
On the Efficiency and Flexibility of Signature Verification

Cecilia Boschini1, Dario Fiore2, and Elena Pagnin3

1 Università della Svizzera Italiana, Lugano, Switzerland
cecilia.boschini@usi.ch

2 IMDEA Software Institute, Madrid, Spain
dario.fiore@imdea.org

3 Lund University, Lund, Sweden
elena.pagnin@eit.lth.se

Abstract. For decades signature verification has been regarded as a unique, monolithic process. Here,
we want to look at it with fresh eyes and pose two fundamental questions: (1) is it possible to extract
meaningful information from a partial signature verification? (flexibility); and (2) is it possible to speed
up the verification process without impacting unforgeability? (efficiency). We answer both questions in
a positive way for specific classes of post-quantum secure schemes.
In detail, we develop formal frameworks for signatures with efficient verification, flexible verification and
combinations of the two. Crucially, we regard these as features that may enhance existing constructions.
Flexibility is of particular interest as standard verification cannot provide any meaningful information
about the validity of a given signature if interrupted in media res. We exhibit generic transformations to
realize efficient (and) flexible verification for schemes that involve matrix-vector multiplications among
the verification checks.
In addition, we present concrete instantiations of efficient (and) flexible verification for Rainbow
[ACNS05] (as representative of schemes based on multivariate quadratic equations), MP [EC12] and
GVW [STOC15] (as representative of lattice-based constructions). Interestingly, we are able to effi-
ciently verify Rainbow signatures using 50% of the original computational cost, and as little as 0.4%
for GVW homomorphic signatures, provided a one-time preprocessing and with only negligible impact
on security.

Keywords: Digital signatures, amortized efficiency, flexible verification, post quantum signatures.

1 Introduction

Digital technologies gained a fundamental role in our society, affecting the security of crucial sys-
tems such as autonomous vehicles, healthcare, payments, e-voting, and access control. Digital sig-
natures are among the cryptographic primitives employed to safeguard such systems from misuse
[11,13,26,33]. Concretely, digital signatures allow one party, the signer, to use her secret key to au-
thenticate a message in such a way that anyone holding the corresponding public key, the verifiers,
can check its validity at any later point in time. Among many properties, digital signatures serve
the purpose of securely establishing the source and integrity of the information. In many applica-
tions, the outcome of a signature verification determines what decisions to take, e.g., whether to
accept a financial transaction (Bitcoin protocol), install software updates (Android OS), or deliver
e-services (e-Health, electronic tax systems).

While the above examples are not time-critical, digital signatures may be employed in real-
time cyber-physical systems as well, where the speed at which verification is performed plays a
crucial role. This is the case, e.g., for automatic safety measures in connected vehicles or nuclear
power plants. In real-time systems, verification speed (due to resource constraints) is not the only
problem though. For a variety of reasons, a computation can get arbitrarily interrupted, leaving
the verifier with an unsolved answer about the validity of a given signature. This has to do with

the fact that standard verification procedures provide a binary outcome (0 or 1, reject or accept),
which is established only at the very end of the execution. One may wonder: is it possible to extract
meaningful information from a partial signature verification? Le et al. [25] proposed to address
unexpected interruptions using signatures with flexible verification. In a nutshell, such schemes
admit a verification algorithm that increasingly builds confidence on the validity of the signature
while it performs more steps. In this way, at the moment of an interrupt, the verifier is left with a
value α ∈ [0, 1]∪⊥ that probabilistically quantifies the validity of the signature. In particular, flexible
signatures identify tradeoffs between the amount of computation performed and the integrity of a
signature. A different way to approach this problem would be to limit the verification to few, quick
steps, as to reduce the chance of interruptions in media res. One may wonder: is it possible to speed
up the verification process without impacting unforgeability? This is the aim of efficient verification:
to leverage special tradeoffs to quickly reach accurate conclusions about the validity of a signature.

1.1 Our contribution

In this work, we address two main challenges: (1) speeding up the verification of digital signatures;
and (2) extracting meaningful information from a partial signature verification. We do so by de-
signing new verification methods for existing signature schemes. Namely, our goal is to keep the
signatures (i.e., key generation, sign and verify algorithms) as they are, and to devise techniques for
alternative verification methods that are significantly more efficient and/or that retain usefulness
even when interrupted in media res.

We introduce formal security models for the notions of efficient verification and flexible veri-
fication. For both settings, we provide generic compilers and show how these directly apply to a
wide range existing signature schemes. Moreover, our compilers can be combined to simultaneously
achieve flexible and efficient verification for which we present a formal model, generic realizations,
security arguments and implications. Finally, we remark that our models can easily be extended
to include signatures with advanced properties including: ring, threshold, homomorphic, attribute-
based and constrained.

We focus our realizations on two families of digital signatures: lattice-based and multivariate-
polynomials-based. Both are interesting examples thanks to their plausibly post-quantum security.
The multivariate-polynomials-based scheme we consider is Rainbow [15,14], one of the NIST candi-
dates for standardization , and LUOV [5]. Our main representatives for lattice-based constructions
are GPV [20] (hash & sign), MP [28] (Boyen/ BonsaiTree) and GVW [21] (homomorphic).

It is worth noting that finding faster verification for (families of) existing and very well-studied
signature schemes may be a too ambitious goal (e.g., it may require major algorithmic break-
throughs such as finding faster matrix multiplication algorithms). In our paper, we therefore ad-
dress this problem by introducing new verification models based on a probabilistic secret-coins
preprocessing.

Efficient Verification. We build on the well-known offline/online paradigm to define an alternative
verification that consists of two phases. An offline probabilistic preprocessing offVer that, given
only the public key and a security parameter, outputs a concise (short) verification key svk. An
online algorithm onVer that uses such verification key to establish the validity of a signature on a
given message. In our paradigm, (i) the preprocessing is one-time, namely its output svk can be
reused to verify an unbounded number of signatures, (ii) the running time of onVer is required to be
asymptotically smaller than that of the standard verification algorithm, and (iii) the preprocessed

2

verification key svk must be kept secret by the verifier. While the first two properties (i)-(ii) are
clearly the ones that provide the desired efficiency boost, one may wonder if property (iii) is really
needed. To this end, we observe that devising algorithms offVer, onVer with efficient verification
(i)-(ii) and a public svk for an existing signature scheme would immediately lead to finding a new
version of the signature scheme with faster verification. We therefore consider keeping svk secret
and trade some usability for more efficiency. We formalize this secrecy requirement in a rigorous
security model in which the standard unforgeability experiment is extended by asking the adversary
to produce a forgery (µ,σ) that verifies under onVer(svk, ·, ·) and by giving it oracle access to the
online verification with the same preprocessed svk. This experiment essentially models that learning
outcomes of verification do not leak enough information about svk and do not help the adversary
in finding a forgery. We stress that in our model signatures are still publicly verifiable; svk is only
a secret that the verifier generates for itself, in order to speedup its computation.

In terms of realizations, we propose efficient verification algorithms that work for a broad class of
digital signatures in which the verification includes a matrix-vector multiplication. This can model
the A ·σ = u check of several lattice-based signatures (LBS) where matrix A may be a public-key
constant and u be message-dependent, as in [16,20,21], or A may be message-dependent and u
be constant [8,9,28]. Or it can model the check of a system of multivariate quadratic polynomials
{fi(s) = hi}i, where s depends on the signature, hi is message-dependent and fi(·) is a public-key-
dependent polynomial. For example, for the LBS instantiations we consider, assuming a lattice of
dimension n = 128, our method offers an online verification that is between 97× to 99× faster.

Flexible Verification. We consider flexible verification as an add-on property to existing signature
schemes. Concretely, we devise flexible verification via an algorithm flexVer and a confidence func-
tion αflex with the following properties. First, flexVer is stateful, uses private-coins, and consists
of at most N + 1 inner steps, so that at the end of step i one is either sure about rejection or
expects the signature to be valid with confidence αflex(i). Second, αflex : {0, . . . , N} → [0, 1] is
a non-decreasing function (that depends both on the signature scheme and on flexVer) satisfying
αflex(0) = 0 and αflex(N) = (1 − ε(λ)). In particular, reaching the last flexible verification step
provides the same security guarantees as standard verification (except for a negligibe chance of
error). Third, we model secure flexible verification by letting the adversary decide at which step to
interrupt each execution of flexVer, even in the forgery check. Since in such a case a wrong signature
may be marked as ‘maybe valid’ with non negligible probability (as the adversary may choose to
verify it with not enough steps to reach overwhelming confidence), we require the adversary to find
a forgery that is not rejected with probability non-negligibly higher than the expected confidence
level at the chosen interruption step i, i.e., αflex(i).

In terms of realizations, we again focus on the aforementioned class of signatures with a matrix-
vector multiplication and we propose flexible verification algorithms for them. In a nutshell, for
signatures that work over Zq or Fq, our flexible verification interrupted at step i can achieve confi-
dence (1− q−i). In the case of signature schemes where q = 2poly(λ), this confidence level is always
overwhelming, even with minimal computation, i.e., i = 1. Interestingly, in this case our flexVer
algorithm also satisfies efficient verification, namely, there is a minimum number N so that N ex-
ecutions of flexVer are faster than N executions of Ver. For signature schemes where q = poly(λ),
we show a variant of our compiler that achieves both efficient and flexible verification. This though
holds in a weaker security model, in which the confidence function αflex depends, and degrades,
with the number of verifications.

3

1.2 An Overview of Our Techniques

Our Compiler for Efficient Verification. We consider the class of digital signature schemes for which
the bulk of computation in the verification procedure consists of a matrix-vector product (what
we call ‘Mv’-style check). Several lattice-based [6,21,16,20,28] and multivariate-polynomials-based
signatures [15,5,29] fall in this category. For simplicity, here we give a technical overview for LBS
constructions only, for the case Mv = u, where M ∈ Zn×m

q is fixed (e.g., the signer’s public key),
v is a vector (e.g., a signature) and u depends on the message [16,20,21]. The key observation to
efficient verification is that if a signature v verifies for a given M (and u), then it also verifies for
any linear combination of the rows of M (against the same combination to the entries of u). Let
c←$ Zn

q be a random vector; denote z← c ·M ∈ Zm
q , and w ← c · u =

∑n
i=1 c[i]u[i] ∈ Zq. Then

Mv = u mod q =⇒ c · (Mσ) = c · u mod q ⇔ z · v = w mod q (1)

Our compiler is based on the fact that the first implication in (1) holds left-to-rightwards (always)
and also right-to-leftwards with good enough probability. Moreover, one can adjust this probability
by increasing the number of vectors c and z to use in the signature verification. Now, we can
precompute a set of k ≥ 1 ‘random combinations of rows of M’ during an ‘offline verification’ phase;
and re-use the output pairs (cj , zj), j ∈ {1, . . . , k} to efficiently verify an unbounded number of
signatures. Concretely, the efficiency gain in the online verification comes by replacing the check
Mv (that requires nm multiplications modulus q) with k checks of the form zj · v = wj (that
require at most km multiplications). Remarkably, the leftwards implication in (1) holds with all
but negligible probability with very small values of k, and even with k = 1 for schemes where
q = 2poly(λ), e.g., [16,21].

Our Compiler for Flexible Verification. The idea of the compiler presented above can be used to
achieve flexible verification in the following way. For a set of freshly sampled vectors {cj}Jj=1, a

verification that uses a subset of k < J such vectors is correct with probability (1 − q−k); hence
this value can be the confidence, i.e., αflex(k) = (1− q−k).

1.3 Related Work

The problem of trading security for less computation during a signature verification has been
considered by Le et al. [25] who introduced the notion of flexible signatures and a construction based
on the Lamport-Diffie one-time signature [24] with Merkle trees [27]. A similar idea in the context of
message authentication codes (MACs) has been considered by Fischlin [17] who put forth progressive
verification for MACs and presented two concrete constructions. One main difference between our
model and those of [17,25] is that we aim to capture flexible verification as an independent feature
that can enhance existing schemes, rather than a standalone primitive. This is in a way more
challenging as it leaves less design freedom when crafting these algorithms. Therefore we decided to
define flexible verification as a stateful algorithm in contrast to stateless [17,25]: although this makes
our model slightly more involved, it is comparably more general and can capture more (existing)
schemes.

Our model for efficient verification is close the offline-online paradigm used in homomorphic
authentication [2,10] and verifiable computation [19]; where a preprocessing is done with respect
to a function f , and its result can be used to verify computation results involving the same f .

A recent work by Sipasseuth et al. [31] investigates how to speed up lattice-based signature
verification while reducing the memory (storage) requirements. The overall idea in [31] is similar

4

to ours (and inspired to Freivalds’ Algorithm): to replace the inefficient matrix multiplication in
the verification with a probabilistic check via an inner product computation. However, [31] focuses
on a concrete construction, the DRS signature [30], and investigates the trade-off between pre-
computation time for verification and memory storage for this scheme only. Moreover, the work
lacks a formal, abstract analysis of the security impact of such a shift in the verification procedure.
In contrast, we devise a general framework to model ‘more efficient’ and ‘partial’ signature verifi-
cation. Albeit we developed our approach independently of [31], our techniques can be seen as a
generalization of what presented in [31].

