
Key-Policy ABE with Delegation of Rights

Cécile Delerablée1, Lenäıck Gouriou1,2,3, and David Pointcheval2,3

1 Leanear, France
2 DIENS, École normale supérieure, CNRS, PSL University, Paris, France

3 INRIA, Paris, France

Abstract. This paper revisits Key-Policy Attribute-Based Encryption (KP-ABE), allowing the
delegation of keys, traceability of compromised keys and key anonymity, as additional properties.
Whereas delegation of rights has been addressed in the seminal paper by Goyal et al. in 2006,
introducing KP-ABE, this nice feature has almost been neglected in all subsequent works in favor
of better security levels. However, in multi-device scenarios, this is quite important to allow users to
independently authorize their own devices, still with some tracing capabilities and some anonymity
properties.
To this aim, we define a new primitive with switchable attributes, in both the ciphertexts and the
keys, and new indistinguishability properties. We then provide concrete and efficient instantiations
with adaptive security under the sole SXDH assumption in the standard model.

1 Introduction

Multi-device scenarios have become prevalent in recent years, as it is now quite usual for people
to own multiple phones and computers for personal and professional purposes. Users manage
multiple applications across different devices, which brings forth new kinds of requirements. One
must be able to granularly control what each of his devices can do for numerous applications,
with a cost that is minimal for the user and the overall system. In particular, it is expected
that one can control what each of its devices can access, for example restricting the rights to
read sensitive documents from a professional laptop or phone during travel. Furthermore, if
one suspects a device to be compromised, it should be possible to trace and revoke it without
impacting the service or the other devices of the user. At the same time, these operations
must happen transparently between different devices from the perspective of the user. This
means each device should be autonomously configurable with regards to interactions with a
central authority or to other devices. Eventually, one may also expect the delegated keys to be
unlinkable, for some kind of anonymity for the users.

Usual current authentication means define a unique account for the user, providing the
same access-rights to all the devices. This is equivalent to a key-cloning approach, where the
user clones his key in every device. In this case, all the devices of the same user are easily linked
together, from their keys. This definitely does not offer a satisfactory level of granularity and
does not allow to differentiate devices, which prevents tracing and revocation of specific devices.

Key-Policy Attribute-Based Encryption (KP-ABE), in the seminal paper of Goyal et al. [GPSW06],
offers interesting solutions to these issues for multiple reasons. Indeed, in their solution, a policy
is embedded inside each user’s private key, any user can finely-tune the policy for each of his
devices when delegating his keys. Besides, since keys become different in each device, one could
expect to trace and revoke devices independently. However, this is not immediately possible,
and we also suggest complementing these features with a certain level of unlinkability between
the different keys of a single user in order to better protect the privacy of users.

1.1 Related Work

Attribute-Based Encryption (ABE) has first been proposed in the paper by Goyal et
al. [GPSW06]. In an ABE system, on the one hand, there is a policy P and, on the other
hand, there are some attributes (Ai)i, and one can decrypt a ciphertext with a key if the

2 Cécile Delerablée, Lenäıck Gouriou, and David Pointcheval

policy P is satisfied on the attributes (Ai)i. They formally defined two approaches: Key-Policy
Attribute-Based Encryption (KP-ABE), where the policy is specified in the decryption key and
the attributes are associated to the ciphertext; Ciphertext-Policy Attribute-Based Encryption
(CP-ABE), where the policy is specified in the ciphertext and the attributes are associated to
the decryption key.

In their paper, they proposed a concrete construction of KP-ABE, for any monotonous access
structure defined by a policy in the key, expressed as an access-tree with threshold internal gates
and leaves associated to attributes, and attributes in the ciphertext, among a large universe U
(not polynomially bounded). Given a rooted access-tree T embedded in a private key, and a set
of attributes Γ ⊂ U associated to a ciphertext, one can decrypt the ciphertext with his private
key if and only if T (Γ) = 1. To evaluate T (Γ), one must search for a subset Γ ′ ⊂ Γ such that

1. all the leaves associated to attributes in Γ ′ are set to True;

2. all the other leaves are set to False;

3. all the internal nodes with threshold gates are evaluated in a recursive way, starting from
the leaves up to the root;

then T (Γ) = 1 if the root is satisfied. If none of the subsets of Γ can lead to a True root-gate,
then T (Γ) = 0.

Furthermore, they also lay the bases for delegation of users’ private keys, along with a more
restrictive access-tree. Given an access-tree T associated to a private key, one can delegate a
new key, associated with a more restrictive access-tree T ′. To do so, one defines a partial order
T ′ ≤ T , when comparing T ′ to T : for any node/leave, one can only increase a threshold by
a gap at least non-less than the number of added subtrees. This ensures that for any set of
attributes Γ , T ′(Γ) = 1 ⇒ T (Γ) = 1, which corresponds to the natural definition of a tree T ′
that is more restrictive than T .

This first paper on KP-ABE allows fine-grained access-control for multiple devices, dealing
with delegation of keys with more restrictive policies, but there are strong limitations concerning
tracing that we will discuss later.

Traitor-Tracing. In a traitor-tracing system, a tracing authority can interact with a Pirate
Decoder (PD) that non-legitimately decrypts ciphertexts, using one or more decryption keys of
legitimate users. The keys used by the PD, or the aggregated key, are unknown to the tracing
authority when we are dealing with black-box tracing, the most reasonable scenario. The goal of
traitor-tracing is to determine which user’s private keys are used by the PD, only interacting with
the PD in a black-box way, in turn allowing to identify the traitors or the compromised devices.
An approach is to embed codewords (also called ”fingerprints”) with specific properties in the
decryption keys. These codewords can then be recovered, under some marking assumptions that
address collusion of traitors, after only a few interactions with the PD. Boneh and Shaw [BS95]
proposed a tracing technique by embedding codewords in each ciphertext. With this approach,
the ciphertext has to be linear in the length of the codeword, and this length quickly increases
with the size of the possible collusion. Boneh and Naor [BN08] improved this approach with a
shorter ciphertext: only some bits of the codeword are involved in each ciphertext, but in this
case tracing requires making some assumptions on the decryption capabilities of the PD.

Boneh et al. [BSW06], followed by [BW06], proposed traceability (and revocation) whatever
the size of the collusion, but with ciphertexts of size

√
N , where N is the maximal number of

users. Wong et al. [LW15,LLLW17] combined this technique into a CP-ABE, with policy encoded
in a Linear Secret Sharing Scheme (LSSS). Those techniques nevertheless seem incompatible
with delegation properties. Intuitively, their approach assigns each single user to a different cell
in a table, and then methodically tests each cell of the table for a traitor, with linear tracing.
This is quite exclusive with delegation for the users, as one cannot add more cells in the table.

Key-Policy ABE with Delegation of Rights 3

Some papers explicitly addressed traceability for KP-ABE [YRLL09], with the notion of
attribute-hiding. But this is limited to small universe of attributes and does not deal with
delegation.

Broadcast Encryption, with efficient revocation, is also a nice tool for fine-grained access-
control, as proposed in the seminal NNL paper [NNL01]. In a broadcast encryption system, the
sender specifies a target set T of users who can read the message. All other users cannot access
the message.

While it may seem possible to trace a compromised key exploited by a PD using revocation,
by a trial and error approach or more sophisticated techniques, the PD might stop answering
if it detects the tracing procedure. With classical broadcast encryption schemes, such detection
is an easy task for an adversary because of the leak of information about the target set, and
therefore of the revoked devices.

Anonymous broadcast encryption addresses this leakage of the target set, but even the
most efficient solutions [LPQ12] cannot avoid a ciphertext being linear in the target set or
the revocation set. Ak et al. [AKPS12] proposed a generic method to transform a broadcast
encryption scheme into a trace and revoke scheme, using fingerprinting codes with additional
samplability property, to make the usual mode and the tracing mode indistinguishable. But the
access-control provided is not as fine-grained as in ABE schemes.

Predicate Encryption/Inner-Product Encryption (IPE) were used by Okamoto and
Takashima [OT10,OT12a,OT12b], together with LSSS: the receiver can read the message if a
predicate is satisfied on some information in the decryption key and in the ciphertext. Inner-
product encryption (where the predicate checks whether the vectors embedded in the key and in
the ciphertext are orthogonal) is the major tool. Their technique of Dual Pairing Vector Space
(DPVS) provided two major advantages in KP-ABE applications: whereas previous constructions
were only secure against selective attacks (the attributes in the challenge ciphertext were known
before the publication of the keys), this technique allowed full security (where the attributes
in the challenge ciphertext are chosen at the challenge-query time). In addition, it allows the
notion of attribute-hiding (from [KSW08]) where no information leaks about the attributes
associated to the ciphertext, except for the fact that they are accepted or not by the policies
in the keys. It gets closer to our goals, as tracing might become undetectable. However, these
approaches do not seem compatible with delegation, as the security proofs require all the key
generation material to remain secret to the key issuer.

As follow-up works, Chen et al. [CGW15,CGW18] designed multiple systems for IPE, with
adaptive security, and explored full attribute-hiding with weaker assumptions and better cipher-
texts and secret keys sizes than the previous work of Okamoto-Takashima. However, it does not
fit our expectations on delegation for the same reasons.

Recent works by Attrapadung have been proposed for ABE by introducing Pair Encoding
Systems, which allow for all possible predicates and large universes [AT20], but they deal neither
with delegation nor with any kind of attribute-hiding which could be compatible for our use.

1.2 Contributions

Since this last approach is close to our goal, we extend the original construction of [OT12a] to
make it compatible with delegation. We thus first propose a variant that allows delegation and
adaptive security, in the standard model and under the SXDH assumption. We then enhance
the definition of KP-ABE to provide both traceability and anonymity of delegated keys.

To introduce traceability, we first detail one of the main limitation we encountered: With
the original approach of [GPSW06], attributes associated to the ciphertext are explicitly stated
as elements in the ciphertext. Removing some attributes can thus allow revocation, but this is

4 Cécile Delerablée, Lenäıck Gouriou, and David Pointcheval

public, and thus incompatible with any tracing procedure. To avoid that, we introduce a new
primitive: Switchable-Attribute Key-Policy Attribute-Based Encryption (SA-KP-ABE), which
will bring new properties to the attributes in ciphertexts (for the traceability) but also sym-
metrically to the leaves in keys (for anonymity).

In a SA-KP-ABE scheme, attributes in a ciphertext and leaves in a key can be switched
in two different states: valid or invalid for attributes in a ciphertext, with the disjoint sets
Γ = Γv ·∪ Γi, and passive or active for leaves in a key, with the disjoint sets L = Lp ·∪ La.
With this additional property, a set of valid/invalid attributes Γ = Γv ·∪ Γi is accepted by
an access-tree with active/passive leaves L = La ·∪ Lp, if the tree is accepting when all the
leaves in L associated to an attribute in Γ are set to True, excepted if the leaf is active (in
La) and the associated attribute invalid (in Γi). Concretely, active leaves are chosen during the
Key Generation procedure by the authority, and then the keys are given to the users, with
these switchable policies. During the Encryption procedure, one might specify some attributes
to be invalid, which virtually and secretly invalidates some active leaves. Note that users with
corresponding passive leaves are not impacted, as the latter cannot be invalidated

Combining active leaves and invalid ciphertexts, one may revoke users following a specific
strategy, as in [BS95] or [BN08] (Section 5 will illustrate how to implement such a strategy).
However, in order for tracing to work, one needs the adversary not to be able do distin-
guish valid from invalid ciphertexts: to answer this, we will define the notion of Attribute-
Indistinguishability. By symmetry, we also introduce another indistinguishability notion for
keys, called Key-Indistinguishability, where active and passive leaves are indistinguishable. In
case of delegation, the latter indistinguishability will help us to achieve some kind of anonymity,
by making delegated keys issued from the same key unlinkable.

We note that this setting bears common characteristics with some recent KP-ABE ap-
proaches. However there are key major specificities to consider. First, Waters [Wat09] intro-
duced the technique called Dual System Encryption (DSE), to improve the security level of
KP-ABE, from selective security in [GPSW06] to adaptive security: the set Γ of attributes in
the challenge ciphertext can be chosen by the adversary at the challenge-query time. In DSE,
keys and ciphertexts can be set semi-functional, which is in the same vein as our active keys and
invalid ciphertexts. However, DSE solely uses semi-functional keys and ciphertexts during the
simulation, in the security proof, while our construction exploits them in the real-life construc-
tion. The security proof thus needs another layer of tricks. Second, the attribute-hiding notions
are strong properties that have been well studied in different IPE works. However, one does not
need to achieve such a strong result for tracing: Our proposed Attribute-Indistinguishability is
well-suited to KP-ABE, and properly tailored to enable tracing.

To conclude, in the standard model, and under the sole SXDH assumption, we have built an
adaptively secure KP-ABE that is well-suited for fine-grained delegation, and have developed a
new primitive, SA-KP-ABE, with an adaptively-secure construction, allowing traceability and
providing some privacy guarantees.

As a final remark, while our techniques have been developed with a vocabulary dedicated
to access-tree policies, they seem fully compatible with a policy enforced through more general
LSSS. We found access-tree useful to develop intuition for delegation and the construction of
the SA-KP-ABE. However, we are confident that techniques converting access-trees to LSSS and
reciprocally, as in [CPP17], can apply to our construction: the embedding of the policy is done
through Inner-Product, which is well-suited for LSSS just as much as for access-trees, and our
developments essentially rely on a specific embedding perspective.

