
1

Private Remote Sources for

Secure Multi-Function Computation
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Abstract

We consider a distributed function computation problem in which parties observing noisy versions of

a remote source facilitate the computation of a function of their observations at a fusion center through

public communication. The distributed function computation is subject to constraints, including not

only reliability and storage but also secrecy and privacy. Specifically, 1) the function computed should

remain secret from an eavesdropper observing the public communication and correlated observations,

measured in terms of the information leaked about the arguments of the function, to ensure secrecy

regardless of the exact function used; 2) the remote source should remain private from the eavesdropper

and the fusion center, measured in terms of the information leaked about the remote source itself. We

derive the exact rate regions for lossless and lossy single-function computation and illustrate the lossy

single-function computation rate region for an information bottleneck example, in which the optimal

auxiliary random variables are characterized for binary-input symmetric-output channels. We extend
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the approach to lossless and lossy asynchronous multiple-function computations with joint secrecy and

privacy constraints, in which case inner and outer bounds for the rate regions that differ only in the

Markov chain conditions imposed are characterized.

Index Terms

secure multiple function computation, private remote source, lossy function computation, informa-

tion bottleneck, rate-limited public communication.

I. INTRODUCTION

Consider a scenario in which multiple terminals that observe dependent random sequences

want to compute a function of their sequences by exchanging messages through public commu-

nication links [2], [3]. One application for which this distributed function computation problem

is relevant is network function virtualization [4] via, e.g., software defined networking. It is

not always necessary for the terminal computing the function, called fusion center, to observe

the exact sequences [5]. This fact allows one to reduce the public communication rate, also

called storage rate, required for reliable function computations by using, e.g., distributed lossless

source coding techniques [6]. Furthermore, if the function to compute only requires recovering

a distorted version of the original sequence, distributed lossy source coding methods [7] further

reduce the amount of public storage. This is useful for resource-limited networks such as

Internet-of-Things (IoT) devices that make aggregated decisions using lightweight mechanisms

[5], [8]–[12]; see [13]–[17] for various extensions of the basic function computation problem

with reliability and storage constraints.

Reliable function computation and small public storage constraints have also been combined

with secrecy constraints, requiring that the computed function outputs be hidden from an eaves-

dropper [18]. In addition to the public messages exchanged between terminals, the eavesdropper

is considered to have access to a random sequence correlated with other sequences. Various

extensions of the basic secure function computation or distributed source coding problems have
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been analyzed in the literature [19]–[25]. Furthermore, a privacy constraint has been added in

[26] to the problem. The main difference between secrecy and privacy is that secrecy leakage is

measured with respect to the functions computed while privacy leakage is measured with respect

to the source sequences themselves. A privacy leakage analysis provides an upper bound on the

secrecy leakage of future function computations involving the terminals already participating

in earlier function computations [27], [28]. This is because the information leaked about the

sequence of a terminal might leak information about another function computed by using the

same sequence. We extend [26] by considering separate privacy constraints on the source of the

random sequence of the transmitting terminal that sends a public message to the fusion center.

A common assumption in the literature is that sequences observed by all terminals are dis-

tributed according to a joint probability distribution. However, the correlated random sequences

observed by terminals in a network generally stem from a common source of information,

e.g., some sensor location information transmitted through the network before the next function

computation starts, distorted versions of which are distributed within the network. Thus, we posit

that there exists a common true source, called the remote source, hidden from all terminals and of

which the observed sequences are noisy versions. Such a remote source model allows a terminal

to combine multiple observed sequences to obtain a single “higher quality” random sequence,

which is similar to applying maximal ratio combining over an additive white Gaussian noise

(AWGN) channel. This approach is thus useful to model the quality differences between random

sequences observed by different terminals. If the function computation network is mistakenly

modeled with a visible source model, the code construction designed for the assumed visible

source model might result in unnoticed secrecy leakage and reduction in computation reliability,

as illustrated in [28] for key agreement.

Noisy measurements of a hidden source are generally modeled as observations through broad-

cast channels (BCs) [29] to have a generic measurement model that allows noise components

at different terminals to be correlated [30], [31]. Such a hidden source model is proposed and
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motivated in [32] for authentication problems and in [30], [33] for secret-key agreement problems

with a privacy constraint. As we detail in Section II, such a hidden source model results in

two different privacy leakage constraints measured with respect to the hidden source, which is

different from the single privacy leakage constraint considered in [26] measured with respect

to the random sequence observed by the transmitting terminal. Furthermore, the equivocation

of the source is commonly used in the literature to measure the secrecy leakage, which results

in rate bounds with conditional entropy terms. By replacing the equivocation with the mutual

information terms, we obtain rate regions with simpler notation and easier interpretations.

We consider two function computation settings. The first setting imposes a reliable (lossless)

computation of the function of interest and the other one allows a fixed level of distortion between

the computed function and the actual function output (lossy function computation) [26]. These

settings address different applications. For instance, the lossless function computation setting

might model user/terminal identification, where the exact identifier recovery is necessary; in

contrast, the lossy function computation setting might model user/terminal authentication, where

a set of users whose computed functions are close to a pre-defined value are authenticated. We

bound the error probability for the reliable function computation task for the lossless setting and

the expected distortion for the lossy setting, respectively, which require different proof steps. We

exactly characterize the rate regions for both settings when a single function is computed.

We further extend the function computation with privacy and secrecy problem by considering

multiple function computations with joint secrecy and privacy constraints on all terminals

involved in any function computation task. This extension allows one to measure the total amount

of information leaked to an eavesdropper about all computed functions within a network. This

extension also allows one to correctly characterize the privacy leakage to an eavesdropper, i.e.,

the amount of information about the hidden source leaked to an eavesdropper who might observe

all public messages and all side information obtained during all (not necessarily synchronous)

function computations within the same network. Multiple function computations with joint
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secrecy and privacy constraints are closely related to the multi-entity and multi-enrollment key

agreement problems in [34], where the noisy measurements of the same hidden source are used

for multiple key agreements. Both lossless and lossy function computation settings are analyzed

to provide inner and outer bounds for the multi-function rate regions, for which only the imposed

Markov chains differ.

A. Summary of Contributions

Our problem formulation introduces one secrecy and two privacy constraints, in addition to

reliability (or distortion) and storage constraints, to the single function computation problem

to characterize the resulting rate regions. These results are strict extensions of [26] as we

consider a remote source common to all terminals with side information sequences that are

noisy measurements of the remote source. Furthermore, we also consider multiple asynchronous

function computations within the same network with joint secrecy and privacy constraints over

all terminals involved in any function computation. A summary of the main contributions is as

follows.

• We derive the rate region for lossless single-function computation with secrecy and privacy

constraints. The remote source model we consider corresponds to a physically-degraded BC

and when the transmitting observes the remote (noiseless) source outputs, the model reduces

to a semi-deterministic BC. Furthermore, we show that convexification with a time-sharing

random variable is necessary.

• We next consider the lossless multi-function computations where a finite number J of

functions are computed from different noisy measurements (observed by different terminals)

of the same remote source asynchronously. We impose one secrecy and privacy constraints

that consider the total leakage in the network, i.e., they are joint constraints for all parties

involved in any function computation. We propose inner and outer bounds for the multi-

function rate region that differ only in the Markov chain conditions imposed on the auxiliary
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random variables. The rate regions include both separate constraints for each terminal and

joint constraints for all terminals.

• All inner and outer bounds for the lossless single- and multi-function computations are

extended to the corresponding lossy settings. Similar to the lossless case, we characterize

the lossy rate region for the single-function computation, and we provide inner and outer

bounds for the multi-function computations that differ only in the Markov chains imposed.

• We evaluate the rate region for a lossy single-function computation problem, in which the

measurement channel of the eavesdropper is physically-degraded compared to the measure-

ment channel of the fusion center. We solve an information bottleneck problem to obtain

the rate region boundary tuples.

B. Organization

In Section II, we introduce the lossless or lossy and single-function or multi-function compu-

tation problems with a remote source. In Section III, we present the rate regions for the lossless

and lossy single-function computation in addition to inner and outer bounds with different

Markov chains for the lossless and lossy multi-function computations for any finite number

of functions. In Section IV, we solve an information bottleneck problem to illustrate the rate

region for the lossy single-function computation problem. In Section V, we provide the detailed

proof for characterizing the rate regions of the lossless single-function computation. Similarly,

in Section VI, we offer proofs of the inner and outer bounds for the lossless multi-function

computations. In Section VII, we conclude the paper.

C. Notation

Upper case letters represent random variables and lower case letters their realizations. A

superscript denotes a sequence of variables, e.g., Xn=X1, X2, . . . , Xi, . . . , Xn, and a subscript i

denotes the position of a variable in a sequence. A random variable X has probability distribution

PX . Calligraphic letters such as X denote sets, set sizes are written as |X | and their complements
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PX

W = Enc(X̃n)

PY Z|X

PX̃|X

f̂n = Dec (W,Y n)

Eve

W

Xn

Y n

X̃n

Xn

Zn

f̂n

W

Fig. 1. Noisy measurements of a remote source used to compute a function securely and privately with the help of a public

communication link.

as X c. [1 : J ] denotes the set {1, 2, . . . , J} for an integer J ≥ 1 and [1 : J ]\{j} denotes the

set {1, 2, . . . , j − 1, j + 1, . . . , J} for any j ∈ [1 : J ]. Hb(x) =−x log x − (1−x) log(1−x) is

the binary entropy function, where logarithms are to the base 2, and H−1b (·) denotes its inverse

with range [0, 0.5]. A binary symmetric channel (BSC) with crossover probability p is denoted

by BSC(p). X ∼ Bern(α) is a binary random variable with Pr[X = 1] = α.

II. PROBLEM DEFINITIONS

A. Lossless Single-Function Computation

Consider the function computation model illustrated in Fig. 1. Three terminals obtain noisy

observations X̃n, Y n, Zn, respectively, of a single i.i.d. remote source Xn, through a memory-

less channel with transition probability pX̃|XpY Z|X . The source alphabet X and measurement

alphabets X̃ ,Y ,Z are finite sets. The objective is for the terminal observing X̃n to transmit

a message W = Enc(X̃n) over a public channel and to enable the terminal observing Y n to

compute a function fn(X̃n, Y n) such that

fn(X̃n, Y n) = {f(X̃i, Yi)}
n

i=1. (1)
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The terminal observing Zn and obtaining W through the public channel is treated as an eaves-

dropper (Eve).

