
Curse of Re-encryption: A Generic Power/EM
Analysis on Post-Quantum KEMs

Rei Ueno1,2,3, Keita Xagawa4, Yutaro Tanaka1,2, Akira Ito1,2,
Junko Takahashi4 and Naofumi Homma1,2

1 Tohoku University, 2–1–1 Katahira, Aoba-ku, Sendai-shi, 980-8577, Japan
rei.ueno.a8@tohoku.ac.jp, {y-tanaka,ito,homma}@riec.tohoku.ac.jp

2 CREST, JST, 4–1–8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
3 PRESTO, JST, 4–1–8 Honcho, Kawaguchi, Saitama, 332-0012, Japan

4 NTT Secure Platform Laboratories, Nippon Telegraph and Telephone Corporation,
3–9–11 Midori-cho, Musashino-shi, Tokyo, 180-8535, Japan

keita.xagawa.zv@hco.ntt.co.jp, junko.takahashi.fc@hco.ntt.co.jp

Abstract. This paper presents a side-channel analysis (SCA) on key encapsulation
mechanism (KEM) based on Fujisaki–Okamoto (FO) transformation. FO trans-
formation has been widely used for realizing actively secure KEMs from passively
secure public key encryption (PKE), as it is employed in most of NIST post-quantum
cryptography (PQC) candidates for KEM. The proposed attack exploits side-channel
leakage from target implementation during execution of psuedorandom function
(PRF) in re-encryption of KEM decapsulation as a plaintext-checking oracle that tells
whether the PKE decryption result is equivalent to the reference plaintext. Due to the
generality and practicality of the plaintext-checking oracle, the proposed attack can
attain a full key recovery of various KEMs where an active attack on the underlying
PKE is known. This paper demonstrates that the proposed attack can perform
a full key recovery on most NIST PQC third-round candidates for KEM, namely,
Kyber, Saber, FrodoKEM, NTRU Prime, NTRU, HQC, BIKE, and SIKE. For BIKE, the
proposed attack achieves a partial key recovery. The applicability to Classic McEliece
is unclear because no active attack on Classic McEliece using a plaintext-checking
oracle is known. This paper also presents a side-channel distinguisher design based
on deep learning (DL) for mounting the proposed attack on practical implementation,
which requires no profiling device. This paper validates the attack feasibility through
experimental attacks on various PRF implementations (herein, a SHAKE software,
an AES software, a bit-sliced masked AES software, and a masked AES hardware
based on threshold implementation). As a result, we confirm the practicality as the
proposed SCA is successful for all implementation used in the experiment.
Keywords: Side-channel analysis · Fujisaki–Okamoto transformation · Key encap-
sulation mechanism · Public key encryption · Post-quantum cryptography · Deep
learning

1 Introduction
1.1 Background
Public key encryption (PKE) is a cryptographic primitive essential for secure information
systems based on secret key exchange, digital signature, etc. Since it is usually difficult
to construct a chosen ciphertext attack (CCA)-secure PKE, the Fujisaki–Okamoto (FO)
transformation [FO99] and its variant (e.g., [HHK17,SXY18,BHH+19]) have been com-
monly used to realize CCA-secure key encapsulation mechanisms (KEMs) from a chosen

mailto:rei.ueno.a8@tohoku.ac.jp
mailto:{y-tanaka, ito, homma}@riec.tohoku.ac.jp
mailto:keita.xagawa.zv@hco.ntt.co.jp
mailto:junko.takahashi.fc@hco.ntt.co.jp

2

plaintext attack (CPA)-secure PKE on the basis of re-encryption, as for most of KEM
schemes in NIST post-quantum cryptography (PQC) competition [NIS20]. Although
the theoretical/mathematical security of such KEM schemes has been severely analyzed,
side-channel analysis (SCA), which is a type of attack on cryptographic implementation
using side-channel leakage (e.g., execution time, power consumption, and electromag-
netic (EM) emanation), may break these schemes when they are implemented in the
real world [Koc96, KJJ99]. It is quite important to investigate the SCA vulnerability
of KEM schemes for the applications in which SCA can be a practical threat, such as
Internet-of-Things (IoT).

Many previous SCAs on KEM have mainly focused on the decryption of the underlying
PKE in order to recover the secret key (e.g., [PPM17,ZYD+20]). In contrast, recently, some
studies show that the implementation of FO transformation may leak secret key, even if the
underlying PKE is securely implemented [GTN20,RRCB20,PP21]. These attacks exploit
side-channel leakage or fault injection to obtain the information about the PKE decryption
result, and then mount a chosen-ciphertext attack on the underlying PKE. In [GTN20],
Guo et al. presented a timing attack that is potentially applicable to lattice- and code-based
KEMs if the FO transformation is implemented in a non-constant-time manner, which
reveals the importance of constant-time implementation of FO transformation in addition
to PKE. By contrast, for the power/EM side-channel and fault injection, attacks only
applicable to lattice-based schemes are known [RRCB20,PP21]. In particular, there is no
known power/EM SCA on FO transformation in code- and isogeny-based KEM(s) (e.g.,
HQC, BIKE, and SIKE). The detailed evaluation of applicability/limitation of SCAs on
FO transformation is essential for developing an adequate countermeasure for the sake of
secure KEM implementation.

1.2 Our contributions
In this paper, we show that the side-channel leakage of re-encryption, which plays an
essential role to realize a CCA security for most schemes, can be generally exploited to
break the CCA security. We also present a concrete and practical method to exploit the
leakage with experimental evaluation. The contributions of this paper are listed below.

• We present a generic power/EM SCA methodology for KEMs based on FO trans-
formation and its variant. The key idea of the proposed attack is to realize a
plaintext-checking oracle through a side-channel trace to mount a chosen-ciphertext
attack on the underlying CPA-secure PKE. The oracle tells whether or not the PKE
decryption result in decapsulation is equivalent to the reference plaintext, which
means the decryption result corresponding to the valid ciphertext. To realize the
oracle, the proposed attack exploits side-channel leakage during execution of psuedo-
random function (PRF) in re-encryption of KEM decapsulation for distinguishing
whether or not the PKE decryption result is the fixed reference plaintext. Therefore,
the proposed attack can be performed even if the underlying PKE implementation has
no secrecy leakage. As many PKEs are known to be vulnerable to active attack using
the plaintext-checking oracle, the proposed attack can be widely applied to many
KEM implementations based on FO transformation including lattice-, code-, and
isogeny-based ones. Note that, although an SCA on masked polynomial comparison
was reported for a plaintext-checking oracle and its application to Kyber was shown
in [BDH+21], its generality was not discussed (At most, the existing work discussed
only lattice-based KEMs and mentioned only Kyber, Saber, and FrodoKEM).

• We investigate the applicability of the proposed attack to NIST PQC third-round
candidates for KEMs (four finalists and five alternatives), and demonstrate that
Kyber, Saber, FrodoKEM, NTRU Prime, NTRU, HQC, BIKE, and SIKE are vulnerable

R. Ueno, K. Xagawa, Y. Tanaka, A. Ito, J. Takahashi, and N. Homma 3

Table 1: Applicability of implementation attack focusing on FO transformation to NIST
PQC third-round candidates for KEM and their possible countermeasure

[GTN20] [PP21] [RRCB20] This work
Attack type Timing Fault Power/EM

Lattice Kyber Yes Yes Yes Yes
Saber Yes Yes Yes Yes
FrodoKEM Yes No Yes Yes
NTRU Prime Partially yes† No No Yes
NTRU Yes No No Yes

Code HQC Yes No No Yes
BIKE Yes No No Yes∗
Classic McEliece Unknown No No Unknown

Isogeny SIKE No No No Yes
Countermeasure Constant-time Redundancy Masking Unknown

† Applicable to NTRU LPRime, but not to Streamlined NTRU Prime.
∗ Partial-key recovery, not full-key recovery.

to the proposed SCA. The proposed attack achieves a partial key recovery of BIKE.
The applicability to Classic McEliece is unclear since no adaptive attack using the
plaintext-checking oracle is known. The applicability of the proposed and conventional
attacks are summarized in Table 1, which shows the generality of the proposed attack,
even compared to the conventional attacks. We stress here that this paper is the
first report on power/EM analysis on FO transformation of code- and isogeny-based
KEMs, although some SCAs on FO transformation of lattice-based KEMs have been
already known in the previous works (e.g., [RRCB20] on Kyber, Saber, and FrodoKEM
and [REB+21] on Streamlined NTRU Prime). In addition, in this paper, we also
introduce some tricks to reduce the number of oracle accesses (i.e., side-channel
traces) for an efficient key recovery using a more sophisticated plaintext-checking
oracle than the aforementioned simple plaintext-checking oracle.

• We present a deep-learning (DL)-based distinguisher for implementing the plaintext-
checking oracle, which is designed for a two-classification neural network (NN), and
allows us to perform an attack without specific assumption and knowledge about
the target implementation. In addition, we also describe how to distinguish the
input with a convincing accuracy using an NN model whose accuracy is insufficient,
as the accuracy of an NN model for SCA may be low due to the presence of noise
and/or SCA countermeasure. Thus, the proposed NN-based distinguisher can be
adopted of attacking practical implementations in a black-box manner even with an
SCA countermeasure such as masking, as demonstrated in this paper. Note that the
proposed attack requires no profiling device for acquiring a training dataset since it
is acquired from the target implementation in the scenario of proposed attack, as in
several previous SCAs on lattice-based KEMs such as [XPRO20,RBRC20,SKL+20,
NDGJ21].

• Using the distinguisher, we validate the proposed attack through experimental attacks
on various PRF implementations. In the experiment, we targeted a non-protected
SHAKE and AES software provided in an open-source cryptographic software library
pqm4 [KRSS19,pqm21], an open-source masked AES software for ARM Cortex-M4
corresponding to Schwabe’s and Stoffelen’s paper [SS16,git21], and a masked AES
hardware based on threshold implementation (TI) in [UHA17] as TI is one of the most
promising masking schemes. As a result, we confirm that the NN-based distinguisher
can achieve almost 100% accuracy on non-protected implementation and it can
achieve a meaningful accuracy for protected implementation. We then severely and
comprehensively evaluate the number of side-channel traces required for a successful

4

Algorithm 1 CCA-secure KEM based on FO transformation (KeyGen,Encaps,Decaps)
Input: 1λ
Output: sk, pk, s
1: Function KeyGen(1λ)
2: (sk, pk)← PKE.Gen(1λ);
3: s←$ M;
4: return (sk, pk, s);
5: end Function

Input: pk
Output: c, k
1: Function Encaps(pk)
2: m←$ M;
3: r ← G(m[, pk]);
4: c← PKE.Enc(pk,m; r);
5: k ← KDF(m, c);
6: return (c, k);
7: end Function

Input: c, sk, pk, s
Output: k
1: Function Decaps(c, sk, pk, s)
2: m′ ← PKE.Dec(sk, c);
3: r′ ← G(m′[, pk]);
4: c′ ← PKE.Enc(pk,m′; r′);
5: if c = c′ then
6: return KDF(m, c);
7: else
8: return KDF(s, c);
9: end if
10: end Function

key recovery, which shows the practicality of the proposed SCA on the post-quantum
KEMs.

1.3 Paper organization
The remainder of this paper is organized as follows. Section 2 reviews the KEM based
on FO transformation and the previous SCAs on KEMs focusing on FO transformation.
Here, we does not review the previous studies on fault analysis because they are not
closely related to the proposed attack. Section 3 describes the proposed SCA methodology
on the basis of a plaintext-checking oracle realized via side-channel leakage. Section 4
demonstrates its application to post-quantum KEMs in NIST PQC third-round candidates.
Section 5 presents the side-channel distinguisher design for mounting the proposed attack
on practical implementation and Section 6 conducts experimental validation using various
PRF implementations. Finally, Section 7 concludes this paper.

2 Related Works
2.1 IND–CCA-secure KEM based on FO transformation
KEM is a public key cryptographic primitive that encapsulates a secret key. KEM is defined
as a triple of polynomial-time algorithms: a key generation KeyGen, an encapsulation
Encaps, and a decapsulation Decaps. Many CCA-secure KEMs are realized using a CPA-
secure PKE with FO transfromation or its variant (e.g., [HHK17,SXY18,BHH+19]), as
seen in most of NIST PQC candidates for KEMs.