1.3 Organization

In the next section, we detail the tools that we will need in our constructions and proofs, such
as the Dual Pairing Vector Spaces, along with useful illustrations of its use for our proofs.
Section 3 explains KP-ABE, access-tree structures, with a first simple construction derived

Key-Policy ABE with Delegation of Rights 5

from [GPSW06]. In Section 4, we present our advanced construction of KP-ABE with dele-
gation. Sections 5 and 6 develop the main contributions, with the definition of SA-KP-ABE and
the first construction, with the security analysis. Because of lack of space, but for the sake of
clarity, several details and additional information are deferred to the appendix.

2 Preliminaries

2.1 Computational Assumptions

We will make use of a pairing-friendly setting (G1,G2,Gt, e,G1, G2, q), with a bilinear map e
from G1 ×G2 into Gt, and G1 (respectively G2) is a generator of G1 (respectively G2). We will
use additive notations for G1 and G2, and multiplicative notations in Gt, excepted in Section 3.3,
where we will keep the original notations from [GPSW06].

As usual, we will admit the Decisional Diffie-Hellman (DDH) Assumption in G1 or G2. More
generally, in any group G, this assumption is defined as follows:

Definition 1 (Decisional Diffie-Hellman Assumption). The DDH assumption in G, of
prime order q with generator G, states that no algorithm can efficiently distinguish the two
distributions

D0 = {(a ·G, b ·G, ab ·G), a, b
$← Zq} D1 = {(a ·G, b ·G, c ·G), a, b, c

$← Zq}

And we will denote by AdvddhG (T) the best advantage an algorithm can get in distinguishing the
two distributions within time bounded by T . For the sake of clarity, in the sequence of games,
we will sometimes use the following DSDH assumption:

Definition 2 (Decisional Separation Diffie-Hellman Assumption). The DSDH assump-
tion in G, of prime order q with generator G, between two constant values x, y, states that no
algorithm can efficiently distinguish the two distributions, where a, b

$← Zq,

Dx = {(a ·G, b ·G, (ab+ x) ·G)} Dy = {(a ·G, b ·G, (ab+ y) ·G)}

As c + x and c + y are perfectly indistinguishable for a random c, then the best advantage an
algorithm can get in distinguishing the two distributions within time T is upper-bounded by
2 · AdvddhG (T). Eventually, we will make the following more general assumption:

Definition 3 (Symmetric eXternal Diffie-Hellman Assumption). The SXDH assump-
tion in (G1,G2,Gt, e,G1, G2, q) makes the DDH assumptions in both G1 and G2.

Then, we define Advsxdh(T) = max{AdvddhG1
(T),AdvddhG2

(T)}.

2.2 Dual Pairing Vector Spaces

More details are provided in the appendix A, but the main points are reviewed in this section
to help following the constructions and the security proofs. Dual Pairing Vector Spaces (DPVS)
have been proposed for efficient schemes with adaptive security [OT08,LOS+10,OT10,OT12b],
in the same vein as Dual System Encryption (DSE) [Wat09], in prime-order groups under
the DLIN assumption. In [LW10], DSE was using pairings on composite-order elliptic curves.
Then, prime-order groups have been used with the SXDH assumption [CLL+13]. In all theses
situations, one exploited indistinguishability of sub-groups or sub-spaces. In this paper, we use
the SXDH assumption in a pairing-friendly setting (G1,G2,Gt, e,G1, G2, q) of primer order q,

with the additional law between an element X ∈ Gn
1 and Y ∈ Gn

2 : X × Y def
=
∏
i e(Xi, Yi), where

Gt is usually denoted multiplicatively, while we will use additive notation for G1 and G2. Hence,
if X = (X1, . . . , Xn) = x ·G1 ∈ Gn

1 and Y = (Y1, . . . , Yn) = y ·G2 ∈ Gn
2 :

(x ·G1)× (y ·G2) = X × Y =
∏

i
e(Xi, Yi) = g

〈x,y〉
t

6 Cécile Delerablée, Lenäıck Gouriou, and David Pointcheval

where gt = e(G1, G2) and 〈x,y〉 is the inner product between vectors x and y.

From any basis B = (bi)i of Znq , we can define the basis B = (bi)i of Gn
1 , where bi = bi ·G1.

Such a basis B is equivalent to a random invertible matrix B
$← GLn(Zq), the matrix with

bi as its i-th row. If we additionally use B∗ = (b∗i)i, the basis of Gn
2 associated to the matrix

B′ = (B−1)>, as B ·B′> = In,

bi × b∗j = (bi ·G1)× (b′j ·G2) = g
〈bi,b′j〉
t = g

δi,j
t ,

where δi,j = 1 if i = j and δi,j = 0 otherwise, for i, j ∈ {1, . . . , n}: B and B∗ are called Dual
Orthogonal Bases. A pairing-friendly setting (G1,G2,Gt, e,G1, G2, q), with such dual orthogonal
bases B and B∗ of size n, is called a Dual Pairing Vector Space.

2.3 Change of Basis

Let us consider the basis U = (ui)i of Gn associated to a random matrix U ∈ GLn(Zq), and the
basis B = (bi)i of Gn associated to the product matrix BU , for any B ∈ GLn(Zq), a vector x
in B, denoted (x)B means

(x)B =
∑

i
xi · bi =

∑
i
xi · bi ·G = x ·BU ·G = (x ·B) · U ·G = y · U ·G

=
∑

i
yi · ui ·G =

∑
i
yi · ui = (y)U where y = x ·B.

Hence, (x)B = (x · B)U and (x · B−1)B = (x)U where we denote B def
= B · U. For any invertible

matrix B, if U is a random basis, then B = B · U is also a random basis. Then, with B−1 =
(b′1

>, . . . , b′n
>), x = y · (b′1>, . . . , b′n>):

B = B · U, B′ =

 b′1
...

b′n

 , and (x)B = (y)U =⇒ x = (〈y, b′1〉, . . . , 〈y, b′n〉).

Let us consider the random dual orthogonal bases U = (ui)i and U∗ = (u∗i)i of Gn
1 and Gn

2

respectively associated to a matrix U (which means that U is associated to the matrix U and
U∗ is associated to the matrix U ′ = (U−1)>): the bases B = B · U and B∗ = B′ · U∗, where
B′ = (B−1)>, are also dual orthogonal bases:

bi × b∗j = g
bi·b′j>
t = g

ui·B·(B−1)>·u′
j
>

t = g
ui·u′

j
>

t = g
δi,j
t .

All the security proofs will exploit changes of bases, of essentially two kinds:

Formal Change of Basis, where we start from two dual orthogonal bases U and U∗ of dimension
2, and set

B =

(
1 1
0 1

)
B′ =

(
1 0
−1 1

)
B = B · U B∗ = B′ · U∗

then, (x1, x2)U = (x1, x2 − x1)B (y1, y2)U∗ = (y1 + y2, y2)B∗

(0, x2)U = (0, x2)B (0, y2)U∗ = (y2, y2)B∗

In practice, this change of basis makes b1 = u1 + u2, b2 = u2, b∗1 = u∗1, b∗2 = −u∗1 + u∗2. If b1

and b∗2 are kept private, the adversary cannot know whether we are using (U,U∗) or (B,B∗).
This exact change of basis will be used to duplicate some component, as shown in the second
example where y2 in the second component is duplicated in the first component in B∗.

Key-Policy ABE with Delegation of Rights 7

SubSpace-Ind: with b∗2 hidden

c = (x1 x2 x3)B ≈ (x1 x′2 x3)B

k = (y1 y2 y3)B∗ = (y1 y2 y3)B∗

Swap-Ind: with b∗1,b
∗
2 hidden

c = (x1 0 x3)B ≈ (0 x1 x3)B

k = (y1 y1 y3)B∗ = (y1 y1 y3)B∗

Index-Ind: with b∗3 hidden, if p 6= t

c = (σ · (1, p) x3)B ≈ (σ · (1, p) x′3)B

k = (π · (t,−1) y3)B∗ = (π · (t,−1) y3)B∗

Colored cells x are random values, while gray cells x correspond to modified values.

Fig. 1: Computationally indistinguishable Changes of Basis

Computational Change of Basis, where we start from two dual orthogonal bases U and U∗ of
dimension 2. From a triple (a · G1, b · G1, c · G1), where c = ab + τ mod q with either τ = 0 or

τ
$← Z∗q , one can set

B =

(
1 a
0 1

)
B′ =

(
1 0
−a 1

)
B = B · U B∗ = B′ · U∗

then, (b, c)U + (x1, x2)B = (b, c− ab)B + (x1, x2)B = (x1 + b, x2 + τ)B

(y1, y2)U∗ = (y1 + ay2, y2)B∗

where τ can be either 0 or random. We should however note that in this case, b∗2 cannot be
computed, as a ·G2 is not known. This will not be a problem as this element is not provided as
a public element, but just kept by the simulator.

Partial Change of Basis: in the constructions, bases will be of higher dimension, but we will
often only change a few basis vectors. We will then specify the vectors as indices to the change
of basis matrix, as explained in the appendix A.

We briefly recap, see Figure 1, all the indistinguishable modifications (under the DSDH
assumption in G1, but it can also be applied in G2), on random dual orthogonal bases B and
B∗. They can all be proven using a change of basis similar to the above Computational Change
of Basis:

SubSpace-Ind Property, on (B,B∗)1,2: from the view of B and B∗\{b∗2}, and any vector

(y1, y2, . . . , yn)B∗ , for chosen y2, . . . , yn ∈ Zq, but unknown random y1
$← Zq, one cannot dis-

tinguish the vectors (x1, x
′
2, x3, . . . , xn)B and (x1, x2, x3, . . . , xn)B, for chosen x′2, x2, . . . , xn ∈

Zq, but unknown random x1
$← Zq (see Theorem 19).

Swap-Ind Property, on (B,B∗)1,2,3: from the view of B and B∗\{b∗1,b∗2}, and any vector
(y1, y1, y3, . . . , yn)B∗ , for chosen y1, y3, . . . , yn ∈ Zq, one cannot distinguish the vectors (x1, 0,
x3, x4, . . . , xn)B and (0, x1, x3, x4, . . . , xn)B, for chosen x1, x4, . . . , xn ∈ Zq, but unknown

random x3
$← Zq (see Theorem 21).

Index-Ind Property, on (B,B∗)1,2,3: from the view of B and B∗\{b∗3}, and any vector (π ·
(t,−1), y3, . . . , yn)B∗ , for chosen y3, . . . , yn ∈ Zq, but unknown random π

$← Zq, and for
any chosen t 6= p ∈ Zq, one cannot distinguish the vectors (σ · (1, p), x3, x4, . . . , xn)B and

(σ · (1, p), x′3, x4, . . . , xn)B, for chosen x′3, x3, x4, . . . , xn ∈ Zq, but unknown random σ
$← Zq

(see Theorem 23).

3 Key-Policy Attribute-Based Encryption

We recall a few definitions for Key-Policy Attribute-Based Encryption (KP-ABE). We will then
extend the usual definitions to deal with delegation.

8 Cécile Delerablée, Lenäıck Gouriou, and David Pointcheval

3.1 Policy Definition

ABE limits decryption according to policies on attributes. The policy is either specified in the
decryption key (KP-ABE) or in the ciphertext (CP-ABE), on attributes that are then specified in
the ciphertext of the decryption key, respectively. In the following, we focus on the Key-Policy
case [GPSW06].

Access Tree. As in this seminal paper, we will consider an access-tree T to model the policy
on attributes in an unbounded universe U , but with only AND and OR gates instead of more
general threshold gates: an AND-gate being an n-out-of-n gate, whereas an OR-gate is a 1-out-
of-n gate. This is also a particular case of the more general LSSS technique. Nevertheless, such
an access-tree with only AND and OR gates is as expressive as with any threshold gates or
LSSS. For any monotonic policy, we define our access-tree in the following way: T is a rooted
labeled tree from the root ρ, with internal nodes associated to AND and OR gates and leaves
associated to attributes. More precisely, for each leaf λ ∈ L, A(λ) ∈ U is an attribute, and any
internal node ν ∈ N is labeled with a gate G(ν) ∈ {AND,OR} as an AND or an OR gate to be
satisfied among the children in children(ν). We will implicitly consider that any access-tree T
is associated to the attribute-labeling A of the leaves and the gate-labeling G of the nodes. For
any leaf λ ∈ L of T or internal node ν ∈ N\{ρ}, the function parent links to the parent node:
ν ∈ children(parent(ν)) and λ ∈ children(parent(λ)).

On a given list Γ ⊆ U of attributes, each leaf λ ∈ L is either satisfied (considered or set
to True), if A(λ) ∈ Γ , or not otherwise: we will denote LΓ the restriction of L to the satisfied
leaves in the tree T (corresponding to an attribute in Γ). Then, for each internal node ν, one
checks whether all children (AND-gate) or at least one of the children (OR-gate) are satisfied,
from the attributes associated to the leaves, and then ν is itself satisfied or not. More precisely,
for each internal node ν, we denote Tν the subtree rooted at the node ν. Hence, T = Tρ. A leaf
λ ∈ L is satisfied if λ ∈ LΓ then, recursively, Tν is satisfied if the AND/OR-gate associated to ν
via G(ν) is satisfied with respect to status of the children in children(ν): we denote Tν(Γ) = 1
when the subtree is satisfied, and 0 otherwise:

Tλ(Γ) = 1 iff λ ∈ LΓ for any leaf λ ∈ L
Tν(Γ) = 1 iff ∀κ ∈ children(ν), Tκ(Γ) = 1 when G(ν) = AND

Tν(Γ) = 1 iff ∃κ ∈ children(ν), Tκ(Γ) = 1 when G(ν) = OR

Illustration of Access-Trees with NNL. We illustrate how one can convert the complete
subtree approach of NNL, for broadcast encryption with revocation, into a policy for a KP-ABE,
expressed as an access-tree in Figure 2: one first considers all the NNL subtrees as attributes
(all internal nodes νi and all leaves j), a user’s policy should accept any attribute corresponding
to a subtree he belongs to. Hence, the policy is an OR-gate with all the acceptable attributes
as leaves. With the complete subtree approach, it has been shown that the ciphertext contains
at most r logN attributes, where N is the total number of users and r the number of revoked
users.