Since PX̃XY Z is fixed, the separate measurement channels PX̃|X and PY Z|X in Fig. 1 can be

modeled as a physically-degraded BC with transition probability PXY Z|X̃ = PX|X̃PY Z|X and

with fixed input probability distribution PX̃ . For such a BC, the case of a noiseless measurement

for which X̃n = Xn can be treated as a semi-deterministic BC.

Definition 1. A tuple (Rs, Rw, R`,Dec, R`,Eve) is achievable if, for any δ>0, there exist n≥1, an

encoder, and a decoder such that

Pr
[
fn(X̃n, Y n) 6= f̂n

]
≤ δ (reliability) (2)

1

n
I(X̃n, Y n;W |Zn) ≤ Rs + δ (secrecy) (3)

1

n
log
∣∣W∣∣ ≤ Rw + δ (storage) (4)

1

n
I(Xn;W |Y n) ≤ R`,Dec + δ (privacyDec) (5)

1

n
I(Xn;W |Zn) ≤ R`,Eve + δ (privacyEve). (6)

The region R is the closure of the set of all achievable tuples. ♦

Note that the metric I(fn(X̃n, Y n);W |Zn) might seem a more natural way to measure the

information leakage to the eavesdropper who observes (W,Zn) of the computed function fn(·, ·).

However, the analysis of this metric depends on the specific properties of the function f(·, ·).

Since the data-processing inequality ensures that I(fn(X̃n, Y n);W |Zn) ≤ I(X̃n, Y n;W |Zn) for

all functions f(·, ·) with equality if f(·, ·) is a bijective mapping, we instead consider the metric

in (3). The analysis then does not depend on the computed function f(·, ·) and provides a valid

upper bound on the proper secrecy-leakage rate metric for any f(·, ·). Since I(X̃n, Y n;W |Zn) =

I(X̃n;W |Zn) because of the Markov chain W−X̃n−(Y n, Zn), the equivocation H(X̃n|W,Zn)

considered in previous works [26] captures the same secrecy leakage as (3). Furthermore, the

privacy leakage metrics in (5) and (6) measure the information leakage about the remote source
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to the decoder and eavesdropper, respectively, due to function computation. We remark that in

(3), (5), and (6), we consider conditional mutual information terms to take into consideration

the unavoidable secrecy or privacy leakage due to side information available at the fusion center

or eavesdropper.

B. Lossy Single-Function Computation

Consider again the single-function computation model depicted in Fig. 1 and replace the reli-

ability constraint in (2) with an expected distortion constraint to allow a distorted reconstruction

of the function f(·, ·). This defines the lossy single-function computation model, for which the

notion of achievability is as follows.

Definition 2. A lossy tuple (Rs, Rw, R`,Dec, R`,Eve, D) is achievable if, for any δ>0, there exist

n≥1, an encoder, and a decoder that satisfy (3)-(6) and

E
[
d(fn(X̃n, Y n), f̂n)

]
≤ D + ε (7)

where d(fn, f̂n) =
1

n

n∑
i=1

d(fi, f̂i) is a per-letter distortion metric. The lossy region RD is the

closure of the set of all achievable lossy distortion tuples. ♦

C. Lossless Multi-Function Computation

We next extend the lossless single-function computation model by considering that the same

remote source Xn is measured by multiple encoder and decoder pairs to compute different func-

tions. Consider a finite number J ≥ 1 of encoders Encj(X̃j) = Wj , decoders Decj(Wj, Y
n
j ) = f̂n

j ,

and functions fn
j (X̃

n
j , Y

n
j ) = {fj(X̃i,j, Yi,j)}ni=1 for j ∈ [1 : J ], where X̃n

j is measured through the

channel PX̃j |X and (Y n
j , Z

n
j ) are measured through the BC PYjZj |X . The eavesdropper observes

(Zn
[1:J ],W[1:J ]). This multi-function computation model is illustrated in Fig. 2 for J = 2.

Definition 3. A multi-function tuple (Rs, Rw,[1:J ], R`,Dec,[1:J ], R`,Eve) with j-th encoder measure-

ments through PX̃j |X and j-th decoder measurements through PYjZj |X for all j ∈ [1 : J ] is
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PX

W1 = Enc1(X̃
n
1 )

PY1Z1|X

PX̃1|X

f̂n
1 = Dec1 (W1, Y

n
1 )

Eve

W1

Xn

Y n
1

X̃n
1

Xn

Zn
1

f̂n
1

W1

W2 = Enc2(X̃
n
2 )

PY2Z2|XPX̃2|X

f̂n
2 = Dec2 (W2, Y

n
2 )W2

Y n
2X̃n

2

Xn

Zn
2

f̂n
2

W2

Fig. 2. Noisy measurements of the same remote source used to compute J = 2 functions (via 2J = 4 parties) securely and

privately with the help of public communication links.

achievable if, for any δ>0, there exist n≥1, and J encoder and decoder pairs such that

Pr

[ ⋃
j∈[1:J ]

{
fn
j (X̃

n
j , Y

n
j ) 6= f̂n

j

}]
≤ δ (8)

1

n
I(X̃n

[1:J ], Y
n
[1:J ];W[1:J ]|Zn

[1:J ])≤Rs+δ (9)

1

n
log
∣∣Wj

∣∣ ≤ Rw,j + δ, ∀j ∈ [1 : J ] (10)

1

n
I(Xn;Wj|Y n

j ) ≤ R`,Dec,j + δ, ∀j ∈ [1 : J ] (11)

1

n
I(Xn;W[1:J ]|Zn

[1:J ]) ≤ R`,Eve + δ. (12)

The multi-function region Rmf is the closure of the set of all achievable tuples. ♦

Remark 1. The storage rate constraints in (10) and the corresponding privacy leakage rate



11

constraints in (11) are J separate constraints. However, the reliability constraint in (8), the

secrecy leakage constraint in (9), and the privacy leakage rate constraint in (12) are joint

constraints that depend on the parameters of all J encoder-decoder pairs.

D. Lossy Multi-Function Computation

Similar to Section II-B, we extend the model of Section II-C to allow distorted function

computations for multiple functions fn
j (X̃

n
j , Y

n
j ) = {fj(X̃i,j, Yi,j)}ni=1 computed from different

measurements (X̃n
j , Y

n
j ) of the same remote source Xn.

Definition 4. A lossy multi-function tuple (Rs, Rw,[1:J ], R`,Dec,[1:J ], R`,Eve, D[1:J ]) with j-th encoder

measurements through PX̃j |X and j-th decoder measurements through PYjZj |X for all j ∈ [1 : J ]

is achievable if, for any δ > 0, there exist n≥ 1, and J encoder and decoder pairs that satisfy

(9)-(12) and

E
[
d(fn

j (X̃
n
j , Y

n
j ), f̂

n
j )
]
≤ Dj + δ, ∀j ∈ [1 : J ] (13)

where d(fn, f̂n) =
1

n

n∑
i=1

d(fi, f̂i) is a per-letter distortion metric. The lossy multi-function region

Rmf,D is the closure of the set of all achievable lossy distortion tuples. ♦

III. RATE REGIONS

We first recall the notion of an admissible random variable, used in Theorems 1 and 3.

Definition 5 ([5]). A (vector) random variable U is admissible for a function f(X̃, Y ) if U −

X̃ − Y form a Markov chain and H(f(X̃, Y )|U, Y ) = 0, i.e., (U, Y ) determine f(X̃, Y ). ♦

Define [a]− = min{a, 0} and [a]+ = max{a, 0} for a ∈ R.

A. Lossless Single-Function Computation

We characterize the region R for the lossless single function computation problem in Theo-

rem 1. The corresponding proof is detailed in Section V.
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Theorem 1. The region R is the set of all tuples (Rs, Rw, R`,Dec, R`,Eve) satisfying

Rs≥ I(U ; X̃|Z) +
[
I(U ;Z|V,Q)− I(U ;Y |V,Q)

]− (14)

Rw≥I(U ; X̃|Y ) (15)

R`,Dec≥I(U ;X|Y ) (16)

R`,Eve≥I(U ;X|Z)+
[
I(U ;Z|V,Q)−I(U ;Y |V,Q)

]− (17)

such that U is admissible for the function f(X̃, Y ) and (Q, V )− U − X̃ −X − (Y, Z) form a

Markov chain. The region R is convexified by using the time-sharing random variable Q, which

is required because of the [·]− operation. One can limit the cardinalities of Q, V , and U to

|Q| ≤ 2, |V| ≤ |X̃|+ 4, and |U| ≤ (|X̃|+ 4)2.

In [26], some lower bounds on the rates in the rate regions include terms with the maximization

operator [·]+. One can show that the rate regions in [26] that include such lower bounds are not

convex and can be enlarged by using a time-sharing random variable Q, as considered in this

work.

B. Lossy Single-Function Computation

We next characterize the lossy region RD for the lossy single function computation problem

in Theorem 2.

Theorem 2. The lossy region RD is the set of all tuples (Rs, Rw, R`,Dec, R`,Eve, D) satisfying

Rs≥ I(U ; X̃|Z) +
[
I(U ;Z|V,Q)− I(U ;Y |V,Q)

]− (18)

Rw≥I(U ; X̃|Y ) (19)

R`,Dec≥I(U ;X|Y ) (20)

R`,Eve≥I(U ;X|Z)+
[
I(U ;Z|V,Q)−I(U ;Y |V,Q)

]− (21)

D ≥ E[d(f(X̃, Y ), g(U, Y ))] (22)
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for some function g(·, ·) such that (Q, V )−U − X̃−X− (Y, Z) form a Markov chain. One can

limit the cardinalities to |Q| ≤ 2, |V| ≤ |X̃|+ 5, and |U| ≤ (|X̃|+ 5)2.

Proof Sketch: The achievability proof of Theorem 2 follows from the achievability proof of

Theorem 1, except that U is not necessarily admissible, and with the addition that PU |X̃ and PV |U

are chosen such that there exists a function g(U, Y ) that satisfies gn(Un, Y n) = {g(Ui, Yi)}ni=1

and E[d(fn(X̃n, Y n), gn(Un, Y n))] ≤ D + εn, where εn > 0 such that εn → 0 when n → ∞.

