
Private Signaling

Varun Madathil ∗1, Alessandra Scafuro1, István András Seres2, Omer Shlomovits3,
and Denis Varlakov3

1North Carolina State University
2Eötvös Loránd University

3ZenGo X

June 22, 2021

Abstract

We introduce the problem of private signaling. In this problem, a sender posts a message
to a certain location of a public bulletin board, and then computes a signal that allows only
the intended recipient (and no one else) to learn that it is the recipient of the posted message.
Besides privacy, this problem has the following crucial efficiency requirements. First, the sender
and recipient do not participate in any out-of-band communication, and second, the overhead of
the recipient should be asymptotically better than scanning the entire board.

Existing techniques, such as the server-aided fuzzy message detection (Beck et al., CCS’21),
could be employed to solve the private signaling problem. However, this solution requires that
the computational effort of the recipient grows with the amount of privacy desired, providing no
saving over scanning the entire board if the maximum privacy is required.

In this work, we present a server-aided solution to the private signaling problem that guar-
antees full privacy for all recipients, while requiring only constant amount of work for both the
recipient and the sender. We provide the following contributions. First, we provide a formal
definition of private signaling in the Universal Composability (UC) framework and show that it
generalizes several real-world settings where recipient anonymity is desired. Second, we present
two protocols that UC-realize our definition: one using a single server equipped with a trusted
execution environment, and one based on two servers that employs garbled circuits. Third, we
provide an open-source implementation of both of our protocols and evaluate their performance
and show that they are practical.

1 Introduction

Problem Statement. We focus on the problem of recipient anonymity in the context of private signal-
ing. In this abstraction, there are M recipients R1, . . . , RM publicly identified by their public keys
pk1, . . . , pkM . There is a public venue such as a bulletin board that collects messages (m1,m2,m3, . . .)
from senders and are intended for recipients. The sender who posted message mj on the board, will
also post an auxiliary information c that signals the intended recipient, say Ri, that there is a message
for them at a location j of the board. The problem is: how can this sender craft a signal c so that by
looking at c and the board, no one, except Ri, can detect who the intended recipient is for mj , with
the sender having no communication or prior shared state with Ri?

This abstraction captures various concrete problems such as anonymous messaging [7] and stealth
addresses[9]. We describe these specific applications in greater length in Section 3. For the remainder
of the introduction we will focus on the general abstraction above.

∗Alessandra Scafuro and Varun Madathil are supported by NSF grants #1718074,#1764025

1

Private Signaling: Efficiency Constraints. A straightforward (though inefficient) solution for the
private signaling problem would be as follows. The sender who intends to communicate mj to Ri can
simply encrypt mj with the public key pki using a key-private CPA-secure encryption scheme 1 and
then only post the ciphertext c on the board. In this case, the signal is the ciphertext itself. Then,
each recipient can periodically download all ciphertexts posted on the board, attempt to decrypt each
ciphertext to detect the ones directed to them. Thanks to the key-privacy property of the encryption
scheme, this solution gives full privacy to each recipient, since by looking at the ciphertext, every
public key is equally likely to unlock it. Here full means that the anonymity set constitutes the entire
set of (honest) recipients. Furthermore, this solution has no overhead on the sender, who simply
performs one encryption per signal. However, full privacy comes with a high cost for each recipient
since it needs to scan the entire board to detect the signal.

Efficient Private Signaling: the need for a Server. Can we do better than a linear scan of the
board? First, note that without any external help, such as a server dedicated to filtering messages for
each recipient, a recipient must read the entire list of, say N , signals to “see” which one is intended for
them. Note that this is true regardless of the anonymity guarantees. Hence, any serverless solutions
will lead to complexity O(N) for each recipient. 2

Thus, for any non-trivial improvement of the complexity cost for the recipient, we need to use
an external server to help with the filtering. In a very recent work [2] Beck et al. introduced the
concept of Fuzzy Message Detection (FMD), a new cryptographic primitive that allows a third party
to perform coarse filtering of messages for each recipient. Coarse means that, for each recipient Ri,
the server will detect ciphertexts and maintain a list of ciphertexts that could be intended for Ri.
This list includes a certain fraction pi of false positive— hence fuzzy detection. The higher the rate pi
of false positive for Ri, the longer the list of ciphertexts detected for Ri, and the higher the anonymity
set for Ri. This approach, however, presents major drawbacks for the recipient. First, the work
done by the recipient grows proportionally to the amount of anonymity it desires. Specifically, the
work done by recipient Ri is O(pi · N), which translates into O(1 · N) work if the highest privacy
is required. Second, even if a recipient Ri chooses the highest false positive rate pi = 1, this would
still not guarantee Ri to have full privacy (recall, full privacy means that a signal can be associated
to every (honest) recipient with the same probability) if other honest recipients have chosen smaller
error rates. A natural question arises:

Is there a solution for the private signaling problem that achieves full anonymity in the
presence of untrusted servers and has only constant complexity for the recipient?

In this paper, we answer affirmatively. We provide two protocols: one with a single untrusted
server (equipped with a trusted execution environment) and one with two untrusted (though not
colluding) servers. Our contribution and techniques are discussed in Section 2.

2 Our contribution

In this paper we provide three contributions:

1. Formalization of the Private Signaling Problem. We introduce the private signaling prob-
lem and provide a formal definition in the Universal Composability Framework [6]. Thus, we
define an ideal functionality FprivSignal (Figure 7) that captures the correctness and privacy guar-
antees that we expect from a private signaling system. Previous work on related problems either
did not provide any formal definition [19, 28, 15], or provide much weaker security guarantees[2].

1Key-private means that by looking at the ciphertext, no one can distinguish which public key was used for encrypting
the message [3].

2Alternatively, the complexity can be made to be O(logN) per message for the recipient assuming that the size of
the signal blows up to O(M). We describe this approach in Appendix C.7

2

2. Protocols for private signaling with constant recipient overhead and provable UC-
security. We provide two protocols that UC-realize the ideal functionality FprivSignal while
demanding only the minimal overhead to recipients and senders. Both protocols are built around
the idea of enabling an untrusted server to obliviously update the list of signals for each recipient.
We then show two instantiations for obliviously updating the list: one based on garbled circuits
that requires two servers, and one leveraging a Trusted Execution Environment (TEE) which
requires a single server only. For both protocols we provide formal proofs in the UC-framework.

3. Open-source Implementations. We implement both our protocols and evaluate the per-
formance as a function of the number of recipients (M) and the upper bound of signals (`) it
receives in each window of time. Our proposed protocols are feasible in practice, and they incur
reasonable overhead with either modest numbers of users M or limited number of messages `.
Despite their moderate efficiency, our solutions might be viable options even in larger appli-
cations considering the privacy benefits of our solutions, i.e., they achieve the highest possible
degree of anonymity. This is in contrast with the achieved k-anonymity of [2].

In the remainder of this section, we describe each contribution in more details.

2.1 Definition of Private Signaling in the UC-framework

We define the problem of private signaling in the UC-framework [6]. In this framework, the security
properties expected by a system are defined through the description of an ideal functionality. The ideal
functionality is an ideal trusted party that performs the task expected by the system in a trustworthy
manner. When devising an ideal functionality one describes the ideal properties that the system
should achieve, as well as the information that the system will inherently leak.

For the task of private signaling, we want to capture two properties: correctness and privacy.
Correctness means that a recipient Ri should be able to learn all signals that are intended for them.
Privacy means that by looking at the messages exchanged in the protocol no one except Ri (and the
senders of the signals) should distinguish which signals are directed to Ri. Furthermore, we want to
capture the following inherent leakage. First, an observer of the system can always learn that a signal
was posted for “someone” (for instance, just by observing the board). Second, a protocol participant
can learn that a certain recipient is trying to retrieve their own signals (for instance, in the serverless
case, this can be detected by observing that a node is downloading a big chunk of the board, or in
the server-aided case it is just possible to observe that Ri connected to the server). We capture the
above security properties and leakage in the ideal functionality FprivSignal, which we describe in detail
in Section 6.

2.2 Efficient Protocols for Private Signaling

We present two instantiations of the ideal functionality FprivSignal, that achieve constant communication
and computation complexity for the recipient. Both instantiations are based on the same high-level
approach of obliviously updating the list of signals for the recipient. We explain the general approach
first, and then we describe two techniques for implementing it.

Our approach is based on the following natural idea. Assume for a moment that privacy was not
a concern, but only performance is, i.e., we want the overhead of the recipient to be minimal and
depend only on the number of messages it receives. As illustrated Figure 1 the recipients hire a Server
and give their secret keys ski to the Server. The sender after posting a message to the board, sends a
signal which is the encryption (under the pki of the recipient) of the location of the message to the
Server. The Server maintains a table T, with one row for each recipient. It decrypts the signal using
each recipient’s secret key and adds the signal to the row of recipient for which the signal decrypted
correctly. When a recipient Ri sends RECEIVE to the server, it simply responds with the corresponding
row.

3

R1 E(pk1,6) - -

R2 E(pk2,1) E(pk2,3) -

R3 E(pk3,2) - -

... m

5 6 87

➌(SEND,ct = E(pk3, 7))

Ri

➊(Setup, ski)

➎(RECEIVE, R3) R3

➏

➋(WRITE, m)

➍

R1 E(pk1,6) - -

R2 E(pk2,1) E(pk2,3) -

R3 E(pk3,2) E(pk3,7) -

SERVER

R3 E(pk3,2) E(pk3,7)

Figure 1: Naive solution example: 1 Each recipient Ri registers with the Server and sends its ski.

2 A sender writes a message m for recipient R3 on position 7 of the board. 3 Sender sends a signal
to the Server for the posted message. The signal is an encryption of 7 under the public key of R3.
4 The server attempts to decrypt the signal using the secret key of each Ri until it decrypts to a

valid message. The Server then adds the encryption to the next available location in R3’s row. 5

R3 requests its row from the Server in an authenticated way, and 6 , the Server responds with the
encryptions in that row.

Now, to achieve privacy, we “just” need to require the server to update this table obliviously. In
other words, we need to devise a mechanism by which, on input an encrypted signal for a certain
recipient Ri, the server can blindly and correctly update the i-th row without learning anything about
the recipient who got the signal.

2.2.1 Single-Server solution

To update the table of signals T obliviously by employing a single untrusted server, we leverage
a trusted execution environment (TEE). Recall that a TEE allows a client to perform a private
computation on a secret input, embedded in the TEE, through an untrusted server, called the host.
TEEs are used to build virtual enclaves. A client can register with the enclave within the server and
is guaranteed that all computations inside the enclave are hidden to the server.

With this tool in hand, the idea is that the recipients will not provide their secret keys directly to
the server. Instead, Ri can securely communicate its secret keys ski to the enclave.

After this setup phase where recipients register with the enclave, the server will host M enclaves,
one for each recipient R1, . . . , RM . Furthermore, the server maintains M lists of ciphertexts ~Li that
are originally set as encryptions of 0 under keys SGXkeyi (this is the table of signals, where each ~Li
is a row in T).

Each enclave will implement the following program: on input a signal ciphertext ctSignal and

encryption of locations ~Li for recipient Ri, first attempt to decrypt ctSignal with the secret key ski. If
the decryption results in a valid plaintext location loc, then the enclave will update the ciphertext
list ~Li with a new encryption of loc (under SGXkeyi) in the next available position, and re-randomize
the other ciphertexts. Else, all ciphertexts are just re-randomized. As in the naive solution, a sender
can communicate a signal for location loc to Ri, by simply encrypting the location under the public
key pki, that is, ctSignal = Enc(pki, loc) and send ctSignal to the server. The server will then run each

4

R1 E(k1,6) E(k1,0) E(k1,0)

R2 E(k2,1) E(k2,3) E(k2,0)

R3 E(k3,2) E(k3, 0) E(k3, 0)

... m

5 6 87

➌(SEND,ct = E(pk3, 7))

Ri

➎(RECEIVE, R3)
R3

➏

➋(WRITE, m)

➍

➊(Setup, ski)

R1 E(k1,6) E(k1,0) E(k1,0)

R2 E(k2,1) E(k2,3) E(k2,0)

R3 E(k3,2) E(k3,7) E(k3,0)

R3 E(k3,2) E(k3,7) E(k3,0)

SERVER

Figure 2: Single-server example: 1 Each recipient securely and privately communicates its secret

key ski with the enclave (only). 2 and 3 The sender writes a message m for recipient R3 on
position 7 of the board and sends a signal (encryption of 7 under R3’s public key) to the Server for
the posted message 4 The enclave takes as input the signal and updates each row of encryptions.
It re-randomizes each encryption except for column 2 in R3’s row, where it adds an encryption of 7.
Note that the encryptions of row Ri are done under a key SGXkeyi (here denoted k). 5 R3 sends an

authenticated request for its row via the server to the enclave. 6 If the request is valid, the Server
responds first decrypts the encryptions in row R3 and then re-encrypts them under pk3 and sends
them to R3 via the server.

enclave on input ctSignal, ~Li for each recipient Ri to run the above-described program.
The actual protocol is slightly more complex as it requires a mechanism to prevent replay attacks

from the untrusted server against the enclave. For the UC-security proof to go through, we need a
mechanism to enforce that even if server and recipient are corrupt and collude, any attack is still
simulatable in the ideal world. This requires a mechanism by which, to retrieve its signals, a recipient
must first obtain a token from the TEE in every access. The details of the protocol are provided
in Section 7 and the protocol is described in Figure 9. We formally prove that our protocol UC-
realizes the ideal private signal functionality. For the formal proof, we use the UC-formalization of
TEE introduced by Pass and Shi in [21], as the ideal functionality Gatt. Our proof is provided in
Appendix B and withstands malicious adversaries (for privacy). We present an illustration of this
single-server approach in Figure 2. We implement the protocol where we instantiate the TEE using
Intel SGX.

Limitations of Intel SGX: The Intel SGX comes with certain limitations.

• Trust assumptions Trusted Execution Environments need to rely on a trusted authority (Intel
in the case of Intel SGX) to design a secure processor with the correct program. If the design
is flawed or Intel is corrupted then attestations from the SGX can be forged and an adversary
can claim that the attestation came from a genuine piece of hardware. These assumptions are
not suitable for many real-world applications especially cryptocurrencies etc.

• Side-channel attacks Intel SGX may be prone to side-channel attacks like cache timing [12]
[5] and page table[16][29] side-channel attacks. In [12] they show that using an access-driven
cache timing attack on AES that was run inside the SGX, they were able to extract the secret
key. In [29] the authors present a technique called Dark-ROP that exploits memory corruption

5

R1 4 7 9

R2 3 2 8

R3 4 3 5

... m

5 6 87

➌(SEND, (R1= 2, loc1=3))

Ri

➊(Setup, Σ.vki)

➎(RECEIVE, R3) R3

➏

➋(WRITE, m)

➍

R1 2 7 9

R2 2 1 8

R3 6 3 5

R1 3 2 3

R2 7 4 8

R3 5 2 5

R1 5 2 3

R2 6 7 8

R3 7 5 5

Compute
7⨁5 = 2
5⨁2 = 7
5⨁5 = 0

(SEND, (R2 =1, loc2=4))

R3 5 2 5

R3 7 5 5

SERVER1 SERVER2

Figure 3: Two-server example: 1 Each recipient Ri registers with the two servers. 2 Sender writes

message m for recipient R3 on position 7 of the board. 3 Create shares of 3 = (2, 1) such that

2 ⊕ 1 = 3 and 7 = (3, 4) such that 3 ⊕ 4 = 7 and send (2, 3) to Server1 and (1, 4) to Server2. 4
Server1 and Server2 run a 2PC with inputs (T1, 2, 3) and (T2, 1, 4) and some fresh randomness and
output new tables T1 and T2 such that in the next available of position of R3’s row (column 2), update
with shares of 7 = (5 and 2) (as 5⊕ 2 = 7) and re-randomize all other indices while maintaining the
invariant that T1[i][j] ⊕ T2[i][j] remains the same. 5 R3 sends an authentic request for its rows

from the two servers. 6 Server1 sends [7,5,5] and Server2 sends [5,2,5]. The recipient recombines the
corresponding indices [7⊕ 5, 5⊕ 2, 5⊕ 5] = [2, 7, 0] to compute the locations of its messages.

vulnerability in the enclave software through return-oriented programming (ROP). Thus these
known attacks can be used to circumvent the data confidentiality that are guaranteed by the
SGX.

