
MPC for Q2 Access Structures over Rings and Fields

Robin Jadoul1 , Nigel P. Smart1 , and Barry Van Leeuwen1

imec-COSIC, KU Leuven, Leuven, Belgium.
robin.jadoul@esat.kuleuven.be, nigel.smart@kuleuven.be barry.vanleeuwen@kuleuven.be

Abstract. We examine Multi-Party Computation protocols in the active-security-with-abort setting
for Q2 access structures over small and large finite fields Fp and over rings Zpk . We give general
protocols which work for any Q2 access structure which is realised by a multiplicative Extended Span
Program. We generalize a number of techniques and protocols from various papers and compare the
different methodologies. In particular we examine the expected communication cost per multiplication
gate when the protocols are instantiated with different access structures.
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1 Introduction

Secure multiparty computation (MPC) considers the situation where some set of parties P come
together to compute a function, each with their own inputs. The security requirement is that no
party is able to learn more than what the output of this computation and their own input would
allow them to. From another perspective, this can be seen as a protocol that emulates a perfectly
honest, trusted third party that obtains each party’s input, performs the computation, and outputs
the result.

We can distinguish different security notions based on the power an adversary can have. One
axis along which to distinguish is whether the adversary is active or passive. A passive adversary,
also sometimes called honest but curious, follows the protocol correctly, but tries to obtain more
information from the parts of the transcript of the execution it can see. An active adversary on
the other hand, is able to arbitrarily deviate from the protocol. In this situation we either require
that the honest parties still obtain the correct output from the function, in which case we say that
the protocol is robust, or we require that the honest parties abort the protocol with overwhelming
probability, in which case we say the protocol is actively-secure-with-abort. In this paper we con-
centrate on protocols which are actively-secure-with-abort, as they are relatively fast and practical
in a large number of situations. Those readers who are interested in robust active security should
consult [ACD+20, CRX19].

Another axis to consider is how many or which subsets of parties the adversary can corrupt.
If we have n parties then a full threshold adversary is one who is able to corrupt at most n − 1
parties. In such a situation we can achieve active-security-with-abort, however this comes at the
expense of a costly preprocessing phase; see [DPSZ12, CDE+18] for the case of MPC over finite
fields, or over finite rings. Simpler protocols can be obtained if one restricts the adversary to corrupt
less parties. The classic restriction is that of threshold adversaries who are allowed to corrupt up
to t < n parties. When t < n/2 very efficient MPC protocols can be realised, using a variety
of methodologies to obtain active-security-with-abort. The natural generalisation of the threshold
t < n/2 case is that of so-called Q2 adversary structure. A Q2 adversary structure is one where the
union of no two unqualified sets contains the whole set of players P. For threshold structures the
set of unqualified sets are all subsets of P of size t, thus clearly no two sets can contain all of P
when t < n/2. In this paper we will focus on Q2 access structures, again as they are relatively fast
and practical in a large number of situations.

A third axis to consider is the underlying field or ring over which the MPC protocol is imple-
mented. Traditionally the focus has been on MPC protocols over fields Fp, either large finite fields
or small ones (in particular F2). However, recently interest has shifted to also considering finite rings
such as Zpk , and in particular Z2k . In this setting sometimes, to obtain active security, underlying
protocols require the players to work in the extended ring Z2k+s , for some security parameter s,
and sometimes this is avoided. In this work we will consider all such possibilities.

The final axis to consider is the precise protocol to use. Almost all practical protocols which
are actively-secure-with-abort for Q2 access structures divide the protocol into two, and sometimes
three stages. The first stage, called the offline or pre-processing stage, is function independent and
generates various forms of correlated randomness amongst the parties. A second stage, called the
online stage, uses the pre-processing to compute the output of the function in a secure manner.
Sometimes a third stage, called the post-processing stage, is required to ensure active-security.

The investigation of the combination of the second, third and fourth axes forms the basis of
this work. We generalize, where needed, prior works in order to investigate as many prior protocol
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variants as possible, when instantiated over finite rings or fields. We also generalize results from
specific Q2 access structures to general Q2 access structures so as to obtain a complete smorgasbord
of options. We then analyse the different options, as it is unclear in which situation which protocol
is to be preferred (even in the case of finite fields).

Prior Related Work: The majority of the literature has focused on the case where the underlying
arithmetic is a finite field. These are often based, for general finite fields andQ2 access structures, on
the classic multiplication protocol of Maurer [Mau06], which works for an arbitrary multiplicative
secret sharing scheme. In the case of small finite fields and small numbers of parties, for example F2

and three players it is common to utilize a multiplication protocol based on replicated secret sharing,
which originally appeared in the Sharemind software [BLW08]. The generalisation of this specific
multiplication protocol to arbitrary fields andQ2-access structures implemented by replicated secret
sharing [KRSW18], the generalization to an arbitrary Q2 MSP was done in [SW19]. Both of these
multiplication protocols we shall refer to as KRSW. There is a third passively secure multiplication
protocol due to Damg̊ard and Nielsen [DN07], which we shall refer to as DN multiplication. The
DN multiplication protocol is often combined with a “king-paradigm” for opening a sharing, this
reduces the total amount of data sent at the expense of doubling the number of rounds. As round
complexity has often a bigger impact on execution time than data complexity we assume no king
paradigm is used in our protocols1 Thus before one even considers the various protocols, one has
(at least) three base passively secure multiplication protocols to consider. In this work we will
concentrate on these three, Maurer or KRSW or DN. The one which is more efficient depends on
the precise context as we will show. From these, when using multiplication triples, one can derive
a third passively secure multiplication triple which we shall call Beaver multiplication.

In more recent works, research has started to focus on MPC over finite rings, such as Zpk ,
and Z2k in particular. For many cases, this choice is more natural, as it more closely aligns with
the bitwise representation of numbers found in standard computing, and it can enable efficient
high level operations such as bit-decomposition (which are very useful in practice). For example,
working over Z264 would closely mimic the behaviour we have on most currently used CPUs. The
main problem with working with such rings is the presence of zero-divisors.

A method to avoid the problem of zero-divisors in secret sharing schemes over rings with zero-
divisors was presented in the SPDZ2k protocol of [CDE+18]. Originally, this was presented in
the case of a full threshold adversary structure, but the basic trick used applies to any access
structure. To avoid the problem of zero divisors when working modulo 2k, the authors extend (for
some protocols) the secret sharing to a large modulus 2k+s, for some statistical security parameter
s. This idea was extended to the case of simple Q2 access structures, using a replicated secret
sharing schemes, in [EKO+20]. With some of the resulting protocols for n = 3 and n = 4 parties
implemented in the MP-SPDZ framework [Kel20].

Across the many papers on Q2 MPC we identify three forms of actively secure pre-processing
used in the literature, which we generalise2 to an arbitrary setting of pk. The first, which we denote
by Offline1, uses a passively secure multiplication protocol to obtain 2 · N triples. These are then
made actively secure using the classic technique of sacrificing (which effectively uses internally

1 Note the kind-paradigm can be used not only in DN multiplication but in any protocol which involves opening
shares to all players, as long as suitable additional checks are performed to ensure active security.

2 There are a few others which we do not consider, as they do not easily fit into our protocol descriptions below. For
example the protocol of [ADEN19] looks at threshold structures and uses the multiplication protocol of [DN07]
using a king paradigm.
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a Beaver multiplication), resulting in an output of N triples. This variant has been used in a
number of papers, e.g. [SW19]. A second variant, which we denote by Offline2, generates N passively
secure triples, and then checks these are correct using a different checking procedure, based on the
underlying passively secure multiplication protocol of choice. This variant was used in [EKO+20].

A third offline variant, which we shall denote by Offline3, uses a passively secure multiplication
protocol to obtain triples in the offline phase. These are then made actively secure using a cut-
and-choose method, as opposed to sacrificing. The reason for this is that they are interested in
MPC over F2 and classical sacrificing has a soundness error of one over the field size, and using
cut-and-choose allows one to perform an actively secure offline phase without needing to pass to
a ring of the form Z2k . This methodology was presented in [ABF+17], and we shall also call this
ABF pre-processing. This method seems very well suited to situations when pk is small as it does
not require extending the base ring to Zpk+s .

From these one can derive a number of complete protocol variants. The first variant, which we
shall denote Protocol1, exploits the error-detecting properties of a Q2 access structure to obtain
a protocol which uses an actively secure offline phase, and then uses an online phase based on
the classical Beaver multiplication method. Active-security-with-abort is achieved using the error
detecting properties of the underlying secret sharing scheme. This has been considered in a number
of papers in the case of threshold structures with (n, t) = (3, 1), with the generalisation to arbitrary
Q2 structures in the case of large finite fields being done in [SW19].

In [EKO+20] a three party protocol is presented which makes use of a different methodology,
which we generalise to arbitrary Q2 access structures. Here the online phase is executed optimisti-
cally using a passively secure multiplication protocol. The multiplications are then checked to be
correct at the end of the protocol using a post-processing phase. Depending on the method used to
perform this checking, we can either generate auxiliary, passively secure triples in an offline phase,
that can be used in a form of sacrificing in the post-processing phase (which we dub Protocol2), or
we can completely remove the need for a preprocessing step (which we dub Protocol3).

The paper [ABF+17] also uses an optimistic passively secure online phase with a post-processing
step, but combines this with an actively secure offline phase. By doing this the post-processing check
is always checking possibly incorrect multiplications (from the online phase) against known-to-be-
correct multiplications (from the offline phase). This means the post-processing check can be done
using a method which is close to that of classical sacrificing, without the need to worry about the
small field size. We call this variant Protocol4.

The final protocol variant we consider, which we dub Protocol5, comes from [CGH+18]. In this
paper the authors dispense with the offline phase, and instead generate a shared MAC-key [α], a bit
like in SPDZ, and evaluate the circuit on both [x] and [α ·x] using a passively secure multiplication
protocol. Thus, in some sense, the circuit is evaluated twice in the online phase. The correctness of
the evaluation is then established using the MAC-Check protocol from the SPDZ protocol. Thus
there is a post-processing step, but it is relatively light-weight, however the online phase is more
expensive than other techniques.

We summarize these in five protocol variants in Table 1 as a means for the reader to maintain
a quick overview as they read the paper.

Our Contribution: In this work we unify all these protocols; in prior work they may have been
presented for finite fields, or for rings of the form Z2k , or for specific access structures. We consider,
in all cases, the general case of MPC over rings of the form Zpk ; i.e. where we consider both the
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Offline Phase Online Post-Processing
Protocol Passive Active Phase Heavy Light

Protocol1 - Beaver - -

Protocol2 - Passive -

Protocol3 - - Passive -

Protocol4 - Passive -

Protocol5 - - 2 × Passive -
Table 1. Summary of our five protocol variants. A “heavy” post-processing phase denotes a phase akin to sacrificing,
where as a “light” post-processing denotes a phase akin to SPDZ-like MAC checking. A Passive online phase refers
to an online phase using either Maurer or KRSW multiplication.

case of k = 1, large k, small p, and large p in one go. Our methodology applies to all multiplicative
Q2 access structures over such rings. To do so we utilize the language of Extended Span Programs,
ESPs, introduced in [Feh98]. This allows us to consider not only replicated access structures, but
also access structures coming from Galois Ring constructions. By considering such Galois Ring
constructions as an ESP, we can maintain working over Zpk without the need to worry about
complications arising from the Galois Ring.

We first show how one can create the necessary ESPs for a specific access structure, by con-
structing an associated MSP over the field Fp and then lifting it to Zpk in a trivial manner. This
preserves the access structure, but it does not always preserve multiplicity (see [ACD+20] for a
relatively contrived counter example). For all “natural” MSPs one might encounter in practice
(arising from Shamir or Replicated secret sharing) the lifting does preserve multiplicity. In any case
if the resulting ESP over Zpk is not multiplicative, it can be extended to a multiplicative ESP in
the standard manner3.

We show that the error-detection properties of [SW19] apply in this more generalized context
of finite rings. This allows us to reduce the communication cost in our protocols for ESPs. Note
the error-detection properties exploited in [SW19] are the precise generalization to arbitrary Q2

MSPs of the classical check for correctness performed in threshold systems for (n, t) = (3, 1) based
on replicated sharing.

We also show that the trick of modulus extension from Zpk to Zpk+s also works in general, and
we combine it with other tricks. For example we use Schwarz-Zippel over Galois rings to allow
greater batching, and modulus extension even in the case of checking over finite fields. Indeed we
show that one can also utilize modulus extension to avoid the problems with sacrificing when k = 1
and p is small. However, this comes at the expense of requiring to work modulo pk+s and not
working modulo pk, which may be a problem in some instances (for example in the interesting case
of pk = 2). Thus our multiplication checking procedures in Section 5 generalise a number of earlier
results, and unify various approaches. Note, that depending on the underlying protocol choice such
modulus extensions may not be needed.

We finally examine the smorgasbord of options for the offline, online and post-processing which
we outlined above in this general context and examine the various benefits and tradeoffs which
result. Our cost metrics in this matter are the total number of rounds of communication, as well as

3 This is a standard result for MSPs over fields, but we have seen no proof for ESPs over finite rings so we present
this construction in an Appendix.
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the total amount of data sent per multiplication4. We consider the case where the user is interested
in minimizing the total cost (i.e. the combined cost of all three phases), as well as the case where
the user is interested in minimizing the costs of the online and post-processing phases only (i.e.
where the user assumes that the offline phase can be done overnight for example and is not an
important consideration).

Paper Outline: In Section 2 we summarize some basic definitions and work from other papers
which we will utilize. In Section 3 we explain how to utilize an MSP defined over a finite field Fp

which computes a given access structure, as a way of doing the same operation over a finite ring
Zpk , for the same prime p. In Section 4 we generalize the results on Q2 MSPs over Fp of [SW19],
to ESPs over Zpk . This enables us to open values to players, and ensure the opened values are
“correct”. Then in Section 5 we examine various methodologies for checking whether multiplication
triples are correct or not. In this section we generalize a number of prior checking procedures to
the full generality of working modulo Zpk . Finally in Section 6 (resp. Section 7) we examine the
various offline (resp. complete) protocols and do a comparison.

2 Preliminaries

2.1 Notation

We let F denote a general finite field, and R denote a general finite commutative ring. We let Fp

denote the specific finite field of p elements, and Zpk denote the ring of integers modulo pk. For two
sets X,Y we write X ⊂ Y if X is a proper subset and X ⊆ Y if X is not necessarily proper. For a
set B, we denote by a← B the process of drawing a from B with a uniform distribution on the set
B. For a probabilistic algorithm A, we denote by a ← A the process of assigning a the output of
algorithm A; with the underlying probability distribution being determined by the random coins
of A.

For a vector x we let x(i) denote it ith component, and for two vectors x and y of the same
length we let ⟨x,y⟩ denote the dot-product, unless otherwise noted. We let Mn×m(K), where
K = F or K = R, be the set of all matrices with n rows and m columns. For M ∈ Mn×m(K)
denote the transpose by MT . We let ker(M) to denote the subspace of Km which maps to 0
under left multiplication by M , and we let Im(M) to be the subspace of Kn which is the image
of all elements in Kn upon left multiplication by M . If V is a subspace of Kr for some r, we let
V ⊥ = {w ∈ Kr | ∀v ∈ V : ⟨w,v⟩ = 0} denote the orthogonal complement. Moreover, we let 0
and 1 be the all zero and all one vector of appropriate dimension (defined by the context unless

explicitly specified) and let ei be the ith canonical basis vector, that is e
(j)
i = δi,j where δ is the

Kronecker Delta.

2.2 ℓ-Good Rings and the Schwartz-Zippel Lemma

Following Fehr [Feh98], a ring R is said to be ℓ-good if there is a set S of ℓ units ωi ∈ R∗ such that

ωi − ωj ∈ R∗ for all ωi, ωj ∈ S such that ωi ̸= ωj .

4 Note, as MPC protocols do not usually work in practice over arithmetic circuits this is only an approximation of
the cost of the various options.
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It is known that a ring R is ℓ-good if and only if ℓ ≤ |R/m1| − 1, where m1 is the largest maximal
ideal contained in R. If this is not the case then R can be extended to an ℓ-good Galois ring,
[Feh98]. In particular if R is a ring Zpk then one can select a polynomial F (X) ∈ Fp[X] which

is irreducible (over Fp[X]) and of degree dℓ such that ℓ ≤ pdℓ − 1. Then one forms the Galois
ring R = Zpk [X]/F (X), which will be ℓ-good, with a set S being the embedding of the units of

Fp[X]/F (X) into the ring R.

This Galois ring extension R allows us to define a variant of the Schwartz-Zippel Lemma; we
present here a univariate version as that is all we will need, a multivariate version follows by the
standard argument.

Lemma 2.1 (Schwartz-Zippel Lemma over Rings). Let F ∈ R[X] denote a non-zero poly-
nomial of degree d. Let R denote a Galois ring extension of R which is ℓ-good, with the set S of
size ℓ as above. If one selects r ∈ S uniformly at random then we have

Pr[ F (r) = 0 ] ≤ d

ℓ
.

Proof. We prove the result by showing that the polynomial F (X) can have at most d roots in S.
The proof follows by a simple induction on d. The case of d = 0, i.e. constant polynomials is trivial.

Now assume that all polynomials of degree d− 1 have at most d− 1 roots in S ⊂ R. Consider a
polynomial F (X) of degree d and assume it has d+1 distinct roots, ω1, . . . , ωd+1 ∈ S. We can then
write F (X) = (X − ωd+1) ·G(X), where G(X) is of degree d. Now all ωi with i ̸= d+ 1 are roots
of F (X), but by assumption we have ωi − ωd+1 is a unit in R. This means that ωi with i ̸= d+ 1
must be a root of G(X), which contradicts the assumption that G(X) has at most d roots.

2.3 Monotone and Extended Span Programs

As is standard we can associate linear secret sharing schemes over fields with Monotone Span
Programs. In [Feh98] these definitions are extended to linear secret sharing schemes over finite
rings, such as Zpk , with the associated structure being called an Extended Span Program. We
recap on the relevant definitions here.

Access Structures: The set of parties that the adversary can corrupt is drawn from an access
structure (Γ,∆). The set Γ is the set of all qualified sets, whilst ∆ is the set of all unqualified sets.
The access/adversary structure is assumed to be monotone, i.e. if X ⊂ X ′ and X ∈ Γ , then X ′ ∈ Γ
and if X ⊂ X ′ and X ′ ∈ ∆ then X ∈ ∆, and we assume Γ ∩∆ = ∅. We are only interested in this
paper in access structures which are Q2:

Definition 2.1 (Q2 Access Structure). Let P = {P1, . . . , Pn} be a set of parties, with access
structure (Γ,∆), then (Γ,∆) is said to be a Q2 access structure if

P ̸= A ∪B for all A,B ∈ ∆.

In other words: An access structure (Γ,∆) is Q2, if for any two sets in ∆ the union of those sets
does not cover P. An access structure is called complete if for any Q ∈ Γ it holds that P\Q ∈ ∆
and vice versa. In this paper we will only consider complete access structures.
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Monotone Span Programs over Fields: Using this notation, the definition of a Monotone Span
Program follows.

Definition 2.2. A Monotone Span Program (MSP), denotedM, is a quadruple (F,M, ε, φ), where
F is a field, M ∈ Mm×d(F) is a full-rank matrix for some m and d ≤ m, ε ∈ Fd is an arbitrary
non-zero vector called the target vector, and φ : [m] → P is a surjective map of the rows of M to
the parties in P. The size ofM is defined to be m, the number of rows of the matrix M .

Given a set of parties S ⊆ P, the submatrix MS is the matrix whose rows are indexed by the
set {i ∈ [m] : φ(i) ∈ S}. Similarly sS is the vector whose rows are indexed by the same set. We
also define the supp-mapping, which maps the rows of a matrix M to a player in P. Formally this
is defined as supp : Fd → 2[d] with s 7→ {i ∈ [d] : s(i) ̸= 0}.

