
A note on IND-qCCA security in the ROM and
its applications

Löıs Huguenin-Dumittan, Serge Vaudenay

LASEC, EPFL, Switzerland
{lois.huguenin-dumittan,serge.vaudenay}@epfl.ch

Abstract. We show in this note that bounded KEM IND-CCA secu-
rity (IND-qCCA) is easily obtained from any passively secure PKE in
the (Q)ROM. That is, simply adding a confirmation hash or comput-
ing the key as the hash of the plaintext and ciphertext holds an IND-
qCCA KEM. In particular, there is no need for derandomization or re-
encryption as in the Fujisaki-Okamoto transform [8]. Such KEMs could
be used in the recently proposed KEMTLS protocol [17] that requires
IND-1CCA ephemeral key-exchange mechanisms. We also highlight and
briefly discuss several use cases of IND-1CCA KEMs in TLS and ratch-
eting primitives.

1 Introduction

We show how to build an efficient IND-qCCA KEM (i.e. the adversary can only
make q decapsulation queries) from any OW-CPA PKE in the ROM. The bound
has a loose factor of 2q, making it insecure or impractical for more than a few
queries. However, such a construction is sufficient to build an efficient IND-1CCA
KEM from any OW-CPA public-key encryption scheme. The transform simply
sends a confirmation hash along the ciphertext encrypting the seed. In addition,
we prove the security of such a construction in the QROM as well.

Such a construction might be useful in the KEMTLS protocol designed
by Schwabe et al. [17], which requires IND-1CCA KEMs for ephemeral key-
exchange. However, in the current version of the paper [18], these KEMs are
implemented with IND-CCA KEMs, which are usually obtained by applying
the Fujisaki-Okamoto (FO) transform. The FO construction re-encrypts the de-
crypted plaintext during decapsulation, making it an expensive operation.

We also note that plain IND-CPA PQ schemes are often not IND-1CCA. In
particular, it is stated in Section 4.3 of the KEMTLS paper [18]:

“We leave as an open question to what extent non-FO-protected post-quantum
KEMs may be secure against a single decapsulation query, but at this point

IND-CCA is the safe choice.”

It obviously depends on how the IND-CPA PKE is used as a KEM, but if it used
in the trivial way (i.e. m←$M, K := H(m), ct := enc(pk,m)) most schemes can
be broken with 1 query. The adversary receives K∗, ct∗ := enc(pk,m∗), queries

2 Löıs Huguenin-Dumittan, Serge Vaudenay

ct∗ + δ and gets back H(m∗) with high probability, if δ is “small”, for most
PQ PKEs. Then, it can just compare whether H(m∗) = K∗ or not and break
IND-1CCA security.

The reaction attacks (e.g. [7]) requiring thousands of queries mentioned in
the same paper [18] are key-recovery attacks, not distinguishing attacks.

However, we also show that deriving the key as K := H(m, ct) holds an
IND-qCCA KEM in the ROM. The bound is worse than for the first transform,
having a ≈ q2qH factor, where qH is the number of queries an adversary can make
to the random oracle H.

Finally, in Section 4, we discuss possible use cases of IND-qCCA in the con-
text of communication protocols and ratcheting primitives. In particular, we note
that IND-1CCA security is sufficient in many recent applications as the trend is
to move to forward secure schemes, which discard key pairs after one use.

Related work. The notion of bounded IND-CCA (i.e. IND-qCCA) has been
studied in several works. Cramer et al. [5] defined IND-qCCA and showed that
one can build an IND-qCCA PKE from any CPA-secure PKE in a black-box
manner in the standard model, using one-time signatures. Peirera et al. [15] built
a more efficient IND-qCCA PKE based on the CDH assumption and Yamakawa
et al. [21] proposed other constructions based on the factoring and bilinear CDH
assumptions. As far as we know, we are the first to note that a IND-qCCA KEM
can be obtained from any CPA-secure PKE through a very simple and efficient
transform in the ROM.

2 PKC and KEM

2.1 Public-Key Encryption scheme

A Public-Key Encryption (PKE) scheme is defined as follows.

Definition 1 (Public-Key Encryption). A Public-Key Encryption scheme
is composed of four algorithms setup, gen, enc, dec:

• pp←$ setup(1λ): The setup algorithm randomly generates the public param-
eters pp according to a security parameter λ.
• (pk, sk)←$ gen(pp): The key generation algorithm takes the public parameters

as inputs and outputs the public key pk and the secret key sk.
• ct←$ enc(pp, pk, pt): The encryption algorithm takes as inputs the public pa-

rameters pp, the public key pk and a plaintext pt ∈ M and it outputs a
ciphertext ct.
• pt′ ← dec(pp, sk, ct): The decryption procedure takes as inputs the public

parameters pp, the secret key sk and the ciphertext ct ∈ C and it outputs a
plaintext pt′ ∈M∪ {⊥}.

The setup, gen and enc are probabilistic algorithms that can be made determinis-
tic by adding random coins as inputs. The decryption procedure is deterministic.
Finally, for the sake of simplicity, we omit the public parameters in the inputs
from now on.

A note on IND-qCCA security in the ROM and its applications 3

CORRPKE(A)

pp←$ setup(1λ)

(pk, sk)←$ gen(pp)

pt← A(pk, sk)

ct←$ enc(pk, pt)

return 1dec(sk,ct)6=pt

Fig. 1: Correctness game.

Table 1: Oracles for OW games.

ATK CPA PCA

OATK ⊥ OPCO

Correctness. We say a PKE scheme is δ correct if for any ppt adversary A
playing the game CORR defined in Figure 1, we have

Pr[CORRPKE(A)⇒ 1] ≤ δ(λ)

where λ is the security parameter, we omit it from now on for the sake of sim-
plicity.

Plaintext Checking. We recall the notions of One-Wayness under Chosen Plain-
text Attacks (OW-CPA) and Plaintext-Checking Attacks (OW-PCA).

Definition 2 (One-Wayness and Plaintext Checking). LetM be the mes-
sage space, PKE a PKE scheme and we consider the games defined in Figure 2
with the different oracles as defined in Table 1. Then, PKE is OW-ATK, for
ATK ∈ {CPA,PCA}, if for any ppt adversary A we have

Advow-atk
PKE (A) = Pr [OW-ATKPKE(A)⇒ 1] = negl(λ)

where Pr [OW-ATKPKE(A)⇒ 1] is the probability that the adversary wins the
OW-ATK game.

2.2 Key Encapsulation Mechanism (KEM)

A Key Encapsulation Mechanism is defined as follows.

Definition 3 (Key Encapsulation Mechanism). A KEM is a tuple of three
algorithms setup, gen, encaps, decaps:

• pp←$ setup(1λ): The setup algorithm takes the security parameter λ as input
and outputs the public parameters pp.

