
Progressive And Efficient Verification For Digital Signatures

Cecilia Boschini1,2, Dario Fiore3, and Elena Pagnin4

1 Technion, Haifa, Israel
2 Reichman University, Herzliya, Israel

cecilia.bo@cs.technion.ac.il
3 IMDEA Software Institute, Madrid, Spain

dario.fiore@imdea.org
4 Lund University, Lund, Sweden

elena.pagnin@eit.lth.se

Abstract. Digital signatures are widely deployed to authenticate the source of incoming information,
or to certify data integrity. Common signature verification procedures return a decision (accept/reject)
only at the very end of the execution. If interrupted prematurely, however, the verification process
cannot infer any meaningful information about the validity of the given signature. We notice that this
limitation is due to the algorithm design solely, and it is not inherent to signature verification.
In this work, we provide a formal framework to handle interruptions during signature verification.
In addition, we propose a generic way to devise alternative verification procedures that progressively
build confidence on the final decision. Our transformation builds on a simple but powerful intuition
and applies to a wide range of existing schemes considered to be post-quantum secure including the
NIST finalist Rainbow.
While the primary motivation of progressive verification is to mitigate unexpected interruptions, we
show that verifiers can leverage it in two innovative ways. First, progressive verification can be used to
intentionally adjust the soundness of the verification process. Second, progressive verifications output
by our transformation can be split into a computationally intensive offline set-up (run once) and an
efficient online verification that is progressive.

Keywords: Digital Signatures, Amortized Efficiency, Flexible Verification, Progressive Verification,
Post-Quantum Security.

1 Introduction
Digital signatures allow one party (the signer) to use her secret key to authenticate a message
in such a way that, at any later point in time, anyone holding the corresponding public key (the
verifiers) can check its validity. The typical nature of signature verification procedures is monolithic:
the validity of a signature is determined only after a sequence of tests is completed. In particular,
if the execution is interrupted in media res (Latin for “in the midst of things”), no conclusive
answer can be drawn from the outcomes of the partial tests. Although this monolithic nature is not
a burden in many application scenarios, e.g., validating financial transactions (Bitcoin protocol),
installing certified software updates (Android OS), or delivering e-services (e-Health, electronic tax
systems), it is a major limitation to the adoption of digital signatures in cyber-physical systems
[30] and in secure eager or speculative executions [22], where the speed at which verification is
performed plays a crucial role.

Le et al. [21] proposed to address unexpected interruptions using a new cryptographic primitive
called signatures with flexible verification. In a nutshell, such schemes admit a verification algorithm
that increasingly builds confidence on the validity of the signature while it performs more steps.
In this way, at the moment of an interrupt, the verifier is left with a value α ∈ [0, 1] ∪ ⊥ that

probabilistically quantifies the validity of the signature, or rejects it. While the primary motivation
of flexible verifications is to mitigate unexpected interruptions; we observe that the overarching idea
of progressive verification has further impacts. In particular, progressive verification can be used
to customize the soundness of the verification process. For example, a smart device may decide to
verify at a 30-bit security level, if the signatures come from specific sources or the battery is below
30%. From the theoretical perspective, progressive verification (as introduced in this work later on)
draws interesting connections between classical, information-theoretic and post-quantum security
notions.

1.1 Our Contribution
This work sets out to dismantle the monolithic nature of signature verification. by designing new
verification methods for existing signature schemes. Concretely, we investigate two approaches. The
first one is to speed-up the verification process for polynomially many signatures by the same signer
leveraging a one-time computation on the public key (efficient verification). The second approach is
to re-design the verification process so that it allows one to extract sensible information even when
the algorithm is executed only partially (progressive verification). In this setting it is of particular
interest to investigate the security implications of this new model and what additional features it
may bring.

In detail, we introduce formal definitions and security models for both efficient (Section 2)
and progressive (Section 3) verification. In terms of realizations, we focus on a specific family of
schemes that we call with Mv-style verification (in brief, the verification includes matrix-vector
multiplications). For schemes in this class, we propose two compilers, i.e., two information-theoretic
transformations that turn monolithic Mv-style verifications into provably-secure efficient (Section
4.1), or progressive (Section 4.2) ones. Our compilers apply to multi-variate polynomials based
schemes including the NIST finalist Rainbow[11,12] and LUOV [5]; and lattice-based schemes in-
cluding GPV [16] (hash & sign), MP [24] (Boyen/BonsaiTree), and GVW [17] (homomorphic). A
large part of the security proof is devoted to a detailed analysis of the leakage due to verification
queries (that now involve secret randomness). We consider this leakage analysis a result of indepen-
dent interest as it can be used to estimate leakage in similar information-theoretic approaches to
provably secure algorithmic speed-ups or eager executions. Our models for efficient and progressive
verification can easily be extended to include signatures with advanced properties including: ring,
threshold, homomorphic multi-key, attribute-based and constrained.

1.2 Related Work
The problem of trading security for less computation during a verification has been considered first
by Fischlin [14] and Armknecht et al. [1] in the context of message authentication codes (MACs).
Le et al. [21] and by Taleb and Vergnaud [28] consider the same question for digital signatures.

Le et al. [21] introduce the notion of flexible signatures and a construction based on the Lamport-
Diffie one-time signature [20] with Merkle trees. Taleb and Vergnaud [28] put forth realizations of
progressive verification for three specific signature schemes (RSA, ECDSA and GPV). Differently
from us, both works demand a modification of the signing or key generation algorithm of the original
signature scheme and also a time variable be input to the progressive or flexible verification.

One main difference between our model and those of [14,21,28] is that we aim to capture
progressive verification as an independent feature that can enhance existing schemes, rather than a

2

standalone primitive that requires one to change some of the core algorithms of a signature scheme.
This is in a way more challenging as it leaves less design freedom when crafting these algorithms. In
addition, we define progressive verification as a stateful algorithm in contrast to stateless [14,21,28]:
although this makes our model slightly more involved, it is comparably more general and can
capture more (existing) schemes.

Our model for efficient verification is close the offline-online paradigm used in homomorphic
authentication [2,9] and verifiable computation [15]; where a preprocessing is done with respect to
a function f , and its result can be used to verify computation results involving the same f . An early
instantiation of this technique for speeding up the verification of Rabin-Williams signatures appears
in [4]. More recently, Sipasseuth et al. [27] investigate how to speed up lattice-based signature
verification while reducing the memory (storage) requirements. The overall idea in [27] is similar to
ours (and inspired to Freivalds’ Algorithm): to replace the inefficient matrix multiplication in the
verification with a probabilistic check via an inner product computation. However, [27] focuses on
the DRS signature [26], and investigates the trade-off between pre-computation time for verification
and memory storage for this scheme only. Moreover, the work lacks a formal, abstract analysis of
the security impact of such a shift in the verification procedure. In contrast, we devise a general
framework to model ‘more efficient’ and ‘partial’ signature verification. Albeit we developed our
approach independently of [27], our techniques can be seen as a generalization of what presented
in [27].

Notation In what follows, λ denotes the parameter for computational security and Σ = (KeyGen,
Sign,Ver) a tuple of algorithms identifying a digital signature scheme that satisfies the syntax and
the properties of correctness and existential unforgeability as defined in [28].

2 Efficient Verification For Digital Signatures

The core idea of efficient signature verification is to split the verification process into two steps.
The first step is a one-time and signature-independent setup called ‘offline verification’. Its purpose
is to produce randomness to derive a (short, secret) verification key svk from the signer’s public
key pk. Note that the offline verification does not change the signature, which remains publicly
verifiable; instead it ‘randomizes’ pk to obtain a concise verification key svk that essentially enables
one to verify signatures with (almost) the same precision as the standard verification, but in a more
efficient way. We remark that for secure efficient verification svk should be hidden to the adversary,
yet, the knowledge of svk gives no advantage in forging signatures verified in the standard way using
just pk. The second verification step consists of an ‘online verification’ procedure. It takes as input
svk and can verify an unbounded number of message-signature pairs performing significantly less
computation than the standard verification algorithm. For security, it is fundamental svk remains
unknown to the adversary. We remark that generating svk during the offline phase achieves efficient
online verification with no impact on the original signing or key generation algorithms, which was
a drawback of previous work [21,28].

3

2.1 Syntax For Efficient Verification

Our definition of efficient verification lets the verifier set the confidence level k at which she wishes
to carry out the signature verification. Notably k determines the amount of computation to be
performed and thus plays a central role in the security and the efficiency of the new verification.

Definition 1 (Efficient Verification). A signature scheme Σ admits efficient verification if there
exist two PPT algorithms (offVer, onVer) with the following syntax:5

offVer(pk, k): this is a randomized algorithm that on input a public verification key pk, and a positive
integer k ∈ {1, . . . , λ} (where λ is the security parameter of Σ), returns a secret verification key
svk.

onVer(svk, µ,σ): on input a secret verification key svk, a message µ, and a signature σ, the efficient
online verification algorithm outputs 0 (reject) or 1 (accept).

For convenience we will refer to the signature scheme augmented with the efficient verification
algorithms as ΣE = (Σ, offVer, onVer), and to the integer value k as confidence level.

To be meaningful, a realization of efficient verification needs to satisfy the properties of correct-
ness, concrete atomized efficiency and security.

Definition 2 (Correctness of Efficient Verification). A scheme ΣE = (Σ, offVer, onVer) re-
alizes efficient verification correctly if the following conditions hold. For a given security parameter
λ, for any honestly generated key pair (sk, pk) ← KeyGen(λ), for any message µ ∈ M , for any
signature σ such that Ver(pk, µ,σ) = 1, and for any confidence level k ∈ {1, . . . , λ}; it holds that
Pr[onVer(svk, µ,σ) = 1 | svk← offVer(pk, k)] = 1 for any choice of randomness used in offVer.

Amortized efficiency relies on the fact that running offVer once and reuse its output to run onVer
r times is computationally less demanding than running the standard verification Ver r times.
To formalize this, we will use the function cost(·) that given as input an algorithm returns its
computational cost (in some desired computational model). In addition, we parameterize concrete
amortized efficiency with two intertwined variables: r0 (number of instances of verification), and
e0 (ratio between the cost of r0 efficient verifications over r0 standard verifications). The lower the
value of r0 the sooner ΣE amortizes the computational cost of offVer. The lower the value of e0 the
more efficient ΣE is with respect to the standard verification.

Definition 3 (Concrete Amortized Efficiency). A scheme ΣE realizes (r0, e0)-concrete amor-
tized efficient verification for Σ if given a security parameter λ and a confidence level k; for any
key pair (sk, pk)← KeyGen(λ), for any pair (µ,σ) with µ ∈ M and σ such that Ver(pk, µ,σ) = 1;
there exist a non-negative integer r0, and a real constant 0 < e0 < 1 such that:

∀ r ≥ r0 ,
cost

(
offVer(pk, k)

)
+ r · cost

(
onVer(svk, µ,σ)

)
r · cost

(
Ver(pk, µ,σ)

) < e0 (1)

5 Here pk denotes a public verification key output by KeyGen.

4

2.2 Security Model For Efficient Verification

Intuitively, ΣE realizes efficient verification in a secure way if onVer accepts a signature that would
be rejected by Ver only with negligible probability. In the security game (see Figure 1), the adversary
A has access to the signing oracle OSign as well as the efficient verification oracle OonVer. The goal
of the adversary is to produce a signature σ∗ for a message µ∗ that was never queried to OSign
and for which Ver returns 0 (reject) and onVer returns 1 (accept).

cmvEUF (λ, Σ, k)

1 : LS ← ∅

2 : (pk, sk)← KeyGen(1λ)

3 : svk← offVer(pk, k)

4 : (µ∗,σ∗)← AOSign,OonVer(pk, k)

5 : return (µ∗,σ∗)

OSignsk(µ)

1 : LS ← LS ∪ {µ}
2 : σ ← Sign(sk, µ)

3 : return σ

ExpcmvEUF
A,Σ (λ, k)

1 : (µ∗,σ∗)← cmvEUF(λ,Σ, k)

2 : if µ∗ ∈ LS

3 : return 0

4 : if Ver(pk, µ∗,σ∗) = 1

5 : return 0

6 : b← onVer(svk, µ∗,σ∗)

7 : return b

OonVersvk(µ,σ)

1 : b← onVer(svk, µ,σ)

2 : return b

Fig. 1: Security model for efficient verification of signatures: existential unforgeability under adaptive chosen message
and verification attack (security game, experiment and oracles). A is a PPT algorithm that can query the oracles in
an adaptive and parallel way. LS is the list of messages queried to the signing oracle.

