
Balancing Quality and Efficiency in Private Clustering
with Affinity Propagation

(Full Version)*

Hannah Keller, Helen Möllering, Thomas Schneider, Hossein Yalame
ENCRYPTO Group, Technical University of Darmstadt, Darmstadt, Germany

hannah.keller@stud.tu-darmstadt.de, {moellering, schneider, yalame}@encrypto.cs-tu.darmstadt.de

Keywords: Privacy-preserving Machine Learning, Clustering, Secure Computation

Abstract: In many machine learning applications, training data consists of sensitive information from multiple sources.
Privacy-preserving machine learning using secure computation enables multiple parties to compute on their
joint data without disclosing their inputs to each other. In this work, we focus on clustering, an unsupervised
machine learning technique that partitions data into groups. Previous works on privacy-preserving clustering
often leak information and focus on the k-means algorithm, which provides only limited clustering quality and
flexibility. Additionally, the number of clusters k must be known in advance. We analyze several prominent
clustering algorithms’ capabilities and their compatibility with secure computation techniques to create an
efficient, fully privacy-preserving clustering implementation superior to k-means. We find affinity propagation
to be the most promising candidate and securely implement it using various multi-party computation techniques.
Privacy-preserving affinity propagation does not require any input parameters and consists of operations that
are relatively efficient with secure computation. As threat models, we consider passive security as well as
active security with an honest and dishonest majority. We offer the first comparison of privacy-preserving
clustering between these scenarios, enabling an understanding of the exact trade-offs between them. Based on
the clustering quality and the computational and communication costs, privacy-preserving affinity propagation
offers a good trade-off between quality and efficiency for practical privacy-preserving clustering.

1 Introduction

The field of machine learning (ML) has received
considerable attention in recent years thanks to its
far-reaching and interdisciplinary applications, which
range from cancer diagnostics over natural language
processing to object recognition in images and natural
language processing (KEE+14; VKK+15; HZRS15).
Furthermore, the increased storage capabilities and
computational power of devices enable models to be
trained on immense data pools. Training data is often
aggregated from multiple sources to increase the utility
of the resulting model, and cloud providers such as
Amazon SageMaker, Microsoft Azure, and the Google
AI Platform offer the necessary storage and compu-
tation as a service. However, as the availability of
training data for such algorithms increases, the rele-
vance of protecting its security and privacy also grows.

*Please cite the version of this paper published at 18th
International Conference on Security and Cryptography (SE-
CRYPT 2021) (KMSY21).

Regulations such as GDPR1or HIPAA2 restrict the
use of personal information, and a need for privacy-
preserving solutions arises.

For this reason, using secure multi-party compu-
tation (MPC) for privacy-preserving machine learn-
ing (PPML) has become a hot research topic (JVC18;
MLS+20; RRK+20; PSSY21). MPC uses crypto-
graphic techniques to allow several parties to com-
pute the output of a function without revealing the
private input values to each other (AFL+16; CDE+18;
DEF+19; EOP+19; Kel20; BDST20). Using MPC,
multiple data owners can securely train an ML model
without any information leakage to an (internal or ex-
ternal) adversary.

In this work, we focus on clustering, a form of
unsupervised ML in which similar data points are
grouped together. Clustering algorithms are useful,
for example, to segment a market using consumer pref-
erences (CCGR97) or group photos of diseased organs

1https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=
celex%3A32016R0679

2https://www.hhs.gov/hipaa/

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32016R0679
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32016R0679
https://www.hhs.gov/hipaa/

in medical imaging (MS99). A well-known and simple
clustering algorithm is k-means (Ste56), which itera-
tively updates cluster centers and assignments. This al-
gorithm has been the focus of much privacy-preserving
clustering research (cf. §6); however, the quality of
clustering results from this algorithm is limited (cf. §3).
Furthermore, k-means requires the number of clus-
ters k to be chosen in advance, which is a challenge
if no party has access to the full pool of training data,
as is the case in many privacy-preserving settings. In
general, choosing parameter values for clustering al-
gorithms becomes significantly less trivial when algo-
rithms are executed in a privacy-preserving manner.
Furthermore, privacy research has focused on private
clustering in the passive security model (cf. §2.2), ne-
glecting the stronger active security model needed to
securely perform secure computation between mutu-
ally distrusting parties.
Contributions and Outline. After introducing the
preliminaries to our work in §2,, we provide the fol-
lowing contributions:

• We give a comprehensive analysis of multiple clus-
tering algorithms with respect to their potential
for efficient and high-quality privacy-preserving
clustering with MPC techniques (cf. §3).

• Based on our analysis, we identify affinity propaga-
tion as a promising candidate. Affinity propagation
is used in a wide variety of privacy-critical medi-
cal applications, such as epilepsy (LSW07), neu-
ron types (SMB+13), cancer detection (JJD+16),
rabies virus sequencing (FFM+18), and protein
functions (WZW+18). It automatically deter-
mines the number of clusters and is tolerant to
outliers (cf. §4). We provide the first fully privacy-
preserving affinity propagation protocol with MPC
usable in the passive and active security model.

• We provide an experimental evaluation of our pro-
tocol in multiple security models, i.e., considering
an active/passive adversary and honest/dishonest
majority (cf. §5). Our results enable the assess-
ment of the overhead associated with stronger se-
curity, which is important for meaningfully balanc-
ing privacy and efficiency in privacy-preserving
clustering applications. Our code is available
at https://encrypto.de/code/ppAffinityPropagation.

We discuss related work on privacy-preserving
clustering in §6 and conclude with §7.

2 Preliminaries

This section introduces the preliminaries of clustering
(cf. §2.1) and secure computation (cf. §2.2).

2.1 Clustering

Clustering is an unsupervised ML technique that
groups data points into clusters. Since it is an unsuper-
vised ML technique, learning occurs without knowl-
edge of any true grouping of points or any data labels.
The goal is to group similar records into the same
cluster, while elements in different clusters should be
maximally different (JMF99).
Clustering Algorithm Types. We differentiate be-
tween partitioning-based, hierarchical, distribution-
based, and density-based clustering algorithms.
Partitioning-based algorithms separate the data set
into several non-overlapping groups, whose center
is considered the center of the data points in this
group (XT15). Often these algorithms optimize an
objective function in an iterative fashion (XEKS98).
Examples are k-means (Ste56) and affinity propaga-
tion (AP) (FD07), which we both examine closely in
this work (cf. §3). This approach realizes a hard clus-
tering, i.e., every input record is assigned to exactly
one cluster, whereas soft clustering, e.g., based on
distributions, may assign a point to several clusters
with varying probabilities. Distribution-based cluster-
ing approximates the original distributions from which
data points are assumed to have been drawn (XT15),
as is the case for Gaussian mixture models clustering
(GMM). Hierarchical clustering algorithms represent
a data set as a binary tree of data points and itera-
tively merge or divide clusters based on the derived
tree structure (XT15). The computational complexity
of these algorithms is very high; already the first step
of most hierarchical clustering algorithms, computing
pair-wise distances and performing a sort, requires
O(n2 logn) time complexity (XT15). Therefore, we
do not consider them as candidates for our privacy-
preserving algorithm. Density-based algorithms, such
as Density-Based Spatial Clustering of Applications
with Noise (DBSCAN) (EKSX96), cluster data points
that lie closely together in a dense area.
Clustering Quality Scores. To measure clustering
quality, internal and external clustering indices are
used. External indices compare the clustering result to
a known ground truth, which is a known true assign-
ment of each point to a cluster. A ground truth is only
available for benchmark data sets and not present for
practical applications, since clustering is an unsuper-
vised ML technique. In those cases, internal indices
are used instead to assess the quality of a clustering
result. These indices focus on internal characteristics,
i.e., they measure the compactness of the elements
assigned to one cluster and the separation between
different clusters (AGM+13). To provide a compre-
hensive quality assessment in §3 and §5, we use an

https://encrypto.de/code/ppAffinityPropagation

Table 1: MPC protocols for different security models, cat-
egorized by their security level and number of corruptions.
Names are from MP-SPDZ (Kel20).