Independently from us, Taleb and Vergnaud recently published a paper about speeding up
signature verification [32]. The paper analyzes three kinds of signatures, the RSA and ECDSA
signatures and the lattice-based signature from [20]. While the first two are complementary to
our work, the latter construction is a different take on achieving efficient verification for this class
of LBS (they do not have a comparable approach for the flexible case). Their approach exploits a
particular type of error correcting codes that do not have words with small Hamming weight. Given
a generator matrix G for the code, their verification algorithm checks that the codeword G(Aσ−u)
mod q has null components. The sparsity property of the code ensures that if Aσ − u ̸= 0 mod q
(i.e., σ is not a valid signature), the corresponding codeword has enough nonzero components that a
random choice of them would contain a nonzero one with overwhelming probability. The drawback
is that such construction is not a compiler, as ours, but requires to modify both the key generation
and the verification algorithm, and requires the public key to be longer, thus slowing down the full
verification. Moreover, their progressive verification still requires a number of vector multiplications
linear in the security parameter, while ours only requires a logarithmic number of linear products.

Remark on terms. We use the term ‘flexible signature’ to be consistent with previous work [25],
however, this wording may be misleading in that there is no flexibility in the signature scheme, but
rather the verification procedure is carried out in a progressive way (á la Fischlin [17]) in the sense
that the more computation one performs the more confident one becomes of accepting or rejecting
a signature (gradually approaching 100% certainty). We believe that an algorithm should be able
to read (and understand) its input, and should not have an accessory input that cannot use (the
[[k]] of [25]).

2 Preliminaries

We denote the set of real values by R, integers by Z, natural numbers by Z≥0, and finite fields of
integers by Zq, where q is a (power of a) prime number. We denote vectors by bold, lower-case
letters, and matrices by bold, upper-case letters. We use v[i] to identify the i-th entry of a vector
v, and A[i, j] to identify the entry in the i-th row and j-th column of a matrix A. The norm of a
vector is denoted as ∥v∥ and unless otherwise specified, it is assumed to be the infinity norm, i.e.,
∥v∥ = maxi{v[i]}. AT denotes the transposed of a matrix. We use rows(A), cols(A), and rk(A)
to respectively refer to the number of rows, the number of columns, and the rank of a matrix A;
11×n (resp. 01×n) denotes the row vector of length n that has all entries equal to 1 (resp. 0);
while In denotes the n by n identity matrix of dimension n. We omit the explicit dimensions when
they are clear from the context. We denote by L1|L2 the result of appending a list of elements
L2 to L1. Given two values a < b, we denote a continuous interval as [a, b] ⊆ R, and a discrete
interval as {a, . . . , b} ⊆ Z. A function ε : Z≥0 → [0, 1] is negligible if ε(λ) < 1/poly(λ) for every
univariate polynomial poly ∈ R[X] and a large enough integer λ ∈ Z≥0. Throughout the paper,

5

λ ∈ Z≥0 denotes the security parameter of a cryptographic scheme. The abbreviation PPT refers
to algorithms that are probabilistic and run in polynomial time.

Definition 1 (Signature Scheme). A signature scheme Σ a tuple of PPT algorithms Σ =
(KeyGen,Sign,Ver) defined as follows.

KeyGen(1λ): The key generation algorithm takes in input the security parameter and outputs a pair
of keys (sk, pk).

Sign(sk, µ): The sign algorithm takes in input a secret key sk and a message µ; it outputs a signature
σ.

Ver(pk, µ,σ): The verification algorithm takes in input a public key, a message µ and signature σ.
It outputs 0 (reject) or 1 (accept).

Correctness For a given security parameter λ, for any key pair (sk, pk) ← KeyGen(λ), for any
µ ∈M, for any σ ← Sign(sk, µ), it holds that

Prob
[
Ver(pk, µ,σ) = 1

]
= 1.

We use the expression ‘valid (resp. invalid) signature’ to identify signatures that are accepted (resp.
rejected) by the verification procedure.

Security The basic security requirement for a digital signature scheme is unforgeability. In a nutshell
this notion states that an adversary should not be able to produce a valid signature without
knowledge of the secret signing key.

2.1 Lattices

Let n,m ∈ Z>0, and A ∈ Zn×m
q be a uniformly chosen matrix. We define the lattice that has A as

parity check matrix as
Λ⊥
q (A) = {z ∈ Zm : Az = 0 mod q} .

One of the most used lattice-based hardness assumptions is the Short Integer Solution (SIS), defined
in the following.

Definition 2 (Short Integer Solution problem). Given a matrix A ←$ Zn×m
q , the SISn,q,m,β

problem requires to find a vector s ∈ Zm such that As = 0 mod q and ∥s∥ ≤ β.
The inhomogeneous version of the SIS problem (ISIS) requires, given a matrix A ←$ Zn×m

q and a
vector u ∈ Zn

q to find a vector s ∈ Zm such that As = u mod q and ∥s∥ ≤ β.

3 Efficient Verification for Digital Signatures

In this section, we introduce the concept of efficient verification for digital signatures and a suitable
formal security model that allows to estimate the impact efficient verification has on the unforge-
ability of the scheme. Then, we describe a generic compiler to obtain efficient verification for a wide
class of signatures, prove its security, show realizations from lattices and multivariate polynomials
and finally discuss its concrete efficiency against full-fledged verification. In addition we discuss
concrete instantiations and their corresponding concrete efficiency gains. This section ends with a
generalization of our results to signatures with properties.

6

Efficient Verification In a nutshell, the core idea of efficient signature verification is to split the ver-
ification process into two steps. The first step is a one-time and signature-independent setup called
‘offline verification’. Its purpose is to produce randomness to derive a (short, secret) verification key
svk from the signer’s public key pk. Note that the offline verification does not change the signature,
which remains publicly verifiable; instead it ‘randomizes’ pk to obtain a concise verification key svk
that essentially enables one to verify signatures with (almost) the same precision as the standard
verification, but in a more efficient way. The second verification step consists of an ‘online verifi-
cation’ procedure. It takes as input svk and can verify an unbounded number of message-signature
pairs performing significantly less computation than the standard verification algorithm.

Definition 3 (Efficient Verification). A signature scheme Σ = (KeyGen, Sign,Ver) admits effi-
cient verification if there exist two PPT algorithms (offVer, onVer) with the following syntax:

offVer(pk, k): on input a verification key pk, a positive integer k ∈ {1, . . . , λ} (referred to as confi-
dence level), the offline verification algorithm returns a secret verification key svk.

onVer(svk, µ,σ): on input a secret verification key svk, a message µ, and a signature σ, the efficient
online verification algorithm outputs 0 (reject) or 1 (accept).

The standard properties of an efficient verification scheme are described below.

Correctness. For a given security parameter λ, for any honestly generated key pair (sk, pk) ←
KeyGen(λ), for any message µ ∈ M , for any signature σ such that Ver(pk, µ,σ) = 1, and for any
confidence level k ∈ {1, . . . , λ}; the following condition holds:

Pr[onVer(svk, µ,σ) = 1 | svk← offVer(pk, k)] = 1.

This guarantees that a valid signature σ is always accepted by online verification. We remark that
any signature rejected by onVer, would be rejected by Ver as well.

Amortized Efficiency. Informally, the notion of amortized efficiency captures the fact that the
global computational cost of doing the preprocessing (running offVer once) and running onVer
a given number times is considerably smaller than the cost of running the standard signature
verification Ver the same number of times. More formally, let λ be the security parameter and cost(·)
be a function that, given in input an algorithm returns its computational cost (in some desired
computational model). The pair (offVer, onVer) satisfies amortized efficiency if for any key pair
(sk, pk)← KeyGen(λ), for any message-signature pair (µ,σ), for any confidence level k ∈ {1, . . . , λ}
and svk ← offVer(pk, k), there exists a ‘small’ positive real constant e ∈]0, 1[= [0, 1] ∖ {0, 1} such
that

cost
(
onVer(svk, µ,σ)

)
cost

(
Ver(pk, µ,σ)

) < e.

Note that in this definition we do not include the cost needed to compute svk (i.e., cost(offVer)).
This is justified by the fact that, in our framework, offVer is a polynomial-time one-time set up,
and its output (svk) can be reused in an unbounded number of executions of onVer. Namely, the
computational cost of offVer is amortized over sufficiently many online verifications.

The concrete formula to quantify the amortized efficiency gain compares the computational cost
of verifying r signatures with the offline/online approach over running r standard verifications.

7

Definition 4 (Concrete Amortized Efficiency). We say that a pair (offVer, onVer) satisfies
(r0, e0)-concrete amortized efficiency if r0 is the smallest, non-negative integer such that for any
r ≥ r0 there exists a small, real constant 0 < e0 < 1 for which the following holds true:

cost
(
offVer(pk, k)

)
+ r · cost

(
onVer(svk, µ,σ)

)
r · cost

(
Ver(pk, µ,σ)

) < e0. (2)

Security Our definition of efficient verification lets the verifier set the confidence level k ∈ {1, .., λ}
at which she wishes to carry out the signature verification. Notably k also determines the amount
of computation to be performed by offVer and onVer and thus, the efficiency gain. Our security
notion aims at measuring the potential security loss that comes with performing less checks than the
full-fledged verification. Intuitively, we say that an efficient verification is secure if the probability
that onVer accepts a signature that would be rejected by Ver is negligible. We cannot expect a
more efficient verification to detect more forgeries than the full verification. Since the output of
offVer is a possibly secret verification key, in the security game we allow the adversary to interact
polynomially many times (in the security parameter λ) with both the sign oracle OSign and an
additional efficient verification oracle OonVer. As one would expect, the adversary can query the
oracles in an adaptive and parallel way. This is formalized by the following definition.

cmvEUF (λ, Σ, k)

1 : LS ← ∅

2 : (pk, sk)← KeyGen(1λ)

3 : svk← offVer(pk, k)

4 : (µ∗,σ∗)← AOSign,OonVer(pk, k)

5 : return (µ∗,σ∗)

Exp cmvEUF
A,Σ (λ, k)

1 : (µ∗,σ∗)← cmvEUF(λ,Σ, k)

2 : if µ∗ ∈ LS

3 : return 0

4 : if Ver(pk, µ∗,σ∗) = 1

5 : return 0

6 : b← onVer(svk, µ∗,σ∗)

7 : return b

OSignsk(µ)

1 : LS ← LS ∪ {µ}
2 : σ ← Sign(sk, µ)

3 : return σ

OonVersvk(µ,σ)

1 : b← onVer(svk, µ,σ)

2 : return b

Fig. 1: Security model for efficient verification of signatures: unforgeability under adaptive chosen message and
verification attack (security game, experiment and oracles).

Definition 5 (Security of Efficient Verification). Let Σ be a signature scheme that admits
efficient verification. For a given security parameter λ and for any confidence level k ∈ {1, . . . , λ},
the pair of algorithms (offVer, onVer) realizes a secure efficient verification for Σ if it is existentially
unforgeable under adaptive chosen message and verification attack. In other words, if for all PPT
adversaries A the success probability in the cmvEUF experiment in Figure 1 is negligible, i.e.:

AdvcmvEUF
A,Σ (λ, k) = Pr

[
ExpcmvEUF

A,Σ (λ, k) = 1
]
≤ ε = ε(λ, k).

Line 5 of the cmvEUF experiment excludes forgeries against the original signature scheme. This
is justified by the correctness of efficient verification and by the fact that Σ is supposed to be an
unforgeable signature scheme in the usual sense. In other words, the above security experiment
checks whether the adversary outputs invalid signatures that are however accepted by the efficient
verification mechanism.

Notably, the security definition depends on the confidence level k, and we do not consider a
solution to be secure if k is such that ε(λ, k) is actually a non-negligible value. Yet, the latter scenario

8

may occur in cases where, e.g., the execution of onVer is prematurely interrupted. A meaningful
definition of security in such scenarios requires a new model as we show in Section 4.

3.1 A Generic Compiler for Mv-style Verifications

Until now we presented a framework for efficient verification of digital signatures. In what follows
we show how to apply the efficient verification paradigm to a wide class of existing schemes. To
this end, we begin with abstracting the verification procedure of a signature scheme into two
types of verification checks: a matrix-vector multiplication (referred to as Mv = 0, for appropriate
matrix M and vector v) and other generic checks (collected in the Check subroutine). Notably, our
compiler leads to efficient verification whenever the computational complexity of the verification
procedure is dominated by the matrix-vector multiplication, i.e. cost(Check) << cost(Mv) ∼ mn
field multiplications (for M ∈ Zn×m

q).

We present a generic way to achieve efficient verification (as of Definition 3) for any signa-
ture scheme in which the verification procedure includes a matrix-vector (Mv) multiplication. For
simplicity, we call these Mv-style check verifications (see Figure 2 for details). Schemes that fall
in this category include some seminal lattice-based signatures [8,20,9,28], homomorphic signatures
[6,21,16], and multivariate signatures [15,5].

