
TransNet: Shift Invariant Transformer Network
for Side Channel Analysis

(extended version)

Suvadeep Hajra1⋆, Sayandeep Saha2, Manaar Alam3, and
Debdeep Mukhopadhyay1

1 Indian Institute of Technology Kharagpur, Kharagpur, India
{suvadeep.hajra,debdeep.mukhopadhyay}@gmail.com

2 Nanyang Technological University, Singapore
3 New York University Abu Dhabi, United Arab Emirates

Abstract. Deep learning (DL) has revolutionized Side Channel Anal-
ysis (SCA) in recent years. One of the major advantages of DL in the
context of SCA is that it can automatically handle masking and desyn-
chronization countermeasures, even while they are applied simultane-
ously for a cryptographic implementation. However, the success of the
attack strongly depends on the DL model used for the attack. Tradi-
tionally, Convolutional Neural Networks (CNNs) have been utilized in
this regard. This work proposes to use Transformer Network (TN) for
attacking implementations secured with masking and desynchronization.
Our choice is motivated by the fact that TN is good at capturing the
dependencies among distant points of interest in a power trace. Further-
more, we show that TN can be made shift-invariant which is an im-
portant property required to handle desynchronized traces. Experimen-
tal validation on several public datasets establishes that our proposed
TN-based model, called TransNet, outperforms the present state-of-the-
art on several occasions. Specifically, TransNet outperforms the other
methods by a wide margin when the traces are highly desynchronized.
Additionally, TransNet shows good attack performance against imple-
mentations with desynchronized traces even when it is trained on syn-
chronized traces. The Tensorflow implementation of TransNet is available
at https://github.com/suvadeep-iitb/TransNet.

Keywords: Side channel analysis, Masking countermeasure, Transformer net-
work

1 Introduction

Ever since its introduction in [16], SCA poses a significant threat to crypto-
graphic implementations. To protect the cryptographic implementations from

⋆ corresponding author

2 S. Hajra et al.

those attacks, several countermeasures have been proposed. Masking counter-
measures [6] and desynchronization of traces [7] are two commonly used counter-
measures against those attacks. In masking countermeasure, each intermediate
sensitive variable of the cryptographic implementation is divided into multiple
shares so that any proper subset of the shares remains independent of the sen-
sitive variable. A successful attack against the masking scheme combines the
leakages of all the shares to infer information about the sensitive variable. On
the other hand, desynchronization of the power traces causes the PoIs of the
traces to be misaligned, reducing the signal-to-noise ratio (SNR) of the individ-
ual sample points. The reduced SNR causes an increase in the number of power
traces required for a successful attack. Recently, DL [22, 20] has been found to
be very effective against both the countermeasures. DL methods can eliminate
the necessity of critical preprocessing steps in SCA while attacking desynchro-
nized traces [5]. DL methods can also break masking countermeasures without
requiring careful selection of combining function [30].

Various DL models like Feed-Forward Neural Networks (FFNs), Recurrent
Neural Networks (RNNs), Convolutional Neural Networks (CNNs) have been
explored [20, 3, 19] for SCA. Among those, CNNs have been widely adopted for
performing profiling SCA4 [5, 3, 43, 14, 39]. Because of the shift-invariance prop-
erty of CNNs, they can perform very well on misaligned attack traces, and thus,
can eliminate critical preprocessing steps like realignment of power traces in
a standard SCA [5]. Moreover, the CNN-based models have achieved state-of-
the-art results in many publicly available datasets [39, 35]. However, the existing
CNN-based models are limited in several aspects. Firstly, we have experimentally
demonstrated that their performance gets worse as the amount of desynchroniza-
tion gets larger. Secondly, to perform well on desynchronized attack traces, they
are required to be trained using profiling desynchronization almost the same
as attack desynchronization [43, 34]. Finally, separate models are needed to be
designed to attack implementations protected by different amounts of desyn-
chronization.

Recently, in a seminal work, Vaswani et al. [33] have introduced Transformer
Network (TN), which has defeated all its CNN and RNN-based counterparts by
a wide margin in almost every natural language processing task. In this work,
we propose to use TN for SCA. TN can easily capture the dependency between
distant PoIs, and, thus, is a natural choice against implementations protected
using countermeasures like masking for which the PoIs are spread across a long
range in the time axis. Moreover, by introducing a weaker notion (applicable to
SCA) of shift-invariance, we have shown that TN can be shift-invariant in the
context of SCA. Thus, TN can be effective against misaligned traces as well.
We have proposed a TN-based DL model, namely TransNet, for performing

4 In profiling SCA, the adversary possesses a device similar to the attack device and
uses that device to train a model for the target device. The trained model is used
to attack the target device. A profiling SCA assumes the strongest adversary and
provides the worst-case security analysis of a cryptographic device. In this work, we
have considered profiling SCA only.

TransNet: Shift Invariant Transformer Network for Side Channel Analysis 3

SCA based on the above observations. We have also experimentally evaluated
TransNet against implementations protected by masking and trace desynchro-
nization countermeasures. Our experimental results suggest that TransNet per-
forms better than existing state-of-the-art CNN-based models on several scenar-
ios. Specifically, TransNet performs better than the CNN-based state-of-the-art
models when the attack traces are highly desynchronized. Additionally, TransNet
can perform very well on highly desynchronized traces even when trained on syn-
chronized traces – a feature that none of the existing CNN-based models exhibits
(kindly refer to Section 6.6 for a detailed discussion).

In summary, the contributions of the paper are as follows:

– Firstly, we propose to use TN for SCA. TN can naturally capture long-
distance dependency ([33]), thus, it is a better choice against masking coun-
termeasure. Additionally, we have defined a weaker notion of shift-invariance
that is well applicable to SCA. Under this new notion, we have mathemati-
cally shown that the TN can be made to be shift-invariant. Thus, it can be
effective against misaligned traces as well.

– Our proposed TN-based model, namely TransNet, significantly differs from
off-the-shelf TN models in several design choices which are crucial for its
success in SCA.

– Experimentally, we have compared TransNet with the CNN-based state-of-
the-art models on four datasets. Among the four datasets, two datasets con-
tain trace desynchronization, whereas the other two do not contain any trace
desynchronization. The performance of TransNet is better than or compara-
ble to the CNN-based state-of-the-art models on the four datasets. Particu-
larly, TransNet outperforms the other methods by a wide margin when the
amount of desynchronization is very high. In those scenarios, TransNet can
bring down the guessing entropy to zero using very small number of attack
traces, whereas the CNN-based methods struggle to bring it down below 20.

– We have also shown that TransNet can perform very well on highly desyn-
chronized attack traces even when the model is trained on only synchronized
(aligned) traces. In our experiments, TransNet can reduce the guessing en-
tropy below 1 using only 400 traces on ASCAD desync100 dataset [3] even
when it is trained on aligned traces (i.e., on ASCAD dataset). On the other
hand, the CNN-based state-of-the-art models struggle to reduce the guessing
entropy below 20 using as much as 5000 traces in the same setting.

Several recent works [38, 13] have explored different loss functions for DL-
based SCA. Some other recent works have explored different training techniques
[1, 26]. However, those techniques are orthogonal to our work as we aim to explore
different machine learning models. Also, several recent works [23, 10, 18, 27] have
introduced novel machine learning models to attack very long traces. In contrast,
our proposed model is more appropriate for performing attacks on shorter traces
or selected time windows of a small number of sample points.

The organization of the paper is as follows. In Section 2, we introduce the
notations and briefly describe how the SCA is performed using deep learning.
Section 3 describes the general architecture of TN. In Section 4, we introduce our

4 S. Hajra et al.

proposed TN-based model, namely TransNet, for SCA. Section 5 explains how a
TN-based model can accumulate information from distant PoIs. The section also
proves the shift-invariance property of the TransNet like models. In Section 6,
we experimentally evaluate the TransNet model on several datasets. Section 7
discusses the advantages and disadvantages of the proposed model. Finally, in
Section 8, we conclude.

2 Preliminaries

In this section, we first introduce the notations used in the paper. Then, we
briefly describe how a profiling SCA is performed using DL.

2.1 Notations

Throughout the paper, we have used the following notational convention. A
random variable is represented by a letter in the capital (e.g., X), whereas an
instantiation of the random variable is represented by the corresponding letter
in small (e.g., x) and the domain of the random variable by the corresponding
calligraphic letter (e.g., X). Similarly, a capital letter in bold (e.g., X) is used to
represent a random vector, and the corresponding small letter in bold (e.g., x) is
used to represent an instantiation of the random vector. A matrix is represented
by a capital letter in roman type style (e.g., M). The i-th elements of a vector x
is represented by x[i] and the element of i-th row and j-th column of a matrix is
represented by M[i, j]. P[·] represents the probability mass/density function and
E[·] represents expectation.