Since all sequence tuples (x̃n, yn, un) are in the jointly typical set with high probability, by the

typical average lemma [35, pp. 26], the distortion constraint (22) is satisfied. The converse proof

follows from the converse proof of Theorem 1 by replacing the admissibility step in (82) with

the steps

D + δn ≥ E
[
d
(
fn(X̃n, Y n), f̂n(W,Y n)

) ]
=

1

n
E
[ n∑

i=1

d
(
fi(X̃i, Yi), f̂i(W,Y

n)
) ]

(a)

≥ 1

n
E
[ n∑

i=1

d
(
fi(X̃i, Yi), gi(W,Y

n, X i−1, Zi−1, i)
) ]

(b)
=

1

n
E
[ n∑

i=1

d
(
fi(X̃i, Yi), gi(W,Y

n
i , X

i−1, Zi−1, i)
) ]

(c)
=

1

n
E
[ n∑

i=1

d
(
f(X̃i, Yi), g(Ui, i, Yi)

) ]
(23)

where (a) follows since there exists a function gi(·, ·) that results in a distortion smaller than or

equal to the distortion obtained from f̂i(W,Y
n), where the distortion is measured with respect

to fi(X̃i, Yi) for all i ∈ [1 : n], because gi(·, ·) has additional inputs, (b) follows from the

Markov chain Y i−1 − (X i−1, Zi−1,W, Yi, Y
n
i+1) − fi, and (c) follows from the definition of

Ui , (W,X i−1, Y n
i+1, Z

i−1) given in Section V-B. The cardinality bounds follow by preserving

the same probability and conditional entropy values as being preserved in Theorem 1 with the

addition of preserving the value of g(U, Y ) = g(U, V, Y ), following from the Markov chain

V − (U, Y )−g(U, Y ). The region RD is convexified by using a time-sharing random variable Q.
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All rate regions in [26, Section III] (and, naturally, all previous rate regions recovered by

manipulating the regions in [26, Section III]) can be recovered from Theorems 1 and 2 by

eliminating the remote source, i.e., assuming X̃n = Xn, and by rewriting the secrecy leakage

constraint in (3) as an equivocation measure rather than a mutual information.

C. Lossless Multi-Function Computation

We provide inner and outer bounds for the multi-function region Rmf defined in Section II-C

in Theorem 3. The corresponding proof is detailed in Section VI.

Theorem 3. (Inner Bound): An achievable multi-function region is the union over all PUj |X̃j
and

PVj |Uj
such that Uj is admissible for the function fj(X̃j, Yj) for all j ∈ [1 : J ] of the rate tuples

(Rs, Rw,[1:J ], R`,Dec,[1:J ], R`,Eve) satisfying

Rs≥
[
I(U[1:J ];Z[1:J ]|V[1:J ], Q)−I(U[1:J ];Y[1:J ]|V[1:J ], Q)

]−
+I(U[1:J ]; X̃[1:J ]|Z[1:J ]) (24)

Rw,j≥I(Uj; X̃j|Yj), ∀j ∈ [1 : J ] (25)

J∑
j=1

Rw,j ≥ I(U[1:J ]; X̃[1:J ]|Y[1:J ]) (26)

R`,Dec,j≥I(Uj;X|Yj), ∀j ∈ [1 : J ] (27)

R`,Eve≥
[
I(U[1:J ];Z[1:J ]|V[1:J ], Q)−I(U[1:J ];Y[1:J ]|V[1:J ], Q)

]−
+I(U[1:J ];X|Z[1:J ]) (28)

where we have

PQV[1:J]U[1:J]X̃[1:J]XY[1:J]Z[1:J]
= PQPX

J∏
j=1

PVj |Uj
PUj |X̃j

PX̃j |XPYjZj |X . (29)

(Outer Bound): An outer bound for the multi-function region Rmf is the union of the rate tuples

in (24)-(28) over all PUj |X̃j
and PVj |Uj

such that Uj is admissible for the function fj(X̃j, Yj)

and (Q, Vj) − Uj − X̃j −X − (Yj, Zj) form a Markov chain for all j ∈ [1 : J ]. One can limit

the cardinalities to |Q| ≤ 2, |Vj| ≤ |X̃j|+ 5, and |Uj| ≤ (|X̃j|+ 5)2 for all j ∈ [1 : J ].
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Remark 2. The inner and outer bounds differ because the outer bounds define rate regions for

the Markov chains (Q, Vj)− Uj − X̃j −X − (Yj, Zj) for all j ∈ [1 : J ], which are larger than

the rate regions defined by the inner bounds that satisfy (29).

D. Lossy Multi-Function Computation

We next give inner and outer bounds for the lossy multi-function region Rmf,D, defined in

Section II-D, in Theorem 4.

Theorem 4. (Inner Bound): An achievable lossy multi-function region is the union over all PUj |X̃j

and PVj |Uj
for all j ∈ [1 : J ] of the rate tuples (Rs, Rw,[1:J ], R`,Dec,[1:J ], R`,Eve, D[1:J ]) satisfying

Rs≥
[
I(U[1:J ];Z[1:J ]|V[1:J ], Q)−I(U[1:J ];Y[1:J ]|V[1:J ], Q)

]−
+I(U[1:J ]; X̃[1:J ]|Z[1:J ]) (30)

Rw,j≥I(Uj; X̃j|Yj), ∀j ∈ [1 : J ] (31)

J∑
j=1

Rw,j ≥ I(U[1:J ]; X̃[1:J ]|Y[1:J ]) (32)

R`,Dec,j≥I(Uj;X|Yj), ∀j ∈ [1 : J ] (33)

R`,Eve≥
[
I(U[1:J ];Z[1:J ]|V[1:J ], Q)−I(U[1:J ];Y[1:J ]|V[1:J ], Q)

]−
+I(U[1:J ];X|Z[1:J ]) (34)

Dj ≥ E[d(fj(X̃j, Yj), gj(Uj, Yj))] ∀j ∈ [1 : J ] (35)

for a set of functions {gj(·, ·)}Jj=1 and where (29) is satisfied.

(Outer Bound): An outer bound for the lossy multi-function region Rmf,D is the union of the

rate tuples in (30) - (35) over all PUj |X̃j
and PVj |Uj

such that (Q, Vj)−Uj−X̃j−X−(Yj, Zj) form

a Markov chain for all j ∈ [1 : J ]. One can limit the cardinalities to |Q| ≤ 2, |Vj| ≤ |X̃j|+ 6,

and |Uj| ≤ (|X̃j|+ 6)2 for all j ∈ [1 : J ].

Proof Sketch: The inner bound proof of Theorem 4 follows from the achievability proof

of Theorem 3, except that Uj’s are not necessarily admissible, and with the addition that PUj |X̃j

and PVj |Uj
are chosen such that there exists a set of functions {gj(Uj, Yj)}Jj=1 that satisfy
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gnj (U
n
j , Y

n
j ) = {gj(Ui,j, Yi,j)}ni=1 and E[d(fn

j (X̃
n
j , Y

n
j ), g

n
j (U

n
j , Y

n
j ))] ≤ Dj+εn for all j ∈ [1 : J ],

where εn > 0 such that εn → 0 when n→∞. Since all sequence tuples (x̃nj , y
n
j , u

n
j ) are in the

jointly typical set with high probability for all j ∈ [1 : J ], by the typical average lemma, the

distortion constraints in (35) are satisfied. The outer bound proof of Theorem 4 follows from

the converse proof of Theorem 3 with the replacement of the admissibility step in (110) with

the steps given in (23) for random variables and functions with the indices j = 1, 2, . . . , J .

IV. INFORMATION BOTTLENECK EXAMPLE

Consider the lossy single-function computation problem and suppose X − Y − Z form a

Markov chain. The characterization of the corresponding rate region requires one to maximize

a mutual information term upper bounded by another mutual information term that should be

minimized simultaneously, i.e., an information bottleneck.

Corollary 1. The lossy region of Theorem 2 when X − Y − Z form a Markov chain is the set

of all tuples (Rs, Rw, R`,Dec, R`,Eve, D) satisfying

Rs≥ I(U ; X̃|Y ) = I(U ; X̃)− I(U ;Y ) (36)

Rw≥I(U ; X̃|Y ) = I(U ; X̃)− I(U ;Y ) (37)

R`,Dec≥I(U ;X|Y ) = I(U ;X)− I(U ;Y ) (38)

R`,Eve≥I(U ;X|Y ) = I(U ;X)− I(U ;Y ) (39)

D ≥ E[d(f(X̃, Y ), g(U, Y ))] (40)

for some function g(·, ·) such that U − X̃ − X − Y − Z form a Markov chain. One can limit

the cardinality to |U| ≤ |X̃|+ 2.

The proof of Corollary 1 follows by applying steps identical to the proof of [26, Corollary 3]

to Theorem 2, we thus omit it. The boundary points of the rate region defined in Corollary 1

can be obtained by maximizing I(U ;Y ) and minimizing I(U ; X̃) simultaneously for a fixed
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I(U ;X) for all PU |X̃ such that U − X̃ − X − Y − Z form a Markov chain. This problem is

an information bottleneck problem [36], [37]. If the distortion metric d(·, ·) is chosen to be the

Hamming distance, we then obtain the optimal function g∗(u, y) for all (u, y)∈U×Y as [26,

Eq. (26)]

g∗(u, y) = argmax
f

PF |UY (f |u, y) (41)

where f = f(x̃, y) is a realization of the random function output F for any (x̃, y) ∈ X̃ × Y .

Consider a measurement channel PX̃|X and source PX for the encoder Enc(·) such that the

inverse channel PX|X̃ is a BSC(p) for any 0 ≤ p ≤ 0.5. Furthermore, suppose the measurement

channel PY |X for the decoder Dec(·) is a binary input symmetric output channel [38, p. 21],

which can be decomposed into a mixture of binary subchannels as defined in [39, Section III-B]

[40]. We remark that the rate region defined in Corollary 1 by (36)-(40) does not depend on the

random variable Z. Therefore, the measurement channel for the eavesdropper does not affect the

rate region as long as the measurement channel for the eavesdropper is physically-degraded as

compared to the channel for the decoder Dec(·), i.e., PY Z|X = PZ|Y PY |X . Since PX̃XY Z is fixed,

the optimal auxiliary random variable U is such that PX̃|U is a BSC with crossover probability

H−1b (H(X|U))− p
1− 2p

(42)

which follows from [28, Theorem 3].

Suppose PX ∼Bern(0.5), PX̃|X ∼BSC(p=0.06), and assume that the measurement channel

PY |X consists of M > 1 independent BSCs each with crossover probability 0.15, which satisfies

the assumptions listed above. Using auxiliary random variables satisfying (42), we depict the

projections of (Rs, Rw, R`,Dec, R`,Eve, D) boundary tuples onto the (Rs, R`,Eve) plane in Fig. 3 for

M = 1, 2, 3 independent BSC measurements by the decoder Dec(·).