Passive Active
Dishonest Majority Semi2k SPDZ2k

Honest Majority Replicated2k PsReplicated2k

external and an internal clustering quality index:
The adjusted rand index (ARI) (HA85) is a widely

used (AGM+13; VEB10) external index that assesses
all inner-cluster and inter-cluster data point pairs,
where the 2 points were assigned to the same clus-
ter and to different clusters, respectively. Any pairs
correctly identified as belonging to the same cluster or
to different clusters increase the ARI value. The ARI
lies in a range of [−1,1], and a value of 1 indicates
that the clustering result is equal to the ground truth.

The silhouette index (SI) (Rou87) is a well-known
internal index (AGM+13) with range [−1,1] and quan-
tifies the relation between inner-cluster and inter-
cluster distance between points. A good result has
an SI value close to 1, indicating a small inner-cluster
and large inter-cluster distance.

2.2 Multi-Party Computation (MPC)

MPC protocols allow the realization of privacy-
preserving clustering algorithms. They privately evalu-
ate an algorithm under “encryption” s.t. the inputs and
intermediate values remain hidden and only the output
is revealed. The two most prominent cryptographic
protocols for MPC are constant-round garbled circuits
(GC) by (Yao86) and the multi-round Arithmetic or
Boolean Sharing protocol by (GMW87).
Honest/Dishonest Majority. This terminology spec-
ifies the fraction of possible corruptions among the
parties involved in MPC. In a dishonest majority set-
ting, the adversary may corrupt all but one party. This
setting is more complex and, thus, more expensive
than an honest majority setting, where only a minority
of parties are assumed to be corrupted.
Passive/Active Security. Adversarial behavior can be
passive or active, which implies specific assumptions
about the adversary’s capabilities in an MPC protocol.
Passive security protects against passive adversaries,
who adhere to the protocol’s specifications while at-
tempting to learn as much as possible about that data
of other parties (Gol09). In the active security model,
an active adversary can arbitrarily deviate from the
protocol, i.e., this model provides stronger security
guarantees. MPC protocols that provide protection
against an active adversary can even be securely used
when there is no trust among the parties. However, a
trade-off between efficiency and security must often be

made, since actively secure protocols incur significant
overhead (LP15; KSS12; AL07).

Tab. 1 contains an overview of several MPC
protocols used in our evaluation. We imple-
ment privacy-preserving affinity propagation (cf. §4)
with the MP-SPDZ framework for MPC (Kel20):
SPDZ2k (CDE+18) is the first protocol for the active,
dishonest majority setting over Z2k , and was imple-
mented by (DEF+19). Semi2k is a trimmed-down
version of SPDZ2k for the passive, dishonest majority
setting. Replicated2k is a passively secure protocol
for 3 parties and honest majority based on (AFL+16).
PsReplicated2k (EOP+19) extends (LN17) to the ring
setting and uses ideas from (CDE+18), offering pro-
tection in the passive, honest majority setting.

3 Analysis of Clustering Algorithms

In order to determine promising algorithm candidates
for privacy-preserving clustering, we compare the
following prominent algorithms: k-means (Ste56),
Gaussian mixture models (GMM) (DLR77), affin-
ity propagation (AP) (FD07), and Density-Based
Spatial Clustering of Applications with Noise (DB-
SCAN) (EKSX96). These algorithms were selected
based on (1) their widespread use (BK18; XT15;
XW05) and (2) simplicity, which is crucial for effi-
ciency with MPC. K-means and AP are partitioning-
based algorithms (cf. §2.1). GMM is a distribution-
based clustering algorithm that assumes data points
are sampled from a normal distribution. DBSCAN is
a density-based clustering algorithm.

The input parameters of these algorithms have a
direct impact on the clustering result and its quality. In
the following, we discuss and visualize the influence
of these parameters, as well as other characteristics
such as the tolerance to outliers, flexibility for multiple
cluster shapes, and other non-visual components of
the clustering quality. Furthermore, we investigate the
algorithms’ suitability for a privacy-preserving realiza-
tion via MPC.

3.1 Tolerance to Outliers

Data sets often contain outliers, i.e., data records that
are very untypical compared to the majority of the
set. Therefore, in the context of clustering, it is im-
perative that the clustering result, including identified
cluster centers and cluster assignments, is not distorted
or greatly affected by these data records. If a cluster-
ing algorithm either explicitly identifies outliers or if
outliers do not distort the result, this algorithm can
be considered as tolerant to outliers. Especially in a

privacy-preserving context, data owners may not know
whether their own data contains an outlier or not, since
the other data owners’ input data is unknown.

DBSCAN defines a special notion of noise that
allows outliers to be flagged as such (EKSX96; XT15).
Since AP does not require the number of clusters as
an input parameter, outliers are typically detected as
small, separate clusters, which can be marked as out-
liers based on their size and which do not affect the
attributes of other identified clusters (XT15). There-
fore, both DBSCAN and AP are tolerant to outliers.
In contrast, k-means and GMM are both sensitive to
outliers. Specifically, k-means requires all data points
to be assigned to one cluster, even if a point does
not fit to any cluster. Since the algorithm specifies
the cluster center as the mean of all points, outliers
heavily distort these centers or form their own clus-
ter, forcing other true clusters in the data to become
merged (XW05). Similarly, the clusters resulting from
GMM are assumed to have been drawn from a Gaus-
sian distribution, so the center of all clusters is also the
mean of data points, which is inherently sensitive to
outliers (XT15).

To demonstrate these strengths and weaknesses of
the four clustering algorithms k-means, GMM, AP,
and DBSCAN with respect to outliers, we provide an
example in Fig. 1. We show the clustering results of
the four algorithms for a data set with three circular
clusters, each drawn from a 2-dimensional Gaussian
distribution, and 4 manually added outliers.We marked
the clusters’ centers in the results of k-means, AP, and
GMM with red crosses. DBSCAN (Fig. 1d) does not
include the concept of cluster centers. We provided
both k-means and GMM with the correct number of
clusters k=3. However, both algorithms are sensitive
to outliers. K-means (Fig. 1a) marks one outlier as
a single cluster, while it merges two true clusters to
a combined one, thus, it returns a result that is far
from optimal. GMM (Fig. 1c) groups the 3 clusters
correctly; however, one centroid is affected by the
outliers and, thus, not centered in the “core” cluster.
AP and DBSCAN, on the other hand, perform well
in our example; AP (Fig. 1b) identifies the outliers as
additional clusters that do not influence the 3 other
clusters and can easily be identified as outliers based
on their cluster size. DBSCAN inherently identifies
all outliers as such.