Definition 2.3. An MSP M is then said to compute an access structure (Γ,∆) if for every set
A ⊂ 2P it holds that

A ∈ Γ ⇒ ε ∈ Im(MT
A ), (1)

A /∈ Γ ⇒ ε /∈ Im(MT
A ). (2)

Note that this could be presented as a single if and only if condition, but to emphasise the difference
with the generalization to rings, we present the condition in two equations. Also note that, an
equivalent formulation for requirement (2) is the following:

A /∈ Γ ⇒ ∃k ∈ ker(MA) s.t. ⟨ε,k⟩ ≠ 0

Extended Span Programs over Rings: In this paper we are not only interested in the Mono-
tone Span Programs, but also their extensions to finite rings, which are known as Extended Span
Programs, [Feh98]. An Extended Span Program (ESP) over a ring R is a tuple M = (R,M, ε, φ)
where M ∈Mm×d(R) is a full-rank matrix for some m and d ≤ m, ε ∈ Rd is an arbitrary non-zero
vector called the target vector, and φ : [m]→ P is a surjective map of the rows of M to the parties
in P. The analogue of Definition 2.3 is

Definition 2.4. An ESP M is to compute an access structure (Γ,∆) if for every set A ⊂ 2P it
holds that

A ∈ Γ ⇒ ε ∈ Im(MT
A ), (3)

A /∈ Γ ⇒ ∃v ∈ ker(MA) ⊂ Rd : ⟨ε,v⟩ ∈ R∗. (4)

Note that, (4) is a stronger assumption than the corresponding requirement for an MSP in the ESP
case, namely (2). To see this note that if ε = (ε1, ε2, . . . , εd) with εi /∈ R∗ then there are situations
in which A /∈ Γ , however ε ∈ Im(MT

A ).
For the rest of this paper we will only be considering MSPs over finite fields Fp, or ESPs over the

finite ring Zpk . Let P = {P1, . . . , Pn} be the set of parties involved in our protocols. To implement

our MPC functionality over Zpk we will utilize an ESP (Zpk ,M , ε, φ) given by a matrixM ∈ Zm×d,
such that M = M (mod p) (i.e. the entries of M are in the range [0, . . . , p)), such that to share
a value x ∈ Zpk one generates a vector k ∈ Zd

pk
such that ⟨ε,k⟩ = x (mod pk) and then compute

the share values s = M · k. The entries of s are passed to the players depending on the value of
the function φ : [m] → P. i.e. player Pi gets s(j) if φ(j) = i. Such a sharing x ∈ Zpk of a value
will be denoted by [x]k, note the subscript k which will be used to keep track of which ring we are
considering at any given point.
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2.4 Linear Secret Sharing Schemes Induced from MSPs and ESPs

When you have a Monotone/Extended Span Program it induces a Linear Secret Sharing Scheme
(LSSS) using the method in Figure 1. Recombination works for qualified sets A ∈ Γ , since if A is
qualified there exists a recombination vector λA such that MT

A · λA = ε, by requirement (3) of the
MSP. Hence

⟨λA, sA⟩ = ⟨λ, s⟩ = ⟨λ,M · x⟩ = ⟨MT · λ,x⟩ = ⟨ε,x⟩ = s.

Conversely, if A /∈ Γ then A is unqualified, hence by requirement (2) of the MSP, or requirement (4)
of the ESP, there is no λ that allows for reconstruction. That reconstruction vectors exist follows
from the following two Lemmas, since Z is a Euclidean domain, and so Lemma 2.3 implies that we
can solve linear equations in the quotient rings Zpk .

Lemma 2.2. There exists an algorithm which solves linear equations, ⟨a,x⟩ = b, for any Euclidean
domain D. Moreover, there exists an algorithm that solves linear equation systems M · x = b for
any matrix M ∈Mn×m(D).

Lemma 2.3. If linear equation systems can be solved in the ring R, then they can also be solved
in the rings R [X] and R/I for all finitely generated ideals I of R.

We note that the reconstruction step 2 can be relatively expensive for large MSPs, i.e. those
with large m. Thus it is common to only send “just enough” information to each player in order
to allow reconstruction. How this is done in a manner which prevents active attacks is discussed in
Section 4.

Induced LSSS from an MSP/ESP

Given a Monotone/Extended Span Program,M = {Zpk ,M, ε, φ} and a secret s, distribution and reconstruction
for the associated secret sharing scheme are as follows:

Distribution:

1. Sample x← Zd
pk under the condition that ⟨x, ε⟩ = s.

2. Compute s = M · x, such that s = (s1s2 . . . sn) and distribute each si to the party indicated by φ(i), such
that each party Pj has the vector

sPj =

{
si φ(i) = Pj

0 otherwise

Reconstruction: Let A ∈ Γ be a qualified set of players:

1. Define λA such that MT
A · λA = ε.

2. Each player Pi ∈ A sends their shares to all other Pj ∈ A and computes sA =
∑

Pi∈A sPi .
3. Compute s∗ = ⟨sQ, λQ⟩.
4. Return s∗.

Fig. 1. Induced LSSS from a Monotone/Extended Span Program.

Multiplicative Linear Secret Sharing Scheme A secret sharing scheme induced from a
MSP/ESP is by definition linear, i.e. one can compute arbitrary linear functions of secret shared
values without interaction. Q2 access structures are interesting as they allow us to also multiply
secret shared values, but using interaction, if the underlying LSSS is multiplicative.
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Recall a vector s = (si) = M · k is some sharing of a value s if we have that ⟨ε,k⟩ = s, with
the shares distributed to party Pi being si = (sj)φ(j)=i. We let the total number of shares held by
party Pi be given by ni. The local Schur product of two sharings xi and yi of values x and y for

party Pi are the n2i terms given by xi ⊗ yi, i.e. the terms pi,j = x
(v)
i · y

(v′)
i for j = 1, . . . , n2i and

v, v′ range over all values for which φ(v) = φ(v′) = i. An MSP is said to be multiplicative if there
are constants µi,j for i = 1, . . . , n and j = 1, . . . , n2i such that

x · y =
∑
i,j

µi,j · pi,j (5)

for all valid sharings of x and y. By abuse of notation we shall refer to the MSP/ESP being
multiplicative, and not just the induced LSSS.

Many “natural” MSPs/ESPs computingQ2 access structures are multiplicative, i.e. those arising
from Shamir secret sharing, or replicated sharing. It is well known, see [CDM00], that when you
have an non-multiplicative MSP over a field that computes a Q2 access structure then it can be
made multiplicative with only a small expansion of the dimensions of M . In Appendix A we prove
the following theorem, generalising this result to ESPs over Zpk ,

Theorem 2.1. There exists an algorithm which, on input of a non-multiplicative ESPM over Zpk

computing a Q2 access structure (Γ,∆) outputs a multiplicative ESP M′ computing Γ and of size
at most 4 · |M|. This algorithm is effective if ker(MT ) admits a basis.

2.5 Shamir over Rings, an Example:

To help solidify ideas we present here the standard construction of Shamir secret sharing over a
small finite field (say F2), which is achieved via extension to a finite field F2dn , where n ≤ 2dn − 1
We then show how this can be interpreted as an MSP over the finite field F2, where we only want
to share elements in F2 and not F2dn . By extending scalars we then obtain an ESP over the ring
Z2k .

Consider first constructing an analogue of Shamir sharing for three players and threshold one5

over the finite field F2, i.e. (n, t) = (3, 1). The problem with Shamir over F2, is that we do not have
enough elements to interpolate via n evaluations. Thus we need to extend the base field by a degree
dn extension so that it is n-good (see [Feh98]), Since n = 3 = 22 − 1 = pd3 − 1 we simply need to
take an extension of degree two. Thus we set K = F2[X]/(X2 +X + 1) and we represent elements
in K via a0 + a1 · θ for a variable θ such that θ2 + θ + 1 = 0. The set S being the set {1, θ, θ + 1}.

We now perform the standard Shamir sharing technique for t = 1. To share a secret s =
s0 + s1 · θ ∈ K, we select a polynomial f(X) = (s0 + s1 · θ)+ (a0 + a1 · θ) ·X, where a0, a1 ∈ F2 and
generate the shares by evaluating f(X) at the elements in S. We can then express this as a MSP
over F2 by treating the coefficients of θ as separate shares. The MSP can be simplified a little, as
we are only interested in sharings of elements in F2; thus we will always have s1 = 0. Interpolation
is then always possible via Lagrange interpolation as the denominators in the Lagrange coefficients,
ωi − ωj , are always invertible via the choice of the set S.

Thus shares for player one, corresponding to the element ω1 = 1 ∈ S are { s0 + a0, a1 }; the
shares for player two, corresponding to the element ω2 = θ ∈ S are { s0 + a1, a0 + a1 }; whilst the
5 The astute reader will be asking why bother? A simpler implementation in this case come from replicated sharing.
We give this example since, for large values of n and t, the construction via extensions fields/rings is more efficient
than replicated sharing.

11



shares for player three, corresponding to the element ω3 = θ + 1 ∈ S are { s0 + a0 + a1, a0 }. We
can then write the secret sharing scheme down as an MSP over F2, asM2 = (F2,M, e1, φ), where
the matrix M is given by

M =



1 1 0
0 0 1
1 0 1
0 1 1
1 1 1
0 1 0

 ,

and φ(i) = ⌈i/2⌉.
The self same construction, but starting with the ring Zpk will create the ESPM = (Zpk ,M, e1, φ).

We see that we can considerM2 as the reduction modulo 2 of the ESPM, or we can considerM
as the “lift” (by extension of scalars) of the MSP M2. Both compute the same access structure,
and both are multiplicative.

This method of forming ESPs over rings Zpk for an access structure Γ , by first forming an
MSPMp over the field Fp for the same access structure Γ and then “lifting” the MSP to the ESP
over the required ring Zpk , will be our method for constructing ESPs in this work. We show later,
Section 3, that this lifting always works in terms of the access structure, but we cannot show that
the associated lift is always multiplicative (we conjecture that it is for all “interesting” in practice
MSPs/ESPs).

Note, by generating the MSP via Galois ring extensions, but then restricting the shared value
to the base ring, and also encoding all the ring extension arithmetic within the matrix M , means
we can dispense with considering Galois rings as soon as the MSP is constructed. This avoids the
complexity mentioned in [ACD+19][Section 3.4] of us never needing to worry about a reconstructed
value is not in the base ring.

2.6 Basic Multi-Party Computation Protocols

The general MPC functionality that we aim to implement is given in Figure 2. We assume the
secret sharing scheme defined by the ESP is multiplicative, and hence the underlying secret sharing
scheme is Q2. For example purposes, the reader may want to consider three party replicated sharing
for the threshold structure of (n, t) = (3, 1). Here a value s is shared by s = s1 + s2 + s3, with
party Pi holding the two values {s1, s2, s3}\{si}, or our earlier Shamir based example for the same
access structure.

Modular reduction is consistent with the opening procedure, in the sense that if 0 ≤ k′ ≤ k then
the operation of opening a sharing [x]k and taking the reduction modulo pk

′
commutes with the

operation of reducing all the share values themselves modulo pk
′
. We denote the latter operation

by [x]k′ ← [x]k (mod pk
′
). That the operation commutes follows from our definition of the ESP

above.

There are some operations on secret shared values which we can immediately define. We summa-
rize them here as they will be utilized throughout. Many protocols will make use of a cryptographic
hash function H : {0, 1}∗ → {0, 1}|H| which we will model as a random oracle. The interface (API)
for the hash function H will be the standard one provided by cryptographic hash functions in
practice; as given in Figure 3
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Functionality FOnline

The functionality runs with parties P1, . . . , Pn and an ideal adversary. Let A be the set of corrupt parties. Given
a set I of valid identifiers, all values are stored in the form (varid , x), where varid ∈ I.

Initialize: On input (Init , p, k) from all parties, with p a prime and k a positive integer, the functionality stores
pk. The adversary is assumed to have statically corrupted a subset A of the parties.

Input: This takes input (Input , Pi, varid , x) from Pi, with x ∈ Zpk , and (input , Pi, varid , ?) from all other
parties, with varid a fresh identifier. If the varid ’s are the same the functionality stores (varid , x), otherwise
it aborts.

Add: On command (Add , varid1, varid2, varid3) from all parties:
1. If varid1, varid2 are not present in memory or varid3 is then the functionality aborts.
2. The functionality retrieves (varid1, x), (varid2, y) and stores (varid3, x+ y).

Multiply: On input (Multiply , varid1, varid2, varid3) from all parties:
1. If varid1, varid2 are not present in memory or varid3 is then the functionality aborts.
2. The functionality retrieves (varid1, x), (varid2, y) and stores (varid3, x · y).

Output: On input (Output , varid , i) from all parties (if varid is present in memory),
1. The functionality retrieves (varid , y).
2. If i = 0 and A ̸= ∅ then the functionality outputs y to the adversary, otherwise it outputs ⊥ to the

adversary.
3. The functionality waits for an input from the adversary.
4. If this input is Deliver then y is output to all players if i = 0, or y is output to player i if i ̸= 0.
5. If the adversarial input is not equal to Deliver then abort.

Fig. 2. The ideal functionality for MPC with Abort over Zpk

Interface for a Cryptographic Hash Function H

Let H : {0, 1}∗ −→ {0, 1}|H| be a cryptographic hash function, then the H function object has three member
functions associated with it:

– H.Init(): Initializes the hash function.
– H.Update(s): Updates the hash functions internal state with the bit-vector s.
– H.Out(): Evaluates the hash function and outputs the result.

Fig. 3. Interface for a Cryptographic Hash Function H

Commitment and Decommitment We can implement the ideal functionality FCommit given in
Figure 4 using the protocol given in Figure 5, which utilizes the hash function/random oracle H.

Agreeing on a random value: In many instances we want to agree a random value from a
domain D. This is easily done by each party Pi committing to a random bit string ri, using the
functionality FCommit, and then the committed values are opened. A seed is then produced via
r = r1 ⊕ . . . ⊕ rn, and finally the seed is used to generate random elements from D using a PRF
with co-domain D. We shall denote this functionality by FAgreeRandom(D) in Figure 6

Sharing a value: If party Pi wants to share a value s it uniformly at random selects k ∈ Zk
pk

such

that ⟨ε,k⟩ = x (mod pk), computes s =M ·k and sends s(j) to player i if φ(j) = i. We will denote
this operation in our protocols by [x]k ← Share(x, i, k).

Linear Operations: Linear operations on secret shared values can be performed by applying the
same linear operation to the shared values; where we interpret a constant value c as shared by the
the vector c · [1]k =M · kone where kone is a fixed vector such that ⟨ε,kone⟩ = 1.
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The Ideal Functionality FCommit

Commit: On input (Commit, v, i, τv) by Pi or the adversary on his behalf (if Pi is corrupt), where v is either
in a specific domain or ⊥, it stores (v, i, τv) on a list and outputs (i, τv) to all players and adversary.

Open: On input (Open, i, τv) by Pi or the adversary on his behalf (if Pi is corrupt), the ideal functionality
outputs (v, i, τv) to all players and adversary. If (NoOpen, i, τv) is given by the adversary, and Pi is corrupt,
the functionality outputs (⊥, i, τv) to all players.

Fig. 4. The Ideal Functionality for Commitments

The Protocol ΠCommit

Commit:
1. In order to commit to v, Pi sets o ← v||r, where r is chosen uniformly in a determined domain, and

queries the Random Oracle H to get c← H(o).
2. Player Pi then broadcasts (c, i, τv), where τv represents a handle for the commitment.

Open:
1. In order to open a commitment (c, i, τv), where c = H(v||r), player Pi broadcasts (o = v||r, i, τv).
2. All players call H on o and check whether H(o) = c. Players accept if and only if this check passes.

Fig. 5. The Protocol for Commitments.

Sharing a random value: If the number of maximally unqualified sets is small then this can
be done, in a computationally secure non-interactive manner, by pre-distributing secret keys cor-
responding to the access structure and using a standard Pseudo-Random-Secret-Sharing (PRSS)
construction to enable each party to obtain a random value [CDI05]. If the number of such sets if
large then one can obtain an interactive, information theoretically secure manner, by each party
Pi generating ri ∈ Zpk , and then executing [ri]k ← Share(ri, i, k). The resulting shared value being∑

[ri]k. We denote this functionality by FPRSS, which is given in Figure 7

Passively Secure Multiplication: We will utilize four forms of passively multiplication routine;
all of which are actively secure up to an additive attack. The first is classic Beaver multiplication.
This requires one round of interaction, requires the consumption of a multiplication triple, and
requires two executions of OpenToAll (see later for how we define this protocol, which implements
the Output([x]k, 0) operation in the functionality in Figure 2). The protocol is passively secure if the
underlying triple is only passively secure, and actively secure otherwise6. We refer to this protocol
as [z]k ← BeaverMult([x]k, [y]k).

The second is the classic passively secure multiply-and-reshare operation (which we call Maurer-
multiplication as it seems to have been first given in full generality in [Mau06]). This requires
one round of communication, no multiplication triples, and requires each player to execute Share
on their local multiplication. This protocol is only passively secure. We refer to this protocol as
[z]k ← MaurerMult([x]k, [y]k).

6 By which we mean that the triple is guaranteed to be correct

Ideal Functionality FAgreeRandom(D)

On input AgreeRandom(cnt) from all parties, if the counter value is the same for all parties and has not been
used before, the functionality samples a value a← D, and sends a to all parties.

Fig. 6. Ideal Functionality FAgreeRandom(D)
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Ideal Functionality FPRSS(m)

On input PRSS(cnt) from all parties, if the counter value is the same for all parties and has not been used before,
the functionality samples a value a← Zpk , computes a sharing [a]k and sends the respected share values to the
designated player.

Fig. 7. Ideal Functionality FPRSS(m)

The third technique is the method of [SW19, KRSW18] which is the generalisation to arbitrary
multiplicative LSSS of the classic multiplication algorithm for replicated (n, t) = (3, 1) sharing.
The paper [KRSW18] gives this for arbitrary replicated MSPs, whilst [SW19] generalises this to an
arbitrary Q2 multiplicative MSP. Again one round of interaction is required and no multiplication
triples are consumed. The protocol requires access to a (modified) form of PRSS/PRZS protocol,
and the amount of data sent depends highly on the specific secret sharing scheme being executed.
This protocol is only passively secure. We refer to this protocol as [z]k ← KRSWMult([x]k, [y]k).

Our fourth and final technique is a generalization of [DN07] from honest-majority Shamir secret
sharing to the setting of an arbitrary Q2 ESP. It relies on pairs of the form ([r]k, ⟨r⟩), where ⟨r⟩
represents an additive sharing of r. Similarly to KRSWMult, the protocol requires access to a PRSS
and PRZS protocol. Under certain assumptions, we can generate these pairs silently and perform
a single multiplication with n · (n − 1) ring elements of communication and a single round of
communication. Contrary to the original design of [DN07], we do not use the king paradigm (which
would make the communication be only linear in the number of players), as this doubles the number
of rounds needed for a multiplication. We refer to this protocol as [z]k ← DNMult([x]k, [y]k).

To perform an execution of our DNMult protocol for an arbitrary Q2 ESP, we proceed in two
phases: first a pair ([r]k, ⟨r⟩), is (silently) generated, afterwards it is used to transfer an additive
sharing of the product (obtained via the usual local Schur multiplication of shares) back into a Q2

sharing, similar to the high-level approach of KRSWMult. To generate a pair, we assume the PRSS
and PRZS protocols can be executed without communication. First, generate [r]k using the PRSS,
such that each player Pi holds a vector of shares ri and choose a fixed reconstruction vector λ such
that

r =

n∑
i=1

ni∑
j=1

λi,j · r(j)i .

Also generate an additive sharing of zero ⟨t⟩ ← PRZS. Each player can then locally compute the

share additive share rai =
∑ni

j=1 λi,j · r
(j)
i + ti. Note that since λ is a reconstruction vector, we have

that the rai form an additive sharing ⟨r⟩.
In the online phase, given the sharings [x]k and [y]k, the players can locally compute an additive

sharing ⟨x · y⟩ thanks to the multiplicative property of the ESP. Then a pair ([r]k, ⟨r⟩) is consumed
to open the value v ← OpenToAll(⟨r⟩ − ⟨x · y⟩). Note that we cannot rely on the properties of a
Q2 ESP to optimize this as we are opening an additive sharing, so we simply have each player
broadcast their own share. Given v, the players can then locally compute [x · y]=[r]k − v.