Fig. 3 suggests that given a boundary point achieved by a crossover probability calculated

as in (42), any larger secrecy-leakage rate and any larger privacyEve-leakage rate are also

achievable. Conversely, given such an achievable boundary point, no smaller secrecy-leakage rate
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Fig. 3. Secrecy-leakage rate vs. privacyEve-leakage rate projection of the boundary tuples (Rs, Rw, R`,Dec, R`,Eve, D) for

p = 0.06 and for the number of independent BSC measurements at the decoder M = 1, 2, 3.

and no smaller privacyEve-leakage rate is achievable. Furthermore, increasing the number M of

measurements at the decoder significantly decreases the corresponding boundary point such that,

e.g., when M = 3 measurements are used as compared to M = 1, the maximum secrecy-leakage

rate decreases by approximately 31.45% and simultaneously the maximum privacy-leakage rate

to the eavesdropper decreases by approximately 58.68%. These gains can be seen as multiplexing

gains, in analogy to multiple antenna systems for wireless communications.

V. PROOF OF THEOREM 1

A. Achievability Proof of Theorem 1

Proof Sketch: We use the output statistics of random binning (OSRB) method, proposed

in [41] (see also [42]) for strong secrecy by following steps in [43, Section 1.6]. This approach

simplifies the analysis compared to previous proofs in the literature.

Fix PU |X̃ and PV |U such that U is admissible and let (V n, Un, X̃n, Xn, Y n, Zn) be i.i.d.
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according to PV UX̃XY Z = PV |UPU |X̃PX̃|XPXPY Z|X . We remark that since all n-letter random

variables are i.i.d., Un is also admissible.

Assign two random bin indices (Fv,Wv) to each vn. Assume Fv ∈ [1 : 2nR̃v ] and Wv ∈ [1 :

2nRv ]. Similarly, assign two indices (Fu,Wu) to each un, where Fu ∈ [1 : 2nR̃u ] and Wu ∈ [1 :

2nRu ]. The public message is W = (Wv,Wu) and the indices F = (Fv, Fu) represent the public

choice of encoder-decoder pairs.

Using a Slepian-Wolf (SW) [6] decoder, one can reliably estimate V n from (Fv,Wv, Y
n), such

that the expected value of the error probability taken over the random bin assignments vanishes

when n→∞, if we have [44, Lemma 1]

R̃v +Rv > H(V |Y ). (43)

Similarly, one can reliably estimate Un from (Fu,Wu, Y
n, V n) by using a SW decoder if we

have

R̃u +Ru > H(U |V, Y ). (44)

Thus, the reliability constraint in (2) is satisfied if (43) and (44) are satisfied.

The public index Fv is almost independent of X̃n, so it is almost independent of (X̃n, Xn, Y n, Zn),

if we have [44, Theorem 1]

R̃v < H(V |X̃) (45)

since it results in the expected value, which is taken over the random bin assignments, of the

variational distance between the joint probability distributions Unif[1: |Fv|] · Unif[1:|X̃ |n] and

PFvX̃n to vanish when n → ∞. Furthermore, the public index Fu is almost independent of

(V n, X̃n), so it is almost independent of (V n, X̃n, Xn, Y n, Zn), if we have

R̃u < H(U |V, X̃). (46)
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To satisfy the constraints (43)-(46), we fix the rates to

R̃v = H(V |X̃)− ε (47)

Rv = I(V ; X̃)− I(V ;Y ) + 2ε (48)

R̃u = H(U |V, X̃)− ε (49)

Ru = I(U ; X̃|V )− I(U ;Y |V ) + 2ε (50)

for any ε > 0.

Storage (Public Message) Rate: (47)-(50) result in a storage (public message) rate Rw of

Rw = Rv +Ru = I(V, U ; X̃)− I(V, U ;Y ) + 4ε
(a)
= I(U ; X̃|Y ) + 4ε (51)

where (a) follows because V − U − X̃ − Y form a Markov chain.

Privacy Leakage to the Decoder: We have

I(Xn;W,F |Y n) = I(Xn;W |F, Y n) + I(Xn;F |Y n)

(a)

≤ H(Xn|Y n)−H(Xn|W,F, V n, Un, Y n) + 2εn

(b)
= H(Xn|Y n)−H(Xn|Un, Y n) + 2εn

(c)
= nI(U ;X|Y ) + 2εn (52)

where (a) follows for some εn > 0 with εn → 0 when n→∞ because

I(Xn;F |Y n) = I(Xn;Fv|Y n) + I(Xn;Fu|Fv, Y
n) ≤ 2εn (53)

since by (45) Fv is almost independent of (X̃n, Xn, Y n, Zn) and by (46) Fu is almost independent

of (V n, X̃n, Xn, Y n, Zn) and because V n determines Fv, (b) follows because V n determines

(Fv,Wv), Un determines (Fu,Wu), and V n − Un − (Xn, Y n) form a Markov chain, and (c)

follows because (Xn, Un, Y n) are i.i.d.
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Privacy Leakage to the Eavesdropper: We have

I(Xn;W,F |Zn)
(a)
= H(W,F |Zn)−H(W,F |Xn)

(b)
= H(W,F |Zn)−H(Wu, Fu, V

n|Xn) +H(V n|Wv, Fv,Wu, Fu, X
n)

(c)

≤ H(W,F |Zn)−H(Wu, Fu, V
n|Xn) + nε′n

(d)
= H(W,F |Zn)−H(Un, V n|Xn) +H(Un|Wu, Fu, V

n, Xn) + nε′n

(e)

≤ H(W,F |Zn)−H(Un, V n|Xn) + 2nε′n

(f)
= H(W,F |Zn)− nH(U, V |X) + 2nε′n (54)

where (a) follows because (W,F ) − Xn − Zn form a Markov chain, (b) follows since V n

determines (Fv,Wv), (c) follows for some ε′n > 0 such that ε′n → 0 when n → ∞ because

(Fv,Wv, X
n) can reliably recover V n due to the Markov chain V n − Xn − Y n and by (43),

(d) follows because Un determines (Fu,Wu), (e) follows by (44) because (Wu, Fu, V
n, Xn) can

reliably recover Un due to the inequality H(U |V, Y ) ≥ H(U |V,X) that follows from

H(U |V, Y )−H(U |V,X) = I(U ;V,X)− I(U ;V, Y )

≥ I(U ;V,X)− I(U ;V, Y,X) = 0 (55)

since U − V −X − Y form a Markov chain, and (f) follows because (Un, V n, Xn) are i.i.d.

We need to analyze six different decodability cases to consider whether (Fv,Wv, Z
n) can

recover V n and whether (Fu,Wu, V
n, Zn) or (Fu,Wu, Z

n) can recover Un.

Case 1: Assume

0 ≤ Rv + R̃v < H(V |Z), (56)

0 ≤ Ru + R̃u < H(U |V, Z) (57)

so that (Fv,Wv) are almost independent of Zn and are also almost mutually independent, and

(Fu,Wu) are almost independent of (V n, Zn) and are also almost mutually independent. Using
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(54), we obtain

I(Xn;W,F |Zn)

≤H(Wv)+H(Fv)+H(Wu)+H(Fu)−nH(U, V |X)+2nε′n

≤ n(Rv + R̃v +Ru + R̃u)−nH(U, V |X)+2nε′n

(a)
= n(I(U, V ;X)− I(U, V ;Y ) + 2ε+ 2ε′n)

(b)
= n(I(U ;X)− I(U ;Y |V )− I(V ;Y ) + 2ε+ 2ε′n)

(c)

≤ n(I(U ;X)− I(U ;Y |V )− I(V ;Z) + ε+ 2ε′n)

(d)
= n(I(U ;X)−[I(U ;Y |V )−I(U ;Z|V )]−I(U ;Z)+ε+2ε′n)

(e)
= n(I(U ;X|Z)+[I(U ;Z|V )−I(U ;Y |V )+ε]−+2ε′n) (58)

where (a) follows by (47)-(50) and (b) follows from the Markov chain V −U −X , (c) follows

by (47), (48), and (56) such that equality is achieved when n→∞, (d) follows from the Markov

chain V − U − Z, and (e) follows from the Markov chain U −X − Z.

Case 2: Assume

0 ≤ Rv + R̃v < H(V |Z), (59)

H(U |V, Z) < Ru + R̃u < H(U |Z) (60)

so that (Fv,Wv) are almost independent of Zn and are also almost mutually independent, and

(Fu,Wu) are almost independent of Zn and are also almost mutually independent; however,

(Fu,Wu, V
n, Zn) can reliably recover Un. Using (54), we have

I(Xn;W,F |Zn)

(a)

≤ H(Un, V n|Zn)−nH(U, V |X)+2nε′n

(b)
=n(I(U ;X|Z)+[I(U ;Z|V )−I(U ;Y |V )+ε]−+2ε′n) (61)

where (a) follows because V n determines (Fv,Wv) and Un determines (Fu,Wu), and (b) follows

from the Markov chain V − U −X − Z and by (49), (50), and (60).
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Case 3: Assume

0 ≤ Rv + R̃v < H(V |Z), (62)

H(U |Z) < Ru + R̃u (63)

so that (Fv,Wv) are almost independent of Zn and are also almost mutually independent, and

(Fu,Wu, Z
n) can reliably recover Un. Using (54), we obtain

I(Xn;W,F |Zn)

(a)

≤ H(Un|Zn)+H(Wv, Fv|Un, Zn)−nH(U, V |X)+2nε′n

(b)

≤ H(Un|Zn)+H(V n|Un, Zn)−nH(U, V |X)+2nε′n

(c)
= n(I(U ;X|Z)+2ε′n)

(d)
= n(I(U ;X|Z)+[I(U ;Z|V )−I(U ;Y |V )+ε]−+2ε′n) (64)

where (a) follows because Un determines (Fu,Wu), (b) follows since V n determines (Fv,Wv),

(c) follows from the Markov chain V − U − X − Z and because (V n, Un, Xn, Zn) are i.i.d.,

and (d) follows by (49), (50), and (63).