Evaluation Pruned Tree. In the above definition, we considered an access-tree T on leaves
L and a set Γ of attributes, with the satisfiability T (Γ) = 1 where the predicate defined by
T is true when all the leaves λ ∈ LΓ are set to true. A Γ -evaluation tree T ′ ⊂ T is a pruned
version of T , where one children only is kept to OR-gate nodes, down to the leaves, so that
T ′(Γ) = 1. Basically, we keep a skeleton with only necessary true leaves to evaluate the internal
nodes up to the root. We will denote EPT(T , Γ) the set of all the evaluation pruned trees of T
with respect to Γ . This set EPT(T , Γ) is non-empty if and only if T (Γ) = 1.

Key-Policy ABE with Delegation of Rights 9

NNL Complete Subtree Access-Tree for KP-ABE

ν1

ν2

ν4

ν8

1 2

ν9

3 4

ν5

ν10

5 6

ν11

7 8

ν3

ν6

ν12

9 10

ν13

11 12

ν7

ν14

13 14

ν15

15 16

OR

ν1 ν2 ν5 ν10 6

Complete subtree User path User leaves Gate

Fig. 2: NNL complete subtree method (for N = 16), which defines the universe of attributes
U = {ν1, . . . , ν15, 1, . . . , 16}, with the path to user 6 (left-side), from which we derive the access-
tree of user 6 for KP-ABE on leaves associated to the attributes {ν1, ν2, ν5, ν10, 6} (right-side)

Figure 3 gives an illustration of such an access-tree for a policy: when the colored leaves
{λ1, λ3, λ5, λ8, λ9, λ10} are true, the tree is satisfied. There are two possible evaluation pruned
trees: down to the leaves {λ1, λ3, λ5, λ8} or {λ1, λ3, λ5, λ9, λ10}. As already noted, any monotonic
access structure can be encoded into such an access-tree.

3.2 Definitions

We now recall the definition of KP-ABE from [GPSW06], with access-trees to define policies in
the keys:

Setup(1κ). From the security parameter κ, the algorithm defines all the global parameters PK
and the master secret key MK;

KeyGen(MK, T). The algorithm outputs a key dkT ;
Encaps(PK, Γ). For a list Γ of attributes, the algorithm generates the ciphertext C and an

encapsulated key K;
Decaps(dkT , C). Given the key dkT and the ciphertext C, the algorithm outputs the encapsu-

lated key K.

For correctness, the Decaps algorithm should output the encapsulated key K if and only if C
has been generated for a set Γ that satisfies the policy T of the decryption key dkT : T (Γ) = 1.

Delegation. A major feature in [GPSW06] is delegation of decryption keys: a user with a
decryption key dk corresponding to an access-tree T can compute a new decryption key corre-
sponding to any more restrictive access-tree, or a less accessible tree T ′, than T with the follow-
ing partial order: T ′ ≤ T , if and only if for all subset Γ of attributes, T ′(Γ) = 1 =⇒ T (Γ) = 1.
More concretely, in our case of access-trees, a more restrictive access-tree is, for each node ν,

AND

AND

OR

λ1 λ2

OR

λ3 λ4

OR

λ5 λ6 λ7

OR

λ8 AND

λ9 λ10

Fig. 3: Example of an access-tree with two different evaluation pruned tree for the leaves colored
in green: {λ1, λ3, λ5, λ8} or {λ1, λ3, λ5, λ9, λ10}

10 Cécile Delerablée, Lenäıck Gouriou, and David Pointcheval

1. if G(ν) = AND, one or more children are added (i.e., more constraints);
2. if G(ν) = OR, one or more children are removed (i.e., less flexibility);
3. the node ν is moved one level below as a child of an AND-gate at node ν ′, with additional

sub-trees as children to this AND-gate (i.e., more constraints).

We illustrate the last rule, with a simple example in Figure 4. There is thus the additional
algorithm:

Delegate(dkT , T ′). Given a key dkT and a more restrictive T ′ ≤ T , the algorithm outputs a
decryption key dkT ′ .

Security Notions. Whereas we could recall the classical indistinguishability, with only KeyGen-
queries, we extend it to handle delegation queries: if one can ask several more restrictive dele-
gations from an access-tree T , one should not be able to distinguish an encapsulated key in a
ciphertext under a non-trivial list of attributes, according to the obtained delegated keys only:

Definition 4 (Delegation-Indistinguishability). Del-IND security for KP-ABE is defined
by the following game:

Initialize: The challenger runs the Setup algorithm of KP-ABE and gives the public parameters
PK to the adversary;

OKeyGen(T): The adversary is allowed to issue KeyGen-queries for any access-tree T of its
choice, without getting back the decryption key, but for future delegation;

ODelegate(T , T ′): The adversary is allowed to issue several Delegate-queries for any more re-
strictive access-tree T ′ ≤ T of its choice, for an already generated decryption key under T ,
and gets back the decryption key dkT ′;

RoREncaps(Γ): The adversary submits one real-or-random encapsulation query on a set of at-
tributes Γ . The challenger asks for an encapsulation query on Γ and receives (K0, C). It
also generates a random key K1. It eventually flips a random coin b, and outputs (Kb, C) to
the adversary;

Finalize(b′): The adversary outputs a guess b′ for b. If for some access-tree T ′ asked to the

ODelegate-oracle, T ′(Γ) = 1, on the challenge set Γ , β
$← {0, 1}, otherwise one sets β = b′.

One outputs β.

The advantage of an adversary A in this game is defined as

Advdel-ind(A) = Pr[β = 1|b = 1]− Pr[β = 1|b = 0].

One could of course consider Chosen-Ciphertext security, where the adversary could have
access to some decryption oracles, without the decryption key itself. On the more limited side,
one can consider Selective-Set security, where the adversary declares Γ at the initializa-
tion step, as in [GPSW06]. In the Selective-Delegation security, the adversary declares
the successive delegations T1, . . . , T` ≤ T at the OKeyGen(T)-query time. This Delegation-
Indistinguishability is definitely stronger than basic Indistinguishability as the adversary can
ask for a OKeyGen(T)-query and thereafter the ODelegate(T , T)-query to immediately get the
decryption key for T .

OR

A B C

Leaf Gate Added AND-leaf

OR

AND

A′ A

B C

Fig. 4: Access-tree (left-side) and delegated-tree (right-side) where the leaf associated with at-
tribute A is changed into an AND-gate with a new child leaf associated with attribute A′

Key-Policy ABE with Delegation of Rights 11

3.3 A First Example of KP-ABE with Delegation

In [GPSW06], the authors propose such a KP-ABE, that achieves the Del-IND-security in the
Selective-Set setting. To this aim, we have to define the notion of labeled access-trees.

Labeled Access Trees. We will label such trees with integers so that some labels on the
leaves will be enough to recover the labels above, up to the root, as illustrated on Figure 5.

Definition 5 (Random y-Labeling). Let us define a random y-labeling Λy of an access-tree
T , for any y ∈ Zp: the probabilistic algorithm Λy(T) sets aρ ← y for the root, and then in a
top-down manner, for each internal node ν, starting from the root,

– if G(ν) = AND, with n children, a random n-out-of-n sharing of aν is associated to each
children i.e., random values are associated to aκ for all κ ∈ children(ν), such that the sum
is equal to aν in Zp;

– if G(ν) = OR, with n children, each children is associated to the value aν .

G(ν) = AND : ∀κ ∈ children(ν), aκ
$← Zp, such that aν =

∑
κ∈children(ν)

aκ mod p

G(ν) = OR : ∀κ ∈ children(ν), aκ = aν

Algorithm Λy(T) outputs Λy = (aλ)λ∈L, for all the leaves λ ∈ L of the tree T . Because of the
linearity, one can remark that from any y-labeling (aλ)λ of the tree T , and a random z-labeling
(bλ)λ of T , the sum (bλ + cλ)λ is a random (y + z)-labeling of T . In particular, from any y-
labeling (aλ)λ of T , and a random zero-labeling (bλ)λ of T , the values cλ ← aλ + bλ provide
a random y-labeling of T . Similarly, multiplying all the labels of a y-labeling by a constant c
leads to a cy-labeling.

Evaluation of a Tree. For an acceptable set Γ for T and a labeling Λy of T for a random y, given
only (aλ)λ∈LΓ , one can reconstruct y = aρ. Indeed, as T (Γ) = 1, we use an evaluation pruned
tree T ′ ∈ EPT(T , Γ). Then, in a bottom-up way, starting from the leaves, one can compute the
labels of all the internal nodes, up to the root. On can easily see how [GPSW06] works with
threshold gates: each label of a node is shared according to the threshold, among the children.
Lagrange interpolation on the children allows to learn the value of the parent node.

Unpredictability of the Root. On the other hand, this is also important to note that, when
T (Γ) = 0, with a random labeling Λy of T for a random y, given only (aλ)λ∈LΓ , y is unpre-
dictable: for any y, y′ ∈ Zp, Dy and Dy′ are perfectly indistinguishable, where Dy = {(aλ)λ∈LΓ ,

(aλ)λ
$← Λy(T)}. Intuitively, given (aλ)λ∈LΓ , as T (Γ) = 0, one can complete the labeling so

that the label of the root is any y.
In preparation of our proof for Attribute-Indistinguishability, we need to identify a specific

property called independent leaves, which describes leaves for which the secret share leaks no
information in any of the other leaves in the access-tree.

AND/6

AND/6

OR/2

2

λ1

2

λ2

OR/4

4

λ3

4

λ4

OR/5

5

λ5

5

λ6

5

λ7

OR/2

2

λ8

AND/2

3

λ9

6

λ10

Fig. 5: Example of tree-labeling, with a non-satisfying set of attributes: leaves λ8, λ9 and λ10
are not independent

12 Cécile Delerablée, Lenäıck Gouriou, and David Pointcheval

Definition 6 (Independent leaves). Given an access-tree T and a set Γ so that T (Γ) =
0, we call independent leaves, in LΓ with respect to T , the leaves µ such that, given only
(aλ)λ∈LΓ \{µ}, aµ is unpredictable: for any y, D$ and D′y(µ) are perfectly indistinguishable, where

D$ = {(aλ)λ∈LΓ , y
$← Zp, (aλ)λ

$← Λy(T)}

Dy(µ) = {(aµ) ∪ (aλ)λ∈LΓ \{µ}, (aλ)λ
$← Λy(T), aµ

$← Zp}.

With the illustration on Figure 5, with non-satisfied tree, when only colored leaves are set to
true, leaves λ3 and λ5 are independent among the true leaves {λ3, λ5, λ8, λ9, λ10}. But leaves λ8,
λ9 and λ10 are not independent as aλ8 = aλ9 + aλ10 mod 7 for any random labeling. Intuitively,
given (aλ)λ∈LΓ \{µ} and any aµ, one can complete it into a valid labeling (with any random root
label y as T (Γ) = 0).

A Key-Policy Attribute-Based Encryption with Delegation. Our first construction is
an adaptation of [GPSW06] to the asymmetric bilinear setting and to key encapsulation, with
a hash function to map attributes into group elements using our specific access-trees: we are
in an asymmetric pairing-friendly setting (G1,G2,GT , p, g1, g2, e). To keep close to the original
paper [GPSW06], we use multiplicative notation for G1,G2 in this construction.

The Attribute-Based Encapsulation scheme can be described as follows, with a hash function
T from the universe of attributes U into G2:

Setup(1κ). It chooses random values y ∈ Zp, and sets Y = gy1 . The public parameters PK are
(g1, Y, g2) whereas the master secret key MK is y.

KeyGen(MK, T). The algorithm chooses a random y-labeling of the access-tree T , and builds

the credentials Dλ = gaλ2 ·T (tλ)rλ and Rλ = grλ1 , where rλ
$← Zp. The decryption key dkT is

composed of all the above (Dλ, Rλ) pairs.
Delegate(dkT , T ′). The algorithm keeps and randomizes only the credentials (Dλ · T (α)r

′
λ , Rλ ·

g
r′λ
1) from dkT still in T ′, with r′λ

$← Zp. For the new leaves λ, one sets Dλ = T (α)rλ

and Rλ = grλ1 , where rλ
$← Zp, which corresponds to use aλ = 0. These new credentials

correspond to a valid key (see below), but they must be randomized with a random zero-
labeling of T ′.

Encaps(PK, Γ). For a list Γ of attributes, the algorithm picks a random scalar s
$← Zp. It

then sets K = e(Y, g2)
s, generates the ciphertext C, and outputs (K,C), where C =(

Γ,E = gs1, {Et = T (t)s}t∈Γ
)
.

Decaps(dkT , C). We first choose an evaluation pruned tree T ′ ∈ EPT(T , Γ) and for all the
leaves in T ′: e(E,Dλ)/e(Rλ, Et) = gsaλt . This allows to compute gyst = K, if and only if
T (Γ) = 1.

