
Quantum Key Search for Ternary LWE

Iggy van Hoof1, Elena Kirshanova1,2, and Alexander May1

1 Horst Görtz Institute for IT-Security, Ruhr University Bochum
2 Immanuel Kant Baltic Federal University, Kaliningrad, Russia

iggy.hoof, elena.kirshanova, alex.may{@rub.de}

Abstract. Ternary LWE, i.e., LWE with coefficients of the secret and
the error vectors taken from {−1, 0, 1}, is a popular choice among NTRU-
type cryptosystems and some signatures schemes like BLISS and GLP.
In this work we consider quantum combinatorial attacks on ternary LWE.
Our algorithms are based on the quantum walk framework of Magniez-
Nayak-Roland-Santha. At the heart of our algorithms is a combinatorial
tool called the representation technique that appears in algorithms for the
subset sum problem. This technique can also be applied to ternary LWE
resulting in faster attacks. The focus of this work is quantum speed-ups
for such representation-based attacks on LWE.
When expressed in terms of the search space S for LWE keys, the asymp-
totic complexity of the representation attack drops from S0.24 (classical)
down to S0.19 (quantum). This translates into noticeable attack’s speed-
ups for concrete NTRU instantiations like NTRU-HRSS [CHES’17] and
NTRU Prime [SAC’17].
Our algorithms do not undermine current security claims for NTRU or
other ternary LWE based schemes, yet they can lay ground for improve-
ments of the combinatorial subroutines inside hybrid attacks on LWE.

Keywords. small secret LWE, representations, quantum random walk

1 Introduction

The Learning with Errors problem (LWE) [Reg03] asks to find the secret vector
s ∈ Znq , given (A, b = As+e mod q) ∈ Zm×nq ×Zmq , where the A is a matrix with
entries taken uniformly at random from Zq and e is a short “error” vector. Being
an average-case hard problem, LWE is at least as hard as some worst-case prob-
lems on lattices [Reg03,SSTX09,LPR10]. That allowed LWE to serve as a foun-
dation to numerous cryptographic schemes [BDK+18,PFH+19,Lyu12,BCLv17],
some of which chose to use the secret s and the error e with bounded `∞−norm.
This allows for more efficient constructions and shorter keys. Among such schemes
is the famous NTRU cryptosystems [HRSS17,BCLv17] and some efficient signa-
ture schemes like [DDLL13,GLP12]. These schemes rely on the hardness of LWE
with ternary secret and the error, i.e, si, ei ∈ {−1, 0, 1}.

The fact that s and e are small does not significantly undermine the secu-
rity of LWE: there exists a reduction from “standard” LWE to binary secret
LWE [BLP+13], yet this reduction loses a log(n)-factor in the secret dimension.

On the other hand, there exist attacks that exploit the fact that the secret is
small [BG14,KF15], thus impacting, although mildly, the concrete security of
such schemes.

Small-secret LWE opens up a path for combinatorial attacks.1 In this direc-
tion, the most prominent attacks were proposed by Odlyzko [HPS98,HGSW03]
and Howgrave-Graham [How07], where the authors give a Meet-in-the-Middle
attack on NTRU keys. Recently, May in [May21] noticed that these MitM at-
tacks can be significantly improved using the so-called representation technique
that originates from attacks on subset sum [HJ10,BCJ11,BBSS20]. In this work,
we investigate how the MitM algorithm Meet-LWE from [May21] can be sped
up on a quantum computer.

Our contributions. Building upon the work of May [May21], we

– instantiate representation-based combinatorial algorithms for ternary LWE
in the quantum walk framework setting from [MNRS11], thereby using tech-
niques from [BJLM13,HM18],

– study the impact of our quantum algorithms on concrete parameters of
NTRU [HRSS17,BCLv17], BLISS(I+II) [DDLL13], and GLP [GLP12], all
of which rely on ternary LWE,

– obtain time-memory tradeoffs for our quantum walk based algorithms and
show concrete bit complexities of the above schemes when we only have
polynomial classical and polynomial quantum memory.

Our quantum walk-based algorithm, called QMeet-LWE, provides (in its
optimized instantiation qRep-1) the following asymptotic improvements: for
search space size S for ternary LWE key, we improve from roughly S0.24 (clas-
sically) downto roughly S0.19 (quantumly). This translates into considerable
speed-ups (by factors in the range 250 − 2130) for concrete security estimates.
We provide such estimates for NTRU-HRSS [HRSS17], NTRU-Prime [BCLv17],
signatures BLISS(I+II) [DDLL13], and GLP [GLP12] parameters. For our low-
memory quantum algorithms the concrete savings are even larger.

Our estimates are currently inferior to the best quantum lattice-based esti-
mates, thus our analysis does not invalidate the aforementioned schemes’ security
claims. However, our quantum algorithm, yet being heuristic, relies on different
rather mild assumptions than the numerous heuristics for lattice-based attacks.
Further, we believe that our quantum LWE Key search algorithm QMeet-LWE
might be used as an improved building block inside more involved algorithms,
e.g. for potentially speeding up the so-called Lattice Hybrid attack [How07].

2 Preliminaries

2.1 LWE-keys

In this work, we only consider ternary LWE keys, defined as follows.

1 By ‘combinatorial’ here we exclude BKW-like algorithms [KF15,GJS15], since these
apply only to LWE with m� n, which is not the case for NTRU-type schemes.

