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Abstract. In an election where each voter may express P preferences
among M possible choices, the Amun protocol allows to secure vote
casting against over-the-shoulder adversaries, retaining privacy, fairness,
end-to-end verifiability, and correctness.
Before the election, each voter receives a ballot containing valid and
decoy tokens: only valid tokens contribute in the final tally, but they
remain indistinguishable from the decoys. Since the voter is the only one
who knows which tokens are valid (without being able to prove it to a
coercer), over-the-shoulder attacks are thwarted.
We prove the security of the construction under the standard Decisional
Diffie Hellman assumption in the random oracle model.
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1 Introduction

Remote voting, thanks to advanced cryptographic techniques, may guarantee
higher levels of security with respect to classical paper-based voting. However,
being able to vote from home is a double-edged sword: on one hand it may
improve turnout by easing the voting process, on the other hand it comes at the
expense of the loss of privacy that only a voting booth can guarantee.

Although many systems protect against various adversaries who try to bribe
electors, we found that it is more difficult to counter opponents that closely
monitor voters during the voting phase (over-the-shoulder attacks). The main
mitigation technique against coercion is the usage of fake credentials [19], which
are indistinguishable from real ones but that do not produce valid votes. How-
ever, if the adversary keeps under control the voter until the end of the voting
period, it becomes impossible to re-vote with the valid credential.

Here we present the Amun3 protocol, which hides the real choice expressed
by a ballot even if an adversary is physically monitoring the elector during

3 Amun was a major ancient Egyptian deity. The name Amun meant something
like “the hidden one” or “invisible”.
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vote casting. This feature protects the elector against over-the-shoulder attacks
without the need to re-vote. The Amun protocol aims to achieve end-to-end
verifiability, universal verifiability, privacy, correctness, fairness, and coercion
resistance.

In [35], the authors propose a a remote e-voting protocol in an election with
two candidates, based on blockchain technology. The basic idea is that every
voter owns two voting tokens (v-tokens): one is valid, the other is a decoy, but
only the voter knows which is which. When voting, every voter expresses their
preference by assigning their valid v-token to the chosen candidate and their
decoy v-token to the other candidate. The voter gets a vote receipt on which
both transactions are be displayed. In the final tally the decoy v-tokens do not
contribute to the count and the whole process is publicly auditable. Amun is a
generalization of this protocol, which adds support for multiple candidates and
more than one choice (which can be exploited to express blank or partial ballots),
and forsakes the blockchain infrastructure in favor of a traditional bulletin board.

In Amun, three authorities share the administration of the election: they
setup the parameters, manage voters’ registration, and compute the final tally at
the end of the voting phase. Privacy is preserved even if an attacker colludes with
one authority, limiting their power. As in [35], votes are cast by assigning some
“voting tokens”, generated during the registration, to the candidates. Among
these tokens, only a few are valid and express the real preference of the voter,
but they are indistinguishable from the other, decoy, tokens. This trick disguises
the actual choice made by the elector, even if the adversary is watching.

1.1 Related Work

Protocols for electronic election systems have been abundantly proposed in re-
cent years. Many have addressed the problem of coercion resistance, giving a
plurality of definitions [13,15,19,21,22].

Civitas [7], which derives from JCJ [19], deals with coercion by allowing
voters to vote multiple times via a mechanism of real and fake credentials.

Selene [32] associates to every vote a unique tracker: the idea is that, in case
of an attack, every voter is able to open up its commitment to a fake tracker in
order to deceive the attacker.

Bingo Voting [4] is an e-voting protocol that relies on a trusted random-
number generator. Fake votes are generated for all the candidates the voter
did not for. Every voter then receives a receipt which includes every candidate,
concealing which ones they actually did vote for. Fake votes are eliminated in
tallying.

Belenios [9] itself is not coercion resistant: voters can keep the randomness
used to encrypt the ballot to prove how they voted. This limitation has been
overcome with the deployment of BeleniosRF [6,8].

Caveat Coercitor [14] is a unique voting system that, instead of preventing
coercion, allows it, while recording unforgeable evidence of said coercions. Ob-
servers can decide whether or not the outcome is valid based on the number of
suspicious ballots.
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1.2 Organization

We present some preliminaries in Section 2, in particular in Section 2.4 we de-
scribe what we mean by the term bulletin board. We describe our protocol in Sec-
tion 3 and we provide a proof of security in Section 5. Finally, in Section 6 we
draw some conclusions.

2 Preliminaries

The algebraic preliminaries we need to build the protcol are the Decisional Diffie-
Hellmann Assumption, the Equality of discrete logarithms ZKP and a commit-
ment scheme formalized in [35]. For the sake of compactness we use the following
notation for the indexes: [n] = {i ∈ N : 1 ≤ i ≤ n}, (tj)j∈[m] = (t1, . . . , tm).

2.1 Decisional Diffie-Hellman Assumption

We adopt the definition of the Decisional Diffie–Hellman (DDH) problem and
the relative hardness assumption given in [25].

Let p be a prime. Let a, b, ξ ∈ Z∗p be chosen at random and g be a generator
of a cyclic group G of order p. The DDH problem consists in constructing an
algorithm

B
(
g,A = ga, B = gb, Ξ

)
→ {0, 1} (1)

to distinguish between the tuples
(
g,A,B, gab

)
and

(
g,A,B, gξ

)
, outputting re-

spectively 1 and 0. The advantage of B in this case is written as:

AdvB =
∣∣P [B (g,A,B, gab) = 1

]
− P

[
B
(
g,A,B, gξ

)
= 1
]∣∣ , (2)

where the probability is taken over the random choice of the generator g, of a, b,
ξ ∈ Z∗p, and the random bits possibly consumed by B to compute the response.

Definition 1 (DDH Assumption). The Decisional Diffie-Hellman assump-
tion holds if no probabilistic polynomial-time algorithm B has a non-negligible
advantage in solving the DDH problem.

2.2 Zero-Knowledge Proofs

A Zero-Knowledge proof (ZKP) is a cryptographic proof which allows one party
(the prover P) to convince another party (the verifier V) about the truth of some
statement, without revealing anything else to the verifier.

Given a language L and a common input x then the three basic properties
of a ZKP are:

Definition 2 (Completeness). If x ∈ L (i.e. the prover is honest) then the
verifier should accept the proof with probability 1.
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Definition 3 (Soundness). If x 6∈ L (i.e. the prover wants to convince the
verifier to know something that it does not know or the validity of a property that
is actually false) then the verifier should only accept with negligible probability.

Definition 4 (Zero-Knowledge). For every verifier V there exists an effi-
cient simulator that can generate transcripts that are indistinguishable from real
interaction between a real prover and V.

The third property guarantees that the verifier learns nothing from the in-
teraction, except that x ∈ L.

Equality of discrete logarithms We report here a proof of the equality of
two discrete logarithms [35], which is a variation of the Schnorr interactive pro-
tocol [33,34].

Protocol 1. Let G be a cyclic group of prime order p, let u, ū be generators
of G, and let z, z̄ ∈ G, ω ∈ Zp. The prover knows ω and wants to convince the
verifier that:

uω = z and ūω = z̄, (3)

without disclosing ω. The values of u, z, ū and z̄ are publicly known.