4 Löıs Huguenin-Dumittan, Serge Vaudenay

OW-ATKPKE(A)

pp←$ setup(1λ)

(pk, sk)←$ gen(pp)

pt∗ ←$M
ct∗ ← enc(pk, pt∗)

pt′ ← AO
ATK

(pk, ct∗)

return 1pt′=pt∗

Oracle OPCO(pt, ct)

1 : pt′ ← dec(pp, sk, ct)

2 : return 1pt′=pt

Fig. 2: One-Wayness games.

IND-(q)CCAKEM(A)

pp←$ setup(1λ)

(pk, sk)←$ gen(pp)

b←$ {0, 1}
ct∗, K0 ←$ encaps(pk)

K1 ←$K

b
′ ← AO

Dec
(pk, ct∗, Kb)

return 1b′=b

Oracle ODec(ct)

1 : if ct = ct∗ : return ⊥
2 : if more than q queries : return ⊥ // If IND-qCCA

3 : K
′ ← decaps(pp, sk, ct)

4 : return K
′

Fig. 3: Indistinguishability games.

• (pk, sk)←$ gen(pp): The key generation algorithm takes as inputs the public
parameters and it outputs the public key pk and the secret key sk.

• ct,K ←$ encaps(pp, pk): The encapsulation algorithm takes as inputs the pub-
lic parameters pp, the public key pk and it outputs a ciphertext ct ∈ C and a
key K ∈ K.

• K ′ ← decaps(pp, sk, ct): The decapsulation procedure takes as inputs the pub-
lic parameters pp, the secret key sk and the ciphertext ct ∈ C and it outputs
a key K. If the KEM allows explicit rejection, the output is a key K ∈ K or
the rejection symbol ⊥. If the rejection is implicit, the output is always a key
K ∈ K.

The setup, gen and encaps are probabilistic algorithms. The randomness can be
made explicit by adding random coins as inputs. The decapsulation function is
deterministic. We omit the public parameters in the inputs from now on.

Indistinguishability security. KEM indistinguishability against bounded and un-
bounded adversaries are defined as follows.

Definition 4. We consider the games defined in Figure 3. Let K be the key
space. A KEM scheme KEM = (setup, gen, encaps, decaps) is IND-CCA (resp.
IND-qCCA) if for any ppt adversary A (resp. any ppt A limited to q decapsula-

A note on IND-qCCA security in the ROM and its applications 5

gen()

(pk, sk)←$ genp()

return (pk, sk)

encaps(pk)

σ←$M
ct0 ←$ encp(pk, σ)

tag← H ′(σ, ct0)

K ← H(σ)

return K, (ct0, tag)

decaps(sk, ct)

(ct′0, tag
′)← ct

σ′ ← decp(sk, ct′0)

if H ′(σ′, ct′0) 6= tag′ :

return ⊥
return H(σ′)

Fig. 4: TCH transform.

tion queries) we have

Adv
ind-(q)cca
KEM (A) =

∣∣∣∣Pr [IND− (q)CCAKEM(A)⇒ 1]− 1

2

∣∣∣∣ = negl(λ)

where Pr [IND− (q)CCAKEM(A)⇒ 1] is the probability that A wins the IND-
(q)CCAKEM(A) game defined in Figure 3.

3 OW-CPA to IND-qCCA transform

We first prove the following simple lemma.

Lemma 1. Let PKE be a PKE. Then, for any ppt OW-PCA adversary A making
at most q queries to the PCO oracle, there exists a OW-CPA adversary B s.t.

Advow−pcaPKE (A) ≤ 2q · Advow−cpaPKE (B) .

Proof. We can simply see that the PCO oracle returns 1 bit of information, thus
PKE loses at most q bits of security when a PCO oracle is available. More for-
mally, given A, one can build B as follows. It passes its input to A and simulates
the PCO oracle by sampling a response at random in {0, 1}. Then, it returns the
response of A. Its probability of success is Advow−cpaPKE (B) ≥ 1

2qAdv
ow−pca
PKE (A), as

the probability the q responses are correct is 1
2q . ut

We consider the transform TCH given in Figure 4 (the setup algorithm is
ommited). This construction takes a PKE PKE = (setupp, genp, encp, decp) and
outputs a KEM (setup, gen, encaps, decaps). Note that TCH is basically the RE-
ACT transform [13] without the asymmetric part (to get a KEM instead of a
PKE).

We now show that the resulting KEM is IND-qCCA assuming the underlying
PKE is OW-PCA.

Theorem 1. We consider two random oracles H,H ′ : {0, 1}∗ 7→ {0, 1}n. Let
KEM be the KEM resulting from applying the TCH transform to a δ-correct PKE.

6 Löıs Huguenin-Dumittan, Serge Vaudenay

Then, for any IND-qCCA adversary A that makes at most qH (resp. qH′) queries
to H (resp. H ′), there exists a OW-PCA adversary B s.t.

Advind−qccaKEM (A) ≤ (q + qH′)
2

2n
+ δ +

q

2n
+ (qH + qH′ + q) · Advow−pcaPKE (B)

where B makes at most q queries to its plaintext-checking oracle. In addition, if
PKE is a deterministic encryption scheme, the bound becomes

Advind−qccaKEM (A) ≤ (q + qH′)
2

2n
+ δ +

q

2n
+ Advow−pcaPKE (B) .

Proof. We proceed by game hopping, the sequence of games is presented in
Figure 5. Let LH (resp. LH′) be the list of queries (x, h) made to the RO H (resp.
H ′) s.t. H(x) = h (resp. H ′(x) = h). In addition, let the challenge ciphertext be
ct∗ = (ct∗0, h

∗), and σ∗ be s.t. encp(pk, σ∗) = ct∗. We start with game Γ 0 which
is the IND-qCCA game, except we abort if the adversary finds a collision on H ′

(i.e. H ′(x) = H ′(x′) for x 6= x′ and (x, h), (x′, h) ∈ LH′). This happens with

prob. at most (q+qH′)
2

2n and we have

∣∣Pr [IND− qCCAKEM(A)⇒ 1]− Pr[Γ 0(A)⇒ 1]
∣∣ ≤ (q + qH′)

2

2n
.

Γ 1 : The decapsulation oracle is modified s.t. it returns ⊥ whenever ct∗0 or h∗ is
queried (note that both cannot be submitted at the same time). This game is
the same as Γ 0 except if the oracle in Γ 0 does not return ⊥ on such queries. Let
bad be this event. We split this into two cases:

• ODec(ct∗0, h 6= h∗) 6=⊥. This happens only if

H ′(dec(sk, ct∗0), ct∗0) = h 6= h∗ = H ′(σ∗, ct∗0) .

In turn, this implies that dec(sk, ct∗0) 6= σ∗ and thus it is a correctness error.
Such an error happens at most with probability δ.

• ODec(ct0 6= ct∗0, h
∗) 6=⊥. It means that h∗ = H ′(σ∗, ct∗0) = H ′(σ′, ct0), with

σ′ ← decp(sk, ct0), which is not possible since ct0 6= ct∗0 and we assume no
collision occurs.