2.2 Profiling SCA using Deep Learning

Like other profiling attacks, profiling attacks using deep learning are performed
in two phases: profiling and attack. However, unlike other profiling attacks like
template attacks, the adversary does not build any template distribution for
each value of the intermediate secret in this case. Instead, he trains a deep
learning model to directly predict the values of the intermediate secret from the
power traces. More precisely, in the profiling phase, the adversary sets the keys
of the clone device of his own choice and collects a large number of traces for
different plaintexts. For each trace, he computes the value of the intermediate
secret variable Z = F (X,K) where X is the random plaintext, K is the key,
and F (·, ·) is a cryptographic primitive. Then, the adversary trains a DL model
f : Rn 7→ R|Z| using the power traces as input and the corresponding Z variables
as the label or output. Thus, the output of the deep neural model for a power
trace l can be written as p = f(l; θ∗) where θ∗ is the parameter learned during
training, and p ∈ R|Z| such that p[i], for i = 0, · · · , |Z| − 1, represents the
predicted probability for the intermediate variable Z = i. During the attack
phase, the score of each possible key k ∈ K is computed as

TransNet: Shift Invariant Transformer Network for Side Channel Analysis 5

addition

Layer Norm

addition

Layer Norm

Multi−Head
Attention

PoswiseFF

xl

xl−1

(a) TN Layer with
Post Layer Normal-
ization

addition

Multi−Head
Attention

Layer Norm

addition

Layer Norm

PoswiseFF

xl−1

xl

(b) TN Layer with
Pre Layer Normaliza-
tion

addition

addition

PoswiseFF

Attention
Multi−Head

RelPositional

xl−1

xl

(c) Proposed
TransNet Layer

Fig. 1: A Single Transformer Layer. Figures 1a and 1b show the conventional TN
layers. In Figure 1c, we show a layer of the proposed TransNet. In the proposed
TransNet layer, no layer normalization has been used. Additionally, the proposed
TransNet layer uses relative positional encoding [8] within the self attention layer
(please refer to Section 3.4 for details).

δ̂k =

Ta−1∑
i=0

log pi[F (pi, k)] (1)

where {li, pi}Ta−1
i=0 is the set of attack trace-plaintext pairs, and pi = f(li; θ∗)

is the predicted probability vector for the i-th trace. Like template attack, k̂ =
argmaxk δ̂k is chosen as the guessed key.

Several deep neural network architectures including Feed Forward Network
(FFN) [22, 21, 20], Convolutional Neural Network (CNN) [20, 5, 3, 43, 29], Recur-
rent Neural Network (RNN) [20, 19, 18] have been explored for profiling SCA. In
this work, we propose to use TN for the same. In the next section, we describe
the architecture of a TN.

3 Transformer Network

A Transformer Network (TN) is a deep learning model which was originally de-
veloped for a sequence processing task. The TN takes a sequence (x0, · · · , xn−1)
as input and generates a sequence of output vectors (y0, · · · ,yn−1). The se-
quence of the output vectors can then be processed differently depending on the

6 S. Hajra et al.

target task. For example, for a sequence classification task (as in SCA), the mean
vector of the output vectors can be used to predict the class labels.

Structurally, TN is a stacked collection of transformer layers following an
initial embedding layer. Thus, in an L-layer TN, the output of the initial em-
bedding layer is used as the input of the first transformer layer, and the output
of the i-th transformer layer is used as the input of (i + 1)-th layer, 1 ≤ i < L.
Finally, the output of the L-th layer is taken as the network output.

A transformer layer consists of two main modules - a multi-head self-attention
layer and a position-wise feed-forward layer. Specifically, a transformer layer is
a multi-head self-attention layer followed by a position-wise feed-forward layer.
Additionally, to facilitate ease of training, the input and the output of each
of the modules are connected by shortcut connection [11]. Sometimes layer-
normalization operations [2] are also added in a transformer layer. Figure 1
shows two different variations of the conventional transformer layer along with
the layer of the proposed TransNet model. The forward pass of an L-layer TN
is shown in Algorithm 1.

Algorithm 1: Forward pass of an L layer transformer network

1 At the beginning
2 begin
3 x0

0,x
0
1 · · · ,x0

n−1 ← Embed(x0, x1, · · · , xn−1) // embed input sequence

4 for l← 1 to L do
// apply self-attention operation

5 s0, s1, · · · , sn−1 ← MultiHeadSelfAttnl (xl−1
0 ,xl−1

1 , · · · ,xl−1
n−1)

// add shortcut connection

6 s0, s1, · · · , sn−1 ← s0 + xl−1
0 , s1 + xl−1

1 , · · · , sn−1 + xl−1
n−1

// apply layer normalization operation

7 s0, s1, · · · , sn−1 ← LayerNormalization (s0, s1, · · · , sn−1)

// apply position-wise feed-forward operation

8 t0, t1, · · · , tn−1 ← PoswiseFFl (s0, s1, · · · , sn−1)
// add shortcut connection

9 t0, t1, · · · , tn−1 ← t0 + s0, t1 + s1, · · · , tn−1 + sn−1

// apply layer normalization operation

10 xl
0,x

l
1, · · · ,xl

n−1 ← LayerNormalization (t0, t1, · · · , tn−1)

11 return (xL
0 ,x

L
1 , · · · ,xL

n−1)

Each building block of the above overall architecture is described below.

3.1 Embedding Layer

A transformer layer takes a sequence of vectors as input. However, the input to a
TN is generally a sequence of discrete symbols (in case of text processing) or a se-

TransNet: Shift Invariant Transformer Network for Side Channel Analysis 7

quence of real numbers (in case of images or power traces). The embedding layer
converts the sequence of discrete symbols or real numbers (x0, x1, · · · , xn−1) into
the sequence of vectors (x1,x2, · · · ,xn−1). Generally, xi = f(xi; E), 0 ≤ i < n,
holds for some embedding function f(·) and parameter E. The parameter E is
learned during training along with the other parameters of the network.

3.2 Multi-Head Self-Attention Layer

The multi-head self-attention layer is the key layer for the ability to capture
long-distance dependencies. Before describing multi-head self-attention, we first
describe the (single head) self-attention.

Self-Attention: Self-attention layer takes a sequence of input vectors (x0,x1, · · · ,
xn−1) as input and generates another sequence of vectors (y0,y1, · · · ,yn−1). For
each ordered pair (xi,xj) of input vectors, the self-attention operation computes
the attention probability pij from vector xi to vector xj based on their similarity
(sometimes also based on their positions). Finally, the i-th output vector yi is
computed using the weighted sum of the input vectors where the weights are
given by the attention probabilities i.e. yi =

∑
j pijxj . Thus, if xi and xj are two

vectors corresponding to the leakages of two PoIs, the state yi can accumulate
their information in a single step even when the distance between i and j is
large. Thus, this step can be useful to combine leakages of multiple PoIs of the
input traces (kindly refer to Section 5.1 for a detailed discussion).

To describe the self-attention operation more precisely, let (x0,x1, · · · ,xn−1)
and (y0,y1, · · · ,yn−1) be the sequence of input and output vectors of a self-
attention layer where xi,yi ∈ Rd for all i. Then, for each i = 0, · · · , n − 1, the
i-th output vector yi is computed as follows:

1. First the attention scores aij from i-th element to j-th element, 0 ≤ j < n,
is calculated using a scaled dot product similarity measure, i.e.

aij =
⟨WQxi,WKxj⟩√

dk
=
⟨qi,kj⟩√

dk
(2)

where WQ,WK ∈ Rdk×d are trainable weight matrices and ⟨·, ·⟩ denotes dot
product of two vectors. qi,ki ∈ Rdk are respectively known as query and key
representation of the i-th element. Note that the term “key” used here has
no relation with the term “(secret) key” used in cryptography.

2. The attention probabilities pij are computed by taking softmax of the at-
tention scores aij over the j variable, i.e.,

pij = softmax(aij ; ai,0, · · · , ai,n−1) =
eaij∑n−1

k=0 eaik
(3)

3. The intermediate output ȳi is computed by taking the weighted sum of the
input vectors x0,x1, · · · ,xn−1. More precisely,

ȳi =

n−1∑
j=0

pijWV xj =

n−1∑
j=0

pijvj (4)

8 S. Hajra et al.

where WV ∈ Rdv×d is also a trainable weight matrix and vj = WV xj is
called the value representation of the j-th input vector xj .

4. The final output yi is computed by projecting the ȳi ∈ Rdv into Rd by a
trainable weight matrix WO ∈ Rd×dv , i.e.

yi = WOȳi (5)

Thus, the self-attention operation can be written as matrix multiplication in
the following way:

Ȳ = Self -Attention(WQ,WK ,WV) = softmax (A)XWT
V = PXWT

V (6)

Y = ȲWT
O

where ȳi, yi and xi denote the ith rows of matrices Ȳ, Y and X, respectively.
WT

V represents the transpose of the matrix WV . A and P are two n×n matrices
such that A[i, j] and P[i, j] equals to aij and pij respectively.

Multi-Head Self-Attention: In self-attention, the matrix Ȳ created by a set of
parameters (WQ,WK ,WV) is called a single attention head. In a H-head self-
attention operation, H attention heads are used to produce the output. More
precisely, the output of a multi-head self attention is computed as

Ȳ(i) = Self -Attention(W
(i)
Q ,W

(i)
K ,W

(i)
V), for i = 0, · · · , H − 1

Ȳ = [Ȳ(0), · · · , Ȳ(H−1)]

Y = ȲWT
O (7)

where the function Self-Attention(·, ·, ·) is defined in Eq. 6, [A1,A2, · · · ,An]
denotes the row-wise concatenation of the matrices Ais and the output pro-
jection matrix WO ∈ Rd×Hdv projects the Hdv-dimensional vector into Rd. A
single head self-attention layer captures the dependency among the elements of
the input sequence in one way. An H-head self-attention layer can capture the
dependency among those in H-different ways.

3.3 Position-wise Feed-Forward Layer

Position-wise feed-forward layer is a two layer feed-forward network applied
to each element of the input sequence separately and identically. Let FFN(x)
be a two layer feed-forward network with ReLU activation [9] and hidden di-
mension di. Then, the output sequence (y0,y1, · · · ,yn−1) of the position-wise
feed-forward layer is computed as yi = FFN(xi), for i = 0, 1, · · · , n − 1 where
(x0,x1, · · · ,xn−1) is the input sequence. The position-wise feed-forward layer
helps to increase the non-linearity of the function represented by the TN. The
integer hyper-parameter di is commonly referred to as inner dimension. In Ta-
ble 1, we summarize the notations used to describe the transformer network.