1. The prover generates a random r and computes the commitments t = ur and
t̄ = ūr, then sends (t, t̄) to the verifier.

2. The verifier generates a challenge c ∈ Zp and sends it to the prover4.
3. The prover creates a response s = r + c · ω and sends s to the verifier.
4. The verifier checks that us = zc · t, ūs = z̄c · t̄. If the check fails the proof

fails and the protocols aborts.

The classical interactive ZKP is obtained if in step 2 c is chosen uniformly
at random in {0, 1}, and the protocol is repeated τ = poly(log2(p)) times (the
number of repetitions is polynomial in the length of p, which is the security
parameter). The completeness, soundness, and zero-knowledge properties of this
protocol are proven in [35], where it also described as to simulate a proof and to
extract the secret discrete logarithm from an adversary that we can rewind.

Further discussion on Zero-Knowledge proofs and simulations can be found
in [24].

Non-Interactive proofs. In many contexts, such as public verifiability in e-
voting protocols, it is necessary to prove a statement (in zero-knwoledge) to
many parties, so an interactive protocol becomes quite inconvenient. In these
cases it is much preferable if the prover can publish some sort of evidence of the
truthfulness of the statement that can be independently verified by all the rele-
vant parties later on. Such sort of ZKP is called Non-Interactive Zero-Knowledge
4 Depending on how this challenge is generated, different types of ZKP can be instan-
tiated, see comments below and the next section (Section 2.2)
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Proof (NIZKP), and the Fiat-Shamir technique [17] can be used to transform
an interactive sigma protocol into a NIZKP by exploiting a hash function mod-
eled as a random oracle. The technique requires to derive the challenge value
c deterministically by hashing all the public values involved in the ZKP. This
method assures that P cannot choose the challenge before the commitments, so
a single-round ZKP can be transformed in a NIZKP.

In particular, the non-interactive version of Protocol 1 proceeds as follows:

– P performs the first step as in the ZKP, derives c = H(u, ū, z, z̄, t, t̄), then
computes s as in the third step of the ZKP, and publishes (u, ū, z, z̄, t, t̄, s);

– V computes c = H(u, ū, z, z̄, t, t̄), then performs the checks as in the last step
of the ZKP.

Designated-Verifier proofs. Designated-Verifier Non-Interactive ZKP sys-
tems (DVNIZKPs [18]) are protocols which retain most of the security proper-
ties of a NIZKP, but are not publicly verifiable: only the owner of some secret
information (the designated verifier) can check the proof. This property is useful
in the context of e-voting to achieve end-to-end verifiability while still preventing
the voter from transferring some proofs (and thus preventing coercion through
plausible deniability).

A method that can be used to build a DVNIZKP is to prove either the
knowledge of a secret key or that x ∈ L, with a NIZKP that assures that one
of these two statements is true without revealing which one. Given two NIZKPs
for the languages L0 and L1, with a challenge c ∈ Zp, the Cramer-Damgård-
Schoenmakers technique [10] allows to build a NIZKP for the disjunction L0 ∨
mathcalL1. The method exploits the ability of the prover to simulate the proof
if c is known in advance, and the fact that given c ∈ Zp you can freely choose
c0 ∈ Zp and in consequence fix c1 ∈ Zp such that c = c0 + c1.

Protocol 2. Let G be a cyclic group of prime order p, let u, ū be generators of
G, and let z, z̄ ∈ G, ω ∈ Zp. Let e ∈ Zp be the secret key of V and D = ue ∈ G
be the corresponding public key. As in Protocol 1, the prover knows ω and wants
to convince the verifier that:

uω = z and ūω = z̄, (4)

without disclosing ω. We also want V to be able to exploit the knowledge of e to
forge such a proof for any value of z, z̄ without knowing ω (such an ω may also
not exist).

The values of u, z, ū, z̄, and D are publicly known.

1. P computes t, t̄ ∈ G as in Protocol 1;
2. P chooses uniformly at random s0, c0 ∈ Zp and computes t0 = us0 ·D−c0 ;
3. P computes c = H(u, ū, z, z̄, t, t̄, t0, D) and c1 = c− c0;
4. P computes s1 = r + c1 · ω and publishes the DVNIZKP:

(u, ū, z, z̄, t, t̄, t0, D, s0, s1, c0, c1) .
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V checks that us1 = zc1 · t, ūs1 = z̄c1 · t̄, us0 = Dc0 · t0, and c0 + c1 = c with
c = H(u, ū, z, z̄, t, t̄, t0, D). If the check fails the proof is rejected.

V, who knows e, can forge a proof for any z, z̄ ∈ G in the following way:

1. V chooses r0 ∈ Zp uniformly at random and computes t0 = ur0 ;
2. V chooses uniformly at random s1, c1 ∈ Zp and computes t = us1 · z−c1 ,
t̄ = ūs1 · z̄−c1 ;

3. V computes c = H(u, ū, z, z̄, t, t̄, t0, D) and c0 = c− c1;
4. V computes s0 = r0 + c0 · e and obtains the forged DVNIZKP:

(u, ū, z, z̄, t, t̄, t0, D, s0, s1, c0, c1) .

2.3 Commitment Scheme

A commitment scheme [5] is composed by two algorithms:

– Commit(m, r): takes the message m to commit with some random value r as
input and outputs the commitment c and a decommitment value d.

– Verify(c,m, d): takes the commitment c, the message m and the decommit-
ment value d and outputs true if the verification succeeds, false otherwise.

A commitment scheme must have the following two properties:

– Binding: it is infeasible to find m′ 6= m and d, d′ such that
Verify(c,m, d) = Verify(c,m′, d′) = true.

– Hiding: Let [c1, d1] = Commit(m1, r1) and [c2, d2] = Commit(m2, r2) with
m1 6= m2, then it is infeasible for an attacker having only c1, c2, m1 and m2

to distinguish which ci corresponds to which mi.

In our construction we use commitments to prevent some possible malicious
choice of parameters, specifically we want that the authorities choose their val-
ues independently. However, this kind of suspicious behavior does not affect
Vote-Indistinguishability (see Definition 11) thanks to the hardness of DLOG
problem, so in our analysis commitments are not directly involved in the proof
of Theorem 1. For this reason we do not specify the meaning of infeasibility in
the aforementioned security properties, noting that a commitment scheme can
achieve perfect (information theoretic) security in only one of the two properties,
while the other is at most computationally secure.

2.4 Bulletin Board

The concept of (Web) Bulletin Board (BB [20]) is well established in literature,
as its use in e-voting.

A BB is a log [7] service that implements publicly readable, insert-only stor-
age. It is often managed by the administrator of the election and relies on some
security assumptions:

– it is not possible to forge messages,
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– attempts to present different views of log contents to different readers should
be detected.

A secure voting system should protect against a malicious administrator or bul-
letin board which tries to forge or unduly redact data (e.g. tries to insert arbitrary
ballots or reject valid ballots). A more detailed discussion on bulletin boards can
be found in [16].