As explained above, a more restrictive T ′ ≤ T corresponds to the following transformations for
each node ν:

1. if G(ν) = AND, one or more children are added, then all the new children can be associated
to zero-labels;

2. if G(ν) = OR, one or more children are removed, then there is no new child;
3. the node ν is moved one level below as a child of an AND-gate at node ν ′, with additional

sub-trees as children to this AND-gate. Again, the additional subtrees can be associated with
zero-labels

Hence, because of this additional random labeling, and the randomization of rλ, the delegated
keys are perfectly indistinguishable from fresh keys. As a consequence, the basic indistinguisha-
bility implies the Del-IND-security. However, as in [GPSW06], it only holds in the Selective-Set
setting. We skip the proof, as it is very similar to the original one from [GPSW06], and this
scheme was just for illustrative purpose:

Theorem 7. Under the DBDH assumption, no adversary can win the Del-IND security game
in the Selective-Set and Selective-Delegation setting with non-negligible advantage.

Key-Policy ABE with Delegation of Rights 13

4 Our New KP-ABE Scheme

Our ultimate goal is the design of a new KP-ABE scheme with Switchable Attributes. To this
aim, instead of modifying the previous scheme, we will adapt the construction of full-security
attribute-based encryption from [OT12b], that provides some kind of attribute-hiding prop-
erty, but to handle both delegation and switchable attributes, on-demand. First, we provide a
KP-ABE, which is in the same vein as [GPSW06], as it can handle an unbounded number of
(classical) attributes and delegation, but with adaptive-set security.

Thereafter, we will formalize our notion of switchable attributes and extend this scheme into
an SA-KP-ABE scheme, with passive/active leaves in the key and valid/invalid attributes in the
ciphertext. To the best of our knowledge, this is the first time the notion of semi-functional
keys and ciphertexts are used in practice, and not just for the security analysis. These features
will allow, for example, to deal with key-delegation in the multi-device setting and tracing
procedures at the same time, with anonymity of the delegated keys.

4.1 Description of our KP-ABE Scheme

For our construction, we will use two DPVS, of dimensions 3 and 6 respectively, in a pairing-
friendly setting (G1,G2,Gt, e,G1, G2, q), using the notations introduced in Section 2.3:

Setup(1κ). The algorithm chooses two random dual orthogonal bases

B = (b1,b2,b3) B∗ = (b∗1,b
∗
2,b
∗
3)

D = (d1,d2,d3,d4,d5,d6) D∗ = (d∗1,d
∗
2,d
∗
3,d
∗
4,d
∗
5,d
∗
6).

It sets the public parameters PK = {(b1,b3,b
∗
1), (d1,d2,d3,d

∗
1,d
∗
2,d
∗
3)}, whereas the master

secret key MK = {b∗3}. Other basis vectors are kept hidden.

KeyGen(MK, T). For an access-tree T , the algorithm first chooses a random a0
$← Zq, and a

random a0-labeling (aλ)λ of the access-tree T , and builds the key:k∗0 = (a0, 0, 1)B∗ k∗λ = (πλ(1, tλ), aλ, 0, 0, 0)D∗

for all the leaves λ, where tλ = A(λ) and πλ
$← Zq. The decryption key dkT is then

(k∗0, (k
∗
λ)λ).

Delegate(dkT , T ′). The algorithm first generates zero-label credentials for the new attributes,

with k∗λ ← (πλ ·(1, tλ), 0, 0, 0, 0)B∗ , with πλ
$← Zq, for a new leaf. Keeping only the credentials

useful in T ′, it gets a valid key from dkT . It can thereafter be randomized with a random
a′0

$← Zq and a random a′0-labeling (a′λ) of T ′, with k∗0 ← k∗0 + (a′0, 0, 0)B∗ , and k∗λ ←
k∗λ + (π′λ · (1, tλ), a′λ, 0, 0, 0)B∗ , for π′λ

$← Zq.
Encaps(PK, Γ). For the set Γ of attributes, the algorithm first chooses random scalars ω, ξ

$← Zq.
It then sets K = gξt and generates the ciphertext C = (c0, (ct)t∈Γ) where c0 = (ω, 0, ξ)B and

ct = (σt(t,−1), ω, 0, 0, 0)D, for all the attributes t ∈ Γ and σt
$← Zq.

Decaps(dkT , C). The algorithm first selects an evaluation pruned tree T ′ of T that is satisfied
by Γ . This means that the labels aλ for all the leaves λ in T ′ allow to reconstruct a0 by
simple additions.
Note that from every leaf λ in T ′ and t = tλ = A(λ) ∈ Γ , it can compute

ct × k∗t = g
σt·πλ·〈(t,−1),(1,t)〉+ω·aλ
t = gω·aλt .

Hence, it can derive gω·a0
t . From c0 and k∗0, it gets c0×k∗0 = gω·a0+ξ

t which then easily leads

to K = gξt .

We stress that in the above decryption, one can recover gω·a0
t if and only if there is an evaluation

pruned tree T ′ of T that is satisfied by Γ . And this holds if and only if T (Γ) = 1. Additionally,
since b∗3 is not public but in MK only, for the key issuer, only the latter can issue keys, but
anybody can delegate a key for a tree T into a key for a more restrictive tree T ′. As everything
can be randomized (the random coins πλ and the labeling), the delegated keys are perfectly
indistinguishable from fresh keys. Hence, given two keys possibly delegated from a common key,
one cannot decide whether they have been independently generated or delegated.

14 Cécile Delerablée, Lenäıck Gouriou, and David Pointcheval

4.2 Security Analysis of the KP-ABE

We first consider the security analysis, without delegation, as it is quite similar to [OT12b], but
under the SXDH assumption instead of the DLIN assumption:

Theorem 8. Under the SXDH assumption, no adversary can win the IND security game (with-
out delegation) against our KP-ABE scheme, in the Adaptive-Set setting, with non-negligible
advantage.

This theorem is proven in details in the appendix B, with exact bound for an adversary with
running time bounded by t, with at most P attributes involved in the full experiment and at
most K queries to the OKeyGen-oracle:

Advind(A) ≤ 2(KP 2 + 1)× AdvddhG1
(t) + (3P + 1)K × AdvddhG2

(t)

≤ (2KP 2 + 3KP +K + 2)× Advsxdh(t)

The global sequence of games is described on Figure 6, with another sequence of sub-games on
Figure 7. We comment them here as this structure will be used in the other proofs. In the two

G0 Real IND-Security game (without delegation)
c0 = (ω 0 ξ) ct = (σt(1, t) ω | 0 0 0)

k∗`,0 = (a`,0 0 1) k∗`,λ = (π`,λ(t`,λ,−1) a`,λ | 0 0 0)

G1 SubSpace-Ind Property, on (B,B∗)1,2 and (D,D∗)3,4, between 0 and τ
$← Zq

c0 = (ω τ ξ) ct = (σt(1, t) ω | τ 0 0)

k∗`,0 = (a`,0 0 1) k∗`,λ = (π`,λ(t`,λ,−1) a`,λ | 0 0 0)

G2 SubSpace-Ind Property, on (D,D∗)1,2,6, between 0 and τzt

c0 = (ω τ ξ) ct = (σt(1, t) ω | τ 0 τzt)

k∗`,0 = (a`,0 0 1) k∗`,λ = (π`,λ(t`,λ,−1) a`,λ | 0 0 0)

G3 Introduction of an additional random-labeling. See Figure 7
c0 = (ω τ ξ) ct = (σt(1, t) ω | τ 0 τzt)

k∗`,0 = (a`,0 r`,0 1) k∗`,λ = (π`,λ(t`,λ,−1) a`,λ | 0 0 s`,λ/zt`,λ)

G4 Formal basis change, on (B,B∗)2,3, to randomize ξ

c0 = (ω τ ξ′′) ct = (σt(1, t) ω | τ 0 τzt)

k∗`,0 = (a`,0 r`,0 1) k∗`,λ = (π`,λ(t`,λ,−1) a`,λ | 0 0 s`,λ/zt`,λ)
Gray cells x mean they have been changed in this game.

Fig. 6: Global sequence of games for the IND-security proof of our KP-ABE

G2.k.0 Hybrid game for G2, with 1 ≤ k ≤ K + 1 (from Figure 6)
c0 = (ω τ ξ) ct = (σt(1, t) ω | τ 0 τzt)

` < k k∗`,0 = (a`,0 r`,0 1) k∗`,λ = (π`,λ(t`,λ,−1) a`,λ | 0 0 s`,λ/zt`,λ)
` ≥ k k∗`,0 = (a`,0 0 1) k∗`,λ = (π`,λ(t`,λ,−1) a`,λ | 0 0 0)

G2.k.1 SubSpace-Ind Property, on (B∗,B)1,2 and (D∗,D)3,4, between 0 and sk,∗

k∗k,0 = (ak,0 sk,0 1) k∗k,λ = (πk,λ(tk,λ,−1) ak,λ | sk,λ 0 0)

G2.k.2 Masking of the labeling. See Figure 12 in the appendix B

k∗k,0 = (ak,0 sk,0 1) k∗k,λ = (πk,λ(tk,λ,−1) ak,λ | 0 0 sk,λ/ztk,λ)

G2.k.3 Limitations on KeyGen-queries: sk,0 unpredictable, replaced by a random rk,0

k∗k,0 = (ak,0 rk,0 1) k∗k,λ = (πk,λ(tk,λ,−1) ak,λ | 0 0 sk,λ/ztk,λ)

Fig. 7: Sequence of games on the K keys for the IND-security proof of our KP-ABE

first games G1 and G2, one is preparing the floor with a random τ and random masks zt in the

Key-Policy ABE with Delegation of Rights 15

ciphertexts ct (actually, the challenge ciphertext corresponding to the attribute t). Note that
until the challenge query is asked, one does not exactly know the attributes in Γ (as we are in
the adaptive-set setting), but we prepare all the possible ct, and only the ones corresponding to
attributes in Γ will be provided to the adversary. The main step is to get to Game G3, with an
additional labeling (s`,0, (s`,λ)λ), using hybrid games starting from Game G2. The sequence on
Figure 7 gives more details: the new labelling is added in each `-th key (in G2.k.1), then each
label is masked by the random zt for each attribute t (in G2.k.2). In order to go to game G2.k.3

one exploits the limitations one expects from the adversary in the security game: the adversary
cannot ask keys on access-trees T such that T (Γ) = 1, for the challenge set Γ .

We stress that our construction makes more basis vectors public, and only b∗3 is for the key
issuer, contrarily to the original proof. This is the reason why we can deal with delegation for
any user. In addition, as delegation provides keys that are perfectly indistinguishable from fresh
keys, one can easily get the full result:

Corollary 9. Under the SXDH assumption, no adversary can win the Del-IND security game
against our KP-ABE scheme, in the Adaptive-Set setting, with non-negligible advantage.

The bound is the same, expect K is the global number of OKeyGen and ODelegate queries.

5 Key-Policy ABE with Switchable Attributes

In addition to delegation, our main goal is to allow to arbitrarily introduce switchable attributes
in the policies and in the sets of attributes, to give more flexibility to the KP-ABE scheme.

5.1 Definitions

For a Key-Policy ABE with Switchable Attributes (SA-KP-ABE), leaves in the access-tree can
be made active or passive, and attributes in the ciphertext can be made valid or invalid. We
thus enhance the access-tree T into T̃ = (T ,La,Lp), where the implicit set of leaves L = La ·∪Lp
is now the explicit disjoint union of the active leaf and passive leaf sets. Similarly, a ciphertext
will be associated to the pair (Γv, Γi), also referred as a disjoint union Γ = Γv ·∪ Γi, of the valid
attribute and invalid attribute sets.

We note T̃ (Γv, Γi) = 1 if there is an evaluation pruned tree T ′ of T that is satisfied by
Γ = Γv ·∪Γi (i.e., T ′ ∈ EPT(T , Γ)), with the additional condition that all the active leaves in T ′
correspond only to valid attributes in Γv: ∃T ′ ∈ EPT(T , Γ), ∀λ ∈ T ′ ∩ La, A(λ) ∈ Γv. In other
words, this means that an invalid attribute in the ciphertext should be considered as inexistent
for active leaves, but only for those leaves.

We also have to enhance the partial order on T to T̃ , so that we can deal with delegation:
T̃ ′ = (T ′,L′a,L′p) ≤ T̃ = (T ,La,Lp) if and only if T ′ ≤ T , L′a ∩Lp = L′p ∩La = ∅ and L′a ⊆ La.
More concretely, T ′ must be more restrictive, existing leaves cannot change their passive or
active status, and new leaves can only be passive.

This allows a more flexible Key-Policy Attribute-Based Encapsulation with Switchable At-
tributes:

Setup(1κ). From the security parameter κ, the algorithm defines all the global parameters PK,
the secret key SK and the master secret key MK;

KeyGen(MK, T̃). The algorithm outputs a key dkT̃ which enables the user to decapsulate keys

encrypted under a set of attributes Γ = Γv ·∪ Γi if and only if T̃ (Γv, Γi) = 1;

Delegate(dkT̃ , T̃
′). Given a key dkT̃ and a more restrictive access-tree T̃ ′ ≤ T̃ , the algorithm

outputs a decryption key dkT̃ ′ ;

Encaps(PK, Γ). For a set Γ of attributes, the algorithm generates the ciphertext C and an
encapsulated key K;

16 Cécile Delerablée, Lenäıck Gouriou, and David Pointcheval

Encaps∗(SK, Γv, Γi). For a pair (Γv, Γi) of disjoint sets of attributes, the algorithm generates the
ciphertext C and an encapsulated key K;

Decaps(dkT̃ , C). Given the key dkT̃ and the ciphertext C, the algorithm outputs the encapsu-
lated key K.

One can note the difference between Encaps with PK and Encaps∗ with SK, where the former
runs the latter on the pair (Γ, ∅). And as Γi = ∅, the public key is enough. For correctness, the
Decaps algorithm should output the encapsulated key K if and only if C has been generated for
a pair (Γv, Γi) that satisfies the policy T̃ of the decryption key dkT̃ : T̃ (Γv, Γi) = 1. The following
security notion enforces this property. But some other indistinguishability notions need to be
defined in order to be able to exploit these switchable attributes in more complex protocols. For
instance, this could be used to trace traitors in a multi-device setting or provide some anonymity
properties.