Algorithm 1 illustrates KEM = (KeyGen,Encaps,Decaps) based on a (standard) FO
transformation with implicit rejection, where PKE is a CPA-secure probabilistic PKE
composed of a key generation algorithm Gen, an encryption algorithm Enc, and a decryption
algorithm Dec. Here, let us consider a KEM that returns a random number for the case of
an invalid ciphertext instead of a rejection symbol ⊥ for simplicity. In KEM.KeyGen, given
a security parameter 1λ, we first generate a key pair (sk, pk) using the PKE key generation
PKE.Gen. We then generate s as a random plaintext of the PKE from the message space
M at Line 3. Finally, the algorithm returns a triplet (sk, pk, s).

In KEM.Encaps, we first randomly generate a message m fromM. We then evaluate a
PRF G for m or a pair of m and pk (e.g., in the cases for BIKE and SIKE, respectively).
In Line 4, we perform the PKE encryption PKE.Enc using a public key pk, message m,
and randomness r. After we derive the shared secret k using a key derivation function
KDF on m and c, the algorithm returns the ciphertext c corresponding to k. Note here
that the ciphertext c may be a tuple.

In KEM.Decaps, we first perform the PKE decryption for c using the secret key sk to
obtain plaintext m′. Then, as same as KEM.Encaps, we generate r′ as G(m′) or G(m′, pk),

R. Ueno, K. Xagawa, Y. Tanaka, A. Ito, J. Takahashi, and N. Homma 5

and evaluate PKE.Enc(pk,m′; r′). This procedure is so-called re-encryption. Then, at
Line 5, we examine whether the re-encryption result c′ is equal to the ciphertext c. If
c = c′, the algorithm returns the shared secret k = KDF(m, c) as the ciphertext is valid;
otherwise, the algorithm returns a random number of KDF(s, c) (instead of ⊥) as the
ciphertext is invalid. Thus, the KEM scheme gives any active attacker no information
about the PKE decryption result for invalid ciphertext.

In many modern KEM schemes, the PRF G and KDF are instantiated using AES or
SHAKE (or SHA3). There are some variants of FO transformation for different types of
CPA-secure PKE (e.g., deterministic PKE), different security models, tighter security
bounds, and/or improved efficiency (e.g., [HHK17,SXY18,BHH+19]); however, note that
the basic principle is almost the same (that is, it is related to PRF, re-encryption, or
validity check). Although some CCA-secure transforms avoid the complete re-encryption for
computational efficiency (e.g., [DV21] and NTRU submitted to NIST PQC), the proposed
SCA would be applicable to the variants of FO transformation as long as they employ
PRF and/or procedure corresponding to validity check.

2.2 Previous SCAs on FO transformation
2.2.1 Timing analysis

In [GTN20], Guo et al. presented the first SCA focusing on FO transformation. The
attack utilizes a timing side-channel to realize a plaintext-checking oracle for lattice-
and code-based KEMs. Since the timing attack exploits the equality check between the
ciphertext and re-encryption result (i.e., Line 5 in KEM.Decaps of Algorithm 1) rather
than PKE.Dec, the attack can be applied to constant-time PKE implementation, unless
whole decapsulation is implemented in a constant-time manner.

More precisely, the timing attack is a chosen ciphertext attack on KEMs and utilizes a
plaintext-checking oracle to mount an active attack on the underlying lattice- or code-based
PKE. Let c be a valid ciphertext named reference ciphertext corresponding to a plaintext
m. For an invalid ciphertext c′, the plaintext-checking oracle tells whether or not the PKE
decryption result of c′ is equivalent to m. Using such an oracle, active attacks are known
for many lattice- and code-based PKEs, as demonstrated in [GTN20].

In the timing attack, the attacker generates an invalid ciphertext c′ = c + δ where
δ is determined according to the active attack. For lattice- and code-based PKEs, if δ
is so small for the underlying scheme, the PKE decryption result of c′ is equivalent to
m, which indicates that the re-encryption result should be c in this case. Otherwise,
the PKE decryption result is a random plaintext m̂, which is re-encrypted to a random
ciphertext ĉ far different from c. Then, PKE.Decaps compares the ciphertext c+ δ and the
re-encryption result. Here, ciphertext of lattice- and code-based PKEs is treated as a long
vector in common processors. Therefore, if two ciphertexts are considerably similar to
each other (i.e., if comparing c+ δ and c), a standard comparison method (e.g., memcmp)
takes a relatively long time; otherwise (i.e., if comparing c + δ and ĉ), the comparison
terminates immediately after examining the first block comparison. This results in a timing
difference depending on whether or not the PKE decryption result is equivalent to m; thus,
the timing side-channel acts as a plaintext-checking oracle. The full-key recovery of the
KEM scheme is achieved by repeatedly using the plaintext-checking oracle for different δ’s
determined according to the PKE scheme.

Guo et al. demonstrated the application of this attack to FrodoKEM using a simulation
in [GTN20]. Although the signal-to-noise ratio of side-channel measurement (i.e., accuracy
of the oracle) would be problematic, the result indicates that the full-key recovery would be
sufficiently feasible. Due to the disclosure of this attack, many PQC implementations have
employed a fully constant-time conditional move (e.g., cmov) for realizing the comparison
of c and c′ and the move operation in PKE.Decaps. Thus, the timing attack is prevented

6

at this time.
Note that the timing attack cannot be applied to SIKE (the isogeny-based KEM in

NIST PQC), because the known active attack on SIKE.PKE uses very different invalid
ciphertext(s) from reference ciphertext, which indicates that the comparison operation
between c and c′ immediately terminates independently of whether the PKE decryption
result is m or not. In addition, Guo et al. mentioned that their timing analysis may
be realized using power/EM side-channel, because meaningfully similar two ciphertexts
have meaningfully similar Hamming weights, resulting in similar power consumption/EM
emanation. However, it is unknown how to exploit it with a sufficient accuracy in a
practical setting/implementation (e.g., the constant-time conditional move cmov on a
microcontroller).1

2.2.2 Power/EM analysis

In [RRCB20], Ravi et al. showed an SCA on lattice-based KEMs. The attack is a side-
channel-assisted CCA, in which an invalid ciphertext are generated such that the decrypted
(or decoded) plaintext should be either 0 or 1 depending on a partial key. Here, the attacker
cannot directly observe the plaintext due to FO transformation. However, the side-channel
leakage during re-encryption is exploited to distinguish which the plaintext is 0 or 1, which
allows the attack to estimate the partial key. Since the PRF fully randomizes the plaintext,
the side-channel information during re-encryption considerably varies depending on which
the plaintext is 0 or 1, that results in an exploitable side-channel leakage. The attacker can
recover the full key of some lattice-based KEMs by querying the invalid ciphertext rotated
to obtain information on different partial keys. Ravi et al. showed in [RRCB20] that their
methodology is applicable to six lattice-based KEMs, namely, Kyber, Saber, FrodoKEM,
Round5, NewHope, and LAC. Ravi et al. also presented a side-channel distinguisher based
on a combination of t-test and reduced template, which yields a sufficiently feasible full-
key recovery of the above six KEMs. Their distinguisher does not require the detailed
knowledge of target implementation. In summary, this attack queries invalid ciphertexts
to force the target device to execute a leaky plaintext depending on the underlying PKE.
Although the plaintext is not directly available to the attacker due to FO transformation,
side-channel leakage during re-encryption is exploited in order to estimate the plaintext
and secret key.

Recently, in [BDH+21], Bhasin et al. reported SCA vulnerabilities of masked polynomial
comparison schemes [OSPG18, BPO+20] for ciphertext equality check in lattice-based
KEMs, and its application to Kyber. One of their attacks is based on the timing attack
by Guo et al. [GTN20], and focuses on the leakage of masked polynomial comparison of
c = c′ to realize a plaintext-checking oracle using a distinguisher made of t-test like the
test vector leakage assessment (TVLA) [SLP05]. Note that, although the attack utilizes a
plaintext-checking oracle as well as the proposed SCA in this paper, the literature mainly
studies the (in)security of masked polynomial comparison for lattice-based KEMs, and
they discussed only lattice-based KEMs and mentioned only Kyber, Saber, and FrodoKEM.
In the sense, the contributions and goal of this paper are different from those of [BDH+21],
as this paper mainly studies the generality and practicality of adaptive attacks using
plaintext-checking oracle in the scenario of SCA on KEMs and presents a DL-based
side-channel distinguisher generally applicable to various PRF implementations.

1Note that their attack and its power/EM variant are different from our proposed power/EM analysis
as their attack focused on the Hamming distance between ciphertext and re-encryption result at the if
statement in decapsulation algorithm in order to estimate how much similar they are. There has been
no known practical power/EM analysis for realizing the plaintext-checking oracle because they did not
show how to exploit the power/EM leakage of cmov in a practical setting nor any experimental validation.
Recently, in [BDH+21], Bhasin et al. showed a power/EM SCA on masked polynomial comparison to
realize the plaintext-checking oracle. Still, the attack is limited to some lattice-based KEMs and its
generality is not discussed.

R. Ueno, K. Xagawa, Y. Tanaka, A. Ito, J. Takahashi, and N. Homma 7

In addition, extended CCA SCA approach to lattice-based KEMs has been presented
in [XPRO20,RBRC20, SKL+20, REB+21], and, in [NDGJ21], Ngo et al. presented an
extended attack to a masked Saber implementation in [vBDK+21] using a DL technique.
These attacks are very efficient in terms of the number of oracle accesses (i.e., side-channel
trace measurements) by employing chosen ciphertexts which result in more side-channel-
leaky plaintext, regarding features of the underlying PKE and implementation. In other
words, these attacks are very specific to the underlying PKE and its implementation.
Although these attacks are CCA, they focus on some specific parts of the underlying
PKE (e.g., message encoding/decoding and number theoretic transform (NTT)-based
multiplication) rather than FO transformation. In other words, these attacks achieve the
efficiency focusing on a scheme/implementation-specific aspect; thus, they are less general
in terms of KEM based on FO transformation.

Also, for code- and isogeny-based KEMs, there are some conventional SCAs (e.g., [SKC+19,
LNPS20] for code-based KEMs and [KAJ17,ZYD+20] for isogeny-based KEMs). However,
these attacks focus on scheme/implementation-specific aspects rather than FO transforma-
tion, which indicates that these attacks are not attack on FO transformation and can be
prevented using a PKE decryption (or DH) implementation with a countermeasure such
as masking (as well as the above attacks on lattice-based KEMs).

As another attack direction, in [KPP20], Kannwischer et al. presented a single-trace
SCA on SHAKE, which recovers the secret input to SHAKE by means of brief propagation
(BP)-based method, so-called soft-analytical SCA (SASCA). Although their attack is
powerful, its feasibility heavily depends on the word length of processor, key length (i.e.,
the input bits to be recovered), and the signal-to-noise ratio (SNR) at the side-channel
measurement. In fact, it is difficult to apply the attack to some practical settings (e.g.,
32-bit processor and longer-than 256-bit secret) regarding the post-quantum KEMs. In
addition, the attack requires the detail of implementation to mount SASCA, and it can be
prevented using a common SCA countermeasure (e.g., masking). Note that Kannwischer et
al. only showed the SCA on SHAKE, but not showed how to break KEMs instantiated
with SHAKE.

3 Proposed Methodology

3.1 Plaintext-checking oracle
We first introduce a plaintext-checking oracle, which plays an essential role in the proposed
attack. A plaintext-checking oracle is one of major oracles employed in adaptive attacks
on a wide range of PKEs including lattice-, code-, and isogeny-based ones (e.g., [GPST16,
GTN20]). The key recovery attack using a plaintext-checking oracle is referred to as key
recovery plaintext-checking attack (KR-PCA).

