
Balancing Quality and Efficiency in Private Clustering
with Affinity Propagation

(Full Version)*

Hannah Keller, Helen Möllering, Thomas Schneider, Hossein Yalame
ENCRYPTO Group, Technical University of Darmstadt, Darmstadt, Germany

hannah.keller@stud.tu-darmstadt.de, {moellering, schneider, yalame}@encrypto.cs-tu.darmstadt.de

Keywords: Privacy-preserving Machine Learning, Clustering, Secure Computation

Abstract: In many machine learning applications, training data consists of sensitive information from multiple sources.
Privacy-preserving machine learning using secure computation enables multiple parties to compute on their
joint data without disclosing their inputs to each other. In this work, we focus on clustering, an unsupervised
machine learning technique that partitions data into groups. Previous works on privacy-preserving clustering
often leak information and focus on the k-means algorithm, which provides only limited clustering quality and
flexibility. Additionally, the number of clusters k must be known in advance. We analyze several prominent
clustering algorithms’ capabilities and their compatibility with secure computation techniques to create an
efficient, fully privacy-preserving clustering implementation superior to k-means. We find affinity propagation
to be the most promising candidate and securely implement it using various multi-party computation techniques.
Privacy-preserving affinity propagation does not require any input parameters and consists of operations that
are relatively efficient with secure computation. As threat models, we consider passive security as well as
active security with an honest and dishonest majority. We offer the first comparison of privacy-preserving
clustering between these scenarios, enabling an understanding of the exact trade-offs between them. Based on
the clustering quality and the computational and communication costs, privacy-preserving affinity propagation
offers a good trade-off between quality and efficiency for practical privacy-preserving clustering.

1 Introduction

The field of machine learning (ML) has received
considerable attention in recent years thanks to its
far-reaching and interdisciplinary applications, which
range from cancer diagnostics over natural language
processing to object recognition in images and natu-
ral language processing (Kourou et al., 2014; Vinyals
et al., 2015; He et al., 2015). Furthermore, the in-
creased storage capabilities and computational power
of devices enable models to be trained on immense
data pools. Training data is often aggregated from
multiple sources to increase the utility of the resulting
model, and cloud providers such as Amazon Sage-
Maker, Microsoft Azure, and the Google AI Platform
offer the necessary storage and computation as a ser-
vice. However, as the availability of training data for
such algorithms increases, the relevance of protecting
its security and privacy also grows. Regulations such

*Please cite the version of this paper published at 18th
International Conference on Security and Cryptography (SE-
CRYPT 2021) (Keller et al., 2021).

as GDPR1or HIPAA2 restrict the use of personal in-
formation, and a need for privacy-preserving solutions
arises.

For this reason, using secure multi-party computa-
tion (MPC) for privacy-preserving machine learning
(PPML) has become a hot research topic (Juvekar et al.,
2018; Mishra et al., 2020; Rathee et al., 2020; Patra
et al., 2021). MPC uses cryptographic techniques to
allow several parties to compute the output of a func-
tion without revealing the private input values to each
other (Araki et al., 2016; Cramer et al., 2018; Damgård
et al., 2019; Eerikson et al., 2019; Keller, 2020; Braun
et al., 2020). Using MPC, multiple data owners can
securely train an ML model without any information
leakage to an (internal or external) adversary.

In this work, we focus on clustering, a form of
unsupervised ML in which similar data points are
grouped together. Clustering algorithms are useful,
for example, to segment a market using consumer

1https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=
celex%3A32016R0679

2https://www.hhs.gov/hipaa/

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32016R0679
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32016R0679
https://www.hhs.gov/hipaa/

preferences (Chaturvedi et al., 1997) or group photos
of diseased organs in medical imaging (Masulli and
Schenone, 1999). A well-known and simple clustering
algorithm is k-means (Steinhaus, 1956), which itera-
tively updates cluster centers and assignments. This al-
gorithm has been the focus of much privacy-preserving
clustering research (cf. §6); however, the quality of
clustering results from this algorithm is limited (cf. §3).
Furthermore, k-means requires the number of clus-
ters k to be chosen in advance, which is a challenge
if no party has access to the full pool of training data,
as is the case in many privacy-preserving settings. In
general, choosing parameter values for clustering al-
gorithms becomes significantly less trivial when algo-
rithms are executed in a privacy-preserving manner.
Furthermore, privacy research has focused on private
clustering in the passive security model (cf. §2.2), ne-
glecting the stronger active security model needed to
securely perform secure computation between mutu-
ally distrusting parties.

Contributions and Outline. After introducing the
preliminaries to our work in §2,, we provide the fol-
lowing contributions:

• We give a comprehensive analysis of multiple clus-
tering algorithms with respect to their potential
for efficient and high-quality privacy-preserving
clustering with MPC techniques (cf. §3).

• Based on our analysis, we identify affinity propaga-
tion as a promising candidate. Affinity propagation
is used in a wide variety of privacy-critical med-
ical applications, such as epilepsy (Leone et al.,
2007), neuron types (Santana et al., 2013), can-
cer detection (John et al., 2016), rabies virus se-
quencing (Fischer et al., 2018), and protein func-
tions (Wang et al., 2018). It automatically deter-
mines the number of clusters and is tolerant to
outliers (cf. §4). We provide the first fully privacy-
preserving affinity propagation protocol with MPC
usable in the passive and active security model.

• We provide an experimental evaluation of our pro-
tocol in multiple security models, i.e., considering
an active/passive adversary and honest/dishonest
majority (cf. §5). Our results enable the assess-
ment of the overhead associated with stronger se-
curity, which is important for meaningfully balanc-
ing privacy and efficiency in privacy-preserving
clustering applications. Our code is available
at https://encrypto.de/code/ppAffinityPropagation.

We discuss related work on privacy-preserving
clustering in §6 and conclude with §7.

2 Preliminaries

This section introduces the preliminaries of clustering
(cf. §2.1) and secure computation (cf. §2.2).

2.1 Clustering

Clustering is an unsupervised ML technique that
groups data points into clusters. Since it is an unsuper-
vised ML technique, learning occurs without knowl-
edge of any true grouping of points or any data labels.
The goal is to group similar records into the same
cluster, while elements in different clusters should be
maximally different (Jain et al., 1999).
Clustering Algorithm Types. We differentiate be-
tween partitioning-based, hierarchical, distribution-
based, and density-based clustering algorithms.
Partitioning-based algorithms separate the data set into
several non-overlapping groups, whose center is con-
sidered the center of the data points in this group (Xu
and Tian, 2015). Often these algorithms optimize an
objective function in an iterative fashion (Xu et al.,
1998). Examples are k-means (Steinhaus, 1956) and
affinity propagation (AP) (Frey and Dueck, 2007),
which we both examine closely in this work (cf. §3).
This approach realizes a hard clustering, i.e., every
input record is assigned to exactly one cluster, whereas
soft clustering, e.g., based on distributions, may assign
a point to several clusters with varying probabilities.
Distribution-based clustering approximates the origi-
nal distributions from which data points are assumed to
have been drawn (Xu and Tian, 2015), as is the case for
Gaussian mixture models clustering (GMM). Hierar-
chical clustering algorithms represent a data set as a bi-
nary tree of data points and iteratively merge or divide
clusters based on the derived tree structure (Xu and
Tian, 2015). The computational complexity of these
algorithms is very high; already the first step of most hi-
erarchical clustering algorithms, computing pair-wise
distances and performing a sort, requires O(n2 logn)
time complexity (Xu and Tian, 2015). Therefore, we
do not consider them as candidates for our privacy-
preserving algorithm. Density-based algorithms, such
as Density-Based Spatial Clustering of Applications
with Noise (DBSCAN) (Ester et al., 1996), cluster data
points that lie closely together in a dense area.
Clustering Quality Scores. To measure clustering
quality, internal and external clustering indices are
used. External indices compare the clustering result to
a known ground truth, which is a known true assign-
ment of each point to a cluster. A ground truth is only
available for benchmark data sets and not present for
practical applications, since clustering is an unsuper-
vised ML technique. In those cases, internal indices

https://encrypto.de/code/ppAffinityPropagation

Table 1: MPC protocols for different security models, cat-
egorized by their security level and number of corruptions.
Names are from MP-SPDZ (Keller, 2020).