2

Definition 1 (Ternary LWE Key). An LWE Key consists of three public
parameters q, A ∈ Zm×nq , b ∈ Zmq , and two secret parameters s ∈ Znq and (error)
e ∈ Zmq that satisfy the identity As = b+ e mod q. We call s and e ternary keys
if ||s||∞ = ||e||∞ = 1. We denote by T n the set of n-dimensional ternary keys.

Throughout the paper, we only consider ternary keys s, e as well as square A
with m = n. Practical implications of LWE-based cryptosystems of the NTRU-
type [HPS98,GLP12,DDLL13,BCLv17] also limit the number of non-zero entries
in the secrets.

Definition 2 (Weight). Let s = (s1, ..., sn) be a vector in Fn. The weight w of
this vector s is defined as its Hamming Weight w = Σsi 6=01. Relative to n we also
define the relative weight ω = w/n where 0 ≤ ω ≤ 1. The set of ternary weight-w
keys with an even number w/2 of ±1-entries each is denoted by T n(w/2). For
ease of notation, in the following we omit any roundings.

Current security analysis suggests an optimal relative weight in the range
ω ∈ [13 ,

2
3] [HRSS17,BCLv17] with ω = 3

8 and ω = 1
2 being prominent choices for

NTRU-type schemes.
We approximate the search space S for ternary key using the following stan-

dard formula that holds up to a small polynomial factor of 1√
n

. In general, we

omit small polynomial factors throughout this paper.

Lemma 1 (Multinomial approximation). Let D = {d1, ..., dk} ⊂ Zq be a
digit set of cardinality k. The number of vectors s ∈ Znq ∩Dn having exactly cin

many di-entries with
∑k
i=1 ci = 1, is

(
n

c1n, ..., ckn

)
≈ 2H(c1,...,ck)n with entropy H(c1, ..., ck) =

k∑
i=1

ci log2

(
1

ci

)
.

For ease of notation, for multinomial coefficients
(

n
c1n,...,ckn

)
we write

(
n

c1n,...,ck−1n,·
)
,

where · represents the last term ckn = n− c1n− ...− ck−1n. Analogous, we write
H(c1, ..., ck) more compactly as H(c1, ..., ck−1, ·).

2.2 Quantum Walk

To translate the classical Meet-LWE algorithm to the quantum setting, we uti-
lize the quantum walk framework by Magniez-Nayak-Roland-Santha [MNRS11].

Classical Random Walks. Classical random walks search for a marked vertex
in some graph in 3 steps:

1. Set up a single explicit vertex v in set up time TS .
2. Update v by walking to a random adjacent vertex 1/δ times, where a single

update takes time TU .

3

3. Check whether the resulting vertex is marked in checking time TC . If not
marked, go back to 2.

Here, the spectral gap δ of the graph tells us how many steps we need to perform,
until we can arrive at some (almost) uniformly random vertex that we check.
Thus, if an ε-fraction of vertices is marked, we have total time complexity

TRW = TS +
1

ε

(
TC +

1

δ
TU

)
.

Quantum Walks. Rather than walking to a random adjacent vertex, we can
walk to a superposition of all adjacent vertices. We need to repeat this only 1/

√
δ

times. And rather than checking whether a vertex is marked, we can change the
phase of states with a marked vertex. Repeating this 1/

√
ε times we measure a

marked node within quantum time complexity

TQW = TS +
1√
ε

(
TC +

1√
δ
· TU

)
. (1)

Johnson graphs are useful to minimize update costs.

Definition 3 (Johnson graph). Let L be a set of size N . For some r ≤ N ,
the Johnson graph J(N, r) is an undirected graph GJ = (VJ , EJ) with |VJ | =

(
N
r

)
vertices representing the size-r subsets of L. We have {v, v′} ∈ EJ iff v, v′ ∈ VJ
represent subsets S, S′ that differ by a single element, i.e. |S ∩ S′| = r − 1.

We may combine several Johnson graphs via Cartesian products.

Definition 4. Given graphs G1 = (V1, E1), G2 = (V2, E2) we define the Carte-
sian product G1 ×G2 = (V,E) as:
V = V1 × V2 = {v1v2|v1 ∈ V1, v2 ∈ V2} and
E = {v1v2, v′1v′2|(v1 = v′1, (v2, v

′
2) ∈ E2) or ((v1, v

′
1) ∈ E1, v2 = v′2)}.

In the Cartesian product of m Johnson graphs two vertices are adjacent iff all
m subsets represented by their vertices are equal, except for a single pair of
subsets that differs by one element. The spectral gap of the Cartesian product
of m Johnson graphs Jm(N, r) =×m

i=1
J(N, r) can be approximated with the

following formula due to Kachigar and Tillich [KT17]:

δ(Jm(N, r)) ≥ 1

m
δ(J(N, r)) = Ω

(
1

r

)
for fixed m. (2)

Heuristics on Quantum Random Walks. We use the quantum random
walk framework of [BBSS20] that guarantees that update costs are within a
polynomial factor of their expected time. Ignoring polynomial factors, this allows
us to work in the following solely using expected costs.