If we refer to eitherMaurerMult, KRSWMult or DNMult (our three passively secure multiplication
protocols which do not utilize pre-processed triples), without defining precisely which one, we will
write [z]k ← PassMult([x]k, [y]k).
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3 Generating an ESP from an MSP

In the sections above we have described how an ESP can be defined, however it is in general not a
simple task to define an ESP for a general access structure. One of the reasons being that dealing
with zero-divisors can be tricky and the initial choices of matrix, mapping, and target vector are
not as natural as when one considers MSPs.

However there is a natural construction to generate an ESP over Zpk for a given access structure
(Γ,∆). First generate an MSPMp over Fp for the access structure (Γ,∆), and then “lift” this to an
ESPM over Zpk . Indeed one can simply think ofMp as definingM exactly. This is exactly what
we did in our previous Shamir sharing example, and it was used in [ACD+20] in a similar context
(but in the language of lifting the associated code and not the MSP). That this trivial methodology
always works is guaranteed by the following theorem.

Theorem 3.1. LetMp = (Fp,Mp, εp, φ) be a Monotone Span Program computing the access struc-
ture (Γp, ∆p) over Fp. LetM =

(
Zpk ,M, ε, φ

)
be any Extended Span Program computing an access

structure (Γ,∆) over Zpk such that Mp = M (mod p) and εp = ε (mod p). Then Γ = Γp (and
hence also ∆ = ∆p).

Proof. To show that Γ = Γp we show that the conditions on an ESP and MSP are equivalent on
the qualified sets. Let Q be such a qualified set, then we show that

Q ∈ Γ ⇔ Q ∈ Γp,
Q /∈ Γ ⇔ Q /∈ Γp.

By contraposition it is sufficient to show the implications from Γ to Γp.
Q ∈ Γ ⇒ Q ∈ Γp: Let Q ∈ Γ , then by the first condition on the ESP it holds that ε ∈ Im(MT

Q) so
there exists a c ∈ Zr

pk
such that

c ·MT
Q =

r∑
i=1

ci ·mi = ε,

where mi is the i’th column vector of MT
Q . Hence, by reduction modulo p:

εp ≡ ε mod p ≡
r∑

i=1

ci ·mi mod p ≡
r∑

i=1

(ci ·mi mod p) ≡ cp · (Mp)
T
Q ,

where c
(i)
p = ci mod p. Therefore εp ∈ Im

(
(Mp)

T
Q

)
and by the contrapositive of the second condi-

tion on the MSP this means that Q ∈ Γp.
Q /∈ Γ ⇒ Q /∈ Γp: Reducing the second condition on an ESP modulo p does not change the condition

as a contains at least one entry which is a unit, therefore ⟨a, ε⟩ ∈ Z∗
pk
⇒ ⟨ap, εp⟩ ∈ Z∗

p and

ap ∈ ker
(
(Mp)

T
Q

)
. By the fundamental theorem of linear algebra

ker
(
(Mp)Q

)
= Im

(
(Mp)

T
Q

)⊥
,

so for all bp ∈ Im
(
(Mp)

T
Q

)
: ⟨ap,bp⟩ = 0 and as ⟨ap, εp⟩ ≠ 0 we have that εp /∈ Im

(
(Mp)

T
Q

)
. By

the contrapositive to the first condition of the MSP this means Q /∈ Γp.

16



Using this result we can easily construct ESPs for any Q2 access structure; and we can transfer
efficient constructions of MSPs from Fp to Zpk in a straight forward fashion. The question that
arises as to whether the resulting ESP over Zpk is multiplicative if the original MSP over Fp was
multiplicative.

Given an Mp = (Fp,Mp, εp, φ), i.e. Mp ∈ Fm×d
p , εp ∈ Fd

p and φ : [m] → P. We define the
“natural lift” ofMp to the ring Zpk to be the ESPM = (Zpk ,M, ε, φ) where M =Mp and ε = εp
over the integers. Recall an ESP is multiplicative if one can find a solution to equation (5) modulo
pk. It is clear that if M is multiplicative then so is Mp, the converse may not necessarily hold,
although for all “natural” constructions which would seem to arise in practical applications this is
indeed so. However, this is not true in general (see [ACD+20] for a counter example). If one is so-
unlucky to construct an ESP which is not multiplicative one can always extend it to a multiplicative
one using the method of Theorem 2.1.

To concretely see whyMp can be multiplicative butM may not be, we write x = ⟨ε,kx⟩ and
y = ⟨ε,ky⟩ for some vectors kx and ky, where we think of the values in kx and ky as 2 · k variables
over the integers. Again letting the number of shares held by Pi be ni, then the local Schur product

for player Pi is a sum of terms pi,j = s
(v)
x · s(v

′)
y for j = 1, . . . , n2i and v, v′ range over all values for

which φ(v) = φ(v′) = i. The terms pi,j are (over the integers) equal to the product of two linear

forms in the variables kx and ky, as s
(v)
x is a linear form in kx and s

(v′)
y is a linear form in ky .

These linear forms have coefficients are in the range [0, . . . , p), and so we can write

pi,j =
d∑

v,v′=1

ai,j,v,v′ · k(v′)
x · k(v′)

y

where ai,j,v,v′ ∈ [0, . . . , p2). The value x · y can be written in a similar way as

d∑
v,v′=1

bv,v′ · k(v′)
x · k(v′)

y

with bv,v′ ∈ [0, . . . , p2).

By equating coefficients of k
(v′)
x · k(v′)

y on both sides, that an MSP is multiplicative modulo pk

is equivalent to there being a solution to the linear system of equations

A · µ = b (mod pk) (6)

for a matrix A ∈ Zs×t and a vector b ∈ Zs, both of whose coefficients are in [0, . . . , p2), where
s = d2 and t =

∑
n2i . If we now compute the Smith Normal Form of A, that is we find two matrices

U ∈ GLs(Z) and V ∈ GLt(Z), i.e. the matrices of determinant ±1, such that

U ·A · V = S =



s1 0 . . . . . . 0

0 s2
...

...
. . .

...
... sr

...
... 0

...
...

. . .
...

0 . . . . . . . . . 0
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where r is the rank of A over the integers and si|si+1 for all i. We set ν = V −1 · µ and can write

out equations as S · ν = U · b. This will have a solution modulo pk if and only if equation (6) has
a solution modulo pk.

If we write U ·b = (c1, . . . , cs)
T then we have a solution modulo pk to this equation, if and only

if

1. For 1 ≤ i ≤ r either ordp(si) ≤ ordp(ci) or min(ordp(si), ordp(ci)) ≥ k
2. For r < i ≤ s we have ordp(ci) ≥ k.

where ordp(x) is the largest power of p dividing x. Thus we can see that it appears possible that
Mp is multiplicative modulo p, but using the same matrix for the MSP M may lead to a non-
multiplicative MSP modulo pk.

4 Opening Values to One Player and to All Players

The key cost in an LSSS-based MPC protocol, and essentially the only place where an active
adversary can introduce errors, is when a secret shared value is opened to one player or to all
players; i.e. in the realisation of the Output command in Figure 2. Since we are utilizing Q2 access
structures, we can make use of the properties of Q2 access structures to detect errors introduced
by the adversary. In [SW19] it was shown that in the case of opening to one player one could use
the parity check matrix of the underlying code associated to the secret sharing scheme to perform
this check.

In the case of opening to all players, which is the main cost in protocols, one could apply the
same technique. However, this is expensive at is relies on all players communicating their shares to
all other players. This is very expensive, thus in [SW19, KRSW18] it is also shown that the method
traditionally employed for replicated sharing for threshold (n, t) = (3, 1) structures also generalizes
to arbitrary Q2 access structures.

In this section we show that the methods of [SW19] which are proved in the context of MSPs
over finite fields, also apply in our more general context of ESPs over the finite rings Zpk . None of the
results are deep, but are included here for completeness. The protocols are represented in Figure 8,
but we explain them here at a high level here, and then go into more detail below (including the
definition of various intermediate quantities).

Throughout our protocols, each player Pj maintains a running hash value Hj which is used
to check consistency of openings, between the players. Each player should at any point hold the
same value of Hj . To ensure consistency we have a protocol HashCheck which ensures consistency
of these values. Note, the communication in HashCheck can be done in the clear, and does not need
to be protected against rushing adversaries, since each honest player will abort when it gets an
incorrect hash value. This can either be an incorrect value sent maliciously by an adversarial player
(in which case it should abort), or an incorrect value sent honestly by an honest player (which
indicates something has gone wrong with the OpenToAll protocol).

Open to One: To open a secret shared value [x]k to player Pi, an operation which we denote
by x ← OpenToOne(i, [x]k) in Figure 8. Each player sends their shares of [x]k to player Pi. Player
Pi then verifies they are consistent using the parity check matrix for the ESP modulo pk (see
below). If they are not he aborts, otherwise he stores the value of x. This gives an actively secure
(with-abort) method to perform openings to a given player (see below for the proofs), since, if an

18



adversary introduces an error in opening a value to an honest party, this is detected by the honest
party.

Open to All: To execute an opening to everyone, an operation which we denote by x ←
OpenToAll([x]k), one could execute OpenToOne(i, [x]k) a total of n times. It is more efficient however
to only send just enough data needed to perform the opening (as was done in [SW19, KRSW18]).
For example in the case of replicated sharing with (n, t) = (3, 1), player Pi will send only the value
s(i+1) (mod 3) to player P(i+1) (mod 3). To ensure correctness of the shares the each party uses the
received share values to construct not only x, but also the sharing x of m values used to share x.
They then update their hash function with H.Update(x).

Protocol ΠOpening

For each Pi ∈ P, the parties choose on some recombination vector λi such that supp(λi) ⊆ q(Pi). Denote by Hi

the hash function locally updated by player Pi, which has been pre-initialized with Hi.Init(). If at any point Pi

receives the abort command it runs the subprotocol Abort.

OpenToAll([x]k) : Each Pj ∈ P executes:
1. Retrieve from memory the recombination vector λj .
2. For each Pt ∈ P, for each r ∈ q(Pt), if φ(r) = Pj then send sr to Pt, see Section 4.2 for the definition

of q(Pt).
3. For each r ∈ q(Pj), wait to receive sr from player φ(r).

4. Concatenate local and received shares into sjq(Pj)
∈ Z|q(Pj)|

pk
.

5. Locally compute s = ⟨λj
q(Pj)

, sjq(Pj)
⟩.

6. Solve Mq(Pj) · x
j = sjq(Pj)

for xj . If there are no solution, run Abort.

7. Execute H.Updatej(M · xj).
OpenToOne(i, [x]k) : The secret has to be opened to Pi alone and so the parties Pj do the following:

1. Each Pj ∈ P\{Pi} sends s{Pj} to Pi, who concatenates local and received shares into a vector s.

2. Party Pi computes N · s as discussed in section 4.1. If Ns = 0, Pi outputs ⟨λi, s⟩ = s, and otherwise it
runs Abort.

HashCheck() : Each Pi ∈ P does the following:
1. Compute hi := Hi.Out().
2. Send hi to all other parties Pj , for i ̸= j (this can be done in the clear).
3. Wait for hj from all parties Pj , for i ̸= j.
4. If hj ̸= hi for any j, run Abort

Abort : If a party calls this subroutine, it sends abort to all parties and aborts. If a party receives the message
abort, it aborts.

Fig. 8. Protocol ΠOpening

4.1 Open to One

In this section generalize the method of [SW19] from MSPs over fields to ESPs over finite rings,
so as to show the method for OpenToOne in Figure 8 works. Note that to open a secret a party
has to recombine the shares to reveal the underlying secret. Moreover, the opening party will have
to be able to decide if the secret it is opening is a valid sharing. Given a multiplicative ESP,
M =

(
Zpk ,M, ε, φ

)
, and a valid encoding s of a secret s, augmented with a non-zero error e, i.e.

the player receives c = s + e, it has to be possible for the opening party to detect that the secret
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has been corrupted. To achieve this we show that either s + e is no longer a qualified vector or e
encodes 0.

Lemma 4.1. LetM =
(
Zpk ,M, ε, φ

)
be an ESP computing a Q2 access structure Γ and c = s+e

be the observed set of shares, given as a valid share vector s encoding s, with error e. Then there
exists a matrix N such that

φ(supp(e)) ̸∈ Γ ⇒

{
e encodes the error e = 0

N · c ̸= 0

This generalizes [SW19][Lemma 2] and basically says that N can be viewed as a parity check
matrix. The proof of this lemma rests on one main requirement, namely for M as given, ker(MT )
admits a basis. While this is generally true over fields this does not hold in general for modules
over rings. To be able to show that kerMT admits a basis we need to consider how M acts on Zpk

as a module. Then the following proposition shows that ker(MT ) admits a basis.

Lemma 4.2. LetM =
(
Zpk ,M, ε, φ

)
be an ESP computing a Q2 access structure Γ , then ker(MT )

admits a basis.

Proof. LetM be as assumed, then M ∈Mm×d(Zpk) is a full-rank matrix with m ≥ d. Then MT is

also full rank and so dim(Im(MT )) = d = rank(M), which means MT is surjective. Hence, by the
first isomorphism theorem:

Zm
pk/ ker(M

T ) ∼= Im(MT )

⇒ ker(MT ) ∼= Zm
pk/Z

d
pk

Hence ker(MT ) ∼= Zm−d
pk

and as m ≥ d, ker(MT ) is a free module over Zpk . From basic module
theory it is known that a free module admits a basis, and so the lemma follows.

We also need to generalize [SW19][Lemma 1] to ESPs, which we do here

Lemma 4.3. For any ESPM = (Zpk ,M, ε, φ) computing a Q2 access structure Γ , for any vector
s ∈ Zpk ,

φ(supp(s)) /∈ Γ ⇒

{
s /∈ Im(M), or

s ∈ Im(M), and s =M · x for some x ∈ Zd
pk

where ⟨x, e⟩ = 0

Proof. Consider the situation where φ(supp(s)) /∈ Γ . Then, by Q2-ness of the access structure,
P\φ(supp(s)) ∈ Γ which means there exists a qualifying set Q ⊆ P that is contained in this set for
which s(i) = 0 for all i ∈ [m] for which φ(i) ∈ Q.

By Lemma 2.2 and 2.3 it holds that the recombination vectors exist, hence the qualified set
Q can reconstruct the secret by computing ⟨λ, s⟩ for the appropriate recombination vector λ, i.e.
φ(supp(λ)) ⊆ Q, however it is clear that, for this particular Q and λ, ⟨λ, s⟩ = ⟨λQ, sQ⟩, but sQ = 0
so ⟨λQ, sQ⟩ = 0, so the secret is 0.

Now assume that s ∈ Im(M), then for all Q ∈ Γ is holds that ⟨λQ, sQ⟩ ≡ 0 mod pk, and so by
definition of the ESP s =M · x and ⟨x, ε⟩ = 0. Else s /∈ Im(M), which proves the proposition.

We can now prove Lemma 4.1,
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Proof. Let N be a matrix whose rows form a basis for ker(MT ), which exists by Lemma 4.3 and
suppose e ∈ Zd

pk
. Since by the Fundamental Lemma of Linear Algebra we have ker(MT ) = Im(M)⊥,

we also have s ∈ Im(M) if and only if N · s = 0. By the predicate and Lemma 4.3 we have that
either e /∈ Im(M) or e ∈ Im(M) and e = 0. If the latter holds we are done. If e /∈ Im(M), then
N · e ̸= 0, and so N · c = N · (s+ e) ̸= 0 as required.

4.2 Open to All

The OpenToAll procedure of Figure 8 also generalizes an idea set out in [SW19]. Each party, Pi ∈ P,
is assigned a set of shares it will receive for reconstruction. This is done via a map q : P → 2[m],
which is defined so that for each Pi ∈ P, q(Pi) is a set Si ⊆ [m] under the conditions that

– ker(MSi) = 0, i.e. the kernel of the submatrix of M with rows indexed by Si is trivial.
– φ−1(Pi) ⊆ Si, i.e. each party includes all of their own shares in the set Si.

Assume that such a function exists, then each Pi receives a set of shares, which we will denote siq(Pi)

for a given secret s. Then, using this vector, Pi solves s
i
q(Pi)

=MSi ·xi
Pi

for xi
Pi
. This xi

Pi
is then used

to completely reconstruct the share vector si = M · xi. Note that in [SW19] it is shown that such
a function q exists and that there are semi-efficient ways to compute them for MSPs over fields.
Now letM = (Zpk ,M, ϵ, ϕ) be an ESP whose reduction modulo p is the MSPMp = (Fp,Mp, ϵp, ϕ),
recall that both programs compute the access structure Γ . We first note that the same function q
used forMp can be used forM, this means we can use the same q for bothMp andM that also
means that an efficient q can be computed forM.

Lemma 4.4. Let the MSPMp be the reduction modulo p of the ESPM over Zpk . AssumeMp is
equipped with a function q as described above fulfilling the preconditions. Then q can be extended
naturally to a function that fulfils the same preconditions forM.

Proof. Assume that M ≡ Mp mod p and assume the given q exists for Mp. Then, as M and
Mp compute the same access structure, ϕ−1(Pi) ⊆ Si must also hold if we consider the natural
extension of q to M. By assumption ker(MpSi

) = 0, and as M ≡ Mp mod p this means that if
ker(MSi) ̸= 0 then

0 ⊂ ker(MSi) ⊆ {v ∈ Zd
pk | v

(i) ∈ {0, p, . . . , pk−1}}.
Hence assume that this is the case and denote by mi the ith row vector of M , such that

(M · v)(i) = ⟨mi,v⟩ =
m∑
j=1

m
(j)
i · v

(j).

It is clear that if this is to be 0 mod pk, as required, then there exists a subset Z ⊆ [d] such
that p |

∑
z∈Z mz as mi,j ∈ [p] and vi ∈ {0, p, . . . , pk−1}. But then modulo p there would exist a

solution vp such that M ·v = 0 by setting vi = 1 if i ∈ Z and 0 otherwise, hence contradicting that
ker(MpSi

) = 0. So ker(MSi) = 0 and therefore there exists a natural extension to q to Zpk .

Now consider the equation si = M · vxi and especially whether xi exists. As kerMSi = 0 we
know that if xi does not exist then the adversary must have introduced errors, because siq(Pi)

is a
subvector of some share vector s. If this is the case the protocol in Figure 8 instructs Pi to send
an abort message to all players. If such an xi does exist the adversary may still have introduced
errors. However, the hash values will differ between the players and so will cause an abort, when
HashCheck is evaluated. This is formally described in the following lemma.
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Lemma 4.5. Let q : P → 2[m] be defined with the conditions given above (for a Q2 ESP) and let
siq(Pi)

denote the subvector of shares received by Pi for a given secret s. Suppose all parties Pi ∈ P
are able to obtain a solution xi to the equation siq(Pi)

=Mq(Pi) · xi, hence can compute si =M · xi.

Then the adversary did not introduce any errors if the reconstructed values si and sj are equal for
all players Pi and Pj.

Proof. First note that the existence of q is not in question, as [SW19] shows that q exists modulo
p and Lemma 4.4 has shown that the same q can be used. As ker(Mq(Pi)) = 0, we see that that
the map defined by Mq(Pi) is injective, hence there exists a unique xi for every Pi ∈ P that is a
solution to the equation

siq(Pi)
=Mq(Pi) · x

i.

Each xi will result in a unique vector si, which will be the same for all parties if the players
reconstruct the same vector xi. Recall that, by the Q2 assumption, the set of honest players is a
qualified set. Thus if all honest players agree on their values of si, which they check via the hash
checking, then they know that all the values they received from any dishonest parties are consistent
with the valid sharing.

5 Multiplication Check

We present various protocols which allow one to verify that a set of passively secure multiplications
are indeed correct. In the context of generating triples, we note that, we are unable to “lift” a valid
triple modulo pk to a valid triple modulo pk+v. Thus, if one needs to perform a check modulo pk+s,
one needs to generate the passively secure multiplication triples modulo the larger modulus first,
even if one is only interested in computation modulo pk.

We assume that the desired security level is 2κ, i.e. the probability that an adversary can pass
off an incorrect passively secure multiplication as correct should be 2−κ. To ensure this we define
four (integer) parameters (u, v, w,B) for our protocols defined by, where Bz = 0 unless B ̸= 1 in
which case we set Bz = 1.

u = ⌈(κ+Bz)/ log2 p⌉
v = u− 1,

1 ≤ B ≤ 1 + (pw − 1)/2κ+Bz .