For a given KEM, let c be a valid ciphertext named reference ciphertext, and let m
be the corresponding plaintext named reference plaintext. Note here that m denotes the
PKE decryption result, rather than the output of KEM.Decaps. The attacker can obtain
the reference ciphertext for any reference plaintext by performing the encapsulation. An
adaptive attacker generates an invalid ciphertext c′ which is a modification of c for an
adaptive attack, and then queries it to the decryption oracle. Let m′ be the plaintext
corresponding to c′. An adaptive attack exploits the fact that there are two cases depending
on the secret key: m′ may be equal to the reference ciphertext m or other ciphertext
m̂. Formally, a plaintext-checking oracle O(c′,m) returns 1 if m = m′; otherwise, it
returns 0. For a KEM implementation based on FO transformation, such an oracle should
be unavailable to any attacker, because the plaintext-checking oracle obviously leaks
information on the PKE decryption result, which violates IND–CCA security guaranteed
by FO transformation.

8

3.2 Proposed SCA
The proposed attack realizes a plaintext-checking oracle through a side-channel leakage to
mount a chosen-ciphertext attack on the underlying CPA-secure PKE. In the proposed SCA,
the attacker first observes the side-channel leakage during PRF execution of PKE.Decaps
for the reference ciphertext c. Then, the attacker queries a modified ciphertext c′ for an
adaptive attack using plaintext-checking oracle, and observes the side-channel leakage
during PRF execution in the re-encryption of decapsulation. If c′ is decrypted to the
reference plaintext m, the side-channel leakage for c′ should be considerably similar to that
for c because the PRF input is identical. In contrast, if c′ is decrypted to other plaintext
m̂, two side-channel leakages should be meaningfully different. Thus, the attacker can
distinguish whether the plaintext is a reference plaintext or other from the side-channel
leakage of PRF. Since the proposed attack focuses on the PRF leakage, the proposed SCA
can perform a key recovery even if the underlying PKE implementation has no secrecy
leakage.

The proposed SCA consists of a profiling phase and attack phase. In the profiling
phase, the attacker trains a classification model that distinguishes which the PRF input is
the reference plaintext or other random plaintext from a side-channel trace in order to
realize the plaintext-checking oracle as mentioned above. The trained model is called a
side-channel distinguisher in this paper. In the attack phase, the attacker performs an
adaptive attack on the CPA-secure PKE using the distinguisher as the plaintext-checking
oracle. Note here that, although the attack employs a profiling phase, the proposed
attack requires no profiling device because the profiling can be done using the target
device without knowing the secret key, as well as the previous SCAs on lattice-based
KEMs [RRCB20,XPRO20,RBRC20,SKL+20,NDGJ21]. In addition, the proposed SCA
also does not require the detail of target implementation, because the plaintext-checking
oracle can be realized by just comparing two traces, and we can perform the profiling
using a DL technique without any assumption nor specific knowledge about the target
implementation as described in Section 5. Such a side-channel distinguisher based on DL
technique would be very suitable to two classification of traces for fixed vs. random input,
as Moos et al. showed an efficient DL-based leakage assessment [MWM19].

4 Application to Post-Quantum KEMs
4.1 Lattice-based KEMs
4.1.1 Attack concept

To describe the underlying idea on adaptive attack on some of major lattice-based PKEs
using a plaintext-checking oracle, we consider a lattice-based PKE with a simplified
notation. Suppose that, in the PKE decryption, the plaintext before decoding is given in
a form of Encode(m) + ke+ e′, where k is the secret key and e and e′ are an error. Encode
is an encode algorithm with a corresponding decode algorithm Decode to remove the noise
ke + e′. Let c be a valid ciphertext corresponding to Encode(m) + ke + e′, which can
be computed by the encapsulation. For a lattice-based PKE, the ciphertext is correctly
decrypted and decoded to m if the noise ke+ e′ is less than a threshold value γ; otherwise,
c is decrypted and decoded to other plaintext. The security of lattice-based PKE relies on
the secrecy of the secret key, and PKE is usually designed such that the decryption failure
probability is negligibly small.

In an adaptive attack, the attacker queries a modified ciphertext c′ = c + δ to the
decryption oracle, where δ is an error added to ciphertext. The modified cipertext decrypted
to Encode(m) + ke+ e′+ δ before decoding, in which ke+ e′+ δ is the noise to be removed.
If ke+e′+δ < γ, c′ is decrypted and correctly decoded to m (i.e., m′ = m); otherwise (i.e.,

R. Ueno, K. Xagawa, Y. Tanaka, A. Ito, J. Takahashi, and N. Homma 9

ke+ e′ + δ ≥ γ), c′ is decrypted and wrongly decoded to other plaintext m̂ (i.e., m′ = m̂).
In other words, if ke+ e′ + δ < γ, O(c′,m) = 1; otherwise, O(c′,m) = 0. Therefore, the
attacker knows ke + e′ + δ by finding the value of δ such that ke + e′ + δ = γ through
adaptive queries to the plaintext-checking oracle. Thus, the attacker recovers the secret
key k because e, e′, δ, and γ are available to the attacker. Moreover, we can reduce the
number of oracle accesses for a full-key recovery by querying a dedicated ciphertext, as
mentioned in [BDL+19] (and described in the following sections).

4.1.2 FrodoKEM

We herein explicitly describe the adaptive attack on FrodoKEM in [GTN20] as a representa-
tive case. For the simplicity, we omit the detailed attack descriptions for Kyber and Saber
because they are broken in a similar manner to FrodoKEM as described in Section 4.1.3.
Although some instances of NTRU Prime and NTRU are also broken in a similar manner
(we also omit the detail of these descriptions), we describe the implications in attacking
them in Section 4.1.4 and Section 4.1.5, respectively.

Let S be the matrix for secret key, respectively. Let S′, E, E′, and E′′ be the error
matrices. When the ciphertext (c0, c1) corresponding to a pair of ciphertext matrices B′
and C is input to the decryption oracle, the oracle computes the plaintext matrix M as

M = C−B′S
= Frodo.Encode(m) + ES′ −E′S + E′′,

where Frode.Encode(m) denotes the encoded plaintext (or initial seed). The corresponding
Frode.Decode(M) obtains m by removing the noise ES′ −E′S + E′′ (which corresponds
to ke+ e′ in Section 4.1.1).

In the adaptive attack, the attacker generates a modified ciphertext consisting of c0
and c′1 corresponding to C + ∆, where ∆ is an error matrix added by the attacker (which
corresponds to δ in Section 4.1.1). When querying (c0, c

′
1), the decryption oracle computes

M′ = Frodo.Encode(m) + ES′ −E′S + E′′ + ∆.

Let the noise part ES′ −E′S + E′′ + ∆ denote Q. Here, if all elements of Q are less than
a threshold γ, M′ is correctly decoded to m; otherwise, M′ is wrongly decoded to other
plaintext m̂. Therefore, the attacker can find ∆ such that Γ = Q by adaptively querying
(c0, c

′
1) to the plaintext-checking oracle, where Γ is a matrix, all elements of which are a

constant coefficient of γ. Because all elements in Q except for the secret key S (i.e., S′, E,
E′, E′′, and ∆) are now available, the attacker recovers S by solving the linear equation
Γ = Q if the attacker obtains ∆. Thus, ∆ can be estimated using the plaintext-checking
oracle, and the attacker can recover the secret key S.

Algorithm 2 describes the attack on FrodoKEM using the plaintext-checking oracle.
The attacker is supposed to determine a reference plaintext and the corresponding valid
reference ciphertext by performing the encapsulation in advance. At Line 2, we initialize
an n× n̄ matrix ∆ as a zero matrix, where n and n̄ denote the matrix size in FrodoKEM.
We iteratively determine the (i, j)-th element of ∆ (denoted by ∆i,j) at the loop of Lines 3–
11. At Line 6, we queries modified ciphertexts (c0, c

(i,j,δ)
1), where c(i,j,δ)

1 is a ciphertext
corresponding to a matrix of C where δ is added to the (i, j)-th element. If the (i, j)-th
element of Q is less than γ, the corresponding plaintext matrix M′ is correctly decoded to
m (i.e., O((c0, c

(i,j,δ)
1),m) = 1); otherwise, M′ is wrongly decoded to other plaintext (i.e.,

O((c0, c
(i,j,δ)
1),m) = 0). In particular, the (i, j)-th element of Q is equal to γ if and only if

O((c0, c
(i,j,δ)
1),m) = 0 and O((c0, c

(i,j,δ−1)
1),m) = 1; thus, the attacker obtains information

on ∆i,j through the plaintext-checking oracle. After the attacker obtains ∆i,j for all i
and j, the attacker recovers the secret matrix S by solving the linear equation Γ = Q at
Line 12.

10

Algorithm 2 Plaintext-checking key-recovery attack on FrodoKEM
Input: Reference ciphertext (c0, c1), reference ciphertext m, and noise matrices S′, E, E′, and E′′
Output: Secret key sk (i.e., Secret matrix S)
1: Function AttackOnFrodoKEM((c0, c1),m,S′,E,E′,E′′)
2: ∆← ZeroMatrix(n, n̄);
3: for i = 0 to n− 1 do
4: for j = 0 to n̄− 1 do
5: for δ ∈ {0, 1, . . . , γ − 1} do
6: if O((c0, c

(i,j,δ)
1),m) = 0 and O((c0, c

(i,j,δ−1)
1),m) = 1 then;

7: ∆i,j ← δ;
8: end if
9: end for
10: end for
11: end for
12: Solve linear equation Γ = ES′ −E′S + E′′ + ∆ about S;
13: return S;
14: end Function

In Lines 5–9 requires, we require at most γ oracle accesses to determine ∆i,j for each
i and j if using a naive manner. However, as Guo et al. mentioned in [GTN20], we
can reduce the number of oracle accesses to log γ by means of a binary search. Thus,
Algorithm 2 achieves a full-key recovery with nn̄ log γ oracle accesses. In addition, we can
further reduce the number of oracle accesses using a sparse ciphertext matrix as mentioned
in [BDL+19]. Let us consider D(i) = [~0, . . . ,~0,~1,~0, . . . ,~0], whose i-th column is all 1’s.
Suppose that we query a couple of ciphertext matrices (D(i),C). In the decryption, we
have M = C−D(i)S = C−Z, where Z’s first row is the i-th row of S and the rests are 0.
We modify C and checks whether the decoded message is 0 or not as the plaintext-checking
oracle. For example, let us consider the query D(1) with C whose first row is filled by
q/2B+1 (where q is the modulus of the ring and B is the bit length of Frodo.Encode) and
rest are filled by 0. We have M whose first row is q/2B+1 − S0,i for i = 0, . . . , n̄ − 1,
which is decoded into 0 if and only if S0,i > 0. Thus, the attacker can directly recover the
coefficients of secret matrix S with a less oracle accesses than the above straightforward
attack.

In FrodoKEM.Decaps, the plaintext m′ is first computed by PKE.Dec, and then SHAKE
is computed for a concatenation of m′ and a hash value associated with public key (denoted
by pkh in the FrodoKEM document [A+20]). Since the SHAKE input is only dependant on
m′ and public key, the SHAKE execution in FrodoKEM.Decaps after the PKE decryption
is exploitable via the proposed SCA.

4.1.3 Kyber and Saber

There are similar key-recovery attacks using sparse ciphertexts and plaintext-checking
oracle against Kyber and Saber as that against FrodoKEM. For Kyber, the proposed SCA
can recover the secret key on the basis of key-recovery attack against Kyber-512 in Round 2
by Huguenin-Dumittan and Vaudenay [HV20] (correctly speaking, we use the extended
version in Xagawa et al. [XIU+21]). For Saber, the proposed SCA recovers the secret
key on the basis of the adaptive attack in Huguenin-Dumittan and Vaudenay [HV20] for
LightSaber and the attack by Osumi et al. [OUKT21] for Saber and FireSaber. In all cases,
the decrypted plaintext is 0` or a unit vector 0i−1 ‖ 1 ‖ 0`−i−1. The plaintext-checking
oracle can be implemented using the PRF leakage in the re-encryption as well as FrodoKEM.

4.1.4 NTRU Prime

NTRU Prime has two KEM schemes sntrupr (Streamlined NTRU Prime) and ntrulpr (NTRU
LPRime). NTRU LPRime has a similar structure to Kyber, Saber, and FrodoKEM. Thus, we

R. Ueno, K. Xagawa, Y. Tanaka, A. Ito, J. Takahashi, and N. Homma 11

can mount a key-recovery plaintext-checking attack as in [XIU+21]. In their attack, the
decrypted plaintext is 1` or a vector of the form 1i−1 ‖ 0 ‖ 1`−i−1 for i.