4

L
(3)
1 L

(3)
2 L

(3)
3 L

(3)
4 L

(3)
5 L

(3)
6 L

(3)
7 L

(3)
8

s
(4)
2i ∈ T

n
2
(
w(2)

2

)
× 0

n
2

s
(4)
2i+1 ∈ 0

n
2 × T

n
2
(
w(2)

2

)

L
(2)
1 L

(2)
2 L

(2)
3 L

(2)
4

s
(2)
i ∈ T n

(w(1)

2
+ α(2)︸ ︷︷ ︸

w(2)

)
M&F M&F M&F M&F

L
(1)
1 L

(1)
2 s

(1)
1 , s

(1)
2 ∈ T n

(w(0)

2
+ α(1)︸ ︷︷ ︸

w(1)

)
}r(2)

}
r(1) = r

M&F M&F

T (2)

T (1)

L(0)

Odlyzko hash

s ∈ T n
(w

2︸︷︷︸
w(0)

)

Fig. 1: The classical Meet-LWE algorithm

3 Quantum Meet-LWE - High Level Idea

3.1 Classical Meet-LWE

Let us decribe the high-level idea of May’s classical Meet-LWE algorithm, see
also Figure 1. Let s be a ternary weight-w LWE secret key with even number

of ±1. Let w(0) = w/2, then s ∈ T n(w(0)). We write s = s
(1)
1 + s

(2)
2 with

s
(1)
1 , s

(1)
2 ∈ Tn(w(1)), where w(1) ≥ w(0)/2.

We rewrite the LWE identity As = b+ e mod q as

As
(1)
1 + e1 = b−As(1)1 + e2 mod q for some e1, e2 ∈ {0, 1}n. (3)

In a nutshell, Meet-LWE constructs candidate solutions s
(1)
1 , s

(1)
2 that fulfill

Equation (3) on r coordinates. Let R(1) be the number of representations to

write s as a sum s
(1)
1 + s

(2)
2 . Let us set r = blogq(R

(1))c, and fix a random target
t ∈ Zrq. We denote by πr : Znq → Zrq the projection to the first r coordinates.
Then on expectation at least one representation of s satisfies

πr(As
(1)
1 + e1) = t = πr(b−As(1)1 + e2) mod q. (4)

5

Notice that Equation (4) can be checked if we know πr(e) ∈ T r, which in
turn gives us πr(e1), πr(e2). Thus, Meet-LWE involves a guessing step that
guesses r coordinates of e.

Eventually, once all candidates s
(1)
1 ∈ L(1)

1 and s
(1)
2 ∈ L(2)

2 satisfying Equa-
tion (4) have been constructed, we have to find a pair (s1, s2) such that A(s1 +
s2) − b mod q ∈ T n. Algorithmically, this can be done via Odlyzko’s locality
sensitive hash function [HGSW03]. The resulting Meet-LWE is described in
Algorithm 1.

Algorithm 1 Classical Meet-LWE

Require: LWE public key (A, b) ∈ Zn×n
q × Zn

q , weight w ∈ N
Ensure: ternary weight-w s satisfying e = As−~b mod q ∈ T n

1: Let R(1) be the number of representations s = s1 + s2. Let r = blogq(R(1))c.
2: for all πr(e) ∈ T r do

3: Construct L
(1)
1 , L

(1)
2 using some tree-based list construction.

4: Find s1, s2 with s1+s2 ∈ T n(w/2) and A(s1+s2)−b ∈ T n via Odlyzko hashing.
5: end for
6: return s = s1 + s2

Run time analysis. Meet-LWE has an outer for-loop that guesses r coor-
dinates of e ∈ T n in time Tg = 3r, and an inner loop for list construction with
run time T`. The overall run time complexity is then T = Tg + T`. In [May21],

it was shown that T` = 2Θ(n) whereas Tg = 2O(n
log n). Thus, asymptotically we

may omit the guessing cost Tg.
In the following, we describe how to compute T`, since this is crucial for

the analysis of our Meet-LWE’s quantum walk version. The classical run time
analysis follows the typical Match-and-Filter approach, denoted M&F in Fig-
ure 1, within the representation technique. Namely, on each level 0 ≤ j < 3 of

the search tree we filter out all vectors s
(j)
i that do not have the correct weight

distribution T n(w(j)).
Let L(j) be the expected list size on level j. We show how to compute these

values in the next sections. The time to compute each level-3 list is T (3) = L(3).
Define r(3) = 0. Then the Match-and-Filter approach constructs every level-j

list for j = 1, 2 in time

T (j) =
(L(j+1))2

qr(j)−r(j+1)
.

Once we have the level-1 lists L
(1)
1 , L

(2)
2 we construct the solution via Odlyzko’s

approximate matching. As we already exactly matched elements on r(1) = blogq R
(1)c

elements, it remains to approximately match on n − r(1) coordinates. This can
be done in time

T (0) =
(L(1))2

2n−r(1)
.

6

The list construction time T` and memory complexity M is then in total

T` = max{T (0), . . . , T (3)} and M = max{L(1), . . . , L(3)}.

3.2 Quantum Meet-LWE (QMeet-LWE)

To translate Meet-LWE to a quantum random walk QMeet-LWE we use the
same techniques that have been introduced in the subset sum context [HJ10,BCJ11,BBSS20].

Assume that we have a level-d search tree, see Figure 1 for an example with
d = 3. Let L(d) be the size of our level-d list. For a quantum walk, in the

setup phase we choose random subsets U
(d)
i ⊆ L

(d)
i (i = 1, ..., 2d), each having

U (d) := (L(d))γ , γ < 1 elements. One then simply runs Meet-LWE with the

new depth-d lists U
(d)
i .