5.2 Security Notions

Definition 10 (Delegation-Indistinguishability for SA-KP-ABE). Del-IND security for
SA-KP-ABE is defined by the following game:

Initialize: The challenger runs the Setup algorithm of SA-KP-ABE and gives the public param-
eters PK to the adversary;

OKeyGen(T̃): The adversary is allowed to issue KeyGen-queries for any access-tree T̃ = (T ,La,Lp)
of its choice, without getting back the decryption key, but for future delegation;

ODelegate(T̃ , T̃ ′): The adversary is allowed to issue several Delegate-queries for any more re-
strictive access-tree T̃ ′ ≤ T̃ of its choice, for an already generated decryption key under T̃ ,
and gets back the decryption key dkT̃ ′;

OEncaps(Γv, Γi): The adversary may be allowed to issue Encaps∗-queries on sets of attributes
(Γv, Γi), and it gets back the encapsulation C = Encaps∗(Γv, Γi);

RoREncaps(Γv, Γi): The adversary submits a unique real-or-random encapsulation query on a
set of attributes Γ = Γv ·∪ Γi. The challenger asks for an encapsulation query on (Γv, Γi)
and receives (K0, C). It also generates a random key K1. It eventually flips a random coin
b, and outputs (Kb, C) to the adversary;

Finalize(b′): The adversary outputs a guess b′ for b. If for some access-tree T̃ ′ asked to the

ODelegate-oracle, T̃ ′(Γv, Γi) = 1, on the challenge set (Γv, Γi), β
$← {0, 1}, otherwise one

sets β = b′. One outputs β.

The advantage of an adversary A in this game is defined as

Advdel-ind(A) = Pr[β = 1|b = 1]− Pr[β = 1|b = 0].

In the basic form of Del-IND-security, where Encaps∗ encapsulations are not available, the
RoREncaps-oracle only allows Γi = ∅, and no OEncaps-oracle is available. But as Encaps (with
Γi = ∅) is a public-key algorithm, the adversary can generate valid ciphertexts by himself.
We will call it Del-IND-security for Encaps. For the more advanced security level, RoREncaps-
query will be allowed on any pair (Γv, Γi), with the additional OEncaps-oracle. We will call it
Del-IND-security for Encaps∗.

With these disjoint unions of L = La ·∪ Lp and Γ = Γv ·∪ Γi, we will also consider some
indistinguishability notions on (La,Lp) and (Γv, Γi), about which leaves are active or passive
in L = La ·∪ Lp for a given key, and which attributes are valid or invalid in Γ = Γv ·∪ Γi for
a given ciphertext. The former will be the key-indistinguishability, whereas the latter will be
attribute-indistinguishability. Again, as the encapsulation Encaps is public-key, the adversary
can generate valid encapsulations by himself. However, we may provide access to an OEncaps-
oracle to allow Encaps∗ queries, but with constraints in the final step, to exclude trivial at-
tacks against key-indistinguishability. Similarly there will be constraints in the final step on the
OKeyGen/ODelegate-oracle queries for the attribute-indistinguishability.

Key-Policy ABE with Delegation of Rights 17

Definition 11 (Key-Indistinguishability). Key-IND security for SA-KP-ABE is defined by
the following game:

Initialize: The challenger runs the Setup algorithm of SA-KP-ABE and gives the public param-
eters PK to the adversary;

Oracles: OKeyGen(T̃), ODelegate(T̃ , T̃ ′), OEncaps(Γv, Γi), as above;

RoAPKeyGen(T̃): The adversary submits one Real or All-Passive KeyGen-query for any access
structure T̃ of its choice, with a list L = La ·∪ Lp of active and passive attributes, and gets
back dk0 = KeyGen(MK, (T ,La,Lp)) or dk1 = KeyGen(MK, (T , ∅,L)). It eventually flips a
random coin b, and outputs dkb to the adversary;

Finalize(b′): The adversary outputs a guess b′ for b. If for some (Γv, Γi) asked to the OEncaps-

oracle, T (Γv ·∪ Γi) = 1, for the challenge access-tree T where L = La ·∪ Lp, β $← {0, 1},
otherwise one sets β = b′. One outputs β.

The advantage of an adversary A in this game is defined as

Advkey-ind(A) = Pr[β = 1|b = 1]− Pr[β = 1|b = 0].

For the constraints in the final step, we require the adversary not to ask for an encapsulation
on attributes that would be accepted by the policy with all-passive keys.

An alternative version can be defined where the Finalize(b′) checks whether some ac-
tive leaf λ ∈ La from the challenge key corresponds to some invalid attribute t ∈ Γi in an
OEncaps-query, and then sets β

$← {0, 1}, otherwise one sets β = b′. This is the Distinct Key-
Indistinguishability (dKey-IND), as we expect active and invalid attributes to be distinct in
the challenge key and the obtained ciphertexts.

Definition 12 (Attribute-Indistinguishability). Att-IND security for SA-KP-ABE is de-
fined by the following game:

Initialize: The challenger runs the Setup algorithm of SA-KP-ABE and gives the public param-
eters PK to the adversary;

Oracles: OKeyGen(T̃), ODelegate(T̃ , T̃ ′), OEncaps(Γv, Γi), as above;

RoAVEncaps(Γv, Γi): The adversary submits one Real-or-All-Valid encapsulation query on dis-
tinct sets of attributes (Γv, Γi). The challenger generates a ciphertext C = Encaps∗(SK, Γv, Γi)
as the real case, if b = 0, or C = Encaps(PK, Γv ·∪ Γi) as the all-valid case, if b = 1, and
outputs C to the adversary;

Finalize(b′): The adversary outputs a guess b′ for b. If for some access-tree T̃ ′ asked to the

ODelegate-oracle, T̃ ′(Γv ·∪Γi, ∅) = 1, on the challenge set (Γv, Γi), β
$← {0, 1}, otherwise one

sets β = b′. One outputs β.

The advantage of an adversary A in this game is defined as

Advatt-ind(A) = Pr[β = 1|b = 1]− Pr[β = 1|b = 0].

This definition is a kind of attribute-hiding, where a user with keys for access-trees that are not
satisfied by Γ = Γv ·∪ Γi cannot distinguish valid from invalid attributes in the ciphertext.

An alternative version can be defined where the Finalize(b′) checks whether some attribute
t ∈ Γi from the challenge query corresponds to some active leaf λ ∈ L′a in a ODelegate-

query, and then sets β
$← {0, 1}, otherwise one sets β = b′. This is the Distinct Attribute-

Indistinguishability (dAtt-IND), as we expect active and invalid attributes to be distinct in
the obtained keys and the challenge ciphertext.

18 Cécile Delerablée, Lenäıck Gouriou, and David Pointcheval

AND

OR

λ1,0 λ1,1

OR

λ2,0 λ2,1

OR

λ3,0 λ3,1

Leaf Gate Removed OR-subtree

AND

OR

λ1,0 λ1,1

OR

λ2,0 λ2,1

OR

λ3,0 λ3,1

AND

OR

λ1,0 λ1,1

OR

λ2,0 λ2,1

OR

λ3,0 λ3,1

Fig. 8: BS95 codeword-based tree (left-side) and delegation to words w(0) = (1, 0, 1) and w(1) =
(0, 0, 1) (right-side)

5.3 Application to Traitor-Tracing.

We illustrate on Figure 8 how simple delegation in an access-tree can work in Boneh-Shaw
tracing. Given an access-tree policy that can represent all the binary words of size 3 (a main
AND-gate with 3 OR children representing the 3 positions in the word, each position taking the
possible bits 0 and 1), one may delete a leaf on each OR-gate to produce a word for each of his
delegated keys, which can then be traced by using fingerprinting.

The leaves in the access-tree of our example correspond to decryption keys in the Boneh-
Shaw tracing scheme, and the ciphertext contains encryptions of an ephemeral key K. Then,
using a main AND-gate to make shares, K is split among n random ciphertexts Ki, for an
n-bit codeword, and Ki is encrypted under the two public keys associated to the leaves λi,0 and
λi,1. When a user can decrypt all the Ki’s, then he can recover K, and decrypt the message.
Delegation simply consists in removing some leaves in the access-tree that defines the policy,
with decryption keys.

Here, we see a direct application of active leaves and invalid attributes: if all leaves are
active, the tracing authority can test each position of a n-codeword by making the successive
attributes λi,b invalid, for i ∈ [1, n], b ∈ {0, 1}. If the Attribute-Indistinguishability holds, then
no adversary can know whether an attribute is invalid or not, and thus it cannot react to tracing
to make it fail.

6 Our New SA-KP-ABE Scheme

6.1 Description of our KP-ABE with Switchable Attributes

We now extend our previous KP-ABE scheme with leaves that can be made active or passive
in a decryption key, and some attributes can be made valid or invalid in a ciphertext, and
prove that it still achieves the Del-IND-security. For our construction, we will use two DPVS,
of dimensions 3 and 7 respectively, in a pairing-friendly setting (G1,G2,Gt, e,G1, G2, q), using
again the notations introduced in Section 2.3. Essentially, we introduce a 7-th component to
deal with switchable attributes. The two new basis-vectors d7 and d∗7 are in the secret key SK
and the master secret key MK respectively:

Setup(1κ). The algorithm chooses two random dual orthogonal bases

B = (b1,b2,b3) B∗ = (b∗1,b
∗
2,b
∗
3)

D = (d1,d2,d3,d4,d5,d6,d7) D∗ = (d∗1,d
∗
2,d
∗
3,d
∗
4,d
∗
5,d
∗
6,d
∗
7).

It sets the public parameters PK = {(b1,b3,b
∗
1), (d1,d2,d3,d

∗
1,d
∗
2,d
∗
3)}, whereas the master

secret key is MK = {b∗3,d∗7} and the secret key is SK = {d7}. Other basis vectors are kept
hidden

Key-Policy ABE with Delegation of Rights 19

KeyGen(MK, T̃). For an extended access-tree T̃ = (T ,La,Lp), the algorithm first chooses a

random a0
$← Zq, and a random a0-labeling (aλ)λ of the access-tree T , and builds the key:

k∗0 = (a0, 0, 1)B∗ k∗λ = (πλ(1, tλ), aλ, 0, 0, 0, rλ)D∗

for all the leaves λ, where tλ = A(λ), πλ
$← Zq, and rλ

$← Z∗q if λ is an active leaf in the
key (λ ∈ La) or else rλ = 0 for a passive leaf (λ ∈ Lp). The decryption key dkT̃ is then
(k∗0, (k

∗
λ)λ).

Delegate(dkT̃ , T̃
′): Given a private key for a tree T̃ and a more restrictive subtree T̃ ′ ≤ T̃ , the al-

gorithm creates a delegated key dkT̃ ′ . It chooses a random a′0
$← Zq and a random a′0-labeling

(a′λ)λ of T ′; Then, it updates k∗0 ← k∗0 + (a′0, 0, 0)B∗ ; It sets k∗λ ← (π′λ · (1, tλ), a′λ, 0, 0, 0)B∗

for a new leaf, or updates k∗λ ← k∗λ + (π′λ · (1, tλ), a′λ, 0, 0, 0)B∗ for an old leaf, with π′λ
$← Zq.

Encaps(PK, Γ). For a set Γ of attributes, the algorithm first chooses random scalars ω, ξ
$← Zq.

It then sets K = gξt and generates the ciphertext C = (c0, (ct)t∈Γ) where

c0 = (ω, 0, ξ)B ct = (σt(t,−1), ω, 0, 0, 0, 0)D

for all the attributes t ∈ Γ , with σt
$← Zq.

Encaps∗(SK, (Γv, Γi)). For a disjoint union Γ = Γv ·∪ Γi of sets of attributes (Γv is the set of
valid attributes and Γi is the set of invalid attributes), the algorithm first chooses random

scalars ω, ξ
$← Zq. It then sets K = gξt and generates the ciphertext C = (c0, (ct)t∈(Γv ·∪Γi))

where

c0 = (ω, 0, ξ)B ct = (σt(t,−1), ω, 0, 0, 0, ut)D

for all the attributes t ∈ Γv ·∪ Γi, σt $← Zq and ut
$← Z∗q if t ∈ Γi or ut = 0 if t ∈ Γv.

Decaps(dkT̃ , C). The algorithm first selects an evaluation pruned tree T ′ of T that is satisfied
by Γ = Γv ∪Γi, such that any leaf λ in T ′ is either passive in the key (λ ∈ Lp) or associated
to a valid attribute in the ciphertext (tλ ∈ Γv). This means that the labels aλ for all the
leaves λ in T ′ allow to reconstruct a0 by simple additions, where t = tλ:

ct × k∗λ = g
σt·πλ·〈(t,−1),(1,tλ)〉+ω·aλ+ut·rλ
t = gω·aλt ,

as ut = 0 or rλ = 0. Hence, the algorithm can derive gω·a0
t . From c0 and k∗0, it can also

compute c0 × k∗0 = gω·a0+ξ
t , which then easily leads to K = gξt .

First, note that the delegation works as b∗1, d∗1,d
∗
2,d
∗
3 are public. This allows to create a new key

for T̃ ′ ≤ T̃ . But as d∗7 is not known, any new leaf is necessarily passive, and an active existing leaf
in the original key cannot be converted to passive, and vice-versa. Indeed, all the randomnesses
are fresh, excepted the last components rλ that remain unchanged: this is perfectly consistent
with the definition of T̃ ′ ≤ T̃ .