In the standard architecture, as described above, there are several design
choices for TN which are relevant in the context of SCA. We found that the
positional encoding and layer normalization need to be chosen properly to use
TN for SCA. Thus, we describe those, one by one.

TransNet: Shift Invariant Transformer Network for Side Channel Analysis 9

Notation Description Notation Description

d model dimension dk key dimension
dv value dimension di inner dimension
n input or trace length H # of heads in
L # of transformer layers self-attention layer

Table 1: Notations used to denote the hyper-parameters of a transformer network

3.4 Positional Encoding

The relative positional encoding is introduced in [31]. In relative positional en-
coding, the attention score from i-th input element to j-th input element is made
dependent on their relative position or distance i− j. [8] have further improved
the scheme of [31]. In their proposed relative positional encoding, the attention
score of Eq. 2 is modified to be computed as

aij =
⟨WQxi,WKxj⟩+ ⟨WQxi, ri−j⟩+ ⟨WQxi, s⟩+ ⟨ri−j , t⟩√

dk
(8)

where the vectors (r−n+1, · · · , r0, · · · , rn−1) are the relative positional encoding
and are also learned during training. Finally, as before, the attention probabilities
are computed as

pij = softmax(aij ; ai,0, · · · , ai,n−1) =
eaij∑n−1

k=0 eaik
(9)

In our TN model for SCA, we have used the relative positional encoding given by
Eq. (8). In Section 5.2, we have shown that the TN with this relative positional
encoding possesses shift-invariance property.

3.5 Layer Normalization

Layer normalization is commonly used in transformer layers. It is used in two
ways: “post-layer normalization” (Figure 1a) and “pre-layer normalization” (Fig-
ure 1b). In the context of a SCA, we have found that using any layer normal-
ization in the network makes the network difficult to train. We speculate that
the layer normalization removes the informative data-dependent variations from
traces, effectively making the input independent of the target labels. Thus, in
our TN model, we have not used any layer normalization layer (Figure 1c).

3.6 Training

The selection of a proper optimization algorithm and learning rate schedule is
very crucial for the proper training of TN. To train TN, Adam optimizer [15] or
some of its variants ([17, 37] are generally used. To train TN for SCA, we have
used Adam optimizer.

TNs are typically trained using a learning rate schedule which initially in-
creases the learning rate from a low value until it reaches a maximum value

10 S. Hajra et al.

Algorithm 2: Forward pass of an L-layer TransNet Architecture

1 begin
// embed input sequence using a 1D convolutional layer

2 x0
0,x

0
1 · · · ,x0

n−1 ← Conv1D(x0, x1, · · · , xn−1)

// optionally perform average-pooling to reduce sequence length

3 x0
0,x

0
1 · · · ,x0

m−1 ← AvgPool(x0
0,x

0
1 · · · ,x0

n−1)

4 for l← 1 to L do
// apply self-attention operation

5 s0, s1, · · · , sm−1 ←
RelPositionalMultiHeadSelfAttnl (xl−1

0 ,xl−1
1 , · · · ,xl−1

m−1)
// add shortcut connection

6 s0, s1, · · · , sm−1 ← s0 + xl−1
0 , s1 + xl−1

1 , · · · , sm−1 + xl−1
m−1

// apply position-wise feed-forward operation

7 t0, t1, · · · , tm−1 ← PoswiseFFl (s0, s1, · · · , sm−1)
// add shortcut connection

8 xl
0,x

l
1, · · · ,xl

m−1 ← t0 + s0, t1 + s1, · · · , tm−1 + sm−1

// apply global average-pooling

9 ȳ← GlobalAvgPooling(xl
0,x

l
1, · · · ,xl

m−1)

// get class-probabilities by applying a classification layer

10 p0, p1, · · · , pC−1 ← ClassificationLayer(ȳ)

11 return (p0, p1, · · · , pC−1)

(called max learning rate, which is a hyper-parameter of the training algorithm).
Once the maximum learning rate is reached, it is gradually decayed till the end
of the training. The initial period of training epochs, in which the learning rate
increases, is called warm-up period. To train our TN, we have used cosine decay
with a linear warm-up as the learning rate scheduling algorithm (please refer to
Appendix A for the details).

In the previous section, we have described the general architecture of TN. In
the next section, we describe our proposed TN-based model – TransNet.

4 TransNet: A Transformer Network for SCA

TransNet is a multi-layer TN followed by a global pooling layer. The schematic
diagram of TransNet is shown in Figure 2, and the forward pass is described
in Algorithm 2. It uses a one-dimensional convolutional layer as an embedding
layer. The convolutional layer is followed by an average-pooling layer5 which
is followed by several transformer layers. The transformer layers are followed

5 Setting the pool size and stride of the average-pooling layer to 1, the model will
behave as if there is no average-pooling layer. However, setting those values to a

TransNet: Shift Invariant Transformer Network for Side Channel Analysis 11

addition

Avg Pooling

input

FF Layer

Softmax

Global Avg Pooling

Conv Layer

Class Probabilities

Multi−Head
RelPositional

Attention

addition

PoswiseFF

×L

Fig. 2: Complete architecture of TransNet.

by a global pooling layer, a classification layer, and a softmax layer. Note that,
unlike standard transformer layers, the TransNet layers do not use any layer nor-
malization (Figure 1c). Moreover, in the self-attention layers, relative positional
encoding as given by Eq. (8) and (9) has been used instead of more common
absolute positional encoding. In Section 5.2, we have shown that the relative po-
sitional encoding scheme makes the TN shift-invariant. We trained the TransNet
model using cross-entropy loss, and Adam optimizer [15]. We have used cosine
decay with a linear warm-up as the learning rate scheduling algorithm (kindly
refer to Appendix A for a detailed discussion).

Shift-invariance and the ability to capture the dependency among distant
PoIs are two important properties to make a deep learning model effective against
trace misalignments and masking countermeasures, respectively. In the next sec-
tion, we explain how TransNet (in general TN) can capture the dependency
among distant sample points. We also mathematically show that a TN with
relative positional encoding (TransNet in particular) is shift-invariant.

5 Long Distance Dependency and Shift-Invariance

5.1 Learning Long Distance Dependency using TN

The PoIs remain spread over a long distance in power traces for many imple-
mentations. For example, in many software implementations of masking coun-
termeasure, different shares leak at different sample points in the power traces.

larger value will make the model computationally efficient at the cost of attack
efficacy and shift-invariance. Kindly refer to Section 6.8 for experimental results.

12 S. Hajra et al.

Moreover, the distance between the PoIs corresponding to different shares might
be significantly large. Thus, a successful attack against those implementations
requires capturing the dependency among those distant PoIs. The problem of
learning dependency between distant sample points is known as the problem
of learning long-distance dependency. This problem has been widely studied in
the deep learning literature [12, 33]. To be able to capture the dependence be-
tween two elements of the input sequence, the signal from the two input elements
should be propagated to each other by the forward and backward passes through
the layers of the deep neural network. Moreover, a shorter path between the two
elements makes it easier to learn their dependency, whereas a longer path makes
it difficult [33]. As can be seen in Figure 3, the self-attention layer can connect
any elements of the input sequence using a constant number of steps. Thus, TN
is very good at capturing long-distance dependency. In fact, in [33], Vaswani et
al. have argued that TN is better than both CNN and RNN in capturing long-
distance dependency. This property of TN makes it a natural choice for a SCA
against many cryptographic implementations.

5.2 Shift-Invariance of Transformer Network

In computer vision, a function f is called invariant to a set of transformations T
from X to X if f(x) = f(T (x)) holds for all x ∈ X and T ∈ T . In SCA, the inputs
are generally very noisy. In fact, in SCA, one trace is often not sufficient to predict
the correct key; instead, information from multiple traces is required to extract
for the same. Thus, in this context, we are interested in the information contained
in f(X) about the sensitive variable Z where X represents the random variable
corresponding to the power traces. Thus, for SCA, the invariance property can be
defined in terms of P[f(X)|Z]. However, for the sake of simplicity, we define the
shift-invariance property only in terms of the conditional expectation E[f(X)|Z].
Thus, in the context of SCA, we define the following weaker notion of invariance.

Definition 1. A function f is said to be invariant to a set of transformation T
with associated probability distribution function DT if

E[f(X)|Z] = E[f(T (X))|Z] (10)

holds where T ∼ DT and X, Z are random variables respectively, representing
the input and intermediate sensitive variable. E[·|Z] represents the conditional
expectation where the expectation is taken over all relevant random variables
other than Z.

This section shows that a single layer TN model followed by a global pooling
layer is shift-invariant. Towards that goal, we define the network architecture,
leakage model, and the set of shift-transformations considered for the proof.

