,X′1,X′2, π′1, π′2)
If πi

S ̸= ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥, F,⊥)
return ⊥;
If X′2 = 1 then πi

C ← Invalid;
If Ver(crs, (X′1, g), π′1, C) = F then πi

C ← Invalid;
If Ver(crs, (X′2, g), π′2, C) = F then πi

C ← Invalid;

If X′1 /∈ List then:

x′1 ← NIZK.Extract(crs, tde,X′1, π′1, C);

If X′1 ̸= g
x′1 then bad1.5 = T;

If X′2 /∈ List then:

x′2 ← NIZK.Extract(crs, tde,X′2, π′2, C);

If X′2 ̸= g
x′2 then bad1.5 = T;

β ← g
(x′1+x′2+x3)x4pwcs ;

πi
S ← ((x3, x4), (C, S,X′1, X′2, X3, X4,⊥, β),⊥, F,⊥);

Return β;

Send-C3(C, i, S, β′)
If πi

C.sid ̸= (C, S,X1, X2, X3, X4, α,⊥) then ⊥;
If πi

C ̸= ((x1, x2), sid,⊥,⊥, F, fr) return ⊥;
sid = (C, S,X1, X2, X3, X4, α, β′);

Key ← (
β′

X
′x2pwcs
4

)x2 ;

K ← H(sid, Key, pwcs);
πi
C ← ((x1, x2), sid, K, T,⊥);

Return T;

Send-S3(S, i, C, α′)
If π

j
S

.sid ̸= (C, S,X1, X2, X3, X4,⊥, β) then ⊥;

If πi
S ̸= ((x3, x4), sid,⊥,⊥, F, fr) return ⊥;

sid = (C, S,X1, X2, X3, X4, α′, β);

Key ← ( α′

X
′x4pwcs
2

)x4 ;

K ← H(sid, Key, pwcs);
πi
S ← ((x3, x4), sid, K, T,⊥);

Return T;

Execute(C, S, i, j)

If πi
C ̸=⊥ ∨π

j
S
̸=⊥ return ⊥;

x1, x2, x3, x4
$←− Zq ;

X1 = gx1 ; X2 = gx2 ; X3 = gx3 ; X4 = gx4 ;

π1
$←− NIZK.Sim(crs, tds,X1, C);

π2
$←− NIZK.Sim(crs, tds,X2, C);

π3
$←− NIZK.Sim(crs, tds,X3, S);

π4
$←− NIZK.Sim(crs, tds,X4, S);

α = g(x1+x3+x4)x2pwcs ;
β = g(x1+x2+x3)x4pwcs ;
Key = g(x1+x3)x2x4pwcs ;
sid = (C, S,X1, X2, X3, X4, α, β);
K = H(sid, Key, pwcs);
πi
C = ((x1, x2), sid, K, T);

πi
S = ((x3, x4), sid, K, T);

Return sid;

H(sid, Key, pw)
If T [sid, Key, pw] =⊥ then

T [sid, Key, pw]
$←− K;

Return T [sid, Key, pw];

Corrupt(C, S)
Corr ← Corr ∪ {(C, S)};
Return pwcs;

Reveal(U, i)

If πi
U .ac ̸= T ∨ (U, i) ∈ Tst return ⊥;

Return πi
U .K;

Test(U, i)

If Fresh(πi
U ) = F return ⊥;

K0 ← Reveal(U, i); K1
$←− K;

Tst ← Tst ∪ (U, i);
Return Kb;

Finalize(b′)
Return b′ = b;

Fig. 14: Game 1.5
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Reduction for Game 1.5
Initialize (crs, tde)

b
$←− {0, 1};

T ← {}; Tst ← {}; Corr ← {}; List ← {};

For C ∈ C, S ∈ S do pwcs
$←− P;

CRS ← (G, g, q, crs);
Return CRS;

SendInit-C1(C, i, S)

If πi
C ̸=⊥ return ⊥;

x1, x2
$←− Zq ; X1 ← gx1 ; X2 ← gx2 ;

π1 ← SimO(X1, C);
π2 ← SimO(X2, C);
List ← List ∪ {X1, X2};
πi
C ← ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥, F,⊥);

Return (C,X1, X2, π1, π2);

SendInit-S1(S, i, C)

If πi
S ̸=⊥ return ⊥;

x3, x4
$←− Zq ; X3 ← gx3 ; X4 ← gx4 ;

π3 ← SimO(X3, S);
π4 ← SimO(X4, S);
List ← List ∪ {X3, X4};
πi
S ← ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥, F,⊥);

Return (S,X3, X4, π3, π4);

Send-C2(C, i, S,X′3, X′4, π′3, π′4)

If πi
C ̸= ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥, F,⊥)

return ⊥;
If X′4 = 1 then π

j
S
← Invalid;

If Ver(crs, (X′3, g), π′3, S) = F then π
j
S
← Invalid;

If Ver(crs, (X′4, g), π′4, S) = F then π
j
S
← Invalid;

If X′3 /∈ List then:

x′3 ← NIZK.Extract(crs, tde,X′3, π′3, S);

If X′3 ̸= g
x′3 then ListExt ← ListExt ∪ {X

′
3, π′3};

If X′4 /∈ List then:

x′4 ← NIZK.Extract(crs, tde,X′4, π′4, S);

If X′4 ̸= g
x′4 do ListExt ← ListExt ∪ {X

′
4, π′4};

α ← g
(x1+x′3+x′4)x2pwcs ;

πi
C ← ((x1, x2), (C, S,X1, X2, X′3, X′4, α,⊥),⊥, F,⊥

);
Return α;

Send-S2(S, i, C,X′1, X′2, π′1, π′2)
If πi

S ̸= ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥, F,⊥)
return ⊥;
If X′2 = 1 Abort;
If Ver(crs, (X′1, g), π′1, C) = F then πi

C ← Invalid;
If Ver(crs, (X′2, g), π′2, C) = F then πi

C ← Invalid;

If X′1 /∈ List then:

x′1 ← NIZK.Extract(crs, tde,X′1, π′1, C);

If X′1 ̸= g
x′1 then ListExt ← ListExt ∪ {X

′
1, π′1};

If X′2 /∈ List then:

x′2 ← NIZK.Extract(crs, tde,X′2, π′2, C);

If X′2 ̸= g
x′2 then ListExt ← ListExt ∪ {X

′
2, π′2};

β ← g
(x′1+x′2+x3)x4pwcs ;

πi
S ← ((x3, x4), (C, S,X′1, X′2, X3, X4,⊥, β),⊥, F,⊥);

Return β;

Send-C3(C, i, S, β′)
If πi

C.sid ̸= (C, S,X1, X2, X3, X4, α,⊥) then ⊥;
If πi

C ̸= ((x1, x2), sid,⊥,⊥, F, fr) return ⊥;
sid = (C, S,X1, X2, X3, X4, α, β′);

Key ← (
β′

X
′x2pwcs
4

)x2 ;

K ← H(sid, Key, pwcs);
πi
C ← ((x1, x2), sid, K, T,⊥);

Return T;

Send-S3(S, i, C, α′)
If π

j
S

.sid ̸= (C, S,X1, X2, X3, X4,⊥, β) then ⊥;

If πi
S ̸= ((x3, x4), sid,⊥,⊥, F, fr) return ⊥;

sid = (C, S,X1, X2, X3, X4, α′, β);

Key ← ( α′

X
′x4pwcs
2

)x4 ;

K ← H(sid, Key, pwcs);
πi
S ← ((x3, x4), sid, K, T,⊥);

Return T;

Execute(C, S, i, j)

If πi
C ̸=⊥ ∨π

j
S
̸=⊥ return ⊥;

x1, x2, x3, x4
$←− Zq ;

X1 = gx1 ; X2 = gx2 ; X3 = gx3 ; X4 = gx4 ;

π1
$←− NIZK.Sim(crs, tds,X1, C);

π2
$←− NIZK.Sim(crs, tds,X2, C);

π3
$←− NIZK.Sim(crs, tds,X3, S);

π4
$←− NIZK.Sim(crs, tds,X4, S);

α = g(x1+x3+x4)x2pwcs ;
β = g(x1+x2+x3)x4pwcs ;
Key = g(x1+x3)x2x4pwcs ;
sid = (C, S,X1, X2, X3, X4, α, β);
K = H(sid, Key, pwcs);
πi
C = ((x1, x2), sid, K, T );

πi
S = ((x3, x4), sid, K, T );

Return sid;

H(sid, Key, pw)
If T [sid, Key, pw] =⊥ then

T [sid, Key, pw]
$←− K;

Return T [sid, Key, pw];

Corrupt(C, S)
Corr ← Corr ∪ {(C, S)};
Return pwcs;

Reveal(U, i)

If πi
U .ac ̸= T ∨ (U, i) ∈ Tst return ⊥;

Return πi
U .K;

Test(U, i)

If Fresh(πi
U ) = F return ⊥;

K0 ← Reveal(U, i); K1
$←− K;

Tst ← Tst ∪ (U, i);
Return Kb;

Finalize(b′)

For (X′, π′) $←− ListExt do NIZK.Finalize(X′, π′);

Return b = b′;

Fig. 15: Reduction for Game 1.5
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Game 2: Force unique values
Initialize
b

$←− {0, 1};
T ← {}; Tst ← {}; Corr ← {}; List ← {};

For C ∈ C, S ∈ S do pwcs
$←− P;

(crs, tds, tde)
$←− NIZK.Backdoor( );

bad2=F;

CRS ← (G, g, q, crs);
Return CRS;

SendInit-C1(C, i, S)

If πi
C ̸=⊥ return ⊥;

x1, x2
$←− Zq ; X1 ← gx1 ; X2 ← gx2 ;

If X1 ∈ List then bad2=T; πi
C ← Invalid;

If X2 ∈ List then bad2=T; πi
C ← Invalid;

π1 ← NIZK.Sim(crs, tds,X1, C);
π2 ← NIZK.Sim(crs, tds,X2, C);
List ← List ∪ {X1, X2};
πi
C ← ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥, F,⊥);

Return (C,X1, X2, π1, π2);

SendInit-S1(S, i, C)

If πi
S ̸=⊥ return ⊥;

x3, x4
$←− Zq ; X3 ← gx3 ; X4 ← gx4 ;

If X3 ∈ List then bad2=T; π
j
S
← Invalid;

If X4 ∈ List then bad2=T; π
j
S
← Invalid;

π3 ← NIZK.Sim(crs, tds,X3, S);
π4 ← NIZK.Sim(crs, tds,X4, S);
List ← List ∪ {X3, X4};
πi
S ← ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥, F,⊥);

Return (S,X3, X4, π3, π4);

Send-C2(C, i, S,X′3, X′4, π′3, π′4)

If πi
C ̸= ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥, F,⊥)

return ⊥;
If X′4 = 1 then π

j
S
← Invalid;

If Ver(crs, (X′3, g), π′3, S) = F then π
j
S
← Invalid;

If Ver(crs, (X′4, g), π′4, S) = F then π
j
S
← Invalid;

If X′3 /∈ List then:
x′3 ← NIZK.Extract(crs, tde,X′3, π′3, S);

If X′3 ̸= g
x′3 then π

j
S
← Invalid;

If X′4 /∈ List then:
x′4 ← NIZK.Extract(crs, tde,X′4, π′4, S);

If X′4 ̸= g
x′4 then π

j
S
← Invalid;

α ← g
(x1+x′3+x′4)x2pwcs ;

πi
C ← ((x1, x2), (C, S,X1, X2, X′3, X′4, α,⊥),⊥, F,⊥

);
Return α;

Send-S2(S, i, C,X′1, X′2, π′1, π′2)

If πi
S ̸= ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥, F,⊥)

return ⊥;
If X′2 = 1 then πi

C ← Invalid;
If Ver(crs, (X′1, g), π′1, C) = F then πi

C ← Invalid;
If Ver(crs, (X′2, g), π′2, C) = F then πi

C ← Invalid;
If X′1 /∈ List then:

x′1 ← NIZK.Extract(crs, tde,X′1, π′1, C);

If X′1 ̸= g
x′1 then πi

C ← Invalid;
If X′2 /∈ List then:

x′2 ← NIZK.Extract(crs, tde,X′2, π′2, C);

If X′2 ̸= g
x′2 then πi

C ← Invalid;

β ← g
(x′1+x′2+x3)x4pwcs ;

πi
S ← ((x3, x4), (C, S,X′1, X′2, X3, X4,⊥, β),⊥, F,⊥);

Return β;

Send-C3(C, i, S, β′)
If πi

C.sid ̸= (C, S,X1, X2, X3, X4, α,⊥) then ⊥;
If πi

C ̸= ((x1, x2), sid,⊥,⊥, F, fr) return ⊥;
sid = (C, S,X1, X2, X3, X4, α, β′);

Key ← (
β′

X
x2pwcs
4

)x2 ;

K ← H(sid, Key, pwcs);
πi
C ← ((x1, x2), sid, K, T,⊥);

Return T;

Send-S3(S, i, C, α′)
If π

j
S

.sid ̸= (C, S,X1, X2, X3, X4,⊥, β) then ⊥;

If πi
S ̸= ((x3, x4), sid,⊥,⊥, F, fr) return ⊥;

sid = (C, S,X1, X2, X3, X4, α′, β);

Key ← ( α′
X

x4pwcs
2

)x4 ;

K ← H(sid, Key, pwcs);
πi
S ← ((x3, x4), sid, K, T,⊥);

Return T;

Execute(C, S, i, j)

If πi
C ̸=⊥ ∨π

j
S
̸=⊥ return ⊥;

x1, x2, x3, x4
$←− Zq ;

X1 = gx1 ; X2 = gx2 ; X3 = gx3 ; X4 = gx4 ;

If X1 ∈ List then bad2=T; πi
C ← Invalid;

If X2 ∈ List then bad2=T; πi
C ← Invalid;

If X3 ∈ List then bad2=T; π
j
S
← Invalid;

If X4 ∈ List then bad2=T; π
j
S
← Invalid;

π1
$←− NIZK.Sim(crs, tds,X1, C);

π2
$←− NIZK.Sim(crs, tds,X2, C);

π3
$←− NIZK.Sim(crs, tds,X3, S);

π4
$←− NIZK.Sim(crs, tds,X4, S);

List ← List ∪ {X1, X2, X3, X4};
α = g(x1+x3+x4)x2pwcs ;
β = g(x1+x2+x3)x4pwcs ;
Key = g(x1+x3)x2x4pwcs ;
sid = (C, S,X1, X2, X3, X4, α, β);
K = H(sid, Key, pwcs);
πi
C = ((x1, x2), sid, K, T);

πi
S = ((x3, x4), sid, K, T);

Return sid;

H(sid, Key, pw)
If T [sid, Key, pw] =⊥ then

T [sid, Key, pw]
$←− K;

Return T [sid, Key, pw];

Corrupt(C, S)
Corr ← Corr ∪ {(C, S)};
Return pwcs;

Reveal(U, i)

If πi
U .ac ̸= T ∨ (U, i) ∈ Tst return ⊥;

Return πi
U .K;

Test(U, i)

If Fresh(πi
U ) = F return ⊥;

K0 ← Reveal(U, i); K1
$←− K;

Tst ← Tst ∪ (U, i);
Return Kb;

Finalize(b′)
Return b = b′;

Fig. 16: Game 2
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Game 3: Adding freshness.
Initialize
b

$←− {0, 1};
T ← {}; Tst ← {}; Corr ← {}; List ← {}

For C ∈ C, S ∈ S do pwcs
$←− P;

(crs, tds, tde)
$←− NIZK.Backdoor( );

CRS ← (G, g, q, crs);
Return CRS;

SendInit-C1(C, i, S)

If πi
C ≠⊥ return ⊥;

x1, x2
$←− Zq ; X1 ← gx1 ; X2 ← gx2 ;

If X1 ∈ List then πi
C ← Invalid;

If X2 ∈ List then πi
C ← Invalid;

π1 ← NIZK.Sim(crs, tds,X1, C);
π2 ← NIZK.Sim(crs, tds,X2, C);
List ← List ∪ {X1, X2};
πi
C ← ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥, F, F);

Return (C,X1, X2, π1, π2);

SendInit-S1(S, i, C)

If πi
S ̸=⊥ return ⊥;

x3, x4
$←− Zq ; X3 ← gx3 ; X4 ← gx4 ;

If X3 ∈ List then π
j
S
← Invalid;

If X4 ∈ List then π
j
S
← Invalid;

π3 ← NIZK.Sim(crs, tds,X3, S);
π4 ← NIZK.Sim(crs, tds,X4, S);
List ← List ∪ {X3, X4};
πi
S ← ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥, F, F);

Return (S,X3, X4, π3, π4);

Send-C2(C, i, S,X′3, X′4, π′3, π′4)

If πi
C ̸= ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥, F, F)

return ⊥;
If X′4 = 1 then π

j
S
← Invalid;

If Ver(crs, (X′3, g), π′3, S) = F then π
j
S
← Invalid;

If Ver(crs, (X′4, g), π′4, S) = F then π
j
S
← Invalid;

If X′3 /∈ List then:
x′3 ← NIZK.Extract(crs, tde,X′3, π′3, S);

If X′3 ̸= g
x′3 then π

j
S
← Invalid;

If X′4 /∈ List then:
x′4 ← NIZK.Extract(crs, tde,X′4, π′4, S);

If X′4 ̸= g
x′4 then π

j
S
← Invalid;

fr ← (C, S) /∈ Corr;

α ← g
(x1+x′3+x′4)x2pwcs ;