2.5 General requirements for remote voting systems

A trustworthy e-voting protocol has to satisfy conflicting requirements: it should
preserve both integrity of election results and confidentiality of votes. In this
section we define the properties that a trustworthy e-voting protocol should
fulfill. We will prove that our proposed protocol satisfies them in Section 5.2.

Definition 5 (Correctness). Correctness [19] requires that an adversary can-
not preempt, alter, or cancel the votes of honest voters, and cannot cause voters
to cast ballots resulting in double voting.

Definition 6 (Fairness). Fairness [28] requires that no information about how
many votes each candidate has received can be learned until the voting results are
published. Any participant cannot gain knowledge of the voting results before its
final publication.

Definition 7 (Privacy). Privacy ([29,23,3]) is defined as the inability of the
adversary to distinguish, given two candidates C1, C2, whether voter Vi voted for
C1 or C2.

Definition 8 (Verifiability). Verifiability [1,19,6] requires that the results of
tabulation cannot be different than if all votes were announced and tabulated
publicly (even if an adversary tries to change the election result). Verifiability
can be divided [1] into:

– Universal Verifiability: the correctness of elections results can be verified by
all observers;

– Individual Verifiability: every voter can check that their vote has been cast
correctly and has been accurately counted.
• Cast-as-intended verifiability [11]: every voter can check that their vote
was correctly cast.

• Recorded-as-cast verifiability [27]: every voter can check that their vote
was recorded as it was cast.

• Tallied-as-recorded verifiability [30]: anyone can check that cast votes
were correctly tallied.

In [2], the combination of cast-as-intended, recorded-as-cast, and tallied-as-
recorded, is called End-to-end.
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Coercion resistance ([19,15]) requires that an adversary cannot learn any
additional information about the votes other than what is revealed by the results
of tabulation. In other words, voters cannot prove whether or how they voted,
even if they can interact with the adversary while voting. In [15] there is a critical
analysis of various definitions.

The Amun protocol protects against coercers that wish to sway elections
towards specific candidates, but is not very effective against the more subtle
randomization and forced abstention attacks. In this simplified model, we adapt
the definition of Coercion Resistance as follows:

Definition 9 (Vote-Coercion Resistance). Let A be a coercer, Vc the set
of coerced voters, and (Ci,1, . . . , Ci,P ) the choices that A wants to impose to the
voter corresponding to vi ∈ Vc. Let Ψ1 be the scenario in which A has access
only to the final tally. Let Ψ2 be the scenario in which A has access to the whole
Bulletin Board, and can see all the actions performed by the voters in Vc, with
the exception of the ones carried out in a protected environment (or through an
untappable channel). A voting protocol is Vote-Coercion Resistant if the prob-
ability of A detecting that a voter in Vc has not followed its instruction is the
same in Ψ1 and Ψ2.

3 Multi-Candidate Voting System

This section presents our proposal for a remote e-voting protocol that manages
an election with N voters, where each one expresses P preferences among M
candidates (obviously P < M).

The basic idea is that every voter owns M voting tokens (v-tokens): P are
valid, the others are a decoy, but only the voter knows which is which. When
voting, voters express their preferences assigning the valid v-tokens to the chosen
candidates and the decoy ones to the others.

The protocol allows for re-voting, before tallying duplicate ballots (i.e. ballots
with the same v-tokens regardless of their order) are discarded, keeping only the
most recent. After the voting phase, when counting the votes, the decoy v-tokens
do not contribute to the tally, so only valid v-tokens are counted. The whole
process is publicly auditable and fully verifiable, and preserves privacy as long
as at most one authority is corrupt.
The protocol is divided into four phases:

– Setup. Three authorities, knowing a list of eligible voters, generate the val-
ues for the creation of both the v-tokens and the masks associated to the
candidates. These masks guarantee the voters’ privacy, and prevent early
tallying.

– Registrar Phase. In this phase, the three authorities engage in a 5-step
protocol (see Figure 1) to create M indistinguishable v-tokens (P are valid
and M −P are a decoy) employing masking and shuffling so that at the end
the authorities will not be able to identify which tokens are valid. The voter
can check the validity of these v-tokens thanks to DVNIZKPs issued by the
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authorities. These proofs are worthless for a coercer because the voter can
forge them.

A0 A2

A1

vi

A0

A1

vi BBI:
in
it
&
m
as
k

II: m
ask

III: shuffle

IV
: u
nm

as
k

V: unmask

Fig. 1. The main steps of the ballot generation procedure, which correspond to steps
3-7 of the Registrar Phase as described in Section 3.1.

– Voting Phase. During this phase the voter express their preferences by
assigning each of their M v-tokens to the candidates. All v-tokens of a voter
must be assigned together, each to a distinct candidate. After the v-tokens
have been assigned, the voter gets a transcript that reports the assignment
of the v-tokens to the candidates. This transcript is worthless for a coercer
since the v-tokens are indistinguishable. Here we assume that every candidate
receives at least one legitimate vote (with a valid v-token), otherwise it is
trivial to discern the validity of some tokens from the election results.

– Tallying. The v-tokens are processed (see Figure 2), removing the candidate
masks, which allows to count the number of valid and decoy tokens assigned
to each candidate. The results and the intermediate computation steps are
published, alongside a set of NIZKPs that allow anyone to check that the
results are correct and there has not been any manipulation of the ballots.
Every voter can also check, by examining the bulletin board, that their v-
tokens have been cast and counted correctly.

3.1 Protocol Description

The key components involved in the protocol are:

1. a finite set of voters V = {vi}i∈[N ] (where vi is a pseudonymous id), with
N ∈ N the number of eligible voters;

2. a finite set of candidates C = {c`}`∈[M ] with M ∈ N the number of candi-
dates;

3. three trusted authorities5 A0, A1, and A2.
5 We use a weak concept of trust here, since the conduct of these authorities can be
checked by voters.
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C4

C3

C2

C1

3

3

2

2

v1 v2 v3 v4 v5 A0 A2

A1

Fig. 2. Example of voting and tallying. Each voter has two valid tokens U and two
decoy tokens U. After the tallying it is revealed that candidates C3 and C4 are elected
having received more preferences (3) with respect to the other two candidates (who
received only 2).

4. one ballot bi (comprising M v-tokens) for every i ∈ [N ], i.e. one for each
eligible voter.

Throughout the protocol we implicitly assume that every public value (in-
cluding a description of the key components presented above) are published in
the BB. The protocol is divided into four phases:

Setup The authority A0 selects and publishes:

1. a secure group G of prime order p in which the DDH assumption (see Defi-
nition 1) holds;

2. a generator g ∈ G;
3. a commitment scheme (see Section 2.3) Comm to be used to commit to the

values computed before publishing them, in order to improve security.

Then A0 performs the following operations:

1. chooses uniformly at random two values k and λ in Z∗p. A0 knows that the
v-tokens computed using k are valid, while the ones computed using λ are
decoys, but this information is kept secret;

2. chooses uniformly at random N ·M distinct values z̄i,` ∈ Z∗p, with i ∈ [N ],
` ∈ [M ];

3. finally, A0 commits to the values gk, gλ, and, for every i ∈ [N ], it commits
to
(
vi, (g

z̄i,`)`∈[M ]

)
.