Ver(pk, µ,σ)

// INITIALIZE ACCEPTANCE BITS

1 : b1 ← 0, b2 ← 0

// SPLIT pk INTO MARTIX - AUX. DATA

2 : parse pk = (PK,PK.aux)

// ADDITIONAL VERIFICATION CHECKS

3 : b1 ← Check(PK.aux, µ,σ)

// FORMATTING Mv-STYLE CHECK

4 : (M,v)← GetMv(PK,µ,σ)

// MATRIX-VECTOR MULT. CHECK

5 : if (M · v = 0)

6 : b2 ← 1

7 : return
(
b1 ∧ b2

)

Example: Ver(pk, µ,σ) for GPV08 [20]

1 : b1 ← 0, b2 ← 0

2 : parse pk = (PK,PK.aux)

set PK ← A

set PK.aux← (H, β)
3 : Check(PK.aux, µ,σ) :

if ∥σ∥ < β set b1 ← 1

4 : GetMv(pk, µ,σ) :

set M← [A| − Irows(A)]

set u← H(µ) ∈ Zrows(A)×1
q

set v← [σT |uT]T

5 : if (M · v = 0rows(A)×1 mod q)

6 : set b2 ← 1

7 : return
(
b1 ∧ b2

)
Fig. 2: General structure of a verification with an Mv-style check (on the left); an instructive example: the GPV08
signature verification (on the right) [20].

Our generic compiler for efficient verification is detailed in Figure 3 with a sketch of instantiation for
the LBS scheme GPV08 [20] as a running example (more details on all the proposed instantiations
can be found in Section 3.2). The key observation is that for any pair of vectors σ and u, and for
any matrix A (of opportune dimensions) if A · σ = u then for any random vector c (of opportune
dimension) it holds that c · (A · σ) = c · u. By collecting variables on the left hand side we get:
c · [A| − 1] · (σ,u) = 0. Thus one can precompute the vector z← c · [A| − 1] and perform efficient
‘online’ verification by checking whether z · u = 0, where u← (σ,u) (note that the matrix-vector

9

multiplication is now replaced by a vector-vector multiplication, aka inner-product). Correctness
and efficiency are immediate. Soundness comes from the fact that if z · u = 0 then with all but
negligible probability also the original system of linear equations A · σ = u is satisfied, as proven
in Theorem 1.

offVer(pk, k)

// PARSE PUBLIC KEY (FOR EFFICIENCY)

1 : parse pk = (PK,PK.aux)

// e.g., in GPV08 PK = A, PK.aux = H,

// GENERATE PUBLIC MATRIX OF CORRECT DIMENSIONS

2 : M← GetM(PK) // e.g., in GPV08 M = (A| − 1n×n)

// CHECK PARAMETER CONSISTENCY

3 : if (k > rows(M) ∨ k < 1) return ⊥
// GENERATE RANDOMIZED KEY

4 : Z← GetZ(M, k)

i : z0 ← 01×cols(M) // for good indexing purpose

ii : for j = 1, . . . , k

iii : c←$ Z1×rows(M)
q

iv : z← cM ∈ Z1×cols(M)
q

v : if z ∈ ⟨z0, . . . , zj−1⟩q go to line iii.

vi : zj ← z // store new linearly independent vector

vii : set Z← [zT1 | . . . |zTk]T ∈ Zk×cols(M)
q

5 : return svk←
(
k,Z, PK.aux

)
(a) The offline verification algorithm.

onVer(svk, µ,σ)

// LIGHTWEIGHT VERIFICATION CHECKS

1 : if Check(PK.aux, µ,σ) = 0

2 : return 0

// FORMATTING FOR EFFICIENT VER.

3 : (Z′,v)← GetZV(svk, µ,σ)

4 : parse Z′ = [z′T1 | . . . |z′Tk]T ∈ Zk×cols(Z′)
q

5 : parse v = [vT
1 | . . . |vT

k]
T ∈ Zk×cols(Z′)

q

// LINE-BY-LINE INNER PRODUCTS

6 : for j = 1, . . . , k

7 : if z′j · vj ̸= 0 mod q

8 : return 0

9 : return 1

(b) The online verification algorithm.

Fig. 3: Our compiler for efficient verification of signatures with Mv-style verification. The four scheme-dependent
subroutines are: parse pk and GetZ (in offVer); Check and GetZV (in onVer). The complexity of the onVer is linear
in k, the chosen confidence level.

Security Analysis of Our Compiler. Next, we prove the security of our generic compiler. We
discuss the tradeoffs between q(λ) and k in the next section.

Theorem 1. Let Σ be a signature scheme with the structure of Figure 2. Then our compiler for Σ
(depicted in Figure 3) generates a secure efficient verification realization of Σ–i.e., (offVer, onVer)
are existentially unforgeable under adaptive chosen message and verification attacks– with ε = qV +1

qk
,

where k ∈ {1, . . . , rk(M)} denotes the chosen confidence level and qV = poly(λ) is a bound on the
total number of verification queries.

Proof. Let us note that the winning condition of the experiment requires A to produce a message-
signature pair (µ∗,σ∗) such that µ∗ has not been queried to the signing oracle during the game,
the signature is invalid under standard verification, i.e., Ver(pk, µ∗,σ∗) = 0, but it is accepted by
the online verification, i.e., onVer(svk, µ∗,σ∗) = 1. The goal of the proof is to bound the probability
that this event occurs.

10

First, let us define G0 to be the cmvEUF experiment of Figure 1. Next, we define a series of qV
hybrid games where, for every i = 1 to qV , Gi is the same as Gi−1 except that the i-th query to
onVer is answered by using the standard verification algorithm Ver. Clearly, for every i, the view
of the adversary in Gi is the same as in Gi−1 unless, at the i-th verification query (µi,σi), this is
answered with a reject in Gi (i.e., Ver(pk, µi,σi) = 0) whereas it would have been accepted in Gi−1

(i.e., onVer(svk, µi,σi) = 1). Let us define this event as

badi = {Ver(pk, µi,σi) = 0 ∧ onVer(svk, µi,σi) = 1} . (3)

Then, it is clear that, ∀i ∈ {1, . . . , qV },

|Pr[Gi−1 = 1]− Pr[Gi = 1]| ≤ Pr[badi].

Moreover, observe that the adversary wins in game GqV if the same event occurs for the message-
signature pair (µ∗,σ∗) (that we also denote below with (µqV +1,σqV +1)):

badqV +1 = {Ver(pk, µ∗,σ∗) = 0 ∧ onVer(svk, µ∗,σ∗) = 1}.

So, by a union bound it follows that

AdvCMV A
A,Σ (λ, k) = Pr[G0 = 1] ≤

qV +1∑
i=1

Pr[badi] (4)

In the following claim we show that for every i ∈ [qV + 1], Pr[badi] ≤ 1/qk over the choice of the
cj ’s, which concludes the proof of the theorem.

Claim. Pr[badi] ≤ 1/qk, where q is the modulus (or the size of the field) and k is the chosen
confidence level to run the efficient verification.

Let M and v be the matrix and vector returned by GetMv(pk, µi,σi) during the standard verifica-
tion. Since this is a bad forgery the online verification returns 1. This means that (1) the signature
σi must satisfy all of the ‘consistency checks’ determined by Check(µi,σi) (otherwise it would be
rejected also by the online verification); and (2) Mv ̸= 0 but (cjM)v = 0 for all j ∈ {1, . . . , k}. We
can split Pr[badi] as:

Pr[badi]=Pr[Check(PK.aux, µi,σi) = 1] · Pr[cj(Mv) = 0 for all j ∈ {1, . . . , k}].

We remark that z′j = cjM is (part of) the output of GetZV in the online verification. Assuming
the worst case scenario where A can trivially generate a pair (µi,σi) that passes the consistency
checks in Check, we bound only the second factor in the equation above. We argue that:

Pr[cj(Mv) = 0 for all j ∈ {1, . . . , k}] = 1

qk
.

Let w = (Mv) ̸= 0⃗rows(M)×1; thus there exists at least one entry ℓ ∈ [rows(M)] such that w[ℓ] ̸= 0.
The online verification accepts the adversary’s output if and only if cj ·w = 0 for all j, i.e., if and
only if, for all k (linearly independent constraints) it holds that:

cj [ℓ] = w[ℓ]−1 ·
n∑

i=1,i ̸=ℓ

cj [i]w[i]

11

At this point we observe that all online verification queries before this i-th one were answered
without using the cj vectors. Therefore, for the sake of bounding Pr[badi] we can assume that all
the vectors cj are randomly sampled at this stage, namely they are freshly random, and unknown to
A. So, for every j, the equality above holds with probability 1/q. Since we have k independent such
relations (i.e., the cj and the z′j are linearly independent), it follows that: Pr[badi] ≤

∏k
j=1

1
q = 1

qk
.

Such probability is negligible for appropriate choices of q = q(λ) and k ∈ Z>0. Concretely, if
q = 2poly(λ) as in [21,16] our compiler defines a secure generalized efficient verification already for
any k = 1. ⊓⊔

3.2 Concrete Instantiations of Our Compiler

Any instantiation of our compiler is completely determined by the four subroutines parse pk, GetM,
Check, and GetZV.

From Lattices We present concrete instantiations of our compiler for two categories of LBS:
‘hash & sign’ with representative the GPV08 signature [20]; and ‘Boyen/BonsaiTree’ style with
representative MP12 [28].

Efficient Verification for GPV08 [20]. The parse pk procedure splits the public key into PK =
A ∈ Zn×m

q (the matrix identifying the signer’s public key), and the auxiliary public information
PK.aux = H, i.e., a description of a full-domain hash function H : {0, 1}∗ → Zn

q . The Check
procedure is exactly as in the original verification (enforcing the norm bound on the signature).
The GetM algorithm takes in input the public matrix PK = A, and appends to it the identity
matrix to obtain M = [A| − In]. The GetZV routine returns the matrix Z′ and the vector v. The
matrix Z′ is made up of the same ‘randomized key’ vectors produced by GetZ during the offline
verification, i.e., z′j = zj ← cjM = [cjA| − cj] , i.e., v = [σ|H(µ) ·11×n]. Thus the core verification
check (line 7 in onVer) is actually ensuring that z′jvj = 0, i.e., cj · A · σ = cjH(µ) which is the
probabilistic check of the original verification equality.

Efficient Verification for MP12 [28]. The parse pk procedure assigns PK ← A = [Ã|A0 | . . . |Aℓ] ∈
Zn×(m̄+n⌈log q⌉ℓ)
q (the matrix identifying the signer’s public key), where m̄ = O(n⌈log q⌉), and ℓ

denotes the number of bits in the message, i.e., µ ∈ {0, 1}ℓ. The auxiliary public information is
PK.aux = u. The Check procedure is exactly as in the original verification (enforcing the norm
bound on the signature). The GetM algorithm takes in input the public matrix PK = A, and
appends to it the identity matrix to obtain M = [A|−In×n]. The GetZV routine returns the matrix
Z′ and the vector v. The matrix Z′ is made up of vectors of the form z′j = [z̃j | z0j +

∑ℓ
i=1 µ[i]z

i
j |cj]

that identify a message-dependent lattice (called Aµ in [28]). The vector v is the concatenation of
the signature with the auxiliary vector, i.e., v = [σ|u]. Note that u is the same for all messages;
thus, one could further optimize the online verification by computing (once and for all) the k inner
products zj [m̄+n⌈log q⌉+1] = cj ·u during the offline phase. To conclude we notice that the online
verification ensures that z′jvj = 0, i.e., cj ·Aµ · σ = cj · u which is the probabilistic check of the
original verification equality.

From Multivariate Equations For signatures schemes based on multivariate equations we take
Rainbow [15,14] as representative example as this is one of the NIST candidates for standardization.
For completeness, we also show how to apply our compiler to the LUOV scheme [5].

12

Efficient Verification for Rainbow [14]. In the description below we consider the standard Rainbow
verification. A similar approach can be used to speed up the verification also in the “cyclic” and the
“compressed” Rainbow variants as in those cases the verification includes an additional initial phase
to reconstruct the full public key. We recall that in this scheme the public key contains a system ofm
multivariate quadratic polynomials in n variables. For convenience, let N = n(n+1)/2 and F = F2r .
Using a Macaulay matrix representation we can visualize this system as a wide matrix composed of
a quadratic term Q (actually a m×N submatrix), a linear term L (m×n submatrix) and a constant
term C (a m × 1 vector). The parse pk procedure extracts from the public key PK this matrix
pk = [Q|L|C] ∈ Fm×(N+n+1) and a description of a full-domain hash function H : {0, 1}∗ → Fm as
the auxiliary public information PK.aux = H. The Check procedure is trivial and always returns
1. This is because the whole verification can be written as a matrix-vector multiplication. The
GetM algorithm extracts from PK the matrix representing the system of quadratic multivariate
equations [Q|L|C]. Finally, it appends to this the identity matrix, so M ← [Q|L|C| − Im]. We
remark that M can be seen as a matrix of blocks, where any block has the same height (m =
number of rows), but different length (number of columns). The GetZV routine reads the matrix
Z′ = Z made up of the rows z′j = zj ← cjM = [cj ·Q|cj · L|cj ·C| − cj] ∈ F1×N+n+1. In addition,
this algorithm parses the signature as σ = (s, salt), computes the (salted) hash of the message d as
h← H(H(d)|salt) and outputs the vector v = [s̃|s|1|h], where s is part of the signature and s̃ is the
‘quadratic vector’ obtained by computing all products of pairs of elements in s (with monomials
ordered lexicographically), i.e., s̃← [s[1]2, s[1]s[2], . . . , s[n− 1]s[n], s[n]2]. Clearly z′j · v = 0 if and
only if cj · (Qs̃+Ls+C) = cj ·h, which is a probabilistic check of the original system of verification
equations in Rainbow.