Streamlined NTRU Prime has a similar structure to NTRU. A plaintext is r and a
ciphertext is c = Round(h · r), where Round(x) rounds each coefficient of x to a nearest
element in 3Z.2 However, there are some technical hurdles to adapt key-recovery plaintext-
checking attacks against NTRU. For example, Streamlined NTRU Prime’s PKE.Dec internally
checks the Hamming weight of a decrypted plaintext r and overwrite the decrypted plaintext
with the fixed plaintext rfixed if the test failed. Very recently, Ravi et al. [REB+21] proposed
two key-recovery side-channel attacks against Streamlined NTRU Prime, which is inspired
by chosen-ciphertext attacks against NTRU by Jaulmes and Joux [JJ00].

The one is based on the ‘plaintext-checking’ oracle, which tests if the internal variable
is 0 or not. The internal decrypted plaintext is 0 or some polynomial and the Hamming
weight of them are not correct. Hence, the output of the underlying PKE.Dec is rfixed
in both cases. Thus, in order to implement this ‘plaintext-checking’ oracle, we need to
analyze side-channel information of the computation in PKE.Dec(sk, c), which is out of
focus of this paper.

The other is based on the decryption-failure oracle, which tests if the decrypted plaintext
is intended r or not. In the case, the Hamming weight of r is proper. On the other hand,
if decryption failure occurs, the Hamming weight of decrypted plaintext becomes invalid
and it is overwritten by rfixed. Ravi et al. implemented the decryption-failure oracle by
analyzing side-channel information of the re-encryption test. We adopt their attack in our
context.

Ravi et al.’s DF-based attack and our modification: Their attack proceeds two phases:

1. In the first phase, we seek δ which occurs ‘collision’ of the secret key by checking the
decryption of c′ = c+ δ, where c = Round(h · rvalid) for a correct plaintext rvalid, is
rvalid or rfixed. If the decryption failure is detected, then we employ δ as cbase. They
design the structure of δ carefully. We slightly change the structure of δ to boost the
success probability to get ‘1-collision’.3 We then follow their strategy to design δ and
estimate the success probability to get appropriate δ to approximately 1% and 1.5%
for sntrup653 and sntrup1277, respectively.4 See [REB+21, Section 4.1 and 4.2] for
the details.

2. In the second phase, we query four ciphertexts modifying c and cbase and check the
decrypted results are rvalid or rfixed to determine a coefficient of the secret key.

We note that NTRU Prime uses a variant of the FO transformation, which does not
involve the computation of randomness because the underlying PKE.Enc is deterministic
as NTRU. Fortunately, NTRU Prime uses the explicit re-encryption test. Moreover,
NTRU Prime adds an additional hash HashConfirm(r, pk) to its ciphertext of the underlying
PKE, where HashConfirm(r, pk) = Hash(0x02 ‖ Hash(0x03 ‖ r) ‖ Hash(0x04 ‖ pk)) and
Hash(z) is the first 32 bytes of SHA-512(z). Thus, the decapsulation algorithm computes
HashConfirm(r′, pk) in the re-encryption test, which leaks side-channel information of r′ as
we wanted.

2Letting m = c− h · r, we can write c = h · r +m as in the NTRU case.
3We recommend the parameter setting (m,n) = (1, 3) for sntrup653 and sntrup1277 as Ravi et al. , while

we change the range of i1, . . . , im, j1, . . . , jn ∈ [bp/2c, p) instead of [0, p). This simple trick approximately
triples a probability of 1-collision.

4We recommend the parameter setting (k1, k2) = (96, 282) and (152, 486) for sntrup653 and sntrup1277,
respectively. Approximately 20% of noise n′[i] makes a[i] > q/2.

12

4.1.5 NTRU

NTRU has two KEM schemes NTRU-HPS and NTRU-HRSS, which are slightly different.
In PKE of both KEMs, a public key is h, a plaintext is a pair of ‘short’ polynomials (r,m),
and a ciphertext is c = h · r + Lift(m) ∈ Z[x]/(q, xn − 1), where Lift is a bijection. NTRU’s
ciphertext space is { c ∈ Z[x]/(q, xn − 1) | c ≡ 0 (mod (q, x− 1)) }, which is isomorphic to
Z[x]/(q, (xn − 1)/(x− 1)).

We can modify the key-recovery plaintext-checking attack by Hoffstein and Silver-
man [HS99] and Jaulmes and Joux [JJ00] against the original NTRU, in which m is a
plaintext and r is a randomness. Those key-recovery attacks modify c = h · r + lift(m)
into c′ = c + δ and check if a half m of decrypted plaintext (r,m) is equivalent to the
expected half plaintext mguess, say, 0, or not. We note that the rest half rguess of the
expected plaintext can be computed from the ciphertext and the expected half plaintext
by rguess = (c′− lift(mguess)) · h−1. The main hurdle to adapt this attack into NTRU is that
NTRU’s ciphertext space is changed from the original NTRU. Hence, δ also should satisfy
δ ≡ 0 (mod (q, x− 1)). This constraint makes analysis complex and we do not select those
attacks.

We can also use the key-recovery plaintext-checking attack against NTRU-HPS by [DDS+19]
and that against NTRU-HRSS by [ZCQD21]. Those key-recovery attacks fix mguess = 0,
modify r′ and rguess, compute c = h ·r′, and check if the decrypted plaintext (r,m) is equiv-
alent to the guess (rguess,mguess) or not. In those attacks, c satisfies c ≡ 0 (mod (q, x− 1))
because h ≡ 0 (mod (q, x− 1)) by design.

We note that NTRU in Round 2 and 3 uses SXY [SXY18] as the variant of the FO
transformation, which does not involve the computation of r′ ← G(m′) because the
underlying PKE.Enc is deterministic. Moreover, NTRU does not perform the re-encryption
test explicitly. (Un)fortunately, NTRU’s decapsulation program in pqm4 computes both
keys k = KDF(r,m) and k′ = KDF(s, c) and outputs one of them according to the result of
the implicit re-encryption test. Fortunately, in our experiment, we can detect mguess = 0
or not from those computations with high accuracy. (See Section 6 for the details.)

4.2 Code-based KEMs
4.2.1 HQC

Roughly speaking, HQC has a similar structure to lattice-based KEM schemes Kyber, Saber,
FrodoKEM, and NTRU LPRime, while HQC is based on the code problem. Hence, we can
adapt key-recovery plaintext-checking attacks against them into that against HQC. Indeed,
Huguenin-Dumittan and Vaudenay [HV20] gave a key-recovery plaintext-checking attack
against HQC in Round 2 by mimicking that by Băetu et al. [BDL+19] against another
code-based PKE Lepton [YZ17]. Although HQC changed parameters and decoder from
Round 2 to Round 3, we can still perform the key-recovery plaintext-checking attack by
adjusting the parameter setting. See Xagawa et al. [XIU+21] for the detail. In their attack,
the decrypted plaintext is 0` or a vector of the form 0i−1 ‖ 1 ‖ 0`−i−1 for some i. As HQC
employs SHAKE for the decrypted plaintext in the re-encryption, the plaintext-checking
oracle can be realized using the PRF leakage through the proposed framework.

4.2.2 BIKE

BIKE in Round 3 has a single KEM scheme based on the Niederreiter PKE with quasi-cyclic
moderate density parity-check (QC-MDPC) code. Guo et al. [GJS16] gave a key-recovery
reaction attack against QC-MDPC [MTSB13], which is a variant of the McEliece PKE
with QC-MDPC codes. Roughly speaking, by using the decryption oracle, one can recover
distance profile µ(h0) of a half of a secret key h0 ∈ GF(2)n, where distance profile contains
(d, µd) for d = 1, 2, . . . , n/2 that implies there are µd pairs of 1’s with distance d in h0.

R. Ueno, K. Xagawa, Y. Tanaka, A. Ito, J. Takahashi, and N. Homma 13

Guo et al. reported that one can recover h0 from its distance profile µ(h0) in the parameter
set for 80-bit security in practice. Xagawa et al. [XIU+21] reported the GJS attack [GJS16]
against QC-MDPC can be partially applied to BIKE in round 3 in the presence of the
plaintext-checking oracle. They recover approximately quarter of the distance profile in the
parameter set for 128-bit security. The decapsulation of BIKE employ the PRF in the re-
encryption (i.e., AES and SHA384), which is exploited to implement the plaintext-checking
oracle via the proposed framework.

Note that the GJS attack queries many ciphertexts from crafted invalid plaintexts at
random in order to compute (d, µd), say, 2000 ciphertexts for each d, and checks if they
are decrypted correctly or not. Hence, we cannot fix the template plaintext.

4.2.3 Classic McEliece

The proposed attack is not applicable to Classic McEliece because no adaptive attack on
the PKE of Classic McEliece is known. However, regarding the decapsulation of Classic
McEliece, we can realize a plaintext-checking oracle for the PKE because Classic McEliece
computes an additional hash Hash(2,m′) in the re-encryption test as Streamlined NTRU
Prime, which indicates that the proposed attack can be mounted on Classic McEliece if a
key-recovery plaintext-checking attack is discovered.

4.3 Isogeny-based KEM
Hereafter, we introduce the SCA on SIKE based on the active attack on Jao’s and De Fao’s
supersingular isogeny cryptosystem [JDF11] (namely, supersingular isogeny Diffie–Hellman
(SIDH)) presented by Galbraith et al. [GPST16], with a consideration and modification for
our SCA to mount it on SIKE.Decaps.

Let PA, QA, PB , and QB be the public generator points on E0, where E0 is the starting
Montgomery curve y = x3 +6x2 +x over Fp2 with p = 2eA3eB±1. Let sk2 and sk3 be Alice’s
and Bob’s secret key, respectively. Let RA = PA + [sk2]QA and RB = PB + [sk3]QB be the
secret point to generate a finite cyclic group for the kernel of Alice’s and Bob’s isogeny
φA and φB, respectively. As well, let pk2 and pk3 be the public keys. At SIKE.Encaps,
the attacker first generates a reference ciphertext (c0, c1), where the reference j-variant
for the ciphertext corresponds to a curve E0/〈RA, RB〉. Here, E0/〈RA, RB〉 denotes the
shared curve isogenous to E0 with regard to an isogeny with a kernel of a finite group
〈RA, RB〉 := { [nA]RA + [nB]RB | nA ∈ {1, 2, . . . , 2eA − 1}, nB ∈ {1, 2, . . . , 3eB − 1} }. Since
sk3 acts as the secret key in SIKE, the goal of an active attacker is to recover sk3 by
adaptively querying ciphertexts to the decryption oracle.

Let us consider the ternary digit representation of the secret key as sk3 = 30β0 +
31β1 + · · ·+ 3iβi + · · ·+ 3eB−1βeB−1 where βi ∈ {0, 1, 2}. Let EA = E0/〈RA〉 be Alice’s
public curve isogenous to E0 with regard to Alice’s isogeny φA with a kernel 〈RA〉, and
let P̃A = φA(PB) and Q̃A = φA(QB) denote Bob’s public points on EA (calculated by
Alice). The valid ciphertext of SIKE.Encaps is given as c0 = pk2 = (E0/〈RA〉, P̃A, Q̃A) 5

and c1 = m ⊕ SHAKE(j(E0/ 〈RA, RB〉)), where m is a random number from U({0, 1}n)
with n ∈ {128, 192, 256}. In the adaptive attack, the attack first generates three invalid
ciphertexts (c(τ)

0 , c1) for τ ∈ {0, 1, 2}, where P̃A and Q̃A in c0 are replaced with

P̃
(τ)
A = P̃A − [3eB−1τ]Q̃A,

Q̃
(τ)
A = Q̃A + [3eB−1]Q̃A,

respectively (Note that Q̃(τ)
A is not dependant on τ).