• Memory limitations The memory of the SGX (Enclave Page Cache size) is only 96MB [8].
Therefore data must be stored in the untrusted memory of the host and be swapped with the
SGX memory. This operation is expensive because of the encryption and integrity verification
of the data.

2.2.2 Two-server solution

To accomplish the goal of obliviously updating the table of signals T, we can use two servers Server1

and Server2 and have the table secret-shared among them. Server1 (resp., Server2) holds a table T1

(resp., T2) of strings that look random to Server1(resp., Server2), but such that T1 ⊕ T2 = T.
Say a sender S posted a message m intended for R on the board that appears in location loc. To

prepare a signal for R concerning location loc the sender will perform a simple operation. It will secret-
share the input R, loc into random two shares R(1), R(2) and loc(1), loc(2) such that R = R(1) ⊕ R(2)

and loc = loc(1) ⊕ loc(2).
Next, servers Server1,Server2 will update their tables by running a secure computation protocol

(e.g., Yao’s garbled circuits [30, 4]), participating with their own secret input R(1), loc(1),T1 (resp.,
R(2), loc(2),T2). The function being computed performs the following three elementary operations.
(1) Reconstruct R and loc by xoring the shares. (2) Update the R-th row of the table to add loc
to the first available index. (3) Re-randomize every other row. Note that, at the end of the secure
computation of this function, each server receives a fresh share of the updated table, thus leaking no
information about which row and column was actually updated.

Note that each recipient receives a different number of signals over time. To guarantee that no
information about the number of messages per recipient is leaked, we introduce a parameter `. Each
row in the table is of length ` and each index is updated in the table per signal.

6

Privacy Security Sender Recipient Server #Servers Setup Assumptions

Näıve scan fully private – O(1) O(N) ∅ 0 ∅
FMD [2] k-anonymity game-based,SH O(1) O(pN) O(pM) 1 ∅
ΠprivSignal1 fully private UC-secure, M O(1) O(1) O(`M) 1 TEE
ΠprivSignal2 fully private UC-secure, SH O(1) O(1) O(`M) 2 ∅

Table 1: Comparing privacy-preserving message detection schemes in terms of the achieved privacy
guarantees and the computational complexity of the participants. SH and M denotes semi-honest and
malicious security, respectively. N denotes the total number of messages in the system and p denotes
the false positive rate (0 ≤ p ≤ 1) set individually by recipients in the Fuzzy Message Detection
scheme (FMD) [2]. For simplicity, we assume that each recipient has the same false positive rate p.
Note that FMD does not allow asymptotically sublinear scans for recipients. The privacy guarantee
of [2] is dynamic k-anonymity, where k ≈ pN . In our constructions, ` is a system parameter (` ∈ N)
and denotes the maximum number of detectable incoming messages per each recipient. Finally the
server computation is based on a single message received by the server(s).

The concrete value of ` depends on the application, and we guarantee that the recipient can always
retrieve the last ` signals posted.3

When a recipient Ri wishes to retrieve their signals, it will send i (in an authenticating manner)
to both servers and receive T1[i],T2[i] from which it can recover the locations by just performing xor.
Upon each retrieve, the recipient’s row is flushed.

Our protocol provides full privacy due to the following features: at any point each server only
owns only one share of the signals and the table of signals, and upon each update, the server obtains
a re-randomization of the entire table, performed with fresh randomness that is sampled by both
servers, which leaks no information about the row that was actually updated. Formally, we prove that
our protocol UC-realizes the ideal functionality in Appendix C. In our proof, servers can collude with
recipients and sender, but (of course) cannot collude with each other. For this protocol, our proofs
are in the semi-honest setting. Finally we note that we can extend this idea to a multi-server setting,
where say n servers participate in an MPC to process a signal and update the shares of the table of
signals.

The tradeoff here would be that sender will need to share the location and recipient index among
n servers and the recipient would need to recombine the shares received from n servers, but on the
positive side one can have weaker assumptions on the trust and non-collusion between the servers.

2.3 Implementation and Evaluation

We implement a proof-of-concept of our protocols ΠprivSignal1 and ΠprivSignal2 and demonstrate their
feasibility in Section 9. We present a comparison of our protocols and related work FMD [2] in
Table 1.

Recipient and sender computation Our protocols provide constant communication and computation
complexity for the recipient and the sender. Specifically, a recipient only needs to perform computation
that is proportional to the number of signals it receives. Moreover, a sender only needs to compute
constant size messages (either an encryption or two shares of a location) and send them to the server(s).

Server computation Note that even in a naive setting, where one does not care about the privacy
of the recipients, a server would need to do up to O(M) (in the worst case) computation to determine
the recipient of the encrypted signal. Likewise, in both of our protocols, the overhead of the server(s)
is O(`M) (where ` is the number of signals a recipient can receive). Depending on the application,

3However, note that the scheme can be changed so that past snapshots are given to the recipients. In this case,
however, efficiency for the recipient is not guaranteed.

7

one can choose different values for the parameters M and `. In our experiments we vary both M and
` from 10 to 1000. From our implementation, we observe that we can trade off one parameter for the
other to get a feasible efficiency for the server(s) (approx. 1 minute to process 100 signals for 100
recipients). We also observe that the single-server solution is more efficient than the two-server, but
at the cost of a trusted setup (TEEs).

We also improve the efficiency of the 2-server protocol by having the servers process multiple
signals at once. We noticed that we achieve 2.5× improvement in the overall computation time. This
can be attributed to the fact that the communication of the garbled tables and OT need to be done
only once for a group of signals.

3 Applications of Private Signaling

Private signaling is a powerful abstraction, since many real-world applications can be seen as a special
case of it. In the following, we highlight two prominent and timely problems that can be cast as
private signaling problems and consequently solved with our proposed solutions.
Stealth addresses and payments. In cryptocurrencies (especially account-based ones [27]) it is
common to use static, public identities or addresses. However, sending recurrent payments (e.g.,
salaries, donations, other regular purchases) to a static address that is publicly linked to an entity
is harmful to both sender and recipient anonymity. To avert this issue, senders can generate so-
called stealth addresses for their recipients [9]. More specifically, given a recipient’s public address,
the sender can non-interactively generate new “stealth” addresses for the intended recipient that is
unlinkable to the recipient’s static, public address [23]. Stealth addresses can only be redeemed by the
true recipients. However, the difficulty is that recipients lack an efficient way to detect which stealth
address belongs to them and are redeemable by them. Current implementations of stealth address
payment systems apply the simple linear scan of the board as described earlier.4 Private signaling can
be seen as a solution to alleviate the computation complexity of the recipient. More specifically, with
private signaling, a sender first creates a transaction with a stealth address of recipient Ri and posts
it to the board. Once the transaction is confirmed and the location of the transaction is known on the
board, the sender sends a private signal to the server, who obliviously stores it. Now a recipient only
needs to ask the server for its list of signals so it can identify its stealth address transactions directly.
Anonymous messaging. Modern private messaging applications are mostly focused on providing
and improving sender anonymity [18, 7], e.g., Signal’s sealed sender functionality. In anonymous
messaging applications, senders post their messages to one (or more) untrusted store-and-forward
server(s) [26] or to a shared public bulletin board, as in Riposte [7], where the servers need to maintain
the board. Private signaling easily captures this problem in the following way: A sender first posts
encrypted messages on a board. The sender then sends the locations of these messages to the server
in a privacy-preserving way, such that only the recipient can retrieve the locations from the servers at
a later point of time. Once the recipient has these locations it can simply decrypt the corresponding
messages from the board to get their messages. Thus anonymous messaging can be seen as special
case of private signaling. Moreover, using our techniques, it is guaranteed that a recipient can retrieve
its messages quickly and one can have arbitrary sized messages that can be stored on the public board.

4 Related Work

Fuzzy Message Detection(FMD) [2] The closest work to ours is the fuzzy message detection [2].
We compare the two works in Table 1 and we expand here.

Privacy. In terms of privacy, our protocol achieves the strongest privacy guarantee, where each
recipient has an anonymity set that is as large as the number of honest recipients and senders. On

4See: Umbra Cash (https://app.umbra.cash)

8

https://app.umbra.cash

the other hand, the privacy guaranteed by FMD is more fragile. They achieve k-anonymity. In fact,
in their evaluation they present attacks by an independent researcher on their system that show that
privacy obtained is indeed dependent on the parameter selection. These attacks allow a curious server
to learn that a subset of messages are for a particular recipient. More details of these attacks can be
found in [17].

We also note that other anonymous message detection schemes, relying on a wisely chosen false
positive rate, are already shown to be challenging to deploy. For example, Bitcoin light clients imple-
menting the Bloom-filter-based anonymous message detection scheme, also known as BIP37 [13], were
successfully deanonymized by Gervais et al. [11]. Furthermore, k-anonymity is brittle and prone to
attacks, i.e., statistical attacks and intersection attacks. Therefore, in an ideal setting, every recipient
should have all the participants of the communication system in their anonymity set. Accordingly, in
our protocols we achieve full privacy for the recipients.

Efficiency. Both our solutions offer the best efficiency for both sender and recipients at the cost
of the servers doing more work. In FMD, the senders need to compute γ (a constant of the order
10) number of encryptions and send them to the server; whereas in our one-server setting, the sender
needs to send only one encryption to the server. If N is the total number of messages that were sent to
the server, each recipient will receive pN messages. The recipient then would need to do γ decryptions
on each of these messages to test if the message is actually for them or if it’s a false positive. In our
setting, the server will output ` messages to the recipient. The recipient then decrypts these messages
until it decrypts to 0 to know it has received all the messages. Finally, in our setting, the server needs
to do O(`M) computation. That is, for each recipient, it must update ` encryptions. In [2], the server
attempts to decrypt for each recipient using the pγ keys of each recipient. If we assume a common p,
then the server needs to do pγM decryptions to determine which recipients might be the recipient of
the message. Our protocol is computationally more intensive for the servers since it needs to decrypt
`M ciphertexts and re-encrypt them for every SEND command that is invoked.

Assumptions and Threat-model. The work of FMD relies on a much weaker assumption, which is
a single untrusted server, while for our single-server solution requires the use of a trusted execution
environment (TEE) [21, 8]. In FMD, the authors present game-based proofs, whereas we define an
ideal functionality for private signaling and prove its security in the UC-model and achieve privacy
against a malicious adversary in the single-server setting.

Privacy-preserving Light Clients A related problem to private signaling is that of devising privacy-
preserving light clients for cryptocurrencies. A light client does not store the full blockchain. However,
it wants to learn information about certain addresses owned by the client from full nodes that store
the entire blockchain. Additionally, they wish to learn their balances, incoming transactions and other
details of their addresses in a privacy-preserving way. Current approaches are either inefficient [25] (full
scan of the blockchain) or transparent (a trusted node learns all the relevant balances and transactions
of the light client5). Several privacy-preserving cryptocurrency light client proposals have been offered
in the literature [22, 28, 15, 19]. In all of these works, a recipient asks one (or more) powerful server(s)
to learn its balance and other relevant information about addresses the light client is interested in.
To preserve the privacy of the light client, Qin et al. apply private information retrieval [22], TEEs
have been proposed by Wüst et al.[28] and Matetic et al. [19], while applying ORAM in this context
has been suggested by Le et al. [15]. However, crucially, these works assume that the light clients
(the recipient in our setting) already know the addresses they want to obtain information about. This
is equivalent to knowing the locations of the transactions in our setting. Whereas, in the private
signaling problem we are interested in communicating the locations of the signal to the recipient.
Thus, our problem and techniques are complementary to the problem of light clients, and can be used
in addition to the systems proposed in [28, 19, 15] so that a recipient privately learns these addresses
(without having to communicate with the sender).

5See: https://github.com/vtnerd/monero-lws

9

https://github.com/vtnerd/monero-lws

5 Preliminaries and Definitions

5.1 Notation

Let λ be the security parameter, poly(·) be a polynomial function and let negl(λ) be a negligible
function. M denotes the total number of recipients, and N denotes the total number of messages on
the a public bulletin board. Finally, loc denotes a location on the board

In our protocols all messages are posted on a public bulletin board, that all entities have read-
and-write oracle access. We define these oracle accesses below:

1. ReadBoard(board, loc)→ board[loc] returns the message at location loc of board.

2. WriteBoard(board,m)→ (board′, loc) returns a new board′ where the message m is appended
to the end of board. That is board′ = board‖m. Additionally, the location loc is also returned
where m was written.

In this section we present the crucial definitions and security guarantees of the primitives used in
our protocols. We present the rest of the primitives more formally in Appendix A.

5.2 Oblivious transfer

Oblivious transfer (OT) is a two-party protocol in which a sender S has two input strings s0, s1 ∈
{0, 1}λ, and a receiver R has a choice bit b ∈ {0, 1}. An OT protocol is called non-trivial if for any
pair of strings s0, s1 ∈ {0, 1}λ, and for any b ∈ {0, 1}, after participating in the interactive protocol,
S outputs nothing and R learns sb. We capture this definition formally as an ideal functionality Fot

in Figure 4.

Ideal Functionality Fot:

• Upon receiving message (SEND, s0, s1, S,R) from S, where s0, s1 ∈ {0, 1}λ, store s0, s1

and answer SEND to R and S.

• Upon receiving message (RECEIVE, b) from R, where b ∈ {0, 1}, send sb to R and RECEIVE

to S and S, and halt. If no message (SEND, ·) was previously sent, do nothing.

Figure 4: Ideal functionality for oblivious transfer

5.3 Garbled circuits

We present a formal definition for garbled circuits. We present the definitions of [4].

Definition 1. A garbling scheme G consists of five polynomial time algorithms (Garble,Encode,Eval,Decode, evaluate).

1. Garble(1λ, f)→ (F, e, d). The garbling algorithm Garble takes in the security parameter λ and a
circuit f , and returns a garbled circuit F , encoding information e, and decoding information d.

2. Encode(e, x)→ X. The encoding algorithm Encode takes in the encoding information e and an
input x, and returns a garbled input X.

3. Eval(F,X) → Y . The evaluation algorithm Eval takes in the garbled circuit F and the garbled
input X, and returns a garbled output Y .

4. Decode(d, Y)→ y. The decoding algorithm Decode takes in the decoding information d and the
garbled output Y , and returns the plaintext output y.

10

procedure Initialize
Pick b← {0, 1}

procedure Garble((f, x))
if x /∈ {0, 1}f.n then

return ⊥
if b = 1 then

(F, e, d)← Garble(1k, f)
X ← Encode(e, x)

else
y ← evaluate(f, x)
(F,X, d)← S(1k, y, φ(f))

procedure Finalize
return b = b′

Figure 5: The PrvSimG,φ,S game

5. evaluate(f, x)→ y. The algorithms takes as input the description of the original function f and
the initial input x and outputs the final output y.