3.2 Clustering Parameters

Another problem of k-means and GMM is the ne-
cessity to choose the number of clusters k in ad-
vance (XT15). Especially in a privacy-preserving set-
ting, it may be difficult to set parameters like k in ad-

20 10 0 10 20 30

0

10

20

30

(a) K-means (k=3)
20 10 0 10 20 30

0

10

20

30

(b) Affinity Propagation

20 10 0 10 20 30

0

10

20

30

(c) GMM (k=3)
20 10 0 10 20 30

0

10

20

30

(d) DBSCAN
Figure 1: Example for outlier tolerance of four clustering
algorithms. The red crosses mark the clusters’ centers in the
respective clustering algorithm’s output.

10.0 7.5 5.0 2.5 0.0 2.5
8

6

4

2

0

2

(a) K-means (k=2)
10.0 7.5 5.0 2.5 0.0 2.5

8

6

4

2

0

2

(b) Affinity Propagation

10.0 7.5 5.0 2.5 0.0 2.5
8

6

4

2

0

2

(c) GMM (k=2)
10.0 7.5 5.0 2.5 0.0 2.5

8

6

4

2

0

2

(d) DBSCAN
Figure 2: Effect of setting the wrong numer of clusters k
for clustering with k-means and GMM, whereas DBSCAN
and AP determine the number of clusters automatically. The
red crosses mark the clusters’ centroids in the respective
clustering algorithm’s output.

vance without knowledge of the entire data set. Fig. 2
shows that when the number of clusters k is set to the
wrong value (k=2 instead of 3), the clustering result of
k-means and GMM can be heavily distorted.

AP and DBSCAN do not require k to be chosen
in advance and are initialized with other parameters.
DBSCAN requires 2 parameters, minPts and ε, where
minPts quantifies the minimal number of data points
required to form a cluster, while ε is the maximum
distance between 2 data points considered “neighbors.”
Especially setting ε can be challenging in a privacy-
preserving clustering application, as each data owner
only holds a subset of the input data. AP depends on
the preference parameter, which can be tuned man-
ually by testing several possible values, running the
AP clustering with them, and then choosing the best
one (using a clustering quality index). Alternatively,

preference can be set to the minimum or median Eu-
clidean squared distance between data points (FD07).
Therefore, AP is the most simple to initialize, which
is important in a privacy-preserving setting.

3.3 Other Attributes and Summary

The clustering quality scores ARI and SI (cf. §2.1)
for the example data sets from §3.1 and §3.2 can be
found in Tab. 2; the underlying distributions from
which these data sets were drawn are considered as the
ground truth. The scores confirm the visual observa-
tions discussed in the previous subsections.

We summarize the strengths and weaknesses of all
clustering algorithms in Tab. 3 including additional
attributes of each algorithm, namely flexible choice of
distance metrics, determinism, cluster shapes, compu-
tational complexity, and complex operations.

Since k-means averages input records to de-
termine cluster centers and GMM uses the Gaus-
sian distribution, they do not directly support nom-
inal variables (HN99); AP and DBSCAN are
more flexible, as they can use any distance func-
tion (EKSX96; FD07). Furthermore, the original
k-means and GMM algorithms are instances of the
expectation-maximization (EM) algorithm, which is
non-deterministic and often uses random initialization.
This initialization strategy can lead to convergence at a
local optimum (PnLLn99). AP is deterministic (FD07),
and DBSCAN only varies in rare cases for elements
that lie exactly in the neighborhood of elements from
different clusters (EKSX96).

So far, we focused on circular or spherical clusters,
which are non-convex. However, data can also come
in the form of elongated or irregularly shaped clusters,
like U-shaped clusters, influenced, e.g., by the data’s
dimensions. Since some clustering algorithms, such
as k-means and AP, depend on a dissimilarity measure
like Euclidean distance and assign points to the cluster
with the closest center, these algorithms do not perform
as well on irregular data sets (XT15). GMM assumes
that data is drawn from Gaussian distributions and is
therefore more flexible, since oval-shaped distributions
still fall within this assumption; however, GMM per-
forms poorly on other irregular cluster shapes (XT15).
Since DBSCAN is based on density of points rather
than the distance to a cluster center, DBSCAN can
detect arbitrarily shaped clusters (EKSX96). These ob-
servations are confirmed by our experiments reported
in Tab. 2.

Secure computation protocols add significant over-
head to their plaintext equivalents; therefore, we must
balance clustering quality and complexity. We in-
clude the computational complexity of all algorithms

Table 2: Clustering quality measured with ARI and SI
(cf. §2.1) of the four clustering algorithms k-means, AP,
GMM, and DBSCAN for different data sets. Larger values
(best in bold) indicate a better clustering result.

Attribute Algorithm ARI SI

Outliers
(Fig. 1, §3.1)

k-means (k=3) 0.55 0.67
AP 0.96 0.85
GMM (k=3) 0.98 0.79
DBSCAN 0.96 0.83

of Clusters
(Fig. 2, §3.2)

k-means (k=3) 0.47 0.55
AP 1.00 0.73
GMM (k=3) 0.57 0.60
DBSCAN 0.93 0.65

Shape
(§3.3)

k-means (k=3) 0.52 0.51
AP 0.61 0.50
GMM (k=3) 1.00 0.45
DBSCAN 0.95 0.45

in Tab. 3. The naive implementation of k-means and
AP have a computational complexity of O(n2) (XT15;
FD07; EKSX96), where n is the number of data
points. DBSCAN and GMM, in contrast, have a
complexity of O(n3) when implemented using MPC.
GMM requires an expensive matrix inversion oper-
ation, and DBSCAN uses a queue or stack for clus-
ter expansion; to obliviously realize this queue, the
computational complexity of the original baseline DB-
SCAN algorithm (EKSX96) increases from O(n2) to
O(n3) (BCE+21). Thus, privacy-preserving DBSCAN
and GMM are significantly more costly than the other
algorithms. Another option to improve DBSCAN’s
efficieny is the usage of an r-tree, however, this is
expensive to realize with MPC (similarly to GMM’s
matrix inversion).

Based on the results for the four clustering algo-
rithms, we find AP to offer a good trade-off between
clustering quality and complexity, taking its favorable
handling of outliers and easily determinable clustering
parameters into account.

4 Privacy-preserving Affinity
Propagation

Affinity propagation (AP) is an iterative message-
passing algorithm, where intuitively, each data point
sends two messages to all other points in every iter-
ation. A point’s first message communicates the at-
tractiveness of another point as its cluster center, or
exemplar. This message is known as the responsibil-
ity. Based on all received responsibility values, each
data point replies with a message quantifying its suit-
ability as a cluster center for each other point, known
as the availability. These messages are revised in each

Attributes k-means
(Ste56)

Affinity Propagation
(FD07)

GMM
(DLR77)

DBSCAN
(EKSX96)

Automatic choice of # clusters k 7 3 7 3
Tolerance to outliers 7 3 7 3

Non-spherical cluster support 7 7 3 3
Flexible choice of distance metrics 7 3 7 3

Determinism 7 3 7 3
MPC-friendly operations 3 3 7 7

Computational complexity in MPC O(n2) O(n2) O(n3) O(n3)

Private Clustering
Protocols (cf. §6)

Leakage of intermediate
values

e.g., (VC03),
(JW05) (ZLX12) (LCZ05),

(HSM19)
e.g., (LXLH13),

(RBK17)

Fully private

(BO07),
(PGJ12),
(JA19),

(MRT20)

This work (BCE+21)

Table 3: Suitability of plaintext clustering algorithms for privacy-preserving clustering. 3 indicates that the algorithm provides
the property, while 7 indicates that it does not.

iteration until a consensus emerges, which identifies
exemplars and point assignments to those exemplars.
All message updates are based on the previous changes
and the distance between data points in general. Com-
putationally, message passing is implemented through
iterative matrix updates of the availability and respon-
sibility matrices, which store the pair-wise values.