Definition 4 (Security of Efficient Verification). A scheme ΣE realizes a secure efficient
verification for Σ if for a given security parameter λ and for any confidence level k ∈ {1, . . . , λ},
for all PPT adversaries A the success probability in the cmvEUF experiment reported in Figure 1
is negligible, i.e.: AdvcmvEUF

A,Σ (λ, k) = Pr
[
ExpcmvEUF

A,Σ (λ, k) = 1
]
≤ ε(λ, k).

Line 5 of the cmvEUF experiment excludes forgeries against the original signature scheme. This is
justified by the correctness of efficient verification and by the fact that Σ is existentially unforgeable.
Notably, both the security game and the advantage depend on the confidence level k and assume
all algorithms are entirely executed.

3 Progressive Verification For Digital Signatures

The goal of progressive verification is to incrementally increase the confidence on the validity
of a signature, for a given message against a public key. Intuitively, the “confidence” should be
proportional to the amount of computation invested: the further in the execution we go, the higher
the accuracy of the decision, and thus the confidence of the final outcome (accept/reject).

5

3.1 Signatures With Progressive Verification

Taleb and Vergnaud give a very intuitive definition of progressive verification for digital signatures
[28]. They model digital signatures with progressive verification as a 4-tuple of PPT algorithms
(KeyGen,Sign,Ver,ProgVer) such that: Σ = (KeyGen,Sign,Ver) is a correct digital signature scheme;
and ProgVer takes in input a public verification key pk, a message µ, a signature σ, and some timing
parameter t, and outputs α ∈ {[0, 1] ∩ R} ∪ {⊥}, interpreted as an estimate on the accuracy of its
decision whether the signature be valid. Moreover, the scheme satisfies the following properties:

Correctness If for some tuple of inputs ProgVer(pk, µ,σ, t) outputs ⊥, then Ver(pk, µ,σ) = 0.
Security If for some tuple of inputs ProgVer(pk, µ,σ, t) outputs α ∈ [0, 1], then this implies

Pr[Ver(pk, µ,σ) = 0] ≤ 1− α (where the probability is taken over the random coins of ProgVer).
In a nutshell, if α = ⊥, the progressive verification deems the signature to be invalid (with 100%

accuracy). If α ∈ [0, 1], the algorithm considers the signature valid, and α tells how accurate this
statement is. Since progressive verification may be interrupted at any arbitrary point t during its
execution, in practice α is (the output of) a function αprog(t) that “converts” the progress in the
verification process into a value representing the accuracy of a positive outcome.

Shortcomings First, similarly to [21], also [28] sees signatures with progressive verification as a
stand alone primitive. In contrast we view progressive verification as a feature that can augment
existing schemes without requiring change to the core algorithms. Second, the definition lacks a
precise notion of time complexity and does not model how unexpected interrupts are handled.
The model we introduce in the remainder of this section takes care of these aspects. In addition,
we generalize progressive verification to be (possibly) stateful, which can capture more signature
schemes as well as reuse the same syntax to model both efficient and progressive verification (see
the Appendix C).

3.2 Syntax For Progressive Verification

In order to model progressive verification as an add-on algorithm we need to derive from Ver
an alternative algorithm ProgVer (as introduced in Section 3.1), that builds confidence on the
final verification outcome in an increasing way. Without loss of generality, this task boils down
to identifying a sequence of T + 1 atomic instructions that we call ProgStep with the following
properties. Each ProgStep performs a check of some sort on the input it receives. If one step
fails, the progressive verification returns α = ⊥. If none of the initial t steps fails, the progressive
verification returns the output of a function αprog(t) ∈ [0, 1] that measures the probability the input
will be accepted by Ver. The fact of increasingly building confidence is reflected by functions αprog

that are non-decreasing in t, the number of instructions checked before returning the answer. Figure
1 in [28] provides an intuitive and graphical representation of this statement.

Definition 5 (Stateful Progressive Verification). Let T ∈ Z>0 and αprog : {0, . . . , T} → [0, 1]
be an efficiently computable function. A signature scheme Σ admits (T, αprog)-progressive verification
if there exists a stateful PPT algorithm ProgVer that takes in input pk, µ,σ and some interruption
parameter t ∈ Z>0, outputs α ∈ {[0, 1] ∩ R} ∪ {⊥}, and satisfies the following syntax:

6

ProgVer(st, pk, µ,σ, t)

1 : α← ⊥
2 : if t < 0 : return ⊥
3 : if t > T : set t← T

4 : for j = 0, . . . , t

5 : (b, st)← ProgStepj(st, pk, µ,σ)

6 : if (b = 0) : return ⊥
7 : else (b = 1) : α← αprog(j)

8 : return α

For convenience we will refer to the signature scheme augmented with progressive verification as
ΣP = (Σ,ProgVer, T, αprog).

Concretely, ProgVer is made of T+1 algorithms ProgStepj , for j = 0 to T , that progressively update
the state st. We remark that the formalization into steps is without loss of generality: Ver realizes
a trivial progressive verification for T = 0 where the only step is Ver itself. Finally, the interruption
value t is input to ProgVer only, and it is not given to each ProgStepj . Thus our syntax models the
fact that the steps are agnostic of the interruption value and must work without knowing when to
stop, which is essential to capture arbitrary interruptions.

Correctness essentially states that signatures accepted by the standard verification should also
be accepted by the progressive one, with the highest confidence allowed by the number of steps
performed.

Definition 6 (Progressive Verification Correctness). Let ΣP be a signature scheme with
progressive verification; ProgVer satisfies progressive verification correctness if, for any value t ∈
{0, . . . , T}, for any given security parameter λ, for any key pair (sk, pk) ← KeyGen(λ), for any
admissible state st generated by ProgVer, for any admissible message, given a signature σ such that
Ver(pk, µ,σ) = 1 it holds that:
Pr[ProgVer(st, pk, µ,σ, t) = αprog(t)] = 1.

We follow the approach of [21] and let the progressive verification algorithm output a value α that
either rejects the signature (α = ⊥), or accepts it with certainty α in the real interval [0, 1]. We
use the same interruption variable t as in [21] to model runtime interruptions of the algorithm
execution.6

Efficient vs. Progressive Verification At a first glance, efficient verification and progressive
verification seem to have the common goal of reducing the computational cost of a signature verifi-
cation. However the way this objective is achieved in the two models is quite different. In progressive
verification, the verifier (and thus each ProgVeri) is unaware of when the computation will be in-
terrupted, and its execution is independent of t. In contrast, in efficient verification the verifier
(running offVer) determines the confidence level k prior to any actual verification (running onVer).
In the latter, the (online) verification is aware of the confidence level k (seen as interruption value),
and adapts its execution to k.

Stateful vs Stateless Verification We define progressive verification as stateful. This allows
us to keep the framework as general as possible. Stateless progressive verification, á la [21,28], can
be obtained setting st to ∅, this also removes the need for analyzing any cross-query leakage due
to state reuse.

6 Our αprog(·) is essentially the inverse of the function iExtractΣ(·) in [21].

7

3.3 Security Model For Progressive Verification
Our notion of unforgeability states that signatures rejected by the standard verification should
also be rejected by the progressive one, except for an inaccuracy factor due to interruptions. More
formally, Ver and ProgVer should have the same behavior (accept/reject) with discrepancies hap-
pening with probability negligibly close to αprog(t).
Our security game has three main differences compared to [21]:

State in order to take into account that ProgVer maintains a possibly non-trivial state we allow
the adversary A to interact with the progressive verification oracle OProgVer during the query
phase, as well as the signing oracle OSign, in a concurrent manner.

Interruption queries to OProgVer have the form (µ,σ, t′), where t′ is the desired interruption
value submitted by A (and chosen adaptively).

Output instead of a single bit, our experiment returns a pair (b, t∗). The bit b ∈ {0, 1} flags
the absence or the potential presence of a forgery, while t∗ ∈ {0, . . . , T} reports the interruption
position used in the final progressive verification. Including t∗ in the output of the experiment
allows us to measure security in terms of how close the probability of A wining the experiment is
from the expected accuracy value 1− αprog(t

∗).

progEUF(ΣP , λ)

1 : LS ← ∅
2 : st← ∅

3 : (pk, sk)← KeyGen(1λ)

4 : (µ∗,σ∗, t′)← AOSign,OProgVer(pk, λ)

5 : return (µ∗,σ∗, t′)

ExpprogEUFA,ΣP (λ)

1 : (µ∗,σ∗, t′)← progEUF(Σ, λ)

2 : β ← Ver(pk, µ∗,σ∗)

3 : t∗ ← OInt(t′)

4 : α← ProgVer(st, pk, µ∗,σ∗, t∗)

5 : if µ∗∈LS ∨ α = ⊥ ∨ β = 1

6 : return (0, t∗)

7 : return (1, t∗)

OSignsk(µ)

1 : LS ← LS ∪ {µ}
2 : σ ← Sign(sk, µ)

3 : return σ

OProgVerst,pk(µ,σ, t
′)

1 : t← OInt(t′)

2 : α← ProgVer(st, pk, µ,σ, t)

3 : return α

Fig. 2: Security model for progressive verification of signatures: existential unforgeability under adaptive chosen mes-
sage and progressive verification attack (security game, experiment and oracles). A can query the oracles adaptively,
in parallel and polynomially many times in λ. LS is the list of messages queried to the signing oracle.

Definition 7 (Security of Progressive Verification (progEUF)). Let Σ be a signature scheme
that admits a progressive verification realization ΣP . ΣP realizes a secure progressive verification
for Σ if for any given security parameter λ, for all PPT adversaries A the success probability in
the progEUF experiment in Figure 2 is negligible, i.e.,:

AdvprogEUFA,ΣP (λ) = Pr
[
ExpprogEUFA,ΣP (λ) = (1, t∗)

]
− (1− αprog(t

∗)) = ε ≤ ε(λ).

Intuitively, Definition 7 states that an adversary has only negligible probability to make ProgVer
output a confidence value α∗ higher than the expected one. Let bad(t) denote the probability
of accepting a forgery after t verification steps. Then by setting αprog(t) = 1 − bad(t), we get
AdvprogEUFA,ΣP (λ) = Pr

[
ExpprogEUFA,ΣP (λ) = (1, t∗)

]
− bad(t∗) ≤ ε(λ).

In this work, we prove security in the strongest model where t′ = t, i.e., A has the power to
choose when to stop the verification. Since we put no restriction on the values t queried by A to
OProgVer during the game, we will see that by running OProgVer on ‘too few’ steps, A may learn
information about the internal state st.

8

Modelling Interruptions. In [21], unexpected interruptions are modeled via an interruption
oracle iOracle(λ) that returns a value t∈{0, . . . , T} used by the progressive verification. However,
it is not clear whether A may control iOracle or not. We overcome these ambiguities by letting
A output t′ with every progressive verification query. For the purpose of this work, we consider
the strongest security model in which the interruption oracle returns the adversary’s value, i.e.,
t← OInt(t′) with t = t′. This resembles side-channel attack settings, where A may try to freeze the
execution of the verification. It is possible to relax and generalize our model by setting a different
interruption oracle OInt, programmed at the beginning of the game. At each verification query,
OInt takes as input the adversary’s suggestion for an interruption position t′ and outputs the value
t to be used by the progressive verification. In case t = t′, we are modelling side channel attacks,
but we can also let t be independent of t′. A realistic definition of OInt is outside the scope of this
work.

4 Constructions
In this section, we present generic transformations (compilers) that augment a signature scheme Σ
with either efficient (Section 4.1) or progressive verification (Section 4.2).
Our technique works for a specific class of signature schemes that we call with Mv-style verification.
In such schemes, Ver can be seen as the combination of two types of verification checks: a matrix-
vector multiplication (referred to as Mv = 0, for appropriate matrix M and vector v) and other
generic checks (collected in the Check subroutine), see Figure 3 for details and an explanatory
example. Among the schemes with Mv-style verification we highlight some of the seminal lattice-
based signatures [7,8,16,24], homomorphic signatures [6,13,17], and multivariate signatures [5,12].