The Transformer Model: As stated in the previous paragraph, we consider a
single layer TN followed by a global pooling layer. The result can be extended
for multilayer TN, albeit with some minor errors arising because of the finite

TransNet: Shift Invariant Transformer Network for Side Channel Analysis 13

x1 x2 x3 x4

y0 y1

x0

y2 y3 y4 Fig. 3: Signal flow through a
self-attention layer. As shown in
the figure, each output position
becomes dependent on all in-
put positions after a single self-
attention layer.

length of the input. Note that for the input of finite length, such errors also arise
for CNN models [36]. In the rest of the section, we denote the single layer TN
followed by the global pooling layer as TN1L. The output of TN1L can be given
by the following operations:

Y0, · · · ,Yn−1 = RelPositionalSelfAttention(X0, · · · ,Xn−1)

U0, · · · ,Un−1 = Y0 +X0, · · · ,Yn−1 +Xn−1 (11)

U′
0, · · · ,U′

n−1 = FFN(U0), · · · ,FFN(Un−1)

U′′
0 , · · · ,U′′

n−1 = U′
0 +U0, · · · ,U′

n−1 +Un−1

Finally the output of TN1L is defined as

TN1L(X0, · · · ,Xn−1) =
1

n

n−1∑
i=0

U′′
i (12)

where (X0, · · · ,Xn−1) is the sequence of random vectors corresponding to the
input of the network, TN1L(X0, · · · ,Xn−1) is the random vector correspond-
ing to the final output (i.e. the output of global average-pooling) of the network
which is fed to a classification layer for the classification task.RelPositionalSelfAtten-
tion(· · ·) and FFN(·) respectively represent the self-attention and position-wise
feed-forward operations. The description of the single layer TN is given in Fig-
ure 1c. Note that RelPositionalSelfAttention(· · ·) is the self-attention opera-
tion implemented using relative positional encoding. In other words, the atten-
tion scores and attention probabilities in the self-attention layer are computed
by Eqs. (8) and (9).

The Leakage Model: We consider the leakage model of the software implementa-
tion of a first-order masking scheme. However, the results can be easily extended
for any higher-order masking scheme. Thus, we take the following assumptions:

Assumption 1 (Second Order Leakage Assumption) In the sequence of
input vectors (X−n+1+m2

, · · · ,X0, · · · ,Xn−1, · · · ,Xn−1+m1
), the input vectors

Xm1
and Xm2

(0 ≤ m1 < m2 < n, m2 − m1 = l > 0) are the leakages
corresponding to the mask M and masked sensitive variable ZM = Z ⊕ M
where Z is the sensitive variable. Thus, we can write Xm1 = f1(M) +N1 and
Xm1+l = f2(ZM) + N2 where f1, f2 : R 7→ Rd are two deterministic functions
of M , ZM respectively and N1,N2 ∈ Rd are the noise component of Xm1

and
Xm1+l respectively. Note that, N1 and N2 are independent of both M and ZM .
The objective of the network is to learn a mapping from {Xm1 ,Xm1+l} to Z.

14 S. Hajra et al.

Assumption 2 (IID Assumption) All the vectors {Xi}−n+m2<i<n+m1
are

identically distributed. Moreover, all the variables of the set {Xi}i ̸=m1,m1+l are
mutually independent. Additionally, Xm1 and Xm1+l are independent to the rest
of the random variables i.e {Xi}i ̸=m1,m1+l.

Note that the assumptions considered in the above leakage model, are very well-
known assumptions for a first-order masking scheme. In fact, previous studies
[19, 32] have taken such assumptions to generate synthetic power traces.

The Shift Transformations: We define the set of shift transformations to be all
shift transformations for which the PoIs (i.e. the leakage points corresponding
to the two shares: M and ZM = Z ⊕M) do not go out of the trace window, the
range of time instances of traces considered for the attack. More precisely, we
define the set of transformations T shift as

T shift = {T s : s ∈ Z and −m1 ≤ s < n−m2}
where, T s(X−n+1+m2 , · · · ,X0, · · · ,Xn−1, · · · ,Xn−1+m1) = X0−s, · · · ,Xn−1−s

In other words, the set of shift transformations T shift consists of transformations
T s, where −m1 ≤ s < n−m2, which shifts the input trace by s positions. The
bound −m1 ≤ s < n−m2 on the value of s ensures that the PoIs m1 and m2 do
not go out of the window because of the shift operations. Note that the input to
the transformations is a trace of size larger than n, which is required as, during
the shift operations, some sample points go out of the window, and some sample
points enter into the window.

Next, we state Lemma 1 which will lead us to our last assumption.

Lemma 1. For any 0 < ϵ < 1, the parameters WQ, WK , {r−n+1, · · · , r0, · · · ,
rn−1} and t of the transformer layer of TN1L can be set such that pi,i+l > 1− ϵ
for all i = 0, · · · , n − 1 − l, and pij = 1/n for all i = n − l, · · · , n − 1 and
j = 0, · · · , n− 1 hold where WQ,WK , pij, {r−n+1, · · · , r0, · · · , rn−1} and t are
as defined in Eq. (8) and (9) and l is the distance between the two PoIs.

Thus, according to Lemma 1, the attention probabilities can be such that the
attention from the i-th sample point, for 0 ≤ i < n − l, can be mostly concen-
trated to the (i + l)-th sample point. Moreover, the attention probability pi,i+l

can be made arbitrarily close to 1. Thus, to keep our main result (Proposition 1)
simple, we take the following assumption on the trained TN1L model:

Assumption 3 Pi,i+l = 1 for 0 ≤ i < n − l where Pi,j is the random variable
representing the attention probability from i-th sample point to j-th sample point
(and is defined by Eq. (9)) in the transformer layer of TN1L. For n− l ≤ i < n,
Pi,j = 1/n for all j = 0, · · · , n− 1.

Note that Assumption 3 can be approximately realized in practice when we use
a relative positional encoding.

With Assumption 1, 2 and 3, we summarize the main result in Proposition 1.

TransNet: Shift Invariant Transformer Network for Side Channel Analysis 15

Proposition 1. There exists a set of parameters for which TN1L satisfies the
following equation:

E [TN1L(T (X−n+1+m2 , · · · ,Xn−1+m1))|Z] = E [TN1L(X0, · · · ,Xn−1)|Z] (13)

where T is a shift transformation drawn from any arbitrary distribution DT shift

over the set T shift and the conditional expectations are taken over all the relevant
variables other than Z.

Thus, according to Proposition 1, TN1L is shift invariant. In Section 6.6, we have
experimentally verified the shift-invariance of TransNet.

In the next section, we provide the experimental results of TransNet.

6 Experimental Results

In this section, we experimentally evaluate the efficacy of TransNet. In Sec-
tion 6.1 to 6.3, we summarize the dataset details, hyperparameter settings with
the experimental settings and the state-of-the-art-methods to which TransNet
has been compared with. Section 6.4 and 6.5 compare TransNet with other state-
of-the-art methods on four different datasets. In Section 6.6, we verify the shift
invariance of TransNet. Finally, Section 6.7 and 6.8 study the effect of several
hyper-parameters on TransNet results.

6.1 Datasets Details

For comparing TransNet with other methods, we have used the following datasets.

ASCAD: ASCAD datasets have been introduced by [3]. The original dataset is
a collection of 60, 000 traces of a first-order masked implementation of AES in
a software platform. Each trace contains 100, 000 sample points. From the orig-
inal dataset, they have further created three datasets named ASCAD desync0,
ASCAD desync50, and ASCAD desync100. The ASCAD desync0 has been cre-
ated without any desynchronization of the traces. However, ASCAD desync50
and ASCAD desync100 have been created by randomly shifting the traces where
the length of random displacements have been generated from a uniform distri-
bution in the range [0, 50) in case of ASCAD desync50 and [0, 100) in case of
ASCAD desync100. Note that the random displacements have been added to
both the profiling and attack traces. Each of the three derived datasets contains
50, 000 traces for profiling and 10, 000 traces for the attack. For computational
efficiency, the length of each trace is reduced by keeping only 700 sample points
that correspond to the interval [45400, 46100) of the original traces.

We created two more datasets namely ASCAD desync200 and ASCAD de-
sync400 using the API provided by [3]. As the name suggests, we have misaligned
the traces by a random displacement in the range [0, 200) for ASCAD desync200
dataset and [0, 400) for ASCAD desync400 dataset. Each trace of the two derived
datasets is 1500 sample point long and corresponds to the interval [45000, 46500)
of the original traces. We provide a summary of the derived datasets in Table 2.

16 S. Hajra et al.

desync0 desync50 desync100 desync200 desync400

Profiling 50000 50000 50000 50000 50000
Dataset Size
Attack 10000 10000 10000 10000 10000
Dataset Size
Indices of [0, 50000) [0, 50000) [0, 50000) [0, 50000) [0, 50000)
Profiling Traces
Indices of [50000, 60000) [50000, 60000) [50000, 60000) [50000, 60000) [50000, 60000)
Attack Traces
Trace Length 700 700 700 1500 1500
Target Points [45400, 46100) [45400, 46100) [45400, 46100) [45000, 46500) [45000, 46500)
Profiling 0 50 100 200 400
Dataset Desync
Attack 0 50 100 200 400
Dataset Desync

Table 2: Summary of the ASCAD datasets.

DPA contest v4.2: DPA contest v4.2 dataset [4] contains traces of a software
implementation of AES. The implementation is protected by Rotating SBOX
Masking (RSM). Following [39], we have assumed the mask to be known. Thus,
the implementation behaves like an unprotected implementation.

DPA contest v4.2 AES RD AES HD

Profiling Dataset Size 4500 25000 50000

Attack Dataset Size 500 25000 25000

Trace Length 4000 3500 1250

Table 3: Details of the DPA contest v4.2, AES RD and AES HD datasets.

AES RD: AES RD [7] contains the traces of a software implementation of AES
protected by random delay countermeasure. The sensitive variable is taken to
be the first round sbox operation. We have used the same train-test split which
has been used in [39].

AES HD: AES HD [28] contains the traces of an unprotected AES implemented
on FPGA. The trace window corresponds to the register update of the last
round. Like AES RD dataset, for this dataset also, we have used the train-test
split used in [39]. The statistics of the DPA contest v4.2, AES RD and AES HD
are summarized in Table 3.

6.2 Other State-of-the-art Methods

We have compared TransNet with the following methods:

TransNet: Shift Invariant Transformer Network for Side Channel Analysis 17

200 400 600 800 1,000
0

20

40

60

80

100

120

Number of Traces

M
e
a
n

K
e
y

R
a
n
k
s

ASCAD desync0

CNNBest

EffCNN

SimplifiedEffCNN

DilatedCNN

TransNet-default

(a) ASCAD desync0 results.

