
Row, Row, Row Your Boat: How to Not Find Weak Keys in Pilsung

Chitchanok Chuengsatiansup
The University of Adelaide

chitchanok.chuengsatiansup@adelaide.edu.au

Gregory G. Rose
Deckard Technologies Inc.

ggr@seer-grog.net

Eyal Ronen
Tel Aviv University

eyalronen@tauex.tau.ac.il

Yuval Yarom
The University of Adelaide

yval@cs.adelaide.edu.au

1 Introduction

The Pilsung cipher is part of the North Korean Red
Star operating system, which was leaked to the West in
2014 [1]. The cipher was reverse engineered and ana-
lyzed by Kryptos Logic [2], which found that it is based
on AES, albeit it uses key-dependent S-Boxes and per-
mutations. In particular, Kryptos Logic reports that
the ShiftRows operation in Pilsung “can make weak
classes of keys possible, by having permutations that
do not change columns at all.”

To identify and explore this class of weak keys, we an-
alyzed the cipher and got a better understanding of the
ShiftRows permutation in Pilsung. Based on this under-
standing, we designed highly-efficient code for searching
for weak keys. We then used Phoenix, the University of
Adelaide’s compute cluster, spending thousand of CPU
hours to find weak keys. Finally, we tested the keys,
and found that due to our confusion about some details
of the algorithm, all of our efforts were in vain and no
similar class of weak keys exists in Pilsung.

The contributions of this work are:

• We demonstrate how AES-like ciphers that have weak
ShiftRows permutations can be attacked. (Section 3.)

• We develop techniques for efficient search of weak
keys in such vulnerable ciphers. (Section 4.)

• We highlight the benefits of early verification of re-
sults. (Section 5.)

2 Row Your Boat

Pilsung is a block cipher with a substitution permuta-
tion network design, based closely on AES. Specifically,
the Pilsung state is a 4×4 matrix, represented either as
a two-dimensional array or as a 16-byte vector. For en-

cryption, the state is initialized with the plaintext and
then it undergoes ten rounds of transformations. Fol-
lowing the Kryptos Logic report, we name these steps
after their AES counterparts: SubBytes, ShiftRows, Mix-
Columns, and AddRoundKey. These steps are similar
but are not exactly the same as in AES. The most im-
portant difference from our perspective is that instead
of using a fixed permutation in the ShiftRows step, Pil-
sung uses a key-dependent permutation.

To generate the permutation, Pilsung uses the Rao-
Sandelius shuffle [3, 4], which first “randomly” splits
the array into two halves, then recursively shuffles each
half. To shuffle 16 bytes we require four levels of shuffle.
The randomness for the four levels of shuffle used to
generate the permutation in round i is drawn from the
corresponding round key RKi. The randomness for the
first and second levels shuffle is taken from the first half
of the round key, and the randomness for the third and
fourth levels shuffle is taken from the second half of the
round key.

Although we use 64 bits of randomness for the first
and second (also third and fourth) levels shuffle, we only
get 64 = 1296 possible permutations in the first (and
third) level, and 256 options in the second (and fourth)
level. In total we get a total of 64 · 256 · 64 · 256 ≈ 236.7

possible permutations. This is much fewer than the
total number of possible permutations 16! ≈ 244.

3 By the Stream

The Kryptos Logic report notices that replacing the
AES ShiftRows with a random permutation may result
in a class of weak keys that do not change columns.
In this section, we explore the risk and develop distin-
guishers for such keys.

1

mailto:chitchanok.chuengsatiansup@adelaide.edu.au
mailto:ggr@seer-grog.net
mailto:eyalronen@tauex.tau.ac.il
mailto:yval@cs.adelaide.edu.au

1 2–9 10

1 2–9 10

Plaintext Ciphertext

Figure 1: Propagation of a difference with a key that
preserves Rounds 2–9 when hitting the preserved col-
umn (top) and when missing it (bottom).

We say that a round preserves a column i if the
ShiftRows permutation moves all of the bytes of col-
umn i to a single column j. We further say that a key
preserves rounds i to j if there exist ci, ci+1, . . . , cj such
that for all i ≤ k < j, Round k preserves column ck,
moving it to column ck+1.

We now observe that we can easily distinguish a
key that preserves rounds 2–9. Suppose we encrypt
two plaintexts that only differ in one byte. Figure 1
shows the two possible ways that this difference prop-
agates throughout the encryption. The first round’s
ShiftRows transformation moves the difference to a new
(unknown) location. In the MixColumns the column
containing the byte is mixed, resulting in a difference
across the whole column. The top half of the figure
shows the case that this column is the one that the key
preserves. In this case, if the column is the preserved,
the difference does not propagate beyond the column,
achieving a difference of one column at Round 9. Be-
cause Round 10 does not perform the MixColumns trans-
formation, the bytes of the preserved column are per-
muted, resulting in ciphertexts that differ in at most
four bytes. Alternatively, the bottom half of Figure 1
shows the case where the difference is at a column that
is not preserved, the difference diffuses across the three
non-preserved columns, but does not affect the pre-
served column.