Recall that the parameter choice for L
(d)
i guarantees on expectation a rep-

resentation s = s
(d)
1 . . .+ s

(d)

2d
that survives all Match-and-Filter steps up to the

root list L(0). However, by construction we have si ∈ U (d)
i for all i = 1, . . . , 2d

only with probability

ε =

(
U (d)

L(d)

)2d

= (L(d))(γ−1)2
d

. (5)

Let us define N = L(d), r = U (d). For all lists L
(d)
i , i = 1, . . . , 2d, we define their

corresponding Johnson graph Ji(N, r). We then perform our random walk on
the graph

J(N, r) = J1(N, r)× . . .× J2d(N, r).

Using Equation (6), the spectral gap of J(N, r) is

δ(J(N, r)) = Ω

(
1

r

)
= Ω

(
1

U (d)

)
. (6)

Let v ∈ J(N, r) be a node defined by the Cartesian product of the size-r

subsets U
(d)
1 × . . .× U (d)

2d
. Then we label v with U

(d)
1 × . . .× U (d)

2d
. Every node v

contains the complete classical Meet-LWE search tree from Section 3.1 build
with its label as level-d lists.

We call v marked if its corresponding level-0 list U (0) is non-empty, i.e. it con-
tains a representation of s that survived all Match-and-Filter steps and Odlyzko’s
hash function. Notice that Pr[v is marked] = ε. Checking whether a node is
marked can be done in time O(1) and, thus, is asymptotically neglected.

Walking to a neighbor node in J(N, r) implies by the definition of a Johnson

graph that we exchange exactly one element in one of the depth-d lists L
(d)
i . We

will detail the update costs of updating a Meet-LWE tree by such an exchange
in the following section.

7

4 QRep-0: A First Implementation of QMeet-LWE

Let us instantiate the quantum random walk QMeet-LWE from Section 3.2,
which in turn uses a variant of the classical Meet-LWE from Section 3.1. The
latter is first instantiated by chosing tree depth d = 2 with optimization param-
eter α(1) = 0. This easiest representation setting is called Rep-0 in [May21].

QMeet-LWE’s Setup Cost TS. Using α(1) = 0, the Meet-LWE level-2 list
sizes are L(2) =

(
n/2

w/2,w/2,·
)
. For the quantum walk, we choose parameter γ = 4

5 .

We see in the following that this choice balances quantum walk costs. Thus, we
obtain in QMeet-LWE level-2 lists of size

U (2) = (L(2))γ =

(
n/2

w/8, w/8, ·

)γ
≈ 2

2
5H(ω/4,ω/4,·)n.

We structure the level-2 lists of size U (2) as follows

U
(2)
1 = {(πr(As(2)1 + e1), s

(2)
1) | s(2)1 ∈ 0n/2 × T n/2(w/8)},

U
(2)
2 = {(πr(As(2)2 + e1) mod q, s

(2)
2) | s(2)2 ∈ T n/2(w/8)× 0n/2},

U
(2)
3 = {(πr(b−As(2)3 + e2), s

(2)
3) | s(2)3 ∈ 0n/2 × T n/2(w/8)},

U
(2)
4 = {(πr(b−As(2)4 + e2) mod q, s

(2)
4) | s(2)4 ∈ T n/2(w/8)× 0n/2}.

On level 1, we obtain R(1) =
(
w/2
w/4

)2
≈ 2ωn representations of s ∈ T n(w/2) as

sums of the form s
(1)
1 + s

(1)
2 with s

(1)
i ∈ T n(w/4). Let r = blogq R

(1)c, and let
t ∈ T r be our random target vector. Moreover, let ` denote Odlyzko’s locality
sensitive hash function. Then level-1 lists are defined as

U
(1)
1 = {(`(As(1)1), s

(1)
1) | (x, s(2)1) ∈ U (2)

1 , (t− x, s(2)2) ∈ U (2)
2 , s

(1)
1 = s

(2)
1 + s

(2)
2 },

U
(1)
2 = {(`(b−As(1)2), s

(1)
2) | (x, s(2))1) ∈ U (2)

1 , (t− x, s(2)2) ∈ U (2)
2 , s

(1)
1 = s

(2)
1 + s

(2)
2 }.

The expected size of level-1 lists is

U (1) =
(U (2))2

R(1)
≈ 2(

4
5H(ω/4,ω/4,·)−ω)n.

Finally for layer 0 we obtain the list

U
(0)
1 = {s = s

(1)
1 + s

(1)
2 ∈ T (w/2) | (x, s(1)1) ∈ U (1)

1 , (x, s
(1)
2) ∈ U (1)

2 , As
(1)
1 = b−As(1)2 }.

The expected size of this list is U (0) ≤ (U(1))2

2n−r ≈ 2(
8
5H(ω/4,ω/4,·)−2ω−1)n+r. In

summary, the expected setup cost of QMeet-LWE is

TS = max{U (2), U (1), U (0)} = U (2) for all ω ∈
[

1

3
,

2

3

]
. (7)

A node in our Johnson graph is marked if U (0) contains at least one element,
which can be checked in time TC = O(1).

8

QMeet-LWE’s Update Cost TU . The update algorithm requires us to insert

into and delete an element from one of the U
(2)
i . For example, say we want to

exchange an element s
(2)
2 in U

(2)
2 . The update of U

(2)
2 can be done in time O(1).