Therefore, overall Pr[bad] ≤ δ and

|Pr[Γ 0 ⇒ 1]− Pr[Γ 1 ⇒ 1]| ≤ Pr[bad] ≤ δ .

Γ 2 : We modify the decapsulation oracle into another oracle ODec2 as follows.
On a decapsulation query (ct, h) (with σ′ ← dec(sk, ct)):

1. If there is no ((∗, ct), h) in LH′ : return ⊥. This differs from the previous
game only if h = H ′(σ′, ct) but (σ′, ct) was never queried to H ′. As the RO
values are unif. distributed, this happens at most with probability 1

2n .

A note on IND-qCCA security in the ROM and its applications 7

2. If ((σ, ct), h) ∈ LH′ for some σ: If OPCO(σ, ct) := 1dec(sk,ct)=σ = 1, return
H(σ). Otherwise, return ⊥. This perfectly simulates the previous oracle as
OPCO(σ, ct) = 1 iff σ = σ′ and we know h = H(σ = σ′, ct).
Note that there is at most one σ s.t. ((σ, ct), h) ∈ LH′ as we assume no
collision occurs. In particular, it means that OPCO is called at most once
every decapsulation query.

Therefore, by a union bound we get

|Pr[Γ 1 ⇒ 1]− Pr[Γ 2 ⇒ 1]| ≤ q

2n
.

Γ 3 : Finally, we abort whenever A queries σ∗ to H or (σ∗, ·) to H ′. Let this event
be query. Then, we can build a OW-PCA adversary B (shown in Figure 6) that
perfectly simulates A’s view as long as query does not happen. More precisely,
B can simulate the decapsulation oracle using its PCO oracle. Then, on input
(pk, ct∗), B runs A(pk, (ct∗, h∗),K∗), where h∗ and K∗ are picked at random.
Unless query occurs, A cannot distinguish between these random h∗,K∗ and the
real ones. Finally, if query occurs, B can recover σ∗ with probability 1

qH+qH′+q

by sampling a random σ from S = {σ : (σ, ∗) ∈ LH ∨ ((σ, ∗), ∗) ∈ LH′}. Thus,

|Pr[Γ 2 ⇒ 1]− Pr[Γ 3 ⇒ 1]| ≤ Pr[query] ≤ (qH + qH′ + q) · Advow−pcaPKE (B)

where B makes q query to the PCO oracle. Note that if PKE is deterministic,
B can check whether enc(pk, σ) = ct∗ for all σ ∈ S to find σ∗. In this case, we
obtain

|Pr[Γ 2 ⇒ 1]− Pr[Γ 3 ⇒ 1]| ≤ Pr[query] ≤ Advow−pcaPKE (B) .

Finally, since A cannot query σ∗ to H anymore, it cannot distinguish between
a random key and H(σ∗). Hence, Pr[Γ 3 ⇒ 1] = 1

2 . Collecting the probabilities
holds the result. ut

Corollary 1. We consider two random oracles H,H ′ : {0, 1}∗ 7→ {0, 1}n. Let
KEM be the KEM resulting from applying the TCH transform to a δ-correct PKE.
Then, for any IND-qCCA adversary A that makes at most qH (resp. qH′) queries
to H (resp. H ′), there exists a OW-CPA adversary B s.t.

Advind−qccaKEM (A) ≤ (q + qH′)
2

2n
+ δ +

q

2n
+ (qH + qH′ + q)2q · Advow−cpaPKE (B) .

If PKE is deterministic, we get

Advind−qccaKEM (A) ≤ (q + qH′)
2

2n
+ δ +

q

2n
+ 2q · Advow−cpaPKE (B) .

In particular, in the case of IND-1CCA (i.e. q = 1), if the underlying PKE is OW-
CPA the KEM obtained from the TCH transform is IND-1CCA with a security

8 Löıs Huguenin-Dumittan, Serge Vaudenay

Γ 0−3(A)

pp←$ setup(1λ)

(pk, sk)←$ gen(pp)

b←$ {0, 1}
σ
∗ ←$ {0, 1}n

ct∗0 ←$ encp(pk, σ∗)

K0 ← H(σ
∗
);h
∗ ← H

′
(σ
∗
, ct∗0)

K1 ←$K
ct∗ ← (ct∗0 , h

∗
)

b
′ ← AO

Dec
(pk, ct∗, Kb)// Γ

0
-Γ

1

b
′ ← AO

Dec2
(pk, ct∗, Kb)// Γ

2
-Γ

3

if query : abort // Γ
3

return 1b′=b

H(σ)

if ∃h s.t. (σ, h) ∈ LH :

return h

if σ = σ
∗
: query← true // Γ

3

h←$ {0, 1}n

LH ← LH ∪ {(σ, h)}
return h

Oracle ODec(ct)

if ct = ct∗ : return ⊥
if more than q queries :

return ⊥
(ct0, h)← ct

if ct0 = ct∗0 or h = h
∗
: // Γ

1
-Γ

3

return ⊥ // Γ
1
-Γ

3

σ
′ ← decp(sk, ct′0)

if H
′
(σ
′
, ct0) 6= h :

return ⊥

return H(σ
′
)

H ′(σ, ct)

if ∃x, x′, h s.t. x 6= x
′

∧ (x, h) ∈ LH′
∧ (x

′
, h) ∈ LH′ :

abort

if ∃h s.t. ((σ, ct), h) ∈ LH′ :
return h

if σ = σ
∗
: query← true // Γ

3

h←$ {0, 1}n

LH′ ← LH′ ∪ {((σ, ct), h)}
return h

Oracle ODec2(ct)

if ct = ct∗ : return ⊥
if more than q queries :

return ⊥
(ct0, h)← ct

if ct0 = ct∗0 or h = h
∗
:

return ⊥
if ∃σ s.t. ((σ, ct0), h) ∈ LH′ :

if OPCO
(σ, ct0) :

return H(σ)

return ⊥

Fig. 5: Sequence of games.

loss of ≈ 1 bit compared to the OW-CPA advantage. Finally, we note that as q is
a constant that does not depend on the security parameter (e.g. n) of the PKE, if
the OW-CPA advantage of the PKE is negligible, so is the KEM IND-qCCA one.
However, in practice, we would need to take n very large to guarantee security
for more than a few queries.

Security in the QROM.

We also show that the TCH transform is secure in the Quantum Random Oracle
Model (QROM) by proving that Thm 1 holds in the QROM. First, we recall a
variant of the well-known one-way to hiding lemma (OW2H) [20] as stated by
Hofheinz et al. [11].