Correctness if f ∈ {0, 1}∗, k ∈ N, x ∈ {0, 1}f.n and (F, e, d) ∈ [Garble(1k, f)], then

Decode(d,Eval(F,Encode(e, x))) = evaluate(f, x)

Privacy Let G = (Garble,Encode,Decode,Eval, evaluate) be a garbling scheme, k ∈ N a security
parameter and φ a side-information function. We present below the simulation-based notion of privacy
via game PrvSimG,φ,S , see the definition of the game in Figure 5.

The adversary wins the game if it guesses b correctly. The advantage of the adversary is defined
as

Advprv.sim,φ,S
G (A, k) = 2Pr[PrvSimAG,φ,S(λ)]− 1

and protocol G is prv.sim secure over φ if for every polynomial time adversary A there is a
polynomial time algorithm S such that Advprv.sim,φ,S

G (A, k) is negligible.

Projective scheme In our schemes we consider a projective garbling scheme. Thus e consists of 2n
wire labels, where n is the number of input bits. We denote these wire labels as (X0

i , X
1
i)i∈indices.

Encode(e, x = (vi)i∈indices) returns X = (Xvi
i)i∈indices.

5.4 Attested Execution Processers

In this section we present details on the formalization of attested execution processers as described in
[21] and presented in Figure 6.

Initialization Upon initialization, a manufacturer chooses a public verification key and signing key
pair denoted (mpk,msk), for the signature scheme Σ. All attestations later will be done using msk.

The registry Gatt is parameterized by a signature scheme Σ and a global registry reg which contains
the list of all parties that are equipped with an attested execution processor. In our setting, only the
Server is in the registry reg.

Public interface Gatt provides a public interface such that any party is allowed to query and obtain
the public key mpk.

11

Gatt[Σ, reg]

//initialization
On initialize: (mpk,msk) := Σ.KeyGen(1λ), T = ∅
// public query interface:
On receive* getpk() for some P: send mpk to P

Enclave operations

//local interface – install an enclave:
On receive* install(idx,Prog) from some P ∈ reg:

• if P is honest, assert idx = sid

• generate nonce eid ∈ {0, 1}λ, store T [eid,P] := (idx,Prog,~0), send eid to P.

//local interface – resume an enclave:
On receive* resume(eid, inp) from some P ∈ reg:

• let (idx,Prog,mem) := T (eid,P), abort if not found

• let (outp,mem) := Prog(inp,mem), update T [eid,P] := (idx,Prog,mem)

• let σ := Σ.Sigmsk(idx, eid,Prog, outp) and send (outp, σ) to P.

Figure 6: Global functionality modeling SGX-like secure processor [21]

Local interface When a machine P calls an install instruction to Gatt, it asserts that P is in reg.
This models the fact that for a remote party to interact with P’s trusted processor, all commands
have to be passed through the intermediary P. They formalize two types of invocations to the trusted
hardware.

• Installation Enclave installation establishes a software enclave with program Prog, linked to
some identifier idx . The functionality enforces that honest hosts provide the session identifier
of the current protocol instance as idx. Gatt further generates a random identifier (or nonce) eid
for each installed enclave, which can later be used to identify the enclave upon resume. Finally,
Gatt returns the generated enclave identifier eid to the caller.

• Stateful resume An installed enclave can be resumed multiple times carrying state across these
invocations. Each invocation identifies the enclave to be resumed by its unique eid. The enclave
program Prog is then run over the given input, to produce some output (together with an
updated memory mem). The enclave then signs an attestation, attesting to the fact that the
enclave with session identifier idx and enclave identifier eid was installed with a program Prog,
which was then executed on some input to produce outp.

6 Private Signaling

In this section, we present a formal definition for private signaling over a public bulletin board.

12

6.1 Threat model

In protocol ΠprivSignal1 (Section 7) we consider a single-server protocol that relies on a TEE. In this
setting, the adversary has full control over the operations of the TEE. Even though the adversary
controls the TEE, we assume it cannot break the hardware enforcement of the TEE. That is, the
adversary cannot access the keys that are processer-specific msk and nor can it access the keys that
are stored inside the TEE. This is in spite of the known attacks on the Intel SGX. Moreover, the
adversary cannot access any runtime specific memory that the TEE uses since they are encrypted
by the TEE. We also assume that the Server can collude with a recipient R and a sender S. The
adversary is allowed to delay and discard messages and can choose to stop the execution of the TEE
and therefore we prove that only privacy is guaranteed against such a malicious adversary.

In protocol ΠprivSignal2 (Section 8) we consider a two-server protocol where we do not allow the two
servers to collude. We allow any other collusion between a single server and recipients and senders.
Therefore in this setting we consider a semi-honest adversary that follows the protocol.

In both settings when we consider a corrupt sender, we only consider an adversary that aims to
break the privacy of the system. For example, a corrupt sender could send a malformed location or
overload the system with many signals for a particular recipient. We do not prevent these attacks in
our protocols.

6.2 Communication model

In our protocols we do not allow any out-of-band communication between the senders and the recip-
ients. All entities have read and write access to the board. We assume that senders and recipients
have direct channels with the Server(s) and all messages are delivered with with a maximum delay un-
der the bounded synchronous communication setting. In particular, in protocol ΠprivSignal2 we assume
signals received by the two servers are in the same order.

Functionality FprivSignal

The functionality maintains a table denoted T indexed by recipient Rj , that contains informa-
tion on the locations of signals for the corresponding recipient. The functionality maintains a
list board to which all parties have read and write access.

• Upon receiving (WRITE,m) from a sender Si, send (WRITE, (Si,m)) to A. Upon receiving
ok from A, update board = board‖m.

• Upon receiving (SEND, Rj , loc) from a sender Si, send (SEND, Si) to the adversary. Upon
receiving (SEND, ok) from the adversary, append loc to T[Rj].

• Upon receiving (RECEIVE) from some Rj , send (RECEIVE, Rj) to the adversary. Upon
receiving (RECEIVE, ok) from the adversary, send (RECEIVE,T[Rj]) to the recipient Rj
and update T[Rj] = []

• Upon receiving (READ, loc) from any party (or the adversary) return (READ,board[loc])
to the party.

Figure 7: Private Signaling functionality

6.3 Private Signaling Ideal Functionality

The functionality FprivSignal (Figure 7) provides the following interface - WRITE, SEND, RECEIVE and READ.
The ideal functionality allows parties to post messages on the board using the WRITE command. To

13

add a signal for a recipient Rj , a sender simply sends SEND command with the pair (Rj , loc) to the
ideal functionality. The latter will store this information for Ri in a table denoted T, and will send
to the adversary this information that a signal has been posted. This leakage captures the fact that
in real life it is easy for an observer to detect that some sender is trying to send a message to some
recipient. However this is the only information that anyone (except the sender, of course) will ever
learn.

A recipient Rj can later query the ideal functionality to retrieve the signals that were sent to them.
This is done using the RECEIVE command. This command also instructs the functionality to flush the
row T[Rj]. The ideal functionality will return the list to Rj and will inform the adversary that Rj
has downloaded its private list of signals. Again, this captures the fact that in a real-world system
a global observer can detect the fact that a certain device is trying to retrieve their signals (e.g., by
observing the traffic).

Since the only information leaked to the adversary is that a sender has posted a signal and that a
recipient has retrieved its signals we capture the privacy requirement of private signaling.

7 Private Signaling with one server

In this section, we present a protocol for private signaling with one server. In this setting, we assume
that the server runs a trusted hardware processor.

Protocol Overview The Server runs a trusted hardware processor which we capture using the Gatt

functionality. This hardware processor runs the program Prog that is described in Figure 8. Note
that only the Prog is presented in this section, the hardware processor Gatt attests (see Figure 6) to
any computation that is done inside the processor and outputs a signed message to the server.

A recipient must first register with the server. This includes a key exchange with Gatt, so that the
recipient and Gatt are guaranteed private communication. Once the private channel has been set up,
the recipient Ri then sends an encryption secret key (ski) and a signature verification key vki to the

Server who forwards it to Gatt. The processor then creates a vector ~Li of encryptions of 0. This vector
will store the encryptions of the locations on the board for the recipient. The vector is encrypted
under a new symmetric key that is generated by the Gatt functionality and is denoted as SGXkeyi.

Moreover, these encryptions (~L) are stored on the Server and only the keys are maintained inside the
trusted processor.

Now, when a sender S creates a signal (which is just an encryption under the recipient’s pk of
the location of the message) and sends it to the Server, the Server runs the trusted processor on this

input along with each ~Li that was stored previously. Note that the server does not know which Ri
the signal corresponds to and therefore must run the processor with each ~Li.

Now for the processor to recognize the correct recipient, the processor decrypts ctSignal with the

secret key (ski) corresponding too each ~Li and checks if the first λ bits of the decrytion are zeros.

Gatt Secure processor functionality Figure 6
~Li Encrypted locations for Ri

SGXkeyi Symmetric key to encrypt ~Li in persistent storage
ctkeys Encryption of decryption key and verification key

indexi Next available index in ~Li
ctri Counter to prevent replayability of signatures

ctSignal Encryption of loc
ctloc Encrypted locations returned on RECEIVE

mpk,msk Attestation keys of Gatt functionality

Table 2: Notations for ΠprivSignal1

14

Such properties are guaranteed by encryption schemes such as RSA-OAEP [10]. For the purpose of
presentation, we are explicit about the padding for the encryption as well as the decryption.

The processor then outputs a new ~L such that if the signal was meant for a recipient Ri then its
~Li would have an encryption of loc in the next available index and all other indices re-randomized,
and if the signal is not meant for the recipient Ri then all the indices of ~Li are simply re-randomized.
Note that since ~L of every recipient is updated and no adversary can tell the difference between
an actual encryption and a re-randomization of an existing encryption, privacy of the signals are
maintained. Note that this encryption is done under the symmetric key SGXkeyi that is known only
to the processor.

On input (“keyex”, ga): b ←$ Zp, store k = (ga)b, return (ga, gb). Generate SGXkey ←
PrivEnc.KeyGen(1λ) and store SGXkey.
On input (“setup”, ctkeys)

Compute (sk,Σ.vk) = Dec(k, ctkeys) and let corresponding public key of sk be pk.

Compute ~L = {Enc(SGXkey, 0)}`j=0

Set index = 0 and ctr = 0
return (pk, ~L) and store (pk, sk,Σ.vk, index, ctr).

On input* (“send”, ~L, ctSignal)

Read (pk, sk,Σ.vk, index, ctr) from internal memory
Let msg = Dec(sk, ctSignal).
if msg[0 : λ] = 0λ then

Update index = (index + 1) mod `
for i in [1, `] do

Let curr = Dec(SGXkey, ~L[i])
if i = index then

~L[i] = Enc(SGXkey,msg)
else

~L[i] = Enc(SGXkey, curr)

else
for i in [1, `] do

~L[i] = Rerandomize(~L[i])

return ~L

On input* (“receive”, ctr, σ, ~L)

if Σ.Ver(Σ.vk, ctr′, σ) = 1 and ctr = ctr′ then

Compute loci = Dec(SGXkey, ~L[i]) for i ∈ [1, `]
Compute ~ctloc = Encpk(loc1), . . . , Encpk(loc`)
Update ctr = ctr + 1
Update ~L = {Enc(SGXkey, 0)}`j=0

return (~L, ~ctloc)
else

return ⊥

Figure 8: Program run by Gatt

At a later point in time, when a recipient Ri requests from the server for its signals, the server
sends the corresponding ~Li to the secure processor. The processor first authenticates that the request
is valid, then it decrypts the ~Li to compute the list of locations for Ri. Finally, using the recipient’s
public key pki, the processor computes the encryptions of the locations: (ctloc) and sends it to the

15

Setup
recipient Ri:

1. Let a←$ Zp,mpk := Gatt.getpk()

2. Send (“keyex”, ga) to Server, await (eidi,Prog, (ga, gb)), σ) from Server

3. Assert Σ.Vermpk((eidi,Prog, (ga, gb)), σ) = 1. Let ki := (gb)a.

4. Compute (pki, ski) ← Enc.KeyGen(1λ), (Σ.ski,Σ.vki) ← Σ.KeyGen(1λ). Set ctkeys,i =

Enc(ki, (ski,Σ.vki)) and send (“setup”, ctkeys,i) to Server, and await ((eidi, pki, ~Li), σ) from

Server. Assert Σ.Vermpk((eidi, pki, ~Li), σ) = 1 and publish pki. Initialize ctri = 0.

Server:

1. Upon receiving (“keyex”, ga) from Ri. Let eidi := Gatt.install(Prog). Let ((ga, gb), σ) :=
Gatt.resume(eidi, (“keyex”, ga)) and send (eidi,Prog, (ga, gb)), σ) to Ri

2. Upon receiving (“setup”, ctkeys,i) from Ri, let ((pki, ~Li), σ) =

Gatt.resume(eidi, (“setup”, ctkeys,i). Send ((eidi, pki, ~Li), σ) to Ri.

Procedure (WRITE,m)

1. Sender S: Call WriteBoard(m) and receive (loc,board′)

Procedure (SEND, Ri, loc)

1. Sender S, computes ctSignal = Enc(pki, 0
λ‖loc) and send (SEND, ctSignal) to Server.

2. Server: Upon receiving (SEND, ctSignal) from some S: For j ∈ [1,M], call

Gatt.resume(eidj , (“send”, ~Lj , ctSignal)) and receive an updated ~Lj .

Procedure RECEIVE

Recipient Ri:

1. Compute σi = Sig(Σ.ski, ctri) and send (RECEIVE, ctri, σi) to Server. Await

((eidi, ~Li, ~ctloc,i), σT) from Server

2. Assert Σ.Vermpk((eidi, ~Li, ~ctloc,i), σT) = 1

3. Initialize locns = [], j = 0
while (locj = Dec(ski, ~ctloc[j])) 6= 0 do

locns.add(locj)
j = j + 1

return locns.

Server:

1. Upon receiving (RECEIVE, ctri, σi) from Ri, let ((eidi, ~Li, ~ctloc,i), σT) =

Gatt.resume(eidi, (“receive”, ctri, σi, ~Li)).

2. Send ((eidi, ~Li, ~ctloc,i), σT) to Ri and update ~Li

Procedure (READ, loc) Call ReadBoard(board, loc) and receive board[loc]

Figure 9: The protocol for private signaling in the Gatt hybrid world

16

Server who forwards it to Ri. The recipient decrypts these to receive locations of its signals. Meanwhile
the secure processor will also have sent a new ~L which are encryptions of 0 (under SGXkeyi) to the
server for storage.

On the parameter ` We note that the parameter ` denotes how many signals can be received by
each recipient. If a recipient gets more than ` signals then ~L is overwritten and the recipient will
lose some of the signals. Moreover, we can allow different `s for different recipients, where a recipient
Ri can specify its ` value. This can be a service that the Server provides depending on a price the
recipient pays. Note that different `s for different recipients does not affect the privacy guarantees of
the protocol.

Theorem 1. Assume that the signature scheme Σ is existentially unforgeable under chosen message
attacks, the DDH assumption holds in the chosen algebraic group, the encryption scheme Enc is CPA
secure and key-private. Then the Gatt-hybrid protocol ΠprivSignal1 UC realizes FprivSignal against PPT
adversaries.

Proof. In our proofs we consider different cases one of which is when a corrupt sender may collude
with corrupt server and recipient and tries to learn the recipients an locations of honest signals. We
present below the crucial strategies of the simulation:

• At all times each ~Li stored in the persistent storage will be encryptions of 0s. The simulator
internally simulates the Gatt functionality.

• Send: When the simulator receives a “send” command from A (on behalf of Server) the it can
decrypt ctSignal to learn the location and the recipient of the signal. The simulator then sends
the SEND command to the FprivSignal functionality to simulate the transcript in the ideal world.