Ver(pk, µ,σ)

// INITIALIZE ACCEPTANCE BITS

1 : b1 ← 0, b2 ← 0

// SPLIT pk INTO MARTIX - AUX. DATA

2 : parse pk = (PK,PK.aux)

// ADDITIONAL VERIFICATION CHECKS

3 : b1 ← Check(PK.aux, µ,σ)

// FORMATTING Mv-STYLE CHECK

4 : (M,v)← GetMv(pk, µ,σ)

// MATRIX-VECTOR MULT. CHECK

5 : if (M · v = 0)

6 : b2 ← 1

7 : return
(
b1 ∧ b2

)

Example: Ver(pk, µ,σ) for GPV08 [16]

1 : b1 ← 0, b2 ← 0

2 : parse pk = (PK,PK.aux)

set PK ← A

set PK.aux← (H, β)
3 : Check(PK.aux, µ,σ) :

if ∥σ∥ < β set b1 ← 1

4 : GetMv(pk, µ,σ) :

set M← [A| − Irows(A)]

set u← H(µ) ∈ Zrows(A)×1
q

set v← [σT |uT]T

5 : if (M · v = 0rows(A)×1 mod q)

6 : set b2 ← 1

7 : return
(
b1 ∧ b2

)
Fig. 3: General structure of a signature with Mv-style verification (on the left); an instructive example: the GPV08
[16] signature verification (on the right).

4.1 A Compiler For Efficient MV-Style Verifications

We present a generic way to realize efficient verification for signatures with Mv-style verification,
whenever the computational complexity of Ver is dominated by the matrix-vector multiplication,
i.e., cost(Check) << cost(Mv) ∼ mn field multiplications (for M ∈ Zn×m

q).

9

Our compiler for efficient verification is detailed in Figure 4 with a sketch of instantiation for
the lattice-based scheme GPV08 [16] as a running example. Further details on this scheme as well
as instantiations and details on the concrete efficiency estimates for MP12 [24], Rainbow [12] and
LUOV [5], are deferred to Appendix B. Table 1 summarizes the efficiency results. We obtain secure
efficient online verification using as little as 0.4% (resp. 50%) of the computational cost of the
standard verification for lattice-based signatures on exponentially large fields (resp. for Rainbow).

We start by a quick recap of the notation we use when describing our compilers.
Notation. We denote the set of real values by R, integers by Z, natural numbers by N, and
finite fields of integers by Zq, where q is a (power of a) prime number. We denote vectors by bold,
lower-case letters, and matrices by bold, upper-case letters. We use v[i] to identify the i-th entry
of a vector v, and A[i, j] to identify the entry in the i-th row and j-th column of a matrix A. The
norm of a vector is denoted as ∥v∥ and unless otherwise specified, it is assumed to be the infinity
norm, i.e., ∥v∥ = maxi{|v[i]|}. AT denotes the transposed of a matrix. We use rows(A), cols(A),
and rk(A) to respectively refer to the number of rows, the number of columns, and the rank of a
matrix A; 11×n (resp. 01×n) denotes the row vector of length n that has all entries equal to 1 (resp.
0); while In denotes the n by n identity matrix of dimension n. We omit the explicit dimensions
when they are clear from the context. We denote the span (linear space) generated by a set of
vectors z1, . . . , zi in the discrete vector space Zm

q as ⟨z1, . . . , zi⟩q = {z ∈ Zm
q : z =

∑i
j=1 ajzj

mod q, ∃a1, . . . , ai ∈ Zq}. We denote by L1|L2 the result of appending a list of elements L2 to L1.
Given two values a < b, we denote a continuous interval as [a, b] ⊆ R, and a discrete interval as
{a, . . . , b} ⊆ Z.

offVer(pk, k)

// PARSE PUBLIC KEY (FOR EFFICIENCY)

1 : parse pk = (PK,PK.aux)

// e.g., in GPV08 PK = A, PK.aux = H,

// GENERATE PUBLIC MATRIX OF CORRECT DIMENSIONS

2 : M← GetM(PK) // e.g., in GPV08 M = (A| − 1n×n)

// CHECK PARAMETER CONSISTENCY

3 : if (k > rows(M) ∨ k < 1) return ⊥
// GENERATE RANDOMIZED KEY

4 : Z← GetZ(M, k)

i : z0 ← 01×cols(M) // for good indexing purpose

ii : for j = 1, . . . , k

iii : c←$ Z1×rows(M)
q

iv : z← cM ∈ Z1×cols(M)
q

v : if z ∈ ⟨z0, . . . , zj−1⟩q go to line iii.

vi : zj ← z // store new linearly independent vector

vii : set Z← [zT1 | . . . |zTk]T ∈ Zk×cols(M)
q

5 : return svk←
(
k,Z, PK.aux

)
(a) The offline verification algorithm.

onVer(svk, µ,σ)

// LIGHTWEIGHT VERIFICATION CHECKS

1 : if Check(PK.aux, µ,σ) = 0

2 : return 0

// FORMATTING FOR EFFICIENT VERIF.

3 : (Z′,v)← GetZV(svk, µ,σ)

4 : parse Z′ = [z′T1 | . . . |z′Tk]T ∈ Zk×cols(Z′)
q

5 : parse v = [vT
1 | . . . |vT

k]
T ∈ Zk×cols(Z′)

q

// LINE-BY-LINE INNER PRODUCTS

6 : for j = 1, . . . , k

7 : if z′j · vj ̸= 0 mod q

8 : return 0

9 : return 1

(b) The online verification algorithm.

Fig. 4: Our compiler for efficient verification of signatures with Mv-style verification. The four scheme-dependent
subroutines are: parse pk and GetZ (in offVer); Check and GetZV (in onVer). The computational complexity of onVer
is linear in k, the chosen confidence level.

10

Table 1: A summary of the concrete efficiency achieved by various instatiations of our compiler for efficient verifica-
tion. In the table, k0 denotes the minimum accuracy level that ralizes efficient verification with 128 bits of security,
i.e., for which Pr[Bad] ≤ 2−128 is negligible (cf. proof of Theorem 1, with qV = 230); r0 is the smallest positive integer
for which cost(offVer(pk,k0))+r·cost(onVer)

r·cost(Ver) < 1, and e0 is a (tight) upperbound on this ratio.

Ring or Field Size
(representative schemes)

Min. Accuracy Level
for 128-bit security

Concrete Amortized
Efficiency (see Definition 3)

Online Efficiency
cost(onVer)
cost(Ver)

= k0
n

exponential: q = 2128

(FMNP [13]; GVW [17]) k0 = 1 (r0 = 2, e0 = 0.51) 1
256

< 0.4%

large poly.: q = 230 (Boyen [7];
GPV [16]; MP [24]) k0 = 5 (r0 = 6, e0 = 0.86) 5

256
< 2%

small poly.: q = 16
(Rainbow [12] F24 -(32, 32, 32)) k0 = 32 (r0 = 65, e0 = 0.99) 32

64
= 50%

Overview of our technique Our transformation takes as input Σ, a signature scheme with
Mv-style verification; and it returns ΣE = (Σ, offVer, onVer) that securely instantiates efficient
verification for Σ. The heart of our compiler leverages the fact that for any pair of vectors σ and u
(often derived from the message µ), and for any matrix A (of opportune dimensions) if A · σ = u
then for any random vector c (of opportune dimension) it holds that c · (A · σ) = c · u. Collecting

variables on the left hand yields (c · [A| − In]) ·
[
σ
u

]
= 0. Thus one can precompute the vector

z ← c · [A| − In] and run the efficient online verification check z · v =? 0, where v ← (σ,u). In a
nutshell the idea is to replace the matrix-vector multiplication with a vector-vector multiplication
in a sound way. Correctness and efficiency are immediate. Soundness essentially comes from the
fact that if z ·v = 0, then with all but negligible probability the original system of linear equations
A · σ = u is satisfied too, as proven in Theorem 1.

Security Analysis Despite the construction being intuitive, analysing the leakage due to verifi-
cation queries that reuse the same svk is not trivial and is one main technical contribution of this
result.

Theorem 1. Let Σ be an existentially unforgeable signature scheme with Mv-style verification (as
in Figure 3). The scheme ΣE = (Σ, offVer, onVer) obtained via our compiler depicted in Figure 4
is existentially unforgeable under adaptive chosen message and efficient verification attacks. Con-
cretely, the advantage is AdvCMV A

A,Σ (λ, k) ≤ qV +1
qk−qV

where k ∈ {1, . . . , rk(M)} denotes the chosen
confidence level that grows up to the rank of the matrix M, qV = poly(λ) << qk is a bound on the
total number of verification queries and q is the modulo of the algebraic structure on which Σ is
built.

Remark For simplicity, Theorem 1 considers only existential unforgeability. The statement and
the proof actually adapt with ease to other security models such as strong and selective unforge-
ability.

Proof. In the cmvEUF security experiment (Figure 1), the winning conditions require A to produce
a message-signature pair (µ∗,σ∗) such that µ∗ has not been queried to the signing oracle during the
game (existential unforgeability); σ∗ is invalid under the standard verification, i.e., Ver(pk, µ∗,σ∗) =
0; and the pair is accepted by the online verification, i.e., onVer(svk, µ∗,σ∗) = 1. The goal of the
proof is to bound the probability this event occurs.

11

Let Win be the event {ExpcmvEUF
A,Σ (λ, k) = 1}. Let i = 1 to qV be the index of the queries (µi,σi)

submitted by A to the OonVer oracle. Define the family of events badi (for i = 1 to qV + 1) as:

badi := {Ver(pk, µi,σi) = 0 ∧ onVer(svk, µi,σi) = 1}

where badqV +1 corresponds to A returning a valid forgery (µ∗,σ∗) := (µqV +1,σqV +1) at the end
of the experiment. We can rewrite the winning condition of the security experiment as Win =
{badqV +1 ∧ µ∗ /∈ LS} (recall that LS is the list of messages queried to the signing oracle in the
game execution). Consider the event Bad defined as “there exists at least one query index i in the
game execution for which badi occurs”. Formally:

Bad := {∃ i ∈ {1, . . . , qV } : Ver(pk, µi,σi) = 0 ∧ onVer(svk, µi,σi) = 1} .

AdvCMV A
A,Σ (λ, k) = Pr[Win ∧ Bad] + Pr[Win ∧ ¬Bad]

≤ Pr[Bad] + Pr[Win | ¬Bad]

where the inequality comes from applying the definition of conditional probability and upperbound-
ing Pr[Win | Bad] and Pr[¬Bad] by 1.

We notice that Pr[Win | ¬Bad] is essentially the probability that the event badi occurs only for
i = qV + 1 and never before, i.e.,

Pr[Win | ¬Bad] ≤ Pr

[
badqV +1 |

qV∧
i=1

¬badi

]

In order to bound Pr[Bad], we define events Bad∗i (for i = 1 to qV) as “badi occurs for the first
time at query i”, namely Bad∗i = badi ∧

(∧i−1
j=1 ¬badj

)
. Then we have

Pr[Bad] = Pr

[
qV∨
i=1

Bad∗i

]
=

qV∑
i=1

Pr[Bad∗i] ≤
qV∑
i=1

Pr

badi| i−1∧
j=1

¬badj

where the second equality holds because the events Bad∗i are all disjoint, and the inequality follows
from applying the definition of conditional probability and upperbounding Pr

[∧i−1
j=1 ¬badj

]
by 1,

for all i. Thus:

AdvCMV A
A,Σ (λ, k) ≤

qV +1∑
i=1

Pr

badi | i−1∧
j=1

¬badj

 . (2)

Lemma 1. For every i = 1 to qV + 1, it holds that

Pr
[
badi = 1 |

∧i−1
j=1 ¬badj

]
≤ 1

qk−(i−1)
.