5In practice, instead of E0/〈RA〉, the ciphertext (or public key) of SIKE is given by three points
(D̃A, P̃A, Q̃A), where D̃A = P̃A − Q̃A = φA(PB −QB). E0/〈RA〉 is reconstructed from the three points by
the receiver. This has no influence on the adaptive attack.

14

Then, let RAB = P̃A + [sk3]Q̃A be the cyclic group generator of the isogeny kernel at
SIKE.Decaps corresponding to the reference ciphertext (c0, c1). For the modified ciphertexts,
the PKE decryption calculates R(τ)

AB for τ ∈ {0, 1, 2} such that

R
(τ)
AB = (P̃A − [3eB−1τ]Q̃A) + [sk3](Q̃A + [3eB−1]Q̃A)

= RAB + [3eB−1(sk3 − τ)]QA,

and then computes the j-variant of EA/〈R(τ)
AB〉. Here, it holds RAB = R

(τ)
AB if and only if

τ = β0, because
[3eB−1(sk3 − τ)]Q̃A = [3eB−1(β0 − τ)]Q̃A,

which follows from the fact that the order of Q̃A is 3eB . Therefore, if the attacker can know
whether R(τ)

AB leads to the j-variant value corresponding to E0/ 〈RA, RB〉 (i.e., the same
value as that of reference ciphertext (c0, c1)), she obtains the least significant ternary digit
of the secret key (i.e., β0).

The full-key recovery is achieved by repeating the above attack in an iterative manner.
Let us consider the recovery of the i-th ternary digit (i.e., βi), supposing that the attacker
has already recovered up-to the (i− 1)-th digit (i.e., β0, β1, . . . , βi−1). Let Ki = 30β0 +
31β1 + · · · + 3i−1βi−1 (K0 = 0) be the recovered part of the secret key. The attacker
generates the modified ciphertexts (c(τ,i)

0 , c1) for τ ∈ {0, 1, 2}, where P̃A and Q̃A in c0 are
replaced with

P̃
(τ,i)
A = P̃A − [3eB−i−1Ki + 3eB−1τ]Q̃A,

Q̃
(τ,i)
A = Q̃A + [3eB−i−1]Q̃A,

respectively. When querying (c(τ,i)
0 , c1) to the decryption oracle, the generator of cyclic

group is calculated as

R
(τ,i)
AB = (P̃A − [3eB−i−1Ki + 3eB−1τ]Q̃A) + [sk3](Q̃A + [3eB−i−1]Q̃A)

= RAB + [3eB−i−1(sk3 −Ki)− 3eB−1τ]Q̃A
= RAB + [3eB−1(βi − τ)]Q̃A,

which implies that R(τ,i)
AB should equal to RAB if and only if τ = βi. Thus, the attack

recovers βi through the decryption oracle that tells whether the j-variant of (c(τ,i)
0 , c1) is

equal to that of the reference ciphertext (c0, c1); and the full-key recovery is completed
within the number of oracle accesses linear to eB .

Algorithm 3 illustrates the SCA on SIKE. In SIKE.Decaps, the j-variant value depends
on only c0 (but not c1), and the PKE decryption result is always identical for a fixed j-
variant and c0. Therefore, we can realize the plaintext-checking oracle for SIKE through the
side-channel leakage form G (i.e., SHAKE) because we should distinguish whether the input
to G is reference plaintext m or other. Algorithm 3 uses the plaintext-checking oracle O
(i.e., side-channel distinguisher herein) at Line 8. Thus, the number of distinguisher call for
the full-key recovery is at most 3eB . Note that it can be reduced to 2eB because the attacker
knows βi = 2 without querying (c(2,i)

0 , c1) if O((c(0,i)
0 , c1),m) = 0 and O((c(1,i)

0 , c1),m) = 0.
It is also possible to use the side-channel leakage of SHAKE inside the PKE decryption
(denoted by F in the SIKE documentation [J+20]) instead of G at the decapsulation. Note
also that this attack can be readily extended to SIKE over Fp2 with p = À

eA
B̀
eBf ± 1 by

replacing the base of coefficients (i.e., “3” in the above equations and Algorithm 3) with
B̀ and examining τ from {0, 1, . . . , B̀ − 1}.

Although we describe an adaptive attack using a naïve plaintext-checking oracle, we
can further reduce the number of oracle accesses by using a more sophisticated plaintext-
checking oracle. Recall that, when querying (c(τ,i)

0 , c1) to the decryption oracle, the

R. Ueno, K. Xagawa, Y. Tanaka, A. Ito, J. Takahashi, and N. Homma 15

Algorithm 3 Plaintext-checking key-recovery attack on SIKE
Input: Reference ciphertext (c0, c1) and reference plaintext m
Output: Secret key sk3
1: Function AttackOnSIKE((c0, c1),m)
2: K0 ← 0;
3: for i = 0 to eB − 1 do
4: for each τ ∈ {0, 1, 2} do
5: P̃

(τ,i)
A ← P̃A − [3eB−i−1Ki + 3eB−1τ]Q̃A;

6: Q̃
(τ,i)
A ← Q̃A + [3eB−i−1]Q̃A;

7: (c(τ,i)
0 , c1)← ((EA, P̃

(τ,i)
A , Q̃

(τ,i)
A), c1);

8: if O((c(τ,i)
0 , c1),m) = 1 then

9: βi ← τ ;
10: Ki+1 ← Ki + 3iβi;
11: end if
12: end for
13: end for
14: return KeB ;
15: end Function

generator of cyclic group is calculated as

R
(τ,i)
AB = RAB + [3eB−1(βi − τ)]Q̃A.

If we set τ = 0, then we will get either RAB, RAB + [3eB−1]Q̃A, or RAB + [2× 3eB−1]Q̃A,
depending on βi. Note that all the candidate values are independent of i. Therefore,
we can estimate βi from side-channel trace by distinguishing which the PRF input value
corresponds to RAB , RAB + [3eB−1]Q̃A, or RAB + [2× 3eB−1]Q̃A when querying (c(0,i)

0 , c1).
To do so, we employ a side-channel distinguisher that performs a 3-classification for RAB ,
RAB+[3eB−1]Q̃A, or RAB+[2×3eB−1]Q̃A, instead of 2-classification forO((c0, c1), (c(0,i)

0 , c1)).
Since the attacker can compute RAB, RAB + [2 × 3eB−1]Q̃A, and RAB + [2 × 3eB−1]Q̃A
without knowing secret key, the attacker can query the ciphertexts corresponding to them,
acquire side-channel traces for profiling (i.e., training dataset), and perform a profiling
(i.e., NN training) for the 3-classification to implement the oracle. Thus, we can determine
βi from one query with an B̀-classification and no need to modify τ , and we can perform
a full-key recovery of SIKE using eB oracle accesses, independently of B̀ .

4.4 Complexity analysis
Table 2 reports the number of oracle accesses required for the proposed SCA to recovery
the full key of NIST PQC third-round candidates for KEM. For the simplicity, Table 2
only shows the results for instances with a security level equivalent to AES128 and AES256
(i.e., NIST security levels 1 and 5, respectively).

From Table 2, we confirm that the key recovery can be realized with a sufficiently
feasible number of oracle accesses. Although BIKE level 1 requires 3M oracle accesses for a
partial-key recovery as the hardest case, most KEMs can be broken within 60,000 oracle
accesses. Here, Kyber, Saber, NTRU, NTRU Prime, and SIKE are less complex than the
code-based KEMs. This may be because the number of secret coefficients to be recovered
via plaintext-checking oracle is greater for the code-based KEMs. The proposed SCA
would be still feasible, as the modern SCAs (on symmetric ciphers) are evaluate with (the
order of) more-than 10M or 100M traces (e.g., [SM15,SM19,SBM19]).

In comparison with previous CCA SCAs on lattice-based KEMs (e.g., [XPRO20,
RBRC20,SKL+20,NDGJ21]), the proposed attack requires more oracle accesses. This is
because these previous SCAs exploit scheme/implementation-specific aspects for improved
efficiency in terms of the number of traces. Moreover, the attack by Ravi et al. [RRCB20]

16

Table 2: Worst-case number of oracle accesses required for proposed attack to recover full
key (except for BIKE and Classic McEliece)

KEM type Scheme Instance # Oracle accesses
Lattice Kyber Kyber-512 1536 (= 3× 512)

Kyber-1024 3072 (= 3× 1024)
Saber LightSaber-KEM 3072 (= 4× 512 + 2× 512)

FireSaber-KEM 3072 (= 3× 1024)
FrodoKEM FrodoKEM-640 25600 (= 5× 5120)

FrodoKEM-1344 43008 (= 4× 10752)
NTRU Prime ntrulpr653 1306 (= 2× 653)

ntrulpr1277 2554 (= 2× 1277)
sntrup653 2712 in avg. (= 100/1 + 4× 653)
sntrup1277 5175 in avg. (= 100/1.5 + 4× 1277)

NTRU ntruhrss701 ≈ 2804 (= 4× 701)
ntruhps2048509 ≈ 1018 (= 2× 509)
ntruhps4096821 ≈ 1642 (= 2× 821)

Code HQC hqc128 ≈ 18111 (= 46 + lg(46) + 46× (384 + lg(384)))
hqc256 ≈ 58536 (= 90 + lg(90) + 90× (640 + lg(640)))

BIKE† Level 1 3M (= 2000× 1500)
Level 5 N/A

Classic McEliece Any N/A
Isogeny SIKE SIKEp434 274 (= 2× 137)

SIKEp751 478 (= 2× 239)

† Denote 1500 distance profiles out of 6162 full distance profiles for Level 1. It is difficult to reliably
recovery key bits more than this through the proposed SCA.

can also perform a full-key recovery of Kyber, Saber, and FrodoKEM, although the SCA is
applicable to (relatively) black-box implementation. We stress that the major advantage of
the proposed attack is the generality, as the proposed attack is applicable to many lattice-,
code-, and isogeny-based KEMs, even if its implementation is (relatively) black-box. Due to
the high applicability of adaptive attack using the plaintext-checking oracle, the proposed
attack offers a higher generality for KEMs based on FO transformation and its variants.

5 Side-Channel Distinguisher Design
This subsection describes the design of a DL-based side-channel distinguisher. Several
studies have been evaluated and demonstrated the significant advantage of DL in SCA
in recent years (e.g., [BPS+18,KPH+19,PCP20,ZBHV20,WAGP20]). In many previous
works, the DL technique is employed to perform an efficient profiling SCA. One of major
advantages of DL-based profiling SCA (compared to conventional profiling SCA such
as template attack) is that it does require the detail of target implementation nor any
assumption of side-channel leakage. In the DL-based profiling SCA, a trained NN is used to
estimate (Hamming weight/distance of) intermediate value from side-channel leakage, and
the secret key is estimated using the likelihood from the output of NN (i.e., probability for
(Hamming weight/distance of) intermediate value). Therefore, the conventional DL-based
SCA on AES implementation basically has 9 outputs at the output layer corresponding to
Hamming weight/distance classification or 256 outputs for intermediate value classification.

The previous studies have developed many NN models to efficiently perform the
key recovery with less traces [ZBHV20, WAGP20]. In the following experiment, we
employ a convolutional NN (CNN), as several previous studies showed its practicality and
effectiveness in DL-based SCA. Our CNN in the experiment is designed to have a sufficient
model capacity such that it can be applied to various PRF implementation including
software and hardware with and without masking countermeasure. The proposed SCA
requires two-classification of whether the input to PRF is the reference plaintext or not,

R. Ueno, K. Xagawa, Y. Tanaka, A. Ito, J. Takahashi, and N. Homma 17

and therefore we construct a CNN model, the output layer of which is with an activation
function of Sigmoid and has one output. Note that there is a possibility that we can
exploit a conventional NN presented in previous studies on DL-based SCA for the proposed
attack by means of fine tuning or transfer learning. However, in this paper, we used a
standard CNN model for the generality, as some of conventional NNs for DL-based SCA
are specified for target implementations (e.g., [WAGP20]).