200 400 600 800 1,000
0

20

40

60

80

100

120

Number of Traces

M
e
a
n

K
e
y

R
a
n
k
s

ASCAD desync100

CNNBest

EffCNN

SimplifiedEffCNN

DilatedCNN

TransNet-default

TransNet-prof-desync0

(b) ASCAD desync100 results.

200 400 600 800 1,000
0

20

40

60

80

100

120

Number of Traces

M
e
a
n

K
e
y

R
a
n
k
s

ASCAD desync200

CNNBest

EffCNN

SimplifiedEffCNN

DilatedCNN

TransNet-default

TransNet-prof-desync0

(c) ASCAD desync200 results.

1,000 2,000 3,000 4,000 5,000
0

50

100

150

Number of Traces

M
e
a
n

K
e
y

R
a
n
k
s

ASCAD desync400

CNNBest

EffCNN

SimplifiedEffCNN

DilatedCNN

TransNet-default

TransNet-prof-desync0

(d) ASCAD desync400 results.

Fig. 4: Comparison with the CNN-based models on the ASCAD datasets.
TransNet-default and TransNet-prof-desync0 respectively denote the TransNet
model trained with and without using profiling desynchronization. All the CNN-
based models have been trained using profiling desync same as attack desync.

CNNBest: The CNNBestmodel has been introduced in [3]. To evaluate CNNBest
model on ASCAD desync0, ASCAD desync50 and ASCAD desync100 datasets,
we have used the trained model provided by the authors in their official GitHub
repository6. For the evaluation on ASCAD desync200 and ASCAD desync400
datasets, we have trained the model on the two datasets using their code.

EffCNN: In [39], Zaid et al. have proposed a methodology for constructing
CNN-based models that are robust to trace misalignments. For comparison with
TransNet, we built the models following their methodology for different datasets
(kindly refer to Appendix F for the descriptions of the models).

SimplifiedEffCNN: In [35], the authors have suggested removing the first convo-
lutional and batch normalization layer of the EffCNN models. These simplified

6 https://github.com/ANSSI-FR/ASCAD.git

18 S. Hajra et al.

EffCNN models are easier to train and provide an improvement in results over
EffCNN. Thus, we also compare SimplifiedEffCNN models with TransNet. The
SimplifiedEffCNN models are constructed by removing the first convolutional
layer of the EffCNN models.

DilatedCNN: In [24], Paguada et al. have used dilated convolutional layer to
capture long distance dependency. Thus, we compare TransNet with their ap-
proach. We created two models similar to EffCNN models and replaced the first
convolutional layer of the models with dilated convolution. We trained and tuned
the DilatedCNN models for additional four sets of hyper-parameters: [lk = 16,
dr = 4], [lk = 16, dr = 6], [lk = 32, dr = 3] and [lk = 64, dr = 2] where lk and dr
are the kernel width and dilation rate of the first convolutional layer.

6.3 Hyper-parameter Setting and Experimental Setup

Like in [3, 39, 18], we have used the identity leakage model. For all the experi-
ments, we have set the number of transformer layers to 2, model dimension d to
128, the dimension of the key vectors and value vectors (i.e. dk and dv) to 64
and the number of heads H to 2. We set the kernel width of the convolutional
layer to 11. For ASCAD, DPA contest 4.2, AES RD and AES HD datasets, the
pool-size hyper-parameter has been set to 1, 4, 4 and 2 respectively. The pool-
size hyper-parameter has been set to make the trace length less than 1000. The
other hyper-parameter values have been set based on some initial experiments
on the ASCAD dataset, which also worked well for the other datasets. We have
also experimentally seen that TransNet performs equally well for a wide range
of values of those hyper-parameters (please refer to Section 6.7 for experimental
results). The complete list of hyper-parameters is given in Appendix G.

For each experiment, we trained three models using the same hyper-parameters.
For each of the three models, we repeated the attack 100 times. The final mean
key ranks have been generated by taking the average of the results of the total
300 attacks. Note that the mean key rank is a widely used metric in the literature
to measure the success of an attack [3]. The keys are ranked from 0 to 255.

6.4 Results on ASCAD Datasets

This section compares TransNet with the other state-of-the-art methods on AS-
CAD datasets based on trace counts required to perform the attacks. All the
CNN-based models have been trained using profiling desync, same as attack
desync. On the other hand, we trained two TransNet models for each of the
experiments: one using no profiling desync and the other using profiling desync
same as the attack desync. We refer to the model which is trained using profil-
ing desync as TransNet-default and the model which is trained using no profil-
ing desync as TransNet-prof-desync0. The results are shown in Figure 4. From
Figure 4a, we observe that on ASCAD desync0 dataset, i.e., when there is no
trace misalignment, all the methods perform well. However, as the amount of
desynchronization increases slightly (Figure 4b), the performance of CNNBest

TransNet: Shift Invariant Transformer Network for Side Channel Analysis 19

deteriorates drastically, indicating that it is the least shift-invariant among all
the six models. As the amount of trace desynchronization gets larger further,
the performance of CNNBest and EffCNN becomes inferior by a large margin
compared to the other four methods (Figure 4c). The performance of the rest
of the four methods is similar up to desync 200. However, for desync 400, all
the CNN-based alternatives struggle to bring down the mean key rank below
20 using as much as 5000 traces, whereas TransNet-default requires about 800
traces to bring it down to 0 (Figure 4d). Moreover, the TransNet-prof-desync0
model, which has been trained on only synchronized traces, also brings down
the mean key rank below 1 using only 1000 traces, suggesting the robustness of
TransNet training to the amount of desync in the profiling traces.

In summary, we can say that TransNet performs far better than CNNBest on
desynchronized attack traces. Though other CNN-based models perform similar
or slightly better than TransNet when the amount of desynchronization in the
attack traces is comparatively small, their performances get poor as the amount
of desynchronization crosses a threshold7. Moreover, TransNet can perform very
well on highly desynchronized attack traces even when the model is trained on
only synchronized traces.

In the next section, we provide experimental results on the other datasets.

2 4 6 8 10
0

5

10

15

20

Number of Traces

M
e
a
n

K
e
y
R
a
n
k
s

EffCNN
DilatedCNN
TransNet

Fig. 5: Results on DPA contest v4.2
dataset.

2 4 6 8 10
0

20

40

60

Number of Traces

M
e
a
n

K
e
y
R
a
n
k
s

EffCNN
SimplifiedEffCNN
DilatedCNN
TransNet

Fig. 6: Results on AES RD dataset.

6.5 Experimental Results on the Other Datasets

In this section, we compare TransNet with the CNN-based models on DPA
contest v4.2, AES RD and AES HD datasets (please refer to Section 6.1 for the
details of the datasets). For the experiments on DPA contest v4.2 and AES RD
datasets, we set the pool size hyper-parameter of TransNet to 4 and for AES HD
dataset, we set it to 2. We have tuned the hyper-parameter train step though
we found that setting it to 30000 works very well across all three datasets. All
other hyper-parameters are kept the same as in the experiments on the ASCAD

7 Note that the length of the power traces of the software implementations is typically
in the order of 1e5. For example, the traces of the ASCAD dataset are 100000 points
long. Thus, a desync value such as 400 is possible in those traces.

20 S. Hajra et al.

dataset. For the experiments on AES HD dataset, we have trained TransNet as
an ensemble of bit-models as proposed in [41]. In the ensemble of bit-models,
each bit of the label is predicted independently. Thus, the rest of the model and
the training process remain the same apart from the classification layer.

500 1,000 1,500 2,000
0

20

40

60

80

100

120

Number of Traces

M
e
a
n

K
e
y
R
a
n
k
s

EffCNN
DilatedCNN
TransNet

Fig. 7: Results on AES HD dataset.

1,000 2,000 3,000 4,000 5,000
0

20

40

60

80

100

120

Number of Traces

M
e
a
n

K
e
y
R
a
n
k
s

Attack Desync 0
Attack Desync 100
Attack Desync 200
Attack Desync 400

Fig. 8: Shift-invariance of TransNet.

The results on DPA contest v4.2, AES RD and AES HD datasets are respec-
tively shown in Figures 5, 6 and 7. The figures show that TransNet performs
better than the CNN-based counterparts on DPA contest v4.2 and AES RD
whereas slightly worse on AES HD. In particular, on the DPA contest v4.2 and
AES RD, the TransNet models bring down the mean key rank below 1 using at
most two attack traces, whereas the CNN-based models require at least four for
the same. Such a difference in the number of required traces may be critical for
the success of the attack when the cipher is used in some leakage resilient mode
[25]. For example, many existing leakage resilient modes assume 2-simulatability
where at most two observations are available for a single key. A successful attack
using 2 traces implies that the schemes are not secure.

In the next section, we verify the shift-invariance property of TransNet.

6.6 Verifying the Shift Invariance of TransNet

In Section 5.2, we have mathematically shown that TransNet is shift-invariant.
To examine whether this property persists in practice, we performed experi-
ments on the ASCAD datasets described in Section 6.1. To evaluate the achieved
shift-invariance of the TransNet models, we trained the models on synchro-
nized traces and evaluated on desynchronized traces. Note that the length of
traces of the first three datasets namely ASCAD desync0, ASCAD desync50
and ASCAD desync100 is 700 and the last two derived datasets namely AS-
CAD desync200 and ASCAD desync400 is 1500. Thus, we trained two TransNet
models. The first one was trained for trace length 700 and we evaluated it on
ASCAD desync0, ASCAD desync50 and ASCAD desync100 datasets. The sec-
ond model was trained for trace length 1500 and we evaluated that model on
the ASCAD desync200 and ASCAD desync400 datasets. Both the models were
trained using only aligned traces. The results are plotted in Figure 8.