The value u defines the size of the challenge space in our protocols, the value v defines how much
bigger a modulus we need to work with, the value w defines the degree of any extension needed
to allow the Schwartz-Zippel Lemma 2.1to apply, using a set S of size pw − 1, whilst B defines
the bucket size of the check (equivalently the degree of the polynomial used in the Schwartz-Zippel
Lemma).

Our methods here are a natural generalisation of the methods given in [EKO+20, ADEN19]
which are themselves based on ideas used in [CDE+18]. We note for the case of k = 1 and a small
prime p the following protocols produce more efficient “sacrificing” steps than the “traditional”
method of repeating the protocol κ/ log2 p times.

22



5.1 MultCheck1

The first protocol, often called sacrifice, takes a set of N passively secure multiplication triples
([xi]k+v, [yi]k+v, [zi]k+v), and checks whether indeed zi = xi · yi (mod pk), using another set of
passively secure multiplication triples ([ai]k+v, [bi]k+v, [ci]k+v). The “unchecked” triples ([ai]k+v,
[bi]k+v, [ci]k+v) need to be discarded at the end of the protocol (thus the term sacrificing). The out-
put of the protocol is either an abort signal, or a set of N “actively” secure triple ([xi]k, [yi]k, [zi]k).
The protocol is described in Figure 9 and is based internally on the Beaver multiplication protocol.
For ease of exposition we assume B exactly divides N in the protocol, this can easily be removed.

The Protocol MultCheck1

Input: ([xi]k+v, [yi]k+v, [zi]k+v)
N−1
i=0 and ([ai]k+v, [bi]k+v, [ci]k+v)

N−1
i=0 .

Output: abort or ([xi]k, [yi]k, [zi]k)
N−1
i=0 .

1. Let R denote a degree w Galois ring over Zpk+v .
2. Let S denote the set from the Schwartz-Zippel Lemma of size pw − 1.
3. t← FAgreeRandom(Zpu).
4. For j ∈ [0, . . . , N/B) do

(a) r ← FAgreeRandom(S).
(b) For i ∈ [0, . . . , B) do

i. [ρi]k+v ← t · [aj·B+i]k+v − [xj·B+i]k+v.
ii. [σi]k+v ← [bj·B+i]k+v − [yj·B+i]k+v.

(c) (ρi)
B−1
i=0 ← (OpenToAll([ρi]k+v))

B−1
i=0 .

(d) (σi)
B−1
i=0 ← (OpenToAll([σi]k+v))

B−1
i=0

(e) [τ ]k+v ← 0.
(f) For i ∈ [0, . . . , B) do

i. [di]k+v ← t · [cj·B+i]k+v − [zj·B+i]k+v − σi · [xj·B+i]k+v − ρi · [yj·B+i]k+v − σi · ρi.
ii. [τ ]k+v ← [τ ]k+v + ri · [di]k+v.

(g) τ ← OpenToAll([τ ]k+v)
(h) If τ ̸= 0 (mod pk+v) output abort and stop.

5. For i ∈ [0, . . . , N) do
(a) [xi]k ← [xi]k+v (mod pk), [yi]k ← [yi]k+v (mod pk), [zi]k ← [zi]k+v (mod pk).

6. Output ([x]k, [y]k, [z]k)
N
i=1.

Fig. 9. The Protocol MultCheck1

The number of calls to the procedure OpenToAll(·), which is the main cost of the protocol is
given by 2 ·N +N ·w/B, and the number of rounds of communication (for the OpenToAll calls) is
bounded by two (if one executes the main j-loop in parallel). This means the communication cost,
per output triple, is equal to the communication of 2+w/B executions of OpenToAll(·). In practice
one would try to select w/B to be as small as possible. In such a situation we can treat the cost as
two calls to OpenToAll(·).

In the case of k = 1 and a large prime p, the values w = 1, u = 1, v = 0 and B = 1 give
rise to exactly the traditional sacrifice protocol from SPDZ. However, for such large p, we could
choose w = 2 and allow B to be sufficiently big, without needing an overly large amount of triples
to check at once. Thus by utilizing our modified protocol one can achieve an improvement on the
classical SPDZ sacrificing protocol. So for large p, for the classical SPDZ sacrifice, we have w/B = 1
and hence the cost is three calls to OpenToAll(·), but for our protocol we can achieve two calls to
OpenToAll(·).
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As long as we perform the calls to AgreeRandom only after the adversary had a chance to
influence the triples, and the adversary is fully committed to any errors introduced in them, we can
use the same random values for t and r over all instantiations. The practical advantage of this is
that the data cost of these calls can then be amortized over all these executions, and we can consider
it negligible. Due to the commit-reveal nature of the AgreeRandom sub-protocol, however, we still
need to take a cost of two rounds of communication into account. All invocations of AgreeRandom
that we need to generate the required t and r values can be executed in parallel, so the number of
rounds we need does not grow as the number of times MultCheck1 is executed grows.

We now prove the following theorem which is an adaption of similar results in [CDE+18] (es-
pecially Claim 6 in that paper) and the papers [EKO+20, ADEN19], but we have generalized the
method to arbitrary p and also the case of potentially small k.

Lemma 5.1. In the presence of an active adversary, who can introduce arbitrary additive errors
into the input triples, the protocol MultCheck1 will output an invalid multiplication triple with prob-
ability (B − 1)/(pw − 1) + p−u ≤ 2−κ.

Proof. We first note that since the OpenToAll sub-protocol ensures the opened shares are indeed
consistent, the only error that can be introduced by the adversary is an error in the ci or zi. Without
loss of generality we can assume these are additive errors known to the adversary, thus we have
ci = ai · bi + ec,i and zi = xi · yi + ez,i for some ec,i, ez,i ∈ Zpk+v .

The value τ represents a polynomial of degree B − 1 over Zpk+v evaluated at a random point

r ∈ S. Thus by the Schwartz-Zippel Lemma 2.1the probability that τ = 0 (mod pk+v) when the
polynomial is not identically zero is bounded by (B− 1)/(pw − 1). Thus we can conclude that each
coefficient is identically equal to zero, i.e. the errors satisfy for each i.

t · ec,i + ez,i = 0 (mod pk+v).

Note, we are finally only interested in errors for which ec,i ̸= 0 (mod pk), as we only are going to
output a sharing modulo pk. So we write psi = gcd(ec,i, p

k+v), and since ec,i ̸= 0 (mod pk) we have
si + 1 ≤ k.

We can write ec,i = psi · fi and ez,i = psi · gi for some fi, gi ∈ Zpk+v . For the equation to pass
we must then have that

t · fi + gi = 0 (mod pk+v−si).

In particular this means that t ≡ −gi/fi (mod pk+v−si), as gcd(fi, p) = 1. In particular the value
t which will make the protocol verify is determined (modulo pk+v−si) completely by the error
introduced by the adversary; and in effect it must be the same error introduced on each invalid
pair of triples.

Note, that the adversary needed to commit to the values ec,i and ez,i before they see the t. Thus
t is pre-determined from a set of size pk+v−si ≥ psi+1+v−si = pv+1 = pu, since k ≥ si+1. Therefore
the probability of an adversary passing off a set of invalid tuples as valid, when τ = 0, is bounded
by p−u < 2−(κ+Bz).

5.2 MultCheck′1

We will also use the MultCheck1 protocol in the case where we are already guaranteed that the
auxiliary triples ([ai]k, [bi]k, [ci]k)

N−1
i=0 are correct, and we have v = 0 and u = k, and we are simply
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The Protocol MultCheck′1

Input: ([xi]k, [yi]k, [zi]k)
N−1
i=0 and ([ai]k, [bi]k, [ci]k)

N−1
i=0 .

Output: abort or OK.

1. Let R denote a degree w Galois ring over Zpk .
2. Let S denote the set from the Schwartz-Zippel Lemma.
3. For j ∈ [0, . . . , N/B) do

(a) r ← FAgreeRandom(S).
(b) For i ∈ [0, . . . , B) do

i. [ρi]k ← [aj·B+i]k − [xj·B+i]k.
ii. [σi]k ← [bj·B+i]k − [yj·B+i]k.

(c) (ρi)
B−1
i=0 ← (OpenToAll([ρi]k))

B−1
i=0 .

(d) (σi)
B−1
i=0 ← (OpenToAll([σi]k))

B−1
i=0

(e) [τ ]k ← 0.
(f) For i ∈ [0, . . . , B) do

i. [di]k ← [cj·B+i]k − [zj·B+i]k − σi · [xj·B+i]k − ρi · [yj·B+i]k − σi · ρi.
ii. [τ ]k ← [τ ]k + ri · [di]k.

(g) τ ← OpenToAll([τ ]k)
(h) If τ ̸= 0 (mod pk) output abort and stop.

4. Output OK.

Fig. 10. The Protocol MultCheck′1

checking whether the passively secure triples ([xi]k, [yi]k, [zi]k)
N−1
i=0 are correct. We refer to this

special case as MultCheck′1 and it is presented in Figure 10. The round complexity is the same as
that of MultCheck1, except for the output, although now we can operate modulo pk only, without
needing to extend to working modulo pk+s. In this special case we obtain the following result,

Lemma 5.2. In the presence of an active adversary, who can introduce arbitrary additive errors
into the input triples ([xi]k, [yi]k, [zi]k)

N−1
i=0 , but not the input triples ([ai]k, [bi]k, [ci]k)

N−1
i=0 , the pro-

tocol MultCheck′1 will output OK incorrectly with probability (B − 1)/(pw − 1) ≤ 2−(κ+Bz).

Proof. We first note that since the OpenToAll sub-protocol ensures the opened shares are indeed
consistent the only error that can be introduced by the adversary is an error in the zi, there can
be no error in the ci by assumption. Without loss of generality we can assume these are additive
errors known to the adversary, thus we have ci = ai ·bi and zi = xi ·yi+ez,i for some ez,i ∈ Zpk . The
application of the Schwartz-Zippel lemma allows us to conclude, except with probability bounded
by (B−1)/(pw−1), that we have, for each i, that ez,i = 0 (mod pk). Hence, except with probability
bounded by (B − 1)/(pw − 1), there can be no errors in the triples ([xi]k, [yi]k, [zi]k)

N−1
i=0 .

5.3 MultCheck2

Our third protocol comes from a combination of ideas from [CDE+18] and [KOS16]. Instead of
consuming previously produced multiplication triples (which themselves require a passively secure
multiplication to produce) this second variant makes direct use of a passively secure multiplication
protocol PassMult; which can be any of MaurerMult, KRSWMult or DNMult. The protocol, called
MultCheck2, is described in Figure 11. The argument for security is roughly the same as that for
protocol MultCheck1.
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The Protocol MultCheck2

Input: ([xi]k+v, [yi]k+v, [zi]k+v)
N−1
i=0 .

Output: abort or ([xi]k, [yi]k, [zi]k)
N−1
i=0 .

1. Let R denote a degree w Galois ring over Zpk+v .
2. Let S denote the set from the Schwartz-Zippel Lemma.
3. For i ∈ [0, . . . , N) do

(a) [ai]k+v ← FPRSS(k + v).
(b) [ci]k+v ← PassMult([ai]k+v, [yi]k+v).

4. t← FAgreeRandom(Zpu).
5. For j ∈ [0, . . . , N/B) do

(a) r ← FAgreeRandom(S).
(b) For i ∈ [0, . . . , B) do

i. [ρi]k+s ← t · [xj·B+i]k+v + [aj·B+i]k+v.
(c) (ρi)

B−1
i=0 ← (OpenToAll([ρi]k+v))

B−1
i=0 .

(d) [τ ]k+v ← 0.
(e) For i ∈ [0, . . . , B) do

i. [τ ]k+v ← [τ ]k+v + ri · (t · [z]k+v + [c]k+v − ρ · [y]k+v).
(f) τ ← OpenToAll([τ ]k+s)
(g) If τ ̸= 0 (mod pk+v) output abort and stop.

6. For i ∈ [0, . . . , N) do
(a) [xi]k ← [xi]k+v (mod pk), [yi]k ← [yi]k+v (mod pk), [zi]k ← [zi]k+v (mod pk).

7. Output ([xi]k, [yi]k, [zi]k)
N−1
i=0 .

Fig. 11. The Protocol MultCheck2

5.4 MacCheck

Our final protocol is the generalization of the MacCheck protocol from [DPSZ12] to our situation.
The protocol checks, for an input of a single secret shared value [α]k+v and a series of pairs of secret
shared values ([xi]k+v, [yi]k+v)

N−1
i=0 , whether we have yi = α ·xi (mod pk+v), or whether yi is invalid

up to an additive error. Note, unlike the MacCheck protocol from [DPSZ12] we are not checking
the MACs of opened values, but checking the consistency of pairs of unopened values with respect
to the shared MAC key α, as such it is closer to the verification stage of the protocol in [CGH+18].
We note that with the instantiation given in Figure 12, this checking procedure “burns” the value
[α]k+v, thus this does not allow for reactive computations. In [CGH+18] it is shown how to avoid
this problem for specific secret sharing schemes. The protocol is given in Figure 12

Lemma 5.3. Protocol MacCheck in Figure 12 on input of an invalid set of pairs ([xi]k+v, [yi]k+v)
N−1
i=0

will return OK with probability less than 2−κ. Where a pair being invalid means that yi = α ·xi+ei,
for an ei known to the adversary with ei ̸= 0 (mod pk).

Proof. Given the additive errors ei we can define a global additive error e on the pair (u, v) with

t = v − α · u =
N−1∑
i=0

ri · yi − ri · α · xi

=

N−1∑
i=0

ri · (yi − α · xi)

=
N−1∑
i=0

ri · ei = e.
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The Protocol MacCheck

Input: [α]k+v and ([xi]k+v, [yi]k+v)
N−1
i=0 .

Output: abort or OK.

1. For i ∈ [0, N) do ri ← FAgreeRandom(Zpu).
2. [u]←

∑N−1
i=0 ri · [xi]k+v.

3. [v]←
∑N−1

i=0 ri · [yi]k+v.
4. [c]k+v ← FPRSS(k + v).
5. α← OpenToAll([α]k+v).
6. [t]k+v ← [v]k+v − α · [u]k+v.
7. [s]k+v ← PassMult([t]k+v, [c]k+v).
8. s← OpenToAll([s]k+v).
9. If s = 0 then return OK, else return abort.

Fig. 12. The Protocol MacCheck

The passively secure multiplication can itself introduce an additive error d on s, i.e. a = c · t+ d =
c · e+ d. Thus the test will output OK incorrectly when a = 0 but there is an ei ̸= 0 (mod pk).

We are only interested in errors for which ei ̸= 0 (mod pk), i.e. e ̸= 0 (mod pk). So we write
ps = gcd(e, pk+v), and since e ̸= 0 (mod pk) we have s + 1 ≤ k. We thus write e = ps · f and
d = ps · g for some f, g ∈ Zpk+v . For the equation to pass we then require that

c · f + d = 0 (mod pk+v−s).

This in particular means that c = −g/f (mod pk+v−s), which means that c is completely deter-
mined by the errors ei introduced by the adversary and the random values ri. But these values
must be committed to by the adversary before the value c is obtained. But c is chosen from a set of
size pk+v−s ≥ pv+1 > 2κ, and thus the probability that c will pass the test incorrectly is bounded
by 2−κ.

5.5 Summary

We summarize the costs of various protocols in Table 2 for a general ESP over Zpk . These are given
in terms of the row m and column d dimensions of the matrix generating the underlying ESP, the
number of parties n, and the parameters w and B used in the protocols above. We let |si| denote
the share size of player Pi for the given ESP. The data column indicates the total amount of data
sent for all players7 as a multiple of the underlying secret shared data size (i.e. either k · log2 p or
(k + v) · log2 p); we ignore rounds/data to check the running hash values H as these are amortized
over many sub-protocol executions. A ⋆ in the table indicates that the value depends highly on the
specific ESP, and thus a formula is hard to present. The cost ⋆1 of OpenToAll is generally n · d−m
for an MSP with no redundancy, but it can be larger than this if the MSP has more redundancy
than necessary.

We present three lines corresponding to MultCheck2 and MacCheck depending on whether the
underlying passively secure multiplication is Maurer, KRSW or DN based. We assume FPRSS is
executed non-interactively in all cases, that any calls to FAgreeRandom are amortized across many
calls to MultChecki, and that no king-paradigm is used in order to keep the number of rounds to
a minimum. As mentioned in the discussion on the multiplication checks, we always consider w/B
to be negligibly small.

7 i.e. not the per-player amount
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General MSP
Protocol Rounds Data PRSS/PRZS Triples

Share 1 m− |si| 0 0
OpenToOne 1 m− |si| 0 0
OpenToAll 1 ⋆1 0 0

BeaverMult 1 2 · ⋆1 0 1
MaurerMult 1 (n− 1) ·m 0 0
KRSWMult 1 ⋆2 ⋆3 0
DNMult 1 n · (n− 1) 2 0

MacCheckM 4 (n− 1) ·m+ 2 · ⋆1 1 0
MacCheckK 4 ⋆2 + 2 · ⋆1 1 + ⋆3 0
MacCheckD 4 n · (n− 1) + 2 · ⋆1 3 0

MultCheck1 4 (2 + w/B) · ⋆1 0 0
MultCheckM2 5 (n− 1) ·m+ (1 + w/B) · ⋆1 1 0
MultCheckK2 5 ⋆2 + (1 + w/B) · ⋆1 1 + ⋆3 0
MultCheckD2 5 n · (n− 1) + (1 + w/B) · ⋆1 3 0

Table 2. Costs of the Base Protocols for a General Access Structures

To provide more concrete values we also give, in Table 3, the values for the three different
instantiations of threshold sharings for (n, t) ∈ {(3, 1), (5, 2), (10, 4)}. In the table we assume the
parameters for our checking procedures are selected so that the term w/B can be ignored. The three
different sharings have been selected as replicated (for general pk), standard Shamir (for the case
of p > n) and Shamir obtained via Galois rings (for the important case of p = 2). More specifically
our three examples are; see Appendix B for details

1. Threshold replicated sharing for threshold t. This has values m = (n − t) · nCt and d = nCt,
where nCt denotes the number of combinations of t objects selected from a pool of n. Each
player holds |si| = m/n shares. The data cost of OpenToAll per player is d− |si|, and thus the
total cost, ⋆1, over all players n · d −m. Table 1 in [SW19] gives the cost ⋆2 of KRSWMult as
n · (n− t− 1).

2. Shamir sharing for threshold t when p is large. Here we have m = n and d = t + 1, with each
player holds |si| = 1 share. The data cost of OpenToAll per player is again d − |si|, and thus
the total cost, ⋆1, over all players n · (t+ 1)− n = n · t. Table 1 in [SW19] gives the cost ⋆2 of
KRSWMult again as n · (n− t− 1).

3. Shamir sharing for threshold t when p is two. Here we need to define a degree dn such that
n ≤ 2dn − 1, so we select d3 = 2, d5 = 3 and d10 = 4. We have m = n · dn and d = dn · t + 1,
and each player holds |si| = dn elements in their sharing. Thus the data cost of OpenToAll
per player is again d − |si|, and so the total cost, ⋆1, over all players is n · d −m. The cost of
KRSWMult in this case depends on many factors and cannot be easily expressed in a closed
formula. Therefore, we present the concrete values for our examples in Table 38. The derivation
of these costs can be found in Appendix B.

In most cases we see that KRSW-based multiplication is the more efficient choice (in terms of
bandwidth consumed as opposed to computational resources). Only for Shamir sharing over Z2k ,
do we see that DNMult outperforms KRSWMult due to it having no dependency on the size of the
ESP, as it’s communication cost only depends (quadratically) on the number of players. Thus we

8 In this table for threshold (10, 4) we give the KRSWMult cost for k = 128.
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will assume the most efficient choice of passive multiplication is used for a given ESP for the rest
of our analysis in this paper. An interesting observation is that the KRSWMult cost of replicated
sharing for a given access structure always is more efficient than the same cost using a dedicated
Shamir-based sharing; although of course the other costs are more expensive when using replicated.