Case 4: Assume

H(V |Z) < Rv + R̃v, (65)

0 ≤ Ru + R̃u < H(U |V, Z) (66)

so that (Fv,Wv, Z
n) can reliably recover V n, and (Fu,Wu) are almost independent of (V n, Zn)

and are also almost mutually independent. Using (54), we have

I(Xn;W,F |Zn)

(a)

≤ H(V n|Zn) +H(Wu, Fu|Wv, Fv, Z
n)− nH(U, V |X) + 2nε′n

≤ H(V n|Zn) +H(Wu) +H(Fu)− nH(U, V |X) + 2nε′n

≤ n(H(V |Z) +Ru + R̃u −H(U, V |X) + 2ε′n)
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(b)
= n(H(V |Z) +H(U |V, Y ) + ε−H(U, V |X) + 2ε′n)

= n(I(U ;X|V )−I(U ;Y |V )+I(V ;X)−I(V ;Z)+2ε′n+ε)

(c)
= n(I(U ;X)− I(U ;Y |V )− I(V ;Z) + 2ε′n + ε

(d)
= n(I(U ;X)−[I(U ;Y |V )−I(U ;Z|V )]−I(U ;Z)+ε+2ε′n)

(e)
= n(I(U ;X|Z)+[I(U ;Z|V )−I(U ;Y |V )+ε]−+2ε′n) (67)

where (a) follows because V n determines (Fv,Wv), (b) follows because (V n, Zn) are i.i.d. and

by (49) and (50), (c) follows from the Markov chain V −U −X , (d) follows from the Markov

chain V − U − Z, and (e) follows from the Markov chain U −X − Z.

Case 5: Assume

H(V |Z) < Rv + R̃v, (68)

H(U |V, Z) < Ru + R̃u < H(U |Z) (69)

so that (Fv,Wv, Z
n) can reliably recover V n, and (Fu,Wu) are almost independent of Zn and

are also almost mutually independent; however, (Fu,Wu, V
n, Zn) can reliably recover Un. Using

(54), we have

I(Xn;W,F |Zn)

(a)

≤ H(V n|Zn) +H(Wu, Fu|Wv, Fv, Z
n)− nH(U, V |X) + 2nε′n

(b)

≤ H(V n|Zn) +H(Wu, Fu|V n, Zn) +H(V n|Wv, Fv, Z
n)− nH(U, V |X) + 2nε′n

(c)

≤ H(V n|Zn) +H(Un|V n, Zn)− nH(U, V |X) + 3nε′n

(d)
= n(I(U ;X|Z)+3ε′n)

(e)
=n(I(U ;X|Z)+[I(U ;Z|V )−I(U ;Y |V )+ε]−+3ε′n) (70)

where (a) and (b) follow because V n determines (Fv,Wv), (c) follows because Un determines

(Fu,Wu) and by (68), (d) follows because (V n, Zn, Un) are i.i.d. and from the Markov chain

V − U −X − Z, and (e) follows by (49), (50), and (69).
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Case 6: Assume

H(V |Z) < Rv + R̃v, (71)

H(U |Z) < Ru + R̃u (72)

so that (Fv,Wv, Z
n) can reliably recover V n, and (Fu,Wu, Z

n) can reliably recover Un. Using

(54), we obtain

I(Xn;W,F |Zn)

(a)

≤ H(V n, Un|Zn)− nH(U, V |X) + 2nε′n

(b)
= n(I(U ;X|Z) + 2ε′n)

(c)
=n(I(U ;X|Z)+[I(U ;Z|V )−I(U ;Y |V )+ε]−+2ε′n) (73)

where (a) follows because Un determines (Fu,Wu) and V n determines (Fv,Wv), (b) follows

because (V n, Un, Zn) are i.i.d. and from the Markov chain V −U −X −Z, and (c) follows by

(49), (50), and (72).

Secrecy Leakage (to the Eavesdropper): Consider the secrecy leakage. We have

I(X̃n, Y n;W,F |Zn)
(a)
= H(W,F |Zn)−H(W,F |X̃n)

(b)

≤ H(W,F |Zn)−H(Wu, Fu, V
n|X̃n) + nε′n

(c)

≤ H(W,F |Zn)− nH(U, V |X̃) + 2nε′n (74)

where (a) follows from the Markov chain (W,F )−X̃n−(Y n, Zn), (b) follows since (Wv, Fv, X̃
n)

can reliably recover V n due to the Markov chain V n−X̃n−Y n and (43), and (c) follows by (44)

since (Wu, Fu, V
n, X̃n) can reliably recover Un due to the inequality H(U |V, Y ) ≥ H(U |V, X̃)

that can be proved similarly as in (55), and because (Un, V n, X̃n) are i.i.d.

Similar to the analysis of the privacy leakage to the eavesdropper, we need to analyze the

same six decodability cases to consider whether (Fv,Wv, Z
n) can recover V n and whether

(Fu,Wu, V
n, Zn) or (Fu,Wu, Z

n) can recover Un. One can show that all steps applied in Cases
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1-6 for the privacy leakage to the eavesdropper follow also for the Cases 1-6 for the secrecy

leakage by replacing X with X̃ . We; therefore, list the results for Cases 1-6 as follows.

Case 1: We obtain for (56) and (57) that

I(X̃n, Y n;W,F |Zn) ≤ n(I(U ; X̃|Z)+[I(U ;Z|V )−I(U ;Y |V )+ε]−+2ε′n). (75)

Case 2: We obtain for (59) and (60) that

I(X̃n, Y n;W,F |Zn) ≤ n(I(U ; X̃|Z)+[I(U ;Z|V )−I(U ;Y |V )+ε]−+2ε′n). (76)

Case 3: We obtain for (62) and (63) that

I(X̃n, Y n;W,F |Zn) ≤ n(I(U ; X̃|Z)+[I(U ;Z|V )−I(U ;Y |V )+ε]−+2ε′n). (77)

Case 4: We obtain for (65) and (66) that

I(X̃n, Y n;W,F |Zn) ≤ n(I(U ; X̃|Z)+[I(U ;Z|V )−I(U ;Y |V )+ε]−+2ε′n). (78)

Case 5: We obtain for (68) and (69) that

I(X̃n, Y n;W,F |Zn) ≤n(I(U ; X̃|Z)+[I(U ;Z|V )−I(U ;Y |V )+ε]−+3ε′n). (79)

Case 6: We obtain for (71) and (72) that

I(X̃n, Y n;W,F |Zn) ≤n(I(U ; X̃|Z)+[I(U ;Z|V )−I(U ;Y |V )+ε]−+2ε′n). (80)

Now suppose the public indices F are generated uniformly at random. The encoder Enc(·)

generates (V n, Un) according to PV nUn|X̃nFvFu
obtained from the binning scheme above to

compute the bins Wv from V n and Wu from Un, respectively. This procedure induces a joint

probability distribution that is almost equal to PV UX̃XY Z fixed above [43, Section 1.6]. We

remark that the privacy and secrecy leakage metrics considered above are expectations over

all possible realizations F = f . Thus, applying the selection lemma [45, Lemma 2.2] to each

decodability case separately, these results prove the achievability for Theorem 1 by choosing an

ε > 0 such that ε→ 0 when n→∞.
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B. Converse Proof of Theorem 1

Proof Sketch: Suppose for some δn > 0 and n ≥ 1, there exists a pair of encoders and

decoders such that (2)-(6) are satisfied for some tuple (Rs, Rw, R`,Dec, R`,Eve).

Let Vi , (W,Y n
i+1, Z

i−1) and Ui , (W,X i−1, Y n
i+1, Z

i−1), which satisfy the Markov chain

Vi − Ui − X̃i −Xi − (Yi, Zi) for all i ∈ [1 : n] by definition of the source statistics.

Admissibility of U: Define

εn = δn|X̃ ||Y|+
Hb(δn)

n
(81)

where Hb(δ) = −δ log δ − (1 − δ) log(1 − δ) is the binary entropy function, so that εn→ 0 if

δn→0. Using (2) and Fano’s inequality, we obtain

nεn ≥ H(fn|f̂n)
(a)
= H(fn| sfn)

(b)
=

n∑
i=1

H(fi| sfi)

≥
n∑

i=1

H(fi| sfn)
(c)

≥
n∑

i=1

H(fi|W,Y n)

≥
n∑

i=1

H(fi|W,Y n, X i−1, Zi−1)

(d)
=

n∑
i=1

H(fi|W,Y n
i+1, X

i−1, Zi−1, Yi)
(e)
=

n∑
i=1

H(fi|Ui, Yi) (82)

where (a) follows from [31, Lemma 2] so that when n → ∞, there exists an i.i.d. random

variable sfn such that H(fn|f̂n) = H(fn| sfn) and f̂n − sfn − (W,Y n) form a Markov chain, (b)

follows because (fn, sfn) are i.i.d., (c) follows from the Markov chain fn − (W,Y n)− sfn and

permits randomized decoding, (d) follows from the Markov chain for all i ∈ [1 : n]

Y i−1 − (X i−1, Zi−1,W, Yi, Y
n
i+1)− fi (83)

and (e) follows from the definition of Ui.
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Storage (Public Message) Rate: We have

n(Rw + δn)
(a)

≥ log |W| ≥ H(W |Y n)−H(W |X̃n, Y n)

= I(X̃n;W |Y n) = H(X̃n|Y n)−H(X̃n|W,Y n)

= H(X̃n|Y n)−
n∑

i=1

H(X̃i|X̃ i−1,W, Y n)

(b)
= H(X̃n|Y n)−

n∑
i=1

H(X̃i|X̃ i−1,W, Y n
i+1, Yi)

(c)

≥ H(X̃n|Y n)−
n∑

i=1

H(X̃i|X i−1, Zi−1,W, Y n
i+1, Yi)

(d)
= nH(X̃|Y )−

n∑
i=1

H(X̃|Ui, Yi) =
n∑

i=1

I(Ui; X̃i|Yi) (84)

where (a) follows by (4), (b) follows from the Markov chain for all i ∈ [1 : n]

Y i−1 − (X̃ i−1,W, Y n
i+1, Yi)− X̃i (85)

(c) follows from the data processing inequality applied to the Markov chain for all i ∈ [1 : n]

(X i−1, Zi−1)− (X̃ i−1,W, Y n
i+1, Yi)− X̃i (86)

and (d) follows from the definition of Ui.

Privacy Leakage to the Decoder: We obtain

n(R`,Dec + δn)
(a)

≥ H(W |Y n)−H(W |Xn)

=
n∑

i=1

[
I(W ;Xi|X i−1)− I(W ;Yi|Y n

i+1)
]

(b)
=

n∑
i=1

[
I(W ;Xi|X i−1, Y n

i+1)− I(W ;Yi|Y n
i+1, X

i−1)
]

(c)
=

n∑
i=1

[
I(W ;Xi|X i−1, Zi−1, Y n

i+1)− I(W ;Yi|Y n
i+1, X

i−1, Zi−1)
]

(d)
=

n∑
i=1

[
I(W,X i−1, Zi−1, Y n

i+1;Xi)− I(W,Y n
i+1, X

i−1, Zi−1;Yi)
]
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(e)
=

n∑
i=1

[
I(Ui;Xi)− I(Ui;Yi)

]
(f)
=

n∑
i=1

I(Ui;Xi|Yi) (87)

where (a) follows by (5) and from the Markov chain W −Xn−Y n, (b) follows from Csiszár’s

sum identity [46], (c) follows from the Markov chains

Zi−1 − (X i−1, Y n
i+1)− (Xi,W ) (88)

Zi−1 − (X i−1, Y n
i+1)− (Yi,W ) (89)

(d) follows because Xn is i.i.d. and the measurement channels are memoryless, (e) follows from

the definition of Ui, and (f) follows from the Markov chain Ui −Xi − Yi for all i ∈ [1 : n].