TransNet: Shift Invariant Transformer Network for Side Channel Analysis 21

The figure shows that the results get only slightly worse as desynchronization
in the attack traces increases. Thus, it can be considered as strong evidence for
achieving almost shift-invariance by the TransNet models. On the other hand,
interleaving of pooling layers with the convolution layers or using of the flat-
tening layer reduces the shift-invariance of the CNN models [36]. As a result,
the existing state-of-the-art CNN models fail to perform well on desynchronized
attack traces while trained on synchronized profiling traces. To verify the fact,
we also trained the EffCNN models on ASCAD desync0 dataset and tested on
ASCAD desync100, ASCAD desync200 and ASCAD desync400 datasets. The
results are provided in Appendix E. The results imply EffCNN fails to perform
well as the attack desync gets larger when it is trained on synchronized traces.
Thus, TransNet is a better choice when the amount of desynchronization in
attack traces is significantly larger than that of profiling traces.

6.7 Sensitivity of TransNet to Several Hyper-parameters

The complete list of TransNet hyper-parameters can be found in Appendix G.
We set most of the hyper-parameters following the standard convention used
in transformer literature (please refer to Appendix G). And we found that a
default value for the rest of the hyper-parameters works very well across all four
datasets. Here, apart from learning rate and train epoch, we list the important
hyper-parameters which might take a significant role for a new application:

d model: The hyper-parameter, also has been denoted by d, represents the
model dimension or the output dimension of the transformer layers.

n head: The hyper-parameter, also has been denoted by H, represents the
number of heads used in the multi-head self-attention layers.

conv kernel size: The hyper-parameter represents the kernel width of the first
convolutional layer of TransNet.

pool size: The hyper-parameter represents the pool size (the stride is also set
to be equal to pool size) of the average-pooling layer after the convolutional layer
of TransNet.

n layer: The hyper-parameter, also has been denoted by L, represents the num-
ber of transformer layers in TransNet.

Among the above five hyper-parameters, pool size can be used to improve the
computational and memory efficiency of TransNet (please refer to Section 6.8 for
a detailed discussion) and can be set to 1 for obtaining the best results. However,
setting to a larger value would bring computational efficiency in exchange of a
slight loss of accuracy and shift-invariance. We found that a default value of
128 for d model and 2 for n head works very well across all the tested datasets.
In this section, we further study the sensitivity of TransNet to the other two

22 S. Hajra et al.

200 400 600 800 1,000
0

50

100

Number of Traces

M
e
a
n

K
e
y

R
a
n
k
s

Kernel Width = 5

Kernel Width = 11

Kernel Width = 21

Kernel Width = 31

(a) Results with varying kernel width
of first convolutional layer.

200 400 600 800 1,000
0

50

100

150

Number of Traces

M
e
a
n

K
e
y

R
a
n
k
s

Layers = 1

Layers = 2

Layers = 4

Layers = 6

(b) Results with varying number of
transformer layers.

Fig. 9: Sensitivity of TransNet to kernel width and number of transformer layers.
Figure (a) shows the results with varying kernel widths and Figure (b) shows with
varying numbers of layers. The models have been both trained and evaluated
with desync 100.

hyper-parameters namely conv kernel width and n layer. The results are shown
in Figure 9.

In Figure 9a, we plot the results of TransNet by varying the kernel width.
From the figure, we can observe that, though the network fails to converge for
kernel width 5, it performs almost similarly for kernel width 11, 21, and 31. This
implies that kernel width can be chosen to be any value from a wide range like
[11, 31]. Next, we study the sensitivity of TransNet to the number of transformer
layers. The results are plotted in Figure 9b. As it can be seen in the figure, though
the network has failed to converge for n layer equal to 1, it has performed almost
equally well for n layer equal to 2, 4 and 6. Therefore, the hyper-parameters like
conv kernel width and n layer are not required to be tuned in a very fine-grained
manner.

6.8 Efficiency-Efficacy Trade-off by Varying Pool Size

This section investigates the effect of different pool sizes on the TransNet results
and computational time. Note that we expect the results of TransNet to be
worse while gaining some computational efficiency for a larger value of pool size.
Thus, we performed experiments with pool sizes 1 and 3 on ASCAD desync0 and
ASCAD desync100 datasets. Figure 10a plots the results for ASCAD desync0
dataset. The figure shows that TransNet performs equally well for both the pool
sizes. The results on ASCAD desync100 dataset are plotted in Figure 10b. In
this case, the result with pool size 3 performs is slightly worse than that with
pool size 1. Note that the deterioration of the performance of TransNet for larger
pool size on ASCAD desync100 is well expected as the use of sub-sampling layers
like the average-pooling layer reduces the shift-invariance of DL models [42]. To

TransNet: Shift Invariant Transformer Network for Side Channel Analysis 23

200 400 600 800 1,000
0

50

100

150

Number of Traces

M
e
a
n

K
e
y

R
a
n
k
s

ASCAD desync0

Pool-Size = 1

Pool-Size = 3

(a) Results on ASCAD desync0.

200 400 600 800 1,000
0

50

100

150

Number of Traces

M
e
a
n

K
e
y

R
a
n
k
s

ASCAD desync100

Pool-Size = 1

Pool-Size = 3

(b) Results on em ASCAD desync100.

Fig. 10: Effect of pool size on TransNet results. Figure (a) plots the results for
ASCAD desync0 dataset and Figure (b) plots for ASCAD desync100 dataset.

observe the gain of using a larger pool size on the training time of TransNet, we
measured the training time of TransNet with the two pool sizes. The training
times are shown in Table 4. As can be seen from the table, a TransNet model
with a pool size of 3 is almost 6.8 times faster than the one with a pool size of
1. Thus, using a larger value of pool size provides computational efficiency.

Pool Size 1 Pool Size 3

Training Time (sec/1000 traces) 0.41 0.06

Table 4: Training time for different pool sizes.

7 Discussion

Though TransNet has outperformed the CNN-based state-of-the-art models on
several datasets, the quadratic time and memory complexity with respect to
the trace length limit its applicability to shorter attack windows (in the order
of 1000). However, the trace length can be larger in many practical scenarios.
One way to extend TransNet to traces of such length is by using linear or log-
linear TN. We take the exploration of those variations for SCA as future work.
Instead, in the current work, we choose to demonstrate the efficacy of TN for
limited length traces. Our experimental results suggest that TransNet is a better
alternative to the other models in many such scenarios in terms of attack efficacy.

Our experimental results suggest that the existing CNN-based state-of-the-
art models fail to perform well on highly desynchronized traces. One way to
improve the performance of the CNN models in such scenarios is by replacing

24 S. Hajra et al.

the flattening layer with the global pooling layer in the models. We have com-
pared one such model in Appendix D with TransNet on highly desynchronized
ASCAD desync400 dataset. The results suggest that the performance of CNN
models is still worse than TransNet. However, we agree that it might be possible
to tune the CNN models further to improve their performance.

8 Conclusion

In this work, we have introduced TN in the context of profiling SCA. TN is
good at capturing the dependency among the distant PoIs, which makes it a
natural choice against many masked implementations. Moreover, we have shown
that TN can also be made shift-invariant using some design choices. The shift-
invariance of TN makes it highly effective against misaligned traces as well.
Based on the above advantages of TN, we have proposed TransNet, a TN-based
deep learning model for performing SCA. We have also experimentally evalu-
ated the proposed model on four datasets. It is better than or comparable to
other state-of-the-art methods on the four datasets. The advantage of TransNet
over existing state-of-the-art methods is particularly observable when the traces
are highly desynchronized. In those situations, TransNet can bring down the
guessing entropy to zero using a very small number of attack traces, whereas
the other methods fail to bring it down below 20. Additionally, TransNet can
perform very well on highly desynchronized attack traces even when trained on
synchronized profiling traces showing its low dependence on profiling desync for
better training. The results suggest that TransNet provides a viable alternative
to existing CNN-based models for SCA.

References

1. Abdellatif, K.M.: Mixup data augmentation for deep learning side-channel attacks.
IACR Cryptol. ePrint Arch. p. 328 (2021)

2. Ba, L.J., Kiros, J.R., Hinton, G.E.: Layer normalization. CoRR abs/1607.06450
(2016)

3. Benadjila, R., Prouff, E., Strullu, R., Cagli, E., Dumas, C.: Deep learning for side-
channel analysis and introduction to ASCAD database. J. Cryptogr. Eng. 10(2),
163–188 (2020)

4. Bhasin, S., Bruneau, N., Danger, J., Guilley, S., Najm, Z.: Analysis and improve-
ments of the DPA contest v4 implementation. In: SPACE, India. LNCS, vol. 8804,
pp. 201–218. Springer (2014)

5. Cagli, E., Dumas, C., Prouff, E.: Convolutional neural networks with data aug-
mentation against jitter-based countermeasures - profiling attacks without pre-
processing. In: CHES, Taiwan. LNCS, vol. 10529, pp. 45–68. Springer (2017)

6. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to coun-
teract power-analysis attacks. In: CRYPTO, USA. LNCS, vol. 1666, pp. 398–412.
Springer (1999)

7. Coron, J., Kizhvatov, I.: An efficient method for random delay generation in em-
bedded software. In: CHES, Switzerland. LNCS, vol. 5747, pp. 156–170. Springer
(2009)