πi
C ← ((x1, x2), (C, S,X1, X2, X′3, X′4, α,⊥),⊥, F, F);

Return α;

Send-S2(S, i, C,X′1, X′2, π′1, π′2)

If πi
S ̸= ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥, F, F)

return ⊥;
If X′2 = 1 then πi

C ← Invalid;
If Ver(crs, (X′1, g), π′1, C) = F then πi

C ← Invalid;
If Ver(crs, (X′2, g), π′2, C) = F then πi

C ← Invalid;
If X′1 /∈ List then:

x′1 ← NIZK.Extract(crs, tde,X′1, π′1, C);

If X′1 ̸= g
x′1 then πi

C ← Invalid;
If X′2 /∈ List then:

x′2 ← NIZK.Extract(crs, tde,X′2, π′2, C);

If X′2 ̸= g
x′2 then πi

C ← Invalid;

fr ← (C, S) /∈ Corr;

β ← g
(x′1+x′2+x3)x4pwcs ;

πi
S ← ((x3, x4), (C, S,X′1, X′2, X3, X4,⊥, β),⊥, F, fr);

Return β;

Send-C3(C, i, S, β′)
If πi

C.sid ̸= (C, S,X1, X2, X3, X4, α,⊥) then ⊥;
If πi

C ̸= ((x1, x2), sid,⊥,⊥, F, fr) return ⊥;
sid = (C, S,X1, X2, X3, X4, α, β′);

fr ← ∃j, (sid = π
j
S

.sid) ∧ (π
j
S

.fr = T);

fr ← fr ∨ (C, S) /∈ Corr;

Key ← (
β′

X
x2pwcs
4

)x2 ;

K ← H(sid, Key, pwcs);
πi
C ← ((x1, x2), sid, K, T, fr);

Return T;

Send-S3(S, i, C, α′)
If π

j
S

.sid ̸= (C, S,X1, X2, X3, X4,⊥, β) then ⊥;

If πi
S ̸= ((x3, x4), sid,⊥,⊥, F, fr) return ⊥;

sid = (C, S,X1, X2, X3, X4, α′, β);

fr ← ∃j, (sid = π
j
C

.sid) ∧ (π
j
C

.fr = T);

fr ← fr ∨ (C, S) /∈ Corr;

Key ← ( α′
X

x4pwcs
2

)x4 ;

K ← H(sid, Key, pwcs);
πi
S ← ((x3, x4), sid, K, T, fr);

Return T;

Execute(C, S, i, j)

If πi
C ̸=⊥ ∨π

j
S
̸=⊥ return ⊥;

x1, x2, x3, x4
$←− Zq ;

X1 = gx1 ; X2 = gx2 ; X3 = gx3 ; X4 = gx4 ;
If X1 ∈ List then πi

C ← Invalid;
If X2 ∈ List then πi

C ← Invalid;

If X3 ∈ List then π
j
S
← Invalid;

If X4 ∈ List then π
j
S
← Invalid;

π1
$←− NIZK.Sim(crs, tds,X1, C);

π2
$←− NIZK.Sim(crs, tds,X2, C);

π3
$←− NIZK.Sim(crs, tds,X3, S);

π4
$←− NIZK.Sim(crs, tds,X4, S);

List ← List ∪ {X1, X2, X3, X4};
α = g(x1+x3+x4)x2pwcs ;
β = g(x1+x2+x3)x4pwcs ;
Key = g(x1+x3)x2x4pwcs ;
sid = (C, S,X1, X2, X3, X4, α, β);
K = H(sid, Key, pwcs);
πi
C = ((x1, x2), sid, K, T);

πi
S = ((x3, x4), sid, K, T);

Return sid;

H(sid, Key, pw)
If T [sid, Key, pw] =⊥ then

T [sid, Key, pw]
$←− K;

Return T [sid, Key, pw];

Corrupt(C, S)
Corr ← Corr ∪ {(C, S)};
Return pwcs;

Reveal(U, i)

If πi
U .ac ̸= T ∨ (U, i) ∈ Tst return ⊥;

∀(j, V ) s.t. (π
j
V

.sid = πi
U .sid) do π

j
V

.fr = F;

Return πi
U .K;

Test(U, i)

If πi
U .fr = F return ⊥;

K0 ← Reveal(U, i); K1
$←− K;

Tst ← Tst ∪ (U, i);
Return Kb;

Finalize(b′)
Return b = b′;

Fig. 17: Game 3
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Game 4: Randomize session Keys for pas-
sive adversaries.
Initialize
b

$←− {0, 1};
T ← {}; Tst ← {}; Corr ← {}; List ← {};

For C ∈ C, S ∈ S do pwcs
$←− P;

(crs, tds, tde)
$←− NIZK.Backdoor( );

Te ← {}; bad4 = F;

CRS ← (G, g, q, crs);
Return CRS;

SendInit-C1(C, i, S)

If πi
C ̸=⊥ return ⊥;

x1, x2
$←− Zq ; X1 ← gx1 ; X2 ← gx2 ;

If X1 ∈ List then πi
C ← Invalid;

If X2 ∈ List then πi
C ← Invalid;

π1 ← NIZK.Sim(crs, tds,X1, C);
π2 ← NIZK.Sim(crs, tds,X2, C);
List ← List ∪ {X1, X2};
πi
C ← ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥, F, F);

Return (C,X1, X2, π1, π2);

SendInit-S1(S, i, C)

If πi
S ̸=⊥ return ⊥;

x3, x4
$←− Zq ; X3 ← gx3 ; X4 ← gx4 ;

If X3 ∈ List then π
j
S
← Invalid;

If X4 ∈ List then π
j
S
← Invalid;

π3 ← NIZK.Sim(crs, tds,X3, S);
π4 ← NIZK.Sim(crs, tds,X4, S);
List ← List ∪ {X3, X4};
πi
S ← ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥, F, F);

Return (S,X3, X4, π3, π4);

Send-C2(C, i, S,X′3, X′4, π′3, π′4)

If πi
C ̸= ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥, F, F)

return ⊥;
If X′4 = 1 then π

j
S
← Invalid;

If Ver(crs, (X′3, g), π′3, S) = F then π
j
S
← Invalid;

If Ver(crs, (X′4, g), π′4, S) = F then π
j
S
← Invalid;

If X′3 /∈ List then:
x′3 ← NIZK.Extract(crs, tde,X′3, π′3, S);

If X′3 ̸= g
x′3 then π

j
S
← Invalid;

If X′4 /∈ List then:
x′4 ← NIZK.Extract(crs, tde,X′4, π′4, S);

If X′4 ̸= g
x′4 then π

j
S
← Invalid;

fr ← (C, S) /∈ Corr;

α ← g
(x1+x′3+x′4)x2pwcs ;

πi
C ← ((x1, x2), (C, S,X1, X2, X′3, X′4, α,⊥),⊥, F, fr);

Return α;

Send-S2(S, i, C,X′1, X′2, π′1, π′2)

If πi
S ̸= ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥, F, F)

return ⊥;
If X′2 = 1 then πi

C ← Invalid;
If Ver(crs, (X′1, g), π′1, C) = F then πi

C ← Invalid;
If Ver(crs, (X′2, g), π′2, C) = F then πi

C ← Invalid;
If X′1 /∈ List then:

x′1 ← NIZK.Extract(crs, tde,X′1, π′1, C);

If X′1 ̸= g
x′1 then πi

C ← Invalid;
If X′2 /∈ List then:

x′2 ← NIZK.Extract(crs, tde,X′2, π′2, C);

If X′2 ̸= g
x′2 then πi

C ← Invalid;
fr ← (C, S) /∈ Corr;

β ← g
(x′1+x′2+x3)x4pwcs ;

πi
S ← ((x3, x4), (C, S,X′1, X′2, X3, X4,⊥, β),⊥, F, fr);

Return β;

Send-C3(C, i, S, β′)
If πi

C.sid ̸= (C, S,X1, X2, X3, X4, α,⊥) then ⊥;
If πi

C ̸= ((x1, x2), sid,⊥,⊥, F, fr) return ⊥;
sid = (C, S,X1, X2, X3, X4, α, β′);
fr ← ∃j, (sid = π

j
S

.sid) ∧ (π
j
S

.fr = T);
fr ← fr ∨ (C, S) /∈ Corr;

Key ← (
β′

X
x2pwcs
4

)x2 ;

K ← H(sid, Key, pwcs);
πi
C ← ((x1, x2), sid, K, T, fr);

Return T;

Send-S3(S, i, C, α′)
If π

j
S

.sid ̸= (C, S,X1, X2, X3, X4,⊥, β) then ⊥;

If πi
S ̸= ((x3, x4), sid,⊥,⊥, F, fr) return ⊥;

sid = (C, S,X1, X2, X3, X4, α′, β);
fr ← ∃j, (sid = π

j
C

.sid) ∧ (π
j
C

.fr = T);

Key ← ( α′

X
′x4pwcs
2

)x4 ;

K ← H(sid, Key, pwcs);
πi
S ← ((x3, x4), sid, K, T, fr);

Return T;

Execute(C, S, i, j)

If πi
C ̸=⊥ ∨π

j
S
̸=⊥ Abort;

x1, x2, x3, x4
$←− Zq ;

X1 ← gx1 ; X2 ← gx2 ; X3 ← gx3 ; X4 ← gx4 ;
If X1 ∈ List then πi

C ← Invalid;
If X2 ∈ List then πi

C ← Invalid;

If X3 ∈ List then π
j
S
← Invalid;

If X4 ∈ List then π
j
S
← Invalid;

π1 ← NIZK.Sim(crs, tds,X1, C);
π2 ← NIZK.Sim(crs, tds,X2, C);
π3 ← NIZK.Sim(crs, tds,X3, S);
π4 ← NIZK.Sim(crs, tds,X4, S);
List ← List ∪ {X1, X2, X3, X4};
α ← g(x1+x3+x4)x2pwcs ;
β ← g(x1+x2+x3)x4pwcs ;
sid = (C, S,X1, X2, X3, X4, α, β);

Key∗ ← g(x1+x3)x2x4pwcs ;

If (sid, Key∗, pwcs) ∈ T then bad4 = T;

Te ← Te ∪ {sid, Key∗, pwcs};

K
$←− K;

πi
C ← ((x1, x2), sid, K, T, T);

πi
S ← ((x3, x4), sid, K, T, T);

Return sid;

H(sid, Key, pw)

If ∃ (sid, Key, pw) ∈ Te then bad4 = T;

If T [sid, Key, pw] =⊥ then

T [sid, Key, pw]
$←− K;

Return T [sid, Key, pw];

Corrupt(C, S)
Corr ← Corr ∪ {(C, S)};
Return pwcs;

Reveal(U, i)

If πi
U .ac ̸= T ∨ (U, i) ∈ Tst return ⊥;

∀(j, V ) s.t. (π
j
V

.sid = πi
U .sid) do π

j
V

.fr = F;

Return πi
U .K;

Test(U, i)

If πi
U .fr = F return ⊥;

K0 ← Reveal(U, i); K1
$←− K;

Tst ← Tst ∪ (U, i);
Return Kb;

Finalize(b′)
Return b = b′;

Fig. 18: Game 4
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Reduction for Game 4
Initialize (X, Y, Z,DXY ,DXZ,DY Z )

b
$←− {0, 1};

T ← {}; Tst ← {}; Corr ← {}; List ← {};

For C ∈ C, S ∈ S do pwcs
$←− P;

(crs, tds, tde)
$←− NIZK.Backdoor( );

Te ← {}; T4 ← {}; bad4 = F

l
$←− {1, ...nex}; p ← 0; r ← 0;

CRS ← (G, g, q, crs);
Return CRS;

SendInit-C1(C, i, S)

If πi
C ̸=⊥ return ⊥;

r ← r + 1;

If r ̸= l

x1, x2
$←− Zq ; X1 ← gx1 ; X2 ← gx2 ;

If r = l

X1 ← gx1 ; X2 ← X; x2 ←⊥;

If X1 ∈ List then πi
C ← Invalid;

If X2 ∈ List then πi
C ← Invalid;

π1 ← NIZK.Sim(crs, tds,X1, C);
π2 ← NIZK.Sim(crs, tds,X2, C);
List ← List ∪ {X1, X2};
πi
C ← ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥, F, F);

Return (C,X1, X2, π1, π2);

SendInit-S1(S, i, C)

If πi
S ̸=⊥ return ⊥;

r ← r + 1;

If r ̸= l

x3, x4
$←− Zq ; X3 ← gx3 ; X4 ← gx4 ;

If r = l

X3 ← Y ; x3 ←⊥; X4 ← Z; x4 ←⊥;

If X3 ∈ List then π
j
S
← Invalid;

If X4 ∈ List then π
j
S
← Invalid;

π3 ← NIZK.Sim(crs, tds,X3, S);
π4 ← NIZK.Sim(crs, tds,X4, S);
List ← List ∪ {X3, X4};
πi
S ← ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥, F, F);

Return (S,X3, X4, π3, π4);

Send-C2(C, i, S,X′3, X′4, π′3, π′4)

If πi
C ̸= ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥, F, F)

return ⊥;
If X′4 = 1 then π

j
S
← Invalid;

If Ver(crs, (X′3, g), π′3, S) = F then π
j
S
← Invalid;

If Ver(crs, (X′4, g), π′4, S) = F then π
j
S
← Invalid;

If X′3 /∈ List then:
x′3 ← NIZK.Extract(crs, tde,X′3, π′3, S);

If X′3 ̸= g
x′3 then π

j
S
← Invalid;

If X′4 /∈ List then:
x′4 ← NIZK.Extract(crs, tde,X′4, π′4, S);

If X′4 ̸= g
x′4 then π

j
S
← Invalid;

fr ← (C, S) /∈ Corr;

α ← g
(x1+x′3+x′4)x2pwcs ;

πi
C ← ((x1, x2), (C, S,X1, X2, X′3, X′4, α,⊥),⊥, F, fr);

Return α;

Send-S2(S, i, C,X′1, X′2, π′1, π′2)

If πi
S ̸= ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥, F, F)

return ⊥;
If X′2 = 1 then πi

C ← Invalid;
If Ver(crs, (X′1, g), π′1, C) = F then πi

C ← Invalid;
If Ver(crs, (X′2, g), π′2, C) = F then πi

C ← Invalid;
If X′1 /∈ List then:

x′1 ← NIZK.Extract(crs, tde,X′1, π′1, C);

If X′1 ̸= g
x′1 then πi

C ← Invalid;
If X′2 /∈ List then:

x′2 ← NIZK.Extract(crs, tde,X′2, π′2, C);

If X′2 ̸= g
x′2 then πi

C ← Invalid;
fr ← (C, S) /∈ Corr;

β ← g
(x′1+x′2+x3)x4pwcs ;

πi
S ← ((x3, x4), (C, S,X′1, X′2, X3, X4,⊥, β),⊥, F, fr);

Return β;

Send-C3(C, i, S, β′)
If πi

C.sid ̸= (C, S,X1, X2, X3, X4, α,⊥) then ⊥;
If πi

C ̸= ((x1, x2), sid,⊥,⊥, F, fr) return ⊥;
sid = (C, S,X1, X2, X3, X4, α, β′);
fr ← ∃j, (sid = π

j
S

.sid) ∧ (π
j
S

.fr = T);
fr ← fr ∨ (C, S) /∈ Corr;
Else

Key ← (
β′

X
x2pwcs
4

)x2 ;

K ← H(sid, Key, pwcs);
πi
C ← ((x1, x2), sid, K, T, fr);

Return T;

Send-S3(S, i, C, α′)
If π

j
S

.sid ̸= (C, S,X1, X2, X3, X4,⊥, β) then ⊥;

If πi
S ̸= ((x3, x4), sid,⊥,⊥, F, fr) return ⊥;

sid = (C, S,X1, X2, X3, X4, α′, β);
fr ← ∃j, (sid = π

j
C

.sid) ∧ (π
j
C

.fr = T);
Else

Key ← ( α′

X
′x4pwcs
2

)x4 ;

K ← H(sid, Key, pwcs);
πi
S ← ((x3, x4), sid, K, T, fr);

Return T;

Execute(C, S, i, j)

If πi
C ̸=⊥ ∨π

j
S
̸=⊥ return ⊥;

p ← p + 1;

x1
$←− Zq ; X1 ← gx1 ;

If p = l

X2 ← X; X3 ← Y ; X4 ← Z;

x2 ←⊥; x3 ←⊥; x4 ←⊥;

Else
x1, x2, x3, x4

$←− Zq ;
X2 ← gx2 ; X3 ← gx3 ; X4 ← gx4 ;

If X1 ∈ List then πi
C ← Invalid;

If X2 ∈ List then πi
C ← Invalid;

If X3 ∈ List then π
j
S
← Invalid;

If X4 ∈ List then π
j
S
← Invalid;

π1 ← NIZK.Sim(crs, tds,X1, C);
π2 ← NIZK.Sim(crs, tds,X2, C);
π3 ← NIZK.Sim(crs, tds,X3, S);
π4 ← NIZK.Sim(crs, tds,X4, S);
List ← List ∪ {X1, X2, X3, X4};

If x2 =⊥ ∨ x3 =⊥ ∨ x4 =⊥

α ← (DXY DXZXx1 )pwcs

β ← (DXZDY ZZx1 )pwcs

sid = (C, S,X1, X2, X3, X4, α, β);

If (sid, Key, pwcs) ∈ T then T4 ← T4 ∪ {sid, Key, pwcs};

Else

α ← g(x1+x3+x4)x2pwcs ;
β ← g(x1+x2+x3)x4pwcs ;
sid = (C, S,X1, X2, X3, X4, α, β);
Key∗ ← g(x1+x3)x2x4pwcs ;
If (sid, Key∗, pwcs) ∈ T then bad4 = T;
Else Te ← Te ∪ {sid, Key∗, pwcs};

K
$←− K;

πi
C ← ((x1, x2), sid, K, T, T);

πi
S ← ((x3, x4), sid, K, T, T);

Return sid;

H(sid, Key, pw)

If ∃ (sid, Key, pwcs) ∈ Te then T4 ← T4 ∪ {sid, Key, pwcs};

If T [sid, Key, pw] =⊥ then

T [sid, Key, pw]
$←− K;

Return T [sid, Key, pw];
Corrupt(C, S)
Corr ← Corr ∪ {(C, S)};
Return pwcs;

Reveal(U, i)

If πi
U .ac ̸= T ∨ (U, i) ∈ Tst return ⊥;

∀(j, V ) s.t. (π
j
V

.sid = πi
U .sid) do π

j
V

.fr = F;

Return πi
U .K;

Test(U, i)

If πi
U .fr = F return ⊥;

K0 ← Reveal(U, i); K1
$←− K;

Tst ← Tst ∪ (U, i);
Return Kb;

Finalize(b′)

For (sid, Key, pwcs)
$←− T4 do B4.Finalize(gxyz);

Abort.