The proof of Lemma 1 is deferred momentarily to let us complete the reasoning that proves the theo-
rem. Using the inequality provided by Lemma 1, it is easy to see that

∑qV +1
i=1 Pr

[
badi = 1 |

∧i−1
j=1 ¬badj

]
≤

∑qV +1
i=1

1
qk−(i−1)

. Indeed, 1
qk−(i−1)

≤ 1
qk−qV

for all integers i in [1, qV + 1] and for all qV , q, k ∈ N

satisfying qV < qk. Thus
∑qV +1

i=1
1

qk−(i−1)
≤ qV +1

qk−qV
, which proves the bound on the advantage. ⊓⊔

12

Proof of Lemma 1. The goal of this proof is to give a generic structure for estimating the leakage
of infromation due to reuse of svk (i.e., probabilities in Equation (2)); the concrete values of these
probabilities are calculated in the Lemma 2 in the Appendix A.

To upperbound Pr
[
badi = 1 |

∧i−1
j=1 ¬badj

]
we need to analyze the information leakage due to

verification queries. First of all, by correctness onVer(svk, µi,σi) = 0 ⇒ Ver(pk, µi,σi) = 0 and
Ver(pk, µi,σi) = 1 ⇒ onVer(svk, µi,σi) = 1 for every possible svk generated by offVer from pk.
Leakage about svk happens in two cases: when an event badi occurs (OonVer accepts where the
standard verification would reject); and when OonVer rejects a query (here A may learn that some
combination of rows of pk must appear in svk). Equation (2) gives us a way to bound the adversary’s
advantage (and thus, the magnitude of this leakage) in terms of the events badi and ¬badi.

Consider the i-th query (µi,σi) to OonVer. If the oracle returns 0, the adversary learns that
C·(Mi ·vi) ≠ 0 mod q. In other words, there is at least one row of C ∈ C := {C ∈ Zk×n

q : rk(C) =
k}, say cj , that is not in the hyperplane orthogonal to wi := Mi · vi, i.e., cj ·wi ̸= 0 mod q. Note
that A knows wi since (Mi,vi) can be computed from the pk, µi and σi. Let us introduce the sets
Hi ⊆ C of full-rank matrices C ∈ C whose rows are all orthogonal to wi, formally:

Hi :=

C ∈ C : C =

c1
. . .
ck

 ∧ cj ·wi = 0 mod q ∀ j = 1, . . . , k

 .

We assume A be able to pick the vectors wi ∈ Zn
q ∖{0} of her choosing (e.g., by generating suitable

pairs (µi,σi)). This assumption is generous as it gives the adversary a large amount of power and
freedom in the game. The restriction w1 ̸= 0 is technical, as otherwise Ver(pk, µ1,σ1) = 0, which
is a necessary condition for OonVer leaking information about svk.

At the first verification query (µ1,σ1), A has no information about C beyond the fact that
it was uniformly sampled from the set C := {C ∈ Zk×n

q : rk(C) = k}. Therefore, for any
choice of w1 ̸= 0, if the event bad1 occurs, then bad1 = {C · w1 = 0 mod q ∧ C ←$ C}, thus
Pr[bad1] = Pr

[
C ·w1 = 0 mod q ∧ C←$ C

]
= |H1|

|C| . The first (rejected) verification query leaks
the fact that C ∈ C \ H1.

For the second verification query, without loss of generality let w2 be linearly independent from
w1, i.e., w2 /∈ ⟨w1⟩q. In this case, we have

Pr[bad2 | ¬bad1] = Pr[C ·w2 = 0 mod q | C←$ C ∧ C ∈ (C \ H1)]

=
Pr

[
C ·w2 = 0 mod q ∧ C←$ C ∧ C ∈ (C \ H1)

]
Pr

[
C←$ C ∧ C ∈ (C \ H1)

]
≤

Pr
[
C ·w2 = 0 mod q ∧ C←$ C

]
Pr

[
C←$ C ∧ C ∈ (C \ H1)

]
=

|H2|
|C|

|C\H1|
|C|

=
|H1|
|C \ H1|

where the inequality follows from the fact that, given three events E1, E2, E3, it always holds that
Pr[E1 ∧ E2 ∧ E3] ≤ min{Pr[E1 ∧ E2], Pr[E1 ∧ E3], Pr[E2 ∧ E3]}; and the last equality follows
since the hyperplanes H1 and H2 have the same dimension.

13

The same reasoning applies to the generic i-th verification query, where, w.l.o.g., A chooses
wi outside the space generated by the previous wj ’s, i.e., wi /∈ ⟨w1, . . . ,wi−1⟩q. At such query, A
knows that C ∈ C \

(⋃i−1
j=1Hj

)
. Analogously as before we get that

Pr

badi = 1 |
i−1∧
j=1

¬badj

 ≤ Pr
[
C ·wi = 0 mod q ∧ C←$ C

]
Pr

[
C ∈ C \

(⋃i−1
j=1Hj

)
∧ C←$ C

]
=

|H1|∣∣∣C \ (⋃i−1
j=1Hj

)∣∣∣ . (3)

Lemma 2 concludes the proof showing that∣∣∣C \ (⋃i−1
j=1Hj

)∣∣∣ ≥ |H1| ·
(

qn−q
qn−k−1

− (i− 1)
)
∀ i = 2, . . . , qV + 1 .

Substituting this value into Equation (3) returns:

Pr[badi = 1 |
i−1∧
j=1

¬badj] ≤
1

qk · 1−q1−n

1−qk−n − (i− 1)
≤ 1

qk − (i− 1)

where the last bound follows from the chain:

qn−1 > qn−k ⇔ 1

qn−1
<

1

qn−k
⇔ 1− 1

qn−1
> 1− 1

qn−k
⇔

1− 1
qn−1

1− 1
qn−k

> 1 ,

as 1 < k < n and q > 1. ⊓⊔

4.2 A Compiler For Progressive MV-Style Verification

Our compiler for progressive verification builds on the result presented in Section 4.1. Given a
signature scheme Σ with Mv-style verification, we define the T steps of a progressive verification
ΣP for Σ as shown in Figure 5.

ProgStep0(st, pk, µ,σ)

1 : svk← offVer(pk, T)

2 : parse svk = (T,Z, PK.aux)

3 : b← Check(PK.aux, µ,σ)

4 : st← GetZV(svk, µ,σ)

5 : return (b, st)

ProgStepj(st, pk, µ,σ)

1 : b← 0

2 : parse st = (Z′,v)

3 : if Z′[i, ∗] · v[∗, i] = 0 mod q

4 : return (b← 1, st)

5 : return (b← 0, st)

αprog : {0, . . . , T} → [0, 1], αprog(t) = (1− 1
qt
)

Fig. 5: Our compiler for progressive verification of signatures with Mv-style verification. The algorithms offVer,Check
and GetZV are precisely as defined in Section 4.1, Figure 4, and T = rows(M). The notation Z′[i, ∗] describes the
i-th row of the matrix Z′, similarly v[∗, i] describes the i-th column of v (which is usually a vector v, but may be a
matrix in some constructions).

14

The value T sets the upper bound on the number of linear constraints the verifier wants to check,
hence T = rows(M), where M is the matrix employed in the original signature verification of Σ.
The set of admissible states S includes ∅ and any possible state output by some ProgVeri, specifically
S = {0, 1}×Zrows(Z′)×cols(Z′)

q ×Zrows(v)×cols(v)
q ×{0, 1}λ ∪ ∅. We extract the confidence level from

the probability of a progressive forgery (as motivated by the proof of security given in Theorem
1). It is easy to see that the probability that an adversary creates a progressive forgery for an
interruption step t is at most qn−t−1

qn−1 , this follows from the same reasoning as in the proof of
Theorem 1 for efficient verification. Concretely, the bound is derived from the proof of Lemma
2, where we only consider Pr[bad1] as svk is refreshed with every new efficient verification query,
and so there is no useful cross-query leakage, and we replace the confidence level k of the efficient
verification with the interruption parameter t. If the size of the underlying algebraic structure is
q = 2poly(λ) this probability is negligible already for t = 1. In other words, for signatures with
Mv-style verification defined on exponentially large algebraic structures efficient verification and
progressive verification coincide, trivially. The interesting case is q = poly(λ), as the adversary could
create a progressive forgery with non-negligible probability. We remark that in this section we are
not targeting efficiency, and our instantiations of progressive verification refresh the svk produced
by offVer at every verification query. This way, A cannot exploit the information possibly leaked
by a progressive forgery in future forgery attempts.

Theorem 2. Let Σ be an existentially unforgeable signature scheme with Mv-style verification (as
of Fig. 3). Then the scheme ΣP obtained via our compiler (in Figure 5) is a secure realization of
progressive verification for Σ.

Proof. Recall that an adversary A wins the security experiment in Definition 7 if it outputs a
message-signature pair (µ∗,σ∗) and an interruption t′ such that: (1) (µ∗,σ∗) is rejected by Ver, but
accepted ProgVer when it is interrupted at step t∗ ← OInt(t′); and (2) the progressive verification
algorithm outputs a too high confidence level αprog(t

∗). Following Definition 7, we can realize secure
progressive verification by setting αprog(t) = 1−Pr

[
ExpprogEUFA,Σ (λ) = (1, t)

]
+ε(λ) for all t = 0, . . . , T .

The core part of the proof is to estimate this probability.
Recall that our compiler for efficient Mv-style verification (in Figure 5) runs offVer at every

verification query (line 1 in ProgVer0). This means that every verification query is answered using
a freshly generated svk. In particular, the final verification (line 4 in the ExpprogEUFA,ΣP (λ) in Figure 2)
checks A’s output using independent randomness from the previous queries. So, whatever informa-
tion the adversary may have collected from previous queries is useless to win the experiment. As
a consequence, the probability that the adversary wins the game equals the probability that the
adversary outputs a valid forgery without querying OProgVer. The latter is precisely the probability
of the event bad1 defined in the proof of Theorem 1, where now we consider the matrix C to have
t∗ rows instead of k. Hence from Lemma 1 it follows that Pr

[
ExpprogEUFA,Σ (λ) ≤ (1, t∗)

]
= 1

qt∗
and:

AdvprogEUFA,Σ (λ) = Pr
[
ExpprogEUFA,Σ (λ) = (1, t∗)

]
− (1− αprog(t

∗))

≤ 1

qt∗
−
(
1−

(
1− 1

qt∗

))
= 0 .

⊓⊔

15

4.3 Combining Progressive And Efficient Verification

We observe that progressive verifications obtained with our transformation can be split into two
parts: a one-time, computationally intensive, setup (ProgStep0); and an efficient online verification
(ProgStep1 to ProgStepT). This gives rise to custom (intentionally adjustable) verification sound-
ness, which from the application perspective makes post-quantum secure verification accessible to a
larger range of devices, and from the theoretical perspective draws interesting connections between
classical, information-theoretic and post-quantum security notions. We include a more detailed
discussion on this in the Appendix C.

5 Conclusions And Future Work

We presented a study on how to achieve efficient and progressive verification for digital signatures.
In addition to putting forth these notions and formal models for them, we presented two compilers
that allow one to realize efficient (resp. progressive) verification for a wide class of existing construc-
tions including lattice-based and multivariate base. While our constructions show the feasibility of
the desired properties, they also raise some natural follow up questions. For instance, is it possible
to realize a compiler for LBS with q ∼ poly(λ) that simultaneously provides efficient and progressive
verification? We address this question in a positive way in Appendix C , albeit in weaker security
model. A solution with full fledged progressive security remains an interesting open problem. An-
other question is, is it possible to generalize our approach to other classes of digital signatures,
e.g., code-based or LBS obtained through the Fiat-Shamir heuristic or from ideal lattices? Finally,
it would be worth to explore more applications of progressive and efficient verification. On top
of the already mentioned applications to real-time systems, another possible venue is parallel and
distributed verification of digital signatures. Consider a public bulletin board that stores authen-
ticated (signed) data. For security reasons, one may be tempted to use post quantum signature
schemes such as LBS. However, the large sizes of the public keys and signatures and the slow speed
of the verification are notorious bottlenecks to deploy them in such scenarios. Using our approach,
a pool of parties –acting as verifiers– can be made in charge of running each a single verification
check (i.e., ProgVer includes only ProgVer0 and ProgVer1). In terms of security, although a single
verifier may be wrong with non-negligible probability 1/q, the probability that k honest verifiers
are all wrong becomes negligible already for k = 5. Finally, we think that it would be interesting to
explore the study of efficient and flexible verification also for more cryptographic primitives, such
as commitments and zero-knowledge proofs.