For a successful key recovery, we require a very accurate model to realize a perfect
plaintext-checking oracle, because an error in plaintext-checking oracle should render the
recovered key critically incorrect. However, the accuracy of an NN model for SCA may be
sometimes nonnegligibly low due to the presence of noise and SCA countermeasure. To
improve the accuracy of plaintext-checking oracle realized by the model, a simple method
is to use multiple traces for one plaintext-checking oracle. More concretely, the attacker
acquires t traces for a modified ciphertext c′, performs an inference for each trace, and
then estimates the input to PRF as the majority vote of the inference results. Let a be
the accuracy of the model. If using t traces for an oracle, the expected accuracy of the
oracle realized by such a majority vote of multiple NN outputs, denoted by αt, is given by

αt = 1−
dt/2e∑
s=0

(
t

s

)
as(1− a)t−s. (1)

We can determine t such that the success rate of whole attack is larger than a threshold σ;
that is, σ ≤ αtu, where u is the number of required oracle accesses shown in Table 2. This
is because the attacker requires completely correct plaintext-checking oracles for a correct
key recovery. We quantitatively evaluate the number of required side-channel traces for a
convincing key recovery success rate in Section 6.

However, such a majority vote considers the NN output as a binary value, although
the NN output is given as a probability of the input to PRF being the reference plaintext,
which indicates that the majority vote does not fully exploit the advantage of the NN-
based distinguisher. As an efficient alternative, we determine the plaintext-checking oracle
output by means of the likelihood comparison, which indicates that the label is determined
according to the negative log likelihood (NLL) for a hypothetical oracle output of b ∈ {0, 1}
as

NLLb(q, θ̂) = −1
t

t∑
s=1

log q(b | xs; θ̂), (2)

where q denotes a probability distribution parameterized by θ̂ (i.e., the trained NN), and
xs is the s-th side-channel trace. Since such methods exploit the NN output compared to
the above majority vote, these methods would achieve a higher accuracy in realizing the
plaintext-checking oracle. In fact, if q(b | xs; θ̂) has been sufficiently trained and mimics the
true distribution, such a likelihood ratio test (the NLL herein) becomes the most powerful
test according to the Neyman–Pearson lemma [NP33]. One major drawback of this method
is that it is quite difficult to evaluate the resulting accuracy in an analytical manner;
therefore, we experimentally evaluate it to demonstrate its practicality and effectiveness
through the evaluation of success rate of the whole attack on KEMs using actual NN
models trained for the experimental implementations.

6 Experimental Validation
6.1 Experimental setup
In the following experiments, we employed CUDA 11.0, cuDNN 8.0.5, Tensorflow-gpu 2.4.1,
and Keras 2.4.0 on an Intel Xeon W-2145 3.70GHz and NVIDIA GeForce GTX 2080 for

18

Table 3: CNN hyper parameters

Input Operator Output Activation function Batch normalization Pooling Stride
Conv1 1000× 1 conv1d (3) 4 SELU Yes Avg (2) 2
Conv2 500× 4 conv1d (3) 4 SELU Yes Avg (2) 2
Conv3 250× 4 conv1d (3) 4 SELU Yes Avg (2) 2
Conv4 250× 8 conv1d (3) 8 SELU Yes Avg (2) 2
Conv5 125× 8 conv1d (3) 8 SELU Yes Avg (2) 2
FLT 64×8 flatten 496 - - - -
FC1 496 dense 20 SELU No No -
FC2 20 dense 20 SELU No No -
FC3 20 dense 1 Sigmoid No No -

the NN training. We employed the NLL as a loss function for training. The learning rate
was 0.001, the batch size was 32, and the number of epochs was 100. Table 3 summarizes
its hyper parameters of the CNN for traces with 1,000 sample points, where the top and
bottom columns denote the input and output layer, respectively, and the remaining hidden
layers are connected in the ascending order from the input to output.

Here, S1 × S2 in the row of “Input” denotes the input shape as S1 is the traces size
and S2 is the input dimension, and conv1d(F) in the row of “Operator” denotes the
operation at the each layer as F is the filter size. The CNN consists five convolutional
layers Conv1, Conv2, . . ., and Conv5 followed by three fully connected layers FC1, FC2,
and FC3. The CNN has two outputs. Given a side-channel trace, FC3 outputs the
probability that plaintext (i.e., PRF input) is equal to the reference plaintext (or other
plaintext in contrary).

For acquiring the side-channel traces, we used an oscilloscope Keysight Technologies
MSOX6004A to measure the power consumption or EM emanation. We employ the
following four PRF implementations: non-protected AES and SHAKE software, masked
AES software, and masked AES hardware. Although SHAKE is rather common as PRF
in FO transformation than AES, we herein target masked AES software/hardware since
many SCA countermeasures for symmetric key primitives have been developed with
consideration and application to AES rather than SHAKE (As far as we know, there is
no publicly available masked SHAKE implementation). However, there would be little
difference in the attack result between AES and SHAKE, if they are protected using an
identical masking scheme. The detail of each implementation is described below.6

Non-protected AES and SHAKE software. We implement an AES and SHAKE software
provided in pqm4 on an STM32F415RGT6 equipped with a NewAE Technology STM32F
Target Board. These software employ no countermeasure against SCAs. The supply
voltage current is observed as the side-channel trace by means of a NewAE Technology
chip-whisperer CW308. We used 20,000 traces for training and used 10,000 traces for
validation among 20,000 traces. We also used another 10,000 traces for test. For AES,
the plaintext is given by a fixed or random value, and the key is fixed for both fixed and
random plaintexts.7 For SHAKE, the input is given as same as the plaintext.

6We also implemented and evaluated an NTRU software of ntruhrss701 in pqm4 in the setting same
as non-protected AES/SHAKE software. We targeted the procedure corresponding to re-encryption in
owcpa_dec, instead of a PRF in NTRU.Decaps as a KDF, whereas the key recovery of NTRU can be also
performed using the leakage of KDF as described in Section 4.1.5. As a result, we confirmed that the
DL-based distinguisher achieves a 99.6% accuracy, and its combination with likelihood comparison achieves
a 100% test accuracy with only three traces.

7In using AES-256-CTR as an XOF for modern KEMs (e.g., Kyber, NTRU LPRime, and BIKE), the
plaintext is frequently fixed and the key is the payload. However, we set the plaintext as payload and set
the key fixed in the experiment. This is because we are intended to conduct the experiment to validate
the proposed attack in a manner more severe to the attacker, such that the evaluation becomes general for
various modes of operation and masking implementation. For example, some masked AES implementation

R. Ueno, K. Xagawa, Y. Tanaka, A. Ito, J. Takahashi, and N. Homma 19

Table 4: NN accuracy to estimate PRF input

Non-protected Masked Masked
AES/SHAKE s/w AES s/w AES h/w

Accuracy 1.000 0.996 0.703

Masked bit-sliced AES software. We implement a first-order masked bit-sliced AES
software provided in [git21], corresponding to Schwabe’s and Stoffelen’s paper [SS16]. We
implement it on an STM32F407VGT6U equipped on an STM32F407G-DISC1 board as
the source code was for the microcontroller, and we acquired the side-channel traces by
measuring its EM emanation using an EM probe LANGER EMV-Technik RF-U 5-2. We
used 40,000 traces for training and used 10,000 traces for validation among 40,000 traces.
We also used another 10,000 traces for test. The plaintext and key are given in the manner
same as the above.

Masked AES hardware based on TI. We implement a masked AES hardware based on
first-order TI presented by Ueno et al. [UHA17] on a Xilinx Kintex-7 FPGA equipped
with SAKURA-X board. First-order TI is one of the most promising countermeasures
against first-order SCAs. The plaintext and key are given in the manner same as the
above. We measure the supply voltage current as the side-channel traces through the
coaxial connector on the SAKURA-X board. We used 1,010,000 traces for training and
used 10,000 traces for validation among 1,010,000 traces. We also used another 10,000
traces for test. For the training and attack, we use logarithmic traces instead of raw
traces in order to make it easier for the NN to be trained with regard to the higher-order
moments as discussed in Appendix (In fact, we confirmed that the distinguish attack was
not successful for the masked hardware when using raw traces). To derive the logarithmic
traces, we firstly subtracted the smallest value of a trace from each sample point and then
add 10−15 like a clipping value to each point such that all points become greater than zero,
and finally we take the logarithm of each resulting point.

6.2 Accuracy evaluation
Table 4 reports the accuracy of trained NN for the test. Since the accuracy of “test”
corresponds to that of the attack phase, the oracle accuracy can be evaluated according to
the test accuracy. From Table 4, we can confirm that the trained NN achieve a sufficiently
high accuracy to perform the proposed SCA. For the non-protected implementations, the
NN model achieves a 100% accuracy for the test, which indicates that we can readily
realize one oracle access from only one trace without any majority vote nor likelihood
comparison. In contrast, the NN model achieves 99.6% and 70.3% accuracy for the masked
bit-sliced software and TI-based masked hardware, respectively. It is more difficult to
distinguish the input of the TI-based masked hardware than the mask software due to
its lower SNR and/or advantage of TI. Still, the accuracy would be sufficiently high to
perform the full-key recovery if implementing the plaintext-checking oracle with a majority
vote or likelihood comparison.

(e.g., masked hardware in [UHA17]) does not protect the key scheduling parts because it causes no DPA
leakage, although it causes an exploitable leakage for the distinguish attack. Therefore, our experiment
only aims at exploiting the leakage only from the round function part, which causes always an exploitable
leakage independently of the mode of operation and masking implementation, for a general and severe
evaluation. (More precisely, if the plaintext is a payload and key is fixed, only round function part is a
leakage source but key scheduling is not, because the key scheduling part always processes an identical
value for a fixed key. By contrast, both round datapath and key scheduling datapath are a leakage source
for the distinguish attack, if the key is a seed and the plaintext is fixed. Thus, the experiment validates
the proposed attack in a more general and severe manner, as the experiment is harder for the attacker.)

20

1 10 20
Traces

0.9970

0.9980

0.9990

1.0000
A

cc
ur

ac
y

Likehood Comparison
Majority Vote

(a) Masked AES s/w

25 50 75 100
Traces

0.990

0.9925

0.9950

0.9975

1.0000

A
cc

ur
ac

y

Likehood Comparison
Majority Vote

(b) Masked AES h/w

Figure 1: Oracle accuracy with majority vote or likelihood comparison.

We then evaluate the oracle accuracy using the majority vote or likelihood comparison.
Figure 1 illustrates the relation between oracle accuracy and number of traces for the
protected implementations, where the horizontal axis denotes the number of traces and
the vertical axis denotes the oracle accuracy for (a) masked AES software and (b) masked
AES hardware. Here, the orange and blue curves denote the oracle realized with majority
vote and likelihood comparison, respectively. Whereas the majority vote is evaluated in an
analytical manner using Eq. (1) for odd numbers of traces, the likelihood comparison is
evaluated experimentally using a shuffled test data repeatedly. More precisely, to evaluate
the accuracy be the likelihood comparison, we repeat the following procedure 10,000 times:
we randomly obtain 1,000 traces for reference plaintext or random plaintext from the
test detaset, calculate the NLL in Eq. (2) for each hypothetical oracle output b = 0 or
1, and determine the oracle output as the smaller NLL. From Figure 1, we can confirm
that the likelihood comparison would be more accurate and effective than majority vote
according to the Neyman–Peason lemma. The distinguisher with a likelihood comparison
can achieve a 100% test accuracy with at least 3 and 75 traces for masked software and
hardware, respectively. In contrast, supposing that for example 10,000 oracle accesses
are hypothetically required for key recovery, the majority vote requires at least 7 and
163 traces for a 99.999% success rate for masked software and hardware, respectively. In
consequence, we can confirm that both methods can achieve a sufficient accuracy even
when the implementation is masked.

6.3 Evaluation of number of traces for successful key recovery
Table 5 reports the number of side-channel traces required for a successful key recovery
if using the side-channel distinguisher evaluated in the above, respectively. For masked
implementations, we adopted the distinguisher based on the likelihood comparison with
3 and 75 traces according to the evaluation in Section 6.2. In Table 5, we suppose that
the oracle realized by the side-channel distinguisher is completely accurate if it achieves a
100% accuracy at the test.