Second, in encapsulation, for invalidating a contribution ct in the ciphertext with a non-zero
ut, for t ∈ Γi, one needs to know d7, hence the Encaps∗ that requires SK, whereas Encaps with
Γi = ∅ just needs PK.

Eventually, we stress that in the above decryption, one can recover gω·a0
t if and only if

there is an evaluation pruned tree T ′ of T that is satisfied by Γ and the active leaves in T̃ ′
correspond to valid attributes in Γv (used during the encapsulation). And this holds if and only
if T̃ (Γv, Γi) = 1.

6.2 Del-IND-Security of our SA-KP-ABE for Encaps

For this security notion, we first consider only valid contributions in the challenge ciphertext,
with indistinguishability of the Encaps algorithm. Which means that Γi = ∅ in the challenge
pair. And the security result holds even if the vector d7 is made public:

Theorem 13. Our SA-KP-ABE scheme is Del-IND for Encaps (with only valid attributes in the
challenge ciphertext), even if d7 is public.

20 Cécile Delerablée, Lenäıck Gouriou, and David Pointcheval

The proof can be found in the appendix C.1. But it essentially reduces to the above IND-security
result of our KP-ABE scheme, by simulating the delegations using the key generation algorithm,
with additional control on the 7-th component, as d∗7 is known to the simulator. We indeed just
have to make sure we use the same randomness for all the keys delegated from the same one.
This is at not additional cost or loss in the reduction, just some storage. As d7 is public, the
adversary can run by himself both Encaps and Encaps∗.

6.3 Del-IND-Security of our SA-KP-ABE for Encaps∗

We now study the full indistinguishability of the ciphertext generated by an Encaps∗ challenge,
with delegated keys. The intuition is that when ut · r`,λ 6= 0, the share a`,λ cannot be recovered

in g
ω·a`,λ+ut·r`,λ
t cannot be recovered, but we have to formally prove it. As above, the idea of the

proof is to introduce an additional labeling in every `-th key, in the hidden components, that
will only impact the challenge ciphertext. When the corresponding ciphertext ct will be missing
in the challenge ciphertext, the label s`,λ will be unknown; when the ciphertext ct is present
but invalid, we will show that the label can be randomly altered if ut`,λ · r`,λ 6= 0, making it
unusable. Then, the root of the labeling is indistinguishable from random.

As shown in the previous proof, we can simulate all the delegated keys as if they were original
keys, except that we have to make sure we use the same rλ for the leaves that originate from
the same initial key.

In addition, in the security proof, we will need to anticipate whether ut · r`,λ = 0 or not
when simulating the keys, and the challenge ciphertext as well (even before knowing the exact
query (Γv, Γi)). Without being in the selective-set setting where both Γv, and Γi would have
to be specified before generating the public parameters PK, we ask to know disjoint super-sets
Av, Ai ⊆ U of attributes. Then, in the challenge ciphertext query, we will ask that Γv ⊆ Av
and Γi ⊆ Ai. We will call this setting the semi-adaptive super-set setting. We stress this is
still adaptive in the sense the super-sets have to be specified before the first keys are issued,
but not before seeing the public parameters and public keys. Furthermore, the set of attributes
Γ = Γv ·∪ Γi used in the real challenge query is only specified at the moment of the challenge,
as in the adaptive setting.

For this proof, d7 must be kept secret (cannot be provided to the adversary). We will thus
give access to an Encaps∗ oracle. We also have to show how to simulate it.

Theorem 14. Our SA-KP-ABE scheme is Del-IND for Encaps∗, in the semi-adaptive super-set
setting (where Av, Ai ⊆ U so that Γv ⊆ Av and Γi ⊆ Ai are specified before asking for keys).

We stress that the semi-adaptive super-set setting is much stronger than the selective-set setting
where the adversary would have to specify both Γv and Γi before the setup. Here only super-sets
have to be specified, and just before the first key-query. The adversary is thus given much more
power.

The full proof can be found in the appendix C.2, but as this is a major result of this paper,
we provide some hints here. As in the above proof, the idea of the sequence is to introduce
an additional labeling (s`,0, (s`,λ)λ) in hidden components in each `-th key (in G2.k.1, from
Figure 7), where each label is masked by a random zt for each attribute t (in G2.k.2). In our
setting, we only consider keys that are really provided to the adversary, and thus delegated keys.
They can be generated as fresh keys excepted the rλ’s that have to be the same for leaves in keys
delegated from the same initial key. However, in order to go to game G2.k.3, one cannot directly
conclude that sk,0 is independent from the view of the adversary: we only know T̃k(Γv, Γi) = 0,
but not necessarily Tk(Γv ·∪ Γi) = 0, as in the previous proof.

To this aim, we revisit this gap with an additional sequence presented in the Figure 9 where
we focus on the k-th key and the challenge ciphertext. In that sequence, we first prepare with
additional random values y`,λ, with the same repetition properties as the r`,λ. Thereafter, in
another sub-sequence of games on the attributes, presented in details in Figure 14, after some

Key-Policy ABE with Delegation of Rights 21

additional preparation, we can use the Swap-Ind property in Games G2.k.2.3.p.5 and G2.k.2.3.p.7,
to completely randomize sk,λ when utk,λ ·rk,λ 6= 0. Hence, the sk,λ are unknown either when ztk,λ
is not known (the corresponding element is not provided in the challenge ciphertext) or this is
a random s′k,λ when utk,λ · rk,λ 6= 0. The property of the access-tree then makes sk,0 perfectly
unpredictable, which can be replaced by a random independent rk,0.

G2.k.2.0 Intermediate sequence from G2.k.2 (from Figure 7)
ct = (σt(1, t) ω | τ 0 τzt ut)

` < k k∗`,0 = (a`,0 r`,0 1)
k∗`,λ = (π`,λ(t`,λ,−1) a`,λ | 0 0 s′`,λ/zt`,λ r`,λ)

` = k k∗k,0 = (ak,0 sk,0 1)
k∗k,λ = (πk,λ(tk,λ,−1) ak,λ | 0 0 sk,λ/ztk,λ rk,λ)

` > k k∗`,0 = (a`,0 0 1)
k∗`,λ = (π`,λ(t`,λ,−1) a`,λ | 0 0 0 r`,λ)

s′`,λ is either the label s`,λ when r`,λ · ut`,λ = 0, or a random scalar in Zq otherwise

G2.k.2.1 SubSpace-Ind Property, on (D,D∗)4,5, between τ and 0

ct = (σt(1, t) ω | 0 0 τzt ut)

G2.k.2.2 SubSpace-Ind Property, on (D∗,D)2,4, between 0 and y`,λ
k∗k,0 = (ak,0 sk,0 1)

k∗k,λ = (πk,λ(tk,λ,−1) ak,λ | yk,λ 0 sk,λ/ztk,λ rk,λ)

G2.k.2.3 Formal basis change, on (D,D∗)5,7, to duplicate r`,λ

` < k k∗`,0 = (a`,0 r`,0 1) k∗`,λ = (. . . | y`,λ r`,λ s′`,λ/zt`,λ r`,λ)

` = k k∗k,0 = (ak,0 sk,0 1) k∗k,λ = (. . . | yk,λ rk,λ sk,λ/ztk,λ rk,λ)

` > k k∗`,0 = (a`,0 0 1) k∗`,λ = (. . . | y`,λ r`,λ 0 r`,λ)

G2.k.2.4 Alteration of the labeling. See Figure 14

` < k k∗`,0 = (a`,0 r`,0 1) k∗`,λ = (. . . | y`,λ 0 s′`,λ/zt`,λ rl,λ)

` = k k∗k,0 = (ak,0 sk,0 1) k∗k,λ = (. . . | yk,λ 0 s′k,λ/ztk,λ rk,λ)

` > k k∗`,0 = (a`,0 0 1) k∗`,λ = (. . . | y`,λ 0 0 r`,λ)

G2.k.2.5 Limitations on KeyGen-queries: sk,0 unpredictable, replaced by a random rk,0

` = k k∗k,0 = (ak,0 rk,0 1) k∗k,λ = (. . . | yk,λ 0 s′k,λ/ztk,λ rk,λ)

G2.k.2.6 SubSpace-Ind Property, on (D∗,D)2,4, between y`,λ and 0
k∗k,0 = (ak,0 rk,0 1)

k∗k,λ = (πk,λ(tk,λ,−1) ak,λ | 0 0 s′k,λ/ztk,λ rk,λ)

G2.k.2.7 SubSpace-Ind Property, on (D,D∗)4,5, between 0 and τ

ct = (σt(1, t) ω | τ 0 τzt ut)

Fig. 9: Sequence of games on the keys for the Del-IND-security proof of our SA-KP-ABE

6.4 Distinct Indistinguishability Properties

We first claim easy results, for which the proofs are symmetrical:

Theorem 15. Our SA-KP-ABE scheme is dKey-IND, even if d∗7 is public.

Theorem 16. Our SA-KP-ABE scheme is dAtt-IND, even if d7 is public.

Both proofs can be found in the appendix C.3 and the appendix C.4. In these alternative
variants, all the invalid attributes in all the queried ciphertexts do not correspond to any active
leaf in the challenge keys (for dKey-IND) or all active leaves in all the queried keys do not
correspond to any invalid attribute in the challenge ciphertext (for dAtt-IND). Then, we can

22 Cécile Delerablée, Lenäıck Gouriou, and David Pointcheval

gradually replace all the real keys by all-passive in the former proof or all the real ciphertexts by
all-valid in the latter proof. In both cases, the advantage is bounded by (4 + 2P)P · Advsxdh(t),
where P is the number of attributes involved during the game, in a key or in a ciphertext.

6.5 Attribute-Indistinguishability

Theorem 17. Our SA-KP-ABE scheme is Att-IND, even if d7 is public, if all the active keys
correspond to independent leaves with respect to the set of attributes Γ = Γv ·∪Γi in the challenge
ciphertext.

The proof can be found in the appendix C.5. This is also an important result with respect to our
target application of tracing, combined with possible revocation. Indeed, with such a result, if
a user is revoked independently of the tracing procedure (the policy would reject him even if all
his passive leaves match valid ciphertexts), he will not be able to detect wether there are invalid
ciphertexts and thus that the ciphertext is in tracing mod. This gives us a certain resistance
to collusion. The sequence of games is in the same vein as for the IND-security proof of the
KP-ABE in the appendix B, except the RoREncaps-challenge is instead a RoAVEncaps-challenge,
where we require all the policies in the queried keys to reject the challenge ciphertext even if all
the ciphertexts are valid: T̃`(Γv ·∪ Γi, 0) = 0. In the sequence, we again introduce an additional
labeling (s`,0, (s`,λ)λ) in the hidden components of each `-th key, where each label is masked by
a random zt for each attribute t. Then, in the real case, b = 0, we will cancel the ut values in the
ciphertext, but this will move the r`,λ values in the label-column of the keys and merge them with
s`,λ. As a consequence, when r`,λ 6= 0, the labels will be altered. This could make a difference
between the real and all-valid cases: in the latter, labels all correspond to a correct labeling. But
under the additional assumption that active keys correspond to independent leaves, there is no
actual difference for the adversary: the real and all-valid ciphertexts are perfectly the same.

7 Conclusion

Our initial motivation was delegation of keys for users and their own devices. We have designed
a KP-ABE scheme that allows an authority to generate keys with specific policies for each users,
so that these users can thereafter delegate their keys to their own devices with more restrictive
rights. The restrictions might include time-based, identity-based or group-based limitations with
more restrictive access-trees. Thanks to the Attribute-Indistinguishability, it can also include
key material for tracing a compromised device. The strong notion of indistinguishability even
requires just a low collusion-resistance level, as all the revoked keys, by any means independent of
the leaves involved in the fingerprinting, cannot help to detect and defeat the tracing procedure.

In addition, with Key-Indistinguishability on active leaves and perfect randomization on
passive leaves, one achieves anonymity of the devices: one cannot detect whether two keys have
been delegated by the same user.

References

AKPS12. M. Ak, A. Kiayias, S. Pehlivanoglu, and A. A. Selcuk. Generic construction of trace and revoke
schemes. Cryptology ePrint Archive, Report 2012/531, 2012. https://eprint.iacr.org/2012/531.

AT20. N. Attrapadung and J. Tomida. Unbounded dynamic predicate compositions in ABE from standard
assumptions. In ASIACRYPT 2020, Part III, LNCS 12493, pages 405–436. Springer, Heidelberg,
December 2020.

BN08. D. Boneh and M. Naor. Traitor tracing with constant size ciphertext. In ACM CCS 2008, pages
501–510. ACM Press, October 2008.

BS95. D. Boneh and J. Shaw. Collusion-secure fingerprinting for digital data (extended abstract). In
CRYPTO’95, LNCS 963, pages 452–465. Springer, Heidelberg, August 1995.

BSW06. D. Boneh, A. Sahai, and B. Waters. Fully collusion resistant traitor tracing with short ciphertexts and
private keys. In EUROCRYPT 2006, LNCS 4004, pages 573–592. Springer, Heidelberg, May / June
2006.

https://eprint.iacr.org/2012/531

Key-Policy ABE with Delegation of Rights 23

BW06. D. Boneh and B. Waters. A fully collusion resistant broadcast, trace, and revoke system. In ACM
CCS 2006, pages 211–220. ACM Press, October / November 2006.

CGW15. J. Chen, R. Gay, and H. Wee. Improved dual system ABE in prime-order groups via predicate
encodings. In EUROCRYPT 2015, Part II, LNCS 9057, pages 595–624. Springer, Heidelberg, April
2015.