Efficient Verification for LUOV [5]. The parse pk procedure splits the public key into PK =
(public.seed,Q2) (the concise information needed to retrieve the full signer’s public key), and the
auxiliary public information PK.aux = H, i.e., a description of a full-domain hash function H :
{0, 1}∗ → Fm, where m = rows(Q2) and F = F2r . The Check procedure is trivial and always returns
1. This is because the whole LUOV verification can be written as a matrix-vector multiplication
The GetM algorithm takes in input PK = (public.seed,Q2) and derives the full public key as
done in the original verification: it runs [C||L||Q1] ← G(public.seed) to get the constant constant
(vector), the linear (matrix) and the first quadratic (matrix) parts of the verification equation; and
then it reconstructs the full quadratic term as Q ← [Q1||Q2]. Finally it appends to the public
key the identity matrix M ← (C,L,Q,−Irows(Q)), we remark that M can be seen as a matrix of
blocks, where any block has the same height (number of rows), but different lenghth (number of
columns). The GetZV routine reads the matrix Z′ = Z made up of the rows z′j = zj ← cjM =
(cj ·C, cj · L, cj ·Q,−cj). It also outputs the vector v = [1|s|s̃|h], where s is part of the signature
σ = (s, salt), s̃ is the ‘quadratic vector’ obtained by computing all products of pairs of elements in
s, i.e., s̃ ← [s[1]2, s[1]s[2], . . . , s[n − 1]s[n], s[n]2], finally h is the hash of the message and the salt,
i.e., h ← H(µ||0x0||salt). Clearly z′j · v = 0 if and only if cj · (C + Ls + Qs̃) = cj · h, which is a
probabilistic check of the original verification equation in LUOV.

3.3 Concrete Efficiency Estimates for Our Compiler

In what follows, we evaluate the efficiency gains provided by our compiler using the (r0, e0)-concrete
efficiency notion of Equation (2). In brief, a realization of our compiler provides (r0, e0)-concrete
amortized efficiency if r0 is the smallest, non-negative integer for which it holds that e0 < 1,

13

where e0 is an upperbound on the ratio of running r0 offline/online verifications versus r0 standard
signature verifications. For convenience, we estimate only the cost of the most expensive ‘steps’
in the verification, namely the ones involving several field element multiplications (matrix-vector
products), and disregard the cost of adding elements, generating random values, reading algorithm
inputs or evaluating hash functions. Moreover, we do not consider ad-hoc optimizations of matrix
multiplication due to probabilistic checks using, e.g., Freivalds’ Algorithm or its variant [31]. We
remark that in this work, we develop a more general and full-fledged approach that is not limited
to the specific technique in [31]. Table 1 collects the common notation, while Table 2 displays a
summary of our findings, that we motivate below.

Table 1: Parameters involved in the efficiency estimate of our compiler.

q Modulus of the lattice or size of the field
n Number of rows in the public key

m ∈ Ω(n log q) Number of columns in the public key
β Bound on the noise / size of signatures

σ or U Vector or matrix signatures
k Number of steps in the online verification (confidence level)
r Number of signatures verified (repetitions of onVer)

cost(alg) Number of field multiplications needed to compute alg

The computational complexity of Ver in Mv-style verification, e.g., [8,20,28,5,14] is dominated
by a matrix-vector multiplication. Let n = rows(M) and m = cols(M), with m ≥ n. Thus the cost
of computing M ·v is, in the worst case, nm filed multiplications. Our offline verification algorithm
executes k vector-matrix multiplications (one for each z′j in Z′), resulting in knm multiplications
in the worst case. The computational complexity of our online verification is dominated by the
k vector-vector (inner) products zi · v, resulting in km multiplications in the worst case. Thus,
the compiler presented in Section 3.1 outputs an efficient verification for signature with Mv-style
verification that has the following concrete amortized efficiency:

cost(offVer) + r · cost(onVer)
r · cost(Ver)

=
knm+ rkm

rnm
=

k

r
+

k

n
. (5)

Clearly the first addend in Equation (5) comes from amortizing the cost of offVer (over verifying
r signatures), while the second term is the fix trade-off between the computational costs of onVer
and Ver (at each and every verification). Table 2 collects the main results described in the reminder
of the section. In detail, k0 determines the lenght of the svk, the computational complexity and the
unforgeability of the efficient verification; r0 states how many signatures one should verify in order to
have a concrete efficiency gain of e0 (lower values of e0 correspond to better efficiency gains). The last
column displays how ‘cheaper’ the online verification is with respect to the fullfledged verification
(ignoring the one-time cost of running the offline verification). Again, lower values in this column
correspond to better efficiency; for instance, a ratio of 0.4% means that the computational cost
of Ver is 99.6× higher than the one of onVer (in other words, onVer is expected to be about 99×
faster).

For convenience, in our analysis we categorize signatures according to the size of their underly-
ing algebraic structure (q exponential or polynomial in the security parameter).

14

The modulus q is exponential in λ: To the best of our knowledge, the only LBS constructions
that fall in this category are the homomorphic signatures by Gorbunov et al. [21] and by Fiore
et al. [16]. In this case, using our compiler (with some caveat, as we show in the next section)
yields that the advantage in the cmvEUF experiment (in Equation (4)) is negligible in the security
parameter for k = 1. However, in [21,16] the complexity of Ver is dominated by the matrix-matrix
multiplication AU where A ∈ Zn×m

q is the fixed public key, and U ∈ Zm×m
q is the signature4.We

have computed parameters for this scheme according to the methodology by Albrecht et al. [1].
Setting λ = 128, q = 2λ and n = 256 yields that reduction algorithms (in particular, the optimized
BKZ algorithm) would have runtime 2128 and would solve at most SIS256,2128,65536,280 , while the
security of the scheme relies on a SIS instance with norm bound β = 249d , where d is the depth of
the circuit. We can now use this set of parameters to determine the concrete amortized efficiency
(as of Definition 4) reached by our compiler for the LBS in [16,21]. Let k = 1 and n = 256 in
Equation (3.3), we want to extract the minimum r0 for which 1/r + 1/256 is smaller than 1. It is
easy to see that r0 = 2 suffices and we get e0 = 0.504 < 1/2 + 1/256. In other words, the cost
of setting up the online verification (running offVer) plus performing r = 2 online verifications is
about half of the cost of r = 2 standard verifications, while preserving the security level. Moreover,
for this set of parameters cost(onVer)

cost(Ver) = k
n = 1

256 < 0.004, i.e., our online verification requires about

0.4% of the computational cost of running the standard verification algorithm; alternatively, we
can read this results as our onVer is 99× faster than Ver.

The modulus q is polynomial in λ: This is the most common setting given the ‘small’ size
of q. In this category fall the schemes by Gentry et al. [20], Boyen [8] and its improved version
by Micciancio and Peikert [28], Boneh Franklin linearly homomorphic signature [6], Rainbow [15]
and LUOV [5]. For the LBS constructions, in order to guarantee a negligible advantage in the
cmvEUF experiment (see Equation (4)) we need to set an appropriate value of k > 1. We argue
that ‘appropriate’ values of k are still ‘small’ in comparison to n and lead to a ‘good’ amortized
efficiency even for ‘few’ verifications. We recall that for these constructions Ver computes a product
Aσ where A ∈ Zn×m

q and the signature is just a vector σ ∈ Zm×1
q . To guarantee the security of

our efficient verification, the value k should be set so that q−k be negligible. In other words, for
the advantage in Equation (4) to be negligible it must hold that q−k = 2−λ. Hence, to estimate k,
one need to first fix the value of λ, compute the corresponding q that can guarantee such level of
security, and then extract k from the relation above.

Computing parameters for lattice-based schemes is not straightforward, as so far there is no
unique way to derive the parameters from a given λ. However, a good measure of the security
of a set of parameters can be extracted computing a value δ that was introduced by Gama and
Nguyen [18]. Concretely, δ provides an indication of how reduction algorithms would perform against
the hardness assumption underlying the lattice-based construction. Generally, the ‘smaller’ the δ,
the ‘more secure’ the scheme.

For Boyen’s signature [7] and its variant by Micciancio and Peikert [28], we use the parameters
provided in Figure 2 in [28]. Since in [28] they set δ = 1.007, to ensure a fair comparison, we use
the same value to compute the parameters Gentry et al.’s signature [20]. As a result, we observed
that for this δ all of the schemes require about the same modulus q ∼ 230 (for n ∼ 256). For this set
of parameters, our efficient verification provides 80 (resp. 250) bits of security with just only k = 4
(resp. k = 9). Thus our compiler achieves a (5, 0.81)-concrete amortized efficiency (resp. (10, 0.94)),

4 In [16] the dimension m additionally depends on the number t ≥ 1 of distinct identities (users) involved in labeled
program. For simplicity, in what follows we consider t = 1.

15

and a concrete tradeoff between onVer and Ver of k/n = 1.5 (resp. 0.0352), i.e., onVer is about 98×
faster than Ver. The take away is that for any r > k there is a concrete efficiency gain.

We remark that δ = 1.007 was ‘enough’ back in 2012, but it is now obsolete. As of now, this
value of δ probably guarantees less than λ = 60 bits of security. This does not make our analysis
meaningless. Indeed, the value of δ decreases for larger q and n (intuitively, this is because it is
harder to find small vectors in larger lattices). In particular, the decrease in the value of δ is more
dramatic for larger q than for larger n. Hence, a value of δ that would guarantee 128 bits of (post-
quantum) security today implies a larger q than what we consider in this work, thus a k smaller
than, e.g., 128/30 ∼ 4.3 < 5.

For Rainbow, we follow the latest guidelines provided during the second round of the NIST
competition. We recall that the Rainbow signature scheme is based on the unbalanced oil and
vinegar approach, and it is fully determined by the field on which it operates and a sequence
of integer numbers indicating the amount of vinegar variables and oil variables per each layer.
One of the current settings utilizes F = F24 and a two-layer oil variable setting with (v1, o1, o2) =
(32, 32, 32), which lead tom= 96 and n= 64 (for consistency in this paper we set n to be the number
of rows of a matrix and m to denote the number of columns, classically the variables are swapped
for multivariate signatures). A suitable k to achieve NIST security category level II is k = 32, since
q−k = 2−4·32 = 2−128 . In regards to the concrete efficiency estimates, plugging in k = 32 and
n = 64 in Equation (3.3) shows that the minimum number of repetitions r0 to achieve amortized
efficiency (i.e., for which we have k/r + k/n < 1) is r0 = 65, the corresponding amortization factor

is e0 = 0.9923 = 32/65 + 32/64. For this set of parameters we have cost(onVer)
cost(Ver) = k

n = 32
64 = 0.5,

in other words, our compiler produces an online verification that is 2× faster than the standard
verification. For F = F28 and (v1, o1, o2) = (68, 36, 36), we have m = 140 and a suitable k in this
case would be k = 16, since q−k = 2−8·16 = 2−128. For the highest NIST security category, [14]
suggests to use F = F28 and (v1, o1, o2) = (92, 48, 48). As a result we have m = 188, n = 96 and
again k = 16 but a better amortize efficiency factor e0 = 0, 9666 already for r0 = 20. We remark
that for this set of parameters cost(onVer)

cost(Ver) < 0.166, i.e., our compiler produces an online verification
procedure that is 6× faster than the standard verification. The verification is dominated by the
matrix-vector multiplication, which requires nm field multiplications in the worst case. Our offline
verification algorithm executes k vector-matrix multiplications (one for each (cj , zj)), resulting in
knm multiplications. The online verification is dominated by the k vector-vector (inner) products
zi · σ, resulting in kn multiplications. Thus, for [8,20,28], the concrete amortized efficiency can be

computed as cost(offVer)+rcost(onVer)
rcost(Ver) = knm+rkm

rnm = k
r +

k
n . The first addend in Equation (3.3) comes

from amortizing the cost of offVer (over r repetitions), while the second term is the fixed trade-off
between the computational costs of onVer and Ver (at every verification).

3.4 Generalization to Signatures with Properties

Our model can be easily generalized to the case of signatures with properties (e.g., homomorphic
signatures, group signatures, threshold signatures etc.). Such a generalization is particularly im-
portant in the case of LBS. Indeed, lattice-based hardness assumptions allow to build a wide range
of LBS with properties that often have a verification algorithm very similar to standard Mv-style
verification (cf. Figure 2).

Signatures with properties require more complex security definitions than standard signatures.
Typically, they include (some specific flavor of) unforgeability. In Figure 4 we present a very general
description of the unforgeability experiment for signatures with properties.

16

Table 2: A summary of the concrete efficiency achieved by various instatiations of our compiler. In the table,
k0 denotes the minimum accuracy level that securely ralizes efficient verification, i.e., for which Pr[bad1] =

1

qk0
is

negligible (cf. proof of Theorem 1); r0 is the smallest positive integer for which e0 < 1 where e0 is a (tight) upperbound

on the ratio e0 >
cost(offVerk0

)+r·cost(onVer)
r·cost(Ver) .