Passive Active
Dishonest Majority Semi2k SPDZ2k

Honest Majority Replicated2k PsReplicated2k

are used instead to assess the quality of a clustering
result. These indices focus on internal characteristics,
i.e., they measure the compactness of the elements
assigned to one cluster and the separation between
different clusters (Arbelaitz et al., 2013). To provide
a comprehensive quality assessment in §3 and §5, we
use an external and an internal clustering quality index:

The adjusted rand index (ARI) (Hubert and Ara-
bie, 1985) is a widely used (Arbelaitz et al., 2013;
Vinh et al., 2010) external index that assesses all inner-
cluster and inter-cluster data point pairs, where the 2
points were assigned to the same cluster and to differ-
ent clusters, respectively. Any pairs correctly identified
as belonging to the same cluster or to different clusters
increase the ARI value. The ARI lies in a range of
[−1,1], and a value of 1 indicates that the clustering
result is equal to the ground truth.

The silhouette index (SI) (Rousseeuw, 1987) is a
well-known internal index (Arbelaitz et al., 2013) with
range [−1,1] and quantifies the relation between inner-
cluster and inter-cluster distance between points. A
good result has an SI value close to 1, indicating a
small inner-cluster and large inter-cluster distance.

2.2 Multi-Party Computation (MPC)

MPC protocols allow the realization of privacy-
preserving clustering algorithms. They privately evalu-
ate an algorithm under “encryption” s.t. the inputs and
intermediate values remain hidden and only the output
is revealed. The two most prominent cryptographic
protocols for MPC are constant-round garbled circuits
(GC) by (Yao, 1986) and the multi-round Arithmetic or
Boolean Sharing protocol by (Goldreich et al., 1987).
Honest/Dishonest Majority. This terminology spec-
ifies the fraction of possible corruptions among the
parties involved in MPC. In a dishonest majority set-
ting, the adversary may corrupt all but one party. This
setting is more complex and, thus, more expensive
than an honest majority setting, where only a minority
of parties are assumed to be corrupted.
Passive/Active Security. Adversarial behavior can be
passive or active, which implies specific assumptions
about the adversary’s capabilities in an MPC protocol.
Passive security protects against passive adversaries,
who adhere to the protocol’s specifications while at-
tempting to learn as much as possible about that data of
other parties (Goldreich, 2009). In the active security

model, an active adversary can arbitrarily deviate from
the protocol, i.e., this model provides stronger security
guarantees. MPC protocols that provide protection
against an active adversary can even be securely used
when there is no trust among the parties. However, a
trade-off between efficiency and security must often be
made, since actively secure protocols incur significant
overhead (Lindell and Pinkas, 2015; Kreuter et al.,
2012; Aumann and Lindell, 2007).

Tab. 1 contains an overview of several MPC
protocols used in our evaluation. We implement
privacy-preserving affinity propagation (cf. §4) with
the MP-SPDZ framework for MPC (Keller, 2020):
SPDZ2k (Cramer et al., 2018) is the first protocol for
the active, dishonest majority setting over Z2k , and
was implemented by (Damgård et al., 2019). Semi2k
is a trimmed-down version of SPDZ2k for the passive,
dishonest majority setting. Replicated2k is a passively
secure protocol for 3 parties and honest majority based
on (Araki et al., 2016). PsReplicated2k (Eerikson et al.,
2019) extends (Lindell and Nof, 2017) to the ring set-
ting and uses ideas from (Cramer et al., 2018), offering
protection in the passive, honest majority setting.

3 Analysis of Clustering Algorithms

In order to determine promising algorithm candidates
for privacy-preserving clustering, we compare the fol-
lowing prominent algorithms: k-means (Steinhaus,
1956), Gaussian mixture models (GMM) (Dempster
et al., 1977), affinity propagation (AP) (Frey and
Dueck, 2007), and Density-Based Spatial Clustering
of Applications with Noise (DBSCAN) (Ester et al.,
1996). These algorithms were selected based on (1)
their widespread use (Bano and Khan, 2018; Xu and
Tian, 2015; Xu and Wunsch, 2005) and (2) simplicity,
which is crucial for efficiency with MPC. K-means
and AP are partitioning-based algorithms (cf. §2.1).
GMM is a distribution-based clustering algorithm that
assumes data points are sampled from a normal distri-
bution. DBSCAN is a density-based clustering algo-
rithm.

The input parameters of these algorithms have a
direct impact on the clustering result and its quality. In
the following, we discuss and visualize the influence
of these parameters, as well as other characteristics
such as the tolerance to outliers, flexibility for multiple
cluster shapes, and other non-visual components of
the clustering quality. Furthermore, we investigate the
algorithms’ suitability for a privacy-preserving realiza-
tion via MPC.

3.1 Tolerance to Outliers

Data sets often contain outliers, i.e., data records that
are very untypical compared to the majority of the
set. Therefore, in the context of clustering, it is im-
perative that the clustering result, including identified
cluster centers and cluster assignments, is not distorted
or greatly affected by these data records. If a cluster-
ing algorithm either explicitly identifies outliers or if
outliers do not distort the result, this algorithm can
be considered as tolerant to outliers. Especially in a
privacy-preserving context, data owners may not know
whether their own data contains an outlier or not, since
the other data owners’ input data is unknown.

DBSCAN defines a special notion of noise that
allows outliers to be flagged as such (Ester et al., 1996;
Xu and Tian, 2015). Since AP does not require the
number of clusters as an input parameter, outliers are
typically detected as small, separate clusters, which
can be marked as outliers based on their size and which
do not affect the attributes of other identified clus-
ters (Xu and Tian, 2015). Therefore, both DBSCAN
and AP are tolerant to outliers. In contrast, k-means
and GMM are both sensitive to outliers. Specifically,
k-means requires all data points to be assigned to one
cluster, even if a point does not fit to any cluster. Since
the algorithm specifies the cluster center as the mean of
all points, outliers heavily distort these centers or form
their own cluster, forcing other true clusters in the data
to become merged (Xu and Wunsch, 2005). Similarly,
the clusters resulting from GMM are assumed to have
been drawn from a Gaussian distribution, so the center
of all clusters is also the mean of data points, which is
inherently sensitive to outliers (Xu and Tian, 2015).

To demonstrate these strengths and weaknesses of
the four clustering algorithms k-means, GMM, AP,
and DBSCAN with respect to outliers, we provide an
example in Fig. 1. We show the clustering results of
the four algorithms for a data set with three circular
clusters, each drawn from a 2-dimensional Gaussian
distribution, and 4 manually added outliers.We marked
the clusters’ centers in the results of k-means, AP, and
GMM with red crosses. DBSCAN (Fig. 1d) does not
include the concept of cluster centers. We provided
both k-means and GMM with the correct number of
clusters k=3. However, both algorithms are sensitive
to outliers. K-means (Fig. 1a) marks one outlier as
a single cluster, while it merges two true clusters to
a combined one, thus, it returns a result that is far
from optimal. GMM (Fig. 1c) groups the 3 clusters
correctly; however, one centroid is affected by the
outliers and, thus, not centered in the “core” cluster.
AP and DBSCAN, on the other hand, perform well
in our example; AP (Fig. 1b) identifies the outliers as

20 10 0 10 20 30

0

10

20

30

(a) K-means (k=3)
20 10 0 10 20 30

0

10

20

30

(b) Affinity Propagation

20 10 0 10 20 30

0

10

20

30

(c) GMM (k=3)
20 10 0 10 20 30

0

10

20

30

(d) DBSCAN
Figure 1: Example for outlier tolerance of four clustering
algorithms. The red crosses mark the clusters’ centers in the
respective clustering algorithm’s output.