CGW18. J. Chen, J. Gong, and H. Wee. Improved inner-product encryption with adaptive security and full
attribute-hiding. In ASIACRYPT 2018, Part II, LNCS 11273, pages 673–702. Springer, Heidelberg,
December 2018.

CLL+13. J. Chen, H. W. Lim, S. Ling, H. Wang, and H. Wee. Shorter IBE and signatures via asymmetric
pairings. In PAIRING 2012, LNCS 7708, pages 122–140. Springer, Heidelberg, May 2013.

CPP17. J. Chotard, D. H. Phan, and D. Pointcheval. Homomorphic-policy attribute-based key encapsulation
mechanisms. In ISC 2017, LNCS 10599, pages 155–172. Springer, Heidelberg, November 2017.

GPSW06. V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based encryption for fine-grained access
control of encrypted data. In ACM CCS 2006, pages 89–98. ACM Press, October / November 2006.
Available as Cryptology ePrint Archive Report 2006/309.

KSW08. J. Katz, A. Sahai, and B. Waters. Predicate encryption supporting disjunctions, polynomial equations,
and inner products. In EUROCRYPT 2008, LNCS 4965, pages 146–162. Springer, Heidelberg, April
2008.

LLLW17. X. Li, K. Liang, Z. Liu, and D. S. Wong. Attribute based encryption: Traitor tracing, revocation and
fully security on prime order groups. In CLOSER 2017, pages 281–292. SciTePress, 2017.

LOS+10. A. B. Lewko, T. Okamoto, A. Sahai, K. Takashima, and B. Waters. Fully secure functional encryption:
Attribute-based encryption and (hierarchical) inner product encryption. In EUROCRYPT 2010,
LNCS 6110, pages 62–91. Springer, Heidelberg, May / June 2010.

LPQ12. B. Libert, K. G. Paterson, and E. A. Quaglia. Anonymous broadcast encryption: Adaptive security
and efficient constructions in the standard model. In PKC 2012, LNCS 7293, pages 206–224. Springer,
Heidelberg, May 2012.

LW10. A. B. Lewko and B. Waters. New techniques for dual system encryption and fully secure HIBE with
short ciphertexts. In TCC 2010, LNCS 5978, pages 455–479. Springer, Heidelberg, February 2010.

LW15. Z. Liu and D. S. Wong. Practical ciphertext-policy attribute-based encryption: Traitor tracing, re-
vocation, and large universe. In ACNS 15, LNCS 9092, pages 127–146. Springer, Heidelberg, June
2015.

NNL01. D. Naor, M. Naor, and J. Lotspiech. Revocation and tracing schemes for stateless receivers. In
CRYPTO 2001, LNCS 2139, pages 41–62. Springer, Heidelberg, August 2001.

OT08. T. Okamoto and K. Takashima. Homomorphic encryption and signatures from vector decomposition.
In PAIRING 2008, LNCS 5209, pages 57–74. Springer, Heidelberg, September 2008.

OT10. T. Okamoto and K. Takashima. Fully secure functional encryption with general relations from the
decisional linear assumption. In CRYPTO 2010, LNCS 6223, pages 191–208. Springer, Heidelberg,
August 2010.

OT12a. T. Okamoto and K. Takashima. Adaptively attribute-hiding (hierarchical) inner product encryption.
In EUROCRYPT 2012, LNCS 7237, pages 591–608. Springer, Heidelberg, April 2012.

OT12b. T. Okamoto and K. Takashima. Fully secure unbounded inner-product and attribute-based encryption.
In ASIACRYPT 2012, LNCS 7658, pages 349–366. Springer, Heidelberg, December 2012.

Wat09. B. Waters. Dual system encryption: Realizing fully secure IBE and HIBE under simple assumptions.
In CRYPTO 2009, LNCS 5677, pages 619–636. Springer, Heidelberg, August 2009.

YRLL09. S. Yu, K. Ren, W. Lou, and J. Li. Defending against key abuse attacks in KP-ABE enabled broadcast
systems. In Security and Privacy in Communication Networks (SecureComm 2009), LNICST 19,
pages 311–329. Springer, 2009.

Appendix

Appendix . 24
A Dual Pairing Vector Spaces . 24

A.1 Pairing Vector Spaces . 24
A.2 Dual Pairing Vector Spaces . 25
A.3 Change of Basis . 26
A.4 Partial Change of Basis . 26
A.5 Particular Changes . 27

B IND-Security Proof of our KP-ABE Scheme . 29
C Security Proofs of our SA-KP-ABE Scheme . 38

C.1 Proof of Theorem 13 – Del-IND-Security for Encaps . 38
C.2 Proof of Theorem 14 – Del-IND-Security for Encaps∗ . 39
C.3 Proof of Theorem 15 – dKey-IND-Security . 53
C.4 Proof of Theorem 16 – dAtt-IND-Security . 57
C.5 Proof of Theorem 17 – Att-IND-Security . 60

A Dual Pairing Vector Spaces

In this section, we provide a brief review of the Dual Pairing Vector Spaces (DPVS), that have
been proposed for efficient constructions with adaptive security [OT08,LOS+10,OT10,OT12b],
as Dual Systems [Wat09], in prime-order groups under the DLIN assumption. In [LW10], Dual
Systems were using pairing on composite order elliptic curves. Then, prime-order groups have
been used with the SXDH assumption, in a pairing-friendly setting of primer order, which
means that the DDH assumptions hold in both G1 and G2 [CLL+13]. In all theses situations,
one exploited indistinguishability of sub-groups or sub-spaces. In this section, for the sake of
efficiency, we use the SXDH assumption in a pairing-friendly setting (G1,G2,Gt, e,G1, G2, q) of
primer order q.

A.1 Pairing Vector Spaces

Let us be given any cyclic group (G = 〈G〉,+) of prime order q, denoted additively. We can
define the Zq vector space of dimension n,

Gn = {X = x ·G def
= (X1 = x1 ·G, . . . ,Xn = xn ·G) |x ∈ Znq },

with the following laws:

(X1, . . . , Xn) + (Y1, . . . , Yn)
def
= (X1 + Y1, . . . , Xn + Yn)

a · (X1, . . . , Xn)
def
= (a ·X1, . . . , a ·Xn)

Appendix 25

Essentially, all the operations between the vectors in Gn are applied on the vectors in Znq :

x ·G+ y ·G def
= (x + y) ·G a · (x ·G)

def
= (a · x) ·G

where x + y and a · x are the usual internal and external laws of the vector space Znq . For the
sake of clarity, vectors will be row-vectors.

If we are using a pairing-friendly setting (G1,G2,Gt, e,G1, G2, q), with a bilinear map e
from G1×G2 into Gt, we can have an additional law between an element X ∈ Gn

1 and Y ∈ Gn
2 :

X × Y def
=
∏
i e(Xi, Yi), where Gt is usually denoted multiplicatively.

Note that if X = (X1, . . . , Xn) = x ·G1 ∈ Gn
1 and Y = (Y1, . . . , Yn) = y ·G2 ∈ Gn

2 :

(x ·G1)× (y ·G2) = X × Y =
∏
i

e(Xi, Yi) =
∏
i

e(xi ·G1, yi ·G2)

=
∏
i

gxi·yit = gx·y
>

t = g
〈x,y〉
t

where gt = e(G1, G2) and 〈x,y〉 is the inner product between vectors x and y.

A.2 Dual Pairing Vector Spaces

We define E = (ei)i the canonical basis of Znq , where ei = (δi,1, . . . , δi,n), with the classical
δi,j = 1 if i = j and δi,j = 0 otherwise, for i, j ∈ {1, . . . , n}. We can also define E = (ei)i the
canonical basis of Gn, where ei = ei ·G = (δi,j ·G)j . More generally, given any basis B = (bi)i
of Znq , we can define the basis B = (bi)i of Gn, where bi = bi ·G.

Choosing a random basis B of Gn is equivalent to a random choice of an invertible matrix
B

$← GLn(Zq), the definition B ← B × E , where B = (bi)i is a basis of Znq (B is essentially the
matrix with bi as its i-th row, as bi =

∑
j Bi,j · ej), and then B← (bi)i where bi = bi ·G: B is

the basis of Gn associated to the matrix B as

bi = bi ·G =
∑
j

Bi,j · ej ·G =
∑
j

Bi,j · ej : B = B · E.

In case of pairing-friendly setting, for a dimension n, we will denote E = (ei)i and E∗ = (e∗i)i
the canonical bases of Gn

1 and Gn
2 , respectively:

ei × e∗j = (ei ·G1)× (ej ·G2) = g
〈ei,ej〉
T = g

δi,j
T .

The same way, if we denote B = (bi)i = B · E the basis of Gn
1 associated to a matrix B, and

B∗ = (b∗i)i = B′ · E∗ the basis of Gn
2 associated to the matrix B′ = (B−1)>, as B ·B′> = In,

bi × b∗j = (bi ·G1)× (b′j ·G2) = g
〈bi,b′j〉
t = g

δi,j
t .

B and B∗ are called Dual Orthogonal Bases.

We have seen above the canonical bases E and E∗ are dual orthogonal bases, but for any
random invertible matrix U

$← GLn(Zq), the bases U of Gn
1 associated to the matrix U and U∗

of Gn
2 associated to the matrix (U−1)> are Random Dual Orthogonal Bases.

A pairing-friendly setting (G1,G2,Gt, e,G1, G2, q), with such dual orthogonal bases U and
U∗ of size n, is called a Dual Pairing Vector Space (DPVS).

26

A.3 Change of Basis

Let us consider the basis U = (ui)i of Gn associated to a matrix U ∈ GLn(Zq), and the basis
B = (bi)i of Gn associated to the product matrix BU , for any B ∈ GLn(Zq), a vector x in B,
denoted (x)B means

(x)B =
∑
i

xi · bi =
∑
i

xi · bi ·G = x ·BU ·G = (x ·B) · U ·G = y · U ·G

=
∑
i

yi · ui ·G =
∑
i

yi · ui = (y)U where y = x ·B.

Hence, (x)B = (x · B)U and (x · B−1)B = (x)U where we denote B def
= B · U. For any invertible

matrix B, if U is a random basis, then B = B · U is also a random basis. Then, with B−1 =
(b′1

>, . . . , b′n
>), x = y · (b′1>, . . . , b′n>):

B = B · U, B′ =

 b′1
...

b′n

 , and (x)B = (y)U =⇒ x = (〈y, b′1〉, . . . , 〈y, b′n〉).

Let us consider the random dual orthogonal bases U = (ui)i and U∗ = (u∗i)i of Gn
1 and Gn

2

respectively associated to a matrix U (which means that U is associated to the matrix U and
U∗ is associated to the matrix (U−1)>): the bases B = B ·U and B′ = (B−1)> ·U∗ are also dual
orthogonal bases:

bi × b∗j = g
bi·b′j>
t = g

ui·B·(B−1)>·uj∗>
t = g

ui·uj∗>
t = g

δi,j
t .

A.4 Partial Change of Basis

We will often just have to partially change a basis, on a few vectors only: the transition matrix

B = (t)i1,...,im =

 t1,1 . . . t1,m
...

...
tm,1 . . . tm,m

i1,...,im

means the n× n matrix B where

Bi,j = δi,j , if any i, j 6∈ {i1, . . . , im} Bik,i` = tk,`, for all k, ` ∈ {1, . . . ,m}

As a consequence, from a basis U, B = B · U corresponds to the basis

bi = ui, if i 6∈ {i1, . . . , im} bik =
∑
`

tk,` · ui` , if k 6∈ {i1, . . . , im}

As we need to have B∗ = (B−1)> ·U∗, we need the dual transition matrix B′ to be B′ = (t′)i1,...,im
where t′ = (t−1)>. Indeed, in such a case, we have

b∗i = u∗i , if i 6∈ {i1, . . . , im} b∗ik =
∑
`

t′k,` · u∗i` , if k 6∈ {i1, . . . , im}

so,

– if both i, j 6∈ {i1, . . . , im}, bi × b∗j = ui × u∗j = g
δi,j
t ;

– if i = ik ∈ {i1, . . . , im}, but j 6∈ {i1, . . . , im},

bi × b∗j = bik × u∗j =

(∑
`

tk,` · ui`

)
× u∗j =

∏
`

(ui` × u∗j)
tk,` = 1

Appendix 27

– if i 6∈ {i1, . . . , im}, but j = ik ∈ {i1, . . . , im},

bi × b∗j = ui × b∗ik = ui ×

(∑
`

t′k,` · u∗i`

)
=
∏
`

(ui × u∗i`)
t′k,` = 1

– if i = ik and j = i`,

bi × b∗j =

(∑
p

tk,p · uip

)
×

(∑
p

t′`,p · u∗ip

)

=
∏
p

(uip × u∗ip)
tk,p·t′`,p = g

∑
p tk,p·t′`,p

t = g
∑
p tk,p·t′

>
p,`

t = g
δk,`
t = g

δi,j
t

A.5 Particular Changes

Let us consider a triple (a · G1, b · G1, c · G1), that is either a Diffie-Hellman tuple (i.e., c =

ab mod q) or a random tuple (i.e., c = ab + τ mod q, for τ
$← Z∗q). For any random dual

orthogonal bases U and U∗ associated to the matrices U and U ′ = (U−1)>, respectively, we can
set

B =

(
1 a
0 1

)
1,2

B′ =

(
1 0
−a 1

)
1,2

B = B · U B∗ = B′ · U∗

Note that we can compute B = (bi)i, as we know a ·G and all the scalars in U :

bi =
∑
k

Bi,k · uk bi,j =
∑
k

Bi,k · uk,j =
∑
k

Bi,kUk,j ·G1 =
∑
k

Uk,j · (Bi,j ·G1).