TransNet: Shift Invariant Transformer Network for Side Channel Analysis 25

8. Dai, Z., Yang, Z., Yang, Y., Carbonell, J.G., Le, Q.V., Salakhutdinov, R.:
Transformer-XL: Attentive language models beyond a fixed-length context. In:
ACL, Italy, Volume 1. pp. 2978–2988. ACL (2019)

9. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: AIS-
TATS, USA. JMLR Proceedings, vol. 15, pp. 315–323. JMLR.org (2011)

10. Gohr, A., Jacob, S., Schindler, W.: Subsampling and knowledge distillation on
adversarial examples: New techniques for deep learning based side channel evalu-
ations. In: Dunkelman, O., Jr., M.J.J., O’Flynn, C. (eds.) SAC, Canada. LNCS,
vol. 12804, pp. 567–592. Springer (2020)

11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR, USA. pp. 770–778. IEEE Computer Society (2016)

12. Hochreiter, S., Bengio, Y., Frasconi, P., Schmidhuber, J.: Gradient flow in recurrent
nets: The difficulty of learning long-term dependencies (2001)

13. Kerkhof, M., Wu, L., Perin, G., Picek, S.: Focus is key to success: A focal loss
function for deep learning-based side-channel analysis. In: Balasch, J., O’Flynn, C.
(eds.) COSADE, Belgium. LNCS, vol. 13211, pp. 29–48. Springer (2022)

14. Kim, J., Picek, S., Heuser, A., Bhasin, S., Hanjalic, A.: Make some noise. unleash-
ing the power of convolutional neural networks for profiled side-channel analysis.
TCHES 2019(3), 148–179 (2019)

15. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: ICLR,
USA, (2015)

16. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: CRYPTO, USA.
LNCS, vol. 1666, pp. 388–397. Springer (1999)

17. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: ICLR, USA.
OpenReview.net (2019)

18. Lu, X., Zhang, C., Cao, P., Gu, D., Lu, H.: Pay attention to raw traces: A deep
learning architecture for end-to-end profiling attacks. TCHES 2021(3), 235–274
(2021)

19. Maghrebi, H.: Deep learning based side channel attacks in practice. IACR Cryptol.
ePrint Arch. 2019, 578 (2019)

20. Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking cryptographic implementations
using deep learning techniques. In: SPACE, India. LNCS, vol. 10076, pp. 3–26.
Springer (2016)

21. Martinasek, Z., Hajny, J., Malina, L.: Optimization of power analysis using neural
network. In: CARDIS, Germany. LNCS, vol. 8419, pp. 94–107. Springer (2013)

22. Martinasek, Z., Zeman, V.: Innovative method of the power analysis. Radioengi-
neering 22(2), 586–594 (2013)

23. Masure, L., Belleville, N., Cagli, E., Cornelie, M., Couroussé, D., Dumas, C., Main-
gault, L.: Deep learning side-channel analysis on large-scale traces - A case study
on a polymorphic AES. In: Chen, L., Li, N., Liang, K., Schneider, S.A. (eds.)
ESORICS, UK. LNCS, vol. 12308, pp. 440–460. Springer (2020)

24. Paguada, S., Armendariz, I.: The forgotten hyperparameter: - introducing dilated
convolution for boosting cnn-based side-channel attacks. In: ACNS Satellite Work-
shops, Italy. LNCS, vol. 12418, pp. 217–236. Springer (2020)

25. Pereira, O., Standaert, F., Vivek, S.: Leakage-resilient authentication and encryp-
tion from symmetric cryptographic primitives. In: Ray, I., Li, N., Kruegel, C. (eds.)
ACM SIGSAC, USA. pp. 96–108. ACM (2015)

26. Perin, G., Chmielewski, L., Picek, S.: Strength in numbers: Improving general-
ization with ensembles in machine learning-based profiled side-channel analysis.
TCHES 2020(4), 337–364 (2020)

26 S. Hajra et al.

27. Perin, G., Wu, L., Picek, S.: Exploring feature selection scenarios for deep learning-
based side-channel analysis. IACR Cryptol. ePrint Arch. p. 1414 (2021)

28. Picek, S., Heuser, A., Jovic, A., Bhasin, S., Regazzoni, F.: The curse of class im-
balance and conflicting metrics with machine learning for side-channel evaluations.
TCHES 2019(1), 209–237 (2019)

29. Picek, S., Samiotis, I.P., Kim, J., Heuser, A., Bhasin, S., Legay, A.: On the per-
formance of convolutional neural networks for side-channel analysis. In: SPACE,
India. LNCS, vol. 11348, pp. 157–176. Springer (2018)

30. Prouff, E., Rivain, M., Bevan, R.: Statistical analysis of second order differential
power analysis. IACR Cryptol. ePrint Arch. p. 646 (2010)

31. Shaw, P., Uszkoreit, J., Vaswani, A.: Self-attention with relative position represen-
tations. In: NAACL-HLT, USA, Volume 2. pp. 464–468. ACL (2018)

32. Thapar, D., Alam, M., Mukhopadhyay, D.: Transca: Cross-family profiled side-
channel attacks using transfer learning on deep neural networks. IACR Cryptol.
ePrint Arch. 2020, 1258 (2020)

33. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
L., Polosukhin, I.: Attention is all you need. In: NIPS, USA. pp. 5998–6008 (2017)

34. Won, Y., Hou, X., Jap, D., Breier, J., Bhasin, S.: Back to the basics: Seamless
integration of side-channel pre-processing in deep neural networks. IACR Cryptol.
ePrint Arch. 2020, 1134 (2020)

35. Wouters, L., Arribas, V., Gierlichs, B., Preneel, B.: Revisiting a methodology for
efficient CNN architectures in profiling attacks. TCHES 2020(3), 147–168 (2020)

36. Yarotsky, D.: Universal approximations of invariant maps by neural networks.
CoRR abs/1804.10306 (2018)

37. You, Y., Li, J., Reddi, S.J., Hseu, J., Kumar, S., Bhojanapalli, S., Song, X., Dem-
mel, J., Keutzer, K., Hsieh, C.: Large batch optimization for deep learning: Training
BERT in 76 minutes. In: ICLR, Ethiopia. OpenReview.net (2020)

38. Zaid, G., Bossuet, L., Dassance, F., Habrard, A., Venelli, A.: Ranking loss: Max-
imizing the success rate in deep learning side-channel analysis. TCHES 2021(1),
25–55 (2021)

39. Zaid, G., Bossuet, L., Habrard, A., Venelli, A.: Methodology for efficient CNN
architectures in profiling attacks. TCHES 2020(1), 1–36 (2020)

40. Zhang, A., Lipton, Z.C., Li, M., Smola, A.J.: Dive into Deep Learning (2020),
https://d2l.ai

41. Zhang, L., Xing, X., Fan, J., Wang, Z., Wang, S.: Multi-label deep learning based
side channel attack. In: AsianHOST, China. pp. 1–6. IEEE (2019)

42. Zhang, R.: Making convolutional networks shift-invariant again. In: ICML, USA.
Proceedings of Machine Learning Research, vol. 97, pp. 7324–7334. PMLR (2019)

43. Zhou, Y., Standaert, F.: Deep learning mitigates but does not annihilate the need of
aligned traces and a generalized resnet model for side-channel attacks. J. Cryptogr.
Eng. 10(1), 85–95 (2020)

A Learning Rate Schedule

The learning rate schedule plays a vital role in the proper training of DL models.
In literature, there exist several commonly used learning rate schedules [40]. In
this work, we have used a cosine decay learning rate schedule. In cosine decay
schedule, starting from a maximum value, the learning rate is decreased following

TransNet: Shift Invariant Transformer Network for Side Channel Analysis 27

0 20 40 60 80
Training steps

0.000

0.002

0.004

0.006

0.008

0.010

Le
ar

nin
g

ra
te

rmax = 0.01, rmin = 0.0005, tmax = 100
cosine

(a) Without any warm-up steps

0 20 40 60 80
Training steps

0.000

0.002

0.004

0.006

0.008

0.010

Le
ar

nin
g

ra
te

rmax = 0.01, rmin = 0.0005, tmax = 100, twarmup = 10
cosine

(b) With linear warm-up for 10 steps

Fig. 11: Plots of learning rates against training steps using cosine decay schedul-
ing algorithm. Each step corresponds to the processing of one batch of training
examples.

a cosine curve. Thus, at t-th step, the learning rate rt is computed as

rt = rmin +
rmax − rmin

2
× (1 + cos(πt/tmax)) (14)

where rmax, rmin are respectively the maximum and minimum value of learning
rate; and tmax is the total number of training steps. An example of the cosine
decay learning rate schedule is plotted in Figure 11a.

For the training of large neural network models, several initial training steps
are kept as warm-up steps during which the learning rate is warmed up to a
desired high value starting from a small value [40]. For training TN, it is common
to use a linear warm-up schedule. In a linear warm-up schedule, the learning rate
is linearly increased to rmax starting from a low value (most often zero) over a
duration of twarmup steps where twarmup, known as warmup steps, is a hyper-
parameter. Figure 11b plots the evolution of the learning rate in cosine decay
with the linear warm-up schedule.

B Proof of Lemma 1

The attention probabilities in the self-attention layer of TN1L is calculated fol-
lowing Eqs. (8) and (9). If we set WQ, WK , {ri}i ̸=l all to zero of appropriate
dimensions, rl = c

√
dk1 and t = 1 where 1 is a vector whose only first element

is 1 and rest are zero, and c is a real constant in Eq. (8) and Eq. (9), we have
pij equals to ec

ec+n−1 if j = i+ l and 1
ec+n−1 otherwise for 0 ≤ i < n− l. Setting

c > ln
(
1−ϵ
ϵ

)
+ ln(n− 1), we get pi,i+l > 1− ϵ for all 0 ≤ i < n− l and 0 < ϵ < 1.