The update impacts the list U
(1)
1 below if there are matching s

(2)
1 ’s such that

πr(A(s
(2)
1 + s

(2)
2) + e1) mod q = t. The expected number of those elements is

U (2)/R, both for deletion and insertion. For the bottom list U
(0)
1 , we expect

U (1)/2n−r deletions/insertions for each of the U (2)/R elements. In total, the
expected update cost is

TU = max

{
1,
U (2)

R
,
U (1)U (2)

2n−rR

}
= 1 for all ω ∈

[
1

3
,

2

3

]
. (8)

QMeet-LWE Random Walk Cost. Plugging Equations (5) to (8) into Equa-
tion (1), we obtain a quantum walk runtime of

T` ≤ TS +
1√
ε

(
1√
δ
· TU + TC

)
= |U (2)|+

(
L(2)

U (2)

)2 (√
U (2) · 1 + 1

)
= (L(2))

4
5 + (L(2))2−

6
5 .

Thus, our choice γ = 4
5 balances the setup time TS with the cost of the ran-

dom walk until we hit a marked node. Neglecting low order terms, we achieve
QMeet-LWE run time

(L(2))
4
5 =

(
n/2

w/8, w/8, ·

) 4
5

≈ 2
2
5H(ω/4,ω/4,·)n. (9)

In Section 6, we provide QMeet-LWE’s asymptotic costs T` and non-asymptotic
costs Tg · T`.

5 QREP-1: Optimized QMeet-LWE

We now optimize the parameters α(i) as well as the tree depth d in QMeet-
LWE, and, therefore, also in Meet-LWE. We advise the reader to follow Fig-
ure 1. As depicted in Figure 1, we first describe QMeet-LWE in depth d = 3,
and then provide the necessary adjustments for depth d = 4.

As shown in [May21], for Meet-LWE we obtain level-j, j = 1, 2, list sizes
L(j) = S(j)/R(j) where

S(j) =

(
n

w(j), w(j), ·

)
and R(j) =

(
w(j−1)

w(j−1)/2

)2(
n− 2w(j−1)

αj , αj , ·

)
.

Further, we have level-3 list size L(3) =
(n/2
w(2)/2,w(2),·

)
≈
√
S(2). Let r = blogq R

(1)c.

9

QMeet-LWE’s Setup Cost TS. We choose γ = 8
9 for depth d = 3. This yields

for QMeet-LWE level-3 list sizes

U (3) = (L(3))γ =

(
n/2

w(2)/2, w(2)/2, ·

) 8
9

≈ 2
4
9H(ω(2)/2,ω(2)/2,·).

Analogously to Sections 3.1 and 4, we obtain in the Match-and-Filter construc-
tion expected costs

U (2) ≤ (U (3))2

R(2)
, U (1) ≤ (U (2))2R(2)

R(1)
≤ (U (3))4

R(1)R(2)
, U (0) ≤ (U (1))2

2n−r
≤ (U (3))8

2n−r(R(1)R(2))2
.

Thus, the setup cost can be bounded as

TS ≤ max

{
U (3),

(U (3))2

R(2)
,

(U (3))4

R(1)R(2)
,

(U (3))8

2n−r(R(1)R(2))2

}
.

An analysis similar to Section 4 yields an update cost of

TU ≤ max

{
1,
U (3)

R(2)
,

(U (3))3

R(1)R(2)
,

(U (3))7

2n−r(R(1)R(2))2

}
.

QMeet-LWE Random Walk Cost. Notice that if we estimate TS , TU via their
upper bounds, then we obtain the relation TS = U (3)TU . This helps us to esti-
mate the random walk cost as

T` ≤ TS +
1√
ε

(
1√
δ
· TU + TC

)
= U (3)TU +

(
L(3)

U (3)

)4 (√
U (2) · TU + 1

)
= (L(3))

8
9TU + (L(3))4−

28
9 TU = 2(L(3))

8
9TU . (10)

Thus, again our choice of γ = 8
9 balances setup costs with the cost to find a

marked node.

QMeet-LWE level-4 cost. If we use QMeet-LWE with depth d = 4, then a
similar analysis yields quantum random walk cost

T` ≤ (L(4))
16
17 · TU with L(4) =

(
n/2

w(3)/2, w(3)/2, ·

)
(11)

and

TU ≤ max

{
1,
U (4)

R(3)
,

(U (4))3

R(2)R(3)
,

(U (4))7

R(1)R(2)(R(3))2
,

(U (3))15

2n−r(R(1)R(2))2(R(3))4

}
.

Notice that the exponent γ converges to 1 for increasing depth. Thus, QMeet-
LWE degrades to Meet-LWE.

10

6 Quantum Complexity Estimates

Asymptotics. Recall that QMeet-LWE’s run time is T = Tg · T`, where Tg
is the time to guess r coordinates of e, and T` is the quantum walk time. As
mentioned in Section 3.1 asymptotically the guessing cost Tg can be neglected.

Thus, here we simply use the formulas for T` derived for our qRep-0 instan-
tiation in Section 4, Equation (9) and for our qRep-1 instantiation in Section 5
for depth 3 in Equation (10) and for depth 4 in Equation (11).

The results are given in Table 1 as a function of ω, and asymptotically in
n. Here we compare our quantum complexities with a classical instantiation of
Meet-LWE with optimized αi as in Section 5, called cRep-1. Let S denote
the size of the search space for the secret LWE key s, and T the complexity
of our algorithms for recovering s. Then we give in Table 1 the values logS T .
We obtained optimal values for qRep-1 in depth 4 using Equation (11). The
optimization parameters ζi := αi

n are also provided in Table 1.

ω qRep-0 cRep-1 qRep-1 ζ1 ζ2 ζ3

0.3 0.257 0.238 0.191 0.030 0.017 0.005

0.375 0.266 0.243 0.184 0.029 0.017 0.005

0.441 0.274 0.237 0.182 0.027 0.017 0.005

0.5 0.283 0.235 0.182 0.025 0.017 0.005

0.62 0.305 0.243 0.188 0.021 0.017 0.005

0.667 0.316 0.244 0.193 0.019 0.017 0.005

Table 1: Improvement in the exponent of the search space of qRep-1.