Adapting AP for MPC (cf. §2.2) requires an in-
depth analysis of the necessary operations of the al-
gorithm. Fortunately, AP mainly consists of multi-
plication and addition in terms of arithmetic, which
have efficient MPC instantiations based on Arithmetic
sharing (cf. §2.2). Furthermore, the iterative matrix
updates of AP often require maximum or minimum
operations, which can be implemented with compar-
isons using special subprotocols for secure computa-
tion. In §4.1 to §4.3, we formalize protocols for the
constituent parts of privacy-preserving AP, where all
defined variables are secret shared among all participat-
ing parties, excluding the loop indices. This approach
hides all intermediate results, making our private AP
fully privacy-preserving, as discussed in §4.4. §4.1
discusses the necessary setup operations, including
distance calculations and a private calculation for the
preference parameter value. §4.2 and §4.3 describe
how responsibility and availability matrices are up-
dated, respectively. In practice, each update is damped
with the previous update using a weighted average of
the previous and current updates. The computation and
communication costs reported in §5.2 to §5.4 omit the
damping step to enable integer-only computation; how-
ever, including damping does not significantly change
the runtime and communication costs, since its addi-
tion only incurs two arithmetic operations per iteration:
multiplication by the damping coefficient and addition

of the components.

4.1 Setup and Output

Alg. 1 specifies the modular steps of our privacy-
preserving AP protocol for both the first distance cal-
culation, solely with addition and multiplication, and
the final choice and assignment of exemplars, mainly
using comparison operations. Before the first iteration,
the algorithm begins with the calculation of pair-wise
squared Euclidean distances for all points in the data
set in Step 5, whose additive inverses are stored in
the similarity matrix S. Alternatively, other distance
metrics could be used. Our protocol automatically
selects the minimal negative difference between two
data points as the preference value in Step 7, as recom-
mended by (FD07). This calculation easily integrates
into the initial calculation of the distance between data
points and is therefore not expensive.

Using the calculated distances, the availability and
responsibility matrices are iteratively updated until
convergence, when cluster centroids and assignments
no longer change with additional iterations. In a final
step, the state of availability and responsibility values
determines which data points are chosen as exemplars,
i.e., cluster centers.

4.2 Responsibility Update

Intuitively, the responsibility value between two data
points quantifies how likely one point is to serve as an
exemplar for the other point. The updates for responsi-
bility r based on availaibility a and similarity s in AP

Algorithm 1 Privacy-Preserving Affinity Propagation

Input: iterations iter, data set D with N points of di-
mension features

Output: E, exemplars of all points exEach
1: S = zeros((N,N))
2: for i in range(N) do
3: for j in range(N) do
4: for k in range(features) do
5: d=(D[k][i]-D[k][j])·(D[k][i]-D[k][j])
6: S[i][j] = S[i][j] + d
7: pref = pref>S[i][j]?pref:S[i][j]
8: end for
9: end for

10: end for
11: S = -S
12: for i in range(n) do
13: S[i][i] = preference
14: end for
15: N=size(S)
16: A=zeros(N,N), R=zeros(N,N)
17: λ=0.5
18: for it in range(iter) do
19: AS = A+S
20: UpdateResponsibilityMatrix(AS,S,R)
21: UpdateAvailabilityMatrix(AS,S,A,R)
22: end for
23: E = R+A
24: ex = zeros(N)
25: exEach = zeros(N)
26: for i in range(N) do
27: ex[i] = (E[i][i]>0)?1:0
28: end for
29: for i in range(N) do
30: for j in range(N) do
31: exEach[i]=((ex[j]>0)∧

(exEach[i]≥0)∧(E[i][j]>E[i][exEach[i]])∨
(ex[j]>0)∧(exEach[i]<0))?j:exEach[i]

32: end for
33: end for
34: return E, exEach

are executed using the following rule:

r(i,k)← s(i,k)−maxk′s.t.k′ 6=k{a(i,k′)+ s(i,k′)},

where responsibility r(i,k) quantifies the evidence for
point k as an exemplar for point i. Expanding and mod-
ularizing this equation for use in secure computation
yields Alg. 2.

4.3 Availability Update

The availability of one data point for another represents
how likely one point is to choose the other point as its
exemplar. Availability is quantified using two rules.

Algorithm 2 Update Responsibility Matrix

Input: AS, S, oldR
Output: R

1: R = oldR
2: row = zeros(N)
3: idx = zeros(N)
4: Y = zeros(N)
5: for r in range(N) do
6: for p in range(N) do
7: index = idx[r]
8: max = row[r]
9: idx[r] = AS[r][p]>max?AS[r][p]:index

10: row[r] = AS[r][p]>max?AS[r][p]:max
11: end for
12: end for
13: R = S-repeat(row, columnRep=N, rowRep=1)
14: for index in idx do
15: AS[index] = -inf
16: end for
17: for r in range(N) do
18: for p in range(N) do
19: Y[r] = AS[r][p]>Y[r]?AS[r][p]:Y[r]
20: end for
21: end for
22: for i in range(N) do
23: R[i,idx[i]] = S[i, idx[i]] - Y[i]
24: end for
25: return R = (1-λ)·R + λ·oldR

The availability a of a point i to another point k based
on responsibility r is:

a(i,k)← min

{
0,r(k,k)+ ∑

i′s.t.i′ /∈{i,k}
max{0,r(i′,k)}

}
,

where availability a(i,k) quantifies the evidence for
point k to choose point i as an exemplar. The self-
availability, or availability for a data point k to itself,
is calculated differently:

a(k,k)← ∑
i′s.t.i′ 6=k

max{0,r(i′,k)}.

We combine, expand, and modularize these update
rules for implementation with a secure computation
protocol in Alg. 3.

4.4 Security Discussion

The security of our privacy-preserving AP protocol
follows from the security of the employed MPC tech-
niques. These techniques guarantee that a passive
or active adversary learns nothing beyond what can
be learned from the output. Initially, all data owners

Algorithm 3 Update Availability Matrix

Input: AS, S, oldA, R
Output: A

1: RP = zeros(N)
2: for r in range(N) do
3: for p in range(N) do
4: RP[r] = R[r][p]>0?R[r][p]:0
5: end for
6: end for
7: for i in range(N) do
8: RP(i,i) = R(i,i)
9: end for

10: sum = sum(R, dimension=1)
11: A = repeat(sum, columnRep=1, rowRep=N) - RP
12: AP = zeros(N)
13: for r in range(N) do
14: for p in range(N) do
15: AP[r] = A[r][p]>0?0:A[r][p]
16: end for
17: end for
18: for i in range(N) do
19: AP(i,i) = A(i,i)
20: end for
21: A = AP
22: return A = (1-λ)·A+λ·oldA

secret-share their clustering input among themselves or
among several non-colluding parties in an outsourcing
scenario (KR11). As these parties have access only to
secret shares, no private information can be extracted.
The distance calculations for the similarity matrix and
for the preference value are realized with Arithmetic
or Boolean sharing (Yao86; GMW87; BMR90). MP-
SPDZ also includes conversions between these real-
izations, which are also provably secure (RW19). The
same techniques are used for all other calculations in
the protocol. All data but the output of the clustering
remains secret-shared during the entire protocol, so
our privacy-preserving AP protocol is fully privacy-
preserving.