Replicated (3, 1) Replicated (5, 2) Replicated (10, 4)
Protocol Rounds Data PRSS/PRZS Triples Rounds Data PRSS/PRZS Triples Rounds Data PRSS/PRZS Triples

Share 1 4 0 0 1 24 0 0 1 1134 0 0
OpenToOne 1 4 0 0 1 24 0 0 1 1134 0 0
OpenToAll 1 3 0 0 1 20 0 0 1 840 0 0
BeaverMult 1 6 0 1 1 40 0 1 1 1680 0 1
MaurerMult 1 12 0 0 1 120 0 0 1 11340 0 0
KRSWMult 1 3 1 0 1 10 1 0 1 50 1 0
DNMult 1 6 2 0 1 20 2 0 1 90 2 0

MacCheckM 4 18 1 0 4 160 1 0 4 13020 1 0

MacCheckK 4 9 2 0 4 50 2 0 4 1730 2 0

MacCheckD 4 12 3 0 4 60 3 0 4 1770 3 0
MultCheck1 4 6 0 0 4 40 0 0 4 1680 0 0

MultCheckM2 5 15 1 0 5 140 1 0 5 12180 1 0

MultCheckK2 5 6 2 0 5 30 2 0 5 890 2 0

MultCheckD2 5 9 3 0 5 40 3 0 5 930 3 0

Shamir (3, 1) for large prime Shamir (5, 2) for large prime Shamir (10, 4) for large prime
Protocol Rounds Data PRSS/PRZS Triples Rounds Data PRSS/PRZS Triples Rounds Data PRSS/PRZS Triples

Share 1 2 0 0 1 4 0 0 1 9 0 0
OpenToOne 1 2 0 0 1 4 0 0 1 9 0 0
OpenToAll 1 3 0 0 1 10 0 0 1 40 0 0
BeaverMult 1 6 0 1 1 20 0 1 1 80 0 1
MaurerMult 1 6 0 0 1 20 0 0 1 90 0 0
KRSWMult 1 3 2 0 1 10 3 0 1 50 6 0
DNMult 1 6 2 0 1 20 2 0 1 90 2 0

MacCheckM 4 12 1 0 4 40 1 0 4 170 1 0

MacCheckK 4 9 3 0 4 30 4 0 4 130 7 0

MacCheckD 4 12 3 0 4 40 3 0 4 170 3 0
MultCheck1 4 6 0 0 4 20 0 0 4 80 0 0

MultCheckM2 5 9 1 0 5 30 1 0 5 130 1 0

MultCheckK2 5 6 3 0 5 20 4 0 5 90 7 0

MultCheckD2 5 9 3 0 5 30 3 0 5 130 3 0

Shamir (3, 1) for Z
2k

Shamir (5, 2) for Z
2k

Shamir (10, 4) for Z
2k

Protocol Rounds Data PRSS/PRZS Triples Rounds Data PRSS/PRZS Triples Rounds Data PRSS/PRZS Triples
Share 1 4 0 0 1 12 0 0 1 36 0 0

OpenToOne 1 4 0 0 1 12 0 0 1 36 0 0
OpenToAll 1 3 0 0 1 20 0 0 1 130 0 0
BeaverMult 1 6 0 1 1 40 0 1 1 260 0 1
MaurerMult 1 12 0 0 1 60 0 0 1 360 0 0
KRSWMult 1 9 5 0 1 52 5 0 1 280 32 0
DNMult 1 6 2 0 1 20 2 0 1 90 2 0

MacCheckM 4 18 1 0 4 100 1 0 4 620 1 0

MacCheckK 4 15 6 0 4 92 6 0 4 540 33 0

MacCheckD 4 12 3 0 4 60 3 0 4 350 3 0
MultCheck1 4 6 0 0 4 40 0 0 4 260 0 0

MultCheckM2 5 15 1 0 5 80 1 0 5 490 1 0

MultCheckK2 5 12 6 0 5 72 6 0 5 410 33 0

MultCheckD2 5 9 3 0 5 40 3 0 5 220 3 0

Table 3. Costs of the Base protocols for Various Access Structures

6 Offline Preprocessing Protocols

Given the previous components there are a large number of variations one can deploy to obtain an
MPC protocol for a Q2 access structure which is actively secure with abort. In many cases, some
form of preprocessing is used to generate multiplication triples. In this section, we aim to give an
overview of different methods to generate passive and active multiplication triples, and evaluate the
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associated cost in terms of their round and data complexity. We give one passively secure offline
protocol, and three actively secure variants. To generate actively secure multiplication triples, we
generally first generate passively secure triples, and then we check for correctness (against potential
additive attacks) in different ways.

Some of these offline protocols inherently require working (internally) with an extension of the
modulus pk+v, whilst all can produce triples modulo pk or pk+v depending on whether the output
protocol requires triples modulo pk or pk+v. Whether the output is modulo pk or pk+v will depend
into which main protocol we will embed the offline protocol. When we want to distinguish these
various cases we will write OfflineX(poutput, pinternal) for an offline protocol which outputs triples
modulo poutput, whilst working internally modulo pinternal. Note, if output = k + v then we must
have internal = k + v as well. In all cases we assume that all PRSS and PRZS operations are
performed non-interactively, and all passive secure multiplications will be assumed to be performed
using which ever is the best out of KRSW or DN for the specific parameter sets9.

OfflinePass: When generating N passively secure multiplication triples, we take the approach of
first generating 2 ·N random sharings by performing 2 ·N calls to PRSS. Following that, we perform
a passively secure multiplication protocol N times in parallel to compute the product over pairs of
those shares. Since we can perform the N required multiplications in parallel, for the multiplication
we only need a single round of communication, with a total data cost of N · PassMultdata, and a
corresponding cost of PassMultdata per triple produced. We simplify the presentation in Table 4 by
writing OfflinePass(p

k) for OfflinePass(p
k, pk) and OfflinePass(p

k+v) for OfflinePass(p
k+v, pk+v).

Offline1: The first actively secure protocol, Offline1, will follow the ideas presented in [DPSZ12], in
that to generate N actively secure multiplication triples it starts by executing OfflinePass to produce
2 ·N triples. Then half of the obtained triples are sacrificed, using MultCheck1, so as to check the
remaining half for correctness.

The cost of OfflinePass is given above. For the verification stage we apply an applications of
MultCheck1 on two vectors of triples, each of length N . This requires two rounds of communication
and (2 + w/B) · OpenToAlldata in data transferred. This means, amortizing for the number of
multiplications, that there are three rounds of communication in total and a data transfer, per
triple, of

2 · PassMultdata + (2 + w/B) · OpenToAlldata.

However, note that MultCheck1 requires Offline1 to work over the extended ring Zpk+v and therefore
each multiplication requires (k + v) · log2(p) bits to be transferred, irrespective of the modulus of
the output triples, leading to

(2 · PassMultdata + (2 + w/B) · OpenToAlldata) · (k + v) · log2(p)

irrespective of whether output = k or output = k+ v or not. Thus the cost of Offline1(p
k, pk+v) and

Offline1(p
k+v, pk+v) are identical. Thus, in our table below (Table 4) we simply write Offline1(p

k+v).

Offline2: For the second active offline protocol, Offline2, we follow [EKO+20]. First N passively
secure triples are generated using OfflinePass. Then these triples are checked to be resistant to
additive attacks by running MultCheck2 on the vector of N triples.

9 These are both cheaper than Maurer in terms of data transfer, although they requires more PRSS and PRZS calls.
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The communication in MultCheck2 requires three rounds of interaction and the data cost is
PassMultdata + (1+w/B) ·OpenToAlldata. This renders the cost for the full protocol, amortizing for
the number of multiplications, to be four rounds of communication and

2 · PassMultdata + (1 + w/B) · OpenToAlldata

in data transferred. Much like Offline1 this protocol works over Zpk+v and therefore all data trans-
ferred is (k + v) · log2(p) bits, irrespective of the modulus for the output triples. This means that
the total data transferred is

(k + v) · log2(p) · (2 · PassMultdata + (1 + w/B) · OpenToAlldata).

Again, the cost of Offline2(p
k, pk+v) and Offline2(p

k+v, pk+v) are identical. Again, in our table below
(Table 4) we simply write Offline2(p

k+v).

Offline3: For our third variant of the Offline protocol, which we call Offline3, we use the cut-and-
choose methodology of [ABF+17, Protocol 3.1]. This is parametrized by four integer parameters
(Bk, C,X,L), and it generates N = (X − C) · L triples in each iteration, given input of T =
(N + C · L) · (Bk − 1) + N passively secure triples. The value Bk represents a bucket size for the
final checking procedure. The advantage of this version of the Offline protocol is that we achieve
active security without needing to extend the ring, i.e. we can work modulo pk and not work pk+v

if we require triples modulo pk as output.
The T triples are initially generated using OfflinePass and to perform the check, the T triples

are divided into Bk sets. The first D1 of size N , whilst the rest D2, . . . , DBk, of size N +L ·C. The
sets D2, . . . , DBk are further subdivided into sets of size X, Di,j for i = 2, . . . ,Bk and j = 1, . . . , L.
The elements of set Di,j are then randomly permuted within each other, and then a random
permutation is applied to the vector (1, . . . , L), so as to randomly permute the sets D2, . . . , DBk.
The permutation is done in this way to ensure cache efficiency. Finally the first C triples in each
subarray Di,j , for i = 2, . . . ,Bk and j = 1, . . . , L are opened and verified to be correct. Thus this
set requires 3 ·C · (Bk− 1) ·L parallel calls to OpenToAll, resulting in one round of communication
and data transfer of

3 · C · (Bk− 1) · L · OpenToAlldata.

The final step is to divide the remaining Bk ·N triples into N buckets of size Bk, with one triple in
each bucket from D1, and the rest from one of D2, . . . , DBk. With very high probability we know the
triples in D2, . . . , DBk are all correct. Thus this final check can be performed using (Bk−1) parallel
calls to MultCheck′1, each containing N elements. This requires two rounds of communication and
a total data transfer of N · (Bk− 1) · (2 + w/B) · OpenToAlldata.

Including the generation of triples, this requires a total of four rounds of communication and a
total data transfer of

1

N
·
(
T · PassMultdata + 3 · C · (Bk− 1) · L · OpenToAlldata

+N · (Bk− 1) · (2 + w/B) · OpenToAlldata
)

=
(
(Bk− 1) · (1 + C · L/N) + 1

)
· PassMultdata

+
(
(3 · C · L/N) + (2 + w/B)

)
· (Bk− 1) · OpenToAlldata.
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The last consideration to be had regarding the cost of this protocol is that using MultCheck′1 allows
Offline3 to work, not in Zpk+v , but in Zpoutput . Thus if we have output = k then we do not need to

work at modulo pk+v when running this offline variant.

The statistical security offered by this approach is 1/NBk−1 when used as a standalone offline
procedure, or 1/NBk when used with a specific online procedure (see the third protocol of [ABF+17]
for the details); note in the latter case one needs to select C ≥ 3 and that this corresponds to our
Protocol 4 below. In [ABF+17] the authors, for pk = 2, target a statistical security level of κ = 40
bits. Thus, they can select N = 220, Bk = 2, L = 512 and C = 3 to achieve an offline cost of 12
bits per triple when utilized in Protocol 4 below.

To provide a fair comparison between all protocols in this paper we target a statistical security
level of κ = 128. Thus when using Offline3 in Protocol 1 below we use the parameters (N,Bk, L, C) =
(222, 7, 512, 1) and when using Offline3 in Protocol 4 below we use the parameters (N,Bk, L, C) =
(222, 6, 512, 3). To simplify the presentation in Table 4 by writing Offline3(p

k) for Offline3(p
k, pk)

and Offline3(p
k+v) for Offline3(p

k+v, pk+v), and we give the costs for the parameters (N,Bk, L, C) =
(222, 6, 512, 3) in the table.

6.1 Comparing Actively Secure Offline Protocols

Having analysed the three actively secure offline protocols one could compare them theoretically,
using the formulae. This is alas however not that illuminative, due to the complexity of the various
parameters etc for Offline3. Comparing Offline1 vs Offline2, is simpler as Offline1 is better in terms of
number of rounds of communication, whereas Offline2 is better in terms of the amount of data sent
per multiplication. To allow a more direct comparison we present the precise values for our different
access structures and ring/field sizes in Table 4. We assume a security parameter of κ = 128, and
choices of (u, v, w,B) from Section 5 so that w/B can be ignored. In Table 4 we present the number
of bits per triples that needs to be transferred.

Access

Structure Ring Scheme Mult OfflinePass(p
k) OfflinePass(p

k+v) Offline1(p
k+v) Offline2(p

k+v) Offline3(p
k) Offline3(p

k+v)
(3, 1) F2 Replicated KRSW 3 387 1548 1161 57 7356
(3, 1) F2 Shamir Z

2k
DN 6 774 2322 1935 78 10066

(3, 1) Z
2128

Replicated KRSW 384 768 3072 2304 7299 14599

(3, 1) Z
2128

Shamir Z
2k

DN 768 1536 4608 3840 9988 19976

(3, 1) Fp Replicated KRSW 384 768 3072 2304 7299 14599
(3, 1) Fp Shamir KRSW 384 768 3072 2304 7299 14599
(5, 2) F2 Replicated KRSW 10 1290 7740 5160 310 40010
(5, 2) F2 Shamir Z

2k
DN 20 2580 10320 7740 380 49043

(5, 2) Z
2128

Replicated KRSW 1280 2560 15360 10240 39700 79399

(5, 2) Z
2128

Shamir Z
2k

DN 2560 5120 20480 15360 48662 97325

(5, 2) Fp Replicated KRSW 1280 2560 15360 10240 39700 79399
(5, 2) Fp Shamir KRSW 1280 2560 10240 7680 24331 48662
(10, 4) F2 Replicated KRSW 50 6450 229620 121260 10436 1346198
(10, 4) F2 Shamir Z

2k
DN 90 11610 56760 39990 2191 282646

(10, 4) Z
2128

Replicated KRSW 6400 12800 455680 240640 1335763 2671526

(10, 4) Z
2128

Shamir Z
2k

DN 11520 23040 112640 79360 280455 560910

(10, 4) Fp Replicated KRSW 6400 12800 455680 240640 1335763 2671526
(10, 4) Fp Shamir KRSW 6400 12800 46080 35840 106288 212576

Table 4. Costs of the Offline Protocols in number of bits per multiplication, for various access structures; κ = 128,
p ≈ 2128
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7 Complete Protocols

We now examine the five (main) protocol variants we discussed in the introduction. For each of
the following protocols, if an actively secure offline phase is required we can utilize the protocols
Offlinex, for x either 1, 2 or 3, given in Section 6. There are two basic metrics here that one could
be interested in (assuming to a first order approximation we are processing arithmetic circuits over
Zpk), namely, the amount of data transferred per multiplication in the online phase only, or the
amount of data transferred per multiplication in the combined online and offline phases. These two
metrics capture the different potential use cases of whether pre-processing is considered a cost or
not; which would depend on the precise implementation within a commercial environment. Note,
here we consider the cost of any post-processing to be considered within the online phase costs.
In all cases we assume we are processing an arithmetic circuit with N multiplication gates in a
circuit of multiplicative depth d. In our calculations of costs below we ignore any round or data
communication costs due to the input or output of the function; since these are usually negligible
in comparison to the functions multiplicative complexity.

Protocol1: This protocol executes an actively secure offline phase to produce N triples in Zpk , i.e.

we execute Offlinex(p
k, p⋆) for ⋆ being either k or k+ v, depending on the precise protocol choice x.

Note, this means we have three choices for Protocol1 depending on which offline protocol the main
protocol is combined with. The online phase is executed, using these triples, using BeaverMult as
the multiplication procedure. Since the Beaver multiplication is instantiated with actively secure
triples the output will also be actively secure, and no post-processing check is necessary.

Recall that each instantiation of BeaverMult requires one round of communication and a total
of 2 · OpenToAlldata in data transferred. Thus our we have the online phase requires d rounds of
communication and

2 · log2(p) · k · OpenToAlldata
data communication. The online cost does not depend on the choice of offline phase.

If we look at the combined cost of the online and offline phases then we will require Offlinerounds+
d rounds of communication and a data communication cost of

Offlinedata + 2 · log2(p) · k · OpenToAlldata

per multiplication, where Offlinedata is taken from the relevant columns of Table 4. In Table 5 we
refer to the three combined costs per multiplication as Totalx, depending on which Offline phase
we are utilizing.

Protocol2: In this protocol we optimistically use a passively secure online multiplication protocol
PassMult to execute the online phase, and a passively secure Offline protocol to generate N pas-
sively secure multiplication triples, all over Zpk+v . These are then checked using a post-processing
methodology, based on MultCheck1, to ensure active security. This approach of optimistic, passively
secure online multiplication was first suggested in [EKO+20].

The number of rounds for the online phase is d + 4, as we require four rounds to execute
MultCheck1, and the total communication for the online phase, per multiplication gate, is

log2(p) · (k + v) · (PassMultdata +MultCheck1,data),
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where PassMultdata and MultCheck1,data are taken from Table 2.
If we look at the combined cost of the online and offline phases then we will require Offlinerounds+

d+ 4 rounds of communication and a data communication cost of

OfflinePass(p
k+v)data + log2(p) · (k + v) · (PassMultdata +MultCheck1,data)

per multiplication, where OfflinePass(p
k+v)data is taken from Table 4.

Protocol3: This proceeds very much as Protocol2 except instead of using an offline phase and the
MultCheck1 procedure, one uses the MultCheck2 procedure. As there is no offline phase, online and
post-processing costs are the total costs of the protocol. Again all operations needs to be performed
over Zpk+v .

The number of rounds for the online phase is now d+5, as as we require five rounds to execute
MultCheck2, and the total communication for the online phase, per multiplication gate, is

log2(p) · (k + v) · (PassMultdata +MultCheck2,data),

where PassMultdata and MultCheck2,data are taken from Table 2.

Protocol4: This protocol variant follows the pattern from [ABF+17] and thus is particularly suited
to small values of pk. It can be applied using any of the actively secure offline protocols, but is
better suited (for small pk) to be used with Offline3.

In the offline phase we generate N actively secure multiplication triples in Zpk . In the online
phase a standard passively secure online phase is executed, using PassMult. Then in the post-
processing the triples produced in the offline phase are checked against the ‘triples’ resulting from
the passively secure multiplications, using MultCheck′1. The entire procedure can be executed in
Zpk without the need to extend to Zpk+v .

The number of rounds for the online phase is d + 4, as we require four rounds to execute
MultCheck′1, and the total communication for the online phase, per multiplication gate, is

log2(p) · k · (PassMultdata +MultCheck1,data),

where PassMultdata and MultCheck1,data are taken from Table 2.
If we look at the combined cost of the online and offline phases then we will require Offlinerounds+

d+ 4 rounds of communication and a data communication cost of

Offlinedata + log2(p) · k · (PassMultdata +MultCheck1,data)

per multiplication, where Offlinedata is taken from Table 4. Again in Table 5 we will refer to the
three different combined costs per multiplication as Totalx.

Protocol5: Our final approach is based upon the technique in [CGH+18]. At the start of the
protocol, in a (very short) offline phase a sharing for an unknown, secret random value [α]k+v is
generated. This value is used as an information theoretic MAC key, similar to the SPDZ approach.

In the online phase each wire value x is held as two shared values {[x]k+v, [α·x]k+v}. To multiply
two values x and y we execute a passively secure multiplication twice, once with [x]k+v and [y]k+v to
obtain [x ·y]k+v, and one with [x]k+v and [α ·y]k+v to obtain [α ·x ·y]k+v. In a short post-processing
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phase the MAC values on all multiplication gates and all input and output wires are checked using
the MacCheck procedure. To ensure the security of the MacCheck procedure all computation need
to be performed in Zpk+v .

The data cost for the preprocessing can be amortized away over all multiplications, as we only
need a single [α]k+v, regardless of the total number of multiplications we need to perform. Thus
there is no cost essentially to the offline phase.

The number of rounds for the online phase is d + 4, as we require four rounds to execute
MacCheck, and the total communication for the online phase, per multiplication gate, is

log2(p) · (k +m) · (2 · PassMultdata +MacCheckdata),

where PassMultdata and MacCheckdata are taken from Table 2.

It has to be noted that the protocol also needs to perform a (passive) multiplication for every
input wire, so as to obtain the initial authenticated shares, as described in [CGH+18]. These
multiplications also need to be checked for consistency with the evaluation of MacCheck, but we
focus on the cost per multiplication here, and thus do not account for this extra cost.