10.0 7.5 5.0 2.5 0.0 2.5
8

6

4

2

0

2

(a) K-means (k=2)
10.0 7.5 5.0 2.5 0.0 2.5

8

6

4

2

0

2

(b) Affinity Propagation

10.0 7.5 5.0 2.5 0.0 2.5
8

6

4

2

0

2

(c) GMM (k=2)
10.0 7.5 5.0 2.5 0.0 2.5

8

6

4

2

0

2

(d) DBSCAN
Figure 2: Effect of setting the wrong numer of clusters k
for clustering with k-means and GMM, whereas DBSCAN
and AP determine the number of clusters automatically. The
red crosses mark the clusters’ centroids in the respective
clustering algorithm’s output.

additional clusters that do not influence the 3 other
clusters and can easily be identified as outliers based
on their cluster size. DBSCAN inherently identifies
all outliers as such.

3.2 Clustering Parameters

Another problem of k-means and GMM is the neces-
sity to choose the number of clusters k in advance (Xu
and Tian, 2015). Especially in a privacy-preserving
setting, it may be difficult to set parameters like k in ad-
vance without knowledge of the entire data set. Fig. 2
shows that when the number of clusters k is set to the
wrong value (k=2 instead of 3), the clustering result of
k-means and GMM can be heavily distorted.

AP and DBSCAN do not require k to be chosen
in advance and are initialized with other parameters.

DBSCAN requires 2 parameters, minPts and ε, where
minPts quantifies the minimal number of data points
required to form a cluster, while ε is the maximum
distance between 2 data points considered “neighbors.”
Especially setting ε can be challenging in a privacy-
preserving clustering application, as each data owner
only holds a subset of the input data. AP depends on
the preference parameter, which can be tuned manu-
ally by testing several possible values, running the AP
clustering with them, and then choosing the best one
(using a clustering quality index). Alternatively, pref-
erence can be set to the minimum or median Euclidean
squared distance between data points (Frey and Dueck,
2007). Therefore, AP is the most simple to initialize,
which is important in a privacy-preserving setting.

3.3 Other Attributes and Summary

The clustering quality scores ARI and SI (cf. §2.1)
for the example data sets from §3.1 and §3.2 can be
found in Tab. 2; the underlying distributions from
which these data sets were drawn are considered as the
ground truth. The scores confirm the visual observa-
tions discussed in the previous subsections.

We summarize the strengths and weaknesses of all
clustering algorithms in Tab. 3 including additional
attributes of each algorithm, namely flexible choice of
distance metrics, determinism, cluster shapes, compu-
tational complexity, and complex operations.

Since k-means averages input records to deter-
mine cluster centers and GMM uses the Gaussian
distribution, they do not directly support nominal
variables (Huang and Ng, 1999); AP and DBSCAN
are more flexible, as they can use any distance func-
tion (Ester et al., 1996; Frey and Dueck, 2007). Fur-
thermore, the original k-means and GMM algorithms
are instances of the expectation-maximization (EM)
algorithm, which is non-deterministic and often uses
random initialization. This initialization strategy can
lead to convergence at a local optimum (Peña et al.,
1999). AP is deterministic (Frey and Dueck, 2007),
and DBSCAN only varies in rare cases for elements
that lie exactly in the neighborhood of elements from
different clusters (Ester et al., 1996).

So far, we focused on circular or spherical clusters,
which are non-convex. However, data can also come
in the form of elongated or irregularly shaped clus-
ters, like U-shaped clusters, influenced, e.g., by the
data’s dimensions. Since some clustering algorithms,
such as k-means and AP, depend on a dissimilarity
measure like Euclidean distance and assign points to
the cluster with the closest center, these algorithms
do not perform as well on irregular data sets (Xu and
Tian, 2015). GMM assumes that data is drawn from

Table 2: Clustering quality measured with ARI and SI
(cf. §2.1) of the four clustering algorithms k-means, AP,
GMM, and DBSCAN for different data sets. Larger values
(best in bold) indicate a better clustering result.

Attribute Algorithm ARI SI

Outliers
(Fig. 1, §3.1)

k-means (k=3) 0.55 0.67
AP 0.96 0.85
GMM (k=3) 0.98 0.79
DBSCAN 0.96 0.83

of Clusters
(Fig. 2, §3.2)

k-means (k=3) 0.47 0.55
AP 1.00 0.73
GMM (k=3) 0.57 0.60
DBSCAN 0.93 0.65

Shape
(§3.3)

k-means (k=3) 0.52 0.51
AP 0.61 0.50
GMM (k=3) 1.00 0.45
DBSCAN 0.95 0.45

Gaussian distributions and is therefore more flexible,
since oval-shaped distributions still fall within this as-
sumption; however, GMM performs poorly on other
irregular cluster shapes (Xu and Tian, 2015). Since
DBSCAN is based on density of points rather than the
distance to a cluster center, DBSCAN can detect arbi-
trarily shaped clusters (Ester et al., 1996). These ob-
servations are confirmed by our experiments reported
in Tab. 2.

Secure computation protocols add significant over-
head to their plaintext equivalents; therefore, we must
balance clustering quality and complexity. We in-
clude the computational complexity of all algorithms
in Tab. 3. The naive implementation of k-means and
AP have a computational complexity of O(n2) (Xu and
Tian, 2015; Frey and Dueck, 2007; Ester et al., 1996),
where n is the number of data points. DBSCAN and
GMM, in contrast, have a complexity of O(n3) when
implemented using MPC. GMM requires an expen-
sive matrix inversion operation, and DBSCAN uses
a queue or stack for cluster expansion; to obliviously
realize this queue, the computational complexity of
the original baseline DBSCAN algorithm (Ester et al.,
1996) increases from O(n2) to O(n3) (Bozdemir et al.,
2021). Thus, privacy-preserving DBSCAN and GMM
are significantly more costly than the other algorithms.
Another option to improve DBSCAN’s efficieny is the
usage of an r-tree, however, this is expensive to realize
with MPC (similarly to GMM’s matrix inversion).

Based on the results for the four clustering algo-
rithms, we find AP to offer a good trade-off between
clustering quality and complexity, taking its favorable
handling of outliers and easily determinable clustering
parameters into account.

Attributes k-means
(Steinhaus, 1956)

Affinity Propagation
(Frey and Dueck, 2007)

GMM
(Dempster et al., 1977)

DBSCAN
(Ester et al., 1996)

Automatic choice of # clusters k 7 3 7 3
Tolerance to outliers 7 3 7 3

Non-spherical cluster support 7 7 3 3
Flexible choice of distance metrics 7 3 7 3

Determinism 7 3 7 3
MPC-friendly operations 3 3 7 7

Computational complexity in MPC O(n2) O(n2) O(n3) O(n3)

Private Clustering
Protocols (cf. §6)

Leakage of intermediate
values

e.g., (Vaidya and Clifton, 2003),
(Jagannathan and Wright, 2005) (Zhu et al., 2012) (Lin et al., 2005),

(Hamidi et al., 2019)
e.g., (Liu et al., 2013),
(Rahman et al., 2017)

Fully private

(Bunn and Ostrovsky, 2007),
(Patel et al., 2012),

(Jäschke and Armknecht, 2019),
(Mohassel et al., 2020)

This work (Bozdemir et al., 2021)

Table 3: Suitability of plaintext clustering algorithms for privacy-preserving clustering. 3 indicates that the algorithm provides
the property, while 7 indicates that it does not.