Lemma 2 (AOW2H [11]). Let A be a quantum adversary making at most qH
queries to the QRO |H〉 : {0, 1}n 7→ {0, 1}m and outputting 0 or 1. Let Ext|H〉qH (A)

A note on IND-qCCA security in the ROM and its applications 9

BO
PCO

(pk, ct∗)

init LH ,LH′ ← ∅
h
∗ ←$ {0, 1}n

K
∗ ←$ {0, 1}n

simulate H,H
′
for A with lazy sampling:

run AH,H
′,ODec2

(pk, (ct∗, h∗), K∗)

σ
′ ←$ {σ : σ ∈ LH ∨ (σ, ∗) ∈ LH′}

return σ
′

Oracle ODec2(ct)

if more than q queries :

return ⊥
(ct0, h)← ct

if ct0 = ct∗0 or h = h
∗
:

return ⊥
if ∃σ s.t. ((σ, ct), h) ∈ LH′ :

if OPCO
(σ, ct0) : return H(σ)

return ⊥

Fig. 6: B adversary for the proof of Thm 1.

ExtA,|H〉(inp)

i←$ {1, . . . , qH}

run A|H〉(inp) until i-th query |QUERYi〉

x
′ ← measure input register of |QUERYi〉

if A did not make i queries : return ⊥

return x
′

Fig. 7: Extractor Ext for the AOW2H lemma.

be the algorithm in Figure 7. Then, for any algorithm F that does not use |H〉∣∣Pr[A|H〉(inp)⇒ 1|σ∗←$ {0, 1}n; inp← F(σ∗, H(σ∗))]

− Pr[A|H〉(inp)⇒ 1|(σ∗,K)←$ {0, 1}n+m; inp← F(σ∗,K)]
∣∣

≤ 2qH

√
Pr[σ∗ ← ExtA,|H〉(inp)|(σ∗,K)←$ {0, 1}n+m; inp← F(σ∗,K) .

We now prove that TCH holds a secure IND-qCCA KEM in the QROM if the
underlying PKE is OW-PCA.

Theorem 2. We consider two quantum random oracles H,H ′ : {0, 1}∗ 7→
{0, 1}n. Let KEM be the KEM resulting from applying the TCH transform to
a PKE. Then, for any IND-qCCA adversary A that makes at most qH (resp.
qH′) quantum queries to H (resp. H ′), there exists a OW-PCA adversary B s.t.

Advind−qccaKEM (A) ≤ δ + 2(2qH′ + qH + q) ·
√

(2(2qH′ + q))q · Advow−pcaPKE (B)

where B makes at most q queries to its plaintext-checking oracle.

Proof. The proof is somewhat similar to the security proof of the QU⊥m transform
of Hofheinz et al. [11]. However, we explicitly take care of some details seemingly
not addressed in the original proof. In particular, the fact that the decapsulation

10 Löıs Huguenin-Dumittan, Serge Vaudenay

oracle also makes queries to the random oracles has to be taken into account
when applying the OW2H lemma.

The beginning of the proof follows the same strategy as the classical one.
The sequence of games is shown in Figure 8.

Γ 0 : This is the original IND-CCA game.

Γ 1 : The decapsulation oracle is modified s.t. it returns ⊥ whenever (ct∗0, ∗) is
queried (note that (ct∗0, h

∗) cannot be submitted). This game is the same as Γ 0

except if the oracle in Γ 0 does not return ⊥ on such queries. Now, let’s assume
ODec(ct∗0, h 6= h∗) 6=⊥. This happens only if

H ′(dec(sk, ct∗0), ct∗0) = h 6= h∗ = H ′(σ∗, ct∗0) .

In turn, this implies that dec(sk, ct∗0) 6= σ∗ and thus it is a correctness error.
Such an error happens at most with probability δ. Therefore, overall

|Pr[Γ 0 ⇒ 1]− Pr[Γ 1 ⇒ 1]| ≤ δ .

Γ 2 : We replace the challenge key K∗ and tag h∗ by random values. As the key
is now always random we have

Pr[Γ 2 ⇒ 1] =
1

2
.

We can consider H ′ as the combination of two ROs H ′ct∗0 , H
′
6=ct∗0

s.t.

H ′(σ, ct) :=

{
H ′ct∗0 (σ), if ct = ct∗0
H ′6=ct∗0

(σ, ct), if ct 6= ct∗0

since all values of H ′ are uniformly and independently distributed. Moreover,
one can simulate any quantum query to H ′ by 2 calls to the quantum random
oracle |H ′ct∗0 , H

′
6=ct∗0
〉. Thus, from now on, we assume the adversary can make 2qH′

queries to this quantum RO.
Then, by the OW2H lemma (Lemma 2) applied on |H,H ′ct∗0 〉 with F as in

Figure 9, we have

Pr[Γ 1 ⇒ 1]− Pr[Γ 2 ⇒ 1] ≤ 2(2qH′ + qH + q) ·
√

Pr[Υ ⇒ 1]

where Υ is the same game as Γ 2, except that we measure the input register
of a random quantum query made to |H,H ′ct∗0 〉 (by the adversary or the

decapsulation oracle) and outputs 1 iff this is equal to the challenge seed σ∗.
Note that the number of queries made to H ′ct∗0 throughout the game is at most

2qH′ , as the decapsulation oracle never queries H ′(∗, ct∗0) for tag verification
(a decapsulation query (ct∗0, ∗) immediately returns ⊥). However, there can be

A note on IND-qCCA security in the ROM and its applications 11

at most q + qH queries to H, as the decapsulation oracle might query H on a
successful query.

Υ ′ : We modify Υ as follows. We replace H ′6=ct∗0
by a random polynomial of

degree 2(q+2qH′) over the field F2n (i.e. on a query m, we evalute H ′6=ct∗0
(m)). By

Zhandry et al. [22], this is indistinguishable from a random oracle for adversaries
making at most q+2qH′ quantum queries to H ′6=ct∗0

, which is the case here. Then,
we replace the decryption check in the decapsulation oracle by verifying whether
a correct ciphertext is in the roots of the polynomial. More precisely, on a query
ODec2((ct0, h)), we compute the list of roots of H ′6=ct∗0

(X)−h and check whether

there is a σ s.t. (ct0, σ) is in the list and decp(sk, ct0) = σ. If that is the case, we
output H(σ), otherwise we output ⊥. We show that both oracles are equivalent:

• On a query (ct0, h) s.t. ct0 = ct∗0 both oracles output ⊥.
• ODec2((ct0, h)) outputs H(σ): That means that H ′6=ct∗0

(σ, ct0) = h and

decp(sk, ct0) = σ. Thus, the oracle ODec would also output H(σ).
• ODec2((ct0, h)) outputs ⊥: Let σ := decp(sk, ct0). The oracle returning ⊥

means that (σ, ct0) is not in the roots of H ′6=ct∗0
(X)−h, thus H ′6=ct∗0

(σ, ct0) 6= h

or σ =⊥. Hence, the original oracle ODec would also return ⊥.

Thus, AODec

and AODec2

have identical behaviour. In particular, the queries made
to |H,H ′ct∗0 〉 are the same (for fixed randomness). Hence, we have

Pr[Υ ⇒ 1] = Pr[Υ ′ ⇒ 1] .