5 Evaluation

In this section, we benchmark our privacy-preserving
AP implementation (cf. §4) w.r.t. the achieved clus-
tering quality, its efficiency in comparison to related
works, as well as its scalability.
MP-SPDZ. We implement our protocol using the MP-
SPDZ framework for MPC (Kel20). It realizes secure
multi-party computation (MPC) in the active and pas-
sive security models with honest and dishonest ma-
jorities. The MPC protocols of MP-SPDZ specified

Table 4: Data sets and parameter values.

Data Set Size # Clusters Iterations Preference
LSUN 400 3 127 24

Blobs

100 2 28 6
200 2 61 8
300 2 104 20
400 2 95 23
500 2 126 18.8
100 6 23 3
100 10 23 40

in Tab. 1 run over a ring Z2k with k = 64 bits. All ex-
periments are run on a 16-core machine for each party,
with a 2.8 GHz Intel Core i9-7960X processor and
128GB RAM, running Linux. We evaluated a LAN
setting with bandwidth 10Gbps and RTT 0.2ms.
Data Sets. Several data sets were used in our evalua-
tion. First, we chose the LSUN cluster benchmarking
data set (Ult05) for a comparison of privacy-preserving
AP’s efficiency with other works on privacy-preserving
clustering (MRT20; JA19). It contains 400 2-
dimensional data points and 3 rectangular clusters, but
no outliers. Furthermore, we created artificial “blob”
data sets to benchmark privacy-preserving AP’s scala-
bility with respect to the data set’s size. For simplicity,
all clusters are spherically shaped and have a standard
deviation of 0.3, as we only use them for demonstra-
tion purposes on how to choose a preference value, as
well as runtime and communication cost benchmarks
with varying data set sizes. The artificial data sets are
also 2-dimensional, and their sizes range from 100 to
500 elements.

5.1 Clustering Quality & Input
Parameters

We first discuss the effect of input parameters on the
clustering quality. We measure the quality of a clus-
tering output with the adjusted rand index (ARI) and
silhouette index (SI), cf. §2.1. Here we do not focus
on other aspects, e.g., the tolerance to outliers, the
handling of nominal variables, or determinism as dis-
cussed in §3, but rather on the question of how to
determine AP’s input parameter, i.e., the preference, in
a privacy-preserving setting. This is a crucial question
for practical applications of privacy-preserving cluster-
ing, but was completely neglected so far by previous
work.

Tab. 4 lists the manually tuned values for prefer-
ence and the number of iterations until convergence
for all data sets that we used in this work. For the arti-
ficial “blob” data sets, AP yields a perfectly clustered
result that reflects exactly the ground truth. The result
of clustering LSUN with AP corresponds to an ARI

2 0 2 4 6 8 10

2

0

2

4

6

8

(a) Median

0.5 1.0 1.5 2.0 2.5
0

1

2

3

4

5

(b) Minimum sum
Figure 3: Example results when setting the preference value
to the median or minimum sum of squared distances between
the input records.

score (cf. §2.1) of 0.53 and a SI of 0.54. In comparison,
k-means (with k set to the true number of clusters as
shown in Tab. 4) results in a lower and hence worse
ARI of 0.44 and SI of 0.50.

As the data set size increases, the number of iter-
ations until convergence also increases. Furthermore,
more complex data sets like LSUN (i.e., not simply
spherical shaped clusters) require additional iterations
to converge. However, increasing the number of clus-
ters within a data set in general affects only the optimal
preference value, but not the number of iterations. Of-
ten, the optimal preference value also tends to grow
with the data set size and the number of clusters.

In a privacy-preserving setting, participants are
likely not able to tune the preference value before the
clustering given that they only have access to a sub-
set of the input data. In such cases, we recommend
following the suggestion of the original work that intro-
duced AP (FD07) and set the preference to a privately
calculated median or minimum sum of squared dis-
tances, which we simply call the distance between
data points. To do so, e.g., (MRVW21; AMP10) pro-
pose efficient MPC-protocols for computing minimum
and median. This approach often yields a good cluster-
ing result (FD07). For example, we give the clustering
results for our 2 artificial 100-element “Blobs” data
sets with 2 and 6 clusters in Fig. 3. Setting the prefer-
ence value to the minimum distance yields a perfect
clustering result when the data set comprises 2 clus-
ters in Fig. 3b. Similarly, the 6-cluster data set can be
clustered perfectly when the preference value is set to
the median distance as shown in Fig. 3a.

However, the preference value affects the cluster-
ing result and the number of iterations until conver-
gence. We show this effect in Tab. 5. After preference
tuning, AP converges on the 2-cluster “Blobs“ data set
after 28 iterations, while it takes 52 iterations when the
preference is set to the minimum distance (yielding the
same clustering result). Similarly, although choosing
the median distance results in a good clustering result
for the 6-cluster data set, the algorithm converges after
51 iterations, rather than 23 with tuning.

Table 5: Effect of the preference on number of iterations for
the “Blob” data sets with 100 elements and 2 or 6 clusters.

Clusters Preference Iterations ARI SI
2 tuned: −6 28 1.0 0.85
2 min: −23.65 52 1.0 0.85
2 med: −4.10 27 0.50 0.32
6 tuned: −3 23 1.0 0.85
6 min: −242.78 280 0.54 0.62
6 med: −22.11 51 1.0 0.85

Table 6: Computation and communication costs for cluster-
ing LSUN in the passive (P)/active (A) security model, as
well as for honest (H)/dishonest (D) majority.

Parties Runtime (hr) Communication (GBytes)
P H 3 22.67 103
A H 3 33.01 550
P D 3 107.18 42,658
A D 3 660.05 312,127
P D 2 54.92 17,471
A D 2 500.19 156,079

5.2 MPC Performance

We evaluate privacy-preserving AP on a wide range of
MPC protocols and give an intuition for the efficiency-
security trade-off in different security models for
privacy-preserving AP. Therefore, we benchmark the
costs associated with our privacy-preserving AP im-
plementation for all settings described in Tab. 1 on
the public data set LSUN (Ult05). Furthermore, we
carried out experiments for 3 parties in an honest ma-
jority setting and for both 2 and 3 parties for a dis-
honest majority of parties. We executed each experi-
ment 5 times and report the average cost per iteration
(see Tab. 4 and Tab. 5 for examples how many iter-
ations are needed). All resulting computational and
communication costs for clustering LSUN in these
settings are given in Tab. 6. As expected, the honest-
majority protocols (H) are significantly more efficient
than dishonest-majority protocols (D). Compared to
passive security (P), the active security model (A) in-
creases computational costs by a factor of about 9×
for the dishonest-majority (2 parties) and about 1.5×
for the honest-majority setting (3 parties). For the
same scenarios, communication costs grow by a factor
of approximately 9× with dishonest-majority and 5×
with honest majority protocols. To choose the most
efficient protocol, it is important to realistically assess
the behavior and capabilities of a potential adversary
w.r.t. the specific application (cf. §2.2).

5.3 Comparison to Related Work

We use the LSUN benchmark data set to compare
the efficiency of privacy-preserving AP with state-of-
the-art privacy-preserving clustering algorithms and
gauge costs for the standardized data set LSUN. Tab. 7

lists the runtime necessary to cluster LSUN using
three state-of-the-art efficient privacy-preserving k-
means and DBSCAN protocols from (JA19; MRT20;
BCE+21) compared to our work. Although (MRT20)
is by a factor of 3,674× faster than ours, we discussed
in §3 that AP yields a better clustering result for many
data sets (including LSUN), making the additional
costs acceptable. Similarly, the parallel and indepen-
dent work by (BCE+21) on private DBSCAN is about
194× faster than ours. However, they use an optimized
hybrid combination of secure two-party computation
techniques (DSZ15) which is not possible with MP-
SPDZ. Additionally, (BCE+21) reduce the complexity
of DBSCAN on LSUN to close to O(n2) by fixing a
low number of neighborhood expansions which will
likely not be possible for all kinds of datasets.