4 Privacy-preserving Affinity
Propagation

Affinity propagation (AP) is an iterative message-
passing algorithm, where intuitively, each data point
sends two messages to all other points in every iter-
ation. A point’s first message communicates the at-
tractiveness of another point as its cluster center, or
exemplar. This message is known as the responsibil-
ity. Based on all received responsibility values, each
data point replies with a message quantifying its suit-
ability as a cluster center for each other point, known
as the availability. These messages are revised in each
iteration until a consensus emerges, which identifies
exemplars and point assignments to those exemplars.
All message updates are based on the previous changes
and the distance between data points in general. Com-
putationally, message passing is implemented through
iterative matrix updates of the availability and respon-
sibility matrices, which store the pair-wise values.

Adapting AP for MPC (cf. §2.2) requires an in-
depth analysis of the necessary operations of the al-
gorithm. Fortunately, AP mainly consists of multi-
plication and addition in terms of arithmetic, which
have efficient MPC instantiations based on Arithmetic
sharing (cf. §2.2). Furthermore, the iterative matrix
updates of AP often require maximum or minimum
operations, which can be implemented with compar-
isons using special subprotocols for secure computa-
tion. In §4.1 to §4.3, we formalize protocols for the
constituent parts of privacy-preserving AP, where all
defined variables are secret shared among all participat-
ing parties, excluding the loop indices. This approach
hides all intermediate results, making our private AP
fully privacy-preserving, as discussed in §4.4. §4.1
discusses the necessary setup operations, including
distance calculations and a private calculation for the
preference parameter value. §4.2 and §4.3 describe
how responsibility and availability matrices are up-

dated, respectively. In practice, each update is damped
with the previous update using a weighted average of
the previous and current updates. The computation and
communication costs reported in §5.2 to §5.4 omit the
damping step to enable integer-only computation; how-
ever, including damping does not significantly change
the runtime and communication costs, since its addi-
tion only incurs two arithmetic operations per iteration:
multiplication by the damping coefficient and addition
of the components.

4.1 Setup and Output

Alg. 1 specifies the modular steps of our privacy-
preserving AP protocol for both the first distance cal-
culation, solely with addition and multiplication, and
the final choice and assignment of exemplars, mainly
using comparison operations. Before the first iteration,
the algorithm begins with the calculation of pair-wise
squared Euclidean distances for all points in the data
set in Step 5, whose additive inverses are stored in
the similarity matrix S. Alternatively, other distance
metrics could be used. Our protocol automatically
selects the minimal negative difference between two
data points as the preference value in Step 7, as rec-
ommended by (Frey and Dueck, 2007). This calcu-
lation easily integrates into the initial calculation of
the distance between data points and is therefore not
expensive.

Using the calculated distances, the availability and
responsibility matrices are iteratively updated until
convergence, when cluster centroids and assignments
no longer change with additional iterations. In a final
step, the state of availability and responsibility values
determines which data points are chosen as exemplars,
i.e., cluster centers.

Algorithm 1 Privacy-Preserving Affinity Propagation

Input: iterations iter, data set D with N points of di-
mension features

Output: E, exemplars of all points exEach
1: S = zeros((N,N))
2: for i in range(N) do
3: for j in range(N) do
4: for k in range(features) do
5: d=(D[k][i]-D[k][j])·(D[k][i]-D[k][j])
6: S[i][j] = S[i][j] + d
7: pref = pref>S[i][j]?pref:S[i][j]
8: end for
9: end for

10: end for
11: S = -S
12: for i in range(n) do
13: S[i][i] = preference
14: end for
15: N=size(S)
16: A=zeros(N,N), R=zeros(N,N)
17: λ=0.5
18: for it in range(iter) do
19: AS = A+S
20: UpdateResponsibilityMatrix(AS,S,R)
21: UpdateAvailabilityMatrix(AS,S,A,R)
22: end for
23: E = R+A
24: ex = zeros(N)
25: exEach = zeros(N)
26: for i in range(N) do
27: ex[i] = (E[i][i]>0)?1:0
28: end for
29: for i in range(N) do
30: for j in range(N) do
31: exEach[i]=((ex[j]>0)∧

(exEach[i]≥0)∧(E[i][j]>E[i][exEach[i]])∨
(ex[j]>0)∧(exEach[i]<0))?j:exEach[i]

32: end for
33: end for
34: return E, exEach

4.2 Responsibility Update

Intuitively, the responsibility value between two data
points quantifies how likely one point is to serve as an
exemplar for the other point. The updates for responsi-
bility r based on availaibility a and similarity s in AP
are executed using the following rule:

r(i,k)← s(i,k)−maxk′s.t.k′ 6=k{a(i,k′)+ s(i,k′)},

where responsibility r(i,k) quantifies the evidence for
point k as an exemplar for point i. Expanding and mod-
ularizing this equation for use in secure computation
yields Alg. 2.

Algorithm 2 Update Responsibility Matrix

Input: AS, S, oldR
Output: R

1: R = oldR
2: row = zeros(N)
3: idx = zeros(N)
4: Y = zeros(N)
5: for r in range(N) do
6: for p in range(N) do
7: index = idx[r]
8: max = row[r]
9: idx[r] = AS[r][p]>max?AS[r][p]:index

10: row[r] = AS[r][p]>max?AS[r][p]:max
11: end for
12: end for
13: R = S-repeat(row, columnRep=N, rowRep=1)
14: for index in idx do
15: AS[index] = -inf
16: end for
17: for r in range(N) do
18: for p in range(N) do
19: Y[r] = AS[r][p]>Y[r]?AS[r][p]:Y[r]
20: end for
21: end for
22: for i in range(N) do
23: R[i,idx[i]] = S[i, idx[i]] - Y[i]
24: end for
25: return R = (1-λ)·R + λ·oldR

4.3 Availability Update

The availability of one data point for another represents
how likely one point is to choose the other point as its
exemplar. Availability is quantified using two rules.
The availability a of a point i to another point k based
on responsibility r is:

a(i,k)← min

{
0,r(k,k)+ ∑

i′s.t.i′ /∈{i,k}
max{0,r(i′,k)}

}
,

where availability a(i,k) quantifies the evidence for
point k to choose point i as an exemplar. The self-
availability, or availability for a data point k to itself,
is calculated differently:

a(k,k)← ∑
i′s.t.i′ 6=k

max{0,r(i′,k)}.

We combine, expand, and modularize these update
rules for implementation with a secure computation
protocol in Alg. 3.

4.4 Security Discussion

The security of our privacy-preserving AP protocol
follows from the security of the employed MPC tech-

Algorithm 3 Update Availability Matrix

Input: AS, S, oldA, R
Output: A

1: RP = zeros(N)
2: for r in range(N) do
3: for p in range(N) do
4: RP[r] = R[r][p]>0?R[r][p]:0
5: end for
6: end for
7: for i in range(N) do
8: RP(i,i) = R(i,i)
9: end for

10: sum = sum(R, dimension=1)
11: A = repeat(sum, columnRep=1, rowRep=N) - RP
12: AP = zeros(N)
13: for r in range(N) do
14: for p in range(N) do
15: AP[r] = A[r][p]>0?0:A[r][p]
16: end for
17: end for
18: for i in range(N) do
19: AP(i,i) = A(i,i)
20: end for
21: A = AP
22: return A = (1-λ)·A+λ·oldA

niques. These techniques guarantee that a passive
or active adversary learns nothing beyond what can
be learned from the output. Initially, all data owners
secret-share their clustering input among themselves
or among several non-colluding parties in an outsourc-
ing scenario (Kamara and Raykova, 2011). As these
parties have access only to secret shares, no private
information can be extracted. The distance calcula-
tions for the similarity matrix and for the preference
value are realized with Arithmetic or Boolean shar-
ing (Yao, 1986; Goldreich et al., 1987; Beaver et al.,
1990). MP-SPDZ also includes conversions between
these realizations, which are also provably secure (Ro-
taru and Wood, 2019). The same techniques are used
for all other calculations in the protocol. All data but
the output of the clustering remains secret-shared dur-
ing the entire protocol, so our privacy-preserving AP
protocol is fully privacy-preserving.