We note that ODec2 makes no query to H ′6=ct∗0
, contrary to the original decapsu-

lation oracle ODec, which makes “classical” queries to H ′6=ct∗0
to verify the tag.

However, this has no impact on Pr[Υ ′ ⇒ 1] as the extractor measures only a
random query made to |H,H ′ct∗0 〉 (and not to |H ′6=ct∗0

〉).
Finally, one can build an OW-PCA adversary B s.t. 1

(2(2qH′+q))
q Pr[Υ ′ ⇒

1] ≤ Advow−pcaPKE (B). The adversary B is given in Figure 10. In particular, B can

perfectly simulate ExtA
ODec2

as the modified decapsulation oracle only requires
a plaintext-checking oracle. However, in order to limit the number of queries to
OPCO, B makes some guessing. I.e. after computing the list of roots, it picks one
(σ, ct0) at random and checks whether OPCO(σ, ct0) holds or not. The probability
to pick the correct root (if it exists) is 1

2(2qH′+q)
as H ′6=ct∗0

is a polynomial of degree

2(2qH′+q). Hence, overall the simulation is perfect with probability 1
(2(2qH′+q))

q

and B recovers σ∗ with probability Pr[Υ ′ ⇒ 1], thus

Pr[Υ ′ ⇒ 1] ≤ (2(2qH′ + q))qAdvow−pcaPKE (B) .

In addition, B makes at most q queries to the plaintext-checking oracle. Collect-
ing the probabilities holds the result. ut

12 Löıs Huguenin-Dumittan, Serge Vaudenay

Γ 0−2, Υ, Υ ′(A)

H
′
6=ct∗0

←$ {polynomials of deg. 2(q + 2qH′)}// Υ
′

pp←$ setup(1λ)

(pk, sk)←$ gen(pp)

b←$ {0, 1}
σ
∗ ←$ {0, 1}n

K0 ← H(σ
∗
); ct∗0 ←$ encp(pk, σ∗)

h
∗ ← H

′
(σ
∗
, ct∗0)

K0 ←$ {0, 1}n;h∗ ←$ {0, 1}n// Γ 2
,Υ ,Υ

′

K1 ←$ {0, 1}n

ct∗ ← (ct∗0 , h
∗
)

b
′ ← AO

Dec,|H〉,|H′〉
(pk, ct∗, Kb)// Γ

0
-Γ

1

b
′ ← A

ODec,|H〉,|H′
ct∗0
,H′6=ct∗0

〉
(pk, ct∗, Kb)// Γ

2

return 1b′=b// Γ
0
-Γ

2

σ
′ ←$ ExtA

ODec,|H〉,|H′
ct∗0
,H′6=ct∗0

〉

(pk, ct∗, Kb)// Υ

σ
′ ←$ ExtA

ODec2,|H〉,|H′
ct∗0
,H′6=ct∗0

〉

(pk, ct∗, Kb)// Υ
′

return 1σ′=σ∗// Υ -Υ
′

H ′(σ, ct)

use a standard QRO to reply // Γ
0
-Γ

1

use two QROs H
′
ct∗0
, H
′
6=ct∗0

: // Γ
2
, Υ, Υ

′

if ct = ct∗ : return H
′
ct∗0

(σ) // Γ
2
, Υ, Υ

′

return H
′
6=ct∗0

(σ, ct) // Γ
2
, Υ, Υ

′

Oracle ODec(ct)

if ct = ct∗ : return ⊥
if more than q queries :

return ⊥
(ct0, h)← ct

if ct0 = ct∗0 : // Γ
1
-Γ

2
,Υ

return ⊥ // Γ
1
-Γ

2
,Υ

σ
′ ← decp(sk, ct′0)

if H
′
(σ
′
, ct0) 6= h :

return ⊥

return H(σ
′
)

Oracle ODec2(ct)

if ct = ct∗ : return ⊥
if more than q queries :

return ⊥
(ct0, h)← ct

if ct0 = ct∗0 :

return ⊥

if ∃(σ, ct0) ∈ Roots(H′6=ct∗0
(X)− h)

s.t. OPCO
(σ, ct0) :

return H(σ)

return ⊥

Fig. 8: Sequence of games for Thm 2.

Corollary 2. We consider two quantum random oracles H,H ′ : {0, 1}∗ 7→
{0, 1}n. Let KEM be the KEM resulting from applying the TCH transform to
a δ-correct PKE. Then, for any IND-qCCA adversary A that makes at most qH
(resp. qH′) queries to H (resp. H ′), there exists a OW-CPA adversary B s.t.

Advind−qccaKEM (A) ≤ δ + 2(2qH′ + qH + q) · 2q
√

((2qH′ + q))q · Advow−pcaPKE (B) .

Hashing the plaintext and ciphertext

One can also wonder what is the leakage of the decapsulation oracle in the
ROM, when the key is simply the hash of the seed and the plaintext. That is, we
consider the simple PKE to KEM transform given in Figure 11, which we call
TH. Note that this is the same transform as the one called U⊥ in [11]. We now

A note on IND-qCCA security in the ROM and its applications 13

F(σ∗, (K∗, h∗))

pp←$ setup(1λ)

(pk, sk)←$ gen(pp)

ct∗0 ←$ encp(pk, σ∗)

ct∗ ← (ct∗0 , h
∗
)

return (pk, ct∗, K∗)

Fig. 9: F function for applying the AOW2H lemma in the proof of Thm 2.

BO
PCO

(pk, ct∗0)

h
∗ ←$ {0, 1}n

K
∗ ←$ {0, 1}n

simulate H,H
′
ct∗0
, H
′
6=ct∗0

for A with random polynomials:

σ
′ ←$ ExtA

ODec2,|H〉,|H′
ct∗0
,H′6=ct∗0

〉

(pk, (ct∗0 , h
∗
), K

∗
)

return σ
′

Oracle ODec2(ct)

if more than q queries :

return ⊥
(ct0, h)← ct

if ct0 = ct∗0 :

return ⊥

L ← {(σ, ct′) : (σ, ct′) ∈ Roots(H′6=ct∗0
− h)

∧ ct′ = ct0}
(σ, ct0)←$L

if OPCO
(σ, ct0) :

return H(σ)

return ⊥

Fig. 10: B adversary for the proof of Thm 2.

show that if q is small (logarithmic in the security parameter), the TH holds a
secure (and practical) IND-qCCA scheme in the ROM, given that the underlying
PKE is OW-CPA.

Theorem 3. We consider a random oracle H : {0, 1}∗ 7→ {0, 1}n. Let KEM
be the KEM resulting from applying the TH transform to a PKE PKE (which
never queries H). Then, for any IND-qCCA adversary A that makes at most
qH queries to H, there exists a OW-CPA adversary B s.t.

Advind−qccaKEM (A) ≤ qH · ((qH + 1)(qH + 2))q · Advow−cpaPKE (B) .

If PKE is deterministic, we get

Advind−qccaKEM (A) ≤ δ + ((qH + 1)(qH + 2))q · Advow−cpaPKE (B) .