We can now present a summary (in Table 5) of all these options, by way of presenting their
respective online and total communications costs (in number of bits communicated per multipli-
cation), for a variety of different scenarios, access structures and base rings. Again, in all cases
we utilize which ever of KRSW or DN, for the passive multiplication procedure, which results in
the least amount of data transmitted for the specific LSSS under consideration. We also use again
the choices of (u, v, w,B) from Section 5 so that w/B can be ignored, and a security parameter of
κ = 128. In the table we mark in blue the online variant which is most efficient for a given access
structure, ring, and ESP. This is almost always Protocol1. We also mark in gray the most efficient
protocol option when one is interested in the total cost. For small rings this is always Protocol4
with Offline3 chosen as the pre-processing, for the others it is Protocol5.

Access Protocol1 Protocol2 Protocol3 Protocol4 Protocol5
Structure Ring Scheme Mult Online Total1 Total2 Total3 Online Total Online Total Online Total1 Total2 Total3 Online Total

(3, 1) F2 Replicated KRSW 6 1554 1167 63 1161 1548 1161 1161 9 1557 1170 57 774 774
(3, 1) F2 Shamir Z

2k
DN 6 2328 1941 84 1548 2322 1935 1935 12 2334 1947 78 1548 1548

(3, 1) Z
2128

Replicated KRSW 768 3840 3072 8067 2304 3072 2304 2304 1152 4224 3456 7299 1536 1536

(3, 1) Z
2128

Shamir Z
2k

DN 768 5376 4608 10756 3072 4608 3840 3840 1536 6144 5376 9988 3072 3072

(3, 1) Fp Replicated KRSW 768 3840 3072 8067 2304 3072 2304 2304 1152 4224 3456 7299 1536 1536
(3, 1) Fp Shamir KRSW 768 3840 3072 8067 2304 3072 2304 2304 1152 4224 3456 7299 1536 1536
(5, 2) F2 Replicated KRSW 40 7780 5200 350 6450 7740 5160 5160 50 7790 5210 310 2580 2580
(5, 2) F2 Shamir Z

2k
DN 40 10360 7780 420 7740 10320 7740 7740 60 10380 7800 380 5160 5160

(5, 2) Z
2128

Replicated KRSW 5120 20480 15360 44820 12800 15360 10240 10240 6400 21760 16640 39696 5120 5120

(5, 2) Z
2128

Shamir Z
2k

DN 5120 25600 20480 53782 15360 20480 15360 15360 7680 28160 23040 48659 10240 10240

(5, 2) Fp Replicated KRSW 5120 20480 15360 44820 12800 15360 10240 10240 6400 21760 16640 39696 5120 5120
(5, 2) Fp Shamir KRSW 2560 12800 10240 26891 7680 10240 7680 7680 3840 14080 11520 24329 5120 5120
(10, 4) F2 Replicated KRSW 1680 231300 122940 12116 223170 229620 121260 121260 1730 231350 122990 10435 12900 12900
(10, 4) F2 Shamir Z

2k
DN 260 57020 40250 2451 45150 56760 39990 39990 350 57110 40340 2191 23220 23220

(10, 4) Z
2128

Replicated KRSW 215040 670720 455680 1550803 442880 455680 240640 240640 221440 677120 462080 1335642 25600 25600

(10, 4) Z
2128

Shamir Z
2k

DN 33280 145920 112640 313735 89600 112640 79360 79360 44800 157440 124160 280432 46080 46080

(10, 4) Fp Replicated KRSW 215040 670720 455680 1550803 442880 455680 240640 240640 221440 677120 462080 1335642 25600 25600
(10, 4) Fp Shamir KRSW 10240 56320 46080 116528 33280 46080 35840 35840 16640 62720 52480 106280 25600 25600

Table 5. Costs of the Full Protocols in number of bits per multiplication, for various access structures; κ = 128,
p ≈ 2128
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Note, that in the case of Protocol4 and Offline3 the paper [ABF+17] obtains a total cost of
21 bits per multiplication operation. As explained earlier this is because they target a statistical
security level of κ = 40, instead of our security level of κ = 128.

Note that even when Protocol1 is not the most efficient choice, in practice one might still prefer
using this protocol as our analysis assumes the only interaction occurs for multiplication. Most
MPC protocols make use of OpenToAll executions to open masked data for use in various function
specific optimizations. Using Protocol1 enables these protocol specific OpenToAll executions to be
merged easily with the OpenToAll executions used in multiplication; thus reducing the total round
count. For other online protocols this merging can be more complex.
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A Proof of Theorem 2.1

In this Appendix we discuss the proof of Theorem 2.1. To do this assume thatM =
(
Zpk ,M, ε, φ

)
is an ESP computing a Q2 access structure Γ , such that M is not multiplicative. Then in two
steps we can arrive at a multiplicative ESP. For this consider the ESPs M0 =

(
Zpk ,M0, e1, φ

)
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and M1 =
(
Zpk ,M1, e1, φ

)
and let Γ0 and Γ1 be the access structures computed byM0 andM1

respectively.

Lemma A.1. Suppose that MT
0 ·M1 = [e1,0, . . . ,0], then there exists a multiplicative ESP com-

puting Γ0 ∨ Γ1 of size at most 2(k + |P|).

Proof. By [Feh98], we have that ESP’s compute an additively homomorphic perfect LSSS, say
LSSS0 and LSSS1 for M0,M1. Consider the LSSS generated by M0 and M1 simultaneously, so
⟨s0, ε⟩ = ⟨s1, ε⟩ = s. Let s = (s0, s1) be the share vector with the ith coordinates of s0 and s1 sent
to Pφ(i). Clearly, if and only if A is a qualifying set for Γ0 ∨Γ1 this set can reconstruct s from their
joint shares.

Now consider multiplication: Assume s′ ∈ Zpk is a secret with secret vectors (s′0, s
′
1). Let s0 ∗ s′1

be the d-vector obtained by coordinate-wise multiplication. Then

⟨1, s0 ∗ s′1⟩ = sT0 · s′1 = bT
0 ·MT

0 ·M1 · b1

= bT
0 · E · b′

1 as MT
0 ·M1 = E

= s · s′.

Let M j
i be the jth column vector of Mi and define the matrix M ′ such that

M ′ =

(
M1

0 M2
0 . . . Mn+1

0 0 . . . 0

M1
1 0 . . . 0 M2

1 . . . Mn+1
1

)
ThenM = (Zpk ,M

′, e1, φ) corresponds to the constructed LSSS above, [CDM00]: The product of
(s0, s1) and (s′0, s

′
1) contains among its entries s0 ∗ s1 , and a recombination vector λ exists, soM

is multiplicative.

This turns out to be useful as Fehr proved that given a mild inflation you can change the target
vector of an ESP, [Feh98]:

Lemma A.2. LetM = (R,M, ε, φ), withM ∈Mn×m(R) be an ESP computing access structure Γ ,
then there exists an extended span programM′ = (R,M ′, e1, φ), with M

′ ∈Mn′×m′(R) ,computing
Γ with n′ ≤ n+ |P| and m′ ≤ m+ 1.

This means we can prove the generalization of the theorem for Cramer et. al., [CDM00], for Ex-
tended Span Programs, i.e. Theorem 2.1.

Proof. Of Theorem 2.1: Let Γ be an access structure, and define a boolean function γ : P →
{0, 1}, such that γ(A) = 0 if A /∈ Γ and γ(A) = 1 if A ∈ Γ . Then we can define γ∗(X) = γ(X)
where · indicates a flip, that is γ(A) = 0 then γ(A) = 1 and γ(A) = γ(P\A). By our assumption
the access structure is complete so if a subset A is qualified, then A = P\A is unqualified, therefore
γ(A) = 0⇔ γ∗(A) = 0, and therefore, tautologically, Γ = Γ ∨ Γ ∗.

LetM =
(
Zpk ,M, ε, φ

)
be an ESP, such that ε = e1, computing Γ . Let Γ0 = Γ , Γ1 = Γ ∗, and

M0 =M. By Lemma A.2 all we need to show is that there exists aM1 such that MT
0 ·M1 = E.

As described in [Gá95], there is a construction such that for a given MSP computing Γ you
can define a “dual” MSP that computes Γ ∗ with the same target vector. It is simple to see that
this proof can be extended to work over commutative unital Noetherian rings as the recombination
vectors exist. In fact this dual MSP can be computed efficiently if ker(MT ) admits a basis. The
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only thing that poses an issue is that in [Gá95] the target vector is 1. However, this is easy to
ensure as follows.

We define the d-dimensional matrix H as

H =


1 0 0 . . . 0
1 1 0 . . . 0
1 0 1 . . . 0

...
1 0 . . . 0 1


inducing a map such that

x =


x1
x2
. . .
xd

 7→ x+ x1 =


x1

x2 + x1
. . .

xd + x1


Clearly this is a module isomorphism and by letting N =M ·HT we define an MSP N exactly as
M but with target vector 1. Let N ⋆ be it’s dual given by [Gá95], then

M∗ =
(
Zpk∗,M∗ = N∗ ·

(
H−1

)T
, ε, φ

)
is the dual MSP computing Γ ∗ with target vector e1. Note thatM

T ·M∗ = H−1·NT ·N∗·(H−1)T = E
and so the conditions for the lemma hold and the theorem follows.

B KRSW Multiplication Costs

In this Appendix we recap on the optimized variant of the passively secure multiplication method
of [KRSW18] for replicated secret sharing (denoted the KRSW method in what follows), and its
generalization to arbitrary MSPs of [SW19] (denoted the Smart–Wood method in what follows).
The paper [SW19] contains a few of typographical errors in the description of the algorithms,
so we correct those errors in our presentation below. We also give the calculations for our nine
different examples, so as to illustrate the methods in different examples. We note that [SW19] is
not necessarily more efficient than [KRSW18] for replicated secret sharings; we illustrate this with
an example below.

Both protocol variants make use of pseudo-random zero-sharings (PRZSs), which are additive
sharings of zero. These are used to mask shares before sending them without changing the underlying
secret. The functionality is given in Figure 13. We do not provide the protocol here as it is given
in [KRSW18], but we note that we may trivially extend the protocol there to allow the generation
of PRZSs for any subset of parties if we assume pair-wise PRF keys have been created during a
one-time setup phase (as in the protocol given) by each Pi computing

ti ←
∑

j ̸=i,j∈S
Fκi,j (cnt)− Fκj,i(cnt).

The key part of the multiplication algorithm, and the only part which requires interaction, is
the mechanism ΠConvert, (in Figure 15 for [KRSW18] and Figure 17 for [SW19]), to transfer an
additive secret sharing ⟨x⟩ amongst all n parties, i.e. x = x1 + · · · + xn where Pi holds xi, into a
secret sharing under the desired MSP/ESPM = (R,M, ε, φ) where M ∈Mm×d(R) is a matrix of
rank d.
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The Functionality FPRZS

This functionality outputs an additive sharing of zero to all players in a given set.

On input (cnt, S) from all parties in a set S ⊂ P, if the counter value is the same for all parties and has not been
used before, the functionality arbitrarily chooses some Pi∗ , and then for each party Pi in S \ {Pi∗} samples
ti ← F uniformly at random, fixes ti∗ ← −

∑
i∈S\{Pi∗}

ti and sends ti to party Pi for each i ∈ S \ {Pi∗} and
ti∗ to Pi∗ .

Fig. 13. The Functionality FPRZS

ΠConvert for KRSW: This methodology makes use of a (minor) extension of the earlier func-
tionality FAgreeRandom(D), which we give in Figure 14. One can see FAgreeRandom(D) as being the
special case of FAgreeRandom′(D,P). In practice one would execute this (per multiplication) non in-
teractively by first agreeing a seed for all multiplications, and then expanding the seed as required
for each multiplication via a PRF.

Ideal Functionality FAgreeRandom′(D,S)

On input AgreeRandom(cnt) from all parties, if the counter value is the same for all parties and has not been
used before, the functionality samples a value a← D, and sends a to all parties in S ⊂ P.

Fig. 14. Ideal Functionality FAgreeRandom′(D,S)

It also uses a map χ : [n] −→ [d], which needs to be defined once and for all, which is injective
and for which χ(i) = k implies that φ(j) = i for a row j which contains the standard basis vector
ek. In addition we have a map ψ : [d] −→ [n] which maps a column of M to a player Pi. The map
ψ is defined so that ψ(χ(i)) = i, and for all k ̸∈ im(χ) we have that ψ(k) = i implies that there is
a row j of M consisting of ek such that φ(j) = i. The overall method for executing the protocol
ΠConvert is given in Figure 15.

KRSW Protocol ΠConvert converting additive shares to shares in the LSSS

At this point in the protocol, the parties have an additive sharing ⟨x⟩, where Pi holds xi, and will convert it to
a sharing under the ESP (R,M, ε, φ) (which is assumed to be a replicated secret sharing scheme). It makes use
of the maps χ : [n] −→ [d] and ψ : [d] −→ [n] described in the text.

1. For k ∈ [1, . . . , d] let Jk denote the set of all rows consisting of the standard basis vector ek and let Ik denote
the set of parties {φ(j) : j ∈ Jk}

2. The parties call FPRZS with the command (cnt,P) to obtain a PRZS, denoted hereafter by ⟨t⟩.
3. For k ̸∈ im(χ), define sj for j ∈ Jk by calling FAgreeRandom′(R, Ik).
4. For k ∈ im(χ), define i = χ−1(k) and player Pi compute, for j ∈ Jk, the value sj ← xi + ti −

∑
sj′ , where

the sum is over all j′ such that φ(j′) = i and j′ is a vector ek with ψ(k) = j′. Party Pi sends sj to party
φ(j) for j ∈ Jk.

Fig. 15. KRSW Protocol ΠConvert converting additive shares to shares in the LSSS

ΠConvert for Smart–Wood: In this case, protocol ΠConvert utilizes a second ESP which is said
to be “good”. The main criteria for this second ESP is that it has a relatively large number of zero
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coefficients, and it is obtained from the original ESP via column operations. In addition we need
to compute a mapping χ : [n] −→ [d] of parties to columns. These indicate for each party how to
map its additive sharing onto a column of the sharing of the under the ESP. To generate the new
ESP and χ we use the algorithm in Figure 16.

Algorithm for computing a “good” ESP

The input is the multiplicative ESP M = (R,M, ε, φ). The output is a map χ : [n] −→ [d] of party indices to
columns, and a new ESPM′.

1. Perform column operations on M of M and the same on ε to obtain an ESP M′ with the same φ and F
but with matrix M ′ and target vector ε′ such that all of the standard basis vectors in Rd, {ek}di=1 ⊂ Rd,
appear as rows of M ′.

2. Define the map χ : [n] −→ [d] in the following way, making choices so that im(χ) is as large as possible:
– If Pi owns a row which is a standard basis vector ek, and εk ̸= 0, then set χ(i)← k;
– If Pi does not own such a row, assign Pi any column k in which Pi owns a row j such that Mj [k] ̸= 0

and εk ̸= 0;
– If no such column exists, find any row j (not necessarily owned by Pi), and any column k such that
Mj [k] ̸= 0 and εk ̸= 0 and set χ(i) = k.

3. Output χ andM′.

Fig. 16. Algorithm for computing a “good” ESP

We now illustrate the methods with our examples:

41



Smart–Wood Protocol ΠConvert converting additive shares to shares in the LSSS

At this point in the protocol, the parties have an additive sharing ⟨x⟩, where Pi holds xi, and will convert it to
a sharing under the ESP (R,M ′, ε′, φ) using the map χ (both output by the algorithm in Figure 16)

1. The parties call FPRZS with the command (cnt,P) to obtain a PRZS, denoted hereafter by ⟨t0⟩.
2. Each Pi splits xi + t0i as xi + t0i =

∑
k∈Ki∩supp(ε′) xi,k where Ki ← ({(χ(Pi)} ∪ ([d] \ im(χ))).

3. Each Pi sets ri,k ← xi,k/ε
′
k for each k ∈ Ki ∩ supp(ε′).

4. Each Pi sets ri,k ← R for each k ∈ Ki \ supp(ε′).
5. For each row j which is not a standard basis vector, the parties do the following

(a) The parties call FPRZS with the command (cnt,P) to obtain a PRZS amongst them, denoted hereafter
by ⟨tj⟩.

(b) Each Pi computes

aji ←

 ∑
k∈Ki∩supp(ε′)

M ′j [k] · ri,k

+ tji ,

where Mj [k]
′ denotes the kth element of row j of M ′.

(c) Party Pi sends a
j
i to party φ(j).

(d) Party φ(j) computes sj ←
∑n

i=1 a
j
i .

6. Let Jk denote the rows which are the standard basis vector ek. For each k execute:
(a) Let Xk = {Pi ∈ P : k ∈ Ki}. If |Xk| > 2 then call FPRZS with the command (cnt, Xk) to obtain a PRZS
⟨tk⟩, otherwise set tki = 0 for all i.

(b) Each party Pi ∈ Xk computes, for j ∈ Jk,

aji ←M ′j [k] · ri,k + tki = ri,k + tki ,

and then sends aji to party φ(j) (or retains it if φ(j) = Pi). (Note that we always have M ′j [k] = 1 in this
case.)

(c) For j ∈ Jk, party φ(j) sets sj ←
∑

i:Pi∈Xk
aji

7. This produces a sharing s under the ESP (R,M ′, ε′, φ) (and hence by definition (R,M, ε, φ)).

Fig. 17. Smart–Wood Protocol ΠConvert converting additive shares to shares in the LSSS
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B.1 Replicated (3, 1) Sharing

This secret sharing method for the threshold structure (n, t) = (3, 1) works for any ring Zpk , for

any size pk. Here our input ESP (R,M, ε, φ) is given by

M =



0 1 0
0 0 1
1 0 0
0 0 1
1 0 0
0 1 0

 ,

ε = (1, 1, 1),

φ(i) = ⌈i/2⌉.

KRSW Algorithm: We now discuss the methodology for this example of KRSW, i.e. Figure 15.
We define in this case χ(1) = 3, χ(2) = 1 and χ(3) = 2. Protocol ΠConvert then consists of the
following steps, on input of x = x1 + x2 + x3, where xi is held by player Pi.

1. We have J1 = {3, 5}, J2 = {1, 6} and J3 = {2, 4}, and I1 = {2, 3}, I2 = {1, 3} and I3 = {1, 2}.
2. Call FPRZS to generate t0 with

∑
i ti = 0.

3. Player P1 sends s2 = s4 = x1 + t1 to Player P2.
4. Player P2 sends s3 = s5 = x2 + t2 to Player P3.
5. Player P3 sends s1 = s6 = x3 + t3 to Player P1.

It is easy to check in this case that this produces a sharing under the ESP (R,M, ε, φ) of the value
x. Thus we require one execution of FPRZS and we need to transfer three ring elements.

Smart-Wood Algorithm: The algorithm in Figure 16 does not need to perform any column
operations, however the mapping χ can be defined as χ(1) = 2, χ(2) = 3 and χ(3) = 1. This gives
us im(χ) = {1, 2, 3}.

Protocol ΠConvert then consists of the following steps, on input of x = x1 + x2 + x3, where xi is
held by player Pi.

1. Call FPRZS to generate t0i with
∑

i t
0
i = 0.

2. Define K1 = {2}, K2 = {3}, K3 = {1}, we thus have X1 = {P3}, X2 = {P1} and X3 = {P2}.
3. Set r1,2 ← x1 + t01, r2,3 ← x2 + t02, r3,1 ← x3 + t03, with all other ri,j set to zero.
4. We have s1 = r3,1, s2 = r1,2 and s3 = r2,3, thus,

(a) Player P1 needs to send player P3 the value s2,
(b) Player P2 needs to send player P1 the value s3,
(c) Player P3 needs to send player P1 the value s1.

It is easy to check in this case that this produces a sharing under the ESP (R,M, ε, φ) of the value
x. Thus we require one execution of FPRZS and we need to transfer three ring elements. Hence, in
this case the two protocols have the same cost, and are basically identical.
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B.2 Replicated (5, 2) Sharing

This secret sharing method for the threshold structure (n, t) = (5, 2) works for any ring Zpk , for

any size pk. Here our input ESP (R,M, ε, φ) is given by a matrix of dimension 30× 10,

M =



0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0



,

ε = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1),

φ(i) = ⌈i/6⌉.