Fig. 19: Reduction for Game 4
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Game 4.5.1 Randomize α

Initialize
b

$←− {0, 1};
T ← {}; Tst ← {}; Corr ← {}; List ← {};

For C ∈ C, S ∈ S do pwcs
$←− P;

(crs, tds, tde)
$←− NIZK.Backdoor( );

CRS ← (G, g, q, crs);
Return CRS;

SendInit-C1(C, i, S)

If πi
C ≠⊥ return ⊥;

x1, x2
$←− Zq ; X1 ← gx1 ; X2 ← gx2 ;

If X1 ∈ List then πi
C ← Invalid;

If X2 ∈ List then πi
C ← Invalid;

π1 ← NIZK.Sim(crs, tds,X1, C);
π2 ← NIZK.Sim(crs, tds,X2, C);
List ← List ∪ {X1, X2};
πi
C ← ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥, F, F);

Return (C,X1, X2, π1, π2);

SendInit-S1(S, i, C)

If πi
S ̸=⊥ return ⊥;

x3, x4
$←− Zq ; X3 ← gx3 ; X4 ← gx4 ;

If X3 ∈ List then π
j
S
← Invalid;

If X4 ∈ List then π
j
S
← Invalid;

π3 ← NIZK.Sim(crs, tds,X3, S);
π4 ← NIZK.Sim(crs, tds,X4, S);
List ← List ∪ {X3, X4};
πi
S ← ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥, F, F);

Return (S,X3, X4, π3, π4);

Send-C2(C, i, S,X′3, X′4, π′3, π′4)

If πi
C ̸= ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥, F, F)

return ⊥;
If X′4 = 1 then π

j
S
← Invalid;

If Ver(crs, (X′3, g), π′3, S) = F then π
j
S
← Invalid;

If Ver(crs, (X′4, g), π′4, S) = F then π
j
S
← Invalid;

If X′3 /∈ List then:
x′3 ← NIZK.Extract(crs, tde,X′3, π′3, S);

If X′3 ̸= g
x′3 then π

j
S
← Invalid;

If X′4 /∈ List then:
x′4 ← NIZK.Extract(crs, tde,X′4, π′4, S);

If X′4 ̸= g
x′4 then π

j
S
← Invalid;

fr ← (C, S) /∈ Corr;

α ← g
(x1+x′3+x′4)x2pwcs ;

πi
C ← ((x1, x2), (C, S,X1, X2, X′3, X′4, α,⊥),⊥, F, fr);

Return α;

Send-S2(S, i, C,X′1, X′2, π′1, π′2)

If πi
S ̸= ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥, F, F)

return ⊥;
If X′2 = 1 then πi

C ← Invalid;
If Ver(crs, (X′1, g), π′1, C) = F then πi

C ← Invalid;
If Ver(crs, (X′2, g), π′2, C) = F then πi

C ← Invalid;
If X′1 /∈ List then:

x′1 ← NIZK.Extract(crs, tde,X′1, π′1, C);

If X′1 ̸= g
x′1 then πi

C ← Invalid;
If X′2 /∈ List then:

x′2 ← NIZK.Extract(crs, tde,X′2, π′2, C);

If X′2 ̸= g
x′2 then πi

C ← Invalid;
If X′1 ∈ List then πi

C ← Invalid;
If X′2 ∈ List then πi

C ← Invalid;
fr ← (C, S) /∈ Corr;

β ← g
(x′1+x′2+x3)x4pwcs ;

πi
S ← ((x3, x4), (C, S,X′1, X′2, X3, X4,⊥, β),⊥, F, fr);

Return β;

Send-C3(C, i, S, β′)
If πi

C.sid ̸= (C, S,X1, X2, X3, X4, α,⊥) then ⊥;
If πi

C ̸= ((x1, x2), sid,⊥,⊥, F, fr) return ⊥;
sid = (C, S,X1, X2, X3, X4, α, β′);
fr ← ∃j, (sid = π

j
S

.sid) ∧ (π
j
S

.fr = T);
fr ← fr ∨ (C, S) /∈ Corr;

Key ← (
β′

X
x2pwcs
4

)x2 ;

K ← H(sid, Key, pwcs);
πi
C ← ((x1, x2), sid, K, T, fr);

Return T;

Send-S3(S, i, C, α′)
If π

j
S

.sid ̸= (C, S,X1, X2, X3, X4,⊥, β) then ⊥;

If πi
S ̸= ((x3, x4), sid,⊥,⊥, F, fr) return ⊥;

sid = (C, S,X1, X2, X3, X4, α′, β);
fr ← ∃j, (sid = π

j
C

.sid) ∧ (π
j
C

.fr = T);
fr ← fr ∨ (C, S) /∈ Corr;

Key ← ( α′
X

x4pwcs
2

)x4 ;

K ← H(sid, Key, pwcs);
πi
S ← ((x3, x4), sid, K, T, fr);

Return T;

Execute(C, S, i, j)

If πi
C ̸=⊥ ∨π

j
S
̸=⊥ return ⊥;

x1, x2, x3, x4
$←− Zq ;

X1 ← gx1 ; X2 ← gx2 ; X3 ← gx3 ; X4 ← gx4 ;
If X1 ∈ List then πi

C ← Invalid;
If X2 ∈ List then πi

C ← Invalid;

If X3 ∈ List then π
j
S
← Invalid;

If X4 ∈ List then π
j
S
← Invalid;

π1 ← NIZK.Sim(crs, tds,X1, C);
π2 ← NIZK.Sim(crs, tds,X2, C);
π3 ← NIZK.Sim(crs, tds,X3, S);
π4 ← NIZK.Sim(crs, tds,X4, S);
List ← List ∪ {X1, X2, X3, X4};

α
$←− G;

β ← g
(x′1+x′2+x3)x4pwcs

sid = (C, S,X1, X2, X3, X4, α, β);

K
$←− K;

πi
C ← ((x1, x2), sid, K, T, T);

πi
S ← ((x3, x4), sid, K, T, T);

Return sid;

H(sid, Key, pw)
If T [sid, Key, pw] =⊥ then

T [sid, Key, pw]
$←− K;

Return T [sid, Key, pw];

Corrupt(C, S)
Corr ← Corr ∪ {(C, S)};
Return pwcs;

Reveal(U, i)

If πi
U .ac ̸= T ∨ (U, i) ∈ Tst return ⊥;

∀(j, V ) s.t. (π
j
V

.sid = πi
U .sid) do π

j
V

.fr = F;

Return πi
U .K;

Test(U, i)

If πi
U .fr = F return ⊥;

K0 ← Reveal(U, i); K1
$←− K;

Tst ← Tst ∪ (U, i);
Return Kb;

Finalize(b′)
Return b = b′;

Fig. 20: Game 4.5.1
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Reduction for Game 4.5.1.
Initialize (X1, ...Xex, Y1, ..., Yex, Z1, ..., Zex)

b
$←− {0, 1};

T ← {}; Tst ← {}; Corr ← {}; List ← {};

For C ∈ C, S ∈ S do pwcs
$←− P;

(crs, tds, tde)
$←− NIZK.Backdoor( );

k ← 0;

CRS ← (G, g, q, crs);
Return CRS;

SendInit-C1(C, i, S)

If πi
C ̸=⊥ return ⊥;

x1, x2
$←− Zq ; X1 ← gx1 ; X2 ← gx2 ;

If X1 ∈ List then πi
C ← Invalid;

If X2 ∈ List then πi
C ← Invalid;

π1 ← NIZK.Sim(crs, tds,X1, C);
π2 ← NIZK.Sim(crs, tds,X2, C);
List ← List ∪ {X1, X2};
πi
C ← ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥, F, F);

Return (C,X1, X2, π1, π2);

SendInit-S1(S, i, C)

If πi
S ̸=⊥ return ⊥;

x3, x4
$←− Zq ; X3 ← gx3 ; X4 ← gx4 ;

If X3 ∈ List then π
j
S
← Invalid;

If X4 ∈ List then π
j
S
← Invalid;

π3 ← NIZK.Sim(crs, tds,X3, S);
π4 ← NIZK.Sim(crs, tds,X4, S);
List ← List ∪ {X3, X4};
πi
S ← ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥, F, F);

Return (S,X3, X4, π3, π4);

Send-C2(C, i, S,X′3, X′4, π′3, π′4)

If πi
C ̸= ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥, F, F)

return ⊥;
If X′4 = 1 then π

j
S
← Invalid;

If Ver(crs, (X′3, g), π′3, S) = F then π
j
S
← Invalid;

If Ver(crs, (X′4, g), π′4, S) = F then π
j
S
← Invalid;

If X′3 /∈ List then:
x′3 ← NIZK.Extract(crs, tde,X′3, π′3, S);

If X′3 ̸= g
x′3 then π

j
S
← Invalid;

If X′4 /∈ List then:
x′4 ← NIZK.Extract(crs, tde,X′4, π′4, S);

If X′4 ̸= g
x′4 then π

j
S
← Invalid;

fr ← (C, S) /∈ Corr;

α ← g
(x1+x′3+x′4)x2pwcs ;

πi
C ← ((x1, x2), (C, S,X1, X2, X′3, X′4, α,⊥),⊥, F, fr);

Return α;

Send-S2(S, i, C,X′1, X′2, π′1, π′2)

If πi
S ̸= ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥, F, F)

return ⊥;
If X′2 = 1 then πi

C ← Invalid;
If Ver(crs, (X′1, g), π′1, C) = F then πi

C ← Invalid;
If Ver(crs, (X′2, g), π′2, C) = F then πi

C ← Invalid;
If X′1 /∈ List then:

x′1 ← NIZK.Extract(crs, tde,X′1, π′1, C);

If X′1 ̸= g
x′1 then πi

C ← Invalid;
If X′2 /∈ List then:

x′2 ← NIZK.Extract(crs, tde,X′2, π′2, C);

If X′2 ̸= g
x′2 then πi

C ← Invalid;
fr ← (C, S) /∈ Corr;

β ← g
(x′1+x′2+x3)x4pwcs ;

πi
S ← ((x3, x4), (C, S,X′1, X′2, X3, X4,⊥, β),⊥, F, fr);

Return β;

Send-C3(C, i, S, β′)
If πi

C.sid ̸= (C, S,X1, X2, X3, X4, α,⊥) then ⊥;
If πi

C ̸= ((x1, x2), sid,⊥,⊥, F, fr) return ⊥;
sid = (C, S,X1, X2, X3, X4, α, β′);
fr ← ∃j, (sid = π

j
S

.sid) ∧ (π
j
S

.fr = T);
fr ← fr ∨ (C, S) /∈ Corr;

Key ← (
β′

X
x2pwcs
4

)x2 ;

K ← H(sid, Key, pwcs);
πi
C ← ((x1, x2), sid, K, T, fr);

Return T;

Send-S3(S, i, C, α′)
If π

j
S

.sid ̸= (C, S,X1, X2, X3, X4,⊥, β) then ⊥;

If πi
S ̸= ((x3, x4), sid,⊥,⊥, F, fr) return ⊥;

sid = (C, S,X1, X2, X3, X4, α′, β);
fr ← ∃j, (sid = π

j
C

.sid) ∧ (π
j
C

.fr = T);
fr ← fr ∨ (C, S) /∈ Corr;

Key ← ( α′
X

x4pwcs
2

)x4 ;

K ← H(sid, Key, pwcs);
πi
S ← ((x3, x4), sid, K, T, fr);

Return T;

Execute(C, S, i, j)

If πi
C ̸=⊥ ∨π

j
S
̸=⊥ return ⊥;

k = k + 1;

X1 ← Xk; x1 ←⊥;

X2 ← Yk; x2 ←⊥;

x3, x4
$←− Zq ; X3 ← gx3 ; X4 ← gx4 ;

If X1 ∈ List then πi
C ← Invalid;

If X2 ∈ List then πi
C ← Invalid;

If X3 ∈ List then π
j
S
← Invalid;

If X4 ∈ List then π
j
S
← Invalid;

π1 ← NIZK.Sim(crs, tds,X1, C);
π2 ← NIZK.Sim(crs, tds,X2, C);
π3 ← NIZK.Sim(crs, tds,X3, S);
π4 ← NIZK.Sim(crs, tds,X4, S);
List ← List ∪ {X1, X2, X3, X4};

α ← (ZkX
x3+x4
2 )pwcs ;

β ← X
x4pwcs
2 g(x1+x2)x4pwcs ;

sid = (C, S,X1, X2, X3, X4, α, β);

K
$←− K;

πi
C ← ((x1, x2), sid, K, T, T);

πi
S ← ((x3, x4), sid, K, T, T);

Return sid;

H(sid, Key, pw)
If T [sid, Key, pw] =⊥ then

T [sid, Key, pw]
$←− K;

Return T [sid, Key, pw];

Corrupt(C, S)
Corr ← Corr ∪ {(C, S)};
Return pwcs;

Reveal(U, i)

If πi
U .ac ̸= T ∨ (U, i) ∈ Tst return ⊥;

∀(j, V ) s.t. (π
j
V

.sid = πi
U .sid) do π

j
V

.fr = F;

Return πi
U .K;

Test(U, i)

If πi
U .fr = F return ⊥;

K0 ← Reveal(U, i); K1
$←− K;

Tst ← Tst ∪ (U, i);
Return Kb;

Finalize(b′)
If b′ = 1 return 1;
Else return 0;
Abort.

Fig. 21: Reduction for Game 4.5.1
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Game 4.5.2 Randomize β

Initialize
b

$←− {0, 1};
T ← {}; Tst ← {}; Corr ← {}; List ← {};

For C ∈ C, S ∈ S do pwcs
$←− P;

(crs, tds, tde)
$←− NIZK.Backdoor( );

CRS ← (G, g, q, crs);
Return CRS;

SendInit-C1(C, i, S)

If πi
C ≠⊥ return ⊥;

x1, x2
$←− Zq ; X1 ← gx1 ; X2 ← gx2 ;

If X1 ∈ List then πi
C ← Invalid;

If X2 ∈ List then πi
C ← Invalid;

π1 ← NIZK.Sim(crs, tds,X1, C);
π2 ← NIZK.Sim(crs, tds,X2, C);
List ← List ∪ {X1, X2};
πi
C ← ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥, F, F);

Return (C,X1, X2, π1, π2);

SendInit-S1(S, i, C)

If πi
S ̸=⊥ return ⊥;

x3, x4
$←− Zq ; X3 ← gx3 ; X4 ← gx4 ;

If X3 ∈ List then π
j
S
← Invalid;

If X4 ∈ List then π
j
S
← Invalid;

π3 ← NIZK.Sim(crs, tds,X3, S);
π4 ← NIZK.Sim(crs, tds,X4, S);
List ← List ∪ {X3, X4};
πi
S ← ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥, F, F);

Return (S,X3, X4, π3, π4);

Send-C2(C, i, S,X′3, X′4, π′3, π′4)

If πi
C ̸= ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥, F, F)

return ⊥;
If X′4 = 1 then π

j
S
← Invalid;

If Ver(crs, (X′3, g), π′3, S) = F then π
j
S
← Invalid;

If Ver(crs, (X′4, g), π′4, S) = F then π
j
S
← Invalid;

If X′3 /∈ List then:
x′3 ← NIZK.Extract(crs, tde,X′3, π′3, S);

If X′3 ̸= g
x′3 then π

j
S
← Invalid;

If X′4 /∈ List then:
x′4 ← NIZK.Extract(crs, tde,X′4, π′4, S);

If X′4 ̸= g
x′4 then π

j
S
← Invalid;

fr ← (C, S) /∈ Corr;

α ← g
(x1+x′3+x′4)x2pwcs ;

πi
C ← ((x1, x2), (C, S,X1, X2, X′3, X′4, α,⊥),⊥, F, fr);

Return α;

Send-S2(S, i, C,X′1, X′2, π′1, π′2)

If πi
S ̸= ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥, F, F)

return ⊥;
If X′2 = 1 then πi

C ← Invalid;
If Ver(crs, (X′1, g), π′1, C) = F then πi

C ← Invalid;
If Ver(crs, (X′2, g), π′2, C) = F then πi

C ← Invalid;
If X′1 /∈ List then:

x′1 ← NIZK.Extract(crs, tde,X′1, π′1, C);