Acknowledgments. This work was partly funded by: ELLIIT, the Swedish Foundation for
Strategic Research (RIT17-0035), the Swiss National Science Foundation under the SNSF project
number 182452 and the Postdoc.Mobility grant number 203075, the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation program under project
PICOCRYPT (grant agreement No. 101001283), by the Spanish Government under projects SCUM
(ref. RTI2018-102043-B-I00), CRYPTOEPIC (ref. EUR2019-103816), and RED2018-102321-T, and
by the Madrid Regional Government under project BLOQUES (ref. S2018/TCS-4339). Part of this
work was made while C.B. was at IBM Research - Zurich (CH) and visiting the University of Aarhus
(DK).

16

References
1. F. Armknecht, P. Walther, G. Tsudik, M. Beck, and T. Strufe. Promacs: Progressive and resynchronizing macs

for continuous efficient authentication of message streams. In Proceedings of the 2020 ACM SIGSAC Conference
on Computer and Communications Security, pages 211–223, 2020.

2. M. Backes, D. Fiore, and R. M. Reischuk. Verifiable delegation of computation on outsourced data. In 2013
ACM SIGSAC CCS., pages 863–874. ACM, 2013.

3. R. Bendlin, S. Krehbiel, and C. Peikert. How to share a lattice trapdoor: Threshold protocols for signatures and
(H)IBE. In ACNS, 2013.

4. D. J. Bernstein. A secure public-key signature system with sxtremely fast verification.
5. W. Beullens, A. Szepieniec, F. Vercauteren, and B. Preneel. Luov: Signature scheme proposal for nist pqc project.

2019.
6. D. Boneh and D. M. Freeman. Linearly homomorphic signatures over binary fields and new tools for lattice-based

signatures. In PKC, pages 1–16. Springer, 2011.
7. X. Boyen. Lattice mixing and vanishing trapdoors: A framework for fully secure short signatures and more. In

PKC, pages 499–517. Springer, 2010.
8. D. Cash, D. Hofheinz, E. Kiltz, and C. Peikert. Bonsai trees, or how to delegate a lattice basis. In EUROCRYPT.

Springer, 2010.
9. D. Catalano, D. Fiore, and B. Warinschi. Homomorphic signatures with efficient verification for polynomial

functions. In Advances in Cryptology – CRYPTO, 2014.
10. Y. Chen, A. Lombardi, F. Ma, and W. Quach. Does fiat-shamir require a cryptographic hash function? In

T. Malkin and C. Peikert, editors, CRYPTO, 2021.
11. J. Ding, M.-S. Chen, A. Petzoldt, D. Schmidt, and B.-Y. Yang. Rainbow. Available at https://csrc.nist.gov/

projects/post-quantum-cryptography/round-2-submissions. Accessed: 2020-09-21.
12. J. Ding and D. Schmidt. Rainbow, a new multivariable polynomial signature scheme. In ACNS, LNCS, 2005.
13. D. Fiore, A. Mitrokotsa, L. Nizzardo, and E. Pagnin. Multi-key homomorphic authenticators. In ASIACRYPT,

2016.
14. M. Fischlin. Progressive verification: The case of message authentication. In International Conference on Cryp-

tology in India, pages 416–429. Springer, 2003.
15. R. Gennaro, C. Gentry, and B. Parno. Non-interactive verifiable computing: Outsourcing computation to un-

trusted workers. In CRYPTO, 2010.
16. C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and new cryptographic constructions.

In ACM STOC, 2008.
17. S. Gorbunov, V. Vaikuntanathan, and D. Wichs. Leveled fully homomorphic signatures from standard lattices.

In STOC, pages 469–477. ACM, 2015.
18. S. Gorbunov and D. Vinayagamurthy. Riding on asymmetry: Efficient ABE for branching programs. In ASI-

ACRYPT, LNCS, 2015.
19. S. Katsumata and S. Yamada. Group signatures without NIZK: from lattices in the standard model. In Advances

in Cryptology - EUROCRYPT, 2019.
20. L. Lamport. Constructing digital signatures from a one-way function. Technical report, Technical Report CSL-98,

SRI International, 1979.
21. D. V. Le, M. Kelkar, and A. Kate. Flexible signatures: Making authentication suitable for real-time environments.

In ESORICS. Springer, 2019.
22. A. Loveless, R. Dreslinski, B. Kasikci, and L. T. X. Phan. Igor: Accelerating byzantine fault tolerance for real-

time systems with eager execution. In IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS), 2021.

23. V. Lyubashevsky. Lattice signatures without trapdoors. In EUROCRYPT, 2012.
24. D. Micciancio and C. Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller. In EUROCRYPT, 2012.
25. M. S. E. Mohamed and A. Petzoldt. RingRainbow - An efficient multivariate ring signature scheme. In Progress

in Cryptology - AFRICACRYPT, LNCS, 2017.
26. T. Plantard, A. Sipasseuth, C. Dumondelle, and W. Susilo. Drs: diagonal dominant reduction for lattice-based

signature. In PQC Standardization Conference, 2018.
27. A. Sipasseuth, T. Plantard, and W. Susilo. Using freivalds’ algorithm to accelerate lattice-based signature

verifications. In ISPEC. Springer, 2019.
28. A. R. Taleb and D. Vergnaud. Speeding-up verification of digital signatures. Journal of Computer and System

Sciences, 2020.

17

https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions

29. R. Tsabary. An equivalence between attribute-based signatures and homomorphic signatures, and new construc-
tions for both. In Theory of Cryptography TCC, 2017.

30. Q. Wang, H. Khurana, Y. Huang, and K. Nahrstedt. Time valid one-time signature for time-critical multicast
data authentication. In IEEE INFOCOM 2009.

18

Appendix

A Concrete Leakage Estimates

Let rk(A) denote the rank of a matrix A, and let ⟨v⟩q be the hyperplane of Zn
q generated by a

vector v ∈ Zn
q .

Lemma 2. Let C := {C ∈ Zk×n
q : rk(C) = k} be the set of k × n matrices that are full rank

and have entries in Zq (as introduced in the proof of Lemma 1). For any given set of vectors
{w1, . . . ,wqV +1} ⊆ Zn

q such that wi /∈ ⟨wj⟩q for every i ̸= j, define the collection of sets {Hi :=

{C ∈ C : C ·wi = 0 mod q}}qV +1
i=0 ⊆ C containing the matrices having the corresponding wi in

their right kernel and H0 = {∅}. It holds that∣∣∣∣∣∣C \
i−1⋃

j=0

Hj

∣∣∣∣∣∣ ≥ |H1| ·
(

qn − 1

qn−k − 1
− (i− 1)

)
∀ i = 1, . . . , qV . (4)

Proof of Lemma 2 It is easy to see that the cardinality of C is:

|C| = (qn − 1) · (qn − q) · (qn − q2) · . . . · (qn − qk−1) = q
k(k−1)

2 ·
k−1∏
j=0

(qn−j − 1).

as we have full freedom for how to pick the first row of C (except for c1 ̸= 0); for the second row,
we can pick any vector c2 that is in Zn

q but not in the span of the previous row of C (to keep the
matrix full rank), and so on. The formula after the final equality follows from decomposing each
(qn − qj) factor as qj(qn−j − 1) and observing that

∏k−1
j=1 q

j = q
k(k−1)

2 . The same reasoning applies
to computing the cardinality of a generic Hi (for i > 0), after noticing that the rows of the matrices
C ∈ Hi must be picked (as linearly independent vectors) from the (n− 1)-dimensional hyperplane
orthogonal to wi; thus

|Hi| =
k−1∏
j=0

(qn−1 − qj) = q
k(k−1)

2 ·
k−1∏
j=0

(q(n−1)−j − 1) = q
k(k−1)

2 ·
k∏

j=1

(qn−j − 1)

This proves the base case (i = 1) of the bound in (4): |C ∖ ∅| = |H1| · qn−1
qn−k−1

, since, compared
to |H|, |C| has the additional factor j = 0 and the missing factor j = k. Concretely this means
that: Pr[bad1] ≤ qn−k−1

qn−1 . For i = 2, again |C \ H1| = |C| − |H1| = |H1|
(

qn−1
qn−k−1

− 1
)

. For i = 3,
we remove from the pool of eligible C all those matrices in H1 ∪ H2, i.e., that have either w1 or
w2 in their right kernel.7 In other words, matrices composed by only rows orthogonal to w1 or
to w2. The hyperplanes w⊥

1 and w⊥
2 both have dimension n − 1, and since we are in a space of

dimension n, they must intersect in a subspace of dimension n − 2. For a tighter bound we use:

7 The vectors wi are assumed not to be multiples of one another. Otherwise, A does not extract new information
from a rejection, i.e., there is no additional leakage.

19

|H2 \ H1| = |H2| − |H1 ∩ H2| and recall that 0 ≤ |H2| − |H1 ∩ H2| ≤ |H1|. Hence after the second
rejected query the number of possible C becomes:

|C \ (H1 ∪H2)| = |C| − |H1| − |H2|+ |H1 ∩H2|

= |H1| · (
qn − 1

qn−k − 1
− 2) + |H(n−2)|

= |H1| · (
qn − 1

qn−k − 1
− 2) + qk(k−1)/2

k−1∏
j=2

(qn−j − 1)

= |H1| · (
qn − 1

qn−k − 1
− 2 +

1

(qn−1 − 1)(qn−k − 1)
) ≥ |H1| · (

qn − 1

qn−k − 1
− 2).

Remark that C could be still composed by some elements of H1 and some of H2 \ H1; this would
be consistent with A’s view at this point.

We can now proceed by induction, assuming (4) holds for the query index i, prove it for i+ 1.∣∣∣∣∣∣C \
i⋃

j=0

Hj

∣∣∣∣∣∣ =
∣∣∣∣∣∣C \

(
i−1⋃
j=0

Hj) ∪Hi

∣∣∣∣∣∣
= |C| −

∣∣∣∣∣∣
i−1⋃
j=0

Hj

∣∣∣∣∣∣− |Hi|+

∣∣∣∣∣∣
i−1⋃

j=0

Hj

 ∩Hj

∣∣∣∣∣∣
=

∣∣∣∣∣∣C \
i−1⋃
j=0

Hj

∣∣∣∣∣∣− |H1|+

∣∣∣∣∣∣
i−1⋃

j=0

Hj

 ∩Hj

∣∣∣∣∣∣ ≥
∣∣∣∣∣∣C \

i−1⋃
j=0

Hj

∣∣∣∣∣∣− |H1|

≥ |H1| ·
(

qn − 1

qn−k − 1
− i+ 1

)
− |H1| = |H1| ·

(
qn − 1

qn−k − 1
− i

)
.

⊓⊔

B Examples Of Efficient Verification
Because any instantiation of our compiler is completely determined by the four subroutines parse
pk, GetM, Check, and GetZV, in what follows we explain only how these four algorithms work. The
complete descriptions of offVer and onVer are derived using the general structure in Figure 4.

B.1 From Lattices
We present concrete instantiations of our compiler for two categories of LBS: ‘hash & sign’ with
representative the GPV08 signature [16], and ‘Boyen/BonsaiTree’ style with representative MP12
[24].

Efficient Verification for GPV08 [16]. The parse pk procedure splits the public key into
PK = A ∈ Zn×m

q (the matrix identifying the signer’s public key), and the auxiliary public in-
formation PK.aux = (H, β), i.e., a description of a full-domain hash function H : {0, 1}∗ → Zn

q

and the norm bound β ∈ R. The Check procedure is exactly as in the original verification (enforc-
ing the norm bound β on the signature). The GetM algorithm takes in input the public matrix

20

PK = A, and tails to it the identity matrix: M = [A| − In]. The GetZV routine returns the
matrix Z′ (explained momentarily) and the vector v = [σ|H(µ) · 11×n]. The matrix Z′ is made
up of the same ‘randomized key’ vectors produced by GetZ during the offline verification, i.e.,
z′j = zj ← cjM = [cjA|−cj]. Thus the core verification check (line 7 in onVer) is actually ensuring
that z′jvj = 0, i.e., cj ·A · σ = cjH(µ) which is the probabilistic check of the original verification
equality.