5 Evaluation

In this section, we benchmark our privacy-preserving
AP implementation (cf. §4) w.r.t. the achieved clus-
tering quality, its efficiency in comparison to related
works, as well as its scalability.
MP-SPDZ. We implement our protocol using the MP-

Table 4: Data sets and parameter values.

Data Set Size # Clusters Iterations Preference
LSUN 400 3 127 24

Blobs

100 2 28 6
200 2 61 8
300 2 104 20
400 2 95 23
500 2 126 18.8
100 6 23 3
100 10 23 40

SPDZ framework for MPC (Keller, 2020). It realizes
secure multi-party computation (MPC) in the active
and passive security models with honest and dishonest
majorities. The MPC protocols of MP-SPDZ specified
in Tab. 1 run over a ring Z2k with k = 64 bits. All
experiments are run on a 16-core machine for each
party, with a 2.8 GHz Intel Core i9-7960X processor
and 128GB RAM, running Linux. We evaluated a
LAN setting with bandwidth 10Gbps and RTT 0.2ms.
Data Sets. Several data sets were used in our eval-
uation. First, we chose the LSUN cluster bench-
marking data set (Ultsch, 2005) for a comparison of
privacy-preserving AP’s efficiency with other works on
privacy-preserving clustering (Mohassel et al., 2020;
Jäschke and Armknecht, 2019). It contains 400 2-
dimensional data points and 3 rectangular clusters, but
no outliers. Furthermore, we created artificial “blob”
data sets to benchmark privacy-preserving AP’s scala-
bility with respect to the data set’s size. For simplicity,
all clusters are spherically shaped and have a standard
deviation of 0.3, as we only use them for demonstra-
tion purposes on how to choose a preference value, as
well as runtime and communication cost benchmarks
with varying data set sizes. The artificial data sets are
also 2-dimensional, and their sizes range from 100 to
500 elements.

5.1 Clustering Quality & Input
Parameters

We first discuss the effect of input parameters on the
clustering quality. We measure the quality of a clus-
tering output with the adjusted rand index (ARI) and
silhouette index (SI), cf. §2.1. Here we do not focus
on other aspects, e.g., the tolerance to outliers, the
handling of nominal variables, or determinism as dis-
cussed in §3, but rather on the question of how to
determine AP’s input parameter, i.e., the preference, in
a privacy-preserving setting. This is a crucial question
for practical applications of privacy-preserving cluster-
ing, but was completely neglected so far by previous
work.

Tab. 4 lists the manually tuned values for prefer-

2 0 2 4 6 8 10

2

0

2

4

6

8

(a) Median

0.5 1.0 1.5 2.0 2.5
0

1

2

3

4

5

(b) Minimum sum
Figure 3: Example results when setting the preference value
to the median or minimum sum of squared distances between
the input records.

ence and the number of iterations until convergence
for all data sets that we used in this work. For the arti-
ficial “blob” data sets, AP yields a perfectly clustered
result that reflects exactly the ground truth. The result
of clustering LSUN with AP corresponds to an ARI
score (cf. §2.1) of 0.53 and a SI of 0.54. In comparison,
k-means (with k set to the true number of clusters as
shown in Tab. 4) results in a lower and hence worse
ARI of 0.44 and SI of 0.50.

As the data set size increases, the number of iter-
ations until convergence also increases. Furthermore,
more complex data sets like LSUN (i.e., not simply
spherical shaped clusters) require additional iterations
to converge. However, increasing the number of clus-
ters within a data set in general affects only the optimal
preference value, but not the number of iterations. Of-
ten, the optimal preference value also tends to grow
with the data set size and the number of clusters.

In a privacy-preserving setting, participants are
likely not able to tune the preference value before the
clustering given that they only have access to a subset
of the input data. In such cases, we recommend follow-
ing the suggestion of the original work that introduced
AP (Frey and Dueck, 2007) and set the preference
to a privately calculated median or minimum sum of
squared distances, which we simply call the distance
between data points. To do so, e.g., (Makri et al.,
2021; Aggarwal et al., 2010) propose efficient MPC-
protocols for computing minimum and median. This
approach often yields a good clustering result (Frey
and Dueck, 2007). For example, we give the clustering
results for our 2 artificial 100-element “Blobs” data
sets with 2 and 6 clusters in Fig. 3. Setting the prefer-
ence value to the minimum distance yields a perfect
clustering result when the data set comprises 2 clus-
ters in Fig. 3b. Similarly, the 6-cluster data set can be
clustered perfectly when the preference value is set to
the median distance as shown in Fig. 3a.

However, the preference value affects the cluster-
ing result and the number of iterations until conver-
gence. We show this effect in Tab. 5. After preference
tuning, AP converges on the 2-cluster “Blobs“ data set
after 28 iterations, while it takes 52 iterations when the

Table 5: Effect of the preference on number of iterations for
the “Blob” data sets with 100 elements and 2 or 6 clusters.

Clusters Preference Iterations ARI SI
2 tuned: −6 28 1.0 0.85
2 min: −23.65 52 1.0 0.85
2 med: −4.10 27 0.50 0.32
6 tuned: −3 23 1.0 0.85
6 min: −242.78 280 0.54 0.62
6 med: −22.11 51 1.0 0.85

Table 6: Computation and communication costs for cluster-
ing LSUN in the passive (P)/active (A) security model, as
well as for honest (H)/dishonest (D) majority.

Parties Runtime (hr) Communication (GBytes)
P H 3 22.67 103
A H 3 33.01 550
P D 3 107.18 42,658
A D 3 660.05 312,127
P D 2 54.92 17,471
A D 2 500.19 156,079

preference is set to the minimum distance (yielding the
same clustering result). Similarly, although choosing
the median distance results in a good clustering result
for the 6-cluster data set, the algorithm converges after
51 iterations, rather than 23 with tuning.

5.2 MPC Performance

We evaluate privacy-preserving AP on a wide range of
MPC protocols and give an intuition for the efficiency-
security trade-off in different security models for
privacy-preserving AP. Therefore, we benchmark the
costs associated with our privacy-preserving AP im-
plementation for all settings described in Tab. 1 on the
public data set LSUN (Ultsch, 2005). Furthermore,
we carried out experiments for 3 parties in an hon-
est majority setting and for both 2 and 3 parties for a
dishonest majority of parties. We executed each exper-
iment 5 times and report the average cost per iteration
(see Tab. 4 and Tab. 5 for examples how many iter-
ations are needed). All resulting computational and
communication costs for clustering LSUN in these
settings are given in Tab. 6. As expected, the honest-
majority protocols (H) are significantly more efficient
than dishonest-majority protocols (D). Compared to
passive security (P), the active security model (A) in-
creases computational costs by a factor of about 9×
for the dishonest-majority (2 parties) and about 1.5×
for the honest-majority setting (3 parties). For the
same scenarios, communication costs grow by a factor
of approximately 9× with dishonest-majority and 5×
with honest majority protocols. To choose the most
efficient protocol, it is important to realistically assess
the behavior and capabilities of a potential adversary
w.r.t. the specific application (cf. §2.2).