As a matter of course, we require more traces for key recovery if a larger number of
traces is required to realize an accurate oracle. Therefore, the key recovery from masked
implementation is more difficult than non-protected implementations. In particular,
the attack on masked hardware based on TI requires 75 times more traces than non-
protected implementations. Thus, we confirm a certain level of the effectiveness of masking
countermeasures as they render the attack more difficult. However, our experimental result
reveals that the attack is still feasible for the KEMs even if the PRF implementation
is protected, regarding that the modern SCA evaluation is conducted with more-than
10M or 100M traces (e.g., [SM15,SM19,SBM19]). In the sense, at least, the first-order
masking countermeasures are not essential solution to counter the proposed SCA. The

R. Ueno, K. Xagawa, Y. Tanaka, A. Ito, J. Takahashi, and N. Homma 21

Table 5: Number of side-channel traces required for successful proposed attack (partial-key
recovery for BIKE and except for Classic McEliece)

KEM type Scheme Instance # Side-channel traces for attack phase
Non-protected Masked Masked
AES/SHAKE AES s/w AES h/w

Lattice Kyber Kyber-512 1,536 4,608 115,200
Kyber-1024 3,072 9,216 230,400

Saber LightSaber-KEM 3,072 9,216 230,400
FireSaber-KEM 3,072 9,216 230,400

FrodoKEM FrodoKEM-640 25,600 76,800 1,920,000
FrodoKEM-1344 43,008 129,024 3,225,600

NTRU Prime ntrulpr653 1,306 3,918 97,950
ntrulpr1277 2,554 7,662 191,550
sntrup653 2,712 8,136 203,400
sntrup1277 5,175 15,525 388,125

NTRU ntruhrss701 2,804 8,412 210,300
ntruhps2048509 1,018 3,054 76,350
ntruhps4096821 1,642 4,926 123,150

Code HQC hqc128 18,111 54,333 1,358,325
hqc256 58,536 175,608 4,390,200

BIKE Level 1 3M 9M 225M
Level 5 N/A N/A N/A

Classic McEliece Any N/A N/A N/A
Isogeny SIKE SIKEp434 274 822 20,550

SIKEp751 478 1,434 35,850

evaluation of the DL-based distinguish attack on higher-order masked implementation and
the development of countermeasure are the important future work.

7 Conclusion
This paper presents a generic power/EM attack methodology using a plaintext-checking
oracle on KEMs based on FO transformation and its variant. The proposed SCA exploits
the side-channel leakage during PRF execution in re-encryption to realize a plaintext-
checking oracle, namely, to distinguish whether the input to PRF is equalt the reference
plaintext or not. We demonstrate that all KEMs in the NIST PQC third-round candidates
except for Classic McEliece are vulnerable to the proposed attack. We also present a
DL-based side-channel distinguisher design, and validate it through experimental attacks
on various PRF implementations, including ones protected by a masking countermeasure.
In consequence, we confirm that the proposed SCA can perform a key recovery of many
KEM implementations, even if the PRF implementation is protected by a sophisticated
countermeasure such as first-order TI.

The proposed attack has two significant advantage: the generality and applicability.
First, the proposed attack realizes a plaintext-checking oracle through a side-channel
leakage. Since many modern KEMs are known to be vulnerable to an adaptive attack using
the plaintext-checking oracle, the proposed attack can be generally applied to these KEM
schemes. Second, the proposed SCA does not require the detailed knowledge of target
implementation and therefore can be applied to (relatively) black-box implementations.
Thus, when implementing a KEM, we should be aware of the proposed attack if an
adaptive attack on the underlying PKE is known and the application can be threatened
by power/EM SCA.

In the scenario of SCA on KEM.Decaps, the attacker can perform a profiling using the
target device itself without any secret key, which indicates that KEM implementations
should be resistant to profiling attacks including DL-based ones, if SCA can be a threat
for the application. Evaluation of higher-order masking against the proposed SCA with

22

DL-based distinguisher and developing an effective countermeasure are the important
future work for realizing a secure KEM implementation. We are also planning to investigate
the applicability of the proposed SCA to KEMs others than the NIST PQC third-round
candidates.

Acknowledgment
This work has been supported by JSPS Kakanhi Grant No. 17H00729 and 19H21526,
JST CREST No. JPMJCR19K5, and JST PRESTO No. JPMJPR18M3

Appendix: On the use of logarithmic trace in attacking
masked hardware
The d-th order masked implementation is broken by an SCA using (d + 1) statistical
moment according to the bounded momoent leakage model [BDF+17]. Here, we should
exploit at least second-order statistical moment to break the first-order masked AES
hardware. Here, the masked hardware only has a univariate higher-order leakage, because
the hardware evaluates the shared function for an intermediate value simultaneously in one
clock cycle, which is so-called share-parallel implementation. This implies that computing
the (d+ 1)-th power (i.e., squaring herein) of each point of centerized traces in advance
would make it easier to break the masked AES hardware.

In this paper, for more efficient training and attack with less traces, we applied a
logarithmic function to each point before the training and attack. The motivation behind
the logarithmic function is that its combination with SELU, which is the activation function
used in our NN, can efficiently compute the (d+ 1)-th power of each point of input traces.
SELU outputs ρ(exp(x)− 1) for a negative input x, where ρ is a positive coefficient. The
NN used in the experiment employs a convolutional layer with a filter size of three as the
first layer, and the SELU function is applied to the filter output of the layer. Since we
apply a logirithmic function to the input trace, each point of traces is processed through a
logarithmic function, weighted sum, and SELU function. Here, if the weight is given as a
negative value −w (where w is a positive real number), we equivalently compute the w-th
negative power of input trace due to the logarithmic function and SELU as

SELU(−w log x) = ρ(exp(−w log x)− 1) = ρ(x−w − 1).

Thus, applying a logarithmic function to input trace is equivalent to computing the w-th
power for CNN with SELU. Note that the filter size of our CNN is given as three, and the
SELU input should be given in a form of w0 log x0 + w1 log x1 + w2 log x2. Therefore, if
one of the weights is trained as wj ≥ d+ 1 and other two weights are relatively negligible,
the NN can approximately compute the (d + 1)-th negative power and can extract the
(d+ 1)-th univariate leakage. The proposed method based on logarithmic function requires
a far less cost than an NN is trained to mimic a nonlinear function like the (d + 1)-th
power. Thus, the proposed method would be effective in attacking a masked hardware
with univariate higher-order leakage.

References
[A+20] Erdem Alkim et al. FrodoKEM—practical quantum-secure key encapsulation

from generic lattices. https://frodokem.org, 2020.

[BDF+17] Gilles Barthe, François Dupressoir, Sebastian Faust, Benjamin Grégoire,
François-Xavier Standaert, and Pierre-Yves Strub. Parallel implementations

https://frodokem.org

R. Ueno, K. Xagawa, Y. Tanaka, A. Ito, J. Takahashi, and N. Homma 23

of masking schemes and the bounded moment leakage model. In Advances
in Cryptology—Eurocrypt 2017, volume 10210 of Lecture Notes in Computer
Science, pages 535–556, 2017.

[BDH+21] Shivam Bhasin, Jan-Pieter D’Anvers, Daniel Heinz, Thomas Pöppelmann, and
Michiel Van Beirendonck. Attacking and defending masked polynomial com-
parison for lattice-based cryptography. IACR Transactions on Cryptographic
Hardware and Embedded Systems, 2021:XXX–XXX, 2021.

[BDL+19] Ciprian Băetu, F. Betül Durak, Huguenin-Dumittan Loïs, Abdullah Talayhan,
and Serge Vaudenay. Misuse attacks on post-quantum cryptosystems. In
Advances in Cryptology—Eurocrypt 2019, volume 11477 of Lecture Notes in
Computer Science, pages 747–776, 2019.

[BHH+19] Nina Bindel, Mike Hamburg, Kathrin Hövelmanns, Andreas Hülsing, and
Edoardo Persichetti. Tighter proofs of CCA security in the quantum random
oracle model. In Theory of Cryptography, volume 11892 of Lecture Notes in
Computer Science, pages 61–90, 2019.

[BPO+20] Florian Bache, Clara Paglialong, Tobias Oder, Tobias Schneider, and Tim
Güneysu. High-speed masking for polynomial comparison in lattice-based
KEMs. IACR Transactions on Cryptographic Hardware and Embedded Systems,
2020:483–507, 2020.

[BPS+18] Ryad Benadjila, Emmanuel Prouff, Rémi Strullu, Eleonora Cagli, and Cécile
Dumas. Study of deep learning techniques for side-channel analysis and
introduction to ASCAD database. IACR ePrint archive: Report 2018/053,
2018. https://eprint.iacr.org/2018/053.

[DDS+19] Jintai Ding, Joshua Deaton, Kurt Schmidt, Vishakha, and Zheng Zhang. A
simple and efficient key reuse attack on NTRU cryptosystem. IACR ePrint
archive: Report 2019/1022, 2019. https://eprint.iacr.org/2019/1022.

[DV21] Orsini Emmanuela D’Anvers, Jan-Pieter and Frederik Vercauteren. Error
term checking: Towards chosen ciphertext security without re-encryption.
IACR ePrint archive: Report 2021/080, 2021. https://eprint.iacr.org/
2021/080.

[FO99] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric
and symmetric encryption schemes. In Advances in Cryptology—CRYPTO
’99, volume 1666 of Lecture Notes in Computer Seience, pages 537–554, 1999.

[git21] Fast, constant-time and masked AES assembly implementations for ARM
Cortex-M3 and M4. https://github.com/Ko-/aes-armcortexm, May 2021.

[GJS16] Qian Guo, Thomas Johansson, and Paul Stankovski. A key recovery attack
on MDPC with CCA security using decoding errors. In Jung Hee Cheon and
Tsuyoshi Takagi, editors, Advances in Cryptology - ASIACRYPT 2016 - 22nd
International Conference on the Theory and Application of Cryptology and
Information Security, Hanoi, Vietnam, December 4-8, 2016, Proceedings, Part
I, volume 10031 of Lecture Notes in Computer Science, pages 789–815, 2016.

[GPST16] Steven D. Galbraith, Christophe Petit, Barak Shani, and Bo Yan Ti. On the
security of supersingular isogeny cryptosystems. In Advances in Cryptology—
ASIACRYPT 2016, volume 10031 of Lecture Notes in Computer Seience,
pages 63–91, 2016.

https://eprint.iacr.org/2018/053
https://eprint.iacr.org/2019/1022
https://eprint.iacr.org/2021/080
https://eprint.iacr.org/2021/080
https://github.com/Ko-/aes-armcortexm

24

[GTN20] Qian Guo, Johansson Thomas, and Alexander Nilsson. A key-recovery timing
attack on post-quantum primitives using the Fujisaki–Okamoto transformation
and its application on FrodoKEM. In Advances in Cryptology—CRYPTO ’20,
volume 12171 of Lecture Notes in Computer Seience, pages 359–386, 2020.

[HHK17] Denis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular analysis of
the Fujisaki–Okamoto transformation. In Theory of Cryptography, volume
10677 of Lecture Notes in Computer Science, pages 341–371. Springer, 2017.

[HS99] Jeffrey Hoffstein and Joseph H. Silverman. Reaction attacks against the
NTRU public key cryptosystem. NTRU Technical Report, 1999. Available at
https://ntru.org/resources.shtml.

[HV20] Loïs Huguenin-Dumittan and Serge Vaudenay. Classical misuse attacks on
NIST round 2 PQC - the power of rank-based schemes. In Mauro Conti,
Jianying Zhou, Emiliano Casalicchio, and Angelo Spognardi, editors, Applied
Cryptography and Network Security - 18th International Conference, ACNS
2020, Rome, Italy, October 19-22, 2020, Proceedings, Part I, volume 12146 of
Lecture Notes in Computer Science, pages 208–227. Springer, 2020.

[J+20] David Jao et al. SIKE—Supersingular Isogeny Key Encapsulation. https:
//sike.org, 2020.

[JDF11] David Jao and Luca De Feo. Towards quantum-resistant cryptosystems
from supersingular elliptic curve isogenies. In Proceedings in PQCrypto 2011,
volume 7071 of Lecture Notes in Computer Science, pages 19–34, 2011.