Efficient Verification for MP12 [24]. The parse pk procedure assigns PK ← A = [Ã|A0 | . . .
|Aℓ] ∈ Zn×(m̄+n⌈log q⌉ℓ)

q (the matrix identifying the signer’s public key), where m̄ = O(n⌈log q⌉), and
ℓ denotes the number of bits in the message, i.e., µ ∈ {0, 1}ℓ. The auxiliary public information is
PK.aux = (u, β). The Check procedure is exactly as in the original verification (enforcing the norm
bound β on the signature). The GetM algorithm takes in input the public matrix PK = A, and
appends to it the identity matrix to obtain M = [A| − In]. The GetZV routine returns the matrix
Z′ and the vector v. The matrix Z′ is made up of vectors of the form z′j = [z̃j | z0j +

∑ℓ
i=1 µ[i]z

i
j |cj]

that identify a message-dependent lattice (called Aµ in [24]). The vector v is the concatenation of
the signature with the auxiliary vector, i.e., v = [σ|u]. Note that u is the same for all messages;
thus, one could further optimize the online verification by computing (once and for all) the k inner
products zj [m̄+n⌈log q⌉+1] = cj ·u during the offline phase. To conclude we notice that the online
verification ensures that z′jvj = 0, i.e., cj ·Aµ · σ = cj · u which is the probabilistic check of the
original verification equality.
B.2 From Multivariate Equations
For signatures based on multivariate equations we take Rainbow [11,12] as representative example
as this is one of the NIST candidates for standardization. For completeness, we also show how to
apply our compiler to the LUOV scheme [5].

Efficient Verification for Rainbow [11]. In the description below we consider the standard
Rainbow verification. A similar approach can be used to speed up the verification also in the “cyclic”
and the “compressed” Rainbow variants as in those cases the verification includes an additional
initial phase to reconstruct the full public key. We recall that in this scheme the public key contains a
system of m multivariate quadratic polynomials in n variables. For convenience, let N = n(n+1)/2
and consider the field F = F2r . Using a Macaulay matrix representation we can visualize this system
as a wide matrix composed of a quadratic term Q (actually a m×N submatrix), a linear term L
(m×n submatrix) and a constant term C (a m× 1 vector). The parse pk procedure extracts from
the public key PK this matrix pk = [Q|L|C] ∈ Fm×(N+n+1) and a description of a full-domain hash
function H : {0, 1}∗ → Fm as the auxiliary public information PK.aux = H. The Check procedure
is trivial and always returns 1. This is because the whole verification can be written as a matrix-
vector multiplication. The GetM algorithm extracts from PK the matrix representing the system
of quadratic multivariate equations [Q|L|C]. Finally, it appends to this the identity matrix, so
M← [Q|L|C|−Im]. We remark that M can be seen as a matrix of blocks, where any block has the
same height (m = number of rows), but different length (number of columns). The GetZV routine
reads the matrix Z′ = Z made up of the rows z′j = zj ← cjM = [cj ·Q|cj ·L|cj ·C|−cj] ∈ F1×N+n+1.
In addition, this algorithm parses the signature as σ = (s, salt), computes the (salted) hash of the
message d as h ← H(H(d)|salt) and outputs the vector v = [s̃|s|1|h], where s is part of the
signature and s̃ is the ‘quadratic vector’ obtained by computing all products of pairs of elements
in s (with monomials ordered lexicographically), i.e., s̃ ← [s[1]2, s[1]s[2], . . . , s[n − 1]s[n], s[n]2].

21

Clearly z′j · v = 0 if and only if cj · (Qs̃ + Ls +C) = cj · h, which is a probabilistic check of the
original system of verification equations in Rainbow.

Efficient Verification for LUOV [5]. The parse pk procedure splits the public key into PK =
(public.seed,Q2) (the concise information needed to retrieve the full signer’s public key), and the
auxiliary public information PK.aux = H, i.e., a description of a full-domain hash function H :
{0, 1}∗ → Fm, where m = rows(Q2) and F = F2r . The Check procedure is trivial and always returns
1. This is because the whole LUOV verification can be written as a matrix-vector multiplication
The GetM algorithm takes in input PK = (public.seed,Q2) and derives the full public key as
done in the original verification: it runs [C||L||Q1] ← G(public.seed) to get the constant constant
(vector), the linear (matrix) and the first quadratic (matrix) parts of the verification equation; and
then it reconstructs the full quadratic term as Q ← [Q1||Q2]. Finally it appends to the public
key the identity matrix M ← (C,L,Q,−Irows(Q)), we remark that M can be seen as a matrix of
blocks, where any block has the same height (number of rows), but different lenghth (number of
columns). The GetZV routine reads the matrix Z′ = Z made up of the rows z′j = zj ← cjM =
(cj ·C, cj · L, cj ·Q,−cj). It also outputs the vector v = [1|s|s̃|h], where s is part of the signature
σ = (s, salt), s̃ is the ‘quadratic vector’ obtained by computing all products of pairs of elements in
s, i.e., s̃ ← [s[1]2, s[1]s[2], . . . , s[n − 1]s[n], s[n]2], finally h is the hash of the message and the salt,
i.e., h ← H(µ||0x0||salt). Clearly z′j · v = 0 if and only if cj · (C + Ls + Qs̃) = cj · h, which is a
probabilistic check of the original verification equation in LUOV.

In what follows, we evaluate the efficiency gains provided by our compiler using the (r0, e0)-
concrete efficiency notion of Equation (1). In brief, a ΣE achieves (r0, e0)-concrete amortized ef-
ficiency if r0 is the smallest, non-negative integer for which it holds that e0 < 1, where e0 is an
upperbound on the ratio between the cost of running the offline verification once and using its
outcome in r0 online verifications, over the cost of running r0 standard signature verifications. For
convenience, we estimate only the cost of the most expensive ‘steps’ in the verification, namely the
ones involving several field element multiplications (e.g., matrix-vector products), and disregard
the cost of adding elements, generating random values, reading algorithm inputs or evaluating hash
functions. Moreover, we do not consider ad-hoc optimizations of matrix multiplication due to prob-
abilistic checks using, e.g., Freivalds’ Algorithm or its variant [27]. Table 2 collects the common
notation, while Table 1 displays a summary of our findings, that we motivate below.

Table 2: Parameters involved in the performance analysis of our compiler for efficient verification.

q Modulus of the lattice or size of the field
n Number of rows in the public key

m ∈ Ω(n log q) Number of columns in the public key
β Bound on the noise / size of signatures

σ or U Vector or matrix signatures
k Number of steps in the online verification (confidence level)
r Number of signatures verified (repetitions of onVer)

cost(alg) Number of field multiplications needed to compute alg

The computational complexity of Ver for signature with Mv-style verification, e.g., [5,11,12,16,24,17],
is dominated by a matrix-vector multiplication. Let n = rows(M) and m = cols(M), with m ≥ n.

22

The cost of computing M · v is, in the worst case, nm filed multiplications. Our offline verifica-
tion algorithm executes k vector-matrix multiplications (one for each z′j in Z′), resulting in knm
multiplications in the worst case. The computational complexity of our online verification is dom-
inated by the k vector-vector (inner) products zi · v, resulting in km multiplications in the worst
case. Thus, the compiler presented in Section 4.1 outputs an efficient verification for signature with
Mv-style verification that has the following concrete amortized efficiency:

cost(offVer) + r · cost(onVer)
r · cost(Ver)

=
knm+ rkm

rnm
=

k

r
+

k

n
. (5)

Clearly the first addend in Equation (5) comes from amortizing the cost of offVer (over verifying r
signatures), while the second term is the fix trade-off between the computational costs of onVer and
Ver (at each and every verification). Table 1 collects the figures for three representative classes of
signature schemes, if we apply our compiler for efficient verification at 128 bit of security. The values
are extrapolated as explained in the reminder of the section. In detail, k0 depends on the signature
Σ as it is the minimal value of the confidence level k for which ΣE is existentially unforgeable; k0
determines the length of the svk. The value r0 is the minimum number of verifications to run in
order to achieve a concrete efficiency gain of e0. Thus, lower values of e0 and r0 correspond to better
efficiency gains. The last column in Table 1 displays the ratio k0/n that essentially tells how much
cheaper onVer is compared to the original verification Ver (ignoring the one-time cost of running
offVer). Again, lower values in this column correspond to better efficiency; for instance, a ratio of
0.4% means that the computational cost of Ver is 99.6× higher than the one of onVer (i.e., onVer
is expected to be about 99× faster).

For convenience we categorize signatures according to the size of their underlying algebraic
structure.

The modulo q is exponential in λ: To the best of our knowledge, the only LBS constructions
that fall in this category are the homomorphic signatures by Gorbunov et al. [17] and by Fiore
et al. [13]. In this case, using our compiler (with some caveats, as we show in the next section)
yields that the advantage in the cmvEUF experiment (as per Definition 4) is negligible in the
security parameter λ for any confidence level k ≥ k0 = 1. However, in [13,17] the complexity of
Ver is dominated by the matrix-matrix multiplication AU where A ∈ Zn×m

q is the fixed public key,
and U ∈ Zm×m

q is the signature8.We computed parameters for this family of schemes according
to Albrecht et al.’s methodology9. Setting λ = 128, q = 2λ and n = 256 yields that reduction
algorithms (in particular, the optimized BKZ algorithm) would have runtime 2128 and would solve
at most SIS256,2128,65536,280 , while the security of the scheme relies on a SIS instance with norm
bound β = 249d , where d is the depth of the circuit. We can now use this set of parameters to
determine the concrete amortized efficiency reached by our compiler for [13,17]. Recall formula
given in Definition 3 for concrete amortized efficiency:

cost
(
offVer(pk, k0)

)
+ r · cost

(
onVer(svk, µ,σ)

)
r · cost

(
Ver(pk, µ,σ)

) < 1

8 In [13] the dimension m additionally depends on the number t ≥ 1 of distinct identities (users) involved in labeled
program. For simplicity, in what follows we consider t = 1.

9 Albrecht, Curtis, Deo, Davidson, Player, Postlethwaite, Virdia, Wunderer. Estimate all the LWE, NTRU schemes!
in SCN 2018.

23

where k0 is the chosen accuracy level and we are interested in finding the pair of values (r0, e0)
where r0 is the minimum non-negative integer r for which this inequality hods, and e0 < 1 is a tight
upperbound on the cost in the left hand side of the inequality when r = r0. Notably, the better the
efficiency of the offline/online verification, the smaller the value of e0. In the case of signatures with
Mv-style verification it is easy to see that the left hand side of the inequality can be approximated
with k0nm+rk0m

rnm = k0
r + k0

n . Setting k = k0 = 1 and n = 256 we want to extract the minimum r0 for
which 1/r0 + 1/256 is smaller than 1, formally r0 = min{r ∈ Z>0 | 1/r + 1/256 < 1}. It is easy to
see that r0 = 2 suffices and we get 1 > e0 = 0.504 > 1/2+1/256. In other words, the cost of setting
up the online verification (running offVer) plus performing r = 2 online verifications is about half of
the cost of running 2 standard verifications, while preserving the security level. Moreover, for this
set of parameters cost(onVer)

cost(Ver) = k0
n = 1

256 < 0.004, i.e., our online verification requires about 0.4% of
the computational cost of running the standard verification algorithm; alternatively, we can read
this results as our onVer is 99× faster than Ver.

The modulo q is a large polynomial in λ: This is the most common setting given the ‘small’
size of q. In this category fall the schemes by Gentry et al. [16], Boyen [7], and its improved version
by Micciancio and Peikert [24], Boneh and Franklin’s linearly homomorphic signature [6], Rainbow
[12] and LUOV [5]. For the lattice-based constructions, in order to guarantee a negligible advantage
in the cmvEUF experiment (see Definition 4) we need to set an appropriate value of k ≥ k0 > 1.
We argue that ‘appropriate’ values of k are still ‘small’ in comparison to n and lead to a ‘good’
amortized efficiency even for ‘few’ verifications. We recall that for these constructions Ver computes
a product Aσ where A ∈ Zn×m

q and the signature is just a vector σ ∈ Zm
q . To guarantee the security

of our efficient verification, the value k should be set so that q−k be negligible. In other words, for
the cmvEUF advantage to be negligible it must hold that q−k ≤ 2−λ. Hence, to estimate k, one
needs to first fix the value of λ, compute the corresponding q that can guarantee such level of
security, and then extract the minimum value k0 for which the above relation holds.