Privacy Leakage to the Eavesdropper: We obtain

n(R`,Eve + δn)

(a)

≥ [H(W |Zn)−H(W |Y n)] + [H(W |Y n)−H(W |Xn)]

=
n∑

i=1

[
I(W ;Yi|Y n

i+1)− I(W ;Zi|Zi−1)
]
+

n∑
i=1

[
I(W ;Xi|X i−1)− I(W ;Yi|Y n

i+1)
]

(b)
=

n∑
i=1

[
I(W ;Yi|Y n

i+1, Z
i−1)− I(W ;Zi|Zi−1, Y n

i+1)
]

+
n∑

i=1

[
I(W ;Xi|X i−1, Y n

i+1)−I(W ;Yi|Y n
i+1, X

i−1)
]

(c)
=

n∑
i=1

[
I(W ;Yi|Y n

i+1, Z
i−1)− I(W ;Zi|Zi−1, Y n

i+1)
]

+
n∑

i=1

[
I(W ;Xi|X i−1, Y n

i+1, Z
i−1)−I(W ;Yi|Y n

i+1, X
i−1, Zi−1)

]
(d)
=

n∑
i=1

[
I(W,Y n

i+1, Z
i−1;Yi)−I(W,Zi−1, Y n

i+1;Zi)
]

+
n∑

i=1

[
I(W,X i−1, Y n

i+1, Z
i−1;Xi)− I(W,Y n

i+1, X
i−1, Zi−1;Yi)

]
(e)
=

n∑
i=1

[
I(Vi;Yi)− I(Vi;Zi) + I(Ui, Vi;Xi)− I(Ui, Vi;Yi)

]
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=
n∑

i=1

[
− I(Ui, Vi;Zi) + I(Ui, Vi;Xi) + (I(Ui;Zi|Vi)− I(Ui;Yi|Vi))

]
(f)

≥
n∑

i=1

[
I(Ui;Xi|Zi)+[I(Ui;Zi|Vi)−I(Ui;Yi|Vi)]−

]
(90)

where (a) follows by (6) and from the Markov chain W −Xn−Zn, (b) follows from Csiszár’s

sum identity, (c) follows from the Markov chains in (88) and (89), (d) follows because Xn is

i.i.d. and the measurement channels are memoryless, (e) follows from the definitions of Vi and

Ui, and (f) follows from the Markov chain Vi − Ui −Xi − Zi for all i ∈ [1 : n].

Secrecy Leakage (to the Eavesdropper): We have

n(Rs + δn)

(a)

≥ [H(W |Zn)−H(W |Y n)]+[H(W |Y n)−H(W |X̃n, Y n)]

(b)
=

n∑
i=1

[
I(W ;Yi|Y n

i+1)− I(W ;Zi|Zi−1)
]
+
[
nH(X̃|Y )−

n∑
i=1

H(X̃i|X̃ i−1,W, Y n)
]

(c)
=

n∑
i=1

[
I(W ;Yi|Y n

i+1, Z
i−1)− I(W ;Zi|Zi−1, Y n

i+1)
]

+
[
nH(X̃|Y )−

n∑
i=1

H(X̃i|X̃ i−1,W, Y n
i+1, Yi)

]
(d)

≥
n∑

i=1

[
I(W,Y n

i+1, Z
i−1;Yi)− I(W,Zi−1, Y n

i+1;Zi)
]

+
[
nH(X̃|Y )−

n∑
i=1

H(X̃i|X i−1, Zi−1,W, Y n
i+1, Yi)

]
(e)
=

n∑
i=1

[
I(Vi;Yi)− I(Vi;Zi) + I(Ui, Vi; X̃i|Yi)

]
(f)
=

n∑
i=1

[
I(Vi;Yi)−I(Vi;Zi)+I(Ui, Vi; X̃i)−I(Ui, Vi;Yi)

]
=

n∑
i=1

[
−I(Ui, Vi;Zi)+I(Ui, Vi; X̃i) + (I(Ui;Zi|Vi)−I(Ui;Yi|Vi))

]
(g)

≥
n∑

i=1

[
I(Ui; X̃i|Zi)+[I(Ui;Zi|Vi)−I(Ui;Yi|Vi)]−

]
(91)
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where (a) follows by (3), (b) follows because (X̃n, Y n) are i.i.d., (c) follows from Csiszár’s sum

identity and the Markov chain in (85), (d) follows because Xn is i.i.d. and the measurement

channels are memoryless, and from the data processing inequality applied to the Markov chain

in (86), (e) follows from the definitions of Vi and Ui, (f) follows from the Markov chain

(Ui, Vi)− X̃i − Yi for all i ∈ [1 : n], and (g) follows from the Markov chain Vi − Ui − X̃i − Zi

for all i ∈ [1 : n].

Introduce a uniformly distributed time-sharing random variable Q∼ Unif[1 : n] independent

of other random variables. Define X =XQ, X̃ = X̃Q, Y = YQ, Z =ZQ, V = VQ, U = (UQ,Q),

and f = fQ so that (Q, V )−U − X̃ −X − (Y, Z) form a Markov chain. The converse proof of

Theorem 1 follows by letting δn → 0.

Cardinality Bounds: We use the support lemma [46, Lemma 15.4]. One can preserve PX̃ by

using |X̃ |−1 real-valued continuous functions. We have to preserve two expressions for the two

cases such that I(U ;Z|V,Q=q)>I(U ;Y |V,Q = q) and I(U ;Z|V,Q = q) ≤ I(U ;Y |V,Q = q)

for all q ∈ Q, so one can limit the cardinality |Q| of Q to |Q| ≤ 2. Furthermore, we have to

preserve five more expressions, i.e., H(X̃|U, V, Z), H(X̃|U, V, Y ), H(X|U, V, Y ), H(X|U, V, Z),

and (I(U ;Z|V ) − I(U ;Y |V )). Thus, one can limit the cardinality |V| of V to |V| ≤ |X̃ | + 4.

Similarly, in addition to the |X̃ | − 1 real-valued continuous functions, one should preserve the

same five expressions for the auxiliary random variable U . To satisfy the Markov condition

(Q, V )− U − X̃ −X − (Y, Z), one can limit the cardinality |U| of U to |U| ≤ (|X̃ |+ 4)
2
.

VI. PROOF OF THEOREM 3

A. Achievability (Inner Bound) Proof of Theorem 3

The achievability proof follows by using the OSRB method, as described below.

Proof Sketch: Similar to Section V-A, fix PUj |X̃j
and PVj |Uj

such that Uj is admissible

for the function fj(X̃j, Yj) for all j ∈ [1 : J ] and let (V n
[1:J ], U

n
[1:J ], X̃

n
[1:J ], X

n, Y n
[1:J ], Z

n
[1:J ]) be

i.i.d. according to (29). We remark that since all n-letter random variables are i.i.d., Un
j is also

admissible for all j ∈ [1 : J ].
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Assign two random bin indices (Fv,j,Wv,j) to each vnj , and assume Fv,j ∈ [1 : 2nR̃v,j ] and

Wv,j ∈ [1 : 2nRv,j ] for all j ∈ [1 : J ]. Similarly, for all j ∈ [1 : J ] assign two indices

(Fu,j,Wu,j) to each unj , where Fu,j ∈ [1 : 2nR̃u,j ] and Wu,j ∈ [1 : 2nRu,j ]. The public message is

Wj = (Wv,j,Wu,j) and indices Fj = (Fv,j, Fu,j) represent the public choice of encoder-decoder

pairs for all j ∈ [1 : J ].

For all j ∈ [1 : J ], using a Slepian-Wolf (SW) decoder, one can reliably estimate V n
j from

(Fv,j,Wv,j, Y
n
j ) if we have

R̃v,j +Rv,j > H(Vj|Yj) (92)

and one can reliably estimate Un
j from (Fu,j,Wu,j, Y

n
j , V

n
j ) by using a SW decoder if we have

R̃u,j +Ru,j > H(Uj|Vj, Yj). (93)

Thus, applying the union bound, we can show that the reliability constraint in (8) is satisfied if

(92) and (93) are satisfied for all j ∈ [1 : J ].

The public index Fv,j is almost independent of X̃n
j , so it is almost independent of

(V n
[1:J ]\{j}, U

n
[1:J ]\{j}, X̃

n
[1:J ], X

n, Y n
[1:J ], Z

n
[1:J ]), if we have

R̃v,j < H(Vj|X̃j), ∀j ∈ [1 : J ]. (94)

The public index Fu,j is almost independent of (V n
j , X̃

n
j ), so it is almost independent of

(V n
[1:J ], U

n
[1:J ]\{j}, X̃

n
[1:J ], X

n, Y n
[1:J ], Z

n
[1:J ]), if we have

R̃u,j < H(Uj|Vj, X̃j), ∀j ∈ [1 : J ]. (95)

To satisfy the constraints (92)-(95), similar to Section V, we fix the rates to

R̃v,j=H(Vj|X̃j)−ε, ∀j ∈ [1 : J ] (96)

Rv,j=I(Vj; X̃j)−I(Vj;Yj)+2ε, ∀j ∈ [1 : J ] (97)

R̃u,j=H(Uj|Vj, X̃j)−ε, ∀j ∈ [1 : J ] (98)

Ru,j=I(Uj; X̃j|Vj)−I(Uj;Yj|Vj)+2ε, ∀j ∈ [1 : J ] (99)
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for any ε > 0.

Storage (Public Message) Rate: (96)-(99) result in a storage (public message) rate Rw,j of

Rw,j = Rv,j +Ru,j = I(Vj, Uj; X̃j)− I(Vj, Uj;Yj) + 4ε

(a)
= I(Uj; X̃j|Yj) + 4ε, ∀j ∈ [1 : J ] (100)

where (a) follows because Vj − Uj − X̃j − Yj form a Markov chain for all j ∈ [1 : J ].