• Receive: When a corrupt recipient Ri requests the server for its signals, the server first runs
the enclave (Gatt) on ~Li and the request from the recipient. Since the simulator simulates the
Gatt functionality it learns of this request from the corrupt recipient. The simulator then sends
RECEIVE to the FprivSignal functionality on behalf of the corrupt recipient and receives back the
correct locations. The simulator then encrypts these locations under the public key of the
recipient Ri and sends it back to the Server.

For the full proofs we refer the reader to Appendix B.

8 Private signaling with two servers

In this section we present the protocol ΠprivSignal2 where we assume two non-colluding servers. We first
present an overview of the protocol below. The protocol is formally described in Figure 10.

Overview of the protocol We first present an overview of ΠprivSignal2. As described earlier in
Section 5 all parties can access a public board using the ReadBoard and WriteBoard commands.
Local to each Serveri is a table that stores information on the signals and is denoted as T(i). The
tables are M × ` matrices where each row is associated with a recipient and ` is the maximum number
of signals that can be received by each recipient. Moreover, while writing to the tables, the servers
must know which index of the row to write the location to for a recipient. To this end, the servers
maintain another table denoted L(i), such that L(1)[R] ⊕ L(2)[R] stores the next available index for
recipient R.

As a warm-up, we first consider a simpler case when a party can receive only one signal. We will
then describe how to handle multiple signals. The tables are initialized such that the same cell in the
two tables contain shares of zero, i.e. T(1)[i]⊕ T(2)[i] = 0.

Recall that a signal informs a recipient R that a message exists for the recipient at a location loc
on the board. To this end, input to Servera is loc(a) and R(a), such that loc(1) ⊕ loc(2) = loc and

17

T(i) Table (M × `) of locations
maintained by Serveri

L(i) Table of available indices denoted index

R(i) Share of R received by Serveri
loc(i) Share of loc received by Serveri

r1
(i,j), r

2
(i,j) Randomness used for both T(1)[i][j] and T(2)[i][j]

r1
(i), r

2
(i) Randomness used for both L(1)[i] and L(2)[i]

Table 3: Notations for ΠprivSignal2

R(1) ⊕R(2) = R. The two servers then run a MPC protocol such that T(1)[R]⊕ T(2)[R] = loc and all
other cells (for other R′) are updated such that T(1)[R′]⊕ T(1)[R′] remains the same.

Now we proceed to describe the extension such that the servers can store more than one loc. Note
that the idea described above does not work directly since the same cell may be overwritten in case R
receives more than one signal. To this end, each row of the table will have ` cells, where ` is a system
parameter and determines the maximum number of signals that can be retrieved by a recipient. At
the end of a RECEIVE command, the recipient’s row is flushed so that it can receive new signals.

To ensure that a loc is not written to a cell that already contains information from a previous
signal, we have the two server maintain tables L(1) and L(2) such that L(1)[R] ⊕ L(2)[R] determines
the last index in row R that was updated with shares of a loc. In details, the two servers now run
an MPC protocol with inputs T(1), L(1) loc(1), R(1) and T(2),L(2), loc(2), R(2) (where L(1)[R]⊕L(2)[R]
is some index, R(1) ⊕ R(2) = R and loc(1) ⊕ loc(2) = loc) and outputs a new T(1),T(2),L(1),L(2) such
that T(1)[R][index]⊕T(2)[R][index] = loc and L(1)[R]⊕L(2)[R] = index +1. All other cells in T(1),T(2),
L(1),L(2) are also updated while maintaining the invariant that T(1)⊕T(2) and L(1)⊕L(2) remain the
same. Note that this update is necessary so that no information on which party received a signal is
leaked to either of the servers. Finally, we note that if a recipient were to receive more than ` messages
before it sends a RECEIVE command, then the new locations are overwritten to the corresponding row
the recipient.

Our protocol makes use standard cryptographic primitives namely - an ideal oblivious transfer
functionality: Fot defined in Appendix 5.2, garbled circuits as defined in Appendix 5.3 and finally
EUF-CMA signatures (defined in Appendix A.2).

Setup In our protocol, each recipient Ri registers with the two servers by computing shares to a
vector of `+ 1 zeros. We denote these shares as r0 . . . r`. The servers use these shares and update the
tables: Add a row to T(a) and L(a) - T(a)[R] = [r1 . . . r`] an L(a)[R] = r0. The recipient Ri also sets a
counter denoted ctri. The ctri is updated each time, the recipient invokes a RECEIVE command. The
ctri along with the vectors are signed by the recipient and sent to the servers. We will describe the
use of ctri ahead.

Sending a signal To send a signal to recipient Ri that a message exists for Ri in location loc on
the board, the sender creates shares of Ri denoted R(1) and R(2) such that R(1) ⊕ R(2) = Ri and
creates shares of loc denoted loc(1) and loc(2) such that loc(1) ⊕ loc(2) = loc. The sender then sends
(R(1), loc(1)) and (R(2), loc(2)) to Server1 and Server2 respectively.

Upon receiving the shares of Ri and loc the two servers run a 2PC protocol so that the T(1) and
T(2) are updated such that in the next available index on T(a)[Ri], the share loc(a) is added. We
implement this 2PC using garbled circuits, where the function implemented by the circuit is defined
in Figure 12. After the 2PC is complete each cell in the table would have been updated. One cell
in Ri’s row in either table would be updated with a share of the loc and all other cells in the table
would just have been re-randomized, such that for any shares in the same cell in both tables combine
to result in the same value before.

Receiving a signal A recipient Ri receives a signal when it requests its row from the two servers.

18

Setup
Recipient Ri:

1. (Σ.ski,Σ.vki)← Σ.KeyGen(1λ) and publish Σ.vki.

2. Randomly sample (r0, . . . , r`)← Z`+1
q , and initialize ctri = 0.

3. Compute σi = Σ.Sig(Σ.ski, ((r0 . . . , r`), ctri)) and send (Setup, (r0 . . . , r`), ctri), σi) to
Server1 and Server2.

Servera, for a ∈ {1, 2}:

1. If Σ.Ver(Σ.vki, (r0 . . . , r`), ctri), σi) 6= 1, ignore.

2. Else store ctri and set T(a)[Ri] = (r1, . . . , r`) and L(a)[Ri] = r0.

Procedure (WRITE,m)

1. Sender S: Call WriteBoard(m) and receive (loc,board′)

Procedure (SEND, R, loc)
Sender S:

1. Compute R(1) and R(2) such that R = R(1) ⊕R(2).

2. Compute loc(1) and loc(2) such that loc = loc(1) ⊕ loc(2)

3. Let Signal1 = (R(1), loc(1)) and Signal2 = (R(2), loc(2)). Send Signala to Servera.

Server1 and Server2 participate in protocol processSignal and update (T(1),L(1)) and (T(2) L(2))
respectively.
Procedure RECEIVE

Recipient Ri:

1. Randomly sample (r0, . . . , r`)← Z`+1
q .

2. Send σi = Σ.Sig(Σ.ski, (r0, . . . , r`), a) to Servera

3. Upon receiving T(a)[Ri], for j ∈ [1, `] compute T(1)[R][j] ⊕ T(2)[R][j] until T(1)[R][j] ⊕
T(2)[R][j] = 0.

4. Update ctri = ctri + 1

Servera:
Check if Σ.Ver(Σ.vki, (ctr′, (r0, . . . , r`)), σi) = 1 and ctr′ = ctri, if yes, send T(a)[R] to R. And
update ctri = ctri + 1
Procedure READ

1. Call ReadBoard(board, loc) and receive board[loc]

Figure 10: Private signaling protocol with 2 servers

The recipient can simply recombine the two shares at the corresponding indices and get a vector of
locations where it has received messages on the board. Note that the recipient needs to recombine
the shares only until the shares recombine to 0, since it knows that there are no more signals after

19

Protocol processSignal
Servera (where a ∈ {1, 2}), upon receiving σa from S:

1. Parse Signala = (R(a), loc(a))

2. Sample r
(a)
(i) ← {0, 1}

λ for i ∈ [1,M], j ∈ [1, `].

3. (As garbler of GC) Compute Garble(1λ, (UpdateTable,UpdIndex))→ (F, e, d), where F is
the garbled circuit, and e encodes both possible bits of |T(·)|, |loc(·)|, |R(1)|, |R(2)|, |L(1)|
, |L(2)|, |r(a)

(i,j)| for i ∈ [1,M], j ∈ [1, `], a ∈ {1, 2} and |r(a)
(i) | for i ∈ [1,M], a ∈ {1, 2}

4. Send (SEND, (s0, s1)) to Fot, for each pair of encoded keys of bits in
|T(·)|, |loc(·)|, |R(·)|, |L(·)|, |r(i,j)| for i ∈ [1,M], j ∈ [1, `], |r(i)| for i ∈ [1,M]

5. Send (F, d) to the other server , where F includes the keys for its own inputs, i.e. r(i,j)

for i ∈ [1,M], j ∈ [1, `], loc(a), R(a).

Servera, upon receiving (F, d) from the other server:

1. (As evaluator of GC) Upon receiving SEND from Fot, send (RECEIVE, b) to Fot for each

bit b in T(a), loc(a), R(a),L(a), r
(a)
(i) for i ∈ [1,M], j ∈ [1, `] and denote these strings as Xa

2. Compute Eval(F, (Xa)) to get Y

3. Compute Decode(d, Y) to get a new T(a) and L(a)

Figure 11: GC protocol to update two tables

index.
When the recipient requests its row, it also sends a vector r0 . . . r` to the two servers. With these

two vectors, the servers update their tables. In this way, the rows for the recipient are flushed so
that new signals can be received. The request also includes a ctri and a signature on the vector and
ctri. The servers check that the ctri match with their locally stored ctri. This check ensures that a
malicious user cannot simply replay an old request and learn the signals. The protocol is presented
formally in Figure 10.

Theorem 2. The protocol ΠprivSignal (Figure 10) UC-realizes the FprivSignal functionality (Figure 7)
in the Fot-hybrid model assuming secure garbled circuits (Definition 1) and existential unforgeable
signature schemes (Definition 4) .

Proof. In our proofs we consider different cases one of which is when a corrupt sender may collude
with a corrupt Server1 and recipient and tries to learn the recipients and locations of honest signals.
We present below the crucial strategies of the simulation:

• At all times each T(1) and T(2) only store shares of 0s.

• Send: Note that the simulator simulates Server2 and will therefore receive R(2) and loc(2) from the
corrupt sender. Moreover the simulator also simulates the Fot functionality towards the corrupt
Server1. This way when Server1 requests the labels of loc(1) and R(1) via the Fot functionality, the
simulator learns the exact bits of loc(1) and R(1). The simulator then computes R = R(1) ⊕R2

and loc = loc(1) ⊕ loc(2) and send (SEND, R, loc) to FprivSignal on behalf of the corrupt sender.

• Receive: Note that for a corrupt Ri to request its row, it must request both Server1 and Server2.
Therefore the simulator learns when a corrupt Ri makes a RECEIVE request. The simulator then

20

The UpdateTable function

Input: T(1), L(1), loc(1), R(1), R(2), {r1
(i,j)}[i∈[1,M],j∈[1,`]], {r

(2)
(i,j)}[i∈[1,M],j∈[1,`]], {r

(1)
(i) }i∈[1,M]

and {r(2)
(i) }i∈[1,M]

Output: Updated T(1),L(1)

Algorithm

1: Compute R = R(1) ⊕R(2)

2: Compute index = (L(1)[R]⊕ L(2)[R]) mod `
3: Update T(1)[R][index] = loc(1)

4: Update L(1)[R] = (index + 1)
5: for i in [1,M] do

6: L(1)[i] = L(1)[i]⊕ r(1)
(i) ⊕ r

(2)
(i)

7: for j in [1, `] do

8: T(1)[i][j] = T(1)[i][j]⊕ r(1)
(i,j) ⊕ r

(2)
(i,j)

9: return T(1),L(1)

Figure 12: The function to update the tables T(1) and L(1). The same algorithm updates the tables
for Server2, except in step 4: the circuit updates L(2)[R] = 0

sends the RECEIVE command to the FprivSignal ideal functionality on behalf of the corrupt Ri and
then learns the locations that Ri would receive. Note that the two servers maintained shares of
zero in every index. The simulator now updates the Server2 row by XORing those shares with
the locations it received from the functionality and sends this updated row to the recipient. The
recipient learns the correct locations after receiving the rest of the shares from Server1.

For the full proofs we refer the reader to Appendix C.

9 Implementation and Evaluation

We implemented both of our proposed protocols, i.e., our TEE-assisted solution from Section 7 as
well as our garbled circuit-based construction in the two server setting, cf. Section 8.

9.1 Implementation

We implemented Protocol ΠprivSignal1 using an Intel SGX [20]. In the implementation we use RSA-
OAEP[10] as the public key encryption algorithm, since we require no ambiguity in the decryption
for the TEE. Moreover, the RSA-OAEP encryption can be modified to make it key-private as was
noted by Bellare et al. [3]. Additionally, the encryption scheme used to encrypt the vectors ~L in the
persistent storage is an authenticated encryption scheme with associated data (AEAD) instantiated
with AES-256 in GCM mode [24].

We implemented our garbled circuit-based protocol, cf. Figure 11, in Rust. We applied the
garbled circuit compiler of Ball et al. [1], that has an open-source implementation we used.6 Our im-
plementation applies AES as symmetric cipher, while as the hash function SHA-256 was used. We take
advantage of the point-and-permute and the Free-XOR optimization of Kolesnikov and Schneider [14].

6https://github.com/GaloisInc/fancy-garbling

21

9.2 Evaluation

In the single-server setting, our TEE-based protocol yields a performant solution for the private
signaling problem. For parameters l = 20 and M = 100 recipients, the SEND function was executed in
6.26 seconds, while for l = 20,M = 1000, it took 31.86 seconds to register a signal.

The implementation of our protocol in the two-server setting was evaluated on a AWS t3.medium
instance. It had 4 GB RAM and 1 core Intel(R) Xeon(R) Platinum 8259CL CPU at 2.50GHz and it
was running on the Amazon Linux 2 operating system.

l 103 104 105

XOR 32,580,496 325,800,496 3,258,000,496
AND 15,390,000 153,900,000 1,539,000,000
PROJ 1,020,000 10,200,000 102,000,000

Table 4: Garbled circuit size in terms of the number of AND, XOR and PROJ gates for M = 30.
Note that the number of gates are symmetric in M and l.

First, we observe the size of the garbled-circuits used in our implementations, cf. Table 4. Even
though the majority of the gates are XOR-gates, considerable amount of AND gates are necessary to
compute privately our FprivSignal functionality. The number of AND gates grows linearly in the number
of messages and also in the number users. Hence, this limits our protocol to be applied in scenarios
where there are modest numbers of users or messages.

l
M

101 102 103 101 102 103

101 .75s 5.8s 57s 5.7MB 57MB 0.6GB
102 5.7s 58s 582s 57.5MB 0.6GB 5GB
103 58s 582s 97m 0.6GB 5GB 50GB

Table 5: Left: Running times for evaluating the garbled circuit implementing ΠprivSignal2 Right: Com-
munication costs of the two servers by varying M and `

Computation and communication costs of our implementation of the ΠprivSignal2 shows that the
garbled-circuit-based approach can support modest numbers of users or messages in practice. However,
private signaling in applications where both the number of users and messages are plentiful requires
considerable bandwidth and computing power from the servers, cf. Table 5.