Proof. We start by defining an oracle Oi(LH , ct) (see Figure 12). This oracle
returns the index i s.t. ((σi, cti),K) ∈ LH (we first sort LH according to some
fixed order) and cti = ct and decp(sk, cti) = σi. If such a i does not exist and
decp(sk, cti) =⊥ it returns ⊥d, otherwise it returns ⊥.

14 Löıs Huguenin-Dumittan, Serge Vaudenay

gen()

(pk, sk)←$ genp()

return (pk, sk)

encaps(pk)

σ←$M
ct←$ encp(pk, σ)

K ← H(σ, ct)

return K, ct

decaps(sk, ct)

σ′ ← decp(sk, ct)

if σ′ =⊥: return ⊥
return H(σ′, ct)

Fig. 11: TH transform.

Oi(LH , ct)

sort LH according to query order :

LH = ((σi, cti),Ki)i∈{1,...,|LH |}

σ′ ← decp(sk, ct)

if σ′ =⊥: return ⊥d

for i ∈ {1, . . . , |LH |} :

if cti = ct and σ′ = σi :

return i

return ⊥

Fig. 12: Oi oracle for the proof of Thm 3.

Now we show how to simulate the IND-qCCA decapsulation oracle in the
ROM, using Oi and OPCO only. The original (resp. modified) oracles ODec and
H (resp. ODec′ and H ′) are on the left (resp. right) in Figure 13. We now prove
that any IND-qCCA adversary cannot distinguish between the real and modified
oracles.

First, we show that the outputs of the ROs H and H ′ on any query (σ, ct)
have the same distribution, given the adversary’s view. We break this into four
subcases:

• (σ, ct) was queried before to H (resp. H ′): In this case, both H and H ′ return
the value h returned on the previous similar query. Thus, we assume from
now on that every RO query made by the adversary is unique.
• ct was never queried to the decapsulation oracle before: In this case, both H

and H ′ return a random value h and store the query/response in LH .
• ct was queried to the decapsulation oracle before: In both cases (original

and modified oracles) one can see that if the decryption of ct either fails or
σ′ = decp(sk, ct) is different from σ, then the output of the decapsulation
oracle is independent of H(σ, ct) (and H ′(σ, ct)). In both cases, the ROs
sample a fresh value (H ′ will do so because OPCO(σ, ct) will output 0 in
this case, as σ 6= σ′ or the ciphertext is not valid). Now, if ct decrypts to
σ, the original decapsulation oracle outputs H(σ, ct). In the modified game,
the decapsulation oracle outputs a random K. Indeed, as we assume (σ, ct)

A note on IND-qCCA security in the ROM and its applications 15

was never queried to H, Oi(LH , ct) outputs ⊥. Then, the modified RO will
output the same K, as OPCO(σ, ct) will verify. In both cases, the ROs output
the same value as the decapsulation oracle.

We now show that the decapsulation oracles ODec and ODec′ are indistinguish-
able. Let ct be the queried ciphertext and σ = decp(sk, ct).

• ct = ct∗: both oracles return ⊥.
• σ =⊥: Both oracles return ⊥, as Oi(LH , ct) returns ⊥d.
• H(σ, ct) (resp. H ′(σ, ct)) was never queried. Both oracles return a random

value if ct was never queried, or a consistent value if it was. It is straightfor-
ward to see this is the case in the original oracle. In the modified oracle, as
H ′(σ, ct) was never queried, we have Oi(LH , ct) that returns ⊥. Thus, the
decapsulation oracle returns a random K if ct was not queried or a consistent
K if it was.

• H(σ, ct) (resp. H ′(σ, ct)) was queried and it output K. Both oracles return
K. In the modified decapsulation oracle, Oi(LH , ct) will output a valid i s.t.
H ′(σi, ct) = hi and hi is returned. Thus, the answer is consistent with the
RO.

Now we can prove the theorem by game hopping as before. We define Γ 0 as the
original IND-qCCA game.

Γ 1 : We modify the original IND-qCCA game into another game Γ 1 where
the random/decapsulation oracles are the modified ones (i.e. H ′ and ODec′)
described above. As shown, both games are indistinguishable and thus

|Pr[Γ 0 ⇒ 1]− Pr[Γ 1 ⇒ 1]| = 0 .

Γ 2 : We replace the challenge key by a random one, as in the previous proof.
Then, similarly, the real key is indistinguishable from a random one unless
H(σ∗, ct∗) is queried. We define this event as query and

|Pr[Γ 1 ⇒ 1]− Pr[Γ 2 ⇒ 1]| ≤ Pr[query] .

We can upper bound this probability by the advantage of a OW-CPA adversary
B againt PKE. That is, given a IND-qCCA adversary playing game Γ 2, we build
an adversary B as shown in Figure 14. One can see that if B was simulating A
with the H ′ and ODec′ oracles (instead of its own oracles H ′′ and ODec′′), the
simulation would be perfect as long as query did not occur. Then, whenever query
would happen, B would recover σ∗ with prob. 1

qH
. Now B does not simulate the

modified oracles perfectly but instead makes some guessing in its own oracles
H ′′ and ODec′′ :

• ODec′′ : In line 5, i is picked at random instead of being the returned value of
the Oi oracle. On each query the simulation is perfect with prob. 1/(qH + 2)
and overall with probability 1

(qH+2)q , as there are at most q queries to this

oracle. In line 11, we associate a random index to each ct s.t. (ct, ∗) ∈ LK .

16 Löıs Huguenin-Dumittan, Serge Vaudenay

• H ′′: In line 5, when (ct, ∗) ∈ LK , instead of querying the plaintext-checking
oracle we check whether the corresponding sampled index Lq[ct] is equal to
the query number. If it is, we reply with K s.t. (ct,K) ∈ LK otherwise we
proceed as before (i.e. as in H ′). Let’s assume w.l.o.g that each query to
H ′′ is unique. For each ct s.t. (ct, ∗) ∈ LK , there can be at most one query
(σ, ct) s.t. OPCO(σ, ct) returns 1 (it is when σ is the decryption of ct). Here,
B guesses beforehand which query it is (or if no such query will be made)
and gets the correct answer with prob. 1

qH+1 . Overall, the probability H ′′

simulates correctly H ′ is 1
(qH+1)q .

From this we can deduce that B correctly simulates Γ 2 with probability
1

((qH+1)(qH+2))q and wins the OW-CPA game with prob. at least 1
qH
· Pr[query].

Hence,

|Pr[Γ 1 ⇒ 1]−Pr[Γ 2 ⇒ 1]| ≤ Pr[query] ≤ qH ·((qH+1)(qH+2))q ·Advow−cpaPKE (B) .