5.4 Scalability

We evaluate the runtime and computation costs of
privacy-preserving AP on the “Blobs” data sets (cf.
Tab. 4) with varying sizes (100, 200, 300, 400, and
500 data points) to assess the scalability of privacy-
preserving AP. This evaluation was carried out for
2 parties and the passive security model. Note that
all other MPC instantiations from Tab. 1 scale sim-
ilarly with n and the results are, thus, transferable
to the other security settings. Since the evaluated
data sets have different optimal preference values and
converge after a varying number of iterations, which
would influence the scaling of cost values, we re-
strict our analysis to the computational and commu-
nication costs per iteration. We listed the required
number of iterations for the data sets in Tab. 4 such
that the runtimes of the full clustering can also be
derived. Fig. 4 presents our benchmark results. As
expected based on AP’s complexity (O(n2)), the costs
grow quadratically with the number of data points
n.We extrapolate the fitted polynomial to a maximum
data set size of n = 1000. The fitted polynomials
are 0.0001505n2 + 0.001638n− 0.1583 minutes for
runtime and 0.0005357n2 + 0.000001406n− 0.0001
GBytes for communication.

We note that the cost per iteration is not dependent
on the number of clusters in the original data set, since
the calculations executed will be the same. The op-
timal choice of preference value and the number of
iterations required for convergence may be affected
by the true number of clusters, as discussed in §5.1.
Therefore, our previous observations and benchmark-
ing results hold not only for the 2-cluster data sets
evaluated, but for data sets with arbitrary numbers of
clusters. This characteristic is a clear advantage of AP
over the k-means clustering algorithm, which becomes

500 1000
data points n

0

50

100

150

ti
m

e
(m

in
)

(a) Runtime

500 1000
data points n

0

200

400

d
at

a
se

nt
(G

B
yt

es
)

(b) Communication
Figure 4: Efficiency benchmark per clustering iteration for
privacy-preserving AP with 2 parties and passive security.

increasingly expensive as the number of clusters k in
the data set grows.

6 Related Work

Privacy-preserving machine learning (PPML) is an
active research field, with much focus placed on cryp-
tographic methods for privacy-preserving supervised
and deep learning (GBDL+16; RWT+18; JVC18;
MLS+20; KRC+20; RRK+20; BCD+20; PSSY21).
As training data, often without labels, is increasingly
available, the relevance of privacy in unsupervised
learning, e.g., clustering, has also grown. Some ap-
proaches to privacy-preserving clustering add noise
to the clustering process, providing provable differ-
ential privacy (DP) guarantees (SCL+16; SCL+17;
BDL+17; NLW+18; Ste20; CWLL20). DP is a
privacy-utility trade-off. Instead, we analyze crypto-
graphic approaches for achieving privacy, which yield
full accuracy but are more complex, so they are not
directly comparable to approaches based on DP.

Existing research on private clustering has mainly
proposed protocols for the k-means algorithm. Re-
cently, (HMSY21) systematically analyze the state-of-
the-art in privacy-preserving clustering.

Today’s most efficient protocol is (MRT20). Their
work is based on MPC and provides a privacy-
preserving k-means implementation that fully pre-
serves privacy and does not incur significant compu-
tational overhead. For this reason, we compare our
privacy-preserving implementation of AP to their work
using the standard benchmark data set LSUN (cf. §5.3).
Other work on k-means provides privacy as well; how-
ever, some protocols use homomorphic encryption and
hence typically are significantly slower, e.g., (BO07;
JA19) or are applicable only in certain settings, re-
quiring more than 2 non-colluding servers (PGJ12)
or being applicable only to horizontally partitioned
data (GC16). Some privacy-preserving k-means im-
plementations have fundamental issues, leaking inter-
mediate cluster centers (VC03; JW05; JKM05; YT19)
or information about cluster sizes (WLW+20). In gen-

Table 7: Runtime comparison for privately clustering the LSUN data set with 2 parties and passive security.

k-means DBSCAN Affinity Propagation
(JA19) (MRT20) (BCE+21) This work

25.79 days 22.21 seconds 420.72 seconds 22.67 hours

eral, k-means is a simple clustering algorithm, which
explains its popularity in privacy-preserving clustering.
Unfortunately, its clustering capabilities and quality
are limited, as discussed in §3.

A few passively secure privacy-preserving vari-
ants of clustering algorithms more advanced than
k-means have been proposed. (BCE+21) design a
fully privacy-preserving DBSCAN clustering protocol.
Unfortunately, most other protocols do not preserve
full privacy. For example, (JPWU10) tackle privacy-
preserving hierarchical clustering, but their protocol
reveals merging patterns. The private DBSCAN proto-
cols by (ACD18; AEC06; KR07; WLY+07; JXJ+08;
LXLH13; AG17; RBK17) leak information such as
parameter values, distances, cluster sizes, and neigh-
borhoods. (ZLX12) propose a privacy-preserving AP
protocol for vertically partitioned data in the passive
security model using additively homomorphic encryp-
tion. Their protocol leaks the permuted similarity val-
ues of all data records to one data owner. Our work is
the first that provides full privacy guarantees with se-
cure multi-party computation techniques in the passive
and active security model.

7 Conclusion

In this work, we explored the suitability of k-means,
AP, GMM, and DBSCAN for efficient crypto-oriented
clustering. While the clustering quality of k-means is
limited for many data sets, GMM and DBSCAN are
expensive to implement using MPC techniques. AP
provides more flexibility in terms of all attributes, so
we design the first fully privacy-preserving AP with
MPC techniques and implement it with the MP-SPDZ
framework. We evaluated the resulting cluster quality
and scalability, as well as the computational and com-
munication costs for all combinations of passive/ac-
tive security and honest/dishonest majority. With this,
we are the first who evaluate the performance of a
private clustering algorithm on all 4 scenarios. Al-
though the existing privacy-preserving k-means pro-
tocol of (MRT20) is faster, privacy-preserving AP is
reasonably efficient and provides significant improve-
ments upon the clustering quality and capabilities of
k-means.

ACKNOWLEDGEMENTS

This project received funding from the European Re-
search Council (ERC) under the European Union’s
Horizon 2020 research and innovation program (grant
agreement No. 850990 PSOTI). It was co-funded
by the Deutsche Forschungsgemeinschaft (DFG) –
SFB 1119 CROSSING/236615297 and GRK 2050
Privacy & Trust/251805230, and by the BMBF and
the HMWK within ATHENE.

REFERENCES

Nawal Almutairi, Frans Coenen, and Keith Dures. Secure
third party data clustering using φ data: Multi-user
order preserving encryption and super secure chain
distance matrices. In International Conference on In-
novative Techniques and Applications of Artificial In-
telligence, 2018.

Artak Amirbekyan and V. Estivill-Castro. Privacy preserv-
ing DBSCAN for vertically partitioned data. In In-
ternational Conference on Intelligence and Security
Informatics, 2006.

Toshinori Araki, Jun Furukawa, Yehuda Lindell, Ariel Nof,
and Kazuma Ohara. High-throughput semi-honest se-
cure three-party computation with an honest majority.
In CCS, 2016.