Our experiments indicate that the TEE based solution is much more efficient than the GC based
solution. Note that in both protocols, the computation done is to update an M × ` table. In Protocol
ΠprivSignal1 the overall latency is the network time for the host to supply the SGX with a row, the
time taken by the SGX to encrypt and decrypt each element in the row. Whereas for ΠprivSignal2

the overall latency is in the computation of the garbled circuits, the network time in communicating
the garbled truth tables and oblivious transfer and finally the evaluation of the circuits. As can be
seen from Table 4 the number of non-linear gates (AND gates) in ΠprivSignal2 is very high (approx.
15 million for M = 30, ` = 1000). This is one of the main bottlenecks in the overall latency for the
Protocol ΠprivSignal2. The other major bottleneck in our implementation is in the communication of
large garbled truth tables between the two servers. As can be seen from Table 5 the size of the tables
increases linearly with M and ` and is approximately 0.6GB for ` = 10 and M = 1000. We note,
however, that our implementation is not optimized. For instance, the garbled circuit evaluation could
be parallelized due to the circuit’s structure. This and other garbled circuit optimizations (such as
half-gates etc.) can help decreasing the communication and computation costs of our protocols. We
leave these optimizations for future work.

22

Unfortunately, we cannot directly compare our performance evaluation with that of [2]. Beck et
al. solely measured the computation costs of their FMD protocol for recipients. We do not provide
recipient running time measurements, since in our protocols recipients only do negligible computation.
However, Beck et al. unlike us, do not provide performance measurements for the server performing
fuzzy message detection. Even though we provide stronger notions of privacy for recipients, we expect
that the server’s communication and computation costs in our protocols are competitive in comparison
with the fuzzy message detection protocol.

Optimizing by processing a batch of signals We also improve the circuit evaluation for Protocol
ΠprivSignal2 by processingK signals at a time. We observed that forK = 5, the overall computation took
2× less time than linearly processing 5 signals sequentially. And for K = 25, the overall computation
improved by 2.7×. This gain in overall processing time can be attributed to lesser number of garbled
tables that need to be computed and communicated.

10 Conclusion and Open Problems

We have introduced the problem of private signaling that abstracts and generalizes several real-world
recipient-anonymous applications. We have provided a formal definition in the UC-framework, two
server-aided protocols that achieve this definition (in the semi-honest and malicious setting), and
open source implementations. Our protocols achieves the best efficiency for the sender and recipients,
requiring only minimal overhead.

The workload of the servers however is proportional to O(M`) per signal, which limits the choice
of the parameters of M and `. We leave it as future work to explore techniques such as ORAM to
improve the workload of the servers.

Availability

We release the source code of our implementations of private signaling protocols to facilitate further
improvements and experiments. It can be found at https://github.com/ZenGo-X/pps-gc.

23

https://github.com/ZenGo-X/pps-gc

References

[1] Marshall Ball, Tal Malkin, and Mike Rosulek. Garbling gadgets for boolean and arithmetic
circuits. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security, pages 565–577, 2016.

[2] Gabrielle Beck, Julia Len, Ian Miers, and Matthew Green. Fuzzy message detection. IACR eprint
(Accepted at CCS 2021), 2021.

[3] Mihir Bellare, Alexandra Boldyreva, Anand Desai, and David Pointcheval. Key-privacy in public-
key encryption. In International Conference on the Theory and Application of Cryptology and
Information Security, pages 566–582. Springer, 2001.

[4] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled circuits. In
Proceedings of the 2012 ACM conference on Computer and communications security, pages 784–
796, 2012.

[5] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen, Srdjan Capkun, and
Ahmad-Reza Sadeghi. Software grand exposure:{SGX} cache attacks are practical. In 11th
{USENIX} Workshop on Offensive Technologies ({WOOT} 17), 2017.

[6] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In
Proceedings 42nd IEEE Symposium on Foundations of Computer Science, pages 136–145. IEEE,
2001.

[7] Henry Corrigan-Gibbs, Dan Boneh, and David Mazières. Riposte: An anonymous messaging
system handling millions of users. In 2015 IEEE Symposium on Security and Privacy, pages
321–338. IEEE, 2015.

[8] Victor Costan and Srinivas Devadas. Intel sgx explained. IACR Cryptol. ePrint Arch., 2016(86):1–
118, 2016.

[9] Nicolas T Courtois and Rebekah Mercer. Stealth address and key management techniques in
blockchain systems. ICISSP, 2017:559–566, 2017.

[10] Eiichiro Fujisaki, Tatsuaki Okamoto, David Pointcheval, and Jacques Stern. Rsa-oaep is se-
cure under the rsa assumption. In Annual International Cryptology Conference, pages 260–274.
Springer, 2001.

[11] Arthur Gervais, Srdjan Capkun, Ghassan O Karame, and Damian Gruber. On the privacy provi-
sions of bloom filters in lightweight bitcoin clients. In Proceedings of the 30th Annual Computer
Security Applications Conference, pages 326–335, 2014.

[12] Johannes Götzfried, Moritz Eckert, Sebastian Schinzel, and Tilo Müller. Cache attacks on intel
sgx. In Proceedings of the 10th European Workshop on Systems Security, pages 1–6, 2017.

[13] Mike Hearn and Matt Corallo. Bip 37: Connection bloom filtering. URL https://github.
com/bitcoin/bips/blob/master/bip-0037. mediawiki, 2012.

[14] Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free xor gates and appli-
cations. In International Colloquium on Automata, Languages, and Programming, pages 486–498.
Springer, 2008.

[15] Duc V Le, Lizzy Tengana Hurtado, Adil Ahmad, Mohsen Minaei, Byoungyoung Lee, and Aniket
Kate. A tale of two trees: one writes, and other reads: Optimized oblivious accesses to bitcoin and
other utxo-based blockchains. Proceedings on Privacy Enhancing Technologies, 2020(2), 2020.

24

[16] Jaehyuk Lee, Jinsoo Jang, Yeongjin Jang, Nohyun Kwak, Yeseul Choi, Changho Choi, Taesoo
Kim, Marcus Peinado, and Brent ByungHoon Kang. Hacking in darkness: Return-oriented pro-
gramming against secure enclaves. In 26th {USENIX} Security Symposium ({USENIX} Security
17), pages 523–539, 2017.

[17] Sarah Lewis. Discreet log #1: Anonymity, bandwidth and fuzzytags.

[18] Ian Martiny, Gabriel Kaptchuk, Adam Aviv, Dan Roche, and Eric Wustrow. Improving signal’s
sealed sender. 2021.

[19] Sinisa Matetic, Karl Wüst, Moritz Schneider, Kari Kostiainen, Ghassan Karame, and Srdjan
Capkun. {BITE}: Bitcoin lightweight client privacy using trusted execution. In 28th {USENIX}
Security Symposium ({USENIX} Security 19), pages 783–800, 2019.

[20] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V Rozas, Hisham Shafi, Vedvyas
Shanbhogue, and Uday R Savagaonkar. Innovative instructions and software model for isolated
execution. Hasp@ isca, 10(1), 2013.

[21] Rafael Pass, Elaine Shi, and Florian Tramer. Formal abstractions for attested execution secure
processors. In Annual International Conference on the Theory and Applications of Cryptographic
Techniques, pages 260–289. Springer, 2017.

[22] Kaihua Qin, Henryk Hadass, Arthur Gervais, and Joel Reardon. Applying private information re-
trieval to lightweight bitcoin clients. In 2019 Crypto Valley Conference on Blockchain Technology
(CVCBT), pages 60–72. IEEE, 2019.

[23] Justus Ranvier. Reusable payment codes for hierarchical deterministic wallets.

[24] Phillip Rogaway. Authenticated-encryption with associated-data. In Proceedings of the 9th ACM
Conference on Computer and Communications Security, pages 98–107, 2002.

[25] Antoine Rondelet and Michal Zajac. Zeth: On integrating zerocash on ethereum. arXiv preprint
arXiv:1904.00905, 2019.

[26] David Isaac Wolinsky, Henry Corrigan-Gibbs, Bryan Ford, and Aaron Johnson. Dissent in num-
bers: Making strong anonymity scale. In 10th {USENIX} Symposium on Operating Systems
Design and Implementation ({OSDI} 12), pages 179–182, 2012.

[27] Gavin Wood et al. Ethereum: A secure decentralised generalised transaction ledger. Ethereum
project yellow paper, 151(2014):1–32, 2014.

[28] Karl Wüst, Sinisa Matetic, Moritz Schneider, Ian Miers, Kari Kostiainen, and Srdjan Čapkun.
Zlite: Lightweight clients for shielded zcash transactions using trusted execution. In International
Conference on Financial Cryptography and Data Security, pages 179–198. Springer, 2019.

[29] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. Controlled-channel attacks: Deterministic
side channels for untrusted operating systems. In 2015 IEEE Symposium on Security and Privacy,
pages 640–656. IEEE, 2015.

[30] Andrew Chi-Chih Yao. How to generate and exchange secrets. In 27th Annual Symposium on
Foundations of Computer Science (sfcs 1986), pages 162–167. IEEE, 1986.

25

A Preliminaries (contd.)

A.1 Indistinguishability under chosen plaintext attacks

We present a definition for CPA security for private key encryption in Def 2 and for public key
encryption in Def 3.

Definition 2. Let E = (KeyGen,Enc,Dec) be an encryption scheme. Let b ∈ {0, 1} and λ ∈ N. Let A
be an adversary and consider the following experiment.

Experiment Exppriv−cpa−b
E,A (λ):

k ← KeyGen(λ)
m0,m1 ← AOEnck(·)(λ)
c← Enc(k,mb)
b′ ← AOEnck(·)(λ)
return b′

The advantage of the adversary is given as

Advpriv−cpa
E,A = Pr[Exppriv−cpa−1

E,A (λ) = 1]− Pr[Exppriv−cpa−0
E,A (λ) = 1]

The scheme E is said to be CPA secure if the function Advpriv−cpa
E,A (·) is negligble for any adversay

A whose time complexity is polynomial in λ.

Lemma 1. Any private-key encryption scheme that has indistinguishable encryptions under a chosen-
plaintext attack also has indistinguishable multiple encryptions under a chosen-plaintext attack.

Definition 3. Let E = (KeyGen,Enc,Dec) be an encryption scheme. Let b ∈ {0, 1} and λ ∈ N. Let A
be an adversary and consider the following experiment.

Experiment Exppub−cpa−b
E,A (λ):

(pk, sk)← KeyGen(λ)

m0,m1 ← AOEncpk(·)(λ)
c← Enc(pk,mb)

b′ ← AOEncpk(·)(λ)
return b′

The advantage of the adversary is given as

Advpub−cpa
E,A = Pr[Exppub−cpa−1

E,A (λ) = 1]− Pr[Exppub−cpa−0
E,A (λ) = 1]

The scheme E is said to be CPA secure if the function Advpub−cpa
E,A (·) is negligble for any adversay

A whose time complexity is polynomial in λ.

A.2 Existential Unforgeability under Chosen Message Attacks

Definition 4. A digital signature scheme consists of three algorithms (Σ.KeyGen.Σ.Sig,Σ.Ver). Let
A be the adversary and consider the following experiment: Experiment Expeuf−cma

Σ,A (λ):

(Σ.vk,Σ.sk)← Σ.KeyGen(λ)
(m,σ)← AOSigΣ.sk(·)(λ)
Let Q be the set of oracle queries to SigΣ.sk(·).
If m /∈ Q and Σ.Ver(Σ.vk,m, σ) = 1, return 1.

The advantage of the adversary is given as

Adveuf−cma
Σ,A = Pr[Expeuf−cma

Σ,A (λ) = 1]

26

A.3 Key privacy under chosen plaintext attacks

We present a notion of key-privacy under chosen plaintext attacks as defined in [3]. The adversary
runs in two stages: in the find stage it takes two public keys pk0 and pk1 and outputs a message x
with some state information s. In the guess stage the adversary gets a challenge ciphertext y, which
is encrypted under one of the two keys at random. The adversary then tries to guess which key was
used to compute the ciphertext y.

Definition 5. Let E = (KeyGen,Enc,Dec) be an encryption scheme. Let b ∈ {0, 1} and λ ∈ N. Let A
be an adversary. Consider the following experiment:

Experiment Expik−cpa−b
E,A (λ):

(pk0, sk0)← KeyGen(1k) and (pk1, sk1)← KeyGen(1λ).
(x, s)← A(find, pk0, pk1)
y ← Enc(pkb, x)
d← A(guess, y, s)
return d

The advantage of the adversary is given as

Advik−cpa
E,A = Pr[Expik−cpa−1

E,A (λ) = 1]− Pr[Expik−cpa−0
E,A (λ) = 1]

.
The scheme E is said to be IK − CPA secure, if the function Advik−cpa

E,A (·) is negligible for any
adversary A whose time complexity is polynomial in k.

A.4 Universal Composability

In UC security we consider the execution of the protocol in a special setting involving an environment
machine Z, in addition to the honest parties and adversary. In UC, ideal and real models are considered
where a trusted party carries out the computation in the ideal model while the actual protocol runs
in the real model. The trusted party is also called the ideal functionality. For example the ideal
functionality FprivSignal is a trusted party that provides the functionality of private signaling. In the
UC setting, there is a global environment (the distinguisher) that chooses the inputs for the honest
parties, and interacts with an adversary who is the party that participates in the protocol on behalf
of dishonest parties. At the end of the protocol execution, the environment receives the output of
the honest parties as well as the output of the adversary which one can assume to contain the entire
transcript of the protocol. When the environment activates the honest parties and the adversary, it
does not know whether the parties and the adversary are running the real protocol –they are in the real
world, or they are simply interacting with the trusted ideal functionality, in which case the adversary
is not interacting with any honest party, but is simply “simulating” to engage in the protocol. In the
ideal world the adversary is therefore called simulator, that we denote by S.

In the UC-setting, we say that a protocol securely realizes an ideal functionality, if there exist no
environment that can distinguish whether the output he received comes from a real execution of the
protocol between the honest parties and a real adversary A, or from a simulated execution of the
protocol produced by the simulator, where the honest parties only forward date to and from the ideal
functionality.

The transcript of the ideal world execution is denoted IDEALF,S,Z(λ, z) and the transcript of the
real world execution is denoted Π,A,Z(λ, z). A protocol is secure if the ideal world transcript and the
real world transcripts are indistinguishable. That is, {IDEALF,S,Z(λ, z}λ∈N,z∈{0,1}∗ ≡ {Π,A,Z(λ, z)}λ∈N,z∈{0,1}∗ .

27

B Proof of Theorem 1

B.1 Correctness

The correctness of this scheme is pretty straightforward conditioned on the fact that there are no two
secret keys for which the decryption of ctSignal gives the first λ bits as 0λ. Since we use encryption
scheme (RSA-OAEP) that gives us this in the implementation

B.2 Protocol ΠprivSignal1 realizes the FprivSignal functionality

Proof. To prove that ΠprivSignal1 UC-realizes FprivSignal we show that there exists a simulator S that
interacts with FprivSignal and the adversary A to generate a transcript that is indistinguishable from
the real world protocol. We consider the following cases of corruption:

• Simulator SN for the case when only the server is corrupt.

• Simulator Ss for the case when a subset of the senders and the server are corrupt.

• Simulator Sr for the case when a subset of the recipients and the server are corrupt/

• Simulator Srs for the case when a subset of the recipients, a subset of the senders and the server
is corrupt.

We discuss these simulators in more detail in the next subsections.

B.3 Case 1: Neither S nor R is corrupt

Simulator overview When neither the sender nor the recipients are corrupt, then the only corrupt
entity is the server. In this case, the simulator interacts with the Server and the FprivSignal to simulate
a transacript that is indistinguishable from the real world. Note that the simulator also simulates Gatt

towards A.

Proof by hybrids We prove security via a sequence of hybrids where we start from the real world
and move to the ideal world.

• Hyb0 The real world protocol.

• Hyb1 is the same as Hyb0 except that upon receiving a SEND command, the ctSignal is replaced
with an encryption to 0 instead of the actual location. By the CPA security (Def 3) of the
underlying encryption scheme we prove in Lemma 2 that the two hybrids are indistinguishable.