Similarly, it is straight forward to show that pij = 1/n for any n− l ≤ i < n and
0 ≤ j < n for the same value of the parameters.

28 S. Hajra et al.

C Proof of Proposition 1

From the Eqs (11), we haveUi = Yi+Xi,U
′′
i = FFN(Ui)+Ui, for i = 0, · · · , n−

1 where Y0,Y1, · · · ,Yn−1 = RelPositionalSelfAttention(X0,X1, · · · ,Xn−1).

And the output of TN1L is given by TN1L(X0, · · · ,Xn−1) =
1
n

∑n−1
i=0 U′′

i .

From Eq. (4) and (5), we get Yj = WO

(∑n−1
k=0 PjkWV Xk

)
. Thus, we can write

Ym1 (where m1 is defined in Assumption 1) as

Ym1
= WO

(
n−1∑
k=0

Pm1kWV Xk

)
= WOWV Xm1+l, and thus (a2)

Um1 = WOWV Xm1+l + Xm1 (a3)

Eq. (a2) follows since i = m1 satisfies Pi,i+l = 1 in Assumption 3. Similarly we
can write Yi for 0 ≤ i < n− l, i ̸= m1 as

Yi = WO

(
n−1∑
k=0

PikWV Xk

)
= WOWV Xi+l, and thus (a4)

Ui = WOWV Xi+l + Xi (a5)

For n− l ≤ i < n, we can write

Yi =
1

n
WOWV

n−1∑
k=0

Xk and, Ui =
1

n
WOWV

n−1∑
k=0

Xk + Xi

since, by Assumption 3, Pij = 1/n for j = 0, · · · , n− 1 and n− l ≤ i < n. Now
we compute U′′

i for i = 0, · · · , n− 1.

U
′′
i = FFN(Ui) + Ui (a6)

Note that among all the {U′′
i }0≤i<n, only U′′

m1
and {U′′

i }n−l≤i<n involve both
the terms Xm1

and Xm1+l, thus can be dependent on the sensitive variable Z
(from Assumption 1). Rest of theU′′

i s are independent of Z (from Assumption 2).
The output of TN1L can be written as

TN1L(X0, · · · ,Xn−1) =
1

n

n∑
i=0

U
′′
i =

1

n
U

′′
m1

+
1

n

∑
0≤i<n−l,i ̸=m1

U
′′
i +

1

n

∑
n−l≤i<n

U
′′
i (a7)

The expectation of the output conditioned on Z can be given by

E[TN1L(X0, · · · ,Xn−1)|Z] =
1

n
E[U′′

m1
|Z] +

1

n

∑
n−l≤i<n

E[U′′
i |Z] +

1

n

∑
0≤i<n−l,i ̸=m1

E[U′′
i] (a8)

The second step follows because the random variables {Ui}0≤i<n−l,i̸=m1 are
independent of Z. To complete the proof, we compute

E
[
TN1L(T

s
(X−n+1+m2

, · · · ,Xn−1+m1
))|Z

]
= E [TN1L(X−s, · · · ,Xn−1−s)|Z]

=
1

n
E[U′′

m1
|Z] +

1

n

∑
n−l−s≤i<n−s

E[U′′
i |Z] +

1

n

∑
−s≤i<n−l−s,i ̸=m1

E
[
U

′′
i

]
(a9)

TransNet: Shift Invariant Transformer Network for Side Channel Analysis 29

From Assumption 2, we get

1

n

∑
n−l≤i<n

E
[
U

′′
i |Z

]
=

1

n

∑
n−l−s≤i<n−s

E
[
U

′′
i |Z

]
,

and
1

n

∑
0≤i<n−l,i̸=m1

E
[
U

′′
i

]
=

1

n

∑
−s≤i<n−l−s,i ̸=m1

E[U′′
i]

Thus, comparing the right hand side of Eq. (a8) and Eq. (a9) we have

E[TN1L(X0, · · · ,Xn−1)|Z] = E
[
TN1L(T

s
(X−n+1+m2 , · · · ,Xn−1+m1))|Z

]
which completes the proof.

D Comparison with CNN using Global Pooling Model

The state-of-the-art CNN models use a flattening layer after all the convolu-
tional model to convert the two-dimensional feature representation into a one-
dimensional feature representation. However, the use of a flattening layer reduces
the shift-invariance of the CNN models resulting in their poor performance on
highly desynchronized traces (ref. Figure 4d). This section compares TransNet
to a CNN model that uses global pooling instead of the flattening layer. For
this purpose, we have used the same model as EffCNN (desync400) except for
the flattening layer replaced by the global pooling layer. We refer to the re-
sulting model as EffCNN+GlobalPooling. The results of EffCNN+GlobalPooling
on highly desynchronized ASCAD desync0 dataset is compared with that of
TransNet in Figure 12. The results suggest that TransNet performs significantly
better than EffCNN+GlobalPooling.

200 400 600 800 1,000
0

50

100

150

Number of Traces

M
e
a
n

K
e
y
R
a
n
k
s

EffCNN+GlobalPooling
TransNet

Fig. 12: Comparison of TransNet with
EffCNN+GlobalPooling on the AS-
CAD desync400 datasets.

1,000 2,000 3,000 4,000 5,000
0

50

100

Number of Traces

M
e
a
n

K
e
y
R
a
n
k
s

Attack Desync 0
Attack Desync 100
Attack Desync 200
Attack Desync 400

Fig. 13: Results of EffCNN. The mod-
els have been trained with profiling
desync 0.

E Sensitivity of EffCNN to Profiling Desynchronization

As the experiments of TransNet in Section 6.6, we verify the robustness of Ef-
fCNN training to the amount of profiling desync. To verify that, we trained

30 S. Hajra et al.

the EffCNN models using only synchronized traces and tested them on desyn-
chronized traces. The results are shown in Figure 13. From the figure, it can
be seen that as the amount of desynchronization in the attack traces increases,
the performance of the models gets worse rapidly, suggesting the superiority of
TransNet over EffCNN when the profiling desync is significantly less than the
attack desync.

F EffCNN Model Architectures for ASCAD desync200
and ASCAD desync400 Datasets

The EffCNNmodels for ASCAD desync0, ASCAD desync100, DPA contest v4.2,
AES HD, and AES RD are taken from their GitHub repository8. We constructed
the models for ASCAD desync200 and ASCAD desync400 datasets using their
methodology [39]. They are given in Table 5.

Block Layer desync200 desync400

Conv kw = 1, nf = 32 kw = 1, nf = 32
1 SeLU

BatchNorm
Avg pooling ps = 2 ps = 2

Conv kw = 100, nf = 64 kw = 200, nf = 64
2 SeLU

BatchNorm
Avg pooling ps = 100 ps = 200

Conv kw = 3, nf = 128 kw = 3, nf = 128
3 SeLU

BatchNorm
Avg pooling ps = 2 ps = 1

5 Flattening

6 FC d out = 25 d out = 30
SeLU

7 FC d out = 25 d out = 30
SeLU

7 FC d out = 25 d out = 30
SeLU

FC d out = 256 d out = 256
Softmax layer

Table 5: The architecture of the EffCNN models for ASCAD desync200 and
ASCAD desync400 datasets. kw and nf denote the kernel width and the number
of filters of the convolutional layers. Similarly, ps denotes the pool size and strides
of the average pooling layers. And d out denotes the output dimension of the
fully connected layers.

8 https://github.com/gabzai/Methodology-for-efficient-CNN-architectures-in-SCA

TransNet: Shift Invariant Transformer Network for Side Channel Analysis 31

G Hyper-parameter Setting

We set several hyper-parameters of TransNet using the standard conventions
followed in natural language processing (NLP). We set dk = dv = d/H which is
commonly followed in NLP. In NLP, di is commonly set to 4d. However, we found
di = 2d also provide good results, thus we set di = 2d. In NLP, the number of
heads H is set to a large value like 16. Considering the simplicity of the problem
in SCA, we set this hyper-parameter to 2. The input length n is set to be equal
to the trace length. The relative positional encoding takes one hyper-parameter
named clamp len. It is enough to set this hyper-parameter to be equal to n. We
found that setting the two dropout related hyper-parameters namely dropout
and dropatt to a value of 0.05 or 0.1 works equally well.

Complete list of hyper-parameters used for training TransNet is given in
Table 6.

hyper-parameters ASCAD desync
0 100 200 400

n layer (L) 2 2 2 2
d model (d) 128 128 128 128
n head (H) 2 2 2 2
d head (dv) 64 64 64 64
d inner (di) 256 256 256 256
dropout 0.05 0.05 0.05 0.05
dropatt 0.05 0.05 0.05 0.05
conv kernel size 11 11 11 11
pool size 1 1 1 1
clamp len 690 690 1500 1500
untie r True True True True
smooth pos emb False False False False
untie pos emb True True True True
init normal normal normal normal
init std 0.02 0.02 0.02 0.02
max learning rate 0.00025 0.00025 0.00025 0.00025
(gradient) clip 0.25 0.25 0.25 0.25
min lr ratio 0.004 0.004 0.004 0.004
warmup steps 0 0 0 0
batch size 256 256 256 256
train steps 30000 50000 80000 100000

Table 6: Hyperparameter setting of TransNet

Note that we set some hyper-parameters like init, init std, max learning rate,
clip, min lr ratio and warmup step to the default value used in the implemen-
tation of [8]. For the other datasets, we use the same hyper-parameter settings
except the pool size and train steps. The train steps hyper-parameter is set to

32 S. Hajra et al.

30000 for all the other datasets. The pool size is set to 2, 4 and 4 for the dataset
AES HD, DPA contest v4.2 and AES RD respectively.