An honest authority A0 is supposed to keep private all the values z̄i,`, k, λ.

The authority A1 performs the following operations:
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1. chooses uniformly at random M distinct values α′` ∈ Z∗p, with ` ∈ [M ], these
will be the first half of the candidates’ masks;

2. chooses uniformly at random N distinct values x′i ∈ Z∗p, with i ∈ [N ];
3. chooses uniformly at random two sets of N ·M distinct values z′i,`, y

′
i,` ∈ Z∗p,

with i ∈ [N ], ` ∈ [M ];
4. finally, A1 commits to the values gα

′
` , ∀` ∈ [M ], and for every i ∈ [N ] it

commits to the tuple
(
vi, g

x′i , (gz
′
i,`)`∈[M ], (g

y′i,`)`∈[M ]

)
.

An honest authority A1 is supposed to keep private all the values α′`, x
′
i, z′i,`,

y′i,`.

The authority A2 performs the following operations:

1. chooses uniformly at randomM distinct values α′′` ∈ Z∗p, with ` ∈ [M ], these
will be the second half of the candidates’ masks;

2. chooses uniformly at random N distinct values x′′i ∈ Z∗p, with i ∈ [N ];
3. chooses uniformly at random N ·M distinct values y′′i,` ∈ Z∗p, with i ∈ [N ],
` ∈ [M ];

4. Finally A2 commits to the values gα
′′
` , ∀` ∈ [M ], and for every i ∈ [N ] it

commits to the tuple
(
vi, g

x′′i , (gy
′′
i,`)`∈[M ]

)
.

An honest authority A2 is supposed to keep private all the values α′′` , x
′′
i , y′′i,`.

Once that all the commitments have been published, the authorities can decom-
mit the values:

– A0 publishes the decommitments for the values gk, gλ, alongside all the
tuples

(
vi, (g

z̄i,`)`∈[M ]

)
∀i ∈ [N ];

– A1 publishes the decommitments for the values gα
′
`∀` ∈ [M ], and the tuples(

vi, g
x′i , (gz

′
i,`)`∈[M ], (g

y′i,`)`∈[M ]

)
∀i ∈ [N ];

– A2 publishes the decommitments for the values gα
′′
` ∀` ∈ [M ], and the tuples(

vi, g
x′′i , (gy

′′
i,`)`∈[M ]

)
∀i ∈ [N ].

All these published values are accompanied by NIZKPs which prove that the
authority who published them knows the corresponding secret exponents. These
NIZKPs can be constructed using the Schnorr protocol [33] and the Fiat-Shamir
transformation [17] just like in Section 2.2.

To simplify notation we introduce the following definitions for aggregate val-
ues for all i ∈ [N ] and ` ∈ [M ]:

xi = x′i + x′′i , α` = α′` · α′′` , zi,` = z̄i,` · z′i,`, yi,` = y′i,` · y′′i,`. (5)

Registrar Phase For every pseudonymous id vi ∈ V the following steps are
performed:
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1. Let Alice be the person associated to the pseudonymous id vi, note that
the authorities do not need to know this association. She goes in a safe and
controlled environment (see Section 6 for further discussion on this require-
ment) where she is identified and authenticated as the eligible and not yet
registered pseudonymous id vi. In this environment she can interact with all
three authorities without fear that any adversary can eavesdrop or interfere.

2. Alice creates a signing key-pair (si,Ki), a designated verifier key-pair (ei, Di),
and gives Ki, Di to the authorities proving the knowledge of si (e.g. by sign-
ing a challenge message), and of ei via a NIZKP (which includes the challenge
message among the public values). The authorities associate Ki, Di to vi in
their respective voters lists.

3. A0 performs the following steps:
(a) A0 chooses, for every i ∈ [N ], a random subset Vi ⊂ [M ] such that its

cardinality is exactly P , then sets:

σi,` =

{
k ⇐⇒ ` ∈ Vi
λ ⇐⇒ ` /∈ Vi

(6)

i.e. the random choice of the Vi determines which tokens will be valid
and which will be a decoy;

(b) A0 takes the (publicly available) values gx
′
i and gx

′′
i and creates the step

0 of the ballot b̄0,i = (b̄0,i,`)`∈[M ] where:

b̄0,i,` =
(
gσi,` · gx

′
i · gx

′′
i

)z̄i,`
= gz̄i,`(σi,`+xi) ∀` ∈ [M ]; (7)

(c) A0 sends to A1 the initial ballot b̄0,i and sends to Alice b̄0,i and Vi;
(d) A0 proves the correctness of computations with multiple instances of the

DVNIZKP of Protocol 2:
i. A0 proves that the gz̄i,`σi,` are correct (using σi,` = k or σi,` = λ)

with:

ω = k, u = g, z = gk, ū = gz̄i,` , z̄ = gz̄i,`k ∀` ∈ Vi, (8)

ω = λ, u = g, z = gλ, ū = gz̄i,` , z̄ = gz̄i,`λ ∀` ∈ [M ] \ Vi,
(9)

ii. then A0 proves that the b̄0,i,` are correct using for all ` ∈ [M ]:

ω = z̄i,`, u = g, z = gz̄i,` , ū = gσi,` ·gx
′
i ·gx

′′
i , z̄ = b̄0,i,`. (10)

4. A1 computes the step 1 of the ballot b̄1,i = (b̄1,i,`)`∈[M ] where:

b̄1,i,` =
(
b̄0,i,`

)z′i,` = gzi,`(σi,`+xi) ∀` ∈ [M ] (11)

and sends it to Alice and to A2. Then A1 proves that the b̄1,i,` are correct
with the DVNIZKP of Protocol 2, using:

ω = z′i,`, u = g, z = gz
′
i,` , ū = b̄0,i,`, z̄ = b̄1,i,` ∀` ∈ [M ]. (12)
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5. A2 chooses uniformly at random a permutation πi ∈ Sym([M ]) and computes
the step 2 of the ballot b̄2,i = (b̄2,i,`)`∈[M ] where:

b̄2,i,` =
(
b̄1,i,`

)y′′
i,π
−1
i

(`) = g
zi,`y

′′
i,π
−1
i

(`)
(σi,`+xi) ∀` ∈ [M ] (13)

and sends it to Alice and to A0, πi is sent to Alice and A1. Then A2 proves
that the b̄2,i,` are correct with the DVNIZKP of Protocol 2, using:

ω = y′′
i,π−1

i (`)
, u = g, z = g

y′′
i,π
−1
i

(`) , ū = b̄1,i,`, z̄ = b̄2,i,` ∀` ∈ [M ]. (14)

6. A0 computes the step 3 of the ballot b̄3,i = (b̄3,i,`)`∈[M ] where:

b̄3,i,` =
(
b̄2,i,`

) 1
z̄i,` = g

z′i,`y
′′
i,π
−1
i

(`)
(σi,`+xi) ∀` ∈ [M ] (15)

and sends it to Alice and to A1. Then A0 proves that the b̄3,i,` are correct
with the DVNIZKP of Protocol 2, using:

ω =
1

z̄i,`
, u = gz̄i,` , z = g, ū = b̄2,i,`, z̄ = b̄3,i,` ∀` ∈ [M ]. (16)

7. A1 computes the final ballot bi = (bi,`)`∈[M ] where:

bi,` =
(
b̄3,i,πi(`)

) y′i,`
z′
i,πi(`) = gyi,`(σi,πi(`)+xi) ∀` ∈ [M ] (17)

and sends it to Alice and publishes on the BB the pair (Ki, bi). Then A1

proves that the bi,` are correct with the DVNIZKP of Protocol 2 and using:

ω =
y′i,`

z′i,πi(`)
, u = gz

′
i,πi(`) , z = gy

′
i,` , ū = b̄3,i,πi(`), z̄ = bi,` ∀` ∈ [M ]. (18)

Note that Alice, thanks to the proofs and the knowledge of the intermediate
values, knows which ones are a valid token (the ones with σi,` = k), but thanks
to the random choices of Vi and πi the authorities cannot distinguish the tokens
unless they collude. Moreover the properties of the DVNIZKP allow Alice to
forge the transcript changing which tokens are valid, making them useless for
proving the validity of a token.