5.3 Comparison to Related Work

We use the LSUN benchmark data set to compare
the efficiency of privacy-preserving AP with state-of-
the-art privacy-preserving clustering algorithms and
gauge costs for the standardized data set LSUN. Tab. 7
lists the runtime necessary to cluster LSUN using
three state-of-the-art efficient privacy-preserving k-
means and DBSCAN protocols from (Jäschke and
Armknecht, 2019; Mohassel et al., 2020; Bozdemir
et al., 2021) compared to our work. Although (Mohas-
sel et al., 2020) is by a factor of 3,674× faster than
ours, we discussed in §3 that AP yields a better cluster-
ing result for many data sets (including LSUN), mak-
ing the additional costs acceptable. Similarly, the par-
allel and independent work by (Bozdemir et al., 2021)
on private DBSCAN is about 194× faster than ours.
However, they use an optimized hybrid combination
of secure two-party computation techniques (Demmler
et al., 2015) which is not possible with MP-SPDZ. Ad-
ditionally, (Bozdemir et al., 2021) reduce the complex-
ity of DBSCAN on LSUN to close to O(n2) by fixing
a low number of neighborhood expansions which will
likely not be possible for all kinds of datasets.

5.4 Scalability

We evaluate the runtime and computation costs of
privacy-preserving AP on the “Blobs” data sets (cf.
Tab. 4) with varying sizes (100, 200, 300, 400, and
500 data points) to assess the scalability of privacy-
preserving AP. This evaluation was carried out for
2 parties and the passive security model. Note that
all other MPC instantiations from Tab. 1 scale sim-
ilarly with n and the results are, thus, transferable
to the other security settings. Since the evaluated
data sets have different optimal preference values and
converge after a varying number of iterations, which
would influence the scaling of cost values, we re-
strict our analysis to the computational and commu-
nication costs per iteration. We listed the required
number of iterations for the data sets in Tab. 4 such
that the runtimes of the full clustering can also be
derived. Fig. 4 presents our benchmark results. As
expected based on AP’s complexity (O(n2)), the costs
grow quadratically with the number of data points
n.We extrapolate the fitted polynomial to a maximum
data set size of n = 1000. The fitted polynomials
are 0.0001505n2 + 0.001638n− 0.1583 minutes for
runtime and 0.0005357n2 + 0.000001406n− 0.0001
GBytes for communication.

We note that the cost per iteration is not dependent
on the number of clusters in the original data set, since
the calculations executed will be the same. The op-

500 1000
data points n

0

50

100

150

ti
m

e
(m

in
)

(a) Runtime

500 1000
data points n

0

200

400

d
at

a
se

nt
(G

B
yt

es
)

(b) Communication
Figure 4: Efficiency benchmark per clustering iteration for
privacy-preserving AP with 2 parties and passive security.

timal choice of preference value and the number of
iterations required for convergence may be affected
by the true number of clusters, as discussed in §5.1.
Therefore, our previous observations and benchmark-
ing results hold not only for the 2-cluster data sets
evaluated, but for data sets with arbitrary numbers of
clusters. This characteristic is a clear advantage of AP
over the k-means clustering algorithm, which becomes
increasingly expensive as the number of clusters k in
the data set grows.

6 Related Work

Privacy-preserving machine learning (PPML) is an
active research field, with much focus placed on cryp-
tographic methods for privacy-preserving supervised
and deep learning (Gilad-Bachrach et al., 2016; Riazi
et al., 2018; Juvekar et al., 2018; Mishra et al., 2020;
Kumar et al., 2020; Rathee et al., 2020; Boemer et al.,
2020; Patra et al., 2021). As training data, often with-
out labels, is increasingly available, the relevance of
privacy in unsupervised learning, e.g., clustering, has
also grown. Some approaches to privacy-preserving
clustering add noise to the clustering process, provid-
ing provable differential privacy (DP) guarantees (Su
et al., 2016; Su et al., 2017; Balcan et al., 2017; Ni
et al., 2018; Stemmer, 2020; Cai et al., 2020). DP is a
privacy-utility trade-off. Instead, we analyze crypto-
graphic approaches for achieving privacy, which yield
full accuracy but are more complex, so they are not
directly comparable to approaches based on DP.

Existing research on private clustering has mainly
proposed protocols for the k-means algorithm. Re-
cently, (Hegde et al., 2021) systematically analyze the
state-of-the-art in privacy-preserving clustering.

Today’s most efficient protocol is (Mohassel et al.,
2020). Their work is based on MPC and provides
a privacy-preserving k-means implementation that
fully preserves privacy and does not incur signifi-
cant computational overhead. For this reason, we
compare our privacy-preserving implementation of
AP to their work using the standard benchmark data

Table 7: Runtime comparison for privately clustering the LSUN data set with 2 parties and passive security.

k-means DBSCAN Affinity Propagation
(Jäschke and Armknecht, 2019) (Mohassel et al., 2020) (Bozdemir et al., 2021) This work

25.79 days 22.21 seconds 420.72 seconds 22.67 hours

set LSUN (cf. §5.3). Other work on k-means pro-
vides privacy as well; however, some protocols use
homomorphic encryption and hence typically are sig-
nificantly slower, e.g., (Bunn and Ostrovsky, 2007;
Jäschke and Armknecht, 2019) or are applicable only
in certain settings, requiring more than 2 non-colluding
servers (Patel et al., 2012) or being applicable only to
horizontally partitioned data (Gheid and Challal, 2016).
Some privacy-preserving k-means implementations
have fundamental issues, leaking intermediate cluster
centers (Vaidya and Clifton, 2003; Jagannathan and
Wright, 2005; Jha et al., 2005; Yuan and Tian, 2019)
or information about cluster sizes (Wu et al., 2020).
In general, k-means is a simple clustering algorithm,
which explains its popularity in privacy-preserving
clustering. Unfortunately, its clustering capabilities
and quality are limited, as discussed in §3.

A few passively secure privacy-preserving variants
of clustering algorithms more advanced than k-means
have been proposed. (Bozdemir et al., 2021) design a
fully privacy-preserving DBSCAN clustering protocol.
Unfortunately, most other protocols do not preserve
full privacy. For example, (Jagannathan et al., 2010)
tackle privacy-preserving hierarchical clustering, but
their protocol reveals merging patterns. The private
DBSCAN protocols by (Almutairi et al., 2018; Amir-
bekyan and Estivill-Castro, 2006; Kumar and Rangan,
2007; Wei-jiang et al., 2007; Jiang et al., 2008; Liu
et al., 2013; Anikin and Gazimov, 2017; Rahman et al.,
2017) leak information such as parameter values, dis-
tances, cluster sizes, and neighborhoods. (Zhu et al.,
2012) propose a privacy-preserving AP protocol for
vertically partitioned data in the passive security model
using additively homomorphic encryption. Their pro-
tocol leaks the permuted similarity values of all data
records to one data owner. Our work is the first that
provides full privacy guarantees with secure multi-
party computation techniques in the passive and active
security model.

7 Conclusion

In this work, we explored the suitability of k-means,
AP, GMM, and DBSCAN for efficient crypto-oriented
clustering. While the clustering quality of k-means is
limited for many data sets, GMM and DBSCAN are
expensive to implement using MPC techniques. AP

provides more flexibility in terms of all attributes, so
we design the first fully privacy-preserving AP with
MPC techniques and implement it with the MP-SPDZ
framework. We evaluated the resulting cluster quality
and scalability, as well as the computational and com-
munication costs for all combinations of passive/active
security and honest/dishonest majority. With this, we
are the first who evaluate the performance of a private
clustering algorithm on all 4 scenarios. Although the
existing privacy-preserving k-means protocol of (Mo-
hassel et al., 2020) is faster, privacy-preserving AP is
reasonably efficient and provides significant improve-
ments upon the clustering quality and capabilities of
k-means.