• Hyb2 is the same as Hyb1 except that for each SEND command, the loc is now encrypted under
a fresh public key as in the simulation. By the key privacy (Def 5) of the underlying encryption
scheme we prove in Lemma 3 that the two hybrids are indistinguishable.

• Hyb3 is the same as Hyb2 except that in the SEND command, the Gatt functionality returns
encryptions of 0 under SGXkeyj instead of actual locations. By the CPA security (Def 2) of the
encryption scheme, the two hybrids are indistinguishable.

• Hyb4 is the same as Hyb3 except that in the RECEIVE command, the simulator returns encryp-
tions of 0 as ctloc,i to the server on behalf of Gatt. By the CPA security (Def 3) of the underlying
encryption scheme, we prove in Lemma 5 that the two hybrids are indistinguishable.

• Hyb5 is the same as Hyb4 except that in the Setup procedure, the simulator aborts with
sigFailure1. We prove in Lemma 6 that this occurs with negligible probability.

28

The simulator S maintains a public board and internally simulates Gatt towards the adversary
A
Setup For each recipient Ri:

1. Sample random a and send (“keyex”, ga) to A

2. Upon receiving (eidi,Prog, (ga, gb)), σ) from A, abort with sigFailure1 if σ would be vali-
dated by a honest Ri, yet the following A ⇔ Gatt communication was not recorded:

• eid := Gatt.install(Prog)

• ((ga, gb), σ) := Gatt.resume(eidi, (“keyex”, ga))

Else compute ki = gr, where r ←$ Zq and SGXkeyi ← PrivEnc.KeyGen(1λ)

3. Compute (pki, ski) ← Enc.KeyGen(1λ), (Σ.ski,Σ.vki) ← Σ.KeyGen(1λ). Set
ctkeys,i = Enc(ki, (ski,Σ.vki)) and send (“setup”, ctkeys,i) to Server. Upon receiving

((eidi, pki, ~Li), σ) abort with sigFailure2 if σ would be validated but the following com-

munication was not recorded: ((pki, ~Li), σ) = Gatt.resume(eidi, (“setup”, ctkeys,i), where
~Li = {Enc(SGXkeyi, 0)}`j=0. Else publish pki and set indexi = 0, ctri = 0.

WRITE : Upon receiving (WRITE, (Si,m)) from FprivSignal, update board = board‖m and send
ok to FprivSignal.

SEND: Upon receiving (SEND, Si) from FprivSignal

1. Create keys (pk, sk) ← Enc.KeyGen(1λ) and compute ctSignal = Enc(pk, 0) and send
(SEND, ctSignal) to A.

2. Upon receiving (“send”, ~Lj , ctSignal) on behalf of Gatt from A, update ~Lj =

{Enc(SGXkeyj , 0)}`0 for s ∈ [1,M] and return the updated ~Lj to A.

RECEIVE : Upon receiving (RECEIVE, Rj) from FprivSignal

1. Compute σi = Sig(Σ.ski, ctri) and send (RECEIVE, ctri, σi) to A.

2. Upon receiving Gatt.resume(eidi, (“receive”, ctri, σi, ~Li)) on behalf of Gatt:

(a) Compute ~ctloc,i = Enc(pki, 0) . . .Enc(pki, 0)

(b) Update ~L = {Enc(SGXkey, 0)}`j=0

(c) Update ctri = ctri + 1

(d) Compute σT = Sig(msk, (eidi, ~Li, ~ctloc,i))

(e) Return (~Li, ~ctloc,i, σT) to A

3. Receive (eidi, ~Li, ~ctloc,i, σT) from A. If this was received without the communication with
Gatt, abort with sigFailure3.

Figure 13: Simulator SN for the case of only one corrupt server

29

• Hyb6 is the same as Hyb5 except that in the Setup procedure, the simulator aborts with
sigFailure2. We prove in Lemma 7 that this occurs with negligible probability.

• Hyb7 is the same as Hyb6 except that in the RECEIVE command, the simulator may abort with
sigFailure3. We prove in Lemma 8 that this occurs with negligible probability.

• Hyb8 is the same as Hyb7 except that in the Setup procedure, the key ki is computed as
ki ← gc where c←$ Zq. We prove in Lemma 9 that this occurs with negligible probability.

Lemma 2. Assuming CPA secure encryption scheme (Def 3), Hyb1 and Hyb0 are indistinguishable
against a PPT adversary.

Proof. Note that the difference between Hyb1 and Hyb0 is that in Hyb1 the encryption ctSignal is
replaced by an encryption to 0, under the same pk.

Assume a distinguisher D can distinguish between Hyb1 and Hyb0, i,e. Pr[D(Hyb1) = 1] −
Pr[D(Hyb0) = 1] > negl(λ)

Using this distinguisher D we construct a reduction B that can break the CPA security of encryp-
tion scheme.

1. Activate the distinguisher D

2. Run the Setup procedure for an honest recipient R, and let the encryption public key be pk.

3. Upon receiving a (SEND, R, loc) command from the environment, set m0 = loc and m1 = 0λ.

4. Send m0,m1 to the challenger and receive back c.

5. Set ctSignal = c and send the transcript to the distinguisher D

6. Output whatever D outputs.

Note that in the case ctSignal was the encryption of m0 the distinguisher sees the hybrid world -
Hyb0 and on the other hand when encryption of m1 is returned the distinguisher sees the hybrid
world Hyb1.

Thus
Pr[D(Hyb1) = 1] = Pr[Exppub−cpa−1

E,A (λ) = 1
and
Pr[D(Hyb0) = 1] = Pr[Exppub−cpa−0

E,A (λ) = 1
This implies

Advpub−cpa
E,A = Pr[Exppub−cpa−1

E,A (λ) = 1]− Pr[Exppub−cpa−0
E,A (λ) = 1]

= Pr[D(Hyb1) = 1]− Pr[D(Hyb0) = 1] > negl(λ)

But this is a contradiction, since we assume CPA secure encryption schemes and therefore Advpub−cpa
E,A <

negl(λ).
Hence Pr[D(Hyb1) = 1]−Pr[D(Hyb0) = 1] < negl(λ) making the two hybrids indistinguishable.

Lemma 3. Assuming key-privacy (Def 5) of the underlying PKE scheme, Hyb2 and Hyb1 are
indistinguishable to a PPT adversary.

Proof. Note that the difference between Hyb2 and Hyb1 is that in Hyb2 the encryption ctSignal is
done using a freshly generated pk.

Assume a distinguisher D can distinguish between Hyb2 and Hyb1, i,e. Pr[D(Hyb2) = 1] −
Pr[D(Hyb1) = 1] > negl(λ)

Using this distinguisher D we construct a reduction B that can break the IK-CPA security (Def 5)
of encryption scheme.

30

1. Activate the distinguisher D and receive pk0, pk1 from the challenger.

2. Run the Setup procedure for an honest recipient R, and let the encryption public key be pk0.

3. Upon receiving a (SEND, R, loc) command from the environment, send x = loc and s = ⊥ to the
challenger.

4. Receive y. Set ctSignal = y and send the transcript to the distinguisher D

5. Output whatever D outputs.

Note that in the case ctSignal was encrypted under pk0 the distinguisher sees the hybrid world -
Hyb1 and on the other hand when encryption is done using pk1 is returned the distinguisher sees the
hybrid world Hyb2.

Thus
Pr[D(Hyb2) = 1] = Pr[Expik−cpa−1

E,A (λ) = 1
and
Pr[D(Hyb1) = 1] = Pr[Expik−cpa−0

E,A (λ) = 1
This implies

Advik−cpa
E,A = Pr[Expik−cpa−1

E,A (λ) = 1]− Pr[Expik−cpa−0
E,A (λ) = 1]

= Pr[D(Hyb2) = 1]− Pr[D(Hyb1) = 1] > negl(λ)

But this is a contradiction, since we assume CPA secure encryption schemes and therefore Advik−cpa
E,A <

negl(λ).
Hence Pr[D(Hyb2) = 1]−Pr[D(Hyb1) = 1] < negl(λ) making the two hybrids indistinguishable.

Lemma 4. Assuming the CPA security (Def 2) of the private key encryption scheme used by Gatt,
Hyb3 and Hyb2 are indistinguishable.

Proof. Note that the difference between Hyb3 and Hyb2 is that in Hyb3 the encryption of the

elements in ~L is replaced by an encryptions to 0.
Assume a distinguisher D can distinguish between Hyb3 and Hyb2, i,e. Pr[D(Hyb3) = 1] −

Pr[D(Hyb2) = 1] > negl(λ)
Using this distinguisher D we construct a reduction B that can break the CPA security of encryp-

tion scheme.

1. Activate the distinguisher D

2. Run the Setup procedure for an honest recipient R, and let the key for enccrypting ~L be SGXkey.

3. Upon receiving a (SEND, R, loc) command from the environment, set ~m0 = loc1 . . . loc` and
~m1 = 0λ, . . . 0λ.

4. Send ~m0, ~m1 to the challenger and receive back c.

5. Set ~L = c and send the transcript to the distinguisher D

6. Output whatever D outputs.

Note that in the case ~L was the encryption of ~m0 the distinguisher sees the hybrid world - Hyb2

and on the other hand when encryption of ~m1 is returned the distinguisher sees the hybrid world
Hyb3.

Thus by lemma 1,
Pr[D(Hyb3) = 1] = Pr[Exppriv−cpa−1

E,A (λ) = 1

31

and
Pr[D(Hyb2) = 1] = Pr[Exppriv−cpa−0

E,A (λ) = 1
This implies

Advpriv−cpa
E,A = Pr[Exppriv−cpa−1

E,A (λ) = 1]− Pr[Exppriv−cpa−0
E,A (λ) = 1]

= Pr[D(Hyb3) = 1]− Pr[D(Hyb2) = 1] > negl(λ)

But this is a contradiction, since we assume CPA secure encryption schemes and therefore Advpriv−cpa
E,A <

negl(λ).
Hence Pr[D(Hyb3) = 1]−Pr[D(Hyb2) = 1] < negl(λ) making the two hybrids indistinguishable.

Lemma 5. Assuming CPA secure encryption scheme (Def 3) and by Lemma 1, Hyb4 and Hyb3 are
indistinguishable against a PPT adversary.

Proof. Note that the difference between Hyb4 and Hyb3 is that in Hyb4 the encryption ctloc is
replaced by encryptions to 0, under the same pk.

Assume a distinguisher D can distinguish between Hyb4 and Hyb3, i,e. Pr[D(Hyb4) = 1] −
Pr[D(Hyb3) = 1] > negl(λ)

Using this distinguisher D we construct a reduction B that can break the CPA security of encryp-
tion scheme.

1. Activate the distinguisher D

2. Run the Setup procedure for an honest recipient R, and let the encryption public key be pk.

3. Upon receiving a RECEIVE command, simulate the protocol such that ~locns = {loc1 . . . loc`} and

set ~m0 = ~locns and ~m1 = 0λ.

4. Send ~m0, ~m1 to the challenger and receive back ~c.

5. Set ~ctloc = ~c and send the transcript to the distinguisher D

6. Output whatever D outputs.

Note that in the case ~ctloc was the encryption of ~m0 the distinguisher sees the hybrid world -
Hyb3 and on the other hand when encryption of ~m1 is returned the distinguisher sees the hybrid
world Hyb4.

Thus
Pr[D(Hyb4) = 1] = Pr[Exppub−cpa−1

E,A (λ) = 1
and
Pr[D(Hyb3) = 1] = Pr[Exppub−cpa−0

E,A (λ) = 1
This implies

Advpub−cpa
E,A = Pr[Exppub−cpa−1

E,A (λ) = 1]− Pr[Exppub−cpa−0
E,A (λ) = 1]

= Pr[D(Hyb4) = 1]− Pr[D(Hyb3) = 1] > negl(λ)

But this is a contradiction, since we assume CPA secure encryption schemes and therefore Advpub−cpa
E,A <

negl(λ).
Hence Pr[D(Hyb4) = 1]−Pr[D(Hyb3) = 1] < negl(λ) making the two hybrids indistinguishable.

Lemma 6. Assuming existential unforgeable signatures that are secure against chosen message at-
tacks, Hyb5 and Hyb4 are indistinguishable.

32

Proof. Note that the difference between Hyb5 and Hyb4 is that in Hyb5 the event sigFailure1 can
occur. We prove in this section that the probability of this event occurring is negligible.

First we observe that sigFailure1 occurs when the simulator receives a signature from the adversary
that was not created by the simulator on behalf of the Gatt.

Assume a distinguisher D can distinguish between Hyb5 and Hyb4, i,e. Pr[D(Hyb5) = 1] −
Pr[D(Hyb4) = 1] > negl(λ)

This implies that Pr[sigFailure1] > negl(λ).
Which implies that Pr[A(·) = ((ga, gb), σ) ∧ Σ.Ver(mpk, (eid, ga, gb), σ) = 1] > negl(λ)
Using this adversary we present a reduction B that breaks the EUF-CMA property (Def 4) of

signature schemes.

1. Simulate the world as in Hyb4, and receive Σ.vk from the challenger. Set mpk of Gatt as Σ.vk.

2. UWhen simulating Gatt and (ga, gb, eid) needs to be signed, use OSigΣ.sk
(·) and send back the

signature to the adversary.

3. Upon receiving ((eid, (ga, gb)), σ′)) from A for which there was no communication with Gatt,
check that
Σ.Ver(mpk, (eid, (ga, gb)), σ′) = 1.

4. If yes, output m = (eid, (ga, gb)) and σ = σ′

Observe that

Adveuf−cma
Σ,A = Pr[Expeuf−cma

Σ,A (λ) = 1]

= Pr[Σ.Ver(mpk, (eid, ga, gb), σ) = 1] > negl(λ)

But this is a contradiction since we assume EUF-CMA signatures and therefore Adveuf−cma
Σ,A <

negl(λ)
Hence Pr[sigFailure1] < negl(λ) and therefore Pr[D(Hyb5) = 1]−Pr[D(Hyb4) = 1] < negl(λ)

Lemma 7. Assuming EUF-CMA signatures, Hyb6 and Hyb5 are indistinguishable.

Proof. Similar to the proof for Lemma 6

Lemma 8. Assuming EUF-CMA signatures, Hyb7 and Hyb6 are indistinguishable.

Proof. Similar to the proof for Lemma 6

Lemma 9. Assuming that DDH holds in the chosen algebraic group model, Hyb8 and Hyb7 are
computationally indistinguishable.

Proof. Note that the difference between Hyb8 and Hyb7 is that for recipients, the exchanged key is
randomly sampled as gc instead of gab.

Assume that there exists a distinguisher D that can distinguish between Hyb8 and Hyb7, i.e.

Pr[D(Hyb8) = 1]− Pr[D(Hyb7) = 1] > negl(λ)

We use this distinguisher to break the DDH assumption. Recall that the DDH assumption states
that no PPT adversary can distinguish between the tuples (ga, gb, gab) and (ga, gb, gc), where c← Zq

1. Simulate the protocol as in Hyb7

2. Receive (ga, gb, gz) from the challenger

3. In the “keyex” function for a recipient, replace the output as (eid, (ga, gb), σ) and set the key as
gz.

33

The simulator S maintains a public board and internally simulates Gatt towards the adversary
A
Setup For each recipient Ri: Same as in Fig 17

WRITE :

1. Upon receiving (WRITE, (Si,m)) from FprivSignal, update board = board‖m and send ok

to FprivSignal.

2. Upon receiving (WriteBoard,m) from A, send (WRITE,m) to FprivSignal. Upon receiving
(WRITE, (Si,m)) from FprivSignal, update board = board‖m and send (board, loc) to A,
where loc is the last position on board and send ok to FprivSignal.