Note that when PKE is deterministic, in order to recover σ∗, B can check which
σ′ queried is s.t. enc(pk∗, σ′) = ct∗. This works as long as the challenge ciphertext
is correct, which happens with prob. 1 − δ. Therefore, for deterministic PKEs,
the last inequality becomes

|Pr[Γ 1 ⇒ 1]−Pr[Γ 2 ⇒ 1]| ≤ Pr[query] ≤ δ+((qH +1)(qH +2))q ·Advow−cpaPKE (B) .

Finally, in game Γ 2, the challenge key is always random and thus Pr[Γ 2 ⇒ 1] =
1
2 . Collecting the probabilities holds the result. ut

4 Impact

The simple constructions considered above produce IND-qCCA KEMs without
any derandomization and re-encryption steps. Thus, using IND-1CCA ephemeral
KEMs obtained through these transforms would speed up the decapsulation
process in several systems that we list here.

KEMTLS. As discussed in the introduction, improving the KEMTLS proto-
col [17] was the main motivation of this work. In particular, a more efficient
decapsulation in the ephemeral KEM would imply less overall latency and less
computation on the client side. In particular, this could be of interest for less
powerful clients like IoT devices, which would not need to perform re-encryption.
Overall, the efficiency gain in practice would obviously depend on the ephemeral
KEM used, as encryption is expensive in some schemes while it is not in others.
For instance, using KEMTLS with a modified version of SIKE (i.e. obtained
through our transform instead of the FO one) would probably reduce signifi-
cantly the latency.

The same remarks apply to the very recent variants of KEMTLS with pre-
distributed keys proposed by Günther et al. [10] and Schwabe et al. [19].

A note on IND-qCCA security in the ROM and its applications 17

Oracle ODec(ct)

if ct = ct∗ : return ⊥
if more than q queries :

return ⊥

σ
′ ← decp(sk, ct)

if σ
′
=⊥: return ⊥

return H(σ
′
, ct)

H(σ, ct)

if ∃h s.t. ((σ, ct), h) ∈ LH :

return h

h←$ {0, 1}n

LH ← LH ∪ {((σ, ct), h)}
return h

Oracle ODec′(ct)

if ct = ct∗ : return ⊥
if more than q queries : return ⊥
if ∃K s.t. (ct, K) ∈ LK :

return K

i← Oi
(LH , ct)

if i =⊥d: return ⊥
if i 6=⊥:

(cti, Ki)← LH [i]

return Ki // return i-th valued returned by H
′

K ←$ {0, 1}
LK ← LK ∪ {(ct, K)}
return K

H ′(σ, ct)

if ∃h s.t. ((σ, ct), h) ∈ LH :

return h

if ∃K s.t. (ct, K) ∈ LK :

if OPCO
(σ, ct) :

LH ← LH ∪ {((σ, ct), K)}
return K

h←$ {0, 1}n

LH ← LH ∪ {((σ, ct), h)}
return h

Fig. 13: Original and modified oracles for the proof of Thm 3.

TLS 1.3. TLS 1.3 only supports ephemeral DH as a key-exchange. In turn, in
the security proof (e.g. [6]), the PRF-ODH assumption is sufficient for the key-
exchange security. The PRF-ODH assumption can be seen as a variant of the
hashed Diffie-Hellman assumption with a 1-time “decapsulation” oracle. More
precisely, an adversary is given (g, gu, gv) and either y0 := PRF(guv, ad∗) or a
random y1, where ad∗ is some auxiliary data chosen by the adversary. Then, the
adversary must distinguish between y0 and y1 with the help of one query to an
oracle O((x, ad) 6= (gv, ad∗)) := PRF(xv, ad).

One can see that this is very close to IND-1CCA security transposed to
DH key-exchange. Thus, if we consider TLS 1.3 modified s.t. it supports KEM
(as in the PQ openssl fork [1,14]), we conjecture that the proof should hold if
the KEM is IND-1CCA secure. For instance, in the Multi-Stage security proof
of TLS 1.3 1-RTT handshake of Dowling et al. [6], the only step of the proof
impacted should be the transition Game B.1 → Game B.2. that uses the
PRF-ODH assumption. Replacing this step using the IND-1CCA property of
the KEM should suffice for the proof to hold. Hence, if this is the case, PQ TLS

18 Löıs Huguenin-Dumittan, Serge Vaudenay

B(pk, ct∗)

init LH ,LK ← ∅
init Lq ← []

K
∗ ←$K

run AH
′′,ODec′′

(pk, ct∗, K∗)

sample random query (σ
′
, ct′) made to H

′′

return σ
′

H ′′(σ, ct)

1 : iq ← query number

2 : if ∃h s.t. ((σ, ct), h) ∈ LH :

3 : return h

4 : if ∃K s.t. (ct, K) ∈ LK :

5 : if Lq [ct] = iq :

6 : LH ← LH ∪ {((σ, ct), K)}
7 : return K

8 : h←$ {0, 1}n

9 : LH ← LH ∪ {((σ, ct), h)}
10 : return h

Oracle ODec′′(ct)

1 : if ct = ct∗ : return ⊥
2 : if more than q queries : return ⊥
3 : if ∃K s.t. (ct, K) ∈ LK :

4 : return K

5 : i←$ {1, . . . , qH ,⊥,⊥d}
6 : if i =⊥d: return ⊥
7 : if i 6=⊥:
8 : (cti, Ki)← LH [i]

9 : return Ki // return i-th valued returned by H
′′

10 : K ←$ {0, 1}
11 : LK ← LK ∪ {(ct, K)}
12 : Lq [ct]←$ {0, . . . , qH}
13 : return K

Fig. 14: B adversary for the proof of Thm 3.

1.3 could also be boosted by using PQ IND-1CCA KEMs instead of the slower
IND-CCA KEMs derived with the FO transform.

Ratcheting. IND-1CCA security is also a property used (often implicitly) in
several works on ratcheting. For instance, Jost et al. [12] build a healable and
key-updating public-key encryption scheme based on a one time IND-CCA2 PKE
(with authenticated data). The latter primitive can easily be made out of an
IND-1CCA KEM using KEM/DEM techniques. Another paper by Poettering
et al. [16] introduces a construction of unidirectional ratcheted key exchange
(URKE) that is based (implicitly) on IND-1CCA KEMs, as noticed by Balli et
al. [2].

In another recent paper, Brendel et al. [4] propose an alternative to the Signal
handshake based on KEMs and designated verifier signature schemes. They first
define a core protocol that uses two KEMs in the same vein as KEMTLS: one
with long-term keys for implicit authentication of one of the parties and another
one with ephemeral keys to guarantee forward security. Again, the latter one
requires only IND-1CCA security for the handshake to be secure. Similarly, in
the full Signal-like handshake built upon the core protocol (called SPQR), three
KEMs are used and one requires only IND-1CCA security.