If X′1 ̸= g
x′1 then πi

C ← Invalid;
If X′2 /∈ List then:

x′2 ← NIZK.Extract(crs, tde,X′2, π′2, C);

If X′2 ̸= g
x′2 then πi

C ← Invalid;
fr ← (C, S) /∈ Corr;

β ← g
(x′1+x′2+x3)x4pwcs ;

πi
S ← ((x3, x4), (C, S,X′1, X′2, X3, X4,⊥, β),⊥, F, fr);

Return β;

Send-C3(C, i, S, β′)
If πi

C.sid ̸= (C, S,X1, X2, X3, X4, α,⊥) then ⊥;
If πi

C ̸= ((x1, x2), sid,⊥,⊥, F, fr) return ⊥;
sid = (C, S,X1, X2, X3, X4, α, β′);
fr ← ∃j, (sid = π

j
S

.sid) ∧ (π
j
S

.fr = T);
fr ← fr ∨ (C, S) /∈ Corr;

Key ← (
β′

X
x2pwcs
4

)x2 ;

K ← H(sid, Key, pwcs);
πi
C ← ((x1, x2), sid, K, T, fr);

Return T;

Send-S3(S, i, C, α′)
If π

j
S

.sid ̸= (C, S,X1, X2, X3, X4,⊥, β) then ⊥;

If πi
S ̸= ((x3, x4), sid,⊥,⊥, F, fr) return ⊥;

sid = (C, S,X1, X2, X3, X4, α′, β);
fr ← ∃j, (sid = π

j
C

.sid) ∧ (π
j
C

.fr = T);
fr ← fr ∨ (C, S) /∈ Corr;

Key ← ( α′
X

x4pwcs
2

)x4 ;

K ← H(sid, Key, pwcs);
πi
S ← ((x3, x4), sid, K, T, fr);

Return T;

Execute(C, S, i, j)

If πi
C ̸=⊥ ∨π

j
S
̸=⊥ return ⊥;

x1, x2, x3, x4
$←− Zq ;

X1 ← gx1 ; X2 ← gx2 ; X3 ← gx3 ; X4 ← gx4 ;
If X1 ∈ List then πi

C ← Invalid;
If X2 ∈ List then πi

C ← Invalid;

If X3 ∈ List then π
j
S
← Invalid;

If X4 ∈ List then π
j
S
← Invalid;

π1 ← NIZK.Sim(crs, tds,X1, C);
π2 ← NIZK.Sim(crs, tds,X2, C);
π3 ← NIZK.Sim(crs, tds,X3, S);
π4 ← NIZK.Sim(crs, tds,X4, S);
List ← List ∪ {X1, X2, X3, X4};

α
$←− G; β

$←− G;

sid = (C, S,X1, X2, X3, X4, α, β);

K
$←− K;

πi
C ← ((x1, x2), sid, K, T, T);

πi
S ← ((x3, x4), sid, K, T, T);

Return sid;

H(sid, Key, pw)
If T [sid, Key, pw] =⊥ then

T [sid, Key, pw]
$←− K;

Return T [sid, Key, pw];

Corrupt(C, S)
Corr ← Corr ∪ {(C, S)};
Return pwcs;

Reveal(U, i)

If πi
U .ac ̸= T ∨ (U, i) ∈ Tst return ⊥;

∀(j, V ) s.t. (π
j
V

.sid = πi
U .sid) do π

j
V

.fr = F;

Return πi
U .K;

Test(U, i)

If πi
U .fr = F return ⊥;

K0 ← Reveal(U, i); K1
$←− K;

Tst ← Tst ∪ (U, i);
Return Kb;

Finalize(b′)
Return b = b′;

Fig. 22: Game 4.5.2
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Reduction for Game 4.5.2
Initialize (X1, ...Xex, Y1, ..., Yex, Z1, ..., Zex)

b
$←− {0, 1};

T ← {}; Tst ← {}; Corr ← {}; List ← {};

For C ∈ C, S ∈ S do pwcs
$←− P;

(crs, tds, tde)
$←− NIZK.Backdoor( );

k ← 0;

CRS ← (G, g, q, crs);
Return CRS;

SendInit-C1(C, i, S)

If πi
C ̸=⊥ return ⊥;

x1, x2
$←− Zq ; X1 ← gx1 ; X2 ← gx2 ;

If X1 ∈ List then πi
C ← Invalid;

If X2 ∈ List then πi
C ← Invalid;

π1 ← NIZK.Sim(crs, tds,X1, C);
π2 ← NIZK.Sim(crs, tds,X2, C);
List ← List ∪ {X1, X2};
πi
C ← ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥, F, F);

Return (C,X1, X2, π1, π2);

SendInit-S1(S, i, C)

If πi
S ̸=⊥ return ⊥;

x3, x4
$←− Zq ; X3 ← gx3 ; X4 ← gx4 ;

If X3 ∈ List then π
j
S
← Invalid;

If X4 ∈ List then π
j
S
← Invalid;

π3 ← NIZK.Sim(crs, tds,X3, S);
π4 ← NIZK.Sim(crs, tds,X4, S);
List ← List ∪ {X3, X4};
πi
S ← ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥, F, F);

Return (S,X3, X4, π3, π4);

Send-C2(C, i, S,X′3, X′4, π′3, π′4)

If πi
C ̸= ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥, F, F)

return ⊥;
If X′4 = 1 then π

j
S
← Invalid;

If Ver(crs, (X′3, g), π′3, S) = F then π
j
S
← Invalid;

If Ver(crs, (X′4, g), π′4, S) = F then π
j
S
← Invalid;

If X′3 /∈ List then:
x′3 ← NIZK.Extract(crs, tde,X′3, π′3, S);

If X′3 ̸= g
x′3 then π

j
S
← Invalid;

If X′4 /∈ List then:
x′4 ← NIZK.Extract(crs, tde,X′4, π′4, S);

If X′4 ̸= g
x′4 then π

j
S
← Invalid;

fr ← (C, S) /∈ Corr;

α ← g
(x1+x′3+x′4)x2pwcs ;

πi
C ← ((x1, x2), (C, S,X1, X2, X′3, X′4, α,⊥),⊥, F, fr);

Return α;

Send-S2(S, i, C,X′1, X′2, π′1, π′2)

If πi
S ̸= ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥, F, F)

return ⊥;
If X′2 = 1 then πi

C ← Invalid;
If Ver(crs, (X′1, g), π′1, C) = F then πi

C ← Invalid;
If Ver(crs, (X′2, g), π′2, C) = F then πi

C ← Invalid;
If X′1 /∈ List then:

x′1 ← NIZK.Extract(crs, tde,X′1, π′1, C);

If X′1 ̸= g
x′1 then πi

C ← Invalid;
If X′2 /∈ List then:

x′2 ← NIZK.Extract(crs, tde,X′2, π′2, C);

If X′2 ̸= g
x′2 then πi

C ← Invalid;
fr ← (C, S) /∈ Corr;

β ← g
(x′1+x′2+x3)x4pwcs ;

πi
S ← ((x3, x4), (C, S,X′1, X′2, X3, X4,⊥, β),⊥, F, fr);

Return β;

Send-C3(C, i, S, β′)
If πi

C.sid ̸= (C, S,X1, X2, X3, X4, α,⊥) then ⊥;
If πi

C ̸= ((x1, x2), sid,⊥,⊥, F, fr) return ⊥;
sid = (C, S,X1, X2, X3, X4, α, β′);
fr ← ∃j, (sid = π

j
S

.sid) ∧ (π
j
S

.fr = T);
fr ← fr ∨ (C, S) /∈ Corr;

Key ← (
β′

X
x2pwcs
4

)x2 ;

K ← H(sid, Key, pwcs);
πi
C ← ((x1, x2), sid, K, T, fr);

Return T;

Send-S3(S, i, C, α′)
If π

j
S

.sid ̸= (C, S,X1, X2, X3, X4,⊥, β) then ⊥;

If πi
S ̸= ((x3, x4), sid,⊥,⊥, F, fr) return ⊥;

sid = (C, S,X1, X2, X3, X4, α′, β);
fr ← ∃j, (sid = π

j
C

.sid) ∧ (π
j
C

.fr = T);
fr ← fr ∨ (C, S) /∈ Corr;

Key ← ( α′
X

x4pwcs
2

)x4 ;

K ← H(sid, Key, pwcs);
πi
S ← ((x3, x4), sid, K, T, fr);

Return T;

Execute(C, S, i, j)

If πi
C ̸=⊥ ∨π

j
S
̸=⊥ return ⊥;

k = k + 1;

x1, x2
$←− Zq ; X1 ← gx1 ; X2 ← gx2 ;

X3 ← Xk; x3 ←⊥;

X4 ← Yk; x4 ←⊥;

If X1 ∈ List then πi
C ← Invalid;

If X2 ∈ List then πi
C ← Invalid;

If X3 ∈ List then π
j
S
← Invalid;

If X4 ∈ List then π
j
S
← Invalid;

π1 ← NIZK.Sim(crs, tds,X1, C);
π2 ← NIZK.Sim(crs, tds,X2, C);
π3 ← NIZK.Sim(crs, tds,X3, S);
π4 ← NIZK.Sim(crs, tds,X4, S);
List ← List ∪ {X1, X2, X3, X4};

α
$←− G;

β ← (ZkX
x1+x2
4 )pwcs ;

sid = (C, S,X1, X2, X3, X4, α, β);
Te ← Te ∪ {sid, k, pw};

K
$←− K;

πi
C ← ((x1, x2), sid, K, T, T);

πi
S ← ((x3, x4), sid, K, T, T);

Return sid;

H(sid, Key, pw)
If T [sid, Key, pw] =⊥ then

T [sid, Key, pw]
$←− K;

Return T [sid, Key, pw];

Corrupt(C, S)
Corr ← Corr ∪ {(C, S)};
Return pwcs;

Reveal(U, i)

If πi
U .ac ̸= T ∨ (U, i) ∈ Tst return ⊥;

∀(j, V ) s.t. (π
j
V

.sid = πi
U .sid) do π

j
V

.fr = F;

Return πi
U .K;

Test(U, i)

If πi
U .fr = F return ⊥;

K0 ← Reveal(U, i); K1
$←− K;

Tst ← Tst ∪ (U, i);
Return Kb;

Finalize(b′)
If b′ = b return 1;
Else return 0;
Abort.

Fig. 23: Reduction for Game 4.5.2
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Game 5: Randomize session Keys for Send
queries.
Initialize
b

$←− {0, 1};
T ← {}; Tst ← {}; Corr ← {}; List ← {};

Ts ← {}; bad5=F;

For C ∈ C, S ∈ S do pwcs
$←− P;

(crs, tds, tde)
$←− NIZK.Backdoor( );

CRS ← (G, g, q, crs);
Return CRS;

SendInit-C1(C, i, S)

If πi
C ̸=⊥ return ⊥;

x1, x2
$←− Zq ; X1 ← gx1 ; X2 ← gx2 ;

If X1 ∈ List then πi
C ← Invalid;

If X2 ∈ List then πi
C ← Invalid;

π1 ← NIZK.Sim(crs, tds,X1, C);
π2 ← NIZK.Sim(crs, tds,X2, C);
List ← List ∪ {X1, X2};
πi
C ← ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥, F, F);

Return (C,X1, X2, π1, π2);

SendInit-S1(S, i, C)

If πi
S ̸=⊥ return ⊥;

x3, x4
$←− Zq ; X3 ← gx3 ; X4 ← gx4 ;

If X3 ∈ List then π
j
S
← Invalid;

If X4 ∈ List then π
j
S
← Invalid;

π3 ← NIZK.Sim(crs, tds,X3, S);
π4 ← NIZK.Sim(crs, tds,X4, S);
List ← List ∪ {X3, X4};
πi
S ← ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥, F, F);

Return (S,X3, X4, π3, π4);

Send-C2(C, i, S,X′3, X′4, π′3, π′4)

If πi
C ̸= ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥, F, F)

return ⊥;
If X′4 = 1 then π

j
S
← Invalid;

If Ver(crs, (X′3, g), π′3, S) = F then π
j
S
← Invalid;

If Ver(crs, (X′4, g), π′4, S) = F then π
j
S
← Invalid;

If X′3 /∈ List then:
x′3 ← NIZK.Extract(crs, tde,X′3, π′3, S);

If X′3 ̸= g
x′3 then π

j
S
← Invalid;

If X′4 /∈ List then:
x′4 ← NIZK.Extract(crs, tde,X′4, π′4, S);

If X′4 ̸= g
x′4 then π

j
S
← Invalid;

fr ← (C, S) /∈ Corr;

α ← g
(x1+x′3+x′4)x2pwcs ;

πi
C ← ((x1, x2), (C, S,X1, X2, X′3, X′4, α,⊥),⊥, F, fr);

Return α;

Send-S2(S, i, C,X′1, X′2, π′1, π′2)

If πi
S ̸= ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥, F, F)

return ⊥;
If X′2 = 1 then πi

C ← Invalid;
If Ver(crs, (X′1, g), π′1, C) = F then πi

C ← Invalid;
If Ver(crs, (X′2, g), π′2, C) = F then πi

C ← Invalid;
If X′1 /∈ List then:

x′1 ← NIZK.Extract(crs, tde,X′1, π′1, C);

If X′1 ̸= g
x′1 then πi

C ← Invalid;
If X′2 /∈ List then:

x′2 ← NIZK.Extract(crs, tde,X′2, π′2, C);

If X′2 ̸= g
x′2 then πi

C ← Invalid;
fr ← (C, S) /∈ Corr;

β ← g
(x′1+x′2+x3)x4pwcs ;

πi
S ← ((x3, x4), (C, S,X′1, X′2, X3, X4,⊥, β),⊥, F, fr);

Return β;

Send-C3(C, i, S, β′)
If πi

C.sid ̸= (C, S,X1, X2, X3, X4, α,⊥) then ⊥;
If πi

C ̸= ((x1, x2), sid,⊥,⊥, F, fr) return ⊥;
sid = (C, S,X1, X2, X3, X4, α, β′);
fr ← ∃j, (sid = π

j
S

.sid) ∧ (π
j
S

.fr = T);
fr ← fr ∨ (C, S) /∈ Corr;

If ¬fr then

Key ← (
β′

X
x2pwcs
4

)x2 ;

K ← H(sid, Key, pwcs);

Else if sid ∈ Ts then (S, (x3, x4), K) ← Ts[sid];

Else

∀(sid, Key, pw) ∈ T ∧ pw = pwcs then

Key∗ ← (
β′

X
′x2pwcs
4

)x2 ;

If Key∗ = Key then bad5=T; Abort.

K
$←− K;

Ts[sid] ← (C, (x1, x2), K);

πi
C ← ((x1, x2), sid, K, T, fr);

Return T;

Send-S3(S, i, C, α′)
If π

j
S

.sid ̸= (C, S,X1, X2, X3, X4,⊥, β) then ⊥;

If πi
S ̸= ((x3, x4), sid,⊥,⊥, F, fr) return ⊥;

sid = (C, S,X1, X2, X3, X4, α′, β);
fr ← ∃j, (sid = π

j
C

.sid) ∧ (π
j
C

.fr = T);
fr ← fr ∨ (C, S) /∈ Corr;

If ¬fr then

Key ← ( α′

X
′x4pwcs
2

)
x′2 ;

K ← H(sid, Key, pwcs);

Else if sid ∈ Ts then (C, (x1, x2), K) ← Ts[sid];

Else

∀(sid, Key, pw) ∈ T ∧ pw = pwcs then

Key∗ ← ( α′

X
′x4pwcs
2

)x4 ;

If Key∗ = Key then bad5=T; Abort.

K
$←− K;

Ts[sid] ← (S, (x3, x4), K);

πi
S ← ((x3, x4), sid, K, T, fr);

Return T;

Execute(C, S, i, j)

If πi
C ̸=⊥ ∨π

j
S
̸=⊥ return ⊥;

x1, x2, x3, x4
$←− Zq ;

X1 ← gx1 ; X2 ← gx2 ; X3 ← gx3 ; X4 ← gx4 ;
If X1 ∈ List then πi

C ← Invalid;
If X2 ∈ List then πi

C ← Invalid;

If X3 ∈ List then π
j
S
← Invalid;

If X4 ∈ List then π
j
S
← Invalid;

π1 ← NIZK.Sim(crs, tds,X1, C);
π2 ← NIZK.Sim(crs, tds,X2, C);
π3 ← NIZK.Sim(crs, tds,X3, S);
π4 ← NIZK.Sim(crs, tds,X4, S);
List ← List ∪ {X1, X2, X3, X4};

α
$←− G; β

$←− G;
sid = (C, S,X1, X2, X3, X4, α, β);

K
$←− K;

πi
C ← ((x1, x2), sid, K, T, T);

πi
S ← ((x3, x4), sid, K, T, T);

Return sid;

H(sid, Key, pw)

∀sid ∈ Ts ∧ pw = pwcs then

If Ts[sid] = (C, (x1, x2), K)

Key∗ ← (
β′

X
′x2pwcs
4

)x2 ;

If Ts[sid] ← (S, (x3, x4), K)

Key∗ ← ( α′

X
′x4pwcs
2

)x4 ;

If Key∗ = Key then bad5=T; Abort.