Signature
Scheme

Ring-Field size
Min. Accuracy

Level
Concrete Amortized

Efficiency
Online Efficiency

cost(onVer)
cost(Ver)

FMNP16 [16]

GVW15 [21]

q = 2poly(λ) k0 = 1 (r0 = 2, e0 = 0.5) < 0.4%

Boyen10 [8]

GPV08 [20]
MP12 [28]

q = poly(λ) k0 = 3 (r0 = 4, e0 = 0.77) < 1.1%

Rainbow[15]

with
F24 − (32, 32, 32)

q = poly(λ) k0 = 15 (r0 = 18, e0 = 0.99) < 2.4%

Essentially, all of them require:

1. A setup phase, where a probabilistic routine (denoted Setup in Figure 4) generates a set of
secret values sval and other auxiliary values pval (that includes the verification key pk). The
latter are given as input to the adversary, while the former are used by the oracles.

2. A challenge phase, where the adversary is given access to some, possibly stateful, oracles (usu-
ally, at least an oracle that returns signatures by honest users), and has to output a message
and a forged signature on it. We model this by defining two oracles: OK(·; sval, stK): Returns
signing/secret keys (of users or other entities that A may corrupt). O(·; st): Encompasses all
the other possible oracles (signing, opening for group signatures, etc.).

3. A check phase, where the experiment checks whether the signature output by A is valid and if
A won the experiment. The former requires an execution of the verification algorithm. The latter
includes a variety of other checks that essentially are supposed to ensure that the signature was
not trivially produced by the adversary (e.g., the signature has not been output by the signing
oracle). We model this second check with the WinCond predicate. Clearly, the specification of
WinCond depends on each primitive.

Adapting the syntax and security experiment of efficient verification to signatures with properties
and to the generic security experiment described above is rather straightforward. Similarly, our

Exp generic−unf
A,Σ (λ)

1 : (pval, sval)← Setup(1λ)

2 : stK ← ∅, st← ∅

3 : (µ∗,σ∗, aux∗)← AOK(· ;sval,stK), O(· ;st)(pval)

4 : if Ver(pk, µ∗,σ∗, aux∗) = 1 ∧ 1←WinCond(µ∗,σ∗, aux∗, pval, stk, st)

5 : return 1

6 : else return 0.

Fig. 4: Generic description of the unforgeability under adaptive chosen message attacks experiment for signatures
with properties.

17

compiler of Section 3.1 can be easily adapted to signatures with properties that have a similar
Mv-style verification. In the following we analyze the impact of our compiler on the efficiency
of some schemes whose verification is structured as in Figure 2: the constrained LBS in [34], the
(indexed) attribute-based LBS in [23], the homomorphic LBS in [16], the threshold LBS in [4], and
the multivariate-based ring signature RingRainbow [29].

Constrained Signatures (CS). CS allow a signer to sign a message only if either the message or the
key satisfies certain preset constraints. The verification algorithm of the lattice-based instantiation
of CS by Tsabary [34] is syntactically equivalent to the ‘standard’ verification: it includes a ‘Mv’-
style check (where the matrix has n rows) and a norm check. Hence, our compiler applies directly
to this scheme. Unforgeability requires that n ≥ λ and q ≤ 2λ, so for an average value q ∼ 232, we
can set k = 8 ≪ λ so that 1/qk = 1/2256. Remark that larger values of q (that could be required
to have higher security guarantees) imply smaller values of k. Therefore, for this less conservative

choice of parameters the efficiency gain is cost(onVer)
cost(Ver) = k

n = 8
256 < 0.032, i.e., the online verification

requires about 3.2% of the computational cost of running the standard verification algorithm.

Indexed Attribute-based Signatures (iABS) and Homomorphic Signatures (HS). iABS allow a signer
to generate a valid signature on a message only if the signer holds a set of attributes that satisfy
some policy (represented by a circuit C). HS allow a signer to sign messages µi so that it is possible
to publicly derive a valid signature for a message µ that corresponds to the output of a computation
on the original messages, i.e., µ = C(µ1, . . . , µr). According to the type of homomorphism supported
by the scheme, the circuit C can encode only linear functions, polynomial functions, or any function
of bounded multiplicative degree. In both iABS in [23] and HS in [16] the signature verification is
composed by three steps:

1. Computation of the public matrix M from the circuit C (either the policy, or the homomorphic
computation specified by the labelled program);

2. An ‘Mv’-style check;

3. A norm check on the signature.

The first step is critical because the public matrix M can be generated through a non-linear
transformation, i.e., it might include multiplications of the public matrix by itself (or by a gadget
matrix). This would not allow to compute the first step online from the zi’s, but the verifier would
have to use M and the ci’s instead, defying the purpose of our compiler. Hence, our compiler can
be applied to these signatures in an efficient way only if either (1) C involves solely linear operations
on the public matrix, or (2) C is fixed, or (3) C is known before running verification. In these cases,
we achieve efficient verification by letting offVer take as (additional) input C and compute M using
the algorithm PubEval from [22]. The vectors (Z′,v) used in the verification might (as in [16]) or
might not (as in [23]) depend on the message. In the latter case the subroutine GetZV in onVer
simply returns the input.
The impact of the compiler on the efficiency of HS was already analyzed in Section 3.3. Regarding
the iABS, the suggested value of the modulus q is such that q ≥ n8. The standard requirement
n ≥ 2 already implies that 1/qk ≤ 1/(28)k = 1/256k. However, to guarantee the hardness of
lattice-based problems usually n needs to be at least n = 128. In this case q ≥ 256, hence k = 5
already guarantees the unforgeability of this iABS. As n = O(d log d) (where d is the depth of

C) and the efficiency gain can be bounded as follows: cost(onVer)
cost(Ver) ≤

k
O(d log d) = 5

O(d log d) . From this

18

inequality is clear that already for a circuit of depth 4 the online verification only requires 62.5% of
the computation required by standard verification; the impact of our compiler increases for larger
size of the circuit.

Threshold Signatures (TS). TS allow h out of ℓ parties to produce a signature on a message.
Unforgeability is guaranteed for up to t colluding parties. Tsabary [34] introduced a compiler that
allows to distribute the signature generation step of the GPV08 signature, and convert it into a TS.
The idea is to share the signing trapdoor among the parties using a h-out-of-ℓ secret sharing scheme.
Signing requires at least h parties to come together to generate a signature satisfying a Mv-type
equation (where M is the public verification key). Verification is composed by the standard Mv
equation and norm checks. Therefore, the thresholdizing compiler is composable with our compiler
for efficient verification. As neither of them change the parameters of the underlying GPV08 scheme,
the efficiency gain is the same (cf. Section 3.3).

RingRainbow [29]. RingRainbow is a ring signature scheme – i.e., a signature that allows a user to
sign a message anonymously on behalf of a group – based on multivariate equations. This scheme is
a hash-and-sign type of signature built as a modification of Rainbow. Verification requires to check
whether the signature satisfies a multivariate quadratic system, and can be converted in a Mv-style
verification with the same technique used for Rainbow (cf. Section 3.3). Therefore, our compiler
can be applied to RingRainbow as well. To evaluate the efficiency gain due to our compiler, we
consider the efficient version of RingRainbow, (whose parameters can be found in Table 2 in [29]).
For λ = 128 and a group of 5 users the authors set F = F28 and (v1, o1, o2) = (36, 21, 22), which
yield m = 5 ∗ (v1 + o1 + o2) = 395 and n = 43. Theorem 1 requires at least 1/qk = 1/2256 for
128 bits of post-quantum security, hence k = 32. Plugging this in Equation (3.3) yields that the
minimum number of repetitions r0 to achieve amortized efficiency is r0 = 126, that results in an
amortization factor of e0 = 32/126+ 32/43 = 0.744. In this case, our compiler produces an online

verification that is cost(onVer)
cost(Ver) = k

n = 32
43 < 0.75, in other words, our compiler produces an online

verification that requires only 75% of the computation required by the standard verification.

4 Modeling Stateful and Flexible Verification

We introduce our framework for flexible verification of digital signatures. The basic idea is to design
a flexible verification algorithm, flexVer, that instead of returning a binary answer (accept/reject)
as done by Ver, outputs a value α expressing the confidence on the validity of the signature. The
confidence α is proportional to the amount of computation invested in the verification: the more
verification steps performed the higher the confidence. In this section we show how to realize
flexible verification disregarding performance impacts. In the next section we address the question
to securely achieve efficient and flexible verification simultaneously.

Differently from Le et al. [25], who define flexible signatures as a standalone primitive, we prefer
to treat flexible verification as an add-on feature to enhance existing schemes. Compared to [25]
our model is more general, yet slightly more involved. In particular, we let flexVer be a stateful
algorithm; the state st is maintained by the verifier and should not be disclosed to the adversary.
Albeit st can be seen as a secret, updatable, compact verification key, we remark that it is always
possible to verify signatures using the signer’s public key and the standard verification procedure.
Moreover, any verifier can generate a st from the signer’s pk, but st does not allow the verifier to
forge signatures in the name of the signer.

19

4.1 Syntax

The core idea behind flexible verification is to derive from the original verification procedure of
a signature scheme (Ver) an alternative algorithm flexVer with certain properties. Concretely, this
task boils down to identifying a sequence of Kflex + 1 atomic instructions (that we informally call
‘steps’) that ensure that, if interrupted at any point, flexVer returns a meaningful value about the
correctness of the signature. In more detail, if one of the steps fails, flexVer returns α = ⊥ and
rejects the signature. On the other hand, if none of the initial t steps fails, it is possible to derive
a real value αflex(t) ∈ [0, 1] stating the probability that the given signature is valid. Intuitively, we
want that the more steps flexVer executes successfully, the higher the value of αflex(t).

Definition 6 (Flexible Verification). Let Σ = (KeyGen,Sign,Ver) be a signature scheme. We
say that Σ admits flexible verification if there exists a non-negative integer Kflex ∈ Z≥0, an efficiently
computable confidence function αflex : {0, . . . ,Kflex} → [0, 1], a set of admissible states5 S (that
depends on Kflex and a public key pk), and an algorithm flexVer consisting of Kflex+1 steps flexVer0,
. . ., flexVerKflex

, such that flexVer has the following syntax:

flexVer(st, pk, µ,σ, t): This a randomized algorithm takes in input a state st ∈ S, a public key pk
(generated by KeyGen), a message µ, a signature σ and an interruption position t ∈ Z≥0. It
outputs a value α ∈ [0, 1]∪⊥. Concretely, flexVer works as shown below: it is made of Kflex + 1
algorithms flexVerj(st, pk, µ,σ) that update the state and return a bit b. If b = 0 the flexible
verification outputs α = ⊥ (σ is rejected); otherwise, b = 1 and the flexible verification upgrades
the confidence level to α← αflex(j) (σ is valid at step j).

flexVer(st, pk, µ,σ, t)

1 : α← ⊥
2 : if t < 0 : return ⊥
3 : if t > Kflex : set t← Kflex

4 : for j = 0, . . . , t

5 : (b, st)← flexVerj(st, pk, µ,σ)

6 : if (b = 0) : return ⊥
7 : else (b = 1) : α← αflex(j)

8 : return α

Additionally flexVer satisfies flexible correctness: For a given security parameter λ, for any
key pair (sk, pk) ← KeyGen(λ), for any admissible state st ∈ S, for any µ ∈ M and signature σ
such that Ver(pk, µ,σ) = 1 and for any value t ∈ {0, . . . ,Kflex}, it holds:

Pr[flexVer(st, pk, µ,σ, t) = αflex(t)] = 1.

Flexible correctness as defined above essentially states that on valid signatures, i.e., signatures that
would be accepted by the standard verification, flexVer accepts with confidence αflex(t). We follow
the approach of [25] and let the flexible verification algorithm output a value α that either rejects
the signature (α = ⊥), or accepts it with certainty α in the real interval [0, 1]. We use the same
interruption variable t as in [25] to model runtime interruptions of the algorithm execution.6 We

5 The set S includes the initial state st = ∅ and any possible state output by some flexVeri.
6 Our αflex(·) is essentially the inverse of the function iExtractΣ(·) in [25].

20

point out that while t is input to flexVer, it is not given to each flexVerj ; this syntax models the
fact that the algorithm must work without knowing where it will stop, which is essential to capture
arbitrary interruptions. In the case of an interruption, t < Kflex, the algorithm would return a
premature decision α on the validity of the signature: if α = ⊥ the signature is invalid (and this is
certain, there are no false negatives); if α ∈ [0, 1] this means that according to the t steps performed,
the signature seems valid.

Defining the confidence function αflex(·) is fundamental to showing a construction of flexible
verification for a given signature scheme. Any signature scheme Σ admits trivial flexible verification
and confidence function. One way to see it is to consider Ver as a sequence of KΣ instructions (e.g.,
computation or verification steps); set Kflex = KΣ and flexVerj be the j-th step of Ver. So the
confidence function can be defined as

αflex(t) =

{
0 for t ∈ {0, . . . ,KΣ − 2}
1 for t = KΣ − 1

A trivial confidence function entails un-interesting flexible verification: on correct signatures, flexVer

x

y

1

KΣ − 10 t

αflex(t)

Fig. 5: Examples of confidence functions for flexible verification: the trivial case (thick, red); a non-trivial case (thin,
blue).

returns 0 if interrupted at any step t < KΣ−1. While all signature schemes admit a trivial confidence
function, not all support a non-trivial one, (e.g., a step function as shown in Figure 5). We remark
that the confidence function αflex(·) depends both on the scheme Σ and on how each flexVeri is
defined. In Section 4.3 we show non-trivial realizations for post-quantum secure signature schemes
based either on multivariate quadratic equations or on lattices. It is easy to see that, without loss
of generality, αflex(·) has a non-decreasing trend, αflex(0) = 0 and αflex(Kflex) ≤ 1. Looking ahead,
we will define αflex(t) to be 1−bad(t), where bad(t) represents the probability of accepting a forgery
after t verification steps. While bad(t) decreases, αflex(t) increases and so does the confidence in the
correctness of the signature.