Notice that whereas Meet-LWE achieves complexities slight below S 1
4 its quan-

tum random walk version qMeet-LWE improves these complexity below S 1
5 .

The improvement in the exponent is in the range of 20− 25%.

Non-asymptotical real-world results. For estimating the quantum costs of
attacks on real-world cryptosystems we have to take the guessing costs Tg into
account. Quantumly, we Grover search [Gro96] for r coordinates of a random e
in time Tg = 3

r
2 .

qRep-0. Table 2 provides the cost of our qRep-0 attack from Section 4 in com-
parison to the corresponding classical attack cRep-0 for NTRU-type encryption
schemes NTRU-HPS [HRSS17] and NTRUPrime [BCLv17], and for signatures
BLISS [DDLL13] and GLP [GLP12]. 2

The costs in Table 2 are in bit complexity format in the form log2 T =
log2 T` + log2 Tg.

2 The scripts can be provided upon request to any author.

11

(n, q, w) cRep-0 qRep-0+Grover

NTRU-Enc (509, 2048, 254) 248 = 212 + 36 230 = 212 + 18

(677, 2048, 254) 377 = 341 + 36 254 = 236 + 18

(821, 4096, 510) 555 = 488 + 67 425 = 391 + 34

(701, 8192, 468) 491 = 434 + 57 377 = 348 + 29

NTRU-Prime (653, 4621, 288) 383 = 346 + 37 271 = 252 + 19

(761, 4591, 286) 420 = 384 + 36 284 = 265 + 19

(857, 5167, 322) 479 = 439 + 40 322 = 302 + 20

BLISS I+II (512, 12289, 154) 257 = 240 + 18 174 = 165 + 9

GLP I (512, 8383489, 342) 338 = 214 + 24 264 = 252 + 12

Table 2: Bit complexities of qRep-0 in comparison to cRep-0.

Notice that qRep-0 gives large savings compared to cRep-0, often by more
than 100 bits. In bit complexity, we save typically around 30%.

qRep-1. For qRep-1 we achieved best results for depth-4 trees (except for
BLISS), similar to cRep-1. The results are provided in Table 3, where we also
give the optimization parameters [α1, α2, α3].

(n, q, w) cRep-1 [α]i Rep-1+Grover [α]i

NTRU-Enc (509, 2048, 254) 267 = 193 + 74 [34, 15, 4] 188 = 155 + 33 [22, 11, 3]

(677, 2048, 254) 313 = 235 + 78 [28, 12, 3] 223 = 191 + 32 [16, 8, 2]

(821, 4096, 510) 449 = 336 + 113 [44, 20, 4] 320 = 268 + 52 [32, 16, 4]

(701, 8192, 468) 387 = 295 + 92 [41, 20, 8] 278 = 235 + 43 [29, 15, 4]

NTRU-Prime (653, 4621, 288) 309 = 236 + 73 [28, 12, 2] 225 = 190 + 35 [24, 12, 3]

(761, 4591, 286) 344 = 265 + 79 [32, 14, 3] 245 = 206 + 39 [30, 15, 4]

(857, 5167, 322) 383 = 294 + 89 [37, 15, 2] 274 = 236 + 38 [23, 10, 2]

BLISS I+II (512, 12289, 154) 206 = 168 + 38 [15, 4] 149 = 133 + 16 [9, 3]

GLP I (512, 8383489, 342) 250 = 210 + 40 [36, 15, 5] 193 = 175 + 18 [20, 11, 3]

Table 3: Improvements from qRep-1 in comparison to cRep-1.

We obtain large savings of around 100 bits for the encryption schemes, and
over 50 bits for the signature schemes. Although our results are still relatively far
from the bit complexities offered by quantum lattice-based attacks (by around
a factor of 2, see the estimator from [ACD+18]), our QMeet-LWE might serve
as a useful quantum building block to speed up more advanced algorithms.

12

References

ACD+18. Martin R. Albrecht, Benjamin R. Curtis, Amit Deo, Alex Davidson, Rachel
Player, Eamonn W. Postlethwaite, Fernando Virdia, and Thomas Wun-
derer, Estimate all the LWE, NTRU schemes!, SCN 18 (Dario Catalano and
Roberto De Prisco, eds.), LNCS, vol. 11035, Springer, Heidelberg, Septem-
ber 2018, pp. 351–367.

BBSS20. Xavier Bonnetain, Rémi Bricout, André Schrottenloher, and Yixin
Shen, Improved classical and quantum algorithms for subset-sum, ASI-
ACRYPT 2020, Part II (Shiho Moriai and Huaxiong Wang, eds.), LNCS,
vol. 12492, Springer, Heidelberg, December 2020, pp. 633–666.

BCJ11. Anja Becker, Jean-Sébastien Coron, and Antoine Joux, Improved generic
algorithms for hard knapsacks, EUROCRYPT 2011 (Kenneth G. Paterson,
ed.), LNCS, vol. 6632, Springer, Heidelberg, May 2011, pp. 364–385.

BCLv17. Daniel J. Bernstein, Chitchanok Chuengsatiansup, Tanja Lange, and Chris-
tine van Vredendaal, NTRU prime: Reducing attack surface at low cost,
SAC 2017 (Carlisle Adams and Jan Camenisch, eds.), LNCS, vol. 10719,
Springer, Heidelberg, August 2017, pp. 235–260.