Computing parameters for lattice-based schemes is not straightforward, as so far there is no
unique way to derive the parameters from a given λ. However, a good measure of the security
of a set of parameters can be extracted computing a value δ that was introduced by Gama and
Nguyen10. Concretely, δ provides an indication of how reduction algorithms would perform against
the hardness assumption underlying the lattice-based construction. Generally, the ‘smaller’ the δ,
the ‘more secure’ the scheme.

For Boyen’s signature [7] and its variant by Micciancio and Peikert [24], we use the parameters
provided in Figure 2 in [24]. Since in [24] they set δ = 1.007, to ensure a fair comparison, we
compute the parameters Gentry et al.’s signature [16] for the same value of δ. As a result, we
observed that for this δ all of the schemes require about the same modulo q = 230 (for n = 256).
For this set of parameters, our efficient verification provides 80 (resp. 128; 250) bits of security
with just k0 = 3 (resp. k0 = 5; k0 = 9). Thus our compiler achieves a (4, 0.77)-concrete amortized
efficiency (resp.(6, 0.86); (10, 0.94)), and a concrete tradeoff between onVer and Ver of k0/n < 0.02
(resp. 0.02; 0.04). In particular, for the lower security settings this means that onVer is about 98×
faster than Ver.

For Rainbow, we follow the latest guidelines provided during the second round of the NIST
competition. We recall that the Rainbow signature scheme is based on the unbalanced oil and
10 Gama and Nguyen. Predicting lattice reduction, in EUROCRYPT, 2008.

24

vinegar approach, and it is fully determined by the field on which it operates and a sequence
of integer numbers indicating the amount of vinegar variables and oil variables per each layer.
One of the current settings utilizes F = F24 and a two-layer oil variable setting with (v1, o1, o2) =
(32, 32, 32), which lead to m = 96 and n = 64 (for consistency in this paper we set n to be the number
of rows of a matrix and m to denote the number of columns, classically the variables are swapped
for multivariate signatures). A suitable k to achieve NIST security category level II is k0 = 32,
since q−k0 = 2−4·32 = 2−128. yields that the minimum number of repetitions r0 to achieve amortized
efficiency (i.e., for which we have k0/r+k0/n < 1) is r0 = 65, the corresponding amortization factor
is e0 = 0.9923 = 32/65 + 32/64. For this set of parameters we have cost(onVer)

cost(Ver) = k0
n = 32

64 = 0.5,
in other words, our compiler produces an online verification that is 2× faster than the standard
verification. For F = F28 and (v1, o1, o2) = (68, 36, 36), we have m = 140 and a suitable k in this
case would be k0 = 16, since q−k0 = 2−8·16 = 2−128. For the highest NIST security category, [11]
suggests to use F = F28 and (v1, o1, o2) = (92, 48, 48). As a result we have m = 188, n = 96 and
again k0 = 16 but a better amortize efficiency factor e0 = 0, 9666 already for r0 = 20. We remark
that for this set of parameters cost(onVer)

cost(Ver) < 0.166, i.e., our compiler produces an online verification
procedure that is 6× faster than the standard verification.

B.3 Generalization To Signatures With Properties

Efficient verification can be easily generalized to the case of signatures with different security
notions, such as strong or selective unforgeability, or with advanced properties. This is of particular
interest for LBS, where the versatility of well-established hardness assumptions has already given
life to a variety of constructions under different security models and realizing advanced properties,
including homomorphic [17], threshold [3], constrained [29] and indexed attribute based signatures
[19]; and yet relying on an Mv-style verification (as introduced in the beginning of the section, and
displayed in Figure 3).

Signatures with properties require more complex security definitions than plain existential un-
forgeability. Figure 6 provides a generic formalism to unify the description of the unforgeability
experiments for signatures with properties. In a nutshell the common requirements are:

Exp generic−unf
A,Σ (λ)

1 : val ← A(1λ)

2 : (pval, sval)← Setup(1λ)

3 : stK ← ∅, st← ∅

4 : (µ∗,σ∗, aux∗)← AOK(· ;sval,stK), O(· ;st)(pval, val)
5 : b←WinCond(µ∗,σ∗, aux∗, pval, stk, st, val)
6 : if Ver(pk, µ∗,σ∗, aux∗) = 1 ∧ b

7 : return 1

8 : else return 0.

Fig. 6: Generic description of the unforgeability under adaptive chosen message attacks experiment for signatures
with properties.

25

1. If the signature guarantees selective unforgeability, the first step in the experiment is for A to
declare the target messages for the forgery; in Figure 6 this is handled via the val variable. If
unforgeability is adaptive, val is set to ⊥.

2. A setup phase, where a probabilistic routine (denoted Setup in Figure 6) generates a set of
secret values sval –handed over to the oracles– and other public auxiliary values pval, that
include verification keys, delivered to the adversary.

3. A challenge phase, where the adversary is given access to some, possibly stateful, oracles (usually,
at least an oracle that returns signatures by honest users), and has to output a message and a
forged signature on it. We model this by defining two oracles:
– OK(·; sval, stK): Returns signing/secret keys (of users or other entities that A may corrupt).
– O(·; st): Encompasses all the other possible oracles (signing, opening for group signatures,

etc.).
4. A check phase, where the experiment checks whether the signature output by A is valid and

if A won the experiment. The former requires an execution of the verification algorithm; the
latter includes a variety of additional checks to ensure the signature is actually a forgery (and
is not trivially derivable from the adversary’s view, e.g., because it was output by the signing
oracle). We model this second check with the WinCond predicate. Clearly, the specification of
WinCond depends on each primitive, and on the type of unforgeability: If selective, it checks
that the queries and the forgery are consistent with the values val declared at the beginning
of the game. If existential, it checks that µ∗ was not queried to the signing oracle. If strong, it
checks that the queries to the signing oracle are all distinct.

Adapting the syntax and security experiment of efficient verification to signatures with properties
is rather straightforward. Similarly, our compiler of Section 4.1 can be easily adjusted to work on
signatures with properties and with Mv-style verification, as we discuss momentarily. Regarding
security, the core part of the proof of Theorem 1 is information-theoretical, and therefore it does not
significantly change when considering signatures that are only selectively unforgeable, or strongly
unforgeable. In the following we analyze the impact of our compiler on the efficiency of some
schemes whose verification is structured as in Figure 3: the constrained LBS in [29], the (indexed)
attribute-based LBS in [19], the homomorphic LBS in [13], the threshold LBS in [3], and the
multivariate-based ring signature RingRainbow [25]. This list is by no means an exhaustive list.
Indeed, in this work we decided to ignore lattice-based signatures with properties that are obtained
using the Fiat-Shamir with abort technique from [23], despite the fact that wherever the result of
Chen et al. [10] is applicable, our compiler is too. The reason is that signatures with properties
that rely on such technique are many, and the efficiency gain computation is similar to the one
performed in Section B .

Constrained Signatures (CS). CS allow a signer to sign a message only if either the message
or the key satisfies certain preset constraints. The verification algorithm of the lattice-based in-
stantiation of CS by Tsabary [29] includes an Mv-style check (where the matrix has n rows) and
a norm check. Hence, our compiler applies directly to this scheme. Unforgeability requires that
n ≥ λ and q ≤ 2λ, so for an average value q ∼ 232, we can set k = 9≪ λ so that the advantage of
A in Theorem 1 is qV +1

qk−qV
< 1/2256. Remark that larger values of q (that could be required to have

higher security guarantees) imply smaller values of k. Therefore, for this less conservative choice of
parameters the efficiency gain is cost(onVer)

cost(Ver) = k
n = 8

256 < 0.036, i.e., the online verification requires
about 3.6% of the computational cost of running the standard verification algorithm.

26

Indexed Attribute-based Signatures (iABS), and Homomorphic Signatures (HS). iABS
allow a signer to generate a valid signature on a message only if the signer holds a set of attributes
that satisfy some policy (represented by a circuit C). HS allow a signer to sign messages µi so that
it is possible to publicly derive a valid signature for a message µ that corresponds to the output
of a computation on the original messages, i.e., µ = C(µ1, . . . , µr). According to the type of ho-
momorphism supported by the scheme, the circuit C can encode only linear functions, polynomial
functions, or any function of bounded multiplicative degree. In both iABS in [19] and HS in [13]
the signature verification is composed by three steps:

1. Computation of the public matrix M from the circuit C (either the policy, or the homomorphic
computation specified by the labelled program);

2. An ‘Mv’-style check;
3. A norm check on the signature.

The first step is critical because the public matrix M can be generated through a non-linear
transformation, i.e., it might include multiplications of the public matrix by itself (or by a gadget
matrix). This would not allow to compute the first step online from the zi’s, but the verifier would
have to use M and the ci’s instead, defying the purpose of our compiler. Hence, our compiler can
be applied to these signatures in an efficient way only if either (1) C involves solely linear operations
on the public matrix, or (2) C is fixed, or (3) C is known before running verification11. In these
cases, we achieve efficient verification by letting offVer take as (additional) input C and compute
M using the algorithm PubEval from [18]. The vectors (Z′,v) used in the verification might (as in
[13]) or might not (as in [19]) depend on the message. In the latter case the subroutine GetZV in
onVer simply returns the input.
The impact of the compiler on the efficiency of HS was already analyzed in Section B . Regarding
the iABS, the suggested value of the modulo q is such that q ≥ n8. The standard requirement n ≥ 2
already implies that 1/qk ≤ 1/(28)k = 1/256k. However, to guarantee the hardness of lattice-based
problems usually n needs to be at least n = 128. In this case q ≥ 256, hence already k = 6 guarantees
that qV +1

qk−qV
< 1/2305, thus the unforgeability of this iABS. As n = O(d log d) (where d is the depth

of C) and the efficiency gain can be bounded as follows: cost(onVer)
cost(Ver) ≤

k
O(d log d) =

6
O(d log d) . From this

inequality is clear that already for a circuit of depth 4 the online verification only requires 75% of
the computation required by standard verification; the impact of our compiler increases for larger
size of the circuit.

Threshold Signatures (TS). TS allow h out of ℓ parties to produce a signature on a message.
Unforgeability is guaranteed for up to t colluding parties. Bendlin, Krehbiel, and Peikert [3] intro-
duced a compiler that allows to distribute the signature generation step of the GPV08 signature,
and convert it into a TS. The idea is to share the signing trapdoor among the parties using a
h-out-of-ℓ secret sharing scheme. Signing requires at least h parties to come together to generate
a signature satisfying a Mv-type equation (where M is the public verification key). Verification is
composed by the standard Mv equation and norm checks. Therefore, the thresholdizing compiler
is composable with our compiler for efficient verification. As neither of them change the parameters
of the underlying GPV08 scheme, the efficiency gain is the same (cf. Section B).
11 The construction of group signature in [19] has this iABS as building block, but it does not satisfy any of these

conditions, as the verification circuit depends strongly on the signature. The authors did not find a straightforward
way to modify this construction to have efficient verification without significantly impacting the signature length.

27

RingRainbow [25]. RingRainbow is a ring signature scheme – i.e., a signature that allows a
user to sign a message anonymously on behalf of a group – based on multivariate equations. This
scheme is a hash-and-sign type of signature built as a modification of Rainbow. Verification requires
to check whether the signature satisfies a multivariate quadratic system, and can be converted in
a Mv-style verification with the same technique used for Rainbow (cf. Section B). Therefore, our
compiler can be applied to RingRainbow as well. To evaluate the efficiency gain due to our compiler,
we consider the efficient version of RingRainbow, (whose parameters can be found in Table 2 in
[25]). For λ = 128 and a group of 5 users the authors set F = F28 and (v1, o1, o2) = (36, 21, 22),
which yield m = 5 ∗ (v1 + o1 + o2) = 395 and n = 43. Theorem 1 requires at least qV +1

qk−qV
= 1/2256

for 128 bits of post-quantum security, which is ensured by k ≥ k0 = 36. Plugging these values
in our amortized efficiency formula k0

r + k0
n (that is the formula derived from Definition 3 for

signatures with Mv-style verification) yields that the minimum number of repetitions r0 to achieve
meaningful amortized efficiency is r0 = 580, and the corresponding amortized efficiency factor is
e00.8992 > 36/580 + 36/43. In this case, our compiler produces an online verification such that
cost(onVer)
cost(Ver) = k0

n = 36
43 < 0.86, in other words, our compiler produces an online verification that

requires only 86% of the computation required by the standard verification.