SEND: Upon receiving (SEND, Si) from FprivSignal, same as in Fig 17.

Upon receiving Gatt.resume(eidj , (“send”, ~Lj , ctSignal)) on behalf of Gatt for a ctSignal that was
not created by the simulator

Let msg = Dec(skj , ctSignal).
if msg[0 : λ] = 0λ then

Let loc = msg[λ : 2λ]
Send (SEND, Rj , loc) to FprivSignal on behalf of A and receive back (SEND,A).

for i in [1, `] do
~Lj [i] = Enc(SGXkeyj , 0)

return ~Lj

RECEIVE Same as in Fig 17

Figure 14: Simulator Ss for the case corrupt server and sender

4. Send the transcript to the distinguisher D and output what the D outputs.

Note that when z = ab, the distinguisher receives a transcript as in Hyb7 where as in the case of
Hyb8, D receives a transcript as in Hyb8.

Thus Pr[A(ga, gb, gab) = 1] = Pr[D(Hyb7) = 1] and Pr[A(ga, gb, gc) = 1] = Pr[D(Hyb8) = 1]
Thus |Pr[A(ga, gb, gab) = 1]− Pr[A(ga, gb, gc) = 1]|
= Pr[D(Hyb8) = 1]− Pr[D(Hyb7) = 1] which is > negl(λ)
But this is a contradiction since this breaks the DDH assumption.
Therefore Hyb8 and Hyb7 are indistinguishable.

B.4 Case 2: S and Server are corrupt

Simulator Overview In this case a subset of the senders are corrupt along with the server. To
prove security we need to construct a simulator that interacts with the adversary and the FprivSignal

functionality that is indistinguishable from the real world.

Proof by hybrids Through hybrid arguments we move from the real world to the ideal world and
prove that each pair of intermediate hybrids are indistinguishable.

• Hyb0 is the real world.

• Hyb1 is the same as Hyb0 except that for an honest sender, encryptions of 0 are sent instead
of the actual locations in the SEND command. By the CPA security of the underlying encryption

34

scheme, Hyb1 and Hyb0 are indistinguishable.

• Hyb2 is the same as Hyb1 except that for an honest sender, a fresh public key is used to encrypt
the location instead of the public key of the recipient. By the key-privacy of the underlying
encryption scheme, Hyb2 and Hyb1 are indistinguishable.

• Hyb3 is the same as Hyb2 except that for a malicious sender, the SEND command is done as
in the simulation. By the CPA property of the encryption scheme the hybrids Hyb3 and Hyb2

are indistinguishable.

• Hyb4 is the same as Hyb3 except that for RECEIVE command, the simulator returns encryptions
of 0 to the server as Gatt. By the CPA security of the underlying encryption scheme, the two
hybrids are indistinguishable.

• Hyb5 is the same as Hyb4 except that the “keyex” of Setup procedure is done as in the
simulation and the simulator might abort with sigFailure1. By the EUF-CMA property of the
signature scheme, the two hybrids are indistiguishable.

• Hyb6 is the same as Hyb5 except that the “setup” of Setup procedure is done as in the
simulation and the simulator might abort with sigFailure2. By the EUF-CMA property of the
signature scheme, the two hybrids are indistinguishable.

• Hyb7 is the same as Hyb6 except that the RECEIVE is done as in the simulation and the
simulator might abort with sigFailure2. By the EUF-CMA property of the signature scheme, the
two hybrids are indistinguishable.

• Hyb8 is the same as Hyb7 except that in the Setup procedure, the key ki is computed as
ki ← gc where c←$ Zq. Under the DDH assumption this occurs with negligible probability and
proof is the same as in Lemma 9

B.5 Case 3: Server and R are corrupt

Simulator overview In this case, the simulator needs to simulate a view towards a malicious recipient
that is indistinguishable from the real world interaction. The challenge in this simulation is that
the simulator needs to know when a malicious recipient requests from the Server for its row. But
since we design the protocol such that the Server must request the Gatt functionality for the signals,
the simulator is notified of this RECEIVE request. Next the simulator needs to to send the correct
locations to the recipient, even though the simulated ~L are just an encryption of 0s. To this end, the
simulator simply sends the RECEIVE command to the FprivSignal functionality and learns the locations
that correspond to the malicious recipient. It then simulates the Gatt functionality to compute an
encryption of the locations and sends it back to the Server.

Proof by hybrids

• Hyb0 The real world protocol.

• Hyb1 is the same as Hyb0 except that upon receiving a SEND command, the ctSignal is replaced
with an encryption to 0 instead of the actual location. By the CPA security (Def 3) of the
underlying encryption scheme we prove in Lemma 2 that the two hybrids are indistinguishable.

• Hyb2 is the same as Hyb1 except that for each SEND command, the loc is now encrypted under
a fresh public key as in the simulation. By the key privacy (Def 5) of the underlying encryption
scheme we prove in Lemma 3 that the two hybrids are indistinguishable.

• Hyb3 is the same as Hyb2 except that in the SEND command, the Gatt functionality returns
encryptions of 0 under SGXkeyj instead of actual locations. By the CPA security (Def 2) of the
encryption scheme, the two hybrids are indistinguishable.

35

The simulator S maintains a public board and internally simulates Gatt towards the adversary
A
Setup For each honest recipient Ri: Same as in Fig 17
Upon receiving Gatt.resume(eidi, “keyex”, ga) from the corrupt Server (for which ga was not
created by Sr) on behalf of Gatt:

1. Randomly sample gb and send (ga, gb, σ) and store k = gab as the secret key of the
corrupt recipient.

2. Compute Sig(msk, (eidi, (g
a, gb))) and send ((ga, gb), σ) to the Server

Upon receiving Gatt.resume(eidi, (“setup”, ctkeys,i) from Server on behalf of Gatt:

1. Compute (ski,Σ.vki) = Dec(ki, ctkeys,i) and compute pki from ski.

2. Compute ~L = {Enc(SGXkey, 0)}`j=0

3. Set index = 0 and ctr = 0

4. Compute σ = Σ.Sig(msk, (eidi(pk, ~L))) and send (pk, ~L, σ) to A and store
(pki, ski,Σ.vki, indexi, ctri).

WRITE : Same as in Fig 17

SEND: Same as in Fig 17

RECEIVE For honest recipients, same as in Fig 17.
// For malicious recipients

1. Receive Gatt.resume(eidi, (“receive”, ctri, σi, ~Li)) from Server on behalf of Gatt. If
Sig.Ver(Σ.vki, ctri, σi) = 0, return ⊥. Else if i corresponds to that of an honest recipient,
abort with sigFailure. Else:

2. Send (RECEIVE, Ri) to FprivSignal on behalf of Ri and get back [loc1 . . . loc`]. If less than `
locations received, pad with 0.

3. Compute ctloc,i = (Enc(pki, loc1) . . .Enc(pki, loc`)) and compute ~Li =
{Enc(SGXkey, 0)}`j=0.

4. Compute σT = Σ.Sig(msk, (~L, ctloc,i)) and send (~Li, ctloc,i, σT) to A.

Figure 15: Simulator Sr for the case corrupt server and recipients

36

The simulator S maintains a public board and internally simulates Gatt towards the adversary
A
Setup For each honest recipient Ri: Same as in Fig 17
For each malicious recipient Ri: Same as in Fig 15

WRITE : Same as in Fig 17

SEND: Same as in Fig 14

RECEIVE For honest recipients, same as in Fig 17.
For each malicious recipient Ri: Same as in Fig 15

Figure 16: Simulator Ssr for the case corrupt server, server and recipients

• Hyb4 is the same as Hyb3 except that in the RECEIVE command for an honest recipient, the
simulator returns encryptions of 0 as ctloc,i to the server on behalf of Gatt. By the CPA security
(Def 3) of the underlying encryption scheme, we prove in Lemma 5 that the two hybrids are
indistinguishable.

• Hyb5 is the same as Hyb4, except that for malicious recipients, the simulator may abort with
sigFailure. Since we assume EUF-CMA signatures these two hybrids are indistinguishable.

• Hyb6 is the same as Hyb5 except that in the Setup procedure, the simulator aborts with
sigFailure1. We prove in Lemma 6 that this occurs with negligible probability.

• Hyb6 is the same as Hyb5 except that in the Setup procedure, the simulator aborts with
sigFailure2. We prove in Lemma 7 that this occurs with negligible probability.

• Hyb7 is the same as Hyb6 except that in the RECEIVE command, the simulator may abort with
sigFailure3. We prove in Lemma 8 that this occurs with negligible probability.

• Hyb8 is the same as Hyb7 except that in the Setup procedure, the key ki is computed as
ki ← gc where c←$ Zq. We prove in Lemma 9 that this occurs with negligible probability.

B.6 Case 4: Corrupt Server, S and R

Simulator overview This simulator is a combination of the previous simulators, where the simulator
simulates the SEND command as in the case when the Server and the sender S are corrupt, for the
Setup and RECEIVE commands the simulator simulates as in the case when the Server and the recipient
R are corrupt.

Proof by hybrids

• Hyb0 is the real world.

• Hyb1 is the same as Hyb0 except that for an honest sender, encryptions of 0 are sent instead
of the actual locations in the SEND command. By the CPA security of the underlying encryption
scheme, Hyb1 and Hyb0 are indistinguishable.

• Hyb2 is the same as Hyb1 except that for an honest sender, a fresh public key is used to encrypt
the location instead of the public key of the recipient. By the key-privacy of the underlying
encryption scheme, Hyb2 and Hyb1 are indistinguishable.

37

• Hyb3 is the same as Hyb2 except that for a malicious sender, the SEND command is done as
in the simulation. By the CPA property of the encryption scheme the hybrids Hyb3 and Hyb2

are indistinguishable.

• Hyb4 is the same as Hyb3 except that for RECEIVE command, the simulator returns encryptions
of 0 to the server as Gatt. By the CPA security of the underlying encryption scheme, the two
hybrids are indistinguishable.

• Hyb5 is the same as Hyb4, except that for malicious recipients, the simulator may abort with
sigFailure. Since we assume EUF-CMA signatures these two hybrids are indistinguishable.

• Hyb6 is the same as Hyb5 except that the “keyex” of Setup procedure is done as in the
simulation and the simulator might abort with sigFailure1. By the EUF-CMA property of the
signature scheme, the two hybrids are indistiguishable.

• Hyb7 is the same as Hyb6 except that the “setup” of Setup procedure is done as in the
simulation and the simulator might abort with sigFailure2. By the EUF-CMA property of the
signature scheme, the two hybrids are indistinguishable.

• Hyb8 is the same as Hyb7 except that the RECEIVE is done as in the simulation and the
simulator might abort with sigFailure2. By the EUF-CMA property of the signature scheme, the
two hybrids are indistinguishable.

• Hyb9 is the same as Hyb8 except that in the Setup procedure, the key ki is computed as
ki ← gc where c←$ Zq. Under the DDH assumption this occurs with negligible probability and
proof is the same as in Lemma 9

C Proof of security for theorem 2

C.1 Correctness

We require the following correctness guarantees from our protocol.

1. If a sender S sends a signal to recipient R using SEND for location loc, then processSignal ensures
that upon RECEIVE from from R, it learns of loc.

2. Upon receiving a RECEIVE request from the R the rows for R maintained by the servers must
be updated to shares of 0.

To check that the first guarantee is satisfied, let there be only one recipient R and the T(i)

maintained by the servers have one column each with the value r. Let L(i) also be initialized with
idx. This implies both tables maintain shares of 0.

That is the last updated index for R is idx⊕ idx = 0 and the value at this index is r ⊕ r = 0
Now Server1 upon receiving (R(1), loc(1)) and Server2 upon receiving (R(2), loc(2)) from the sender

S, run the processSignal procedure.
Serveri samples ri and idxi and creates a garbled circuit using Garble, which includes key labels

for the r, idx, maintained by the other Server and the randomly sampled ri and idxi by both Server.
These key labels are sent to the Fot functionality and the keys for R(i), loc(i) and ri, idxi that are
known only to Serveri are directly sent to the other Server. Moreover to evaluate its own circuit, the
Serveri must receive same labels from Fot and directly from the other Server. By the correctness of
the GC protocol, the circuit evaluates the function UpdateTable and UpdIndex we have that T(i)[R] is
updated as loc(i)⊕ r1⊕ r2⊕ (r) and L(1)[R] is updated as 1⊕ idx⊕ idx1⊕ idx2 and L(2)[R] is updated
as idx⊕ index1 ⊕ idx2.

Now note that the two L(1) ⊕ L(2) maintains the invariant of the last updated index for R which
is now 1 ⊕ idx ⊕ idx1 ⊕ idx2 ⊕ idx ⊕ idx1 ⊕ idx2 = 1 and the value at this index is T(1) ⊕ T(2) =
loc(1) ⊕ r1 ⊕ r2 ⊕ (r) ⊕loc(2) ⊕ r1 ⊕ r2 ⊕ (r) = loc(1) ⊕ loc(2) = loc.

38

C.2 Protocol ΠprivSignal2 realizes the FprivSignal functionality

Proof. To prove that ΠprivSignal UC-realizes FprivSignal we show that there exists a simulator S interacting
with FprivSignal that generates a transcript that is indistinguishable from the transcript generated by
the real-world adversary running protocol ΠprivSignal. We consider the following different cases of
corruption and define a simulator for each case:

• Simulator SN for the case when neither a sender nor a recipient is malicious and only one of the
two servers (w.l.o.g. Server1) is corrupt.

• Simulator Ss for the case when a sender S is corrupt and colludes with one of the servers.

• Simulator Sr for the case when a recipient R is corrupt and colludes with one of the servers.

• Simulator Srs for the case when both R and S are corrupt. Here we consider the case when the
recipient and sender colludes with one of the two servers (Server1).

We discuss these simulators in more detail below.

C.3 Case 1: Neither S nor R is corrupt

Simulator overview. When neither S nor R are corrupt, then the only corrupt party is Server1. Thus
the simulator must interact with Server1 (the adversary) and the functionality FprivSignal to simulate a
view that is indistinguishable from the real world protocol. The simulator maintains board and any
oracle access for the board (WriteBoard,ReadBoard) is handled by the simulator. The simulator SN
simulates the following commands it receives from FprivSignal:

• WRITE: The simulator simply updates the board as board‖m.

• SEND: The simulator does not know the recipient or the location of the signal, since it only
receives the sender identity from FprivSignal. SN thus sets R = 0 and loc = 0 and creates shares
of the same. A share of each is sent to Server1. Then using the simulator of the garbled circuit
SGarble, it simulates a GC such that the output of the T(1) and L(1) are completely random.
Note that in the real world as well each index is ⊕-ed with a random value from Server2, thus
intuitively this simulation should be indistinguishable from the real world.

• RECEIVE: The simulator requests Server1 for the row corresponding to Rj , where Rj is the
recipient for which FprivSignal received a RECEIVE command.

We present the simulator more precisely in Fig 17

Proof by hybrids. We prove security via a sequence of hybrids where we start from the real world
and move to the ideal world.

• Hyb0 The real world protocol.

• Hyb1 is the same as Hyb0 except for the SEND command the garbled circuit computation is
done by SGarble. We prove in Lemma 10 that Hyb0 and Hyb1 are indistinguishable by the
privacy property (Def 1) of garbled circuits.

• Hyb2 is the same as Hyb1 except for the SEND command, the signal message sent to A is
replaced by a share of 0. Since we use XOR, information theoretically Hyb2 and Hyb1 are
indistinguishable to a computationally unbounded adversary. And this is equivalent to the ideal
world.