Voting Phase Voters express their preferences by assigning the valid tokens to
their chosen candidates, and the decoy tokens to the others. This assignment is
then signed by the voter associated to vi with their private signing key si, and
published on the BB, so voters can check that their votes have been correctly
registered.

Once the voting phase ends, the ballots are filtered, removing:

– duplicates (i.e. ballots which are permutations of the same values), keeping
only the most recent tuple;
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– incomplete ballots;
– forged ballots:
• ballots which have not been published by the authorities on the BB

during the registration phase;
• ballots which are published on the BB (during the voting phase) without

a valid signature. A ballot bi has a valid signature if it verifies with the
public key Ki which has been associated during the registration phase
to bi.

The remaining ballots are used in the tallying. Note that anyone can perform
this filtering step since it only involves public data.

Incomplete and forged ballots could also be rejected and not published by
the BB during the voting phase to minimize the number of processed ballots.

Tallying Once the voting phase is over, the tallying can start.
In order to count the votes, the authorities have to process the tokens re-

ceived by each candidate, substituting the voter’s masks yi,` with the appropriate
candidate mask α`. Suppose that T ≤ N participants voted. Without loss of gen-
erality, we can assume that only the participants with index i ∈ [T ] voted, while
the remaining N − T abstained from voting.

For every i ∈ [T ], let φi : [M ] −→ [M ] be the bijective map that associates
to each candidate index ` the index of the token bi,φi(`) that the voter associated
to vi sent to the candidate C`. Then, for every i ∈ [T ], ` ∈ [M ], the authorities
process the token bi,φi(`) by performing the following steps:

1. A1 computes and publishes the preliminary vote t̄`,i as:

t̄`,i =
(
bi,φi(`)

) α′`
y′
i,φi(`) = gα

′
`y
′′
i,φi(`)

(σi,πi(φi(`))+xi), (19)

alongside a NIZKP that proves this computation correct. A1 proves that t̄`,i
is correct with the NIZKP version of Protocol 1 and using:

ω =
α′`

y′i,φi(`)
, u = gy

′
i,φi(`) , z = gα

′
` , ū = bi,φi(`), z̄ = t̄`,i. (20)

2. A2 then computes and publishes the final vote t`,i as:

t`,i = (t̄`,i)

α′′`
y′′
i,φi(`) = gα`(σi,πi(φi(`))+xi), (21)

alongside a NIZKP that proves this computation correct. A2 proves that t`,i
is correct with the NIZKP version of Protocol 1 and using:

ω =
α′′`

y′′i,φi(`)
, u = gy

′′
i,φi(`) , z = gα

′′
` , t̄ = b`,i, z̄ = t`,i. (22)
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Once that all final votes have been computed, the actual tallying is performed.
Let R` be the number of valid tokens given to the `-th candidate (i.e. the

number of preferences received by said candidate), and let F` be the number of
decoy tokens given to the `-th candidate. Clearly T = R` + F` ∀` ∈ [M ]. The
count R` can be computed with the following steps:

1. Both A1 and A2 can compute gα` (as (gα
′′
` )α

′
` and (gα

′
`)α
′′
` respectively).

A1 can prove the correctness of this value by publishing a NIZKP (from
Protocol 1) computed using:

ω = α′`, u = g, z = gα
′
` , ū = gα

′′
` , z̄ = gα` , (23)

A2 can prove the correctness of this value by publishing a NIZKP (from
Protocol 1) computed using:

ω = α′′` , u = g, z = gα
′′
` , ū = gα

′
` , z̄ = gα` . (24)

In practice, each authority may publish half of the values.
2. A0 computes and publishes gα`k = (gα`)

k and gα`λ = (gα`)
λ. Then A0

proves that gα`k is correct by publishing a NIZKP (from Protocol 1) com-
puted using:

ω = k, u = g, z = gk, ū = gα` , z̄ = gα`k, (25)

and that gα`λ is correct by publishing a NIZKP (from Protocol 1) computed
using:

ω = λ, u = g, z = gλ, ū = gα` , z̄ = gα`λ. (26)

3. A1 computes
∑T
i=1 x

′
i, and publishes gα`

∑T
i=1 x

′
i . ThenA1 proves that gα`

∑T
i=1 x

′
i

is correct by publishing a NIZKP (from Protocol 1) computed using:

ω =

T∑
i=1

x′i, u = g, z = g
∑T
i=1 x

′
i , ū = gα` , z̄ = gα`

∑T
i=1 x

′
i , (27)

noting that any observer can compute g
∑T
i=1 x

′
i =

∏T
i=1 g

x′i .
4. Similarly, A2 computes

∑T
i=1 x

′′
i and publishes gα`

∑T
i=1 x

′′
i . Then A2 proves

that gα`
∑T
i=1 x

′′
i is correct by publishing a NIZKP (from Protocol 1) com-

puted using:

ω =

T∑
i=1

x′′i , u = g, z = g
∑T
i=1 x

′′
i , ū = gα` , z̄ = gα`

∑T
i=1 x

′′
i , (28)

noting that any observer can compute g
∑T
i=1 x

′′
i =

∏T
i=1 g

x′′i .
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5. Given that any observer can compute the value:

gα`(
∑T
i=1 xi+R`k+F`λ) =

T∏
i=1

t`,i, (29)

and that:

gα`
∑T
i=1 xi = gα`

∑T
i=1(x′i+x

′′
i ) = gα`

∑T
i=1 x

′
i · gα`

∑T
i=1 x

′′
i , (30)

then anyone can compute:

T =
(
gα`

∑T
i=1 xi

)−1

· gα`(
∑T
i=1 xi+R`k+F`λ) =

(
gα`k

)R` · (gα`λ)F` . (31)

6. R` and F` can now be computed by brute force, giving the number of pref-
erences received by the `-th candidate.

Example 1. Let T = 3, then the possible values of T are:

T =



(
gα`k

)0 · (gα`λ)3 if R` = 0, F` = 3,(
gα`k

)1 · (gα`λ)2 if R` = 1, F` = 2,(
gα`k

)2 · (gα`λ)1 if R` = 2, F` = 1,(
gα`k

)3 · (gα`λ)0 if R` = 3, F` = 0.