C Modeling Efficient & Progressive Signature Verification With
R-Bounded Randomness Reuse

Given the two notions of efficient verification (Section 2) and progressive verification (Section 3),
the question naturally rises whether it be possible to combine these frameworks and simultaneously
realize progressive and efficient verification. Surprisingly, the naïve combination does not achieve
high accuracy and unforgeability. This is essentially because efficiency demands reuse of svk, which
makes the confidence function degrade with every new verification, while progressiveness allows for
premature verification outcomes that may leak a substantial amount of information about svk. In
order to formally handle this situation and overcome the issue described above, we introduce the
concept of progressive and efficient (pref) verification with r-bounded randomness reuse. Similarly
to Definition 5 (progressive signatures), this sustainable variant is defined for a given value k, that
determines the maximum desired confidence level achievable by the verification. In addition to k, we
need a second parameter, r, that determines the maximum number of times svk can be reused while
guaranteeing unforgeability. For correctness and security, both k and r are input to the confidence
function, which now is named αpref .
Definition 8 (Progressive and Efficient Verification). A signature scheme Σ = (KeyGen, Sign,
Ver) admits a (r, k)-efficient and (T, αpref)-progressive verification realization ΣF+E = (Σ, prefVer)
if there exist

- two positive integers: r (number of reuses of the secret randomness) and k (interruption step);
- an efficiently computable confidence function αpref : {0, . . . , k} × {0, . . . , r} → [0, 1];
- a set of admissible sequences of states S = {st(1), st(2), . . .} (each sequence st(j) contains r+1

states sti, i.e., st(j) = (sti)
r
i=0, st0 = ∅); and

- a progressive verification algorithm prefVer consisting of k+1 steps prefVer0, . . ., prefVerk with
the same syntax as in Definition 5.

Definition 9 (r-Reuse k-Progressive Correctness). Let Σ be a signature scheme that admits
progressive and efficient verification realized by the tuple (r, k, αpref , prefVer,S). Then ΣF+E =

28

(Σ, prefVer) satisfies (r, k)-correctness if, for a given security parameter λ, for any key pair (sk, pk)←
KeyGen(λ), for any one sequence of admissible states st ← S, st = (sti)

r
i=0, for any choice of r

message-signature pairs (µi,σi)
r
i=1 with µi ∈ M and σi such that Ver(pk, µi,σi) = 1 and for any

sequence of interruption values (ti)
r
i=1 ⊆ {1, . . . , k}, it holds that:

Pr[prefVer(sti, pk, µi,σi, ti) = αpref(ti, i)] = 1 for all i = 1, . . . , r.

Definition 10 (Concrete Amortized Efficiency). A scheme ΣF+E = (Σ, prefVer) realizes
(r0, e0)-concrete amortized efficiency if, for a given security parameter λ, for any key pair (sk, pk)←
KeyGen(λ), for any pair tuple of pairs (µi,σi) with µi ∈M and σi such that Ver(pk, µi,σi) = 1, for
any one sequence of admissible states (sti)

r
i=0 ⊆ S, there exist a small, real constant 0 < e0 < 1,

and a non-negative integer r0 such that for every r ≥ r0 the following holds true:∑r0−1
i=0 cost

(
prefVer(sti, pk, µi,σi, k)

)
r0 · cost

(
Ver(pk, µ,σ)

) < e0 (6)

C.1 Bounded Efficient And Progressive Security

Figure 7 collects a description of our security game and experiment for existential unforgeability
under adaptive chosen message attack for signatures with progressive and efficient verification
(r-prefEUF).

r-prefEUF(Σ, λ, k)

1 : ctr← 0, st0 ← ∅, LS ← ∅

2 : (pk, sk)← KeyGen(1λ)

3 : (µ∗,σ∗, t∗)← AOSign,prefVer(pk, λ)

4 : return (ctr, µ∗,σ∗, t∗)

OprefVerk(stctr, pk, µ,σ, t
′)

1 : if (ctr ≥ r) return ⊥
2 : t← OInt(t′)

3 : α← prefVer(stctr, µ,σ, t)

4 : ctr← ctr + 1

5 : return α

Expr-prefEUFA,Σ,r (λ, k)

1 : (ctr, µ∗,σ∗, t′)← r-prefEUF(Σ, λ, k)

2 : β ← Ver(pk, µ∗,σ∗)

3 : t∗ ← OInt(t′)

4 : α← prefVerk(stctr, pk, µ
∗,σ∗, t∗)

5 : if (µ∗ ∈ LS ∨ α = ⊥ ∨ β = 1)

6 : return (0, 0)

7 : return (ctr, t∗)

OSignsk(µ)

1 : LS ← LS ∪ {µ}
2 : σ ← Sign(sk, µ)

3 : return σ

Fig. 7: Security model for existential unforgability under chosen message and progressive verification for signatures
with stateful, (k, r)-efficient and progressive verification: queries security game, experiment and oracles.

Definition 11 (r-Bounded Progressive Security (r-prefEUF)). Let Σ be a signature scheme
that admits a non-trivial realization of (r,k)-efficient and progressive verification ΣF+E. Then, for a
given security parameter λ, ΣF+E is existentially unforgeable under adaptive chosen message attack
with progressive and efficient verification attack (r-prefEUF) if for all efficient PPT adversaries A

29

the success probability in the r-prefEUF experiment is:

Pr

[
Expr-prefEUFA,Σ,r (λ, k, r) = (ctr∗, t∗)

∧ (ctr∗, t∗) ̸= (0, 0)

]
≤ (1− αpref(t

∗, ctr∗)) + ε(λ).

C.2 A Compiler For PREF MV-Style Verification
First of all we notice that our compiler for efficient verification described in Section 4.1 is trivially
poly(λ)−prefEUF (i.e., existentially unforgeable against an unbounded polynomial number of ver-
ification queries), by defining prefVer = (prefVer0, prefVer1) as shown in Figure 8. Recall that by
assumption st0 = ∅ and that for q exponential in the security parameter Theorem 1 shows that we
can set k = 1 and have unforgeability.

prefVer(st, pk, µ,σ, t) k = 1

1 : β ← 0

2 : if t < 0

3 : return ⊥
4 : if t > 1

5 : set t← 1

6 : for i = 0, t

7 : (st, β)← prefVeri(st, pk, µ,σ)

8 : if β = 0 return α = ⊥
9 : return α = (1− 1/qt)

αpref : {0, 1} × Z>0 → [0, 1]
αpref(t, ctr) = (1− 1

qt−ctr
− ctr

q−(ctr−1)
)

prefVer0(st, pk, µ,σ)

1 : parse st = (svk, ctr)

2 : if st = ∅
3 : svk← offVer(pk, 1)

4 : st← (svk, 1)

5 : else st← (svk, ctr + 1)

6 : return (st, 1)

prefVer1(st, µ,σ)

1 : parse st = (svk, ctr)

2 : β ← onVer(st, µ,σ)

3 : return (st, β)

Fig. 8: The trivial two-step prefVer solution based on our compiler for efficient verification (Figure 4).

We now present a compiler for signatures with Mv-style verification and q = poly(λ) that
realizes efficient bounded progressive verification. This compiler builds on top of the two compilers
presented in Section 4.1. Intuitively, the problem with progressive verification is that if interrupted
after t < k steps the process may erroneously accept an invalid signature with a non-negligible
probability ≈ 1/qt. In Section 4.2 we mitigate this leakage of information between queries by
refreshing the vectors in svk after every verification. This conservative approach clearly impacts
efficiency. Here we want to prioritize efficiency at the cost of accuracy, and investigate how the
confidence function degrades when the same set of vectors zi is used to perform r progressive
verifications.

Our compiler works essentially as the efficient verification compiler in Figure 5, except that
the offVer algorithm (that generates a fresh svk) is run only once every r verifications. To further
optimize the scheme, we replace the GetZV algorithm by k algorithms GetZVi each of which is
run by the corresponding prefVeri. The behavior of GetZVi depends on the signature scheme and
in what follows we define it for each of the three major classes we identified in this paper. Each
algorithm takes as input the corresponding i-th vectors ((ci, zi), PK.aux, µ) and returns (z′i,vi)
that are defined according to the scheme considered:

30

prefVer(st, pk, µ,σ, t)

1 : β ← 0

2 : if t < 0

3 : return ⊥
4 : if t > k

5 : set t← k

6 : parse st = (svk, ctr)

7 : if st ̸= ∅ ∧ ctr > r

8 : set st← ∅
9 : for i = 0, . . . , t

10 : (st, β)← prefVeri(st, pk, µ,σ)

11 : if β = 0

12 : return α = ⊥
13 : ctr← ctr + 1 // update st

14 : return α = (1− 1/qt − ctr/q)

prefVer0(st, pk, µ,σ)

1 : parse st = (svk, ctr)

2 : if st = ∅
3 : svk← offVer(pk, k)

4 : st← (svk, 0) // ctr ← 0

5 : return (st, 1)

prefVer1(st, µ,σ)

1 : parse st = (svk, ctr)

2 : (z′,v)← GetZVi(svk, µ,σ)

3 : if z′ · v = 0 mod q

4 : return (st, 1)

5 : return (st, 0)

αpref : {0, . . . , k} × {0, . . . , r} → [0, 1] , αpref(t, ctr) = (1− 1
qt
− ctr

q
), if t > 0

Fig. 9: Generic compiler to obtain efficient and progressive verification of signature schemes with Mv-style verification
and q polynomial in the security parameter.

GPV08 [16]: the GetZVi routine returns z′i = zi = ciM, and vi = [σ|H(µ)].
MP12 [24]: the GetZVi routine outputs z′i = [z̃i | z0i +

∑ℓ
j=1 µ[j]z

j
i |ci] and vi = [σ|u].

Rainbow [11]: the GetZVi routine outputs z′i = zi = ciM, and vi = [s̃|s|1|h].

Finally, the confidence function αpref(·, ·) is defined as:

αpref(t, ctr) =

{(
1− 1

qt−ctr −
ctr

q−(ctr−1)

)
if t > 0

0 if t = 0
(7)

r0-concrete amortized efficiency.

The cost of prefVeri varies depending on whether i = 0 or i > 0. When prefVer is run the first
time (or with an empty state), the step prefVer0 generates the state. This includes computing
(knm) multiplications, in the worst case. After that, every step prefVeri computes at most (n+m)
multiplications (the first term represents the cost of running GetZVi). Therefore,

cost
(
prefVer(st0, µ0,σ0, k)

)
= knm+ k(n+m) .

However, this is true only for the first execution of prefVer, as when executing the verification
1 < r0 < r times, the algorithm prefVer0 does not refresh the multipliers. Hence, for i > 0

cost
(
prefVer(sti, µi,σi, k)

)
= k(n+m) .

This yields
∑r0−1

i=0 cost
(
prefVer(sti, pk, µi,σi, k)

)
= knm + r0k(n +m). The cost of a verification is

dominated by cost
(
Ver(pk, µ,σ)

)
= nm multiplications, in the worst case. Therefore, Equation (6)

31

yields
knm+ r0k(n+m) < r0nm ⇒ r0 >

knm

nm− k(n+m)
.

From the above formula we can derive a lower bound on values of r that yield efficiency (recall that
by definition r0 ≤ r). A concrete security approach should lead to a meaningful upper bound on the
value r that can be safely used in realistic applications. Intuitively, lower values of r yield higher
accuracy (and unfogeability), higher ones guarantee better amortized efficiency.

32

	 Progressive and Efficient Verification for Digital Signatures