If T [sid, Key, pw] =⊥ then

T [sid, Key, pw]
$←− K;

Return T [sid, Key, pw];

Corrupt(C, S)
Corr ← Corr ∪ {(C, S)};
Return pwcs;

Reveal(U, i)

If πi
U .ac ̸= T ∨ (U, i) ∈ Tst return ⊥;

∀(j, V ) s.t. (π
j
V

.sid = πi
U .sid) do π

j
V

.fr = F;

Return πi
U .K;

Test(U, i)

If πi
U .fr = F return ⊥;

K0 ← Reveal(U, i); K1
$←− K;

Tst ← Tst ∪ (U, i);
Return Kb;

Finalize(b′)
Return b = b′;

Fig. 24: Game 5
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Game 6: Detect duplicates
Initialize
b

$←− {0, 1};
T ← {}; Tst ← {}; Corr ← {}; List ← {};

bad5=F; bad6 = F; T6 ← {};

For C ∈ C, S ∈ S do pwcs
$←− P;

(crs, tds, tde)
$←− NIZK.Backdoor( );

CRS ← (G, g, q, crs);
Return CRS;

SendInit-C1(C, i, S)

If πi
C ̸=⊥ return ⊥;

x1, x2
$←− Zq ; X1 ← gx1 ; X2 ← gx2 ;

If X1 ∈ List then πi
C ← Invalid;

If X2 ∈ List then πi
C ← Invalid;

π1 ← NIZK.Sim(crs, tds,X1, C);
π2 ← NIZK.Sim(crs, tds,X2, C);
List ← List ∪ {X1, X2};
πi
C ← ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥, F, F);

Return (C,X1, X2, π1, π2);

SendInit-S1(S, i, C)

If πi
S ̸=⊥ return ⊥;

x3, x4
$←− Zq ; X3 ← gx3 ; X4 ← gx4 ;

If X3 ∈ List then π
j
S
← Invalid;

If X4 ∈ List then π
j
S
← Invalid;

π3 ← NIZK.Sim(crs, tds,X3, S);
π4 ← NIZK.Sim(crs, tds,X4, S);
List ← List ∪ {X3, X4};
πi
S ← ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥, F, F);

Return (S,X3, X4, π3, π4);

Send-C2(C, i, S,X′3, X′4, π′3, π′4)

If πi
C ̸= ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥, F, F)

return ⊥;
If X′4 = 1 then π

j
S
← Invalid;

If Ver(crs, (X′3, g), π′3, S) = F then π
j
S
← Invalid;

If Ver(crs, (X′4, g), π′4, S) = F then π
j
S
← Invalid;

If X′3 /∈ List then:
x′3 ← NIZK.Extract(crs, tde,X′3, π′3, S);

If X′3 ̸= g
x′3 then π

j
S
← Invalid;

If X′4 /∈ List then:
x′4 ← NIZK.Extract(crs, tde,X′4, π′4, S);

If X′4 ̸= g
x′4 then π

j
S
← Invalid;

fr ← (C, S) /∈ Corr;

α ← g
(x1+x′3+x′4)x2pwcs ;

πi
C ← ((x1, x2), (C, S,X1, X2, X′3, X′4, α,⊥),⊥, F, fr);

Return α;

Send-S2(S, i, C,X′1, X′2, π′1, π′2)

If πi
S ̸= ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥, F, F)

return ⊥;
If X′2 = 1 then πi

C ← Invalid;
If Ver(crs, (X′1, g), π′1, C) = F then πi

C ← Invalid;
If Ver(crs, (X′2, g), π′2, C) = F then πi

C ← Invalid;
If X′1 /∈ List then:

x′1 ← NIZK.Extract(crs, tde,X′1, π′1, C);

If X′1 ̸= g
x′1 then πi

C ← Invalid;
If X′2 /∈ List then:

x′2 ← NIZK.Extract(crs, tde,X′2, π′2, C);

If X′2 ̸= g
x′2 then πi

C ← Invalid;
fr ← (C, S) /∈ Corr;

β ← g
(x′1+x′2+x3)x4pwcs ;

πi
S ← ((x3, x4), (C, S,X′1, X′2, X3, X4,⊥, β),⊥, F, fr);

Return β;

Send-C3(C, i, S, β′)
If πi

C.sid ̸= (C, S,X1, X2, X3, X4, α,⊥) then ⊥;
If πi

C ̸= ((x1, x2), sid,⊥,⊥, F, fr) return ⊥;
sid = (C, S,X1, X2, X3, X4, α, β′);
fr ← ∃j, (sid = π

j
S

.sid) ∧ (π
j
S

.fr = T);
fr ← fr ∨ (C, S) /∈ Corr;
If ¬fr then

Key ← (
β′

X
x2pwcs
4

)x2 ;

K ← H(sid, Key, pwcs);
Else if sid ∈ Ts then (S, (x3, x4), K) ← Ts[sid];
Else ∀ (sid, Key, pw) ∈ T then

Key∗ ← (
β′

X
x2pw
4

)x2 ;

If Key∗ = Key then T6 ← T6 ∪ {sid, Key, pw};

K
$←− K;

Ts[sid] ← (C, (x1, x2), K);
πi
C ← ((x1, x2), sid, K, T, fr);

Return T;

Send-S3(S, i, C, α′)
If π

j
S

.sid ̸= (C, S,X1, X2, X3, X4,⊥, β) then ⊥;

If πi
S ̸= ((x3, x4), sid,⊥,⊥, F, fr) return ⊥;

sid = (C, S,X1, X2, X3, X4, α′, β);
fr ← ∃j, (sid = π

j
C

.sid) ∧ (π
j
C

.fr = T);
fr ← fr ∨ (C, S) /∈ Corr;
If ¬fr then

Key ← ( α′

X
′x4pwcs
2

)x4 ;

K ← H(sid, Key, pwcs);
Else If sid ∈ Ts then (C, (x1, x2), K) ← Ts[sid];
Else ∀ (sid, Key, pw) ∈ T then

Key∗ ← ( α′

X
′x4pw
2

)x4 ;

If Key∗ = Key then T6 ← T6 ∪ {sid, Key, pw};

K
$←− K;

Ts[sid] ← (S, (x3, x4), K);
πi
S ← ((x3, x4), sid, K, T, fr);

Return T;

Execute(C, S, i, j)

If πi
C ̸=⊥ ∨π

j
S
̸=⊥ return ⊥;

x1, x2, x3, x4
$←− Zq ;

X1 ← gx1 ; X2 ← gx2 ; X3 ← gx3 ; X4 ← gx4 ;
If X1 ∈ List then πi

C ← Invalid;
If X2 ∈ List then πi

C ← Invalid;

If X3 ∈ List then π
j
S
← Invalid;

If X4 ∈ List then π
j
S
← Invalid;

π1 ← NIZK.Sim(crs, tds,X1, C);
π2 ← NIZK.Sim(crs, tds,X2, C);
π3 ← NIZK.Sim(crs, tds,X3, S);
π4 ← NIZK.Sim(crs, tds,X4, S);
List ← List ∪ {X1, X2, X3, X4};

α
$←− G; β

$←− G;
sid = (C, S,X1, X2, X3, X4, α, β);

K
$←− K;

πi
C ← ((x1, x2), sid, K, T, T);

πi
S ← ((x3, x4), sid, K, T, T);

Return sid;

H(sid, Key, pw)
∀sid ∈ Ts then

If Ts[sid] = (C, (x1, x2), K);

Key∗ ← (
β′

X
′x2pw
4

)x2 ;

If Ts[sid] = (S, (x3, x4), K);

Key∗ ← ( α′

X
′x4pw
2

)x4 ;

If Key∗ = Key then T6 ← T6 ∪ {sid, Key, pw};

If T [sid, Key, pw] =⊥ then

T [sid, Key, pw]
$←− K;

Return T [sid, Key, pw];

Corrupt(C, S)
Corr ← Corr ∪ {(C, S)}; Return pwcs;

Reveal(U, i)

If πi
U .ac ̸= T ∨ (U, i) ∈ Tst return ⊥;

∀(j, V ) s.t. (π
j
V

.sid = πi
U .sid) do π

j
V

.fr = F;

Return πi
U .K;

Test(U, i)

If πi
U .fr = F return ⊥;

K0 ← Reveal(U, i); K1
$←− K;

Tst ← Tst ∪ (U, i);
Return Kb;

Finalize(b′)

For (C × S) ∈ (C × S)\Corr do pwcs
$←− P;

If ∃ pw ̸= pw′

(sid, Key, pw)
$←− T6 ∧ (sid, Key′, pw′) $←− T6 do bad6 = T;

If bad6=F ∧ T6 ̸= ∅ then bad5=T;

Return b = b′;

Fig. 25: Game 6
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Reduction for Game 6.
Initialize (X)

b
$←− {0, 1};

T ← {}; Tst ← {}; Corr ← {}; List ← {};

T6 ← {}; Tbad ← {};

l
$←− {1, ...nse}; r ← 0;

For C ∈ C, S ∈ S do pwcs
$←− P;

(crs, tds, tde)
$←− NIZK.Backdoor( );

CRS ← (G, g, q, crs);
Return CRS;

SendInit-C1(C, i, S)

If πi
C ̸=⊥ return ⊥;

r = r + 1;

x1
$←− Zq ; X1 ← gx1 ;

If r = l

X2 ← X; x2 ←⊥;

Else
x2

$←− Zq ; X2 = gx2 ;
If X1 ∈ List then πi

C ← Invalid;
If X2 ∈ List then πi

C ← Invalid;
π1 ← NIZK.Sim(crs, tds,X1, C);
π2 ← NIZK.Sim(crs, tds,X2, C);
List ← List ∪ {X1, X2};
πi
C ← ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥, F, F);

Return (C,X1, X2, π1, π2);

SendInit-S1(S, i, C)

If πi
S ̸=⊥ return ⊥;

r = r + 1;

x3
$←− Zq ; X3 ← gx3 ;

If r = l

X4 ← X; x4 ←⊥;

Else
x4

$←− Zq ; X4 ← gx4 ;

If X3 ∈ List then π
j
S
← Invalid;

If X4 ∈ List then π
j
S
← Invalid;

π3 ← NIZK.Sim(crs, tds,X3, S);
π4 ← NIZK.Sim(crs, tds,X4, S);
List ← List ∪ {X3, X4};
πi
S ← ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥, F, F);

Return (S,X3, X4, π3, π4);

Send-C2(C, i, S,X′3, X′4, π′3, π′4)

If πi
C ̸= ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥, F, F)

return ⊥;
If X′4 = 1 then π

j
S
← Invalid;

If Ver(crs, (X′3, g), π′3, S) = F then π
j
S
← Invalid;

If Ver(crs, (X′4, g), π′4, S) = F then π
j
S
← Invalid;

If X′3 /∈ List then:
x′3 ← NIZK.Extract(crs, tde,X′3, π′3, S);

If X′3 ̸= g
x′3 then π

j
S
← Invalid;

If X′4 /∈ List then:
x′4 ← NIZK.Extract(crs, tde,X′4, π′4, S);

If X′4 ̸= g
x′4 then π

j
S
← Invalid;

fr ← (C, S) /∈ Corr;

If x2 =⊥

α ← X
(x1+x′3+x′4)pwcs
2 ;

Else
α ← g

(x1+x′3+x′4)x2pwcs ;
πi
C ← ((x1, x2), (C, S,X1, X2, X′3, X′4, α,⊥),⊥, F, fr);

Return α;

Send-S2(S, i, C,X′1, X′2, π′1, π′2)

If πi
S ̸= ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥, F, F)

return ⊥;
If X′2 = 1 then πi

C ← Invalid;
If Ver(crs, (X′1, g), π′1, C) = F then πi

C ← Invalid;
If Ver(crs, (X′2, g), π′2, C) = F then πi

C ← Invalid;
If X′1 /∈ List then:
x′1 ← NIZK.Extract(crs, tde,X′1, π′1, C);

If X′1 ̸= g
x′1 then πi

C ← Invalid;
If X′2 /∈ List then:
x′2 ← NIZK.Extract(crs, tde,X′2, π′2, C);

If X′2 ̸= g
x′2 then πi

C ← Invalid;
fr ← (C, S) /∈ Corr;

If x4 =⊥

β ← X
(x′1+x′2+x3)pwcs
4 ;

Else
β ← g

(x′1+x′2+x3)x4pwcs ;
πi
S ← ((x3, x4), (C, S,X′1, X′2, X3, X4,⊥, β),⊥, F, fr);

Return β;

Send-C3(C, i, S, β′)
If πi

C.sid ̸= (C, S,X1, X2, X3, X4, α,⊥) then ⊥;
If πi

C ̸= ((x1, x2), sid,⊥,⊥, F, fr) return ⊥;
sid = (C, S,X1, X2, X3, X4, α, β′);
fr ← ∃j, (sid = π

j
S

.sid) ∧ (π
j
S

.fr = T);
fr ← fr ∨ (C, S) /∈ Corr;
If ¬fr then

If x2 ̸=⊥

Key ← (
β′

X
x2pwcs
4

)x2 ;

K ← H(sid, Key, pwcs);

If x2 =⊥

If ∃ (sid, Key, pwcs) ∈ T then Abort. (”Wrong guess”)
Else if sid ∈ Ts then (S, (x3, x4), K) ← Ts[sid];
Else ∀ (sid, Key, pw) ∈ T then

If x2 ̸=⊥

Key∗ ← (
β′

X
′x2pw
4

)x2 ;

If Key∗ = Key then T6 ← T6 ∪ {sid, Key, pw};

If x2 =⊥

Tbad ← Tbad ∪ {sid, Key, pw};

K
$←− K;

Ts[sid] ← (C, (x1, x2), K);
πi
C = ((x1, x2), sid, K, T, fr);

Return T;

Send-S3(S, i, C, α′)
If π

j
S

.sid ̸= (C, S,X1, X2, X3, X4,⊥, β) then ⊥;

If πi
S ̸= ((x3, x4), sid,⊥,⊥, F, fr) return ⊥;

sid = (C, S,X1, X2, X3, X4, α′, β);
fr ← ∃j, (sid = π

j
C

.sid) ∧ (π
j
C

.fr = T);
fr ← fr ∨ (C, S) /∈ Corr;
If ¬fr then

If x4 ̸=⊥

Key ← ( α′

X
′x4pwcs
2

)x4 ;

K ← H(sid, Key, pwcs);

If x4 =⊥

If ∃ (sid, Key, pwcs) ∈ T then Abort. (”Wrong guess”)
Else if sid ∈ Ts then (C, (x1, x2), K) ← Ts[sid];
Else ∀ (sid, Key, pw) ∈ T then

If x4 ̸=⊥

Key∗ ← ( α′
X

x4pw
2

)x4 ;

If Key∗ = Key then T6 ← T6 ∪ {sid, Key, pw}

If x4 =⊥

Tbad ← Tbad ∪ {sid, Key, pw};

K
$←− K;

Ts[sid] ← (S, (x3, x4), K);
πi
S = ((x3, x4), sid, K, T, fr);

Return T;

Execute(C, S, i, j)

If πi
C ̸=⊥ ∨π

j
S
̸=⊥ return ⊥;

x1, x2, x3, x4
$←− Zq ;

X1 ← gx1 ; X2 ← gx2 ; X3 ← gx3 ; X4 ← gx4 ;
If X1 ∈ List then πi

C ← Invalid;
If X2 ∈ List then πi

C ← Invalid;

If X3 ∈ List then π
j
S
← Invalid;

If X4 ∈ List then π
j
S
← Invalid;

π1 ← NIZK.Sim(crs, tds,X1, C);
π2 ← NIZK.Sim(crs, tds,X2, C);
π3 ← NIZK.Sim(crs, tds,X3, S);
π4 ← NIZK.Sim(crs, tds,X4, S);
List ← List ∪ {X1, X2, X3, X4};

α
$←− G; β

$←− G;
sid = (C, S,X1, X2, X3, X4, α, β);

K
$←− K;

πi
C ← ((x1, x2), sid, K, T, T);

πi
S ← ((x3, x4), sid, K, T, T);

Return sid;

H(sid, Key, pw)
∀sid ∈ Ts then

If x2 =⊥ ∨ x4 =⊥

Tbad ← Tbad ∪ {sid, Key, pw};

If T [sid, Key, pw] =⊥ then

T [sid, Key, pw]
$←− K;

Return T [sid, Key, pw];

Corrupt(C, S)
Corr ← Corr ∪ {(C, S)};
Return pwcs;

Reveal(U, i)

If πi
U .ac ̸= T ∨ (U, i) ∈ Tst return ⊥;

∀(j, V ) s.t. (π
j
V

.sid = πi
U .sid) do π

j
V

.fr = F;

Return πi
U .K;

Test(U, i)

If πi
U .fr = F return ⊥;

K0 ← Reveal(U, i); K1
$←− K;

Tst ← Tst ∪ (U, i);
Return Kb;

Finalize(b′)

For (C × S) ∈ (C × S)\Corr do pwcs
$←− P;

If ∃ pw ̸= pw′

(sid, Key, pw)
$←− Tbad ∧ (sid, Key′, pw′) $←− Tbad do

B6.Finalize(gx
2
); Abort.