Privacy Leakage to the Decoder: We have

I(Xn;Wj, Fj|Y n
j )

(a)

≤ nI(Uj;X|Yj)+2εn, ∀j ∈ [1 :J ] (101)

where (a) follows for some εn > 0 with εn → 0 when n→∞ by applying the steps in (52).

Privacy Leakage to the Eavesdropper: Suppose an additional virtual joint encoder assigns 4J

indices (Fv,[1:J ],Wv,[1:J ], Fu,[1:J ],Wu,[1:J ]) to each realization tuple (vn1 , v
n
2 , . . . , v

n
J , u

n
1 , u

n
2 , . . . , u

n
J) ∈

V1 × V2 × . . .× VJ × U1 × U2 × . . .× UJ such that
J∑

j=1

(R̃v,j +Rv,j) > H(V[1:J ]|Y[1:J ]), (102)

J∑
j=1

(R̃u,j +Ru,j) > H(U[1:J ]|V[1:J ], Y[1:J ]). (103)

Thus, (Wv,[1:J ], Fv,[1:J ], Y
n
[1:J ]) can reliably recover V n

[1:J ] and (V n
[1:J ],Wu,[1:J ], Fu,[1:J ], Y

n
[1:J ]) can

reliably recover Un
[1:J ]. Therefore, we have for the total storage rate that

J∑
j=1

Rw,j =
J∑

j=1

(Rv,j +Ru,j)

(a)

≥ I(U[1:J ], V[1:J ]; X̃[1:J ])− I(U[1:J ], V[1:J ];Y[1:J ])

(b)
= I(U[1:J ]; X̃[1:J ]|Y[1:J ]) (104)

where (a) follows by (102) and (103), and because (94) and (95) ensure that (Fv,[1:J ], Fu,[1:J ])

are almost mutually independent of X̃n
[1:J ] since

∑J
j=1(R̃v,j+ R̃u,j) < H(U[1:J ], V[1:J ]|X̃[1:J ]) such

that equality is achieved when n→∞ and (b) follows from the Markov chain V[1:J ] − U[1:J ] −

X̃[1:J ] − Y[1:J ].
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Consider the privacy leakage to the eavesdropper. We have

I(Xn;W[1:J ], F[1:J ]|Zn
[1:J ])

(a)
= H(W[1:J ], F[1:J ]|Zn

[1:J ])−H(W[1:J ], F[1:J ]|Xn)

(b)
= H(W[1:J ], F[1:J ]|Zn

[1:J ])− nH(U[1:J ], V[1:J ]|X)

+
J∑

j=1

[
H(V n

j |V n
[1:j−1],W[1:J ], F[1:J ], X

n) +H(Un
j |Un

[1:j−1], V
n
[1:J ],W[1:J ], F[1:J ], X

n)
]

(c)

≤H(W[1:J ], F[1:J ]|Zn
[1:J ])− nH(U[1:J ], V[1:J ]|X) + 2Jnε′n (105)

where (a) follows from the Markov chain Zn
[1:J ] − Xn − (W[1:J ], F[1:J ]), (b) follows since Un

j

determines (Wu,j, Fu,j) and V n
j determines (Wv,j, Fv,j) for all j ∈ [1 : J ], and (Un

[1:J ], V
n
[1:J ], X

n)

are i.i.d., and (c) follows for some ε′n > 0 such that ε′n → 0 when n→∞ because (Fv,j,Wv,jX
n)

can reliably recover V n
j due to the Markov chain V n

j − Xn − Y n
j and (92), and because

(Wu,j, Fu,j, V
n
j , X

n) can reliably recover Un
j due to the inequality H(Uj|Vj, Yj) ≥ H(Uj|Vj, X),

proved in (55), for all j ∈ [1 : J ].

We consider the six decodability cases considered in Section V-A by replacing [(Rv+R̃v), (Ru+

R̃u)] with
[(∑J

j=1(Rv,j + R̃v,j)
)
,
(∑J

j=1(Ru,j + R̃u,j)
)]

, respectively, and

[H(V |Z), H(U |V, Z), H(U |Z)] with [H(V[1:J ]|Z[1:J ]), H(U[1:J ]|V[1:J ], Z[1:J ]), H(U[1:J ]|Z[1:J ])], re-

spectively. Using these replacements, applying the steps in (58),(61), (64), (67), (70), and (73)

in combination with (105), and by choosing trivial rates that satisfy (102) and (103), one can

show that

I(Xn;W[1:J ], F[1:J ]|Zn
[1:J ])

≤ n[I(U[1:J ];Z[1:J ]|V[1:J ])−I(U[1:J ];Y[1:J ]|V[1:J ])+ε]− + n(I(U[1:J ];X|Z[1:J ]) + 3Jε′n). (106)

Secrecy Leakage (to the Eavesdropper): Consider the secrecy leakage. We have

I(X̃n
[1:J ], Y

n
[1:J ];W[1:J ], F[1:J ]|Zn

[1:J ])

(a)
= H(W[1:J ], F[1:J ]|Zn

[1:J ])−H(W[1:J ], F[1:J ]|X̃n
[1:J ])
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(b)

≤H(W[1:J ], F[1:J ]|Zn
[1:J ])−H(Un

[1:J ], V
n
[1:J ]|X̃n

[1:J ])+2Jnε′n (107)

where (a) follows from the Markov chain (W[1:J ], F[1:J ]) − X̃n
[1:J ] − (Y n

[1:J ], Z
n
[1:J ]), (b) follows

for some ε′n > 0 such that ε′n → 0 when n → ∞ because Un
j determines (Wu,j, Fu,j) and V n

j

determines (Wv,j, Fv,j), and (Wv,j, Fv,j, X̃
n
j ) can reliably recover V n

j due to the Markov chain

V n
j − X̃n

j − Y n
j and (92), and similarly (Wu,j, Fu,j, V

n
j , X̃

n
j ) can reliably recover Un

j because

H(Uj|Vj, Yj) ≥ H(Uj|Vj, X̃j), which can be proved as in (55).

By using the same joint virtual encoder used for the privacy-leakage to the eavesdropper

analysis above and replacing X by X̃[1:J ] in the analyses of (106), we obtain from (107) that

I(X̃n
[1:J ], Y

n
[1:J ];W[1:J ], F[1:J ]|Zn

[1:J ])

≤ n[I(U[1:J ];Z[1:J ]|V[1:J ])−I(U[1:J ];Y[1:J ]|V[1:J ])+ε]−+ n(I(U[1:J ]; X̃[1:J ]|Z[1:J ]) +3Jε
′
n). (108)

Suppose the public indices F[1:J ] are generated uniformly at random. The encoder Encj(·)

generates (V n
j , U

n
j ) according to PV n

j Un
j |X̃n

j Fv,jFu,j
obtained from the binning scheme above to

compute the bins Wv,j from V n
j and Wu,j from Un

j for all j ∈ [1 : J ]. This procedure induces

a joint probability distribution that is almost equal to PV[1:J]U[1:J]X̃[1:J]XY[1:J]Z[1:J]
fixed above [43,

Section 1.6]. We remark that the privacy and secrecy leakage metrics considered above are

expectations over all possible realizations F[1:J ] = f[1:J ]. Thus, applying the selection lemma to

each decodability case separately, these results prove the achievability for the rate tuples given

in Theorem 3 by choosing an ε > 0 such that ε→ 0 when n→∞.

B. Converse (Outer Bound) Proof of Theorem 3

Proof Sketch: Suppose for some δn > 0 and n ≥ 1, there exists a pair of encoders and

decoders such that (8)-(12) are satisfied for some tuple (Rs, Rw,[1:J ], R`,Dec,[1:J ], R`,Eve) .

Let Vi,j , (Wj, Y
n
i+1,j, Z

i−1
j ) and Ui,j , (Wj, X

i−1, Y n
i+1,j, Z

i−1
j ), which satisfy the Markov

chain Vi,j − Ui,j − X̃i,j −Xi − (Yi,j, Zi,j) for all i ∈ [1 : n] and j ∈ [1 : J ] by definition of the

source statistics.
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Admissibility of Uj: Define

εn = max
j∈[1:J ]

(
δn,j|X̃j||Yj|+

Hb(δn,j)

n

)
(109)

so that εn → 0 if max
j∈[1:J ]

δn,j = δn → 0. Applying the union bound to (8) and using Fano’s

inequality, we obtain

nεn≥H(fn
j |f̂n

j )
(a)

≥
n∑

i=1

H(fi,j|Ui,j, Yi,j), ∀j ∈ [1 : J ] (110)

where (a) follows applying the steps in (82) and from the definition of Ui,j .

Storage (Public Message) Rate: We have for all j ∈ [1 : J ] that

n(Rw,j+δn)
(a)

≥ log |Wj|
(b)

≥
n∑

i=1

I(Ui,j; X̃i,j|Yi,j) (111)

where (a) follows by (10) and (b) follows by applying the steps in (84) and from the definition

of Ui,j .

Privacy Leakage to the Decoder: We obtain for all j ∈ [1 : J ] that

n(R`,Dec,j + δn)
(a)

≥ H(Wj|Y n
j )−H(Wj|Xn)

(b)

≥
n∑

i=1

I(Ui,j;Xi|Yi,j) (112)

where (a) follows by (11) and from the Markov chain Wj−Xn−Y n
j and (b) follows by applying

the steps in (87) and from the definition of Ui,j .

Sum-Storage Rate: We have for all j ∈ [1 : J ] that

n
J∑

j=1

(Rw,j+δn)
(a)

≥ log

∣∣∣∣∣
J∏

j=1

|Wj|

∣∣∣∣∣
≥H(W[1:J ]|Y n

[1:J ])−H(W[1:J ]|X̃n
[1:J ], Y

n
[1:J ])

= H(X̃n
[1:J ]|Y n

[1:J ])−
n∑

i=1

H(X̃i,[1:J ]|X̃ i−1
[1:J ], Y

n
[1:J ],W[1:J ])

(b)
= H(X̃n

[1:J ]|Y n
[1:J ])−

n∑
i=1

H(X̃i,[1:J ]|X̃ i−1
[1:J ], Y

n
i+1,[1:J ], Yi,[1:J ],W[1:J ])
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(c)

≥ H(X̃n
[1:J ]|Y n

[1:J ])−
n∑

i=1

H(X̃i,[1:J ]|X i−1
[1:J ], Z

i−1
[1:J ], Y

n
i+1,[1:J ], Yi,[1:J ],W[1:J ])

(d)
=

n∑
i=1

I(Ui,[1:J ]; X̃i,[1:J ]|Yi,[1:J ]) (113)

where (a) follows by (10), (b) follows from the Markov chain for all i ∈ [1 : n]

Y i−1
[1:J ] − (X̃ i−1

[1:J ],W[1:J ], Y
n
i,[1:J ])− X̃i,[1:J ] (114)

(c) follows from applying the data processing inequality to the Markov chain for all i ∈ [1 : n]

(X i−1, Zi−1
[1:J ])− (X̃ i−1

[1:J ],W[1:J ], Y
n
i,[1:J ])− X̃i,[1:J ] (115)

and (d) follows because (X̃n
[1:J ], Y

n
[1:J ]) are i.i.d. and from the definition of Ui,j for all j ∈ [1 : J ].