ACKNOWLEDGEMENTS

This project received funding from the European Re-
search Council (ERC) under the European Union’s
Horizon 2020 research and innovation program (grant
agreement No. 850990 PSOTI). It was co-funded
by the Deutsche Forschungsgemeinschaft (DFG) –
SFB 1119 CROSSING/236615297 and GRK 2050
Privacy & Trust/251805230, and by the BMBF and
the HMWK within ATHENE.

REFERENCES

Aggarwal, G., Mishra, N., and Pinkas, B. (2010). Se-
cure computation of the median (and other ele-
ments of specified ranks). In Journal of Cryptol-
ogy.

Almutairi, N., Coenen, F., and Dures, K. (2018). Se-
cure third party data clustering using φ data:
Multi-user order preserving encryption and su-
per secure chain distance matrices. In Interna-
tional Conference on Innovative Techniques and
Applications of Artificial Intelligence.

Amirbekyan, A. and Estivill-Castro, V. (2006). Privacy
preserving DBSCAN for vertically partitioned
data. In International Conference on Intelligence
and Security Informatics.

Anikin, I. V. and Gazimov, R. M. (2017). Privacy pre-
serving DBSCAN clustering algorithm for verti-
cally partitioned data in distributed systems. In In-

ternational Siberian Conference on Control and
Communications.

Araki, T., Furukawa, J., Lindell, Y., Nof, A., and
Ohara, K. (2016). High-throughput semi-honest
secure three-party computation with an honest
majority. In CCS.

Arbelaitz, O., Gurrutxaga, I., Muguerza, J., Pérez, J.,
and Perona, I. (2013). An extensive comparative
study of cluster validity indices. Pattern Recogni-
tion.

Aumann, Y. and Lindell, Y. (2007). Security against
covert adversaries: Efficient protocols for realis-
tic adversaries. In TCC.

Balcan, M. F., Dick, T., Liang, Y., Mou, W., and Zhang,
H. (2017). Differentially private clustering in
high-dimensional euclidean spaces. In Interna-
tional Conference on Machine Learning (ICML).

Bano, S. and Khan, N. (2018). A survey of data clus-
tering methods. In International Journal of Ad-
vanced Science and Technology.

Beaver, D., Micali, S., and Rogaway, P. (1990). The
round complexity of secure protocols. In ACM
Symposium on Theory of Computing (STOC).

Boemer, F., Cammarota, R., Demmler, D., Schneider,
T., and Yalame, H. (2020). MP2ML: A mixed-
protocol machine learning framework for private
inference. In ARES.

Bozdemir, B., Canard, S., Ermis, O., Möllering, H.,
Önen, M., and Schneider, T. (2021). Privacy-
preserving density-based clustering. In ASIACCS.

Braun, L., Demmler, D., Schneider, T., and Tkachenko,
O. (2020). MOTION–A Framework for Mixed-
Protocol Multi-Party Computation.

Bunn, P. and Ostrovsky, R. (2007). Secure two-party
k-means clustering. In CCS.

Cai, H., Wang, J., Liu, X., and Li, X. (2020). Dp-ap:
Differential privacy-preserving affinity propaga-
tion clustering. In International Conference on
Big Data Science and Engineering (BigDataSE).

Chaturvedi, A., Carroll, J., Green, P., and Rotondo,
J. A. (1997). A feature-based approach to market
segmentation via overlapping k-centroids cluster-
ing. Journal of Marketing Research.

Cramer, R., Damgård, I., Escudero, D., Scholl, P., and
Xing, C. (2018). SPDZ2k : Efficient MPC mod 2k

for dishonest majority. In CRYPTO.
Damgård, I., Escudero, D., Frederiksen, T., Keller,

M., Scholl, P., and Volgushev, N. (2019). New
primitives for actively-secure mpc over rings with
applications to private machine learning. In IEEE
S&P.

Demmler, D., Schneider, T., and Zohner, M. (2015).
Aby- a framework for efficient mixed-protocol
secure two-party computation. In NDSS.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977).
Maximum likelihood from incomplete data via
the em algorithm. In Journal of the Royal Statis-
tical Society.

Eerikson, H., Orlandi, C., Pullonen, P., Puura, J., and
Simkin, M. (2019). Use your brain! arithmetic
3PC for any modulus with active security. In
Information-Theoretic Cryptography.

Ester, M., Kriegel, H. P., Sander, J., and Xu, X. (1996).
A density-based algorithm for discovering clus-
ters in large spatial databases with noise. In In-
ternational Conference on Knowledge Discovery
and Data Mining (KDD).

Fischer, S., Freuling, C., Müller, T., Pfaff, F., Bo-
denhofer, U., Höper, D., Fischer, M., Marston,
D., Fooks, A., Mettenleiter, T., Conraths, F., and
Homeier, T. (2018). Defining objective clusters
for rabies virus sequences using affinity propa-
gation clustering. PLOS Neglected Tropical Dis-
eases.

Frey, B. J. and Dueck, D. (2007). Clustering by passing
messages between data points. Science.

Gheid, Z. and Challal, Y. (2016). Efficient and privacy-
preserving k-means clustering for big data mining.
In IEEE Trustcom/BigDataSE/ISPA.

Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K.,
Naehrig, M., and Wernsing, J. (2016). Cryptonets:
Applying neural networks to encrypted data with
high throughput and accuracy. In International
Conference on Machine Learning.

Goldreich, O. (2009). Foundations of Cryptography:
Volume 2, Basic Applications. Cambridge Uni-
versity Press.

Goldreich, O., Micali, S., and Wigderson, A. (1987).
How to play any mental game or A completeness
theorem for protocols with honest majority. In
STOC.

Hamidi, M., Sheikhalishahi, M., and Martinelli, F.
(2019). Privacy preserving Expectation Maxi-
mization (EM) clustering construction. In DCAI.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Delv-
ing deep into rectifiers: Surpassing human-level
performance on imagenet classification. In Inter-
national Conference on Computer Vision (ICCV).

Hegde, A., Möllering, H., Schneider, T., and Yalame,
H. (2021). Sok: Efficient privacy-preserving clus-
tering. In PETS.

Huang, Z. and Ng, M. K. (1999). A fuzzy K-modes
algorithm for clustering categorical data. IEEE
Transactions on Fuzzy Systems.

Hubert, L. and Arabie, P. (1985). Comparing partitions.
Journal of Classification.

Jagannathan, G., Pillaipakkamnatt, K., Wright, R. N.,
and Umano, D. (2010). Communication-efficient
privacy-preserving clustering. Transactions on
Data Privacy.

Jagannathan, G. and Wright, R. N. (2005). Privacy-
preserving distributed k-means clustering over
arbitrarily partitioned data. In International Con-
ference on Knowledge Discovery in Data Mining
(KDD).

Jain, A. K., Murty, M. N., and Flynn, P. J. (1999).
Data clustering: A review. In ACM Computing
Surveys.

Jäschke, A. and Armknecht, F. (2019). Unsupervised
machine learning on encrypted data. SAC.

Jha, S., Kruger, L., and McDaniel, P. (2005). Privacy
preserving clustering. In ESORICS.

Jiang, D., Xue, A., Ju, S., Chen, W., and Ma, H. (2008).
Privacy-preserving DBSCAN on horizontally par-
titioned data. In International Symposium on IT
in Medicine and Education.

John, T., Jin, J., Dauwels, J., Cash, S., and Westover,
B. (2016). Clustering of interictal spikes by dy-
namic time warping and affinity propagation. In
International Conference on Acoustics, Speech
and Signal Processing (ICASSP).

Juvekar, C., Vaikuntanathan, V., and Chandrakasan,
A. (2018). GAZELLE: A low latency framework
for secure neural network inference. In USENIX
Security’18.