Flexible Verification vs. Offline/Online Signature Verification. While both flexible verification and
efficient verification may be seen as possible ways of reducing the computational cost of a signature
verification, the way this objective is achieved in the two models is quite different. One can think
that these are two sides of the same coin. In flexible verification, the verification algorithm (and
thus the verifier) is unaware of when the computation will be interrupted, and its execution is
independent of t. On the other hand, the offline verification (and thus the verifier) sets precisely
what is the confidence level k –which may be seen as an interruption value for onVer– that otherwise

21

would check all of the verification checks imposed by Ver. The fundamental difference is that in
the latter setting, the (online) verification is aware of the confidence level k (seen as interruption
value), and adapts its execution to k.

Stateful vs. Stateless Verification We choose to define flexible signatures as stateful algorithms
to keep the framework as general as possible. The same model could capture stateless flexible
verification by considering the special case in which the state st is always ∅. In the latter case,
there is no need for a verification oracle in the security experiment (Figure 6). In this sense, our
approach is more general than the one by Le et al. [25] as we can potentially capture more schemes.

4.2 Security Model

Our security model revisits the notion of existential unforgeability under chosen message attack for
flexible signatures proposed by Le et al. [25] with three twists.

First, our security game needs to take into account that flexVer maintains a possibly non trivial
state. We handle this by allowing the adversary to interact with the flexible verification oracle
OflexVer during the query phase (similarly to what we did in the efficient verification model of
Section 3) and with the signing oracle OSign, in a concurrent manner.

Second, queries to OflexVer have the form (µ,σ, t′), where t′ is the desired interruption value
submitted by A (and chosen adaptively). To make the model generic and reduce the assumptions
on A, we include an interruption oracle OInt that takes as input t′ and returns the actual value t to
be used in flexVer. We discuss in detail the role of OInt in a dedicated paragraph after stating our
security notion. For the purpose of this work, we consider the strongest security model in which
the interruption oracle returns the adversary’s value, i.e., t ← OInt(t′) with t = t′. This resembles
side-channel attack settings, where A may try to freeze the execution of the verification.

Finally, a minor change: instead of outputting a single bit, our experiment returns a pair (b, t∗).
The bit b ∈ {0, 1} flags the absence or the potential presence of a forgery, while t∗ ∈ {0, . . . ,Kflex}
reports the interruption position used in the final flexible verification. Including t∗ in the output of
the experiment allows us to measure security in terms of how far is the probability of A ‘winning’
the experiment, from the expected value αflex(t

∗). Concretely, we consider a flexible verification to
be secure if, for any PPT adversary, the probability that the security experiment returns (1, t∗) is
only negligibly higher than the expected probability of non detecting a forgery after t∗ verification
steps. For the purpose of this work, t∗ is the interruption parameter chosen by A for its forgery.

Our security game and experiment for existential unforgeability under adaptive chosen message
with flexible verification attack (flexEUF) are reported in Figure 6.

Definition 7 (Security of Flexible Signatures (flexEUF)). Let Σ be a signature scheme that
admits a non-trivial realization of flexible verification flexVer with corresponding confidence function
αflex. For a given security parameter λ, (flexVer, αflex) realize a secure flexible verification for Σ if
for all PPT adversaries A the success probability in the flexEUF experiment in Figure 6 is negligible,
i.e.,:

AdvflexEUFA,Σ (λ) = Pr
[
ExpflexEUFA,Σ (λ) = (1, t∗)

]
− (1− αflex(t

∗)) = ε ≤ ε(λ).

Intuitively, Definition 7 states that an adversary has only negligible probability to make the flexible
verification output a confidence value α∗ higher than the expected one. Let bad(t) denote the
probability of accepting a forgery after t verification steps. Then by setting αflex(t) = 1 − bad(t),
we get AdvflexEUFA,Σ (λ) = Pr

[
ExpflexEUFA,Σ (λ) = (1, t∗)

]
− bad(t∗) ≤ ε(λ).

22

flexEUF (Σ, λ)

1 : LS ← ∅
2 : st← ∅

3 : (pk, sk)← KeyGen(1λ)

4 : (µ∗,σ∗, t′)← AOSign,OflexVer(pk, λ)

5 : return (µ∗,σ∗, t′)

Exp flexEUF
A,Σ (λ)

1 : (µ∗,σ∗, t′)← flexEUF(Σ,λ)

2 : β ← Ver(pk, µ∗,σ∗)

3 : t∗ ← OInt(t′)

4 : α← flexVer(st, pk, µ∗,σ∗, t∗)

5 : if µ∗∈LS ∨ α = ⊥ ∨ β = 1

6 : return (0, t∗)

7 : return (1, t∗)

OSignsk(µ)

1 : LS ← LS ∪ {µ}
2 : σ ← Sign(sk, µ)

3 : return σ

OflexVerst,pk(µ,σ, t
′)

1 : t← OInt(t′)

2 : α← flexVer(st, pk, µ,σ, t)

3 : return α

Fig. 6: Security game, experiment and oracles for stateful and flexible signature verification: unforgeability under
adaptive chosen message with flexible verification attack.

In this work, we prove security in the strongest model where t′ = t, i.e., A has the power to
choose when to stop the verification. Since we put no restriction on the values t queried by A to
OflexVer during the game, we will see that by running OflexVer on ‘too few’ steps, A may learn
information about the internal state st.

Modelling Interruptions. In [25], unexpected interruptions are modeled via an interruption oracle
iOracle(λ) that returns a value t ∈ {0, . . . ,Kflex} used by the flexible verification. However, it is
not clear whether A may control iOracle. We overcome these ambiguities by letting A output t′

at every flexible verification query. It is possible to relax and generalize our model by introducing
an interruption oracle OInt, programmed at the beginning of the game. At each verification query,
OInt takes as input the adversary’s suggestion for an interruption position t′ and outputs the value
t to be used by the flexible verification. In case t = t′, we are modelling side channel attacks, but
we can also let t be independent of t′. A realistic definition of OInt is outside the scope of this work.

4.3 A compiler for flexible ‘Mv’-style Verifications

We exhibit a compiler to obtain flexible verification for the class of post quantum signature schemes
with ‘Mv’-style verification introduced in Section 3.1. Specifically, our compiler for flexible verifi-
cation builds on our previous compiler for efficient verification.

Two Insecure Solutions. Let us warm up with an instructive example. For schemes with ‘Mv’-style
verification there is a natural way to divide the verification algorithm into atomic steps: the initial
step, flexVer0, includes the consistency checks (e.g., the norm bound on the signature); while for
i = 1 to Kflex = rows(M), flexVeri performs the check M[i, ∗] · (σ,u) = 0 mod q, where M[i, ∗]
denotes the i-th row of the matrixM. Notably this solution does not require a secret state. Checking
only t < Kflex constraints, however, may not be a secure choice. Indeed, an adversary that knows
M and u can efficiently produce a signature that verifies the first t << Kflex linear constraints and
trivially break unforgeability (flexEUF). A naive way to bypass this issue is to randomize the order
in which the steps are performed (assuming flexVer0 is always run). In this case, setting t∗ = 1, the
adversary can produce a valid forgery for say the i∗-th row of M and win the flexEUF game with
probability 1/Kflex (which corresponds to the probability that flexVer executes only flexVer0 and
flexVeri∗). Notably, 1/Kflex is not negligible, so neither of the two presented approaches is secure.

23

flexVer0(st, pk, µ,σ)

1 : svk← offVer(pk,Kflex)

2 : parse svk = (Kflex,Z, PK.aux)

3 : b← Check(PK.aux, µ,σ)

4 : st← GetZV(svk, µ,σ)

5 : return (b, st)

flexVeri(st, pk, µ,σ)

1 : b← 0

2 : parse st = (Z′,v)

3 : if Z′[i, ∗] · v[∗, i] = 0 mod q

4 : return (b← 1, st)

5 : return (b← 0, st)

αflex : {0, . . . ,KΣ} → [0, 1], αflex(t) = (1− 1
qt
)

Fig. 7: Generic compiler for flexible verification of Mv-style signatures. The algorithms offVer,Check and GetZV are
defined in Section 3.1, Figure 3. Here Kflex = rows(M).

Our Compiler. We define the algorithm flexVer by describing its atomic steps flexVeri. Analogously
to Section 3.1, we present a generic compiler for signatures with Mv-style verification in Figure 7.

To formally define flexible verification we need to specify the valueKflex (total verification steps),
the set S (valid states), and the confidence function αflex. The value Kflex sets the upper bound
on the number of linear constraints the verifier wants to check, hence Kflex = rows(M), where
M is the matrix employed in the matrix-vector multiplication check in the signature verification.
The set S includes ∅ and any possible state output by some flexVeri, specifically S = {0, 1} ×
Zrows(Z′)×cols(Z′)
q × Zrows(v)×cols(v)

q × {0, 1}λ ∪ ∅.
We extract the confidence level from the probability of a flex forgery (as motivated by the proof

of security given in Theorem 1). Alike efficient verification, the probability that an adversary creates
a flex forgery with interruption step t is 1/qt. If the size of the underlying algebraic structure is
q = 2poly(λ) this probability is negligible even for t = 1, thus for signatures with large q efficient
verification and flexible verification coincide, trivially. The interesting case is q = poly(λ), as the
adversary could create a flex forgery with non negligible probability. We remark that in this section
we are not targeting efficiency, and our instantiations of flexible verification refresh the svk produced
by offVer at every verification query. This way, A cannot exploit the information possibly leaked
by a flex forgery in future forgery attempts.

Theorem 2. Let Σ be a signature scheme with Mv-style verification (as of Fig. 2). Then our
compiler for flexible verification (in Figure 7) returns (flexVer, αflex) that realize secure flexible
verfication for Σ.

Proof. Recall that an adversary A wins the security experiment in Definition 7 if it outputs a pair
message-signature (µ∗,σ∗) and an interruption t′ such that (1) (µ∗,σ∗) is rejected by Ver, but
accepted by the flexible verification flexVer when it is interrupted at step t∗ ← OInt(t′), and (2) the
flexible verification algorithm outputs a too high confidence level αflex(t

∗). Following Definition 7 we
can realize secure flexible verification by setting αflex(t) = 1−Pr

[
ExpflexEUFA,Σ (λ) = (1, t)

]
+ ε(λ) ∀ t .

The core part of the proof is to estimate this probability.

Recall that our compiler for efficient Mv-style verification (in Figure 7) runs offVer at every
verification query (step 1 in flexVer0). This means that every verification query is answered using
a freshly generated svk. In particular, the final verification (line 4 in the Exp flexEUF

A,Σ (λ) in Figure
8) checks A’s output using independent randomness from the previous queries. So, whatever in-
formation the adversary may collect from previous queries is useless to win the experiment. As

24

a consequence, the probability that the adversary wins the game equals the probability that the
adversary outputs a valid forgery without querying OflexVer. The latter is precisely the probability
of a bad forgery we investigated in Theorem 1, hence Pr

[
ExpflexEUFA,Σ (λ) = (1, t∗)

]
= 1

t∗ and:

AdvflexEUFA,Σ (λ) = Pr
[
ExpflexEUFA,Σ (λ) = (1, t∗)

]
− (1− αflex(t

∗))

=
1

qt∗
−
(
1−

(
1− 1

qt∗

))
= 0 .

⊓⊔

4.4 Flexible and Efficient Verification

Given the two notions of efficient verification (Section 3) and flexible verification (Section 4), the
reader might be wondering now whether it would be possible to build a compiler for flexible and
efficient verification of Mv-style signatures. Our approach is to start from our compiler for flexible
verification (depicted in Fig. 7), and skip line 1 of flexVer0 (where it runs offVer to generate svk) in
all verifications except for the first one. This means that svk is created at the first verification and
reused in all subsequent runs of flexVer. While this obviously improves the (amortized) efficiency
of the compiler, it also impacts security.

We now verify the unforgeability of our compiler for q exponential. From Theorem 1 we already
know that in this case verification only checks the linear equation for one c. Hence adding flexibility
to the model does not impact it, as the adversary can only interrupt verification either before or
after the linear equation has been checked.

Theorem 3 (informal). For signatures with Mv-style verification relying on algebraic structures
of size q = 2poly(λ) our compiler outlined for efficient flexible verification is unforgeable according
to Definition 7 and achieves (2, 1/2 + 1/rows(M))-concrete amortized efficiency as per Definition
4.