Concerns over key-reuse. The main security risk of using an IND-
1CCA KEM instead of its IND-CCA counterpart is the vulnerability to key-
reuse/misuse attacks. Indeed, if a system/protocol is misimplemented s.t. the

A note on IND-qCCA security in the ROM and its applications 19

IND-1CCA KEM is used with a “static” public key instead of an ephemeral one,
an adversary might be able to recover the secret key after several decryption
queries. In KEMTLS, this risk is mitigated by the use of an IND-CCA KEM in
addition to the ephemeral one (which can be IND-1CCA). In particular, the final
shared key is derived from shares of both KEMs. Thus, even if the public-key
meant to be ephemeral is reused, the final shared key should remain secure.

In other systems (e.g. TLS 1.3), this risk could be mitigated by using hybrid
cryptography. For instance, a very efficient IND-CCA KEM could be combined
with an IND-1CCA one. That would improve the overall security and resistance
against key-reuse attacks at a small cost (see e.g. Giacon et al. [9] or Bindel et
al. [3] for KEM combiners). Finally, note that if ephemeral keys were misimple-
mented as static ones in these systems, the forward security property would be
lost.

Conclusion. Ratcheting and several recent protocols (e.g. TLS 1.3) are aiming
at forward security, which often implies generating a new pair of public/secret
keys for each message exchanged. Informally, in many settings this means that
an adversary requesting a decryption will be able to do so only once for a given
key pair. Thus, IND-1CCA security of the underlying encryption/encapsulation
primitive might be sufficient to guarantee the security of such systems.

Acknowledgments. We thank Daniel Collins for pointing out possible use-cases
of IND-1CCA KEMs in ratcheting. Löıs Huguenin-Dumittan is supported by a
grant (project No 192364) of the Swiss National Science Foundation (SNSF).

References

1. OQS OpenSSL, https://github.com/open-quantum-safe/openssl, June 2021
2. Balli, F., Rösler, P., Vaudenay, S.: Determining the core primitive for optimally

secure ratcheting. In: International Conference on the Theory and Application of
Cryptology and Information Security. pp. 621–650. Springer (2020)

3. Bindel, N., Brendel, J., Fischlin, M., Goncalves, B., Stebila, D.: Hybrid key encap-
sulation mechanisms and authenticated key exchange. In: Ding, J., Steinwandt, R.
(eds.) Post-Quantum Cryptography. pp. 206–226. Springer International Publish-
ing, Cham (2019)

4. Brendel, J., Fiedler, R., Gnther, F., Janson, C., Stebila, D.: Post-quantum asyn-
chronous deniable key exchange and the signal handshake. Cryptology ePrint
Archive, Report 2021/769 (2021), https://eprint.iacr.org/2021/769

5. Cramer, R., Hanaoka, G., Hofheinz, D., Imai, H., Kiltz, E., Pass, R., Shelat, A.,
Vaikuntanathan, V.: Bounded CCA2-secure encryption. In: International Confer-
ence on the Theory and Application of Cryptology and Information Security. pp.
502–518. Springer (2007)

6. Dowling, B., Fischlin, M., Günther, F., Stebila, D.: A cryptographic analysis of the
TLS 1.3 handshake protocol. Journal of Cryptology (2020)

7. Fluhrer, S.: Cryptanalysis of ring-lwe based key exchange with key share reuse.
Cryptology ePrint Archive, Report 2016/085 (2016), https://eprint.iacr.org/
2016/085

https://github.com/open-quantum-safe/openssl
https://eprint.iacr.org/2021/769
https://eprint.iacr.org/2016/085
https://eprint.iacr.org/2016/085

20 Löıs Huguenin-Dumittan, Serge Vaudenay

8. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric en-
cryption schemes. Journal of Cryptology 26(1), 80–101 (2013), https://doi.org/
10.1007/s00145-011-9114-1

9. Giacon, F., Heuer, F., Poettering, B.: KEM Combiners. Cryptology ePrint Archive,
Report 2018/024 (2018), https://eprint.iacr.org/2018/024

10. Gnther, F., Towa, P.: KEMTLS with delayed forward identity protection in (al-
most) a single round trip. Cryptology ePrint Archive, Report 2021/725 (2021),
https://eprint.iacr.org/2021/725

11. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-
Okamoto transformation. In: Theory of Cryptography Conference. pp. 341–371.
Springer (2017)

12. Jost, D., Maurer, U., Mularczyk, M.: Efficient ratcheting: Almost-optimal guaran-
tees for secure messaging. In: Annual International Conference on the Theory and
Applications of Cryptographic Techniques. pp. 159–188. Springer (2019)

13. Okamoto, T., Pointcheval, D.: REACT: Rapid enhanced-security asymmetric cryp-
tosystem transform. In: Naccache, D. (ed.) Topics in Cryptology — CT-RSA 2001.
pp. 159–174. Springer Berlin Heidelberg, Berlin, Heidelberg (2001)

14. Paquin, C., Stebila, D., Tamvada, G.: Benchmarking post-quantum cryptography
in tls. Cryptology ePrint Archive, Report 2019/1447 (2019), https://eprint.

iacr.org/2019/1447

15. Pereira, M., Dowsley, R., Hanaoka, G., Nascimento, A.C.: Public key encryption
schemes with bounded CCA security and optimal ciphertext length based on the
CDH assumption. In: International Conference on Information Security. pp. 299–
306. Springer (2010)

16. Poettering, B., Rösler, P.: Towards bidirectional ratcheted key exchange. In: An-
nual International Cryptology Conference. pp. 3–32. Springer (2018)

17. Schwabe, P., Stebila, D., Wiggers, T.: Post-quantum TLS without handshake sig-
natures. In: Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security. pp. 1461–1480 (2020)

18. Schwabe, P., Stebila, D., Wiggers, T.: Post-quantum TLS without handshake sig-
natures. Cryptology ePrint Archive, Report 2020/534 (2020), https://eprint.

iacr.org/2020/534

19. Schwabe, P., Stebila, D., Wiggers, T.: More efficient post-quantum KEMTLS with
pre-distributed public keys. Cryptology ePrint Archive, Report 2021/779 (2021),
https://eprint.iacr.org/2021/779

20. Unruh, D.: Revocable quantum timed-release encryption. Journal of the ACM
(JACM) 62(6), 1–76 (2015)

21. Yamakawa, T., Yamada, S., Matsuda, T., Hanaoka, G., Kunihiro, N.: Reducing
public key sizes in bounded CCA-secure KEMs with optimal ciphertext length. In:
Information Security, pp. 100–109. Springer (2015)

22. Zhandry, M.: Secure identity-based encryption in the quantum random oracle
model. In: Annual Cryptology Conference. pp. 758–775. Springer (2012)

https://doi.org/10.1007/s00145-011-9114-1
https://doi.org/10.1007/s00145-011-9114-1
https://eprint.iacr.org/2018/024
https://eprint.iacr.org/2021/725
https://eprint.iacr.org/2019/1447
https://eprint.iacr.org/2019/1447
https://eprint.iacr.org/2020/534
https://eprint.iacr.org/2020/534
https://eprint.iacr.org/2021/779

	A note on IND-qCCA security in the ROM and its applications