Kamara, S. and Raykova, M. (2011). Secure out-
sourced computation in a multi-tenant cloud.
IBM Workshop on Cryptography and Security
in Clouds.

Keller, H., Möllering, H., Schneider, T., and Yalame,
H. (2021). Balancing quality and efficiency in
private clustering with affinity propagation. In
SECRYPT.

Keller, M. (2020). MP-SPDZ: A versatile framework
for multi-party computation. In CCS.

Kourou, K., Exarchos, T., Exarchos, K., Karamouzis,
M., and Fotiadis, D. (2014). Machine learn-
ing applications in cancer prognosis and predic-
tion. Computational and Structural Biotechnol-
ogy Journal, 13.

Kreuter, B., Shelat, A., and Shen, C. H. (2012). Billion-
gate secure computation with malicious adver-
saries. In USENIX Security.

Kumar, K. A. and Rangan, C. P. (2007). Privacy pre-
serving DBSCAN algorithm for clustering. In
Advanced Data Mining and Applications.

Kumar, N., Rathee, M., Chandran, N., Gupta, D., Ras-
togi, A., and Sharma, R. (2020). Cryptflow: Se-
cure tensorflow inference. In IEEE S&P.

Leone, M., Sumedha, S., and Weigt, M. (2007). Clus-
tering by soft-constraint affinity propagation: Ap-
plications to gene-expression data. Bioinformat-
ics.

Lin, X., Clifton, C., and Zhu, M. (2005). Privacy-
preserving clustering with distributed EM mix-
ture modeling. In Knowledge and Information
Systems.

Lindell, Y. and Nof, A. (2017). A framework for con-
structing fast mpc over arithmetic circuits with
malicious adversaries and an honest-majority. In
CCS.

Lindell, Y. and Pinkas, B. (2015). An efficient protocol
for secure two-party computation in the presence
of malicious adversaries. In Journal of Cryptog-
raphy.

Liu, J., Xiong, L., Luo, J., and Huang, J. Z. (2013). Pri-
vacy preserving distributed DBSCAN clustering.
Transactions on Data Privacy.

Makri, E., Rotaru, D., Vercauteren, F., and Wagh, S.
(2021). Rabbit: Efficient comparison for secure
multi-party computation. In FC.

Masulli, F. and Schenone, A. (1999). A fuzzy clus-
tering based segmentation system as support to
diagnosis in medical imaging. Artificial Intelli-
gence in Medicine.

Mishra, P., Lehmkuhl, R., Srinivasan, A., Zheng, W.,
and Popa, R. A. (2020). Delphi: A cryptographic
inference service for neural networks. In USENIX
Security.

Mohassel, P., Rosulek, M., and Trieu, N. (2020). Prac-
tical privacy-preserving k-means clustering. In
PETS.

Ni, L., Li, C., Wang, X., Jiang, H., and Yu, J. (2018).
DP-MCDBSCAN: Differential privacy preserv-
ing multi-core DBSCAN clustering for network
user data. IEEE Access.

Patel, S., Garasia, S., and Jinwala, D. (2012). An effi-
cient approach for privacy preserving distributed
k-means clustering based on shamir’s secret shar-
ing scheme. In Trust Management VI.

Patra, A., Schneider, T., Suresh, A., and Yalame, H.
(2021). Aby2. 0: Improved mixed-protocol se-
cure two-party computation. In USENIX Security.

Peña, J., Lozano, J., and Larrañaga, P. (1999). An em-
pirical comparison of four initialization methods
for the k-means algorithm. Pattern Recognition.

Rahman, M. S., Basu, A., and Kiyomoto, S. (2017). To-
wards outsourced privacy-preserving multiparty

DBSCAN. In Pacific Rim International Sympo-
sium on Dependable Computing.

Rathee, D., Rathee, M., Kumar, N., Chandran, N.,
Gupta, D., Rastogi, A., and Sharma, R. (2020).
CrypTFlow2: Practical 2-party secure inference.
In CCS.

Riazi, M. S., Weinert, C., Tkachenko, O., Songhori,
E. M., Schneider, T., and Koushanfar, F. (2018).
Chameleon: A hybrid secure computation frame-
work for machine learning applications. In ASI-
ACCS’18.

Rotaru, D. and Wood, T. (2019). Marbled circuits:
Mixing arithmetic and boolean circuits with ac-
tive security. In INDOCRYPT.

Rousseeuw, P. (1987). Silhouettes: A graphical aid to
the interpretation and validation of cluster analy-
sis. Journal of Computational and Applied Math-
ematics.

Santana, R., McGarry, L., Bielza, C., Larranaga, P.,
and Yuste, R. (2013). Classification of neocortical
interneurons using affinity propagation. Frontiers
in Neural Circuits.

Steinhaus, H. (1956). Sur la division des corp materiels
en parties. Bulletin L’Académie Polonaise des
Science.

Stemmer, U. (2020). Locally private k-means clus-
tering. In ACM-SIAM Symposium on Discrete
Algorithms (SODA).

Su, D., Cao, J., Li, N., Bertino, E., and Jin, H. (2016).
Differentially private k-means clustering. In ACM
Conference on Data and Application Security and
Privacy (CODASPY).

Su, D., Cao, J., Li, N., Bertino, E., Lyu, M., and Jin, H.
(2017). Differentially private k-means clustering
and a hybrid approach to private optimization.
ACM Transactions on Privacy and Security.

Ultsch, A. (2005). Clustering with SOM. In Workshop
on Self-Organizing Maps.

Vaidya, J. and Clifton, C. (2003). Privacy-preserving k-
means clustering over vertically partitioned data.
In International Conference on Knowledge Dis-
covery and Data Mining (KDD).

Vinh, N., Epps, J., and Bailey, J. (2010). Information
theoretic measures for clusterings comparison:
Variants, properties, normalization and correc-
tion for chance. Journal of Machine Learning
Research.

Vinyals, O., Kaiser, L., Koo, T., Petrov, S., Sutskever,
I., and Hinton, G. (2015). Grammar as a foreign
language. In International Conference on Neural
Information Processing Systems (NIPS).

Wang, Z., Zhao, C., Wang, Y., Sun, Z., and Wang, N.

(2018). PANDA: Protein function prediction us-
ing domain architecture and affinity propagation.
Scientific Reports.

Wei-jiang, X., Liu-sheng, H., Yong-long, L., Yi-fei,
Y., and Wei-wei, J. (2007). Privacy-preserving
DBSCAN clustering over vertically partitioned
data. In International Conference on Multimedia
and Ubiquitous Engineering.

Wu, W., Liu, J., Wang, H., Hao, J., and Xian, M.
(2020). Secure and efficient outsourced k-means
clustering using fully homomorphic encryption
with ciphertext packing technique. IEEE Trans-
actions on Knowledge and Data Engineering.

Xu, D. and Tian, Y. (2015). A comprehensive survey
of clustering algorithms. Annals of Data Science.

Xu, R. and Wunsch, D. (2005). Survey of cluster-
ing algorithms. IEEE Transactions on Neural
Networks.

Xu, X., Ester, M., Kriegel, H.-P., and Sander, J. (1998).
A distribution-based clustering algorithm for min-
ing in large spatial databases. In International
Conference on Data Engineering.

Yao, A. C. (1986). How to generate and exchange
secrets (extended abstract). In FOCS.

Yuan, J. and Tian, Y. (2019). Practical privacy-
preserving MapReduce based k-means clustering
over large-scale dataset. IEEE Transactions on
Cloud Computing.

Zhu, X., Liu, M., and Xie, M. (2012). Privacy-
preserving affinity propagation clustering over
vertically partitioned data. In International Con-
ference on Intelligent Networking and Collabora-
tive Systems.