If Tbad ̸= ∅ ∧ pw = pwcs then bad5=T;
Return b = b′;

Fig. 26: Reduction for Game 6
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Game 7: Adding algebraic representation.
Initialize
b

$←− {0, 1};
T ← {}; Tst ← {}; Corr ← {}; List ← {}; T6 ← {};
bad5=F;

For C ∈ C, S ∈ S do pwcs
$←− P;

(crs, tds, tde)
$←− NIZK.Backdoor( );

CRS ← (G, g, q, crs);
Return CRS;

SendInit-C1(C, i, S)

If πi
C ̸=⊥ return ⊥;

x1, x2
$←− Zq ; X1 ← gx1 ; X2 ← gx2 ;

If X1 ∈ List then πi
C ← Invalid;

If X2 ∈ List then πi
C ← Invalid;

π1 ← NIZK.Sim(crs, tds,X1, C);
π2 ← NIZK.Sim(crs, tds,X2, C);
List ← List ∪ {X1, X2};
πi
C ← ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥, F, F);

Return (C,X1, X2, π1, π2);

SendInit-S1(S, i, C)

If πi
S ̸=⊥ return ⊥;

x3, x4
$←− Zq ; X3 ← gx3 ; X4 ← gx4 ;

If X3 ∈ List then π
j
S
← Invalid;

If X4 ∈ List then π
j
S
← Invalid;

π3 ← NIZK.Sim(crs, tds,X3, S);
π4 ← NIZK.Sim(crs, tds,X4, S);
List ← List ∪ {X3, X4};
πi
S ← ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥, F, F);

Return (S,X3, X4, π3, π4);

Send-C2(C, i, S,X′3, X′4, π′3, π′4)

If πi
C ̸= ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥, F, F)

return ⊥;
If X′4 = 1 then π

j
S
← Invalid;

If Ver(crs, (X′3, g), π′3, S) = F then π
j
S
← Invalid;

If Ver(crs, (X′4, g), π′4, S) = F then π
j
S
← Invalid;

If X′3 /∈ List then:
x′3 ← NIZK.Extract(crs, tde,X′3, π′3, S);

If X′3 ̸= g
x′3 then π

j
S
← Invalid;

If X′4 /∈ List then:
x′4 ← NIZK.Extract(crs, tde,X′4, π′4, S);

If X′4 ̸= g
x′4 then π

j
S
← Invalid;

fr ← (C, S) /∈ Corr;

α ← g
(x1+x′3+x′4)x2pwcs ;

πi
C ← ((x1, x2), (C, S,X1, X2, X′3, X′4, α,⊥),⊥, F, fr);

Return α;

Send-S2(S, i, C,X′1, X′2, π′1, π′2)

If πi
S ̸= ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥, F, F)

return ⊥;
If X′2 = 1 then πi

C ← Invalid;
If Ver(crs, (X′1, g), π′1, C) = F then πi

C ← Invalid;
If Ver(crs, (X′2, g), π′2, C) = F then πi

C ← Invalid;
If X′1 /∈ List then:
x′1 ← NIZK.Extract(crs, tde,X′1, π′1, C);

If X′1 ̸= g
x′1 then πi

C ← Invalid;
If X′2 /∈ List then:
x′2 ← NIZK.Extract(crs, tde,X′2, π′2, C);

If X′2 ̸= g
x′2 then πi

C ← Invalid;
fr ← (C, S) /∈ Corr;

β ← g
(x′1+x′2+x3)x4pwcs ;

πi
S ← ((x3, x4), (C, S,X′1, X′2, X3, X4,⊥, β),⊥, F, fr);

Return β;

Send-C3(C, i, S, β′, alg′ )

If πi
C.sid ̸= (C, S,X1, X2, X3, X4, α,⊥) then ⊥;

If πi
C ̸= ((x1, x2), sid,⊥,⊥, F, fr) return ⊥;

sid = (C, S,X1, X2, X3, X4, α, β′);
fr ← ∃j, (sid = π

j
S

.sid) ∧ (π
j
S

.fr = T);
fr ← fr ∨ (C, S) /∈ Corr;
If ¬fr then
Key ← (

β′

X
x2pwcs
4

)x2 ;

K ← H(sid, Key, pwcs);

Else ∀sid ∈ Ts then (S, (x3, x4), K, alg ) ← Ts[sid];

Else ∀(sid, Key, pw) ∈ T then

Key∗ ← (
β′

X
x2pw
4

)x2 ;

If Key∗ = Key then T6 ← T6 ∪ {sid, Key, pw};

K
$←− K;

Ts[sid] ← (C, (x1, x2), K, alg′ );

πi
C ← ((x1, x2), sid, K, T, fr);

Return T;

Send-S3(S, i, C, α′, alg′ )

If π
j
S

.sid ̸= (C, S,X1, X2, X3, X4,⊥, β) then ⊥;

If πi
S ̸= ((x3, x4), sid,⊥,⊥, F, fr) return ⊥;

sid = (C, S,X1, X2, X3, X4, α′, β);
fr ← ∃j, (sid = π

j
C

.sid) ∧ (π
j
C

.fr = T);
fr ← fr ∨ (C, S) /∈ Corr;
If ¬fr then
Key ← ( α′

X
′x4pwcs
2

)x4 ;

K ← H(sid, Key, pwcs);

Else If sid ∈ Ts then (C, (x1, x2), K, alg ) ← Ts[sid];

Else ∀(sid, Key, pw) ∈ T then

Key∗ ← ( α′

X
′x4pw
2

)x4 ;

If Key∗ = Key then T6 ← T6 ∪ {sid, Key, pw};

K
$←− K;

Ts[sid] ← (S, (x3, x4), K, alg′ );

πi
S ← ((x3, x4), sid, K, T, fr);

Return T;

Execute(C, S, i, j)

If πi
C ̸=⊥ ∨π

j
S
̸=⊥ return ⊥;

x1, x2, x3, x4
$←− Zq ;

X1 ← gx1 ; X2 ← gx2 ; X3 ← gx3 ; X4 ← gx4 ;
If X1 ∈ List then πi

C ← Invalid;
If X2 ∈ List then πi

C ← Invalid;

If X3 ∈ List then π
j
S
← Invalid;

If X4 ∈ List then π
j
S
← Invalid;

π1 ← NIZK.Sim(crs, tds,X1, C);
π2 ← NIZK.Sim(crs, tds,X2, C);
π3 ← NIZK.Sim(crs, tds,X3, S);
π4 ← NIZK.Sim(crs, tds,X4, S);
List ← List ∪ {X1, X2, X3, X4};

α
$←− G; β

$←− G;
sid = (C, S,X1, X2, X3, X4, α, β);

K
$←− K;

πi
C ← ((x1, x2), sid, K, T, T);

πi
S ← ((x3, x4), sid, K, T, T);

Return sid;

H(sid, Key, pw)
∀sid ∈ Ts then

If ∀Ts[sid] = (C, (x1, x2), K);

Key∗ ← (
β′

X
′x2pw
4

)x2 ;

If Ts[sid] = (S, (x3, x4), K);

Key∗ ← ( α′

X
′x4pw
2

)x4 ;

If Key∗ = Key then T6 ← T6 ∪ {sid, Key, pw};
If T [sid, Key, pw] =⊥ then

T [sid, Key, pw]
$←− K;

Return T [sid, Key, pw];

Corrupt(C, S)
Corr ← Corr ∪ {(C, S)};
Return pwcs;

Reveal(U, i)

If πi
U .ac ̸= T ∨ (U, i) ∈ Tst return ⊥;

∀(j, V ) s.t. (π
j
V

.sid = πi
U .sid) do π

j
V

.fr = F;

Return πi
U .K;

Test(U, i)

If πi
U .fr = F return ⊥;

K0 ← Reveal(U, i); K1
$←− K;

Tst ← Tst ∪ (U, i);
Return Kb;

Finalize(b′)

For (C × S) ∈ (C × S)\Corr do pwcs
$←− P;

If T6 ̸= ∅ ∧ pw = pwcs then bad5=T;
Return b = b′;

Fig. 27: Game 7

53



Game 7-8.1: Randomizing α and β.
Initialize
b

$←− {0, 1};
T ← {}; Tst ← {}; Corr ← {}; List ← {}; T6 ← {};

bad5= F; t ← 0;

For C ∈ C, S ∈ S do pwcs
$←− P;

(crs, tds, tde)
$←− NIZK.Backdoor( );

CRS ← (G, g, q, crs);
Return CRS;

SendInit-C1(C, i, S)

If πi
C ̸=⊥ return ⊥;

t ← t + 1;

x1, x2
$←− Zq ; X1 ← gx1 ; X2 ← gx2 ;

If X1 ∈ List then πi
C ← Invalid;

If X2 ∈ List then πi
C ← Invalid;

π1 ← NIZK.Sim(crs, tds,X1, C);
π2 ← NIZK.Sim(crs, tds,X2, C);
List ← List ∪ {X1, X2};
πi
C ← ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥, F, F, t);

Return (C,X1, X2, π1, π2);

SendInit-S1(S,i,C)
If πi

S ̸=⊥ return ⊥;

t ← t + 1;

X3 ← gx3 ; X4 ← gx4 ;
If X3 ∈ List then π

j
S
← Invalid;

If X4 ∈ List then π
j
S
← Invalid;

π3 ← NIZK.Sim(crs, tds,X3, S);
π4 ← NIZK.Sim(crs, tds,X4, S);
List ← List ∪ {X3, X4};
πi
S ← ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥, F, F, t);

Return (S,X3, X4, π3, π4);

Send-C2(C, i, S,X′3, X′4, π′3, π′4)

If πi
C ̸= ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥, F, F, t)

return ⊥;
If X′4 = 1 then π

j
S
← Invalid;

If Ver(crs, (X′3, g), π′3, S) = F then π
j
S
← Invalid;

If Ver(crs, (X′4, g), π′4, S) = F then π
j
S
← Invalid;

If X′3 /∈ List then:
x′3 ← NIZK.Extract(crs, tde,X′3, π′3, S);

If X′3 ̸= g
x′3 then π

j
S
← Invalid;

If X′4 /∈ List then:
x′4 ← NIZK.Extract(crs, tde,X′4, π′4, S);

If X′4 ̸= g
x′4 then π

j
S
← Invalid;

fr ← (C, S) /∈ Corr;

α ← g
(x1+x′3+x′4)x2pwcs ;

πi
C ← ((x1, x2), (C, S,X1, X2, X′3, X′4, α,⊥),⊥

, F, fr, t);
Return α;

Send-S2(S, i, C,X′1, X′2, π′1, π′2)

If πi
S ̸= ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥, F, F, t)

return ⊥;
If X′2 = 1 then πi

C ← Invalid;
If Ver(crs, (X′1, g), π′1, C) = F then πi

C ← Invalid;
If Ver(crs, (X′2, g), π′2, C) = F then πi

C ← Invalid;
If X′1 /∈ List then:

x′1 ← NIZK.Extract(crs, tde,X′1, π′1, C);

If X′1 ̸= g
x′1 then πi

C ← Invalid;
If X′2 /∈ List then:

x′2 ← NIZK.Extract(crs, tde,X′2, π′2, C);

If X′2 ̸= g
x′2 then πi

C ← Invalid;
fr ← (C, S) /∈ Corr;

β ← g
(x′1+x′2+x3)x4pwcs ;

πi
S ← ((x3, x4), (C, S,X′1, X′2, X3, X4,⊥, β),⊥

, F, fr, t);
Return β;

Send-C3(C, i, S, β′, alg′)
If πi

C.sid ̸= (C, S,X1, X2, X3, X4, α,⊥) then ⊥;
If πi

C ̸= ((x1, x2), sid,⊥,⊥, F, fr, t) return ⊥;
sid = (C, S,X1, X2, X3, X4, α, β′);
fr ← ∃j, (sid = π

j
S

.sid) ∧ (π
j
S

.fr = T);
fr ← fr ∨ (C, S) /∈ Corr;
If ¬fr then

If t ≤ m

Rewrite alg′ = [((g, a), (X1, b), (X2, c)), (α, d)]

If gc(X1X′3X′4)d·pwcs ̸= X
′pwcs
4 then

K
$←− K;

Else

Key = g(x2a+x1x2b) = gx2a( α

1
pwcs

g
x2(x′3+x′4)

)b;

K = H(sid, Key, pwcs);

Else if t > m

Key ← (
β′

X
′x2pwcs
4

)x2 ;

K ← H(sid, Key, pwcs);
Else if sid ∈ Ts then (S, (x′3, x′4), K, alg) ← Ts[sid];
Else ∀(sid, Key, pw) ∈ T do

Key∗ ← (
β′

X
x2pw
4

)x2 ;

If Key∗ = Key then T6 ← T6 ∪ {sid, Key, pw};

K
$←− K;

Ts[sid] ← (S, (x3, x4), K, alg′);
πi
C = ((x1, x2), sid, K, T, fr, t);

Return T;

Send-S3(S, i, C, α′, alg′)
If π

j
S

.sid ̸= (C, S,X1, X2, X3, X4,⊥, β) then ⊥;

If πi
S ̸= ((x3, x4), sid,⊥,⊥, F, fr, t) return ⊥;

sid = (C, S,X1, X2, X3, X4, α′, β);
fr ← ∃j, (sid = π

j
C

.sid) ∧ (π
j
C

.fr = T);
fr ← fr ∨ (C, S) /∈ Corr;
If ¬fr then

If t ≤ m

Rewrite alg′ = [((g, a), (X3, b), (X4, c)), (β, d)]

If gc(X′1X′2X3)d·pwcs ̸= X
′pwcs
2 then

K
$←− K;

Else

Key = g(x4a+x3x4b) = gx4a(
β

1
pwcs

g
x4(x′1+x′2)

)b;

K = H(sid, Key, pwcs);

Else if t > m

Key ← ( α′

X
′x4pwcs
2

)x4 ;

K ← H(sid, Key, pwcs);
Else If sid ∈ Ts then (C, (x1, x2), K, alg) ← Ts[sid];
Else ∀(sid, Key, pw) ∈ T

Key∗ ← ( α′

X
′x4pw
2

)x4 ;

If Key∗ = Key then T6 ← T6 ∪ {sid, Key, pw};

K
$←− K;

Ts[sid] ← (S, (x3, x4), K, alg′);
πi
S ← ((x3, x4), sid, K, T, fr, t);

Return T;

Execute(C, S, i, j)

If πi
C ̸=⊥ ∨π

j
S
̸=⊥ return ⊥;

x1, x2, x3, x4
$←− Zq ;

X1 ← gx1 ; X2 ← gx2 ; X3 ← gx3 ; X4 ← gx4 ;
If X1 ∈ List then πi

C ← Invalid;
If X2 ∈ List then πi

C ← Invalid;

If X3 ∈ List then π
j
S
← Invalid;

If X4 ∈ List then π
j
S
← Invalid;

π1 ← NIZK.Sim(crs, tds,X1, C);
π2 ← NIZK.Sim(crs, tds,X2, C);
π3 ← NIZK.Sim(crs, tds,X3, S);
π4 ← NIZK.Sim(crs, tds,X4, S);
List ← List ∪ {X1, X2, X3, X4};

α
$←− G; β

$←− G;
sid = (C, S,X1, X2, X3, X4, α, β);

K
$←− K;

πi
C ← ((x1, x2), sid, K, T, T);

πi
S ← ((x3, x4), sid, K, T, T);

Return sid;

H(sid, Key, pw)
∀sid ∈ Ts then

If Ts[sid] = (C, (x1, x2), K, alg′);

Key∗ ← (
β′

X
′x2pw
4

)
x′2 ;

If Ts[sid] = (S, (x3, x4), K, alg′);

Key∗ ← ( α′

X
′x4pw
2

)
x′4 ;

If Key∗ = Key then T6 ← T6 ∪ {sid, Key, pw};

If T [sid, Key, pw] =⊥ then T [sid, Key, pw]
$←− K;

Return T [sid, Key, pw];

Corrupt(C, S)
Corr ← Corr ∪ {(C, S)};
Return pwcs;

Reveal(U, i)

If πi
U .ac ̸= T ∨ (U, i) ∈ Tst return ⊥;

∀(j, V ) s.t. (π
j
V

.sid = πi
U .sid) do π

j
V

.fr = F;

Return πi
U .K;

Test(U, i)

If πi
U .fr = F return ⊥;

K0 ← Reveal(U, i); K1
$←− K;

Tst ← Tst ∪ (U, i);
Return Kb;

Finalize(b′)

For (C × S) ∈ (C × S)\Corr do pwcs
$←− P;

If T6 ̸= ∅ ∧ pw = pwcs then bad5=T;
Return b = b′;

Fig. 28: Game 7-8.154



Reduction for Game 7-8.m.1
Initialize (X, Y )

b
$←− {0, 1};

T ← {}; Tst ← {}; Corr ← {}; List ← {}; T6 ← {};
bad5= F;

For C ∈ C, S ∈ S do pwcs
$←− P;

(crs, tds, tde)
$←− NIZK.Backdoor( );

CRS ← (G, g, q, crs);
Return CRS;

SendInit-C1(C, i, S)

If πi
C ̸=⊥ return ⊥;

x1
$←− Zq ; X1 ← gx1 ;

If t ≤ m

X2 ← X;

If t > m

x2
$←− Zq ; X2 ← gx2 ;

If X1 ∈ List then πi
C ← Invalid;

If X2 ∈ List then πi
C ← Invalid;

π1 ← NIZK.Sim(crs, tds,X1, C);
π2 ← NIZK.Sim(crs, tds,X2, C);
List ← List ∪ {X1, X2};
πi
C ← ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥, F, F, t);

Return (C,X1, X2, π1, π2);

SendInit-S1(S, i, C)

If πi
S ̸=⊥ return ⊥;

x3
$←− Zq ; X3 ← gx3 ;

If t ≤ m

X4 ← X;

If t > m

x4
$←− Zq ; X4 ← gx4 ;