Since gα`k and gα`λ are publicly available, all these possible values can be com-
puted by anyone, identifying the values of R` and F`.

Given a positive integer T ∈ N, it is possible to represent it in T + 1 ways as
a sum of two non-negative integers. Given that the number of valid and decoy
votes must sum up to the number of actual voters T , it follows that the number
of possible values for T is T + 1, so the effort of computing R` and F` is linear
in the number of actual votes.

4 Usability

In order to cast a vote, the voter has to remember which are the P valid v-tokens
among theM in their ballot. This can be an usability issue when P andM grow.

To help the voter remembering the position of the valid tokens, we can exploit
error correcting codes. We can see the information on which tokens are valid as
a binary vector of FM2 with constant weight P . We can exploit constant-weight
codes [12] to encode these vectors as a vector of the space Fκ

q and then use a
[n,κ]q shortened Reed-Solomon code [31] to add error-correction capabilities.
With this approach the voter has only to remember n elements of Fq, with the
added bonus that up to n−κ

2 errors can be automatically corrected.
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Example 2. We can encode the information about which tokens are valid with
a 6 digits PIN that corrects up to two errors (and therefore also an inversion of
two digits, which is a fairly common error). To do so we set q = 9, n = 6, κ = 2.
With this encoding we can cover any value of P if M ≤ 8, and values of P ≤ 3
or P ≥M − 3 if M ≤ 13

(
since in these cases

(
M
P

)
< 92

)
.

Example 3. With a short 3-letter sequence (case-insensitive) that automatically
corrects one error, we can encode the information about which tokens are valid
for M ≤ 6, M = 7 ∧ P ≤ 2, M ≤ 25 ∧ (P = 1 ∨ P = M − 1), by setting q = 25,
n = 3, κ = 1. Adding a letter to the sequence (n = 4, κ = 2), we can cover more
cases:

M ≤ 11,

M = 12 ∧ (P ≤ 4 ∨ P ≥ 8),

M ≤ 16 ∧ (P ≤ 3 ∨ P ≥M − 3),

...

Finally, we highlight that, with the DVNIZKPs and the permutation received
during the registrar phase, the voter can check whether they remember correctly
the positions of the valid tokens.

5 Security Analysis

The goal is to prove that an adversary cannot distinguish between valid and
decoy v-tokens and guess how voters cast their preferences. Since election results
are obviously public, we have to avoid some trivial cases in which the adversary
can deduce the votes by simply observing the results.

Therefore we assume that the adversary controls one authority and all but
two voters, and that these two voters express distinct preferences. In particular,
we let the adversary select two distinct sets of preferences, then we randomly
assign to each of the two uncorrupted voters one set of these sets of preferences.
The adversary wins the security game if it guesses correctly which voter expressed
which set of preferences, i.e. guesses the random assignment.

5.1 Security Model

The security of the protocol will be proven in terms of vote indistinguishability
(VI), as detailed in Definition 11.

The security of the protocol will be proven in the presence of a malicious
authority, so the simulator in the proof will take on the roles of the two honest
authorities and of the two voters that the adversary does not control.

To simplify our analysis we assume that the adversary-controlled authority
does not intentionally fail decommitments or (DV)NIZKPs, so the protocol does
not abort. This is a reasonable assumption considering the application context,
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however it is not necessary to attain security. In fact, if the adversary wins
the security game with non-negligible advantage, then it must run the protocol
smoothly with non-negligible probability (since it outputs its guess only once
the protocol has correctly terminated).

Definition 10 (Security Game). The security game for the election protocol
proceeds as follows:

– Init. The adversary A chooses the authority and the N−2 voters that it will
control. This means that the adversary knows which are the valid and decoy
v-tokens of these voters. The remaining two voters are called free voters.
The challenger C takes the role of the other authorities and the free voters.

– Phase 0. A and C run the Setup and Registrar phases of the protocol,
interacting as needed.

– Phase 1. The adversary votes with some or all of the voters it controls.
– Challenge. The challenge phase is articulated as follows:

1. A selects two distinct sets of preferences P̃0 6= P̃1, with P̃i ⊂ [M ], #P̃i =
P for i = 0, 1, and sends them to C;

2. C flips a random coin µ ∈ {0, 1} to determine which preference set the
first free voter will use, i.e. P1 = P̃µ, setting also P2 = P̃µ⊕1;

3. C constructs two random ballot assignment maps φ̃1, φ̃2 : [M ] −→ [M ]
such that φ̃i(`) refers to a valid token if and only if ` ∈ Pi, for i = 1, 2;

4. finally, C votes by sending to the candidate C` the φ̃1(`)-th token of the
first free voter and the φ̃2(`)-th token of the second free voter, ∀` ∈ [M ].

.
– Phase 2. The adversary votes with some or all of the voters it controls.
– Phase 3. A and C run the Tallying phase of the protocol, and the election

result is published.
– Guess. The adversary outputs a guess µ′ of the coin flip that randomly

assigned the voting preferences of the two free voters.

A wins if µ′ = µ.

Definition 11 (Vote Indistinguishability). An E-Voting Protocol with se-
curity parameter θ is VI-secure if, for every probabilistic polynomial-time adver-
sary A that outputs a guess µ′ of the coin flip µ (as described in the security
game of Definition 10), there exists a negligible function η such that:

P[µ′ = µ] ≤ 1

2
+ η(θ). (32)

In the following theorem we prove our voting protocol VI-secure under the
DDH assumption in the security game defined above.

Theorem 1. In the random oracle model, if the DDH assumption holds, then
the protocol described in Section 3.1 is VI-secure, as per Definition 11.
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Proof. Suppose there exists a polynomial time adversary A, that can attack the
scheme with advantage ε. We claim that a simulator S can be built to play the
decisional DH game with advantage ε

2 . The simulator controls the random oracle
that defines the hash function H, and starts by taking in a DDH challenge:

(g,A = ga, B = gb, Ξ), (33)

with Ξ = gab or Ξ = R = gξ.
First we consider the case in which the adversary controls A0, where the

simulation proceeds as follows.

– Init. The adversary chooses the N − 2 voters to control. Without loss of
generality we may assume that the two free voters are associated to v1 and
v2.