Privacy Leakage to the Eavesdropper: We obtain

n(R`,Eve + δn)

(a)

≥ [H(W[1:J ]|Zn
[1:J ])−H(W[1:J ]|Y n

[1:J ])] + [H(W[1:J ]|Y n
[1:J ])−H(W[1:J ]|Xn)]

(b)
=

n∑
i=1

[
I(W[1:J ];Yi,[1:J ]|Y n

i+1,[1:J ], Z
i−1
[1:J ])− I(W[1:J ];Zi,[1:J ]|Zi−1

[1:J ], Y
n
i+1,[1:J ])

]
+

n∑
i=1

[
I(W[1:J ];Xi|X i−1, Y n

i+1,[1:J ])−I(W[1:J ];Yi,[1:J ]|Y n
i+1,[1:J ], X

i−1)
]

(c)
=

n∑
i=1

[
I(W[1:J ];Yi,[1:J ]|Y n

i+1,[1:J ], Z
i−1
[1:J ])− I(W[1:J ];Zi,[1:J ]|Zi−1

[1:J ], Y
n
i+1,[1:J ])

]
+

n∑
i=1

[
I(W[1:J ];Xi|X i−1, Y n

i+1,[1:J ], Z
i−1
[1:J ])−I(W[1:J ];Yi,[1:J ]|Y n

i+1,[1:J ], X
i−1, Zi−1

[1:J ])
]

(d)
=

n∑
i=1

[
I(W[1:J ], Y

n
i+1,[1:J ], Z

i−1
[1:J ];Yi,[1:J ])−I(W[1:J ], Z

i−1
[1:J ], Y

n
i+1,[1:J ];Zi,[1:J ])

]
+

n∑
i=1

[
I(W[1:J ], X

i−1, Y n
i+1,[1:J ], Z

i−1
[1:J ];Xi)− I(W[1:J ], Y

n
i+1,[1:J ], X

i−1, Zi−1
[1:J ];Yi,[1:J ])

]
(e)
=

n∑
i=1

[
I(Vi,[1:J ];Yi,[1:J ])− I(Vi,[1:J ];Zi,[1:J ]) + I(Ui,[1:J ], Vi,[1:J ];Xi)−I(Ui,[1:J ], Vi,[1:J ];Yi,[1:J ])

]
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=
n∑

i=1

[
−I(Ui,[1:J ], Vi,[1:J ];Zi,[1:J ])+I(Ui,[1:J ], Vi,[1:J ];Xi)

+ I(Ui,[1:J ];Zi,[1:J ]|Vi,[1:J ])− I(Ui,[1:J ];Yi,[1:J ]|Vi,[1:J ])

]
(f)

≥
n∑

i=1

[[
I(Ui,[1:J ];Zi,[1:J ]|Vi,[1:J ])−I(Ui,[1:J ];Yi,[1:J ]|Vi,[1:J ])

]−
+ I(Ui,[1:J ];Xi|Zi,[1:J ])

]
(116)

where (a) follows by (12) and from the Markov chain W[1:J ] − Xn − Zn
[1:J ], (b) follows from

Csiszár’s sum identity, (c) follows from the Markov chains for all i ∈ [1 : n]

Zi−1
[1:J ] − (X i−1, Y n

i+1,[1:J ])− (Xi,W[1:J ]) (117)

Zi−1
[1:J ] − (X i−1, Y n

i+1,[1:J ])− (Yi,[1:J ],W[1:J ]) (118)

(d) follows because Xn is i.i.d. and the measurement channels are memoryless, (e) follows

from the definitions of Vi,j and Ui,j for all j ∈ [1 : J ], and (f) follows from the Markov chain

Vi,[1:J ] − Ui,[1:J ] −Xi − Zi,[1:J ] for all i ∈ [1 : n].

Secrecy Leakage (to the Eavesdropper): We have

n(Rs + δn)

(a)

≥ [H(W[1:J ]|Zn
[1:J ])−H(W[1:J ]|Y n

[1:J ])] +[H(W[1:J ]|Y n
[1:J ])−H(W[1:J ]|X̃n

[1:J ], Y
n
[1:J ])]

(b)
=

n∑
i=1

[
I(W[1:J ];Yi,[1:J ]|Y n

i+1,[1:J ])−I(W[1:J ];Zi,[1:J ]|Zi−1
[1:J ])

]
+
[
nH(X̃[1:J ]|Y[1:J ])−

n∑
i=1

H(X̃i,[1:J ]|X̃ i−1
[1:J ],W[1:J ], Y

n
[1:J ])

]
(c)
=

n∑
i=1

[
I(W[1:J ];Yi,[1:J ]|Y n

i+1,[1:J ], Z
i−1
[1:J ])− I(W[1:J ];Zi,[1:J ]|Zi−1

[1:J ], Y
n
i+1,[1:J ])

]
+
[
nH(X̃[1:J ]|Y[1:J ])−

n∑
i=1

H(X̃i,[1:J ]|X̃ i−1
[1:J ],W[1:J ], Y

n
i+1,[1:J ], Yi,[1:J ])

]
(d)

≥
n∑

i=1

[
I(W[1:J ], Y

n
i+1,[1:J ], Z

i−1
[1:J ];Yi,[1:J ])− I(W[1:J ], Z

i−1
[1:J ], Y

n
i+1,[1:J ];Zi,[1:J ])

]
+
[
nH(X̃[1:J ]|Y[1:J ])−

n∑
i=1

H(X̃i,[1:J ]|X i−1, Zi−1
[1:J ],W[1:J ], Y

n
i+1,[1:J ], Yi,[1:J ])

]
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(e)
=

n∑
i=1

[
I(Vi,[1:J ];Yi,[1:J ])− I(Vi,[1:J ];Zi,[1:J ]) + I(Ui,[1:J ], Vi,[1:J ]; X̃i,[1:J ]|Yi,[1:J ])

]
(f)
=

n∑
i=1

[
I(Vi,[1:J ];Yi,[1:J ])−I(Vi,[1:J ];Zi,[1:J ])

+ I(Ui,[1:J ], Vi,[1:J ]; X̃i,[1:J ])− I(Ui,[1:J ], Vi,[1:J ];Yi,[1:J ])

]

=
n∑

i=1

[
−I(Ui,[1:J ], Vi,[1:J ];Zi,[1:J ]) +I(Ui,[1:J ], Vi,[1:J ]; X̃i,[1:J ])

+ I(Ui,[1:J ];Zi,[1:J ]|Vi,[1:J ])− I(Ui,[1:J ];Yi,[1:J ]|Vi,[1:J ])

]
(g)

≥
n∑

i=1

[
[I(Ui,[1:J ];Zi,[1:J ]|Vi,[1:J ])−I(Ui,[1:J ];Yi,[1:J ]|Vi,[1:J ])]− + I(Ui,[1:J ]; X̃i,[1:J ]|Zi,[1:J ])

]
(119)

where (a) follows by (9), (b) follows since (X̃n
[1:J ], Y

n
[1:J ]) are i.i.d., (c) follows from Csiszár’s

sum identity and the Markov chain in (114), (d) follows because Xn is i.i.d. and the measurement

channels are memoryless, and from the data processing inequality applied to the Markov chain

in (115), (e) follows from the definitions of Vi,[1:J ] and Ui,[1:J ], (f) follows from the Markov

chain (Ui,[1:J ], Vi,[1:J ]) − X̃i,[1:J ] − Yi,[1:J ] for all i ∈ [1 : n], and (g) follows from the Markov

chain Vi,[1:J ] − Ui,[1:J ] − X̃i,[1:J ] − Zi,[1:J ] for all i ∈ [1 : n].

Introduce a uniformly distributed time-sharing random variable Q∼ Unif[1 : n] independent

of other random variables. Define X = XQ, X̃j = X̃Q,j , Yj = YQ,j , Zj = ZQ,j , Vj = VQ,j ,

Uj=(UQ,j,Q), and fj = fQ,j so that (Q, Vj)−Uj − X̃j −X − (Yj, Zj) form a Markov chain for

all j ∈ [1 : J ]. The converse proof of Theorem 3 follows by letting δn → 0.

Cardinality Bounds follow by using the support lemma as in Section V-B.

VII. CONCLUSION

We derived the secrecy-storage-privacyDec-privacyEve(-distortion) regions for lossless and

lossy single-function computations with a remote source. The remote source model allows to

model multiple sequences observed by a single terminal as multiple noisy measurements of a

hidden source, which allows to measure the diversity gains. The equivocation measure common
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in the literature was replaced with a mutual information metric, which resulted in simpler notation

and easier interpretations. A new privacy metric was considered to bound the information leakage

to a fusion center about the remote source sequence. Bounds for the storage and privacy leakage

to the eavesdropper rates were shown to be different, unlike in the previous models. Inner

and outer bounds for multiple asynchronous function computations within the same network

were given to illustrate the effects of joint constraints for all terminals involved in any function

computation. These bounds differ only in the Markov chain conditions imposed. We evaluated

the rate region for a single-function computation problem by solving an information bottleneck

problem for binary input symmetric output channels. In future work, we will consider multi-

function computations with multiple transmitting terminals for each function computation and

derive the rate regions for two-function computations with two transmitting terminals if a set of

symmetry conditions are satisfied.
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[9] O. Günlü, O. İşcan, V. Sidorenko, and G. Kramer, “Code constructions for physical unclonable functions and biometric

secrecy systems,” IEEE Trans. Inf. Forensics Security, vol. 14, no. 11, pp. 2848–2858, Nov. 2019.



41

[10] J. Ren, B. D. Boyle, G. Ku, S. Weber, and J. M. Walsh, “Overhead performance tradeoffs - A resource allocation

perspective,” IEEE Trans. Inf. Theory, vol. 62, no. 6, pp. 3243–3269, June 2016.
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