I. V. Anikin and R. M. Gazimov. Privacy preserving DB-
SCAN clustering algorithm for vertically partitioned
data in distributed systems. In International Siberian
Conference on Control and Communications, 2017.

O. Arbelaitz, I. Gurrutxaga, J. Muguerza, J. Pérez, and I. Per-
ona. An extensive comparative study of cluster validity
indices. Pattern Recognition, 2013.

Y. Aumann and Yehuda Lindell. Security against covert
adversaries: Efficient protocols for realistic adversaries.
In TCC, 2007.

Gagan Aggarwal, Nina Mishra, and Benny Pinkas. Secure
computation of the median (and other elements of spec-
ified ranks). In Journal of Cryptology, 2010.

Fabian Boemer, Rosario Cammarota, Daniel Demmler,
Thomas Schneider, and Hossein Yalame. MP2ML:
A mixed-protocol machine learning framework for pri-
vate inference. In ARES, 2020.

Beyza Bozdemir, Sébastien Canard, Orhan Ermis, He-
len Möllering, Melek Önen, and Thomas Schneider.
Privacy-preserving density-based clustering. In ASI-
ACCS, 2021.

Maria Florina Balcan, Travis Dick, Yingyu Liang, Wenlong
Mou, and Hongyang Zhang. Differentially private

clustering in high-dimensional euclidean spaces. In In-
ternational Conference on Machine Learning (ICML),
2017.

Lennart Braun, Daniel Demmler, Thomas Schneider, and
Oleksandr Tkachenko. MOTION–A Framework for
Mixed-Protocol Multi-Party Computation, 2020.

Saima Bano and Naeem Khan. A survey of data clustering
methods. In International Journal of Advanced Science
and Technology, 2018.

D. Beaver, S. Micali, and P. Rogaway. The round complexity
of secure protocols. In ACM Symposium on Theory of
Computing (STOC), 1990.

Paul Bunn and Rafail Ostrovsky. Secure two-party k-means
clustering. In CCS, 2007.

A. Chaturvedi, J. Carroll, P. Green, and J. A. Rotondo. A
feature-based approach to market segmentation via
overlapping k-centroids clustering. Journal of Market-
ing Research, 1997.

Ronald Cramer, Ivan Damgård, Daniel Escudero, Peter
Scholl, and Chaoping Xing. SPDZ2k : Efficient MPC
mod 2k for dishonest majority. In CRYPTO, 2018.

Hanbo Cai, Jinyan Wang, Xiaohong Liu, and Xianxian Li.
Dp-ap: Differential privacy-preserving affinity propa-
gation clustering. In International Conference on Big
Data Science and Engineering (BigDataSE), 2020.

Ivan Damgård, Daniel Escudero, Tore Frederiksen, Mar-
cel Keller, Peter Scholl, and Nikolaj Volgushev. New
primitives for actively-secure mpc over rings with ap-
plications to private machine learning. In IEEE S&P,
2019.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum
likelihood from incomplete data via the em algorithm.
In Journal of the Royal Statistical Society, 1977.

D. Demmler, Thomas Schneider, and M. Zohner. Aby- a
framework for efficient mixed-protocol secure two-
party computation. In NDSS, 2015.

Martin Ester, Hans Peter Kriegel, Jörg Sander, and Xiaowei
Xu. A density-based algorithm for discovering clusters
in large spatial databases with noise. In International
Conference on Knowledge Discovery and Data Mining
(KDD), 1996.

Hendrik Eerikson, C. Orlandi, Pille Pullonen, Joonas Puura,
and M. Simkin. Use your brain! arithmetic 3PC for any
modulus with active security. In Information-Theoretic
Cryptography, 2019.

Brendan J. Frey and Delbert Dueck. Clustering by passing
messages between data points. Science, 2007.

Susanne Fischer, Conrad Freuling, Thomas Müller, Florian
Pfaff, Ulrich Bodenhofer, Dirk Höper, Mareike Fischer,
Denise Marston, Anthony Fooks, Thomas Mettenleiter,
Franz Conraths, and Timo Homeier. Defining objective
clusters for rabies virus sequences using affinity propa-
gation clustering. PLOS Neglected Tropical Diseases,
2018.

Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin
Lauter, Michael Naehrig, and John Wernsing. Cryp-
tonets: Applying neural networks to encrypted data
with high throughput and accuracy. In International
Conference on Machine Learning, 2016.

Z. Gheid and Y. Challal. Efficient and privacy-preserving
k-means clustering for big data mining. In IEEE Trust-
com/BigDataSE/ISPA, 2016.

Oded Goldreich, Silvio Micali, and Avi Wigderson. How to
play any mental game or A completeness theorem for
protocols with honest majority. In STOC, 1987.

Oded Goldreich. Foundations of Cryptography: Volume 2,
Basic Applications. Cambridge University Press, 2009.

L. Hubert and P. Arabie. Comparing partitions. Journal of
Classification, 1985.

Aditya Hegde, Helen Möllering, Thomas Schneider, and
Hossein Yalame. Sok: Efficient privacy-preserving
clustering. In PETS, 2021.

Zhexue Huang and M. K. Ng. A fuzzy K-modes algorithm
for clustering categorical data. IEEE Transactions on
Fuzzy Systems, 1999.

Mona Hamidi, Mina Sheikhalishahi, and Fabio Martinelli.
Privacy preserving Expectation Maximization (EM)
clustering construction. In DCAI, 2019.

Kaiming He, Xiangzu Zhang, Shaoqing Ren, and Jian Sun.
Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification. In Interna-
tional Conference on Computer Vision (ICCV), 2015.

Angela Jäschke and Frederik Armknecht. Unsupervised
machine learning on encrypted data. SAC, 2019.

Thomas John, Jing Jin, Justin Dauwels, Sydney Cash, and
Brandon Westover. Clustering of interictal spikes by
dynamic time warping and affinity propagation. In
International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2016.

Somesh Jha, Luis Kruger, and Patrick McDaniel. Privacy
preserving clustering. In ESORICS, 2005.

A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: A
review. In ACM Computing Surveys, 1999.

Geetha Jagannathan, Krishnan Pillaipakkamnatt, Rebecca N.
Wright, and Daryl Umano. Communication-efficient
privacy-preserving clustering. Transactions on Data
Privacy, 2010.

Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chan-
drakasan. GAZELLE: A low latency framework for
secure neural network inference. In USENIX Secu-
rity’18, 2018.

Geetha Jagannathan and Rebecca N. Wright. Privacy-
preserving distributed k-means clustering over arbi-
trarily partitioned data. In International Conference on
Knowledge Discovery in Data Mining (KDD), 2005.

D. Jiang, A. Xue, S. Ju, W. Chen, and H. Ma. Privacy-
preserving DBSCAN on horizontally partitioned data.
In International Symposium on IT in Medicine and
Education, 2008.

Konstantina Kourou, Themis Exarchos, Konstantinos Exar-
chos, Michalis Karamouzis, and Dimitrios Fotiadis.
Machine learning applications in cancer prognosis and
prediction. Computational and Structural Biotechnol-
ogy Journal, 13, 11 2014.

Marcel Keller. MP-SPDZ: A versatile framework for multi-
party computation. In CCS, 2020.

Hannah Keller, Helen Möllering, Thomas Schneider, and
Hossein Yalame. Balancing quality and efficiency in

private clustering with affinity propagation. In SE-
CRYPT, 2021.