BDH+05. Harry Buhrman, Christoph Dürr, Mark Heiligman, Peter Høyer, Frédéric
Magniez, Miklos Santha, and Ronald de Wolf, Quantum algorithms for
element distinctness, SIAM Journal on Computing 34 (2005), no. 6,
1324–1330.

BDK+18. W. Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyuba-
shevsky, M. John Schanck, Peter Schwabe, and Damien Stehlé, Crystals -
kyber: a cca-secure module-lattice-based kem, EuroS&P (2018), 353–367.

BG14. Shi Bai and Steven D. Galbraith, Lattice decoding attacks on binary LWE,
ACISP 14 (Willy Susilo and Yi Mu, eds.), LNCS, vol. 8544, Springer, Hei-
delberg, July 2014, pp. 322–337.

BJLM13. Daniel J. Bernstein, Stacey Jeffery, Tanja Lange, and Alexander Meurer,
Quantum algorithms for the subset-sum problem, Post-Quantum Cryptog-
raphy - 5th International Workshop, PQCrypto 2013 (Philippe Gaborit,
ed.), Springer, Heidelberg, June 2013, pp. 16–33.

BLP+13. Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien
Stehlé, Classical hardness of learning with errors, 45th ACM STOC (Dan
Boneh, Tim Roughgarden, and Joan Feigenbaum, eds.), ACM Press, June
2013, pp. 575–584.

DDLL13. Léo Ducas, Alain Durmus, Tancrède Lepoint, and Vadim Lyubashevsky,
Lattice signatures and bimodal Gaussians, CRYPTO 2013, Part I (Ran
Canetti and Juan A. Garay, eds.), LNCS, vol. 8042, Springer, Heidelberg,
August 2013, pp. 40–56.

GJS15. Qian Guo, Thomas Johansson, and Paul Stankovski, Coded-BKW: Solv-
ing LWE using lattice codes, CRYPTO 2015, Part I (Rosario Gennaro and
Matthew J. B. Robshaw, eds.), LNCS, vol. 9215, Springer, Heidelberg, Au-
gust 2015, pp. 23–42.

GLP12. Tim Güneysu, Vadim Lyubashevsky, and Thomas Pöppelmann, Practi-
cal lattice-based cryptography: A signature scheme for embedded systems,
CHES 2012 (Emmanuel Prouff and Patrick Schaumont, eds.), LNCS, vol.
7428, Springer, Heidelberg, September 2012, pp. 530–547.

Gro96. Lov K. Grover, A fast quantum mechanical algorithm for database search,
28th ACM STOC, ACM Press, May 1996, pp. 212–219.

13

HGSW03. Nick Howgrave-Graham, Joseph H Silverman, and William Whyte, A meet-
in-the-middle attack on an ntru private key, Tech. report, Technical report,
NTRU Cryptosystems, June 2003. Report, 2003.

HJ10. Nick Howgrave-Graham and Antoine Joux, New generic algorithms for
hard knapsacks, EUROCRYPT 2010 (Henri Gilbert, ed.), LNCS, vol. 6110,
Springer, Heidelberg, May / June 2010, pp. 235–256.

HM18. Alexander Helm and Alexander May, Subset Sum Quantumly in 1.17n, 13th
Conference on the Theory of Quantum Computation, Communication and
Cryptography (TQC 2018), Leibniz International Proceedings in Informat-
ics (LIPIcs), vol. 111, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2018, pp. 5:1–5:15.

How07. Nick Howgrave-Graham, A hybrid lattice-reduction and meet-in-the-middle
attack against NTRU, CRYPTO 2007 (Alfred Menezes, ed.), LNCS, vol.
4622, Springer, Heidelberg, August 2007, pp. 150–169.

HPS98. Jeffrey Hoffstein, Jill Pipher, and Joseph H Silverman, Ntru: A ring-based
public key cryptosystem, International Algorithmic Number Theory Sym-
posium, Springer, 1998, pp. 267–288.

HRSS17. Andreas Hülsing, Joost Rijneveld, John M. Schanck, and Peter Schwabe,
High-speed key encapsulation from NTRU, CHES 2017 (Wieland Fischer
and Naofumi Homma, eds.), LNCS, vol. 10529, Springer, Heidelberg,
September 2017, pp. 232–252.

KF15. Paul Kirchner and Pierre-Alain Fouque, An improved BKW algorithm for
LWE with applications to cryptography and lattices, CRYPTO 2015, Part I
(Rosario Gennaro and Matthew J. B. Robshaw, eds.), LNCS, vol. 9215,
Springer, Heidelberg, August 2015, pp. 43–62.

KT17. Ghazal Kachigar and Jean-Pierre Tillich, Quantum information set decod-
ing algorithms, Post-Quantum Cryptography - 8th International Workshop,
PQCrypto 2017 (Tanja Lange and Tsuyoshi Takagi, eds.), Springer, Heidel-
berg, 2017, pp. 69–89.

LPR10. Vadim Lyubashevsky, Chris Peikert, and Oded Regev, On ideal lattices and
learning with errors over rings, EUROCRYPT 2010 (Henri Gilbert, ed.),
LNCS, vol. 6110, Springer, Heidelberg, May / June 2010, pp. 1–23.

Lyu12. Vadim Lyubashevsky, Lattice signatures without trapdoors, EURO-
CRYPT 2012 (David Pointcheval and Thomas Johansson, eds.), LNCS,
vol. 7237, Springer, Heidelberg, April 2012, pp. 738–755.