Either way, after the last round, we get two cipher-
texts that have at least four identical bytes. The prob-
ability that two random ciphertexts have four identical
bytes is

2−128
16∑

n=4

(
16

n

)
25516−n ≈ 2−21.2

Thus such a difference can distinguish between a ran-
dom permutation and one created by Pilsung with a
key that preserves Rounds 2–9.

As Figure 2 shows, we can extend the attack to a
key that preserves Rounds 3 to 9. With a probability

1 2 3–9 10

Plaintext Ciphertext

Figure 2: Propagation of a difference with a key that
preserves Rounds 3–9.

of 2−24, changing four bytes that all map to a single
column in the first round results in a change of a single
byte in the second round. If Round 2 shifts the byte
to the preserved column, only four bytes of the cipher-
text will differ. The probability of selecting four bytes
that all go to the same column is one in

(
16
4

)
/4. Thus,

if we randomly change four bytes, we can expect that
approximately one in

(
16
4

)
· 224/4 ≈ 232.8 will result in

12 unmodified ciphertext bytes.1 We note that better
distinguishers exist, but these are outside the scope of
this extended abstract

4 Merrily, Merrily

Having established how to exploit weak keys, we now
turn our attention to finding them. A quick test with
random round keys demonstrates that about one in 682
preserves a specific column. Thus, roughly one in 266

preserves a specific column over rounds 3 to 9, or about
one in 264 preserves an arbitrary column. Hence, while
not negligible, the class of weak keys is quite small and
rare.

Searching 264 keys for a weak key is beyond our mod-
est computational capabilities. However, we note that
several properties of the cipher allow us to reduce the
search space. First, instead of trying keys at random,
we can exploit the structure of the ShiftRows permuta-
tion to efficiently find column preserving Round 3 key.
Secondly, as Pilsung uses the AES key schedule with
five 32-bit words, we can search the space of 232 possi-
ble values for the first word of the Round 4 key for a
key that preserves Rounds 3–9. Moreover, we find that
suitable Round 4 keys are not uniformly distributed.
We exploit this by applying a simple heuristic to decide
how many combinations of the first word of Round 4 to
test.

We now explain how to efficiently find a column pre-
serving Round 3 key. As discussed in Section 2, when
generating the ShiftRows permutation, the first two lev-
els of the shuffle distribute the state bytes across the

1The probability of choosing appropriate four bytes will be
slightly higher if the Round 2 permutation maps more than one
byte of the same column to the target column. However, in this
case less than three bytes need to remain unchanged.

2

quarters, whereas the last two levels only move bytes
within each quarter. Thus, for the key to preserve a
column, the first two levels need to spread the bytes of
the preserved column across different rows. By observ-
ing the first 64 bits of a key, which determine the two
first shuffles, we can rule out candidates guaranteed not
to preserve the column.

1 while Key not found do
2 repeat

3 RK3[0, . . . , 63]
$←− {0, 1}64

4 until RK3[0, . . . , 63] can preserve a
column;

5 repeat

6 RK3[64, . . . , 127]
$←− {0, 1}64

7 until RK3 preserves a column;

8 RK4[0, . . . , 31]
$←− {0, 1}32

9 repeat
10 Expand Key
11 if Key preserves to Round 9 then
12 break
13 RK4[0, . . . , 31]← RK4[0, . . . , 31] + 1

14 until it’s time for a new RK3;

15 end

Algorithm 1: Search for a weak key in Pilsung

Algorithm 1 shows how we search for a key. We first
choose the first half of the Round 3 key (Line 3). If the
ShiftRows operation with this first half can preserve a
column, i.e. it places each of the bytes of a column in a
different row, we proceed to select a random second half
(Line 6) until we find a round key RK3 that preserves
a column. We then randomly choose the first word of
the key of Round 4 (Line 8) and proceed to scan for a
key that preserves Rounds 3–9.

The structure of the ShiftRows permutation allows
a further optimization. Instead of calculating the
ShiftRows permutation, we perform a meet-in-the-
middle search. Specifically, for each of the possible
1296 · 256 permutations in levels 1 and 2 of the shuf-
fle, we record the positions of the bytes of each of the
columns it preserves. Similarly, for each of the possible
1296 · 256 permutations in levels 3 and 4 of the shuf-
fle, we record the positions of the bytes that end up in
each of the columns. By matching the positions for the
two halves of the shuffle, we can determine whether the
source column is preserved and what the destination
column is.