K. Anil Kumar and C. Pandu Rangan. Privacy preserving
DBSCAN algorithm for clustering. In Advanced Data
Mining and Applications, 2007.

Seny Kamara and Mariana Raykova. Secure outsourced
computation in a multi-tenant cloud. IBM Workshop
on Cryptography and Security in Clouds, 2011.

Nishant Kumar, Mayank Rathee, Nishanth Chandran, Divya
Gupta, Aseem Rastogi, and Rahul Sharma. Cryptflow:
Secure tensorflow inference. In IEEE S&P, 2020.

Benjamin Kreuter, Abhi Shelat, and Chih Hao Shen. Billion-
gate secure computation with malicious adversaries. In
USENIX Security, 2012.

Xiaodong Lin, Chris Clifton, and Michael Zhu. Privacy-
preserving clustering with distributed EM mixture mod-
eling. In Knowledge and Information Systems, 2005.

Yehuda Lindell and Ariel Nof. A framework for construct-
ing fast mpc over arithmetic circuits with malicious
adversaries and an honest-majority. In CCS, 2017.

Yehuda Lindell and Benny Pinkas. An efficient protocol
for secure two-party computation in the presence of
malicious adversaries. In Journal of Cryptography,
2015.

Michele Leone, Sumedha Sumedha, and Martin Weigt. Clus-
tering by soft-constraint affinity propagation: Applica-
tions to gene-expression data. Bioinformatics, 2007.

Jinfei Liu, Li Xiong, Jun Luo, and Joshua Zhexue Huang.
Privacy preserving distributed DBSCAN clustering.
Transactions on Data Privacy, 2013.

Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srinivasan,
Wenting Zheng, and Raluca Ada Popa. Delphi: A
cryptographic inference service for neural networks.
In USENIX Security, 2020.

Payman Mohassel, M. Rosulek, and Ni Trieu. Practical
privacy-preserving k-means clustering. In PETS, 2020.

Eleftheria Makri, Dragos Rotaru, Frederik Vercauteren, and
Sameer Wagh. Rabbit: Efficient comparison for secure
multi-party computation. In FC, 2021.

F. Masulli and A. Schenone. A fuzzy clustering based seg-
mentation system as support to diagnosis in medical
imaging. Artificial Intelligence in Medicine, 1999.

L. Ni, C. Li, X. Wang, H. Jiang, and J. Yu. DP-MCDBSCAN:
Differential privacy preserving multi-core DBSCAN
clustering for network user data. IEEE Access, 2018.

Sankita Patel, Sweta Garasia, and Devesh Jinwala. An
efficient approach for privacy preserving distributed
k-means clustering based on shamir’s secret sharing
scheme. In Trust Management VI, 2012.

J.M Peña, J.A Lozano, and P Larrañaga. An empirical
comparison of four initialization methods for the k-
means algorithm. Pattern Recognition, 1999.

Arpita Patra, Thomas Schneider, Ajith Suresh, and Hossein
Yalame. Aby2. 0: Improved mixed-protocol secure
two-party computation. In USENIX Security, 2021.

M. S. Rahman, A. Basu, and S. Kiyomoto. Towards out-
sourced privacy-preserving multiparty DBSCAN. In
Pacific Rim International Symposium on Dependable
Computing, 2017.

Peter Rousseeuw. Silhouettes: A graphical aid to the inter-
pretation and validation of cluster analysis. Journal of
Computational and Applied Mathematics, 1987.

Deevashwer Rathee, Mayank Rathee, Nishant Kumar, Nis-
hanth Chandran, Divya Gupta, Aseem Rastogi, and
Rahul Sharma. CrypTFlow2: Practical 2-party secure
inference. In CCS, 2020.

Dragos Rotaru and Tim Wood. Marbled circuits: Mixing
arithmetic and boolean circuits with active security. In
INDOCRYPT, 2019.

M Sadegh Riazi, Christian Weinert, Oleksandr Tkachenko,
Ebrahim M Songhori, Thomas Schneider, and Farinaz
Koushanfar. Chameleon: A hybrid secure computa-
tion framework for machine learning applications. In
ASIACCS’18, 2018.

Dong Su, Jianneng Cao, Ninghui Li, Elisa Bertino, and
Hongxia Jin. Differentially private k-means clustering.
In ACM Conference on Data and Application Security
and Privacy (CODASPY), 2016.

Dong Su, Jianneng Cao, Ninghui Li, Elisa Bertino, Min Lyu,
and Hongxia Jin. Differentially private k-means clus-
tering and a hybrid approach to private optimization.
ACM Transactions on Privacy and Security, 2017.

Roberto Santana, Laura McGarry, Concha Bielza, Pedro Lar-
ranaga, and Rafael Yuste. Classification of neocortical
interneurons using affinity propagation. Frontiers in
Neural Circuits, 2013.

Hugo Steinhaus. Sur la division des corp materiels en parties.
Bulletin L’Académie Polonaise des Science, 1956.

Uri Stemmer. Locally private k-means clustering. In ACM-
SIAM Symposium on Discrete Algorithms (SODA),
2020.

A. Ultsch. Clustering with SOM. In Workshop on Self-
Organizing Maps, 2005.

Jaideep Vaidya and Chris Clifton. Privacy-preserving k-
means clustering over vertically partitioned data. In
International Conference on Knowledge Discovery and
Data Mining (KDD), 2003.

N.X. Vinh, J. Epps, and J. Bailey. Information theoretic mea-
sures for clusterings comparison: Variants, properties,
normalization and correction for chance. Journal of
Machine Learning Research, 2010.

Oriol Vinyals, Lukasz Kaiser, Terry Koo, Slav Petrov, Ilya
Sutskever, and Geoffrey Hinton. Grammar as a for-
eign language. In International Conference on Neural
Information Processing Systems (NIPS), 2015.

W. Wu, J. Liu, H. Wang, J. Hao, and M. Xian. Secure
and efficient outsourced k-means clustering using fully
homomorphic encryption with ciphertext packing tech-
nique. IEEE Transactions on Knowledge and Data
Engineering, 2020.

X. Wei-jiang, H. Liu-sheng, L. Yong-long, Y. Yi-fei, and
J. Wei-wei. Privacy-preserving DBSCAN clustering
over vertically partitioned data. In International Con-
ference on Multimedia and Ubiquitous Engineering,
2007.

Zheng Wang, Chenguang Zhao, Yiheng Wang, Zheng Sun,
and Nan Wang. PANDA: Protein function prediction
using domain architecture and affinity propagation. Sci-
entific Reports, 2018.

Xiaowei Xu, Martin Ester, Hans-Peter Kriegel, and Jörg
Sander. A distribution-based clustering algorithm for
mining in large spatial databases. In International
Conference on Data Engineering, 1998.

Dongkuan Xu and Yingjie Tian. A comprehensive survey of
clustering algorithms. Annals of Data Science, 2015.

Rui Xu and Donald Wunsch. Survey of clustering algorithms.
IEEE Transactions on Neural Networks, 2005.

Andrew Chi-Chih Yao. How to generate and exchange se-
crets (extended abstract). In FOCS, 1986.

J. Yuan and Y. Tian. Practical privacy-preserving MapRe-
duce based k-means clustering over large-scale dataset.
IEEE Transactions on Cloud Computing, 2019.

Xiaoyan Zhu, Momeng Liu, and Min Xie. Privacy-
preserving affinity propagation clustering over verti-
cally partitioned data. In International Conference
on Intelligent Networking and Collaborative Systems,
2012.