KRSW Algorithm: We now discuss the methodology of KRSW, in Figure 15, for this example.
We define χ(1) = 3, χ(2) = 2, χ(3) = 1, χ(4) = 7, and χ(5) = 4. We also define ψ(1) = 3, ψ(2) = 2,
ψ(3) = 1, ψ(4) = 5, ψ(5) = 1, ψ(6) = 1, ψ(7) = 4, ψ(8) = 1, ψ(9) = 1 and ψ(10) = 1. Protocol
ΠConvert then consists of the following steps, on input of x = x1 + x2 + x3 + x4 + x5, where xi is
held by player Pi.

1. Call FPRZS to generate ti with
∑

i ti = 0.
2. For k ∈ {5, 6, 8, 9, 10} the players in Ik generate locally the values sj for j ∈ Jk by using a call

to FAgreeRandom′(R, Ik).
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3. Player P1 computes s1 ← x1 + t1 − s2 − s3 − s4 − s5 − s6 and sends it to P4 and P5 (as s21 and
s27).

4. Player P2 computes s7 ← x2 + t2 and sends it to P4 and P5 (as s20 and s26).
5. Player P3 computes s13 ← x3 + t3 and sends it to P4 and P5 (as s19 and s25).
6. Player P4 computes s22 ← x4 + t4 and sends it to P2 and P3 (as s10 and s16).
7. Player P5 computes s28 ← x5 + t5 and sends it to P2 and P3 (as s8 and s14).

This requires one call to FPRZS, and five calls to FAgreeRandom′(R, Ik), and the transfer of ten
elements.

Smart-Wood Algorithm: We now discuss the methodology for this example of Smart and Wood,
i.e. Figure 16 and Figure 17. The algorithm in Figure 16 does not need to perform any column
operations, however the mapping χ can be defined as χ(1) = 3, χ(2) = 2, χ(3) = 1, χ(4) = 7 and
χ(5) = 4. This gives us im(χ) = {1, 2, 3, 4, 7}. This is our first interesting example as the ESP has
more columns than the number of parties.

Protocol ΠConvert then consists of the following steps, on input of x = x1 + x2 + x3 + x4 + x5,
where xi is held by player Pi.

1. Call FPRZS to generate t0i with
∑

i t
0
i = 0.

2. DefineK1 = {3, 5, 6, 8, 9, 10},K2 = {2, 5, 6, 8, 9, 10},K3 = {1, 5, 6, 8, 9, 10},K4 = {5, 6, 7, 8, 9, 10}
and K5 = {4, 5, 6, 8, 9, 10} we then have X1 = {P3}, X2 = {P2}, X3 = {P1}, X4 = {P5},
X5 = X6 = X8 = X9 = X10 = P, X7 = {P4}.

3. Player Pi generates ri,k for k ∈ Ki such that
∑

k ri,k = xi + t0i , with all other ri,k set to zero,
i.e. they generate ri,k such that
(a) r1,3 + r1,5 + r1,6 + r1,8 + r1,9 + r1,10 = x1 + t01.
(b) r2,2 + r2,5 + r2,6 + r2,8 + r2,9 + r2,10 = x2 + t02.
(c) r3,1 + r3,5 + r3,6 + r3,8 + r3,9 + r3,10 = x3 + t03.
(d) r4,5 + r4,6 + r4,7 + r4,8 + r4,9 + r4,10 = x4 + t04.
(e) r5,4 + r5,5 + r5,6 + r5,8 + r5,9 + r5,10 = x5 + t05.

4. For k ∈ {1, 2, 3, 4, 7} and Pi ∈ Xk, player Pi sends ri,k to player φ(j) if the jth row is the basis
vector ek, i.e.
(a) Player P1 needs to send players P4 and P5 the value r1,3,
(b) Player P2 needs to send players P4 and P5 the value r2,2,
(c) Player P3 needs to send players P4 and P5 the value r3,1,
(d) Player P4 needs to send players P2 and P3 the value r4,7,
(e) Player P5 needs to send players P2 and P3 the value r5,4,
The players set sj = r⋆,j as appropriate. This step therefore requires sending 10 elements in
total.

5. For k ∈ {5, 6, 8, 9, 10} the players execute a PRZS on the set P to generate tki for i = 1, . . . , 5.
The value ri,k + tki is sent by player i to player φ(j) if the jth row is the basis vector ek. For all
j ∈ Jk, player φ(j) computes sj as the sum of all values received. This step requires (in total)
P1 to send 10 elements, P2 and P3 a total of 12 elements, and P4 and P5 a total of 13 elements.
This in total 60 elements.

It is easy to check in this case that this produces a sharing under the ESP (R,M, ε, φ) of the value
x. Thus we require six executions of FPRZS and we need to transfer 70 elements. Thus in this case
Smart-Wood is much less efficient than KRSW.
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B.3 Replicated (10, 4) Sharing

This one is a bit big to write out, but the basic methodology for replicated is the same (the
underlying matrix has 252 columns and 1512 rows). The methodology of Smart-Wood will be
highly inefficient in this case, however the optimized version of KRSW will produce a protocol
ΠConvert which requires the transmission of n · (n− t− 1) = 50 elements, and the execution of one
FPRZS, plus (252− 10) = 242 calls to FAgreeRandom′(R, Ik).
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B.4 Shamir (3, 1) for large p

This secret sharing method for the threshold structure (n, t) = (3, 1) works for any ring Zpk for
which p > 4. Here our input ESP (R,M, ε, φ) is given by

M =

1 1
1 2
1 3

 ,

ε = (1, 0),

φ(i) = i.

KRSW Algorithm: This method cannot be applied as the underlying ESP does not correspond
to replicated secret sharing.

Smart-Wood Algorithm: After the column operations, from the algorithm in Figure 16, our
new ESP (R,M ′, ε′, φ) becomes

M ′ =

 1 0
0 1
−1 2

 ,

ε′ = (2,−1),
φ(i) = i.

and we assign χ(1) = 1, χ(2) = 2, χ(3) = 2. Protocol ΠConvert then consists of the following steps,
on input of x = x1 + x2 + x3, where xi is held by player Pi.

1. Call FPRZS to generate t0i with
∑

i t
0
i = 0.

2. Define K1 = {1}, K2 = {2}, K3 = {2}, and then we have X1 = {P1} and X2 = {P2, P3}.
3. Set r1,1 ← (x1 + t01)/2, r2,2 ← −x2 − t02, r3,2 ← −x3 − t03, with all other ri,j set to zero.
4. The parties call FPRZS to generate t3i with

∑
i t

3
i = 0.

(a) Player P1 computes a31 = −1 · r1,1 + t31 and sends it to player P3.
(b) Player P2 computes a32 = 2 · r2,2 + t32 and sends it to player P3.
(c) Player P3 computes a33 = 2 · r3,2 + t33 and retains it.

5. Party P3 computes s3 = a31 + a32 + a33 = −r1,1 + 2 · r2,2 + 2 · r3,2.
6. Player one sets s1 = a11 = r1,1. Player P2 sets a22 = r2,2, and player P3 sets a23 = r3,2 and sends

it to party P2. Party P2 sets s2 = a22 + a23 = r2,2 + r3,2.

This requires two executions of FPRZS and the transmission of three ring elements. To see that the
sharing is correct under the original ESP (R,M, ε, φ), we note that the shares of the three players
are:

s1 = r1,1 = (x1 + t01)/2,

s2 = r2,2 + r3,1 = −x2 − t02 − x3 − t03,
s3 = −r1,1 + 2 · r2,2 + 2 · r3,2.

The value shared is equal to

2 · s1 − s2 = x1 + t01 + x2 + t02 + x3 + t03
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= x1 + x2 + x3 = x.

The sharing is valid if s3 − 2 · s2 + s1 = 0, thus we see it is valid as we have

s3 − 2 · s2 + s1 = (−r1,1 + 2 · r2,2 + 2 · r3,2)− 2 · (r2,2 + r3,2) + r1,1

= 0.
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B.5 Shamir (5, 2) for large p

Shamir secret sharing for large p can be defined using the Vandermonde-matrix of the appropriate
size. Note that this works for any ring Zpk , where p > 6. The initial input for the ESP, M =
(Zpk ,M, ε, ϕ), is given by

M =


1 1 1
1 2 4
1 3 9
1 4 16
1 5 25


ε = (1, 0, 0)

φ(i) = i

KRSW Algorithm: This method cannot be applied as the underlying ESP does not correspond
to replicated secret sharing.

Smart-Wood Algorithm: Doing the column operations as required we obtain the altered ESP,
M ′ = (Zpk ,M

′, ε′, φ), as follows:

M ′ =


1 0 0
0 1 0
0 0 1
1 −3 3
3 −8 6


ε = (3,−3, 1)

φ(i) = i

This allows us to define χ following Figure 16 as

χ(1) = 1, χ(2) = 2, χ(3) = 3, χ(4) = 1, χ(5) = 3,

where χ(4) and χ(5) are freely chosen, so could be changed for any of the other columns. The
protocol ΠConvert from Figure 17 then calls for the following steps upon input of x = x1+x2+x3+
x4 + x5, where xi is held by player Pi.

1. Call FPRZS to generate t0 with ⟨t0⟩i = t0i such that
∑

i t
0
i = 0.

2. Note that J1 = {1},J2 = {2},J3 = {3} and define Ki and Xi for each player as follows:

K1 = {1},K2 = {2},K3 = {3},K4 = {1},K5 = {3}
X1 = {P1, P4}, X2 = {P2}, X3 = {P3, P5}

3. Set r1,1 = (x1 + t01)/3, r2,2 = (−x2 − t02)/3, r3,3 = x3 + t03, r4,1 = (x4 + t04)/3, r5,3 = x5 + t05 and
set all other ri,k = 0.

4. Call FPRZS to generate ⟨t4⟩ and ⟨t5⟩.
(a) P1 generates a41 = r1,1 + t41 and a51 = 3 · r1,1 + t51. Then P1 sends a41 to P4 and a51 to P5.
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(b) P2 generates a42 = −3 · r2,2+ t42 and a52 = −8 · r2,2+ t52. Then P2 sends a42 to P4 and a52 to P5.
(c) P3 generates a43 = 3 · r3,3 + t43 and a53 = 6 · r3,3 + t53. Then P3 sends a43 to P4 and a53 to P5.
(d) P4 generates a44 = r4,1+ t

4
4 and a54 = 3 · r4,1+ t54. Then P4 sends a54 to P5 and upon reception

of all a4i ’s computes s4.
(e) P5 generates a45 = 3 · r5,3 + t45 and a55 = 6 · r5,3 + t55. Then P5 sends a45 to P4 and upon

reception of all a5i ’s computes s5.
5. Note that |Xk| ≤ 2 so tki = 0 for all k ∈ {1, 2, 3} and all i ∈ {1, 2, 3, 4, 5}. Now generate the

other aji :
(a) For X1, P1 generates a11 = r1,1 and P4 generates a14 = r4,1. P4 then sends a14 to P1 who

computes s1 = a11 + a14.
(b) For X2, P2 generates a22 = r2,2. P2 retains a22 and computes s1 = a22.
(c) For X3, P3 generates a33 = r3,3 and P5 generates a35 = r5,3. P5 then sends a35 to P3 who

computes s3 = a33 + a35.

This requires a total of 3 FPRZS executions and the transmission of ten ring elements. All that is
left to do is to show that this is indeed a correct sharing underM′. Note that the shares, in full,
are

s1 =a
1
1 + a14 = r1,1 + r4,1,

s2 =a
2
2 = r2,2,

s3 =a
3
3 + a35 = r3,3 + r5,3,

s4 =
∑
i

a4i = r1,1 − 3 · r2,2 + 3 · r3,3 + r4,1 + 3 · r5,3,

s5 =
∑
i

a5i = 3 · r1,1 − 8 · r2,2 + 6 · r3,3 + 3 · r4,1 + 6 · r5,3.

The shared value is given by

3 · s1 − 3 · s2 + s3 = 3 · (r1,1 + r4,1)− 3 · r2,2 + r3,3 + r5,3

= x1 + t01 + x4 + t04 + x2 + t21 + x3 + t03 + x5 + t05 =
∑
i

xi = x

and is hence correct. To verify that the sharing is valid we only have to show that s4−s1+3·s2−3·s3 =
0 and that s5 − 3 · s1 + 8 · s2 − 6 · s3 = 0. This is immediate as

s4 − s1 + 3 · s2 − 3 · s3 = (r1,1 − 3 · r2,2 + 3 · r3,3 + r4,1 + 3 · r5,3)
− (r1,1 + r4,1) + 3 · r2,2 − 3 · (r3,3 + r5,3) = 0,

s5 − 3 · s1 + 8 · s2 − 6 · s3 = (3 · r1,1 − 8 · r2,2 + 6 · r3,3 + 3 · r4,1 + 6 · r5,3)
− 3 · (r1,1 + r4,1) + 8 · r2,2 − 6 · (r3,3 + r5,3) = 0.
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B.6 Shamir (10, 4) for large p

As before, for Shamir secret sharing with a large enough p, we obtain an ESP with a Vandermonde
matrix. This particular ESP requires p > 11, and is defined by the following values (Zpk ,M, ε, φ):

M =



1 1 1 1 1
1 2 4 8 16
1 3 9 27 81
1 4 16 64 256
1 5 25 125 625
1 6 36 216 1296
1 7 49 343 2401
1 8 64 512 4096
1 9 81 729 6561
1 10 100 1000 10000


ε = (1, 0, 0, 0, 0)

φ(i) = i

KRSW Algorithm: This method can not be applied as the underlying ESP does not correspond
to replicated secret sharing.

Smart-Wood Algorithm: After performing column operations, we obtain the ESP over Zpk

defined by

M ′ =



1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 −5 10 −10 5
5 −24 45 −40 15
15 −70 126 −105 35
35 −160 280 −224 70
70 −315 540 −420 126


ε′ = (5,−10, 10,−5, 1)

φ(i) = i

As ε′k ̸= 0 for all k, the mapping χ can be arbitrarily chosen for players 6 through 10. In this
example, we will choose χ(i) = i, 1 ≤ i ≤ 5 and χ(i) = 5, 6 ≤ i ≤ 10.

We now trace through the steps taken in Figure 17 to determine the communication cost of
the conversion protocol from a full threshold additive sharing onto our ESP. The parties hold
x = x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10.

1. All parties obtain a PRZS ⟨t0⟩
2. The values Ki are defined as Ki = {χ(i)}, as Imχ = [d], so every player splits xi + t0i = xi,χ(i)
3. From these xi,χ(i), we obtain the values ri,χ(i), namely:
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– r1,1 = (x1 + t01)/5
– r2,2 = (−x2 − t02)/10
– r3,3 = (x3 + t03)/10
– r4,4 = (−x4 − t04)/5
– r5,5 = x5 + t05
– r6,5 = x6 + t06
– r7,5 = x7 + t07
– r8,5 = x8 + t08
– r9,5 = x9 + t09
– r10,5 = x10 + t010

4. Since ε′ has no zero entries, nothing happens in this step
5. (a) The parties generate the PRZSs ⟨tj⟩, j = 6 . . . 10
(b) party P6 receives:

– from P1 the value (x1 + t01)/5 + t61
– from P2 the value (x2 + t02)/2 + t62
– from P3 the value x3 + t03 + t63
– from P4 the value 2 · (x4 + t04) + t64
– from Pi for i = 5, 7, 8, 9, 10 the value 5 · (xi + t0i ) + t6i
and sums it to obtain s6

(c) Similarly, players Pj , 7 ≤ j ≤ 10 each also receive 9 ring elements, of the form αj
χ(i) · (xi +

t0i ) + tji , with α
j
i =Mj [i]/ε

′
i:

– α7 = (1, 12/5, 9/2, 8, 15)
– α8 = (3, 7, 63/5, 21, 35)
– α9 = (7, 16, 28, 224/5, 70)
– α10 = (14, 63/2, 54, 84, 126)
which they also sum to obtain sj

6. Note the sets Jk = {k}, 1 ≤ k ≤ 5, Xk = {Pk}, 1 ≤ k ≤ 4 and X5 = {Pi | 5 ≤ i ≤ 10}.
(a) Parties P5, . . . , P10 obtain the PRZS ⟨t5⟩.
(b) The same parties Pi then compute a5i = xi + t0i + t5i and send it to P5. Hence, this costs 5

ring elements of communication.
Further communication is not needed.

We see that execution of this conversion protocol costs a total of 7 executions of FPRZS, which could
be brought down to 6 by assigning χ(i) = i− 5 for 6 ≤ i ≤ 10 as that removes the need for a PRZS
in step 6. A total of 50 ring elements need to be communicated.

At the end of this process, the players Pi hold the following shares si:

s1 = (x1 + t01)/5

s2 = (−x2− t02)/10
s3 = (x3 + t03)/10

s4 = (−x4 − t04)/5

s5 =
∑

5≤i≤10

xi + t0i + t5i

s6 = (x1 + t01)/5 + (x2 + t02)/2 + x3 + t03 + 2 · (x4 + t04) +
∑

5≤i≤10

5 · (xi + t0i )
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sj=7,...,10 = αj
1 · (x1 + t01) + αj

2 · (x2 + t02) + αj
3 · (x3 + t03) + αj

4 · (x4 + t04) +
∑

5≤i≤10

αj
5 · (xi + t0i )

It can then be verified that ⟨ε′, (s1, s2, s3, s4, s5)⟩ is equal to the shared secret x, and the underlying
parity check matrix is satisfied by the resulting share vector.
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B.7 Shamir (3, 1) for Z2k

For the case of Shamir over Z2k we refer back to the example in Section 2.5, where it can be seen
how the matrix M is derived. The rest of the ESP,M = (Z2k ,M, ϵ, φ) is defined as follows:

M =



1 1 0
0 0 1
1 0 1
0 1 1
1 1 1
0 1 0


ε = (1, 0, 0)

φ(i) = ⌈i/2⌉

KRSW Algorithm: This method can not be applied as the underlying ESP does not correspond
to replicated secret sharing.

Smart-Wood Algorithm: The first step is to do column operations to obtain the new ESP
M′ = (Z2k ,M

′, ε′, φ):

M ′ =



1 0 0
0 0 1
1 −1 1
0 1 1
1 0 1
0 1 0


ε′ = (1,−1, 0)

and φ as previously defined. It is easily checked that the access structure stays the same and this
will be left to the reader. The map χ is then defined as follows χ(1) = 1, χ(2) = 2, χ(3) = 2. Note
that this means that Im(φ) = {1, 2} and therefore not surjective. Now ΠConvert comes into action
once more on input of x = x1 + x2 + x3, where xi is held by Pi.

1. Call FPRZS to generate t0i with
∑

i t
0
i = 0.

2. Define the Ki, Xi and Ji as follows:
(a) K1 = {1, 3},K2 = {2, 3},K3 = {2, 3}.
(b) X1 = {P1}, X2 = {P2, P3}, X3 = {P1, P2, P3}
(c) J1 = 1,J2 = 6,J3 = 2

3. Define r1,1 = x11 + t01, r2,2 = −x2,2 − t02, r3,2 = −x3,2 − t03 and ri,3 = Rand(R) for all i. Let all
other ri,j = 0.

4. For j ∈ {3, 4, 5} run FPRZS to generate ⟨tj⟩ with shares denoted tji and
∑

i t
j
i . Then

(a) P1 computes a31 = r1,1 + t31, a
4
1 = t41, a

5
1 = r1,1 + t51 and sends a31, a

4
1 to P2 and a51 to P3.

(b) P2 computes a32 = −r2,2 + t32, a
4
2 = r2,2 + t42, and a52 = t51 and sends a52 to P3, then P2

computes s3 =
∑

i a
3
i and s4 =

∑
i a

4
i .
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(c) P3 computes a33 = −r3,2 + t33, a
4
3 = r3,2 + t43, and a

5
3 = t53, and sends a33 and a43 to P2, then

P3 computes s5 =
∑

i a
5
i .