– Setup. S chooses uniformly at random in Z∗p the values x̃i, α̃`, ỹi,`, and z̃i,`
for all i ∈ [2], ` ∈ [M ], and implicitly sets for all i ∈ [2], ` ∈ [M ]:

x′′i = x̃i + (−1)ib, α′` = a · α̃`, y′i,` = a · ỹi,`, z′i,` = a · ỹi,`.
(34)

S chooses the other values for authorities A1 and A2 following the protocol.
In the improbable case that a = 0, the DDH problem is trivially solvable
(ga = gab = 1). If a 6= 0, since a and b come from an uniform distribution,
then also these implicit values are uniformly distributed, so the choices of
the simulator are indistinguishable from a real protocol execution.
Note that S can compute all the values gx

′′
i , gα

′
` , gy

′
i,` , gz

′
i,` , either normally

(when the parameter has been explicitly chosen) or as follows:

gx
′′
i = gx̃i ·B(−1)i , gα

′
` = Aα̃` , gy

′
i,` = Aỹi,` , gz

′
i,` = Az̃i,` . (35)

for all i ∈ [2], ` ∈ [M ]. Therefore, S can simulate the setup phase, exploiting
the random oracle to simulate the NIZKPs for x′′i , α′`, y

′
i,` z

′
i,` for i ∈ [2],

` ∈ [M ].
– Registrar Phase. For the voters associated to vi with 3 ≤ i ≤ N , S can

simulate this phase following the protocol normally (since all relevant pa-
rameters have been explicitly chosen), while for i ∈ [2] S does the following:
1. A computes the initial step of the ballot b̄0,i on behalf of A0 and proves

its correctness with the appropriate DVNIZKPs. By rewinding A and
exploiting the control of the random oracle, S is able to extract from
the DVNIZKPs the values of k, λ, and z̄i,` for all ` ∈ [M ] (see [35]).
Moreover, since A0 communicates the set of indexes of valid tokens Vi
to the voter associated to vi (that is controlled by the simulator), S can
reconstruct the values of the σi,` for all ` ∈ [M ].

2. S computes step 1 of the ballot b̄1,i = (b̄1,i,`)`∈[M ] as:

b̄1,i,` = Az̄i,`z̃i,`(σi,`+x
′
i+x̃i) ·Ξ z̄i,`z̃i,`(−1)i ∗= gzi,`(σi,`+xi) ∀` ∈ [M ]

(36)
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where ∗
= of Equation (36) holds iff Ξ = gab in the DDH challenge.

Since it controls the voter associated to vi, S can forge the DVNIZKPs
exploiting the value ei. In order to hide from A which tokens are valid,
these DVNIZKPs are forged using random values.

3. S can perform step 2 on behalf of A2 normally, then A computes step 3
on behalf of A0 and proves its correctness.

4. Finally S computes the final ballot bi = (bi,`)`∈[M ] as:

bi,` = Aỹi,`y
′′
i,`(σi,πi(`)+x

′
i+x̃i) ·Ξ ỹi,`y

′′
i,`(−1)i ∗= gyi,`(σi,πi(`)+xi) (37)

where again ∗= of Equation (37) holds if and only if Ξ = gab in the DDH
challenge.

– Voting: Phases 1, 2, and the Challenge are performed as in Definition 10.
– Tallying. Without loss of generality, suppose that only the vi with i ∈ [T ]

have voted. For ` ∈ [M ], S carries on with the simulation as follows:
1. S computes the preliminary and final votes on behalf of A1 and A2

following the protocol without problems. In fact, for i ∈ [2], we have
that

α′`
y′
i,φ̃i(`)

=
aα̃`

aỹi,φ̃i(`)
=

α̃`
ỹi,φ̃i(`)

∀` ∈ [M ], (38)

and these values are known to S.
2. S computes and publishes the values gα` = Aα̃`α

′′
` ∀` ∈ [M ], and simu-

lates the proofs of correctness.
3. Finally note that S can compute:

T∑
i=1

x′′i = x̃1 − b+ x̃2 + b+

T∑
i=3

x′′i = x̃1 + x̃2 +

T∑
i=3

x′′i , (39)

so for the rest of the tallying phase S can follow the protocol.
– Guess Eventually A will output a guess µ′ of the coin flip performed by S

during the Challenge. S then outputs 0 to guess that Ξ = gab if µ′ = µ,
otherwise it outputs 1 to indicate that Ξ is a random group element R ∈ G.

The case in which the adversary controls A1 and the case in which the adversary
controls A2, proceed similarly. If A1 is corrupted, the main difference is that S
implicitly sets:

α′′` = a · α̃`, y′′i,` = a · ỹi,`, z̄i,` = a · ỹi,`, (40)

while α′`, y
′
i,`, z

′
i,` are chosen normally.

If A2 is corrupted, the main difference is that S implicitly sets:

x′i = x̃i + (−1)ib, (41)

while x′′i is chosen normally.
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Essentially, in all three cases when Ξ is not random the simulator S gives a
perfect simulation. This means that the advantage is preserved, so it holds that:

P[S(g,A,B,Ξ = gab) = 0] =
1

2
+ ε. (42)

On the contrary, when Ξ is a random element R ∈ G, every token and vote
belonging to the free voters becomes independent from the values that would
have been computed by following the protocol (since they are simulated using
the random value R), so A can gain no information about the votes from them,
while the tally is always correct. Since the security game is structured in such a
way that the tally and the tokens of the other voters (i.e. the values where Ξ is
not used in the computation by S) do not give any information about the coin
flip µ, we have that:

P[S(g,A,B,Ξ = R) = 0] =
1

2
. (43)

Therefore, S can play the DDH game with non-negligible advantage ε
2 .

5.2 General properties of the protocol

The general properties of a vote system introduced in Section 2.5, can all be
proved for the protocol described in Section 3.1.

Proposition 1 (Correctness). If the underlying BB is insert-only (as de-
scribed in Section 2.4), then the protocol is correct, as per Definition 5.

Proof. This property derives directly from the properties of the bulletin board:
since it is insert-only cast votes cannot be altered or erased. As specified at the
end of the voting phase (see Section 3.1), forged ballots are not accepted. This
means that only the voter to whom the v-tokens have been issued is able to
cast them since the adversary does not have the signing key si of honest voters.
Finally, in case of multiple ballots cast by the same voter only the most recent
one is considered, preventing double voting.

Proposition 2 (Fairness). In the random oracle model, if the DDH assump-
tion holds, then the protocol is fair, as per Definition 6.

Proof. Thanks to Theorem 1, in the random oracle model, if the DDH assump-
tion holds then the protocol has vote-indistinguishability. Therefore, the votes
cast do not reveal how many preferences each candidate has received until they
are processed by the authorities, and this does not happen until the voting phase
has ended. Even the processed votes do not reveal such information until the tal-
lying values gα`

∑
x′i and gα`

∑
x′′i are published by the authorities in the steps 3

and 4 of tallying, at which point the end results are computable by anyone and
therefore public.

Proposition 3 (Privacy). In the random oracle model, if the DDH assumption
holds, the bulletin board is publicly readable and insert-only (as described in
Section 2.4), then the protocol is private, as per Definition 7.
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Proof. Thanks to Theorem 1, in the random oracle model, if the DDH assump-
tion holds then the protocol has vote-indistinguishability, so a vote (even pro-
cessed for the tallying) does not reveal the preference expressed by the voter. A
vote only reveals that the corresponding ballot has actually been used (note that
in normal elections it is often public the information whether a voter has voted).
The protocol uses pseudonymous identifiers that can not be directly linked to
the real identity of voters, so privacy is preserved.

Proposition 4 (Verifiability). In the random oracle model, if the DDH as-
sumption holds, and the bulletin board is publicly readable, then the protocol
satisfies both universal and individual (end-to-end) verifiability, as per Defini-
tion 8.

Proof. Since the BB is publicly readable, anyone can check that every vote has
been cast correctly. Moreover, anyone can see the processed votes received by
the candidates and count the preferences using the values published by the au-
thorities during the tallying. In the random oracle model, if the DDH assuption
holds the NIZKPs are sound, so they allow everyone to do a consistency check
of the computations performed at every step, and universal verifiability holds.