Lemma 10. If secure garbled circuits with privacy (Def 1) are used then Hyb0 and Hyb1 are indis-
tinguishable to a PPT adversary.

39

The simulator S maintains a public board and is initialized with SGarble which is the simulator
for garbled circuits.

Setup For each recipient Ri:

1. (Σ.ski,Σ.vki)← Σ.KeyGen(1λ) and publish Σ.vki.

2. Randomly sample (r0, . . . , r`)← Z`+1
q , and initialize ctri = 0.

3. Compute σi = Σ.Sig(Σ.ski, ((r0 . . . , r`), ctri)) and send (Setup, (r0 . . . , r`), ctri)) to A.

WRITE : Upon receiving (WRITE, (Si,m)) from FprivSignal, update board = board‖m and send
ok to FprivSignal.

SEND: Upon receiving (SEND, Si) from FprivSignal

1. Sample r1, r2 ← {0, 1}λ and set R(1) = R(2) = r1 and loc(1) = loc(2) = r2 and send
R(1), loc(1) to Server1.

2. (Simulating Fot): Receive from A (SEND, (s0, s1)) for bits in |T(2)|, |loc(2)|, |R(2)|, L(2) and
|r(i,j)|. Store these strings and send SEND to A.

3. Upon receiving (RECEIVE, b) for bits in |T(1)|, |loc(1)|, |R(1)|, L(1) and |r(i,j)|, compute

(F,X, d) ← SGarble(1k, y, (UpdateTable,UpdIndex)), where y = T(∗),L(∗) and T(∗) ←$

{0, 1}M×` and L(∗) ←$ {0, 1}M . Send corresponding bits of X via Fot to A and send
(F, d) to A.

RECEIVE : Upon receiving (RECEIVE, Ri) from FprivSignal,

1. Randomly sample (r0, . . . , r`)← Z`+1
q .

2. Send σi = Σ.Sig(Σ.ski, (ctri(r0, . . . , r`)← Z`+1
q)) to A

3. Update ctri = ctri + 1

Figure 17: Simulator SN for the case of only one corrupt server

40

Proof. Assume towards a contradiction that an adversary A01 can distinguish between Hyb0 and
Hyb1. Using this A01 we construct an adversary AGarble that breaks the privacy of the garbled
circuits (def 1).
AGarble

1. Activate A01.

2. Simulate requests for WRITE, READ as in the real world. For a SEND command, as the garbler of
the GC create the encodings as in the protocol, and receive (F,X, d) from the challenger, where
X is received from an OT oracle.

3. Forward (F,X, d) to A01.

4. Output whatever A01 outputs.

Analysis
Since A01 can distinguish between Hyb0 and Hyb1 we have:

Pr[A01(Hyb0) = 1]− Pr[A01(Hyb1) = 1] > negl(λ)

Observe that when b = 1 in the PrvSim game, the transcript seen by A01 is exactly as in the Hyb0

since the garbled circuit is created honestly. Similarly, when b = 0, the transcript seen by A01 is
exactly as in Hyb1 since the simulator SGarble is used to compute (F,X, d).

Thus we have Pr[AGarble(PrvSim) = 1|b = 1] = Pr[A01(Hyb0) = 0] and Pr[AGarble(PrvSim) =
0|b = 0] = Pr[A01(Hyb1) = 1]

Thus Pr[PrvSimAG,φ,S(k)] which is 1/2Pr[AGarble(PrvSim) = 1|b = 1] + 1/2Pr[AGarble(PrvSim) =
0|b = 0]

And this is equal to

1/2|Pr[A01(Hyb0) = 0] + 1/2Pr[A01(Hyb1) = 1]|

= |1/2− 1/2Pr[A01(Hyb0) = 1] + 1/2Pr[A01(Hyb1) = 1]|

> 1/2 + negl(λ)

which is non-negligible and this implies

Advprv.sim,φ,S
G (A, k) > 2(1/2 + negl(λ))− 1 > negl(λ)

which is a contradiction and that concludes our proof.

C.4 S and Server1 are corrupt

Simulator Overview In this setting, the simulator is similar to the previous case, except that the
simulator cannot directly compute the recipient and the location. It cannot do so because it receives
only one share of the recipient’s index (R(2)) and the location (loc(2)). But note that the simulator
internally simulates Fot towards the A. And the A must send bits of R(1) and loc(1) to get the
corresponding keys to evaluate its GC. At this point the simulator can learn the bits of loc(1) and
R(1). The simulator then proceeds as in the previous case and sends a SEND, R, loc message to the
functionality. To simulate the rest of the interaction with Server1, the simulator simply calls SGarble
as in Case C.3.

Proof by hybrids

41

The simulator S maintains a public board and also has access to SGarble
Setup As in Fig 17

WRITE :

1. Upon receiving (WRITE, (Si,m)) from FprivSignal, update board = board‖m and send ok

to FprivSignal.

2. Upon receiving (WriteBoard,m) from A, send (WRITE,m) to FprivSignal. Upon receiving
(WRITE, (Si,m)) from FprivSignal, update board = board‖m and send (board, loc) to A,
where loc is the last position on board and send ok to FprivSignal.

SEND:

1. Upon receiving (SEND, Si) from FprivSignal, simulate SEND as in Fig 17

2. Upon receiving (R(2), loc(2)) from A

• (As Fot): Send SEND to A and receive (RECEIVE, b) from A for each bit in
T(1),L(1), loc(1) and R(1).

• Compute loc(1) and R(1) from the received bits and compute loc = loc(1) ⊕ loc(2)

and R = R(1) ⊕R(2).

• Send (SEND, R, loc) to FprivSignal on behalf of A and upon receiving (SEND,A) from
FprivSignal use SGarble to compute (F,X, d) ← SGarble(1k, y, (UpdateTable,UpdIndex)),
where y = T(∗),L(∗) and T(∗) ←$ {0, 1}M×` and L(∗) ←$ {0, 1}M . Send keys for
corresponding bits of X via Fot to A and send (F, d) to A.

• Upon receiving (SEND, (s0, s1)) from A for bits in |T(2)|, |loc(2)|, |R(2)|, L(2) and
|r(i,j)|. Store these strings and send SEND to A.

RECEIVE: Simulate RECEIVE as in Fig 17

READ: Upon receiving (ReadBoard, loc) from A, send (READ, loc) to FprivSignal and upon receiving
(READ,m), check that board[loc] = m. If yes, send m to A else abort.

Figure 18: Case when a sender and Server1 are corrupt

42

The simulator S maintains a public board and also has access to SGarble
WRITE : Upon receiving (WRITE, (Si,m)) from FprivSignal, update board = board‖m and send
ok to FprivSignal.

SEND: Upon receiving (SEND, Si) from FprivSignal, simulate as in Fig 17.

RECEIVE :

• Upon receiving (RECEIVE, Rj), randomly sample (r0, . . . , r`) ← Z`+1
q . Send σi =

Σ.Sig(Σ.ski, (r0, . . . , r`), a) to Servera and upon receiving T(1)[Rj] from A, send ok to
FprivSignal.

• Upon receiving σj = Σ.Sig(Σ.skj , (ctr′, r0, . . . , r`), 2) from A (on behalf of party Rj),
check that the signatures verify and ctr = ctr′. Else ignore.

• If the signatures correspond to that of an honest party abort with error UnforgeError1,
else send RECEIVE to FprivSignal on behalf of Rj and receive loc1 . . . loc` from FprivSignal.
Send

[
loc1 ⊕ T(2)[Rj], . . . , loc` ⊕ T(2)[Rj]

]
to A.

Figure 19: Simulator for the case when a recipient and Server1 are corrupt

• Hyb0: The real world

• Hyb1 is the same as Hyb0 except that SGarble is used to create the garbled circuit and the
encodings for Server1. Hyb1 and Hyb0 are indistinguishable by the privacy property of garbled
circuits and the proof follows from Lemma 10.

• Hyb2 is the same as Hyb1 except that if A is calls a SEND procedure, the simulator now extracts
loc(1) and R(1) from Fot, computes R and loc and sends the SEND command to FprivSignal. Since
we use ideal Fot and assume that loc(1) ⊕ loc(2) will give some loc and R(1) ⊕ R(2) gives some
valid recipient, the two hybrids are indistinguishable. And Hyb2 is equal to the ideal world.

C.5 R and Server1 are corrupt

Overview of the simulator The simulator for the SEND procedure will work similar to the one in
Sec C.3. This is so because we have one server corrupt and the sender is not corrupt. Thus instead of
the actual R and loc we use shares of 0. Moreover SGarble will be used to simulate the garbled circuit
towards the corrupted server. But then for the RECEIVE command, the simulator does not have the
loc for the corresponding recipient. To this end, the simulator just sends the RECEIVE command to
the FprivSignal functionality on behalf of the adversary A. Upon receiving loc1 . . . loc`, the simulator
updates T(2)[R] by ⊕ing each T(2)[R][i] with loci. This ensures that simulation is correct since, the A
now receives this updated T(2)[R] which when ⊕-ed with T(1)[R] will give the locations of signals for
the adversary. We present the simulator formally in Fig 19

Proof by hybrids

• Hyb0 is the real world.

• Hyb1 is the same as Hyb0 except that for each SEND the simulator now uses a simulated GC
instead of the real world GC and responses to RECEIVE are done as in the simulation. . Hyb1 and
Hyb0 are indistinguishable by the privacy property of GC and this follows the same proof as in
Lemma 10. Note that the two tables maintain shares of 0. That is T(1)[Ri][j]⊕T(2)[Ri][j] = 0 for

43

all i and j. Since in the simulation, the simulator sends locj ⊕T(2)[Ri][j] to the A (who already
has T(1)[Ri]) the A can get the correct locations as locj⊕T(2)[Ri][j]⊕T(1)[Ri] = locj⊕0 = locj .

• Hyb2 is the same as Hyb1 except that the simulator may abort with UnforgeError1. We prove
in Lemma 11 that UF-CMA property of the underlying signature scheme Hyb2 and Hyb1 are
indistinguishable.

Lemma 11. Assuming existential unforgeable signatures that are secure against chosen message at-
tacks, Hyb2 and Hyb1 are indistinguishable.

Proof. Note that the difference between Hyb2 and Hyb1 is that in Hyb2 the event UnforgeError1

can occur. We prove in this section that the probability of this event occurring is negligible.
First we observe that UnforgeError1 occurs when the simulator receives a signature from the ad-

versary that is valid and corresponds to that of an honest party.
Assume a distinguisher D can distinguish between Hyb2 and Hyb1, i,e. Pr[D(Hyb2) = 1] −

Pr[D(Hyb1) = 1] > negl(λ)
This implies that Pr[UnforgeError1] > negl(λ).
Which implies that A sends a Pr[Σ.Ver(Σ.vkj , (ctr′, (r0, . . . r`), 2), σ) = 1 ∧ Rj is honest ∧ ctr′j =

ctrj] > negl(λ)
Using this adversary we present a reduction B that breaks the EUF-CMA property (Def 4) of

signature schemes.

1. Simulate the world as in Hyb1, and receive Σ.vk from the challenger. Set an honest recipient
Rj ’s verification key to be Σ.vk and publish it.

2. Upon receiving (ctr′, (r0, . . . , r`, 2, σ), check if ctr = ctr′ and Σ.Ver(Σ.vkj , (ctr′, (r0, . . . r`), 2), σ) =
1.

3. If yes, output (ctr′, (r0, . . . , r`, 2), σ) to the challenger

Observe that

Adveuf−cma
Σ,B = Pr[Expeuf−cma

Σ,B (λ) = 1]

= Pr[Σ.Ver(Σ.vkj , (ctr′, (r0, . . . r`), 2), σ) = 1] > negl(λ)

But this is a contradiction since we assume EUF-CMA signatures and therefore Adveuf−cma
Σ,A <

negl(λ)
Hence Pr[UnforgeError1] < negl(λ) and therefore Pr[D(Hyb2) = 1]−Pr[D(Hyb1) = 1] < negl(λ).

C.6 S,R and Server1 are corrupt

Overview of simulator In this case the simulator needs to simulate a view on behalf of Server2 only.
To this end, when a SEND command is received, the simulation is done exactly as in Case C.4 and
when for RECEIVE, the simulation is done as in Case C.5

Proof by hybrids

• Hyb0 is the real world hybrid.

• Hyb1 is the same as Hyb0 except that the GC is now simulated and response to RECEIVE is
returned as in the simulation. By a proof following Lemma 10 we have that Hyb1 and Hyb0

are indistinguishable.

44

The simulator S maintains a public board and also has access to SGarble
WRITE : Upon receiving (WRITE, (Si,m)) from FprivSignal, update board = board‖m and send
ok to FprivSignal.

SEND: Similar to simulation in Fig 18

RECEIVE: Similar to simulation in Fig 19

Figure 20: Simulator for the case when a recipient, sender and Server1 are corrupt

• Hyb2 is the same Hyb1 except that the SEND is now replaced by shares of 0. Since Server1 can
only receive one share, information theoretically the Server cannot distinguish if its a share of 0
or the actual location. Thus Hyb2 and Hyb1 are indistinguisihable.

• Hyb3 is the same as Hyb2 except that the simulator may abort if UnforgeError1 in a RECEIVE

command occurs. By a proof following Lemma 11, Hyb2 and Hyb2 are indistinguishable. And
this is the same as in the ideal world.

C.7 Inefficient solutions with no servers

As described in the introduction a naive scan for messages on the board by the recipient would require
O(N) computation from the recipient, where N is the total number of messages on the board.

An idea to improve the recipient’s complexity in a setting without any servers is the following:
Each recipient Ri initializes a counter that is encrypted under its public key using an additively
homomorphic encryption scheme: ctictr = Enc(pki, 0). Now when a sender wishes to signal that
a message is for recipient Ri, the sender does the following computation: for Ri update ctictr =
ctictr + Enc(pki, 1) and for all other Rj update ctjctr = ctjctr + Enc(pkj , 0) and post {ctictr}Mi=1 to the

board along with the message. At a later point of time, the recipient Ri retrieves the latest ctictr and
decrypts it to learn the value of ctri. If ctri > 0 then there exists a message for Ri. The recipient can
then perform a binary search on the board to find in which locations the counter was incremented and
thus learn the messages for itself. If the total number of messages on the board is N and the number
of messages for the recipient is `, then the recipient will have to perform O(` logN) computation. But
the sender computation and the signal size blows up to O(M).

45

	Introduction
	Our contribution
	 Definition of Private Signaling in the UC-framework
	Efficient Protocols for Private Signaling
	Single-Server solution
	Two-server solution

	Implementation and Evaluation

	Applications of Private Signaling
	Related Work
	Preliminaries and Definitions
	Notation
	Oblivious transfer
	Garbled circuits
	Attested Execution Processers

	Private Signaling
	Threat model
	Communication model
	Private Signaling Ideal Functionality

	Private Signaling with one server
	 Private signaling with two servers
	Implementation and Evaluation
	Implementation
	Evaluation

	Conclusion and Open Problems
	Preliminaries (contd.)
	Indistinguishability under chosen plaintext attacks
	Existential Unforgeability under Chosen Message Attacks
	Key privacy under chosen plaintext attacks
	Universal Composability

	Proof of Theorem 1
	Correctness
	Protocol privSignal1 realizes the FprivSignal functionality
	Case 1: Neither S nor R is corrupt
	Case 2: S and Server are corrupt
	Case 3: Server and R are corrupt
	Case 4: Corrupt Server, S and R

	Proof of security for theorem 2
	Correctness
	Protocol privSignal2 realizes the FprivSignal functionality
	Case 1: Neither S nor R is corrupt
	S and Server1 are corrupt
	R and Server1 are corrupt
	S, R and Server1 are corrupt
	Inefficient solutions with no servers