5. Note that |X3| > 2, hence run FPRZS to generate ⟨t2⟩ with corresponding shares t2i and set
t1 = t6 = 0. Then
(a) For X1, P1 computes a11 = r1,1 and retains a11. Then P1 sets s1 = a11.
(b) For X2, P2 computes a62 = r2,2 and P3 computes a63 = r3,2 and P2 sends a62 to P3. Then P3

sets s6 = a62 + a63.
(c) ForX3, P1 computes a21 = r1,3+t

2
1, P2 computes a22 = r2,3+t

2
2, and P3 computes a23 = r3,3+t

2
3

Then P1 and P3 send a21 and a23 to P2 respectively. Then P2 sets s2 = a21 + a22 + a23.

Which concludes the ΠConvert protocol. Summarizing we can see that there are two calls to FPRZS,
while six ring elements are communicated in step 4 and three ring elements are communicated in
step 5. This leads to a total of nine sent elements.

This produces a sharing with shares

s1 =a
1
1 = r1,1 = x1 + t01,

s2 =a
2
1 + a22 + a23 = r1,3 + r2,3 + r3,3 = Rand1(R) + Rand2(R) + Rand3(R),

s3 =a
3
1 + a32 + a33 = r1,1 − r2,2 − r3,2 = x1 + x2 + x3,

s4 =a
4
1 + a42 + a43 = r2,2 + r3,2 = −x2 − t02 − x3 − t03,

s5 =a
5
1 + a52 + a53 = r1,1 = x1 + t01 − x3 − t03,

s6 =a
6
2 + a63 = r2,2 + r3,2 = −x2 − t20 − x3 − t03.

Then to check that this is a correct we first check the shared value, which is correct:

s1 − s6 = x1 + t01 + x2 + t20 + x3 + t03 =
∑
i

xi = x

Then we show that the sharings are correct, by verifying that the parity check matrix (of the
original ESPM) when applied to this share vector results in the zero vector,

s3 − s1 − s6 = r1,1 − r2,2 − r3,2 − r1,1 + r2,2 + r3,3 = 0

s4 − s6 = 0

s5 − s1 = 0
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B.8 Shamir (5, 2) for Z2k

We construct the original matrix M similarly to the example in section 2.5, where we now need to
work over an extension of degree 3. The ESP (Z2k ,M, ε, φ) then becomes

M =



1 0 0 1 0 0 1
0 0 1 0 0 1 0
0 1 0 0 1 0 0
1 1 0 0 0 1 0
0 1 0 1 1 1 0
0 0 1 0 1 0 1
1 1 0 1 0 1 1
0 1 1 1 1 0 0
0 1 1 0 0 0 1
1 0 1 0 1 1 0
0 1 1 0 0 1 1
0 1 0 1 1 1 1
1 0 1 1 1 1 1
0 1 0 0 0 0 1
0 0 0 1 0 1 1


ε = (1, 0, 0, 0, 0, 0, 0)

φ(i) = ⌈i/3⌉

KRSW Algorithm: This method can not be applied as the underlying ESP does not correspond
to replicated secret sharing.

Smart-Wood Algorithm: As must be familiar by now, we start with the column reduction of
M to M ′ with corresponding ε′. Note that the sharing of x is given by x = x1 + x2 + x3 + x4 + x5

M ′ =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
2 3 4 −2 −1 −2 0
0 2 3 −2 −2 −1 2
1 0 −1 2 1 1 −2
−1 1 1 −1 −1 0 2
−1 −1 −1 0 1 1 1
1 0 −1 1 1 1 −1
−1 0 1 −1 −1 0 2
−1 −1 −2 0 1 1 1


ε = (1, 0, 0, 1, 0, 0,−1)
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Having obtained this we can define χ : [n] 7→ [d] by χ(1) = 1, χ(2) = 4, χ(3) = 7, χ(4) = 1,
χ(5) = 4. From here we call ΠConvert doing the steps as follows:

1. Call FPRZS to obtain sharing ⟨t0⟩ such that
∑

i t
0
i = 0.

2. Define Xi and Ji as follows:
(a) K1 = K4 = {1, 2, 3, 5, 6},K2 = K5 = {2, 3, 4, 5, 6},K3 = {2, 3, 5, 6, 7}
(b) X1 = {P1, P4}, X4 = {P2, P5}, X7 = {P3}, X2 = X3 = X5 = X6 = {P}
(c) Ji = i for i ∈ {1, . . . , 7}.

3. Define r1,1 = x1,1 + t01, r2,4 = x2,4 + t02, r3,7 = −x3,7 − t03, r4,1 = x4,1 + t04, r5,4 = x5,4 + t05. Let
ri,2, ri,3, ri,5, ri,6 ← R for all i ∈ [n] and let all other ri,j = 0.

4. For j ∈ {8, . . . , 15} run FPRZS to generate ⟨tj⟩ with shares denoted tji and
∑

i t
j
i = 0. Then

(a) P1 computes a81 = 2 · r1,1 + t81,a
9
1 = t91, a

10
1 = r1,1 + t101 , a111 = −r1,1 + t111 , a121 = −r1,1 + t121 ,

a131 = r1,1 + t131 , a141 = −r1,1 + t141 , a151 = −r1,1 + t151 . P1 then sends a81 and a91 to P3, a
10
1 , a

11
1 ,

and a121 to P4, and a
13
1 , a

14
1 , a

15
1 to P5.

(b) P2 computes a82 = −2 · r2,4 + t82, a
9
2 = −2 · r2,4 + t92, a

10
2 = 2 · r2,4 + t102 , a112 = −r2,4 + t112 ,

a122 = t122 a132 = r2,4 + t132 , a142 = −r2,4 + t124, a
15
2 = t152 . P2 then sends a82 and a92 to P3,

a102 , a
11
2 , and a122 to P4, and a

13
2 , a

14
2 , a

15
2 to P5.

(c) P3 computes a83 = t83, a
9
3 = 2 ·r3,7+t93, a103 = −2 ·r3,7+t103 , a113 = 2 ·r3,7+t131, a123 = r3,7+t

1
32,

a133 = −r3,7 + t133 , a143 = 2 · r3,7 + t143 , and a153 = r3,7 + t143 . P3 then sends a101 , a
11
1 , and a121 to

P4, and a
13
1 , a

14
1 , a

15
1 to P5. Upon receipt of all a8i , a

9
i , P3 computes s8 and s9.

(d) P4 computes a84 = 2 · r4,1 + t84, a
9
4 = t94, a

10
4 = r4,1 + t104 , a114 = −r4,1 + t114 , a124 = −r4,1 + t124 ,

a134 = r4,1 + t134 , a144 = −r4,1 + t144 , a154 = −r4,1 + t154 . P4 then sends a84 and a94 to P3 and
a134 , a

14
4 , a

15
4 to P5. Upon receipt of all a10i , a11i , and a12i , P4 computes s10, s11, and s12.

(e) P5 computes a85 = −2 · r5,4 + t85, a
9
5 = −2 · r5,4 + t95, a

10
5 = 2 · r5,4 + t105 , a115 = −r5,4 + t115 ,

a125 = t125 a135 = r5,4 + t135 , a145 = −r5,4 + t154, a
15
5 = t155 . P5 then sends a85, a

9
5 to P3 and a105 ,

a115 , and a125 to P4. Upon receipt of all a13i , a
14
i , a

15
i , P5 computes s13, s14, and s15.

5. Note that |X2| = |X3| = |X5| = |X6| = |P| > 2 hence we run FPRZS to obtain four sharings
⟨t2⟩, ⟨t3⟩, ⟨t5⟩, ⟨t6⟩. While tji = 0 for j ∈ {1, 4, 7} Then
(a) For X1, P1 computes a11 = r1,1, and P4 computes a14 = r4,1. P1 then retains a11 and receives

a14 from P4. Upon receipt of all a41 P1 computes s1 = a11 + a41.

(b) For X2, Each Pi computes a2i = ri,2+t
2
i and sends a2i to P1 which then computes s2 =

∑
i a

2
i .

(c) For X3, Each Pi computes a3i = ri,3+t
3
i and sends a3i to P1 which then computes s3 =

∑
i a

3
i .

(d) For X4, P2 computes a42 = r2,4 and P5 computes a45 = r5,4. P2 retains a42 and upon receipt
of a45 from P5 computes s4 = a42 + a45.

(e) For X5, Each Pi computes a5i = ri,5+t
5
i and sends a5i to P2 which then computes s5 =

∑
i a

5
i .

(f) For X6, Each Pi computes a6i = ri,6+t
6
i and sends a6i to P2 which then computes s6 =

∑
i a

3
i .

(g) For X7, P3 computes a73 = r3,7 and sets s3 = r3,7.

This means that we, in total, obtain 5 calls to FPRZS and 52 ring elements communicated. All that
remains is that we show that the sharings are valid. We approach this by first computing the shares

s1 = a11 + a41 = r1,1 + r4,1 = x1,1 + t01 + x4,1 + t04

s2 =
∑
i

a2i =
∑
i

ri,2 ∈ R

s3 =
∑
i

a3i =
∑
i

ri,3 ∈ R
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s4 = a42 + a45 = r2,4 + r5,4 = x2,4 + t02 + x5,4 + t05

s5 =
∑
i

a5i =
∑
i

ri,5 ∈ R

s6 =
∑
i

a6i =
∑
i

ri,6 ∈ R

s7 = a73 = r3,7 = −x3,7 − t03
s8 =

∑
i

a8i = 2 · r1,1 − 2 · r2,4 + 2 · r4,1 − 2 · r5,4

s9 =
∑
i

a9i = −2 · r2,4 + 2 · r3,7 − 2 · r5,4

s10 =
∑
i

a10i = r1,1 + 2 · r2,4 − 2 · r3,7 + r4,1 + 2 · r5,4

s11 =
∑
i

a11i = −r1,1 − r2, 4 + 2 · r3,7 − r4,1 − r5, 4

s12 =
∑
i

a12i = −r1,1 + r3,7 − r4,1

s13 =
∑
i

a13i = r1,1 + r2,4 − r3,7 + r4,1 + r5,4

s14 =
∑
i

a14i = −r1,1 − r2,4 + 2 · r3,7 − r4,1 − r5,4

s15 =
∑
i

a15i = −r1,1 + r3,7 − r4,1

Note that the recombination is correct if x = s1 + s4 − s7. Clearly this is the case.

s1 + s4 − s7 = x1,1 + x4,1 + x2,4 + x5,4 + x3,7 = x1 + x2 + x3 + x4 + x5 = x

To verify the sharings are correct, we can simply verify the following equations (which arise from
the parity check matrix of the ESPM) all evaluate to zero (a task which we leave to the reader)

s8 − 2 · s1 + 2 · s4 = 2 · r1,1 − 2 · r2,4 + 2 · r4,1 − 2 · r5,4 − 2 · (r1,1 + r4,1) + 2 · (r2,4 + r5,4)

s9 + 2 · s4 − 2s7 = −2 · r2,4 + 2 · r3,7 − 2 · r5,4 + 2 · (r2,4 + r5,4)− 2 · r3,7
s10 − s1 − 2 · s4 + 2 · s7 = r1,1 + 2 · r2,4 − 2 · r3,7 + r4,1 + 2 · r5,4 − (r1,1 + r4,1)− 2 · (r2,4 + r5,4)

+ 2 · r3,7
s11 + s1 + s4 − 2s7 = −r1,1 − r2,4 + 2 · r3,7 − r4,1 − r5,4 + r1,1 + r4,1 + r2,4 + r5,4 − 2 · (r3,7)

s12 + s1 − s7 = −r1,1 + r3,7 − r4,1 + r1,1 + r4,1 − r3,7
s13 − s1 − s4 + s7 = r1,1 + r2,4 − r3,7 + r4,1 + r5,4 − r1,1 + r4,1 − r2,4 + r5,4 + r3,7

s14 + s1 + s4 − 2 · s7 = −r1,1 − r2,4 + 2 · r3,7 − r4,1 − r5,4 + r1,1 + r4,1 + r2,4 + r5,4 − 2 · (r3,7)
s15 + s1 − s7 = −r1,1 + r3,7 − r4,1 + r1,1 + r4,1 − r3,7
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B.9 Shamir (10, 4) for Z2k

For this final example we use a degree d4 = 4 extension to generate the matrix that is defined in
the ESPM = (Z2k ,M, ε, φ). The complete ESP then becomes

M =



1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
1 1 0 0 0 0 1 0 0 0 0 1 0 1 0 0 1
0 1 0 0 1 1 1 0 0 0 1 1 0 1 0 1 1
0 0 0 1 0 1 0 0 1 1 1 0 0 0 1 1 0
0 0 1 0 0 0 0 1 0 1 0 0 1 1 1 0 0
1 1 0 0 1 0 1 0 1 1 1 1 1 1 0 0 0
0 1 0 1 1 1 1 1 0 0 0 0 1 1 0 0 1
0 0 1 1 0 1 1 0 1 0 0 1 1 0 0 1 0
0 1 1 0 0 1 0 1 0 0 1 1 1 0 1 0 0
1 0 1 0 0 1 0 0 1 0 1 1 0 0 1 0 1
0 1 1 0 0 1 0 1 1 1 0 1 0 1 1 1 0
0 1 0 0 1 0 1 1 0 0 1 0 1 1 1 0 1
0 0 0 1 0 1 1 0 0 1 0 1 1 1 0 1 0
1 0 1 0 1 1 0 0 0 1 0 1 0 0 1 0 0
0 1 1 1 0 1 0 0 1 1 1 1 1 1 1 0 0
0 1 1 0 1 0 0 1 0 1 1 1 0 1 0 0 1
0 1 0 1 0 0 1 0 0 1 1 0 1 0 0 1 0
1 1 1 0 0 1 1 0 1 0 0 0 1 1 1 0 0
0 0 1 0 1 0 1 1 1 0 0 1 0 0 1 0 1
0 1 0 1 1 1 1 1 1 0 1 0 0 1 0 1 1
0 0 1 1 0 1 1 1 0 1 0 0 0 0 1 1 0
1 1 1 0 1 1 1 0 0 0 0 0 1 1 1 0 1
0 0 1 1 1 0 1 0 1 0 0 1 0 0 1 1 1
0 1 1 1 1 1 0 1 1 0 1 0 0 1 1 1 1
0 1 1 1 0 0 1 1 0 1 0 0 0 1 1 1 0
1 0 0 1 0 0 1 1 0 1 0 1 0 1 1 1 1
0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 0 1
0 1 1 0 0 0 1 0 1 1 1 1 0 0 0 1 1
0 1 0 0 1 1 0 1 1 1 1 0 1 0 1 1 1
1 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 0
0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 1
0 1 0 0 0 0 0 0 1 0 0 1 1 0 1 1 1
0 0 0 0 1 0 0 1 1 0 1 1 1 1 1 1 1
1 1 0 1 0 0 0 1 0 1 1 1 1 0 1 1 0
0 1 1 1 1 0 1 1 0 0 0 0 1 1 0 1 0
0 1 1 1 0 1 1 0 0 0 0 1 1 0 1 0 1
0 1 1 0 1 1 0 0 1 0 1 1 1 1 0 1 1


ε = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
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φ(i) = ⌈i/4⌉

KRSW Algorithm: This method can not be applied as the underlying ESP does not correspond
to replicated secret sharing.

Smart-Wood Algorithm: For the Smart-Wood reduction we start by doing the column reduction,
however in this process a problem arises for the general case. In that the precise column operations
performed depend on the precise choice of k. In all cases however we obtain a matrix M ′ such that

M ′ =

(
I17
N

)
for some dense matrix N ∈M23×17(Z2k). The costs then depend on the precise choice of χ, which
is affected by the number of zero entries in new target vector ε′, and hence no k.

We examine two sub-cases, which are relevant for our main tables, either k = 128 or k = 1.
In our description below we refer to a specific column reduction of M , obviously different column
reductions will produce different outcomes.

k = 128: When k = 128 the new target vector ε′ from our specific column reduction is non-zero
except in position 16. This means that we can explicitly define the function χ as follows: χ(1) = 1,
χ(2) = 5, χ(3) = 9, χ(4) = 13, χ(5) = 17, χ(6) = 2, χ(7) = 3, χ(8) = 4, χ(9) = 6, χ(10) = 7, which
gives us such that im(χ) = {1, 2, 3, 4, 5, 6, 7, 9, 13, 17}. From this we obtain

K1 ={1, 8, 10, 11, 12, 14, 15, 16},
K2 ={5, 8, 10, 11, 12, 14, 15, 16},
K3 ={9, 8, 10, 11, 12, 14, 15, 16},
K4 ={13, 8, 10, 11, 12, 14, 15, 16},
K5 ={17, 8, 10, 11, 12, 14, 15, 16},
K6 ={2, 8, 10, 11, 12, 14, 15, 16},
K7 ={3, 8, 10, 11, 12, 14, 15, 16},
K8 ={4, 8, 10, 11, 12, 14, 15, 16},
K9 ={6, 8, 10, 11, 12, 14, 15, 16},
K10 ={7, 8, 10, 11, 12, 14, 15, 16},

and X1 = {P1}, X2 = {P6}, X3 = {P7}, X4 = {P8}, X5 = {P2}, X6 = {P9}, X7 = {P10},
X9 = {P3}, X13 = {P4}, X17 = {P5}, and Xi = P for all i ∈ {8, 10, 11, 12, 14, 15, 16}. From this we
can present our analysis of the algorithm in Figure 17.

– In step one we call FPRZS once to generate ⟨t0⟩
– In steps two to four no communication happens
– In step five we call FPRZS a total of 23 times to generate ⟨ti⟩ for i ∈ {18, . . . , 40}, and we

communicate 207 = (40− 18) · (10− 1) ring elements.
– In step six, for the sets Xi of size one we do nothing, however for each of the seven larger Xk we

call FPRZS once to generate ⟨tk⟩. Each party in these larger sets Xk then has to communicate
its value aji to the party φ(j), i.e. to 9 other parties. Thus we need to communicate 63 = 7 · 9
elements in total.
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This leads to a total cost of 31 = 1 + 23 + 7 calls to the FPRZS functionality and 270 = 207 + 63
ring elements.

k = 1: When k = 1 our target vector will obviously have more zero components, in particular for
our column reductions we obtain

ε′ = (1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1).

This allows us to make the choice of χ (which it self depends on the placing of the zero entries in N
for our choice of column reduction) of χ(1) = 1, χ(2) = 4, χ(3) = 11, χ(4) = 13, χ(5) = 17, χ(6) =
3, χ(7) = 7, χ(8) = 8, χ(9) = 1, χ(10) = 12, such that Im(χ) = {1, 3, 4, 7, 8, 11, 12, 13, 17}. From this
we obtain

K1 ={1, 2, 5, 6, 9, 10, 14, 15, 16},
K2 ={2, 4, 5, 6, 9, 10, 14, 15, 16},
K3 ={2, 5, 6, 9, 10, 11, 14, 15, 16},
K4 ={2, 5, 6, 9, 10, 13, 14, 15, 16},
K5 ={2, 5, 6, 9, 10, 14, 15, 16, 17},
K6 ={2, 3, 5, 6, 9, 10, 14, 15, 16},
K7 ={2, 5, 6, 7, 9, 10, 14, 15, 16},
K8 ={2, 5, 6, 8, 9, 10, 14, 15, 16},
K9 ={1, 2, 5, 6, 9, 10, 14, 15, 16},
K10 ={2, 5, 6, 9, 10, 12, 14, 15, 16},

and hence, X1 = {P1, P9}, X3 = {P6}, X4 = {P2}, X7 = {P7}, X8 = {P8}, X11 = {P3}, X12 =
{P10}, X13 = {P4}, X17 = {P5}, and Xi = P for all i ∈ {2, 5, 6, 9, 10, 14, 15, 16}.

As before we can now analyse the algorithm in Figure 17.

– In step one we call FPRZS once to generate ⟨t0⟩
– In steps two to four no communication happens
– In step five we again call FPRZS a total of 23 times to generate ⟨ti⟩ for i ∈ {18, . . . , 40}, and we

communicate 207 = (40− 18) · (10− 1) ring elements.
– In step six we now do something slightly different: For the setsXi of size one we again do nothing.

For the set X1 of size two we need to communicate one element. The eight sets Xi equal to P
result in eights calls to FPRZS, with each one resulting in nine elements being communicated,
i.e. 8 · 9 = 72 in total.

This leads to a total cost of 32 = 1+23+8 calls to the FPRZS functionality and a total transmission
of 270 = 207 + 1 + 72 = 280 ring elements.
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