The source code for our key search software is
available at https://github.com/0xADE1A1DE/

PilsungKeySearch.

5 Dream

With an efficient search algorithm, we utilized the
Phoenix high-performance cluster at the University of
Adelaide to search for a key that preserves rounds 3–
9. Because we reuse RK3 for multiple candidates,
the amortized effort for finding a key that preserves
Round 3 is negligible, reducing the search space to
6826 ≈ 256.5. Our highly efficient search algorithm can
explore roughly 225 keys per core per second. Thus the
expected search time is about 100 CPU years, which
is above our budget. However, we did spend over
10,000 CPU hours and found multiple keys that pre-
serve rounds 3–8.

To test the keys, we modified Pilsung, reducing it to
a 9 rounds cipher. We ran the attack on one of the
keys, finding to our utter surprise that the attack fails.
Other keys produced similar results — the attack does
not work. We modified Pilsung to output the ShiftRows
permutations and found that they do seem to preserve
the required columns.

After much head scratching and frustration we found
the cause of the failure. The Pilsung code repeatedly
shifts between two representations of the internal state.
One representation is as a vector of 16 bytes. The other
is a square implemented as a two-dimensional array.
Unfortunately, the repeated shifts confused us to think
that the vector representation uses the row-first order,
shown in the left part of Figure 3, for storing the state
matrix in an array. However, in practice the representa-
tion uses the column-first order shown in the right part
of Figure 3. Consequently, our key search algorithm in
Section 4 searches for ShiftRows permutations that pre-
serve rows, rather than columns. While the algorithm is
efficient, the security impact of preserving rows is rather
dubious – the AES ShiftRows permutation preserves all
rows.

C

8

4

0

D

9

5

1

E

A

6

2

F

B

7

3

Row-First

3

2

1

0

7

6

5

4

B

A

9

8

F

E

D

C

Column-First

Figure 3: Matrix Orderings

Further investigation demonstrated that the random-
ness chosen for the ShiftRows permutation ensures that
columns are not preserved. Thus, while we do not claim
that there is no class of weak keys in Pilsung, we are

3

https://github.com/0xADE1A1DE/PilsungKeySearch
https://github.com/0xADE1A1DE/PilsungKeySearch

quite certain that the approach in this paper is unlikely
to find one.

In retrospect, we should have verified that the attack
works much earlier. Had we tried a key that preserves
one round on a round-reduced Pilsung, we would have
identified the error before spending time and CPU re-
sources on a what in hindsight is a clearly wrong direc-
tion. Instead we could have invested the CPU resources
into a more profitable target. For example, adding the
10,000 hours to a Bitcoin mining pool would have raised
an estimated $7.91, or a whopping $1.97 for each of the
authors with three cents to spare.

Acknowledgments

This work was supported by an ARC Discovery Early
Career Researcher Award number DE200101577; an
ARC Discovery Project number DP210102670; The
Blavatnik ICRC at Tel-Aviv University; The Phoenix
HPC service at the University of Adelaide; and gifts
from Google, Intel, and Robert Bosch Foundation.

Eyal Ronen is a member of Checkpoint Institute of
Information Security.

References

[1] Florian Grunow and Niklaus Schiess. “Lifting the
Fog on Red Star OS”. In: Chaos Computer Club.
https : / / www . youtube . com / watch ? v =
8LGDM9exlZw. 2015.

[2] Kryptos Logic. A Brief Look At North Korean
Cryptography. https://www.kryptoslogic.
com/blog/2018/07/a-brief-look-at-
north-korean-cryptography/. July 2018.

[3] C. Randhakrishna Rao. “Generation of Random
Permutations of Given Number of Elements Using
Random Sampling Numbers”. In: Sankhya: The
Indian Journal of Statistics, Series A 23.3 (Aug.
1961), pp. 305–307.

[4] Martin Sandelius. “A Simple Randomization Pro-
cedure”. In: Journal of the Royal Statistical Soci-
ety. Series B 24.2 (1962), pp. 472–481.

4

https://www.youtube.com/watch?v=8LGDM9exlZw
https://www.youtube.com/watch?v=8LGDM9exlZw
https://www.kryptoslogic.com/blog/2018/07/a-brief-look-at-north-korean-cryptography/
https://www.kryptoslogic.com/blog/2018/07/a-brief-look-at-north-korean-cryptography/
https://www.kryptoslogic.com/blog/2018/07/a-brief-look-at-north-korean-cryptography/

	Introduction
	Row Your Boat
	By the Stream
	Merrily, Merrily
	Dream