Proof. (sketch) The proof is based on the same argument used in the proof of Theorem 1. Using
the same notation as in Theorem 1, take the same sequence of qV hybrid games and replace any
appearance of onVer by flefVer (essentially each game delays the query on which the first flexible
verification is run). Since q is exponential in the security parameter, the interruption values t′ can
be all set to 1. We can bound the adversary’s success probability by the occurrence of bad events.

Pr
[
ExpflexEUFA,Σ (λ) = (1, t∗)

]
≤

qV∑
i=1

Pr[badi] + Pr[GqV = 1] ≤ qV
q

+
1

q
.

We used Pr[GqV = 1] ≤ 1
q since in that game the vectors svk is freshly generated. To conclude,

q = 2poly(λ) and qV ≤ poly(λ) it holds that,

AdvflexEUFA,Σ (λ) = Pr
[
ExpflexEUFA,Σ (λ) = (1, t∗)

]
− (1− αflex(t

∗))

≤ qV
q

+
1

qt∗
−
(
1−

(
1− 1

qt∗

))
=

qV
q

= ε(λ) .

In this setting the concrete efficiency of our compiler is achieved already with r0 = 2 repetitions,
and the corresponding amortized efficiency value is e0 = cost(offVer(pk,1))

r0·cost(Ver(pk,µ,σ)) +
r0·cost(onVer(svk,1,µ,σ))

r0·cost(Ver(pk,µ,σ)) =
1
2 + 1

rows(M) . ⊓⊔

25

In case q = poly(λ), the freshness argument on svk can no longer be used to bound the probability
of finding a forgery: some non-negligible amount of information about the secret combinators ci in
svk is leaked at every flex-forgery submitted during verification queries. To formally handle these
cases, in the next Section we introduce the notion of r-bounded randomness reuse.

5 Modeling Efficient & Flexible Signature Verification with r-Bounded
Randomness Reuse

We introduce the concept of flexible and ef ficient signature verification (flefs) with r-bounded
randomness reuse (or r-flefs in short). Similarly to Definition 6 (flexible signatures), this sustain-
able variant is defined for a given value k, that determines the maximum desired confidence level
achievable by the verification. In addition to k, we need a second parameter, r, that determines the
maximum number of times the verification randomness can be reused. For correctness and security,
both k and r are input to the confidence function, which now is named αflef .

Definition 8 (r-flefs). A signature scheme Σ admits a (k, r)-efficient and flexible verification re-
alization if there exist two positive integers k and r; an efficiently computable confidence function
αflef : {0, . . . , k} × {0, . . . , r} → [0, 1]; a set of admissible sequences of states S = {st(1), st(2), . . .}
(each sequence st(j) contains r+1 states, i.e., st(j) = (sti)

r
i=0, st0 = ∅) and a flexible verification al-

gorithm flefVer consisting of k+1 steps flefVer0, . . ., flefVerk satisfying the properties of correctness,
efficiency and security stated below.

r-Reuse k-Flexible Correctness For a given security parameter λ, for any key pair (sk, pk) ←
KeyGen(λ), for any one sequence of admissible states st ← S, st = (sti)

r
i=0, for any choice of r

message-signature pairs (µi,σi) with i ∈ {1, . . . , r}, µi ∈ M and σi such that Ver(pk, µi,σi) = 1
and for any sequence of interruption values ti ∈ {1, . . . , k}, it holds that:

Pr[flefVer(sti, pk, µi,σi, ti) = αflef(ti, i)] = 1 ∀ i ∈ {1, . . . , r}.

r0-Concrete Amortized Efficiency For a given security parameter λ, for any key pair (sk, pk) ←
KeyGen(λ), for any one sequence of admissible states st ← S, there exists a minimal positive
integer number r0 ≤ r for which it holds that:

r0−1∑
i=0

cost
(
flefVer(sti, pk, µi,σi, k)

)
< r0 · cost

(
Ver(pk, µ,σ)

)
(6)

r-bounded flexible security Figure 8 collects a description of our security game and experiment for
existential unforgeability under adaptive chosen message attack for signatures with flexible and
efficient verification (r-flefEUF).

Definition 9 (r-Bounded Flexible Security (r-flefEUF)). Let Σ be a signature scheme that
admits a non-trivial realization of (k, r)-efficient and flexible verification flefVer. Then for a given
security parameter λ the derived verification is existential unforgeable under adaptive chosen mes-
sage attack with flexible and efficient verification (r-flefEUF) if for all efficient PPT adversaries A
the success probability in the r-flefEUF experiment is:

Pr

[
Expr-flefEUFA,Σ,r (λ, k, r) = (ctr∗, t∗)

∧ (ctr∗, t∗) ̸= (0, 0)

]
≤ (1− αflef(t

∗, ctr∗)) + ε(λ).

26

r-flefEUF(Σ,λ, k)

1 : ctr← 0, st0 ← ∅, LS ← ∅

2 : (pk, sk)← KeyGen(1λ)

3 : (µ∗,σ∗, t∗)← AOSign,flefVer(pk, λ)

4 : return (ctr, µ∗,σ∗, t∗)

OflefVerk(stctr, pk, µ,σ, t
′)

1 : if (ctr ≥ r) return ⊥
2 : t← OInt(t′)

3 : α← flefVer(stctr, µ,σ, t)

4 : if (α ̸= ⊥)
5 : ctr← ctr + 1

6 : return α

Expr-flefEUFA,Σ,r (λ, k)

1 : (ctr, µ∗,σ∗, t′)← r-flefEUF(Σ,λ, k)

2 : β ← Ver(pk, µ∗,σ∗)

3 : t∗ ← OInt(t′)

4 : α← flefVerk(stctr, pk, µ
∗,σ∗, t∗)

5 : if (µ∗ ∈ LS ∨ α = ⊥ ∨ β = 1)

6 : return (0, 0)

7 : return (ctr, t∗)

OSignsk(µ)

1 : LS ← LS ∪ {µ}
2 : σ ← Sign(sk, µ)

3 : return σ

Fig. 8: Security model for signatures with stateful, (k, r)-efficient and flexible verification: security game, experiment
and oracles.

5.1 A Generic Compiler

First of all we notice that our compiler for efficient verification described in Section 3.1 is trivially
∞−flefEUF (i.e., existentially unforgeable against an unbounded polynomial number of verification
queries), by defining flefVer = (flefVer0, flefVer1) as shown in Figure 9. Recall that by assumption
st0 = ∅ and that for q exponential in the security parameter Theorem 1 shows that we can set
k = 1 and have unforgeability.

We now present a compiler for signatures with Mv-style verification and q = poly(λ) that
realizes efficient bounded flexible verification. Our r-flefs compiler builds on top of the two com-
pilers presented in Section 3.1 and 4.3. Intuitively, the problem with flexible verification is that
if interrupted after t < k steps the process may erroneously accept an invalid signature with a
non-negligible probability of 1/qt. Moreover, from one such forgery the adversary learns that the
employed zi’s satisfy a specific linear system. In particular, using the terminology introduced in the
proof of Theorem 1, given one ‘bad’ forgery, the adversary has higher chance to derive a new ‘bad’
forgery. In Section 4.3 we mitigate this leakage of information between queries by refreshing the
vectors in svk after every verification that outputs α > 0. This, however, has a clear negative impact
on the efficiency of our solutions. Here we want to prioritize efficiency at the cost of accuracy, and
investigate how the confidence function degrades when the same set of vectors zi is used to perform
r flex-verifications.

Our r-flefs compiler works essentially as the efficient verification compiler in Figure 7, except
that the offVer algorithm (that generates a fresh randomness for the secret verification key svk) is
run only once every r accepting verifications, i.e., verifications that return an outcome α ̸= ⊥. To
further optimize the scheme, we replace the GetZV algorithm by k algorithms GetZVi each of which
is run by the corresponding flefVeri. The behavior of GetZVi depends on the signature scheme and
in what follows we define it for each of the three major classes we identified in this paper.

GPV08 [20]: the GetZVi routine returns z′i = zi = ciM, and vi = [σ|H(µ)].
MP12 [28]: the GetZVi routine outputs z′i = [z̃i | z0i +

∑ℓ
j=1 µ[j]z

j
i |ci] and vi = [σ|u].

27

flefVer(st, pk, µ,σ, t) k = 1

1 : β ← 0

2 : if t < 0

3 : return ⊥
4 : if t > 1

5 : set t← 1

6 : for i = 0, t

7 : (st, β)← flefVeri(st, pk, µ,σ)

8 : if β = 0 return α = ⊥
9 : return α = (1− 1/qt)

αflef : {0, 1} × Z>0 → [0, 1]
αflef(t, ctr) = (1− 1

qt
− t · ctr

q
)

flefVer0(st, pk, µ,σ)

1 : parse st = (svk, ctr)

2 : if st = ∅
3 : svk← offVer(pk, 1)

4 : st← (svk, 1)

5 : else st← (svk, ctr + 1)

6 : return (st, 1)

flefVer1(st, µ,σ)

1 : parse st = (svk, ctr)

2 : β ← onVer(st, µ,σ)

3 : return (st, β)

Fig. 9: The trivial two-step flefVer solution based on our compiler for efficient verification (Figure 3).

Rainbow [14]: the GetZVi routine outputs z′i = zi = ciM, and vi = [s̃|s|1|h].

Finally, the confidence function αflef(·, ·) is defined as:

αflef(t, ctr) =

{(
1− 1

qt −
ctr
q

)
if t ¿0

0 if t =0
(7)

r0-concrete amortized efficiency. The cost of flefVeri varies depending whether i = 0 or i > 0.
When flefVer is run the first time (or with an empty state), the step flefVer0 generates the state. This
includes computing knm multiplications, in the worst case. After that, every step flefVeri computes
only (n+m) multiplications (the first term represents the cost of running GetZVi). Therefore,

cost
(
flefVer(st0, µ0,σ0, k)

)
= knm+ k(n+m) .

However, this is true only for the first execution of flefVer, as when executing the verification
1 < r0 < r times, the algorithm flefVer0 does not refresh the multipliers. Hence, for i > 0

cost
(
flefVer(sti, µi,σi, k)

)
= k(n+m) .

This yields
∑r0−1

i=0 cost
(
flefVer(sti, pk, µi,σi, k)

)
= knm + r0k(n +m). The cost of a verification is

dominated by cost
(
Ver(pk, µ,σ)

)
= nm multiplications, in the worst case. Therefore, Equation (6)

yields

knm+ r0k(n+m) < r0nm ⇒ r0 >
knm

nm− k(n+m)
.

From the above formula we can derive a lower bound on values of r that yield efficiency (recall that
by definition r0 ≤ r). A concrete security approach should lead to a meaningful upper bound on the
value r that can be safely used in realistic applications. Intuitively, lower values of r yield higher
accuracy (and unfogeability), higher ones guarantee better amortized efficiency.

28

flefVer(st, pk, µ,σ, t)

1 : β ← 0

2 : if t < 0

3 : return ⊥
4 : if t > k

5 : set t← k

6 : parse st = (svk, ctr)

7 : if st ̸= ∅ ∧ ctr > r

8 : set st← ∅
9 : for i = 0, . . . , t

10 : (st, β)← flefVeri(st, pk, µ,σ)

11 : if β = 0

12 : return α = ⊥
13 : ctr← ctr + 1 // update st

14 : return α = (1− 1/qt − ctr/q)

flefVer0(st, pk, µ,σ)

1 : parse st = (svk, ctr)

2 : if st = ∅
3 : svk← offVer(pk, k)

4 : st← (svk, 0) // ctr ← 0

5 : return (st, 1)

flefVer1(st, µ,σ)

1 : parse st = (svk, ctr)

2 : (z′,v)← GetZVi(svk, µ,σ)

3 : if z′ · v = 0 mod q

4 : return (st, 1)

5 : return (st, 0)

αflef : {0, . . . , k} × {0, . . . , r} → [0, 1] , αflef(t, ctr) = (1− 1
qt
− ctr

q
), if t > 0

Fig. 10: Generic compiler to obtain efficient and flexible verification of signature schemes with Mv-style verification
and q polynomial in the security parameter.

5.2 On the Concrete Security of r-flefs

The previous section seems to imply that flexibility and efficiency are in general two mutually
exclusive properties of a provably secure signature scheme. This is true when considering asymptotic
security definitions for lattice-based parameters that are (only) polynomial in λ. However, this does
not imply that efficient flexible signatures are always insecure in practice. On the contrary, in this
section we show that by limiting the amount of reuse of a secret verification key we get the best
of both worlds. Concretely, we show that it is possible to simultaneously be both efficient and
(arguably) accurate even for those signatures with Mv-style verification that rely on algebraic
structures of size q polynomial in the security parameter λ. The idea is to limit the amount of
verification queries the adversary is allowed to make during the security game. This simulates the
fact that, after r flef verifications that return a value α > 0, the verifier re-sets svk, i.e., the secret
randomness used for the efficient verification is refreshed. We keep track of this quantity via a
counter ctr, as done in the compiler presented before.

In the following we formally prove the security of our compiler and conclude with remarks on
actual values.

Theorem 4. Let Σ be a signature with Mv-style verification. Then our compiler for efficient and
flexible verification provided in Figure 10 is r-bounded flexible secure for r = k.