[JJ00] Éliane Jaulmes and Antoine Joux. A chosen-ciphertext attack against NTRU.
In Mihir Bellare, editor, Advances in Cryptology - CRYPTO 2000, 20th Annual
International Cryptology Conference, Santa Barbara, California, USA, August
20-24, 2000, Proceedings, volume 1880 of Lecture Notes in Computer Science,
pages 20–35. Springer, 2000.

[KAJ17] Brian Koziel, Reza Azarderakhsh, and David Jao. Side-channel attacks on
quantum-resistant supersingular isogeny Diffie–Hellman. In Selected Areas
in Cryptography—SAC 2017, volume 10719 of Lecture Notes in Computer
Science, pages 64–81, 2017.

[KJJ99] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
Advances in Cryptology—CRYPTO 1999, volume 1666 of Lecture Notes in
Computer Science, pages 388–397. Springer, 1999.

[Koc96] Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA,
DSS, and other systems. In Advances in Cryptology—CRYPTO 1996, volume
1109 of Lecture Notes in Computer Science, pages 104–113. Springer, 1996.

[KPH+19] Jaehun Kim, Stjepan Picek, Annelie Heuser, Shivam Bhasin, and Alan Hanjalic.
Make some noise. unleashing the power of convolutional neural networks for
profiled side-channel analysis. IACR Transactions on Cryptographic Hardware
and Embedded Systems, 2019:148–179, 2019.

[KPP20] Matthias J. Kannwischer, Peter Pessl, and Robert Primas. Single-trace attack
on Keccak. IACR Transactions on Cryptographic Hardware and Embedded
Systems, 2020:243–268, 2020.

https://ntru.org/resources.shtml
https://sike.org
https://sike.org

R. Ueno, K. Xagawa, Y. Tanaka, A. Ito, J. Takahashi, and N. Homma 25

[KRSS19] Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stoffelen.
pqm4: Testing and benchmarking NIST PQC on ARM Cortex-M4. IACR
ePrint archive: Report 2019/844, 2019. https://eprint.iacr.org/2019/
844.

[LNPS20] Norman Lahr, Ruben Niedarhgen, Richard Petri, and Simona Samardjiska.
Side channel information set decoding using iterative chunking: Plaintext
recovery from the “Classic McEliece” hardware reference implementation. In
Advances in Cryptology—ASIACRYPT 2020, volume 12491 of Lecture Notes
in Computer Seience, pages 881–910, 2020.

[MTSB13] Rafael Misoczki, Jean-Pierre Tillich, Nicolas Sendrier, and Paulo S. L. M.
Barreto. MDPC-McEliece: New McEliece variants from moderate density
parity-check codes. In Proceedings of the 2013 IEEE International Symposium
on Information Theory, Istanbul, Turkey, July 7-12, 2013, pages 2069–2073.
IEEE, 2013.

[MWM19] Thorben Moos, Ferix Wegener, and Amir Moradi. DL-LA: Deep learning
leakage assessment—a modern roadmap for SCA evaluations. IACR ePrint
archive: Report 2019/505, 2019. https://eprint.iacr.org/2019/505.

[NDGJ21] Kalle Ngo, Elena Dubrova, Qian Guo, and Thomas Johanson. A side-channel
attack on a masked IND-CCA secure Saber KEM. IACR ePrint archive:
Report 2021/079, 2021. https://eprint.iacr.org/2021/079.

[NIS20] NIST. Post-quantum cryptogprahy. https://csrc.nist.gov/projects/
post-quantum-cryptography, 2020.

[NP33] Jerzy Neyman and Egon Sharpe Peason. IX. On the problem of the most
efficient tests of statistical hypotheses. Philosophical Transactions of the Royal
Society A, 231:694–706, 1933.

[OSPG18] Tobias Oder, Tobias Schneider, Thomas Pöppelmann, and Tim Güneysu.
Practical CCA2–secure and masked ring-LWE implementation. IACR Trans-
actions on Cryptographic Hardware and Embedded Systems, 2018:142–174,
2018.

[OUKT21] Yuki Osumi, Shusaku Uemura, Momonari Kudo, and Tsuyoshi Takagi. Key
mismatch attack on SABER. In SCIS 2021, January 2021. In Japanese.

[PCP20] Guilherme Perin, Łukasz Chmielewski, and Stjepan Picek. Strength in num-
bers: Improving generalization with ensembles in machine learning-based
profiled side-channel analysis. IACR Transactions on Cryptographic Hardware
and Embedded Systems, pages 337–364, 2020.

[PP21] Peter Pessl and Lukas Prokop. Fault attacks on CCA-secure lattice KEMs.
IACR Transactions on Cryptographic Hardware and Embedded Systems,
2021:37–60, 2021.

[PPM17] Robert Primas, Peter Pessl, and Stefan Mangard. Single-trace side-channel
attacks on masked lattice-based encryption. In International Conference on
Cryptographic Hardware and Embedded Systems, volume 10529 of Lecture
Notes in Computer Science, pages 513–553. Springer, 2017.

[pqm21] Post-quantum crypto library for the ARM Cortex-M4. https://github.com/
mupq/pqm4, April 2021.

https://eprint.iacr.org/2019/844
https://eprint.iacr.org/2019/844
https://eprint.iacr.org/2019/505
https://eprint.iacr.org/2021/079
https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography
https://github.com/mupq/pqm4
https://github.com/mupq/pqm4

26

[RBRC20] Prasanna Ravi, Shivam Bhasin, Sujoy Sinha Roy, and Anupam Chattopadyay.
On exploiting message leakage in (few) NIST PQC candidates for practical
message recovery and key recovery attacks. IACR ePrint archive: Report
2020/1559, 2020. https://eprint.iacr.org/2020/1559.

[REB+21] Prasanna Ravi, Martianus Frederic Ezerman, Shivam Bhasin, Anupam Chat-
topadhyay, and Sujoy Sinha Roy. Generic side-channel assisted chosen-
ciphertext attacks on Streamlined NTRU Prime. IACR ePrint archive: Report
2021/718, 2021. https://eprint.iacr.org/2021/718.

[RRCB20] Prasanna Ravi, Sujoy Sinha Roy, Anupam Chattopadhyay, and Shivam
Bhasin. Generic side-channel attacks on CCA-secure lattice-based PKE
and KEMs. IACR Transactions on Cryptographic Hardware and Embedded
Systems, 2020:307–335, 2020.

[SBM19] Aein Rezaei Shahmirzadi, Dus̆an Boz̆ilov, and Amir Moradi. New first-
order secure AES performance records. IACR Transactions on Cryptographic
Hardware and Embedded Systems (TCHES), pages 304–327, 2019.

[SKC+19] Bo-Yeon Sim, Jihoon Kwon, Kyu Young Choi, Jihoon Cho, Aeson Park,
and Dong-Guk Han. Novel side-channel attacks on quasi-cyclic code-based
cryptography. IACR Transactions on Cryptographic Hardware and Embedded
Systems, 2019:180–212, 2019.

[SKL+20] Bo-Yeon Sim, Jihoon Kwon, Joohoo Lee, Il-Ju Kim, Tae-Ho Lee, Hyojin Yoon,
Jihoon Cho, and Dong-Gak Han. Single-trace attacks on message encoding in
lattice-based KEMs. IEEE Access, 8:183175–183191, 2020.

[SLP05] Werner Schindler, Kerstin Lemke, and Christof Paar. A stochastic model
for differential side channel cryptanalysis. In International Workshop on
Cryptographic Hardware and Embedded Systems, pages 30–46. Springer, 2005.

[SM15] Tobias Schneider and Amir Moradi. Leakage assesment methodology—A
clear roadmap for side-channel evaluations. In Workshop on Cryptographic
Hardware and Embedded Systems, volume 9293 of Lecture Notes in Computer
Science, pages 495–513. Springer, 2015.

[SM19] Aein Rezaei Shahmirzadi and Amir Moradi. Re-consolidating first-order
masking schemes—nullifying fresh randomness. IACR Transactions on Cryp-
tographic Hardware and Embedded Systems, 2019:123–145, 2019.

[SS16] Peter Schwave and Ko Stoffelen. All the AES you need on Cortex-M3 and
M4. In Selected Areas in Cryptography—SAC 2016, volume 10532 of Lecture
Notes in Computer Science, pages 180–194, 2016.

[SXY18] Tsunekazu Saito, Keita Xagawa, and Takashi Yamakawa. Tightly-secure key-
encapsulation mechanism in the quantum random oracle model. In Advances in
Cryptology—EUROCRYPT 2018, volume 10822 of Lecture Notes in Computer
Science, pages 520–551. Springer, 2018.

[UHA17] Rei Ueno, Naofumi Homma, and Takafumi Aoki. Toward more efficient DPA-
resistant AES hardware architecture based on threshold implementation. In
International Workshop on Constructive Side-Channel Analysis and Secure
Design, volume 10348 of Lecture Notes in Computer Science, pages 50–64,
2017.

https://eprint.iacr.org/2020/1559
https://eprint.iacr.org/2021/718

R. Ueno, K. Xagawa, Y. Tanaka, A. Ito, J. Takahashi, and N. Homma 27

[vBDK+21] Michiel van Beirendonck, Jan-Peter D’anvers, Angshuman Karmakar, Josep
Balasch, and Ingrid Verbauwhede. A side-channel-resistant implementation
of SABER. ACM Journal on Emerging Technologies on Computing Systems,
17(2), 2021.

[WAGP20] Lennert Wouters, Victors Arribas, Benedikt Gierlichs, and Bart Praneel.
Revisiting a methodology for efficient CNN architectures in profiling at-
tacks. IACR Transactions on Cryptographic Hardware and Embedded Systems,
2020:147–168, 2020.

[XIU+21] Keita Xagawa, Akira Ito, Rei Ueno, Junko Takahashi, and Naofumi Homma.
Fault-injection attacks against NIST’s post-quantum cryptography round 3
KEM candidates. IACR ePrint archive: Report 2021/840, 2021. https:
//eprint.iacr.org/2021/840.

[XPRO20] Zhuang Xu, Owen Pemberton, Sujoy Sinha Roy, and David Oswald. Magnify-
ing side-channel leakage of lattice-based cryptosystems with chosen cipher-
texts: The case study of Kyber. IACR ePrint archive: Report 2020/912, 2020.
https://eprint.iacr.org/2020/912.

[YZ17] Yu Yu and Jiang Zhang. Lepton. Technical report, National Institute of
Standards and Technology, 2017. available at https://csrc.nist.gov/
projects/post-quantum-cryptography/round-1-submissions.

[ZBHV20] Gabriel Zaid, Lilian Bossuet, Amaury Habrard, and Alexandre Venelli.
Methodology for efficient CNN architectures in profiling attacks. IACR
Transactions on Cryptographic Hardware and Embedded Systems, 2020:1–36,
2020.

[ZCQD21] Xiaohan Zhang, Chi Cheng, Yue Qin, and Ruoyu Ding. Small leaks sink
a great ship: An evaluation of key reuse resilience of PQC third round
finalist NTRU-HRSS. IACR ePrint archive: Report 2021/168, 2021. https:
//eprint.iacr.org/2021/168.

[ZYD+20] Fan Zhang, Bolin Yang, Xiaofei Dong, Sylvain Guilley, Zhe Liu, Wei He, Fang-
guo Zhang, and Kui Ren. Side-channel analysis and countermeasure design
on ARM-based quantum-resistant SIKE. IEEE Transactions on Computers,
69:1681–1693, 2020.

https://eprint.iacr.org/2021/840
https://eprint.iacr.org/2021/840
https://eprint.iacr.org/2020/912
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://eprint.iacr.org/2021/168
https://eprint.iacr.org/2021/168

	Introduction
	Background
	Our contributions
	Paper organization

	Related Works
	IND–CCA-secure KEM based on FO transformation
	Previous SCAs on FO transformation

	Proposed Methodology
	Plaintext-checking oracle
	Proposed SCA

	Application to Post-Quantum KEMs
	Lattice-based KEMs
	Code-based KEMs
	Isogeny-based KEM
	Complexity analysis

	Side-Channel Distinguisher Design
	Experimental Validation
	Experimental setup
	Accuracy evaluation
	Evaluation of number of traces for successful key recovery

	Conclusion