If X3 ∈ List then π
j
S
← Invalid;

If X4 ∈ List then π
j
S
← Invalid;

π3 ← NIZK.Sim(crs, tds,X3, S);
π4 ← NIZK.Sim(crs, tds,X4, S);
List ← List ∪ {X3, X4};
πi
S ← ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥, F, F, t);

Return (S,X3, X4, π3, π4);

Send-C2(C, i, S,X′3, X′4, π′3, π′4)

If πi
C ̸= ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥, F, F, t)

return ⊥;
If X′4 = 1 then π

j
S
← Invalid;

If Ver(crs, (X′3, g), π′3, S) = F then π
j
S
← Invalid;

If Ver(crs, (X′4, g), π′4, S) = F then π
j
S
← Invalid;

If X′3 /∈ List then:
x′3 ← NIZK.Extract(crs, tde,X′3, π′3, S);

If X′3 ̸= g
x′3 then π

j
S
← Invalid;

If X′4 /∈ List then:
x′4 ← NIZK.Extract(crs, tde,X′4, π′4, S);

If X′4 ̸= g
x′4 then π

j
S
← Invalid;

fr ← (C, S) /∈ Corr;

If t ≤ m

α ← X
(x1+x′3+x′4)pwcs
2 ;

If t > m

α ← g
(x1+x′3+x′4)x2pwcs ;

πi
C ← ((x1, x2), (C, S,X1, X2, X′3, X′4, α,⊥),⊥

, F, fr, t);
Return α;

Send-S2(S, i, C,X′1, X′2, π′1, π′2)

If πi
S ̸= ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥, F, F, t)

return ⊥;
If X′2 = 1 then πi

C ← Invalid;
If Ver(crs, (X′1, g), π′1, C) = F then πi

C ← Invalid;
If Ver(crs, (X′2, g), π′2, C) = F then πi

C ← Invalid;
If X′1 /∈ List then:

x′1 ← NIZK.Extract(crs, tde,X′1, π′1, C);

If X′1 ̸= g
x′1 then then πi

C ← Invalid;
If X′2 /∈ List then:

x′2 ← NIZK.Extract(crs, tde,X′2, π′2, C);

If X′2 ̸= g
x′2 then πi

C ← Invalid;
fr ← (C, S) /∈ Corr;

If t ≤ m

β ← X
(x′1+x′2+x3)pwcs
4 ;

If t > m

β ← g
(x′1+x′2+x3)x4pwcs ;

πi
S ← ((x3, x4), (C, S,X′1, X′2, X3, X4,⊥, β),⊥

, F, fr, t);
Return β;

Send-C3(C, i, S, β′, alg′)
If πi

C.sid ̸= (C, S,X1, X2, X3, X4, α,⊥) then ⊥;
If πi

C ̸= ((x1, x2), sid,⊥,⊥, F, fr, t) return ⊥;
sid = (C, S,X1, X2, X3, X4, α, β′);
fr ← ∃j, (sid = π

j
S

.sid) ∧ (π
j
S

.fr = T);
fr ← fr ∨ (C, S) /∈ Corr;
If ¬fr then

If t ≤ m

Rewrite alg′ = [((g, a), (X1, b), (X2, c)), (α, d)];

If gc(X1X′3X′4)d·pwcs ̸= X
′pwcs
4 then

Key = Xa
2 ( α

1
pwcs

X
(x′3+x′4)

2

)bY
(c+d(x1+x′3+x′4)pwcs−x′4pwcs);

Else

Key = Xa
2 ( α

1
pwcs

X
(x′3+x′4)

2

)b;

K = H(sid, Key, pwcs);

Else if t > m

Key ← (
β′

X
′x2pwcs
4

)x2 ;

K ← H(sid, Key, pwcs);
Else if sid ∈ Ts then (S, (x′3, x′4), K, alg) ← Ts[sid];
Else ∀(sid, Key, pw) ∈ T do

Key∗ ← (
β′

X
x2pw
4

)x2 ;

If Key∗ = Key then T6 ← T6 ∪ {sid, Key, pw};

K
$←− K;

Ts[sid] ← (S, (x3, x4), K, alg′);
πi
C = ((x1, x2), sid, K, T, fr, t);

Return T;

Send-S3(S, i, C, α′, alg′)
If π

j
S

.sid ̸= (C, S,X1, X2, X3, X4,⊥, β) then ⊥;

If πi
S ̸= ((x3, x4), sid,⊥,⊥, F, fr, t) return ⊥;

sid = (C, S,X1, X2, X3, X4, α′, β);
fr ← ∃j, (sid = π

j
C

.sid) ∧ (π
j
C

.fr = T);
fr ← fr ∨ (C, S) /∈ Corr;
If ¬fr then

If t ≤ m

Rewrite alg′ = [((g, a), (X3, b), (X4, c)), (β, d)];

If gc(X′1X′2X3)d·pwcs ̸= X
′pwcs
2 then

Key = Xa
4 (

β

1
pwcs

X
(x′1+x′2)

4

)bY
(c+d(x′1+x′2+x3)pwcs−x′2pwcs);

Else

Key = Xa
4 (

β

1
pwcs

X
(x′1+x′2)

4

)b;

K = H(sid, Key, pwcs);

Else if t > m

Key ← ( α′

X
′x4pwcs
2

)x4 ;

K ← H(sid, Key, pwcs);
Else ∀sid ∈ Ts then (C, (x1, x2), K, alg) ← Ts[sid];
Else if ∃(sid, Key, pw) ∈ T then

Key∗ ← ( α′

X
′x4pw
2

)x4 ;

If Key∗ = Key then T6 ← T6 ∪ {sid, Key, pw};

K
$←− K;

Ts[sid] ← (S, (x3, x4), K, alg′);
πi
S ← ((x3, x4), sid, K, T, fr, t);

Return T;

Execute(C, S, i, j)

If πi
C ̸=⊥ ∨π

j
S
̸=⊥ return ⊥;

x1, x2, x3, x4
$←− Zq ;

X1 ← gx1 ; X2 ← gx2 ; X3 ← gx3 ; X4 ← gx4 ;
If X1 ∈ List then πi

C ← Invalid;
If X2 ∈ List then πi

C ← Invalid;

If X3 ∈ List then π
j
S
← Invalid;

If X4 ∈ List then π
j
S
← Invalid;

π1 ← NIZK.Sim(crs, tds,X1, C);
π2 ← NIZK.Sim(crs, tds,X2, C);
π3 ← NIZK.Sim(crs, tds,X3, S);
π4 ← NIZK.Sim(crs, tds,X4, S);
List ← List ∪ {X1, X2, X3, X4};

α
$←− G; β

$←− G;
sid = (C, S,X1, X2, X3, X4, α, β);

K
$←− K;

πi
C ← ((x1, x2), sid, K, T, T);

πi
S ← ((x3, x4), sid, K, T, T);

Return sid;

H(sid,Key,pw)
∀sid ∈ Ts then

If Ts[sid] = (C, (x1, x2), K, alg′);

Key∗ ← (
β′

X
′x2pw
4

)
x′2 ;

If Ts[sid] = (S, (x3, x4), K, alg′);

Key∗ ← ( α′

X
′x4pw
2

)
x′4 ;

If Key∗ = Key then T6 ← T6 ∪ {sid, Key, pw};
If T [sid, Key, pw] =⊥ then

T [sid, Key, pw]
$←− K;

Return T [sid, Key, pw];

Corrupt(C, S)
Corr ← Corr ∪ {(C, S)};
Return pwcs;

Reveal(U, i)

If πi
U .ac ̸= T ∨ (U, i) ∈ Tst return ⊥;

∀(j, V ) s.t. (π
j
V

.sid = πi
U .sid) do π

j
V

.fr = F;

Return πi
U .K;

Test(U, i)

If πi
U .fr = F return ⊥;

K0 ← Reveal(U, i); K1
$←− K;

Tst ← Tst ∪ (U, i);
Return Kb;

Finalize(b′)

For (C × S) ∈ (C × S)\Corr do pwcs
$←− P;

If T6 ̸= ∅ ∧ pw = pwcs then bad5=T;
If b′ = b return 1;
Else return 0; Abort.
Return b = b′

Fig. 29: Reduction for Game 7-8.m.1
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Game 7-8.m.2.
Initialize
b

$←− {0, 1};
T ← {}; Tst ← {}; Corr ← {}; List ← {}; T6 ← {};
bad5= F;

(crs, tds, tde)
$←− NIZK.Backdoor( );

CRS ← (G, g, q, crs);
Return CRS;

SendInit-C1(C, i, S)

If πi
C ̸=⊥ return ⊥;

x1, x2
$←− Zq ; X1 ← gx1 ; X2 ← gx2 ;

If X1 ∈ List then πi
C ← Invalid;

If X2 ∈ List then πi
C ← Invalid;

π1 ← NIZK.Sim(crs, tds,X1, C);
π2 ← NIZK.Sim(crs, tds,X2, C);
List ← List ∪ {X1, X2};
πi
C ← ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥, F, F, t);

Return (C,X1, X2, π1, π2);

SendInit-S1(S, i, C)

If πi
S ̸=⊥ return ⊥;

x3, x4
$←− Zq ; X3 ← gx3 ; X4 ← gx4 ;

If X3 ∈ List then π
j
S
← Invalid;

If X4 ∈ List then π
j
S
← Invalid;

π3 ← NIZK.Sim(crs, tds,X3, S);
π4 ← NIZK.Sim(crs, tds,X4, S);
List ← List ∪ {X3, X4};
πi
S ← ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥, F, F, t);

Return (S,X3, X4, π3, π4);

Send-C2(C, i, S,X′3, X′4, π′3, π′4)

If πi
C ̸= ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥, F, F, t)

return ⊥;
If X′4 = 1 then π

j
S
← Invalid;

If Ver(crs, (X′3, g), π′3, S) = F then π
j
S
← Invalid;

If Ver(crs, (X′4, g), π′4, S) = F then π
j
S
← Invalid;

If X′3 /∈ List then:
x′3 ← NIZK.Extract(crs, tde,X′3, π′3, S);

If X′3 ̸= g
x′3 then π

j
S
← Invalid;

If X′4 /∈ List then:
x′4 ← NIZK.Extract(crs, tde,X′4, π′4, S);

If X′4 ̸= g
x′4 then π

j
S
← Invalid;

fr ← (C, S) /∈ Corr;

If t ≤ m

α
$←− G;

If t > m

α ← g
(x1+x′3+x′4)x2pwcs ;

πi
C ← ((x1, x2), (C, S,X1, X2, X′3, X′4, α,⊥),⊥

, F, fr, t);
Return α;

Send-S2(S, i, C,X′1, X′2, π′1, π′2)

If πi
S ̸= ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥, F, F, t)

return ⊥;
If X′2 = 1 then πi

C ← Invalid;
If Ver(crs, (X′1, g), π′1, C) = F then πi

C ← Invalid;
If Ver(crs, (X′2, g), π′2, C) = F then πi

C ← Invalid;
If X′1 /∈ List then:

x′1 ← NIZK.Extract(crs, tde,X′1, π′1, C);

If X′1 ̸= g
x′1 then πi

C ← Invalid;
If X′2 /∈ List then:

x′2 ← NIZK.Extract(crs, tde,X′2, π′2, C);

If X′2 ̸= g
x′2 then πi

C ← Invalid;
fr ← (C, S) /∈ Corr;

If t ≤ m

β
$←− G;

If t > m

β ← g
(x′1+x′2+x3)x4pwcs ;

πi
S ← ((x3, x4), (C, S,X′1, X′2, X3, X4,⊥, β),⊥

, F, fr, t);
Return β;

Send-C3(C, i, S, β′, alg′)
If πi

C.sid ̸= (C, S,X1, X2, X3, X4, α,⊥) then ⊥;
If πi

C ̸= ((x1, x2), sid,⊥,⊥, F, fr, t) return ⊥;
sid = (C, S,X1, X2, X3, X4, α, β′);
fr ← ∃j, (sid = π

j
S

.sid) ∧ (π
j
S

.fr = T);
fr ← fr ∨ (C, S) /∈ Corr;
If ¬fr then

If t ≤ m

Rewrite alg′ = [((g, a), (X1, b), (X2, c)), (α, d)];
If gc(X1X′3X′4)d·pwcs ̸= X

′pwcs
4 then

K
$←− K;

Else

Key = gx2a( α

1
pwcs

g
x2(x′3+x′4)

)b;

K = H(sid, Key, pwcs);

Else if t > m

Key ← (
β′

X
′x2pwcs
4

)x2 ;

K ← H(sid, Key, pwcs);
Else if sid ∈ Ts then (S, (x′3, x′4), K, alg) ← Ts[sid];
Else ∀(sid, Key, pw) ∈ T do

Key∗ ← (
β′

X
x2pw
4

)x2 ;

If Key∗ = Key then T6 ← T6 ∪ {sid, Key, pw};

K
$←− K;

Ts[sid] ← (S, (x3, x4), K, alg′);
πi
C = ((x1, x2), sid, K, T, fr, t);

Return T;

Send-S3(S, i, C, α′, alg′)
If π

j
S

.sid ̸= (C, S,X1, X2, X3, X4,⊥, β) then ⊥;

If πi
S ̸= ((x3, x4), sid,⊥,⊥, F, fr, t) return ⊥;

sid = (C, S,X1, X2, X3, X4, α′, β);
fr ← ∃j, (sid = π

j
C

.sid) ∧ (π
j
C

.fr = T);
fr ← fr ∨ (C, S) /∈ Corr;
If ¬fr then

If t ≤ m

Rewrite alg′ = [((g, a), (X3, b), (X4, c)), (β, d)];
If gc(X′1X′2X3)d·pwcs ̸= X

′pwcs
2 then

K
$←− K;

Else

Key = gx4a(
β

1
pwcs

g
x4(x′1+x′2)

)b;

K = H(sid, Key, pwcs);

Else if t > m

Key ← ( α′

X
′x4pwcs
2

)x4 ;

K ← H(sid, Key, pwcs);
Else if sid ∈ Ts then (C, (x1, x2), K, alg) ← Ts[sid];
Else ∀(sid, Key, pw) ∈ T then

Key∗ ← ( α′

X
′x4pw
2

)x4 ;

If Key∗ = Key then T6 ← T6 ∪ {sid, Key, pw};

K
$←− K;

Ts[sid] ← (S, (x3, x4), K, alg′);
πi
S ← ((x3, x4), sid, K, T, fr, t);

Return T;

Execute(C, S, i, j)

If πi
C ̸=⊥ ∨π

j
S
̸=⊥ return ⊥;

x1, x2, x3, x4
$←− Zq ;

X1 ← gx1 ; X2 ← gx2 ; X3 ← gx3 ; X4 ← gx4 ;
If X1 ∈ List then πi

C ← Invalid;
If X2 ∈ List then πi

C ← Invalid;

If X3 ∈ List then π
j
S
← Invalid;

If X4 ∈ List then π
j
S
← Invalid;

π1 ← NIZK.Sim(crs, tds,X1, C);
π2 ← NIZK.Sim(crs, tds,X2, C);
π3 ← NIZK.Sim(crs, tds,X3, S);
π4 ← NIZK.Sim(crs, tds,X4, S);
List ← List ∪ {X1, X2, X3, X4};

α
$←− G; β

$←− G;
sid = (C, S,X1, X2, X3, X4, α, β);

K
$←− K;

πi
C ← ((x1, x2), sid, K, T, T);

πi
S ← ((x3, x4), sid, K, T, T);

Return sid;

H(sid, Key, pw)
∀sid ∈ Ts then

If Ts[sid] = (C, (x1, x2), K, alg′);

Key∗ ← (
β′

X
′x2pw
4

)
x′2 ;

If Ts[sid] = (S, (x3, x4), K, alg′);

Key∗ ← ( α′

X
′x4pw
2

)
x′4 ;

If Key∗ = Key then T6 ← T6 ∪ {sid, Key, pw};
If T [sid, Key, pw] =⊥ then

T [sid, Key, pw]
$←− K;

Return T [sid, Key, pw];

Corrupt(C, S)

Corr ← Corr ∪ {(C, S)}; pwcs
$←− P;

Return pwcs;

Reveal(U, i)

If πi
U .ac ̸= T ∨ (U, i) ∈ Tst return ⊥;

∀(j, V ) s.t. (π
j
V

.sid = πi
U .sid) do π

j
V

.fr = F;

Return πi
U .K;

Test(U, i)

If πi
U .fr = F return ⊥;

K0 ← Reveal(U, i); K1
$←− K;

Tst ← Tst ∪ (U, i);
Return Kb;

Finalize(b′)

For (C × S) ∈ (C × S)\Corr do pwcs
$←− P;

If T6 ̸= ∅ ∧ pw = pwcs then bad5=T;
Return b = b′;

Fig. 30: Game 7-8.2
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Game 9: Perfect forward secrecy.
Initialize
b

$←− {0, 1};
T ← {}; Tst ← {}; Corr ← {}; List ← {}; T6 ← {};
T9 ← {};
bad5=F; bad19=F; bad29=F;

(crs, tds, tde)
$←− NIZK.Backdoor( );

CRS ← (G, g, q, crs);
Return CRS;

SendInit-C1(C, i, S)

If πi
C ̸=⊥ return ⊥;

x1, x2
$←− Zq ; X1 ← gx1 ; X2 ← gx2 ;

If X1 ∈ List then πi
C ← Invalid;

If X2 ∈ List then πi
C ← Invalid;