May21. Alexander May, How to meet ternary lwe keys, Cryptology ePrint Archive,
Report 2021/216, 2021, https://eprint.iacr.org/2021/216.

MNRS11. Frédéric Magniez, Ashwin Nayak, Jérémie Roland, and Miklos Santha,
Search via quantum walk, SIAM Journal on Computing 40 (2011), no. 1,
142–164.

Niv04. Gabriel Nivasch, Cycle detection using a stack, Information Processing Let-
ters 90 (2004), 135–140.

PFH+19. Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner,
Vadim Lyubashevsky, Thomas Pornin, Thomas Ricosset, Gregor Seiler,
William Whyte, and Zhenfei Zhang, Falcon, Tech. report, National Insti-
tute of Standards and Technology, 2019, available at https://csrc.nist.

gov/projects/post-quantum-cryptography/round-2-submissions.
Pol75. J. M. Pollard, A monte carlo method for factorization, BIT Numerical

Mathematics 15 (1975), 331–334.
Reg03. Oded Regev, New lattice based cryptographic constructions, 35th ACM

STOC, ACM Press, June 2003, pp. 407–416.

14

https://eprint.iacr.org/2021/216
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions

SSTX09. Damien Stehlé, Ron Steinfeld, Keisuke Tanaka, and Keita Xagawa, Effi-
cient public key encryption based on ideal lattices, ASIACRYPT 2009 (Mit-
suru Matsui, ed.), LNCS, vol. 5912, Springer, Heidelberg, December 2009,
pp. 617–635.

Tan07. Seiichiro Tani, In improved claw finding algorithm using quantum walk,
Mathematical Foundations of Computer Science 2007, 2007, pp. 536–547.

A Time-memory tradeoffs

0 50 100 150

200

300

400

500

600

700

log(M)
n

log(T)
n

Rep-1 for
NTRU-Enc
(509, 2048, 254)

Fig. 2: Time-memory tradeoffs

A straightforward way to obtain time-
memory tradeoffs in the quantum walk
framework is to vary the parameter γ
since it governs the size U (i) of the sub-
lists. Our optimization so far was target-
ing optimal runtime assuming we have
as may qubits as we need. For example,
the expected quantum memory complex-
ity of the Rep-1 algorithm from Section 5
is asymptotically TS – the expected time
of the setup phase – a value, which is ex-
ponential in n.

If we have a fixed (but still exponential
in n) number of qubits, which is smaller
than what the optimal runtime needs, we
can still instantiate and run the quantum
walk but with smaller U (i)’s. This will
have the following effect on the runtime:
the complexity of the setup phase will become smaller, but ε, the probability
that a vertex contains a solution, will also decrease. Since the optimal runtime
already balances the costs in Eq. 1, lowering the memory will necessarily in-
cur larger runtime. For instance, Figure 2 shows time-memory tradeoffs for the
NTRU-Enc parameter set (509, 2048, 254).

Turning to the realm of polynomial memory, [May21] shows how to phrase
the problem of finding s1, s2 that satisfy the MiTM Eq. (3) as a claw-finding
problem. Namely, he defines two functions f1 : s1 7→ πr(`(As1)) and f2 : s2 7→
πr(`(b− As2)), where πr is the projection function defined in Section 3.1 and `
is Odlyzko’s hash function [HGSW03]. The domain of f1, f2 is the search space
for s1, s2 of size S, and the range can be (almost) bijectively mapped to a set
of ternary vectors of the same size as the domain if we choose r = dlog3(S)e.
A claw for f1, f2 is a pair (s1, s2) that gives the correct s = s1 + s2. Thus the
number of claws is the number of representations.

To find a claw classically we use collision-finding algorithms like [Niv04,Pol75].
Assuming f1, f2 behave like random functions, thus expecting S collisions be-
tween them, out of which R collisions are good, we find a good collision in
expected time Tclass =

√
S · S/R, where

√
S is the expected time to find any

15

collision. For NTRU, BLISS, and GLP the concrete complexities under this poly-
nomial memory attack are given in Table 4.

Quantumly, the claw-finding problem has been studied in [BDH+05,Tan07].
Most of these works apply quantum random walk technique, resulting in large
quantum memory requirement. The work of Buhrman et al. [BDH+05] uses
Grover’s algorithms allowing for polynomial memory regime. In this regime, the
algorithm simply creates a superposition over all (s1, s2) and applies Grover’s
algorithm to find a good pair. The checking function for Grover’s routine verifies
if (As1−(b−As2)) is ternary and the corresponding (s1, s2) have the right weight.
Since we expect R good pairs in the search space of size S2, Grover’s algorithm
outputs a solution in expected time Tquant = S/

√
R. This is a algorithm uses only

polynomial classical and quantum memory. The concrete runtimes for NTRU,
BLISS, and GLP are given in Table 4.

(n, q, w) classical quantum

NTRU-Enc (509, 2048, 254) 491 401

(677, 2048, 254) 581 463

(821, 4096, 510) 856 708

(701, 8192, 468) 751 620

NTRU-Prime (653, 4621, 288) 600 486

(761, 4591, 286) 654 521

(857, 5167, 322) 736 586

BLISS I+II (512, 12289, 308) 396 309

GLP I (512, 8383489, 342) 548 453

Table 4: Bit complexities for classical and quantum claw-finding algorithms from
Section A with polynomial classical and quantum memory.

16

	Quantum Key Search for Ternary LWE