Similarly, the DVNIZKPs given during the Registrar phase allow the voters
to verify which of their tokens are valid. Analyzing the BB and the tallying
values, every voter can also check that their preferences have been correctly
expressed and counted in the final result.

Proposition 5 (Vote-Coercion Resistance). In the random oracle model, if
the DDH assumption holds, then the protocol is vote-coercion resistant, as per
Definition 9.

Proof. In order to comply with the coercer’s request, a voter associated to vi ∈ Vc
has to assign the valid tokens to (Ci,1, . . . , Ci,P ). Since the Registrar Phase is
performed in a protected environment, only the voter associated to vi knows
which tokens are valid, and cannot give a meaningful proof of this fact to A as
discussed at the end of the registrar phase (Section 3.1).

Thanks to Theorem 1, in the random oracle model, if the DDH assumption
holds, then the protocol has vote-indistinguishability and the only way to deter-
mine if a vote expresses a specific choice is to distinguish valid and decoy tokens.
Since A cannot do so, all the information that can be gained from the votes is
given by the final tally. This means exactly that the probability of A detecting
that a voter in Vc has not followed its instruction is the same in Ψ1 and Ψ2.

6 Conclusions

In this paper we have generalized the two-candidates-one-preference e-voting pro-
tocol of [35] into an M -candidates-P -preferences protocol. We have tweaked the
system of ZKPs that ensure transparency and full auditability of the process by
using non-interactive proofs to enhance efficiency, exploiting designated-verifier
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proofs to preserve plausible deniability against coercers. Moreover, we have aban-
doned the blockchain infrastructure in favor of a more traditional bulletin board.

Compared with the two-candidates protocol, our generalization introduces
an additional authority, that is required in order to properly mask the multiple
valid and decoy tokens in each ballot, so that the system remains secure even if
one authority is corrupt.

Note that the authorities can perform the setup phase asynchronously, and
possible DOS attacks may be mitigated with a long-lasting Registrar phase. We
can also adopt the strategy of dividing the authorities in independent triplets
that manage restricted pools of voters (much like how large-scale elections are
divided in voting districts). This approach limits the damage in case more than
one authority is corrupted, speeds up the final step of tallying (whose computa-
tional cost is linear in the number of votes managed by a triplet of authorities),
and enhances the overall efficiency by distributing the workload.

Efficiency and scalability. The computational and resource cost of our protocol
scales linearly in N ·M , where M is the number of candidates and N is the
number of voters managed by a triplet of authorities. In particular:

– In the setup phase the size of the published values is:

2 · (2MN +N +M + 1) · (2|G|+ |Zp|) +N · |v|,

where |v| is the size of a pseudonymous identifier. A0 stores 2 +NM secret
elements of Zp, A1 stores 2NM + N + M secret elements of Zp, A2 stores
NM + N + M secret elements of Zp. Every authority also stores the N
identifiers.

– In the registrar phase each of the N voters receive data of size:

23M · |G|+ 24M · |Zp|+ |v|,

and have to store also the designated and signing key-pairs which have ad-
ditional size |G|+ |Zp|+ |K|+ |s| (|K| and |s| are respectively the size of the
public and secret signing keys).
The size of the data published on the BB in this phase is:

N · (M · |G|+ |K|+ |v|).

– In the voting phase the size of the data published on the BB is:

(T + revote) · (|v|+ |sig|+M · |C|),

where T is the number of voters that cast a valid ballot, revote is the
number of duplicate votes, |sig| is the size of the signature, |C| is the size
of a candidate’s identifier.

– In the tallying phase the size of the data published on the BB is:

M ·
[
(6T + 15) · |G|+ (2T + 5) · |Zp|

]
.
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The effort required by an observer to compute the results of the election is:

M ·
[
(2T + 5) · hash+ (8T + 9) · mul+ (10T + 21) · exp+ (5T + 10) · check

]
,

where hash denotes the cost of computing the hash digest on 6 elements of
G, mul denotes the cost of the group operation (multiplication) in G, exp
denotes the cost of the scalar operation (exponentiation) in G, check denotes
the cost of comparing two elements of G.
Once the results have been published, to check them we save a computational
effort of

[
M ·(T−1)

]
·(mul+2exp+check) since we do not have to re-compute

R` and F`.

Security. The protocol fulfills all the security properties required for an e-voting
protocol to be considered secure, proven in the random oracle model under the
classical Decisional Diffie-Hellman Assumption.

Regarding coercion resistance, the differences between definitions are sub-
tle. In its strongest form, coercion resistance includes protection against forced
abstention attacks and randomized voting. Randomized vote attacks are less
effective in swaying an election result with respect to other coercion attacks,
forced abstention may be more effective, but it would require the coercer more
effort, considering that more voters have to be controlled in order to achieve
an impacting result. In fact, in our protocol the attacker should identify every
coerced voter by requesting a signature, in order to link the voter’s identity with
a public key and its ballot, as published in the BB.

Although our definition of coercion resistance seems weaker, we remark that
the most prominent e-voting protocols with stronger defence against coercion
assume that there is a moment during the voting phase when the voter is not
under control of the attacker. The Amun protocol, instead, protects the voter
even if during the voting period there is constant surveillance from the coercer.
Therefore, this may be preferable when the voting period is limited, since, in
this scenario, it is more likely for the attacker to maintain continuous control.

To have any kind of anti-coercion resistance is essential that there is a moment
where the voter receives some private information that can then be concealed
from the coercer with plausible deniability. In the description of the protocol we
have assumed that the communication between the voter and the authorities dur-
ing the registrar phase happens in a safe and controlled environment, where the
coercer has no power. This requirement is equivalent to exchanging information
through untappable channels. This is a common assumption in coercion-resistant
protocols [19,7].

In [26], the authors propose an alternative to untappable channels, introduc-
ing the weaker assumption that the adversary cannot maintain active surveil-
lance over the voter. In other words, they assume that there will be wide surveil-
lance gaps in which the voter is free to act, and exploit these gaps to enact
anti-coercion strategies.

In particular when a voter registers, the voting credential is not issued right
away, but instead delivered (at least partially) after a random delay. After a
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second, subsequent random time, the registration authorities send a Designated-
Verifier Non-Interactive Zero-Knowledge Proof (DVNIZKP) to prove the correct-
ness of the credential. During the waiting periods, a coerced voter can exploit a
surveillance gap to request a forged credential, which can be used to evade coer-
cion. If the voter received the real credential when not under active surveillance,
they can feign to have never received it and pretend that the forged credential is
the real one. The waiting period before receiving the DVNIZKP allows a coerced
voter to exploit the designated verifier secret key to construct a DVNIZKP that
validates the forged credential.

The same approach can also be employed with our protocol. In this case the
credential is the set of indexes of the valid v-tokens inside the ballot.

Final remarks. Many election systems allow voters to cast a blank ballot or to
leave some of the P possible preferences unexpressed. This feature can be easily
added to the protocol presented here by simply adding P dummy candidates
that represent blank choices.
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