π1 ← NIZK.Sim(crs, tds,X1, C);
π2 ← NIZK.Sim(crs, tds,X2, C);
List ← List ∪ {X1, X2};
πi
C ← ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥, F, F);

Return (C,X1, X2, π1, π2);

SendInit-S1(S, i, C)

If πi
S ̸=⊥ return ⊥;

x3, x4
$←− Zq ; X3 ← gx3 ; X4 ← gx4 ;

If X3 ∈ List then π
j
S
← Invalid;

If X4 ∈ List then π
j
S
← Invalid;

π3 ← NIZK.Sim(crs, tds,X3, S);
π4 ← NIZK.Sim(crs, tds,X4, S);
List ← List ∪ {X3, X4};
πi
S ← ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥, F, F);

Return (S,X3, X4, π3, π4);

Send-C2(C, i, S,X′3, X′4, π′3, π′4)

If πi
C ̸= ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥, F, F)

return ⊥;
If X′4 = 1 then π

j
S
← Invalid;

If Ver(crs, (X′3, g), π′3, S) = F then π
j
S
← Invalid;

If Ver(crs, (X′4, g), π′4, S) = F then π
j
S
← Invalid;

If X′3 /∈ List then:
x′3 ← NIZK.Extract(crs, tde,X′3, π′3, S);

If X′3 ̸= g
x′3 then π

j
S
← Invalid;

If X′4 /∈ List then:
x′4 ← NIZK.Extract(crs, tde,X′4, π′4, S);

If X′4 ̸= g
x′4 then π

j
S
← Invalid;

fr ← (C, S) /∈ Corr;

w
$←− Zq ; α ← gw ;

πi
C ← ((x1, x2), (C, S,X1, X2, X′3, X′4, α,⊥),⊥, F, fr);

Return α;

Send-S2(S, i, C,X′1, X′2, π′1, π′2)

If πi
S ̸= ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥, F, F)

return ⊥;
If X′2 = 1 then πi

C ← Invalid;
If Ver(crs, (X′1, g), π′1, C) = F then πi

C ← Invalid;
If Ver(crs, (X′2, g), π′2, C) = F then πi

C ← Invalid;
If X′1 /∈ List then:

x′1 ← NIZK.Extract(crs, tde,X′1, π′1, C);

If X′1 ̸= g
x′1 then πi

C ← Invalid;
If X′2 /∈ List then:

x′2 ← NIZK.Extract(crs, tde,X′2, π′2, C);

If X′2 ̸= g
x′2 then πi

C ← Invalid;
fr ← (C, S) /∈ Corr;

w
$←− Zq ; β ← gw ;

πi
S ← ((x3, x4), (C, S,X′1, X′2, X3, X4,⊥, β),⊥, F, fr);

Return β;

Send-C3(C, i, S, β′, alg′)
If πi

C.sid ̸= (C, S,X1, X2, X3, X4, α,⊥) then ⊥;
If πi

C ̸= ((x1, x2), sid,⊥,⊥, F, fr) return ⊥;
sid = (C, S,X1, X2, X3, X4, α, β′);
fr ← ∃j, (sid = π

j
S

.sid) ∧ (π
j
S

.fr = T);
fr ← fr ∨ (C, S) /∈ Corr;
If ¬fr then

Rewrite alg′ = [((g, a), (X1, b), (X2, c)), (α, d)];
If gc(X1X′3X′4)d·pwcs ̸= X

′pwcs
4 then

K
$←− K;

Else

Key = gx2a( α

1
pwcs

g
x2(x′3+x′4)

)b;

K = H(sid, Key, pwcs);
Else if sid ∈ Ts then (S, (x′3, x′4), K, alg) ← Ts[sid];
Else ∀(sid, Key, pw) ∈ T do

Key∗ ← (
β′

X
x2pw
4

)x2 ;

If Key∗ = Key then T6 ← T6 ∪ {sid, Key, pw};

K
$←− K;

Ts[sid] ← (S, (x3, x4), K, alg′);
πi
C = ((x1, x2), sid, K, T, fr);

Return T;

Send-S3(S, i, C, α′, alg′)
If π

j
S

.sid ̸= (C, S,X1, X2, X3, X4,⊥, β) then ⊥;

If πi
S ̸= ((x3, x4), sid,⊥,⊥, F, fr) return ⊥;

sid = (C, S,X1, X2, X3, X4, α′, β);
fr ← ∃j, (sid = π

j
C

.sid) ∧ (π
j
C

.fr = T);
fr ← fr ∨ (C, S) /∈ Corr;
If ¬fr then

Rewrite alg′ = [((g, a), (X3, b), (X4, c)), (β, d)];
If gc(X′1X′2X3)d·pwcs ̸= X

′pwcs
2 then

K
$←− K;

Else

Key = gx4a(
β

1
pwcs

g
x4(x′1+x′2)

)b;

K = H(sid, Key, pwcs);
Else if sid ∈ Ts then (C, (x1, x2), K, alg) ← Ts[sid];
Else if ∃(sid, Key, pw) ∈ T then

Key∗ ← ( α′

X
′x4pw
2

)x4 ;

If Key∗ = Key then T6 ← T6 ∪ {sid, Key, pw};

K
$←− K;

Ts[sid] ← (S, (x3, x4), K, alg′);
πi
S ← ((x3, x4), sid, K, T, fr);

Return T;

Execute(C, S, i, j)

If πi
C ̸=⊥ ∨π

j
S
̸=⊥ return ⊥;

x1, x2, x3, x4
$←− Zq ;

X1 ← gx1 ; X2 ← gx2 ; X3 ← gx3 ; X4 ← gx4 ;
If X1 ∈ List then πi

C ← Invalid;
If X2 ∈ List then πi

C ← Invalid;

If X3 ∈ List then π
j
S
← Invalid;

If X4 ∈ List then π
j
S
← Invalid;

π1 ← NIZK.Sim(crs, tds,X1, C);
π2 ← NIZK.Sim(crs, tds,X2, C);
π3 ← NIZK.Sim(crs, tds,X3, S);
π4 ← NIZK.Sim(crs, tds,X4, S);
List ← List ∪ {X1, X2, X3, X4};

α
$←− G; β

$←− G;
sid = (C, S,X1, X2, X3, X4, α, β);

K
$←− K;

πi
C ← ((x1, x2), sid, K, T, T);

πi
S ← ((x3, x4), sid, K, T, T);

Return sid;

H(sid, Key, pw)
∀sid ∈ Ts then

If Ts[sid] = (C, (x1, x2), K, alg′);

Key∗ ← (
β′

X
′x2pw
4

)
x′2 ;

If Ts[sid] = (S, (x3, x4), K, alg′);

Key∗ ← ( α′

X
′x4pw
2

)
x′4 ;

If Key∗ = Key

If (C, S) /∈ Corr do T6 ← T6 ∪ {sid, Key, pw};

If (C, S) ∈ Corr ∧ pw = pwcs ∧ bad29 = F

then T9 ← T9 ∪ {sid, Key, pw};

If T [sid, Key, pw] =⊥ then

T [sid, Key, pw]
$←− K;

Return T [sid, Key, pw];

Corrupt(C, S)

Corr ← Corr ∪ {(C, S)}; pwcs
$←− P;

∀sid ∈ Ts then

If Ts[sid] = (C, (x1, x2), K, alg);

Rewrite alg = [((g, a), (X3, b), (X4, c)), (β, d)]

If gc(X′1X′2X3)d·pwcs = X
′pwcs
2 do bad29=T;

If Ts[sid] = (S, (x3, x4), K, alg);

Rewrite alg = [((g, a), (X1, b), (X2, c)), (α, d)]

If gc(X1X′3X′4)d·pwcs = X
′pwcs
4 do bad29=T;

Return pwcs;

Reveal(U, i)

If πi
U .ac ̸= T ∨ (U, i) ∈ Tst return ⊥;

∀(j, V ) s.t. (π
j
V

.sid = πi
U .sid) do π

j
V

.fr = F;

Return πi
U .K;

Test(U, i)

If πi
U .fr = F return ⊥;

K0 ← Reveal(U, i); K1
$←− K;

Tst ← Tst ∪ (U, i);
Return Kb;

Finalize(b′)

For (C × S) ∈ (C × S)\Corr do pwcs
$←− P;

If T6 ̸= ∅ ∧ pw = pwcs then bad5=T;

For (sid, Key, pwcs)
$←− T9 do bad19=T;

If bad29=T then bad19=F;
Return b = b′;

Fig. 31: Game 9
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Reduction for Game 9
Initialize
b

$←− {0, 1};
T ← {}; Tst ← {}; Corr ← {}; List ← {}; Corr ← {};

T6 ← {}; Tbad9
← {}; Tbad5

← {};

bad29=F; (crs, tds, tde)
$←− NIZK.Backdoor( );

CRS ← (G, g, q, crs);
Return CRS;

SendInit-C1(C, i, S)

If πi
C ̸=⊥ return ⊥;

r = r + 1;

x1
$←− Zq ; X1 ← gx1 ;

If r = l

X2 ← X; x2 ←⊥;

Else
x2

$←− Zq ; X2 = gx2 ;
If X1 ∈ List then πi

C ← Invalid;
If X2 ∈ List then πi

C ← Invalid;
π1 ← NIZK.Sim(crs, tds,X1, C);
π2 ← NIZK.Sim(crs, tds,X2, C);
List ← List ∪ {X1, X2};
πi
C ← ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥, F, F);

Return (C,X1, X2, π1, π2);

SendInit-S1(S, i, C)

If πi
S ̸=⊥ return ⊥;

r = r + 1;

x3
$←− Zq ; X3 ← gx3 ;

If r = l

X4 ← X; x4 ←⊥;

Else
x4

$←− Zq ; X4 ← gx4 ;

If X3 ∈ List then π
j
S
← Invalid;

If X4 ∈ List then π
j
S
← Invalid;

π3 ← NIZK.Sim(crs, tds,X3, S);
π4 ← NIZK.Sim(crs, tds,X4, S);
List ← List ∪ {X3, X4};
πi
S ← ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥, F, F);

Return (S,X3, X4, π3, π4);

Send-C2(C, i, S,X′3, X′4, π′3, π′4)

If πi
C ̸= ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥, F, F)

return ⊥;
If X′4 = 1 then π

j
S
← Invalid;

If Ver(crs, (X′3, g), π′3, S) = F then π
j
S
← Invalid;

If Ver(crs, (X′4, g), π′4, S) = F then π
j
S
← Invalid;

If X′3 /∈ List then:
x′3 ← NIZK.Extract(crs, tde,X′3, π′3, S);

If X′3 ̸= g
x′3 then π

j
S
← Invalid;

If X′4 /∈ List then:
x′4 ← NIZK.Extract(crs, tde,X′4, π′4, S);

If X′4 ̸= g
x′4 then π

j
S
← Invalid;

fr ← (C, S) /∈ Corr;

w
$←− Zq ; α ← gw ;

πi
C ← ((x1, x2), (C, S,X1, X2, X′3, X′4, α,⊥),⊥, F, fr);

Return α;

Send-S2(S, i, C,X′1, X′2, π′1, π′2)

If πi
S ̸= ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥, F, F)

return ⊥;
If X′2 = 1 then πi

C ← Invalid;
If Ver(crs, (X′1, g), π′1, C) = F then πi

C ← Invalid;
If Ver(crs, (X′2, g), π′2, C) = F then πi

C ← Invalid;
If X′1 /∈ List then:

x′1 ← NIZK.Extract(crs, tde,X′1, π′1, C);

If X′1 ̸= g
x′1 then πi

C ← Invalid;
If X′2 /∈ List then:

x′2 ← NIZK.Extract(crs, tde,X′2, π′2, C);

If X′2 ̸= g
x′2 then πi

C ← Invalid;
fr ← (C, S) /∈ Corr;

w
$←− Zq ; β ← gw ;

πi
S ← ((x3, x4), (C, S,X′1, X′2, X3, X4,⊥, β),⊥, F, fr);

Return β;

Send-C3(C, i, S, β′, alg′)
If πi

C.sid ̸= (C, S,X1, X2, X3, X4, α,⊥) then ⊥;
If πi

C ̸= ((x1, x2), sid,⊥,⊥, F, fr) return ⊥;
sid = (C, S,X1, X2, X3, X4, α, β′);
fr ← ∃j, (sid = π

j
S

.sid) ∧ (π
j
S

.fr = T);
fr ← fr ∨ (C, S) /∈ Corr;
If ¬fr then

Rewrite alg′ = [((g, a), (X1, b), (X2, c)), (α, d)];
If gc(X1X′3X′4)d·pwcs ̸= X

′pwcs
4 then

K
$←− K;

Else

Key = gx2a( α

1
pwcs

g
x2(x′3+x′4)

)b;

K = H(sid, Key, pwcs);
Else if sid ∈ Ts then (S, (x′3, x′4), K, alg) ← Ts[sid];
Else ∀(sid, Key, pw) ∈ T do

If x2 ̸=⊥

Key∗ ← (
β′

X
x2pw
4

)x2 ;

If Key∗ = Key then T6 ← T6 ∪ {sid, Key, pw};

If x2 =⊥

Tbad5
← Tbad5

∪ {sid, Key, pw};

K
$←− K;

Ts[sid] ← (S, (x3, x4), K, alg′);
πi
C = ((x1, x2), sid, K, T, fr);

Return T;

Send-S3(S, i, C, α′, alg′)
If π

j
S

.sid ̸= (C, S,X1, X2, X3, X4,⊥, β) then ⊥;

If πi
S ̸= ((x3, x4), sid,⊥,⊥, F, fr) return ⊥;

sid = (C, S,X1, X2, X3, X4, α′, β);
fr ← ∃j, (sid = π

j
C

.sid) ∧ (π
j
C

.fr = T);
fr ← fr ∨ (C, S) /∈ Corr;
If ¬fr then

Rewrite alg′ = [((g, a), (X3, b), (X4, c)), (β, d)];
If gc(X′1X′2X3)d·pwcs ̸= X

′pwcs
2 then

K
$←− K;

Else

Key = gx4a(
β

1
pwcs

g
x4(x′1+x′2)

)b;

K = H(sid, Key, pwcs);
Else if sid ∈ Ts then (C, (x1, x2), K, alg) ← Ts[sid];
Else ∀(sid, Key, pw) ∈ T then

If x4 ̸=⊥

Key∗ ← ( α′

X
′x4pw
2

)x4 ;

If Key∗ = Key then T6 ← T6 ∪ {sid, Key, pw};

If x4 =⊥

Tbad5
← Tbad5

∪ {sid, Key, pw};

K
$←− K;

Ts[sid] ← (S, (x3, x4), K, alg′);
πi
S ← ((x3, x4), sid, K, T, fr);

Return T;

Execute(C, S, i, j)

If πi
C ̸=⊥ ∨π

j
S
̸=⊥ return ⊥;

x1, x2, x3, x4
$←− Zq ;

X1 ← gx1 ; X2 ← gx2 ; X3 ← gx3 ; X4 ← gx4 ;
If X1 ∈ List then πi

C ← Invalid;
If X2 ∈ List then πi

C ← Invalid;

If X3 ∈ List then π
j
S
← Invalid;

If X4 ∈ List then π
j
S
← Invalid;

π1 ← NIZK.Sim(crs, tds,X1, C);
π2 ← NIZK.Sim(crs, tds,X2, C);
π3 ← NIZK.Sim(crs, tds,X3, S);
π4 ← NIZK.Sim(crs, tds,X4, S);
List ← List ∪ {X1, X2, X3, X4};

α
$←− G; β

$←− G;
sid = (C, S,X1, X2, X3, X4, α, β);

K
$←− K;

πi
C ← ((x1, x2), sid, K, T, T);

πi
S ← ((x3, x4), sid, K, T, T);

Return sid;

H(sid, Key, pw)
∀sid ∈ Ts then

If x2 =⊥ ∨ x4 =⊥

If (C, S) /∈ Corr do Tbad5
← Tbad5

∪ {sid, Key, pw};

If (C, S) ∈ Corr ∧ pw = pwcs ∧ bad29 = F

do Tbad9
← Tbad9

∪ {sid, Key, pw};

If T [sid, Key, pw] =⊥ then

T [sid, Key, pw]
$←− K;

Return T [sid, Key, pw];

Corrupt(C, S)

Corr ← Corr ∪ {(C, S)}; pwcs
$←− P;

∀sid ∈ Ts then

If Ts[sid] = (C, (x1, x2), K, alg);

Rewrite alg = [((g, a), (X3, b), (X4, c)), (β, d)]

If gc(X′1X′2X3)d·pwcs = X
′pwcs
2 do bad29=T;

If Ts[sid] = (S, (x3, x4), K, alg′);

Rewrite alg = [((g, a), (X1, b), (X2, c)), (α, d)]

If gc(X1X′3X′4)d·pwcs = X
′pwcs
4 do bad29=T;

Return pwcs;

Reveal(U, i)

If πi
U .ac ̸= T ∨ (U, i) ∈ Tst return ⊥;

∀(j, V ) s.t. (π
j
V

.sid = πi
U .sid) do π

j
V

.fr = F;

Return πi
U .K;

Test(U, i)

If πi
U .fr = F return ⊥;

K0 ← Reveal(U, i); K1
$←− K;

Tst ← Tst ∪ (U, i);
Return Kb;

Finalize(b′)

For (C × S) ∈ (C × S)\Corr do pwcs
$←− P;

For (sid, Key, pwcs)
$←− Tbad9

do B9.Finalize(gx
2

);

Return b = b′;

Fig. 32: Reduction for Game 9
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