Proof. (sketch) The proof proceeds quite similarly to that of Theorem 2 for the case of q ≈ 2λ.
Let G0 be the r-flefEUF experiment in Figure 8, and define a series of qV hybrid games where, for
every i = 1 to qV , Gi is the same as Gi−1 except that the i-th query to flefVer is answered using

29

Table 3: Concrete accuracy and efficiency values for realistic parameter choices for latticse based signatures with
polynomila modulus: size of q = 230, n = 256, k = 5, and the worst case scenario where t = 1. Values are obtained
by setting αflef(1, r) = 1 − (r + 1)/q (cf. Equation (7)) to the stated value, and estracting the corresponding r from
the formula. Then, r is plugged in Equation (3.3) to derive the corresponding e.

minαflef 1− 10−2 1− 10−4 1− 10−6 1− 10−8

r ≈ 223 ≈ 216 1072 ≈ 210 9 ≈ 23

e ≈ 10−6 ≈ 10−4 0.0047 ≈ 10−2 1.94596 ≈ 10−0.2

the standard verification algorithm Ver. Let badi be the event that the adversary distinguishes Gi

from Gi−1 as in Equation (3). Then we have the following

Pr
[
Expr-flefEUFA,Σ (λ) = (j∗, t∗), j∗ > 0

]
= Pr[G0 = 1]

≤
j∗∑
i=1

Pr[badi] + Pr[Gj∗ = 1]

≤
j∗∑
i=1

1

qti
+

1

qt∗
≤ j∗

q
+

1

qt∗

where ti the interruption value used in the i-th verification, and t∗ is the interruption value used in
the verification of the forgery. Note that above we used Pr[Gj∗ = 1] ≤ 1

qt∗
since in that game the

vectors {c} have never been used until the forgery’s verification, hence they can be considered fresh.
Also, Pr[Gi = 1] = 0 for all i > j∗ since j∗ is the index of the last verification query. Therefore,
assuming t > 0 (otherwise, by construction αflef(0) = 0) we have:

Advr-flefEUFA,Σ (λ, k) = Pr
[
Expr-flefEUFA,Σ (λ) = (j∗, t∗), j∗ > 0

]
− (1− αflef(t

∗, j∗))

≤ j∗

q
+

1

qt∗
−
(
1−

(
1− 1

qt∗
− j∗

q

))
= 0

⊓⊔

Parameters for concrete security depend on the minimum accuracy that the verifier decides to
tolerate, i.e., the minimum value of αflef allowed. Such a value comes up in the worst-case scenario,
in which the adversary only allows for t = 1 verification steps. From the description of αflef given
in Equation (7), the bound r on the number of “bad forgeries” (i.e., signatures whose verification
with flexVer returns α > 0 while with Ver returns 0) our compiler can tolerate. Hence, r is the
maximum number of times the randomness svk can be reused while having a confidence level of at
least αflef . In Table 3 we report some values of r and αflef (1) for different parameters of the main
LBS considered thus far. We also provide the lower bound e on the amortized efficiency reached
by our compiler, if run on r flef verifications. The third column of Table 3 states the following
information: if we run our compiler on a lattice-based signature scheme with Mv-style verification
and modulus q = 230 of polynomial size, n = 256 with maximum confidence level k = 5, we get:

– A r-flefs scheme with minimal accuracy 0.0001%; in other words flefVer may accept an invalid
signature once every one million verifications, i.e., our compiler is correct 99.9999% of the times.

30

– For this accuracy level, we can ‘safely’ run at most r = 1072 flexible and efficient verifications
using the same svk.

– For this accuracy level, running flefVer this number of repetitions leads to an efficiency ratio
e = 0.0047, i.e., our flexible and efficient verification requires 200x less computation than running
the standard signature verification about a 1000 times.

Overall this implies the verification yields at least 30 bits of security. This number might seem low
when compared to asymptotic security. However, let us compare it with another real-world case,
and consider a credit card with a 4 digit PIN code. To mitigate the chance for an attack to be
successful the bank tolerates up to 3 unsuccessful trials. Thus, if the PIN is chosen at random, a
credit card is secured at a level equal to 3/10000 > 2−12 bits of security.

Moreover, even for high accuracy levels (where we expectflefVer to mistakenly not recognize
a forgery among one million signatures), we get astonishing efficiency gain, and can reuse the
randomness a surprisingly large number of times.

6 Conclusions and Future Work

We presented a study on how to achieve efficiency and flexibility in a signature verification. In
addition to putting forth these notions and formal models for them, we also presented two compilers
that allow one to realize efficient (resp. flexible) verification for a wide class of existing lattice-based
signatures. While our constructions show the feasibility of the desired properties, they also raise
some natural follow up questions. For instance, is it possible to realize a compiler for LBS with
q ∼ poly(λ) that simultaneously provides efficient and flexible verification? We address this question
in a positive way in Section 5, albeit in weaker security model. A solution with full fledged flexible
security remains an interesting open problem. Another question is, is it possible to generalize our
approach to other classes of digital signatures, e.g., code-based or LBS obtained through the Fiat-
Shamir heuristic or from ideal lattices? Finally, it would be worth to explore more applications of
flexible and efficient verification. On top of the already mentioned applications to real-time systems,
another possible venue is parallel and distributed verification of digital signatures. Consider a public
bulletin board that stores authenticated (signed) data. For security reasons, one may be tempted
to use post quantum signature schemes such as LBS. However, the large sizes of the public keys
and signatures and the slow speed of the verification are notorious bottlenecks to deploy them in
such scenarios. Using our approach, a pool of parties –acting as verifiers– can be made in charge
of running each a single verification check (i.e., flexVer includes only flexVer0 and flexVer1). In
terms of security, although a single verifier may be wrong with non-negligible probability 1/q, the
probability that k honest verifiers are all wrong becomes negligible already for k = 5. Finally, we
think that it would be interesting to explore the study of efficient and flexible verification also for
more cryptographic primitives, such as commitments and zero-knowledge proofs.

Acknowledgments. This work was partly funded by: ELLIIT, the Swedish Foundation for Strategic
Research grant RIT17-0035, SNSF, Swiss National Science Foundation project number 182452.
Part of this work was made while C.B. was at IBM Research - Zurich (CH) and visiting the
University of Aarhus (DK). This work has also received funding in part from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation program under
project PICOCRYPT (grant agreement No. 101001283), by the Spanish Government under projects
SCUM (ref. RTI2018-102043-B-I00), CRYPTOEPIC (ref. EUR2019-103816), and SECURITAS (ref.

31

RED2018-102321-T), and by the Madrid Regional Government under project BLOQUES (ref.
S2018/TCS-4339).

References

1. M. R. Albrecht, B. R. Curtis, A. Deo, A. Davidson, R. Player, E. W. Postlethwaite, F. Virdia, and T. Wunderer.
Estimate all the lwe, ntru schemes! In Security and Cryptography for Networks SCN, LNCS, 2018.

2. M. Backes, D. Fiore, and R. M. Reischuk. Verifiable delegation of computation on outsourced data. In 2013
ACM SIGSAC Conference on Computer and Communications Security, CCS., pages 863–874. ACM, 2013.

3. M. Bellare, C. Namprempre, D. Pointcheval, and M. Semanko. The one-more-rsa-inversion problems and the
security of chaum’s blind signature scheme. J. Cryptology, 16(3):185–215, 2003.

4. R. Bendlin, S. Krehbiel, and C. Peikert. How to share a lattice trapdoor: Threshold protocols for signatures and
(H)IBE. In Applied Cryptography and Network Security ACNS, LNCS, 2013.

5. W. Beullens, A. Szepieniec, F. Vercauteren, and B. Preneel. Luov: Signature scheme proposal for nist pqc project.
2019.

6. D. Boneh and D. M. Freeman. Linearly homomorphic signatures over binary fields and new tools for lattice-based
signatures. In International Workshop on Public Key Cryptography, pages 1–16. Springer, 2011.

7. D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing. In International Conference on
the Theory and Application of Cryptology and Information Security, pages 514–532. Springer, 2001.

8. X. Boyen. Lattice mixing and vanishing trapdoors: A framework for fully secure short signatures and more. In
International Workshop on Public Key Cryptography (PKC), pages 499–517. Springer, 2010.

9. D. Cash, D. Hofheinz, E. Kiltz, and C. Peikert. Bonsai trees, or how to delegate a lattice basis. In Annual
International Conference on the Theory and Applications of Cryptographic Techniques, pages 523–552. Springer,
2010.

10. D. Catalano, D. Fiore, and B. Warinschi. Homomorphic signatures with efficient verification for polynomial
functions. In Advances in Cryptology – CRYPTO, 2014.

11. D. Chaum. Blind signatures for untraceable payments. In Advances in Cryptology - CRYPTO, pages 199–203.
Springer, 1983.

12. J. Coron and A. Gini. A polynomial-time algorithm for solving the hidden subset sum problem. In D. Micciancio
and T. Ristenpart, editors, Advances in Cryptology - CRYPTO 2020 - 40th Annual International Cryptology
Conference, CRYPTO 2020, Santa Barbara, CA, USA, August 17-21, 2020, Proceedings, Part II, volume 12171
of Lecture Notes in Computer Science, pages 3–31. Springer, 2020.

13. R. Del Pino, V. Lyubashevsky, G. Neven, and G. Seiler. Practical quantum-safe voting from lattices. In Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pages 1565–1581,
2017.

14. J. Ding, M.-S. Chen, A. Petzoldt, D. Schmidt, and B.-Y. Yang. Rainbow. Available at https://csrc.nist.gov/
projects/post-quantum-cryptography/round-2-submissions. Accessed: 2020-09-21.

15. J. Ding and D. Schmidt. Rainbow, a new multivariable polynomial signature scheme. In Applied Cryptography
and Network Security, ACNS. Proceedings, volume 3531 of Lecture Notes in Computer Science, pages 164–175,
2005.

16. D. Fiore, A. Mitrokotsa, L. Nizzardo, and E. Pagnin. Multi-key homomorphic authenticators. In International
Conference on the Theory and Application of Cryptology and Information Security - ASIACRYPT, 2016.

17. M. Fischlin. Progressive verification: The case of message authentication. In International Conference on Cryp-
tology in India, pages 416–429. Springer, 2003.

18. N. Gama and P. Q. Nguyen. Predicting lattice reduction. In Advances in Cryptology - EUROCRYPT. Proceedings,
pages 31–51, 2008.

19. R. Gennaro, C. Gentry, and B. Parno. Non-interactive verifiable computing: Outsourcing computation to un-
trusted workers. In CRYPTO, 2010.

20. C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and new cryptographic constructions.
In ACM Symposium on Theory of Computing. Proceedings, pages 197–206, 2008.

21. S. Gorbunov, V. Vaikuntanathan, and D. Wichs. Leveled fully homomorphic signatures from standard lattices.
In ACM symposium on Theory of computing. Proceedings, pages 469–477. ACM, 2015.

22. S. Gorbunov and D. Vinayagamurthy. Riding on asymmetry: Efficient ABE for branching programs. In T. Iwata
and J. H. Cheon, editors, Advances in Cryptology - ASIACRYPT. Proceedings, Lecture Notes in Computer
Science, 2015.

32

https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions

23. S. Katsumata and S. Yamada. Group signatures without NIZK: from lattices in the standard model. In Advances
in Cryptology - EUROCRYPT, 2019.

24. L. Lamport. Constructing digital signatures from a one-way function. Technical report, Technical Report CSL-98,
SRI International, 1979.

25. D. V. Le, M. Kelkar, and A. Kate. Flexible signatures: Making authentication suitable for real-time environments.
In European Symposium on Research in Computer Security, (ESORICS), pages 173–193. Springer, 2019.

26. L. P. Malasinghe, N. Ramzan, and K. Dahal. Remote patient monitoring: a comprehensive study. Journal of
Ambient Intelligence and Humanized Computing, 10(1):57–76, 2019.

27. R. C. Merkle. A certified digital signature. In Conference on the Theory and Application of Cryptology -
ASIACRYPT, pages 218–238. Springer, 1989.

28. D. Micciancio and C. Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller. In EUROCRYPT, 2012.
29. M. S. E. Mohamed and A. Petzoldt. RingRainbow - An efficient multivariate ring signature scheme. In Progress

in Cryptology - AFRICACRYPT. Proceedings, volume 10239 of Lecture Notes in Computer Science, pages 3–20,
2017.

30. T. Plantard, A. Sipasseuth, C. Dumondelle, and W. Susilo. Drs: diagonal dominant reduction for lattice-based
signature. In PQC Standardization Conference, 2018.

31. A. Sipasseuth, T. Plantard, and W. Susilo. Using freivalds’ algorithm to accelerate lattice-based signature
verifications. In International Conference on Information Security Practice and Experience, pages 401–412.
Springer, 2019.

32. A. R. Taleb and D. Vergnaud. Speeding-up verification of digital signatures. Journal of Computer and System
Sciences, 2020.

33. S. Tayeb, M. Pirouz, G. Esguerra, K. Ghobadi, J. Huang, R. Hill, D. Lawson, S. Li, T. Zhan, J. Zhan, et al.
Securing the positioning signals of autonomous vehicles. In 2017 IEEE International Conference on Big Data,
2017.

34. R. Tsabary. An equivalence between attribute-based signatures and homomorphic signatures, and new construc-
tions for both. In Theory of Cryptography TCC, 2017.

33

	 On the Efficiency and Flexibility of Signature Verification