Hence, to compute bi, one needs all the scalars in U , but only the group elements Bi,j ·G1, and
so G1 and a ·G1. This is the same for B∗, excepted for the vector b∗2 as a ·G2 is missing. One
can thus publish B and B∗\{b∗2}.

Indistinguishability of Sub-Spaces. As already remarked, for such a fixed matrix B, if U
is random, so is B too, and (x)B = (x · B)U, so (x)U = (x · B−1)B. Note that B−1 = B′>. So,
in particular

(b, c, 0, . . . , 0)U + (x1, x2, x3, . . . , xn)B

= (b, c− ab, 0, . . . , 0)B + (x1, x2, x3, . . . , xn)B

= (x1 + b, x2 + τ, x3, . . . , xn)B

where τ can be either 0 or random.
Note that whereas we cannot compute b∗2, this does not exclude this second component in

the computed vectors: (y)U∗ = (y ·B′−1)B∗ = (y ·B>)B∗ . So, in particular

(y1, . . . , yn)U∗ = (y1 + ay2, y2, . . . , yn)B∗ .

Theorem 18. Under the DDH Assumption in G1, for random dual orthogonal bases B and B∗,
once having seen B and B∗\{b∗2}, and any vector (y1, y2, . . . , yn)B∗, for chosen y2, . . . , yn ∈ Zq,
but unknown random y1

$← Zq, one cannot distinguish the vectors (x1, x
′
2, x3, . . . , xn)B and

(x1, x2, x3, . . . , xn)B, for chosen x2, . . . , xn ∈ Zq, but unknown random x1, x
′
2

$← Zq.

Using the DSDH assumption instead of the DDH assumption, on two chosen values x2 and x′2, one
can show that no algorithm can efficiently distinguish (x1, x2, x3, . . . , xn)B from (x1, x

′
2, x3, . . . , xn)B,

for chosen x′2, x2, . . . , xn ∈ Zq, but unknown random x1
$← Zq:

28

Theorem 19 (SubSpace-Ind Property). Under the DSDH Assumption in G1, for random
dual orthogonal bases B and B∗, once having seen B and B∗\{b∗2}, and any vector (y1, y2, . . . , yn)B∗,

for chosen y2, . . . , yn ∈ Zq, but unknown random y1
$← Zq, one cannot distinguish the vectors

(x1, x
′
2, x3, . . . , xn)B and (x1, x2, x3, . . . , xn)B, for chosen x′2, x2, . . . , xn ∈ Zq, but unknown ran-

dom x1
$← Zq.

We stress that for this property, we only work with (b1,b2) and (b∗1,b
∗
2), but without publishing

b∗2.

Indistinguishability of Position. Let us consider another change of basis:

B =

1 0 0
0 1 0
a −a 1

1,2,3

B′ =

1 0 −a
0 1 a
0 0 1

1,2,3

B = B · U B∗ = B′ · U∗

In this case, we can compute B = (bi)i, but not the vectors b∗1 and b∗2 as a ·G2 is missing.

(c,−c, b, x4, . . . , xn)U = (c− ab,−c+ ab, b, x4, . . . , xn)B = (τ,−τ, b, x4, . . . , xn)B

(θ, θ, y3, y4, . . . , yn)U∗ = (θ, θ, aθ − aθ + y3, y4, . . . , yn)B∗ = (θ, θ, y3, . . . , yn)B∗

There is the limitation for the first two components in B∗ to be the same:

Theorem 20 (Pos-Ind Property). Under the DDH Assumption in G1, for random dual or-
thogonal bases B and B∗, once having seen B and B∗\{b∗1,b∗2} and (y1, y1, y3, . . . , yn)B∗, for
chosen y1, y3, . . . , yn ∈ Zq, one cannot distinguish the vectors (x1,−x1, x3, x4, . . . , xn)B and

(0, 0, x3, x4, . . . , xn)B, for chosen x4, . . . , xn ∈ Zq, but unknown random x1, x3
$← Zq.

We stress again that for this property, we only work with (b1,b2,b3) and (b∗1,b
∗
2,b
∗
3), but

without publishing (b∗1,b
∗
2).

But more useful, using the DSDH assumption on 0 and x1, which claims indistinguishability
between (a · G, b · G, (ab + 0) · G) and (a · G, b · G, (ab + x1) · G), we have indistinguishability
between

(0, x1, x3, . . . , xn)B + (ab,−ab, b, 0, . . . , 0)U

= (0, x1, x3, . . . , xn)B + (ab− ab,−ab+ ab, b, 0, . . . , 0)B

= (0, x1, x3, . . . , xn)B

(0, x1, x3, . . . , xn)B + (ab+ x1,−ab− x1, b, 0, . . . , 0)U

= (0, x1, x3, . . . , xn)B + (ab+ x1 − ab,−ab− x1 + ab, b, 0, . . . , 0)B

= (x1, 0, x3, . . . , xn)B

(y1, y1, y3, y4, . . . , yn)U∗ = (y1, y1, ay1 − ay1 + y3, y4, . . . , yn)B∗

= (y1, y1, y3, . . . , yn)B∗

Hence,

Theorem 21 (Swap-Ind Property). Under the DSDH Assumption in G1, for random dual
orthogonal bases B and B∗, once having seen B and B∗\{b∗1,b∗2} and (y1, y1, y3, . . . , yn)B∗,
for chosen y1, y3, . . . , yn ∈ Zq, one cannot distinguish the vectors (x1, 0, x3, x4, . . . , xn)B and

(0, x1, x3, x4, . . . , xn)B, for chosen x1, x4, . . . , xn ∈ Zq, but unknown random x3
$← Zq.

Again, for this property, we only work with (b1,b2,b3) and (b∗1,b
∗
2,b
∗
3), but without publishing

(b∗1,b
∗
2).

Appendix 29

Indexing and Randomness Amplification. The crucial tool introduced in [OT12b] is the
following change of basis, for chosen scalars t 6= p ∈ Zq:

B =
1

t− p
×

 t −p at
−1 1 −a
0 0 t− p

1,2,3

B′ =

 1 1 0
p t 0
−a 0 1

1,2,3

In this case, we can compute B = (bi)i, but not the vectors b∗3 as a ·G2 is missing.

(b, 0, c, x4, . . . , xn)U = (b, bp, c− ab, x4, . . . , xn)B

= (b · (1, p), τ, x4, . . . , xn)B

((t− p) · (π, 0), δ, y4, . . . , yn)U∗ = (πt+ atδ/(t− p),−π − aδ/(t− p), δ, y4, . . . , yn)B∗

= ((π + aδ/(t− p)) · (t,−1), δ, y4, . . . , yn)B∗

There is the limitation for the first two components in B and B∗ not to be orthogonal: 〈(1, p), (t,−1)〉 =
(t− p) 6= 0:

Theorem 22. Under the DDH Assumption in G1, for random dual orthogonal bases B and B∗,
once having seen B and B∗\{b∗3}, and (π · (t,−1), y3, . . . , yn)B∗, for chosen y3, . . . , yn ∈ Zq, but

unknown random π
$← Zq, and for any chosen t 6= p ∈ Zq, one cannot distinguish the vectors

(b · (1, p), τ, x4, . . . , xn)B and (b · (1, p), 0, x4, . . . , xn)B, for chosen x4, . . . , xn ∈ Zq, but unknown

random b, τ
$← Zq.

As above, we can have a more convenient theorem under the DSDH assumption:

Theorem 23 (Index-Ind Property). Under the DSDH Assumption in G1, for random dual
orthogonal bases B and B∗, once having seen B and B∗\{b∗3}, and (π · (t,−1), y3, . . . , yn)B∗,

for chosen y3, . . . , yn ∈ Zq, but unknown random π
$← Zq, and for any chosen t 6= p ∈ Zq,

one cannot distinguish the vectors (σ · (1, p), x3, x4, . . . , xn)B and (σ · (1, p), x′3, x4, . . . , xn)B, for

chosen x′3, x3, x4, . . . , xn ∈ Zq, but unknown random σ
$← Zq.

For this property, we only work with (b1,b2,b3) and (b∗1,b
∗
2,b
∗
3), but without publishing b∗3.

For a fixed t, we can iteratively update all the other other indices p 6= t.

B IND-Security Proof of our KP-ABE Scheme

In this section, we will focus on the IND-security proof of our KP-ABE scheme, where the
definition is quite similar to Definition 4, but without the Delegation-Oracle.

Definition 24 (Indistinguishability). IND-security for KP-ABE is defined by the following
game:

Initialize: The challenger runs the Setup algorithm of KP-ABE and gives the public parameters
PK to the adversary;

OKeyGen(T : The adversary is allowed to issue KeyGen-queries for any access-tree T of its
choice, and gets back the decryption key dkT ;

RoREncaps(Γ): The adversary submits one real-or-random encapsulation query on a set of at-
tributes Γ . The challenger asks for an encapsulation query on Γ and receives (K0, C). It
also generates a random key K1. It eventually flips a random coin b, and outputs (Kb, C) to
the adversary;

Finalize(b′): The adversary outputs a guess b′ for b. If for some access-tree T asked to the

OKeyGen-oracle, T (Γ) = 1, on the challenge set Γ , β
$← {0, 1}, otherwise one sets β = b′.

One outputs β.

30

The advantage of an adversary A in this game is defined as

Advind(A) = Pr[β = 1|b = 1]− Pr[β = 1|b = 0].

The global sequence of games will follow the steps shown on Figure 10. But while the first steps
(from G0 to G2) will be simple, the big step from G2 to G3 will need multiple hybrid games, pre-
sented on Figure 11. All theses games work in a pairing-friendly setting (G1,G2,Gt, e,G1, G2, q),
with two random dual orthogonal bases (B,B∗) and (D,D∗) of size 3 and 6, respectively.

G0 Real IND-Security game (without delegation)
c0 = (ω 0 ξ) ct = (σt(1, t) ω | 0 0 0)

k∗`,0 = (a`,0 0 1) k∗`,λ = (π`,λ(t`,λ,−1) a`,λ | 0 0 0)

G1 SubSpace-Ind Property, on (B,B∗)1,2 and (D,D∗)3,4, between 0 and τ
$← Zq

c0 = (ω τ ξ) ct = (σt(1, t) ω | τ 0 0)

k∗`,0 = (a`,0 0 1) k∗`,λ = (π`,λ(t`,λ,−1) a`,λ | 0 0 0)

G2 SubSpace-Ind Property, on (D,D∗)1,2,6, between 0 and τzt

c0 = (ω τ ξ) ct = (σt(1, t) ω | τ 0 τzt)

k∗`,0 = (a`,0 0 1) k∗`,λ = (π`,λ(t`,λ,−1) a`,λ | 0 0 0)

G3 Introduction of an additional random-labeling. See Figure 7
c0 = (ω τ ξ) ct = (σt(1, t) ω | τ 0 τzt)

k∗`,0 = (a`,0 r`,0 1) k∗`,λ = (π`,λ(t`,λ,−1) a`,λ | 0 0 s`,λ/zt`,λ)

G4 Formal basis change, on (B,B∗)2,3, to randomize ξ

c0 = (ω τ ξ′′) ct = (σt(1, t) ω | τ 0 τzt)

k∗`,0 = (a`,0 r`,0 1) k∗`,λ = (π`,λ(t`,λ,−1) a`,λ | 0 0 s`,λ/zt`,λ)

Fig. 10: Global sequence of games for the IND-security proof of our KP-ABE (recall of Figure 6)

In the following proof, we will use t to denote attributes, and thus the indices for the possible
ciphertexts ct associated to each attribute in the challenge ciphertext. We indeed anticipate all
the possible ct, before knowing the exact set Γ , as we are in the adaptive setting. The variable
p will be used in hybrid proofs to specify a particular attribute. We will denote P the maximal
number of attributes involved in the game (either in a ciphertext or in a key). Then 1 ≤ t, p ≤ P .
Similarly, we will use ` to denote key queries, and thus the index of the global `-th key k∗` ,
whereas λ will we used for the leaf in the tree of the key-query: k∗`,λ is thus the specific key for
leaf λ in the global `-th key. The variable k will be used in hybrid proofs to specify a particular
key-query index. We will denote K the maximal number of key-queries. Then 1 ≤ `, k ≤ K.

Game G0: This is the real game where the simulator generates all the private information
and sets PK = {(b1,b3,b

∗
1), (d1,d2,d3,d

∗
1,d
∗
2,d
∗
3)} and MK = {b∗3}. The public parameters

PK are provided to the adversary
OKeyGen(T`): The adversary is allowed to issue KeyGen-queries on an access-tree T` (for the

`-th query), for which the challenger chooses a random scalar a`,0
$← Zq and a random

a`,0-labeling (a`,λ)λ of the access-tree T`, and builds the key:

k∗`,0 = (a`,0, 0, 1)B∗ k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, 0, 0, 0)D∗

for all the leaves λ, where t`,λ = A(λ) is the attribute associated to the leaf λ in T` and

π`,λ
$← Zq. The decryption key dk` is then (k∗`,0, (k

∗
`,λ)λ);

RoREncaps(Γ): On the unique query on a set of attributes Γ , the challenger chooses random

scalars ω, ξ, ξ′
$← Zq. It then sets K0 = gξt and K1 = gξ

′

t . It generates the ciphertext
C = (c0, (ct)t∈Γ) where

c0 = (ω, 0, ξ)B ct = (σt(1, t), ω, 0, 0, 0)D

Appendix 31

for all the attributes t ∈ Γ and σt
$← Zq. According to the real or random game (bit

b
$← {0, 1}), one outputs (Kb, C).

Eventually, on adversary’s guess b′ for b, if for some T`, T`(Γ) = 1, then β
$← {0, 1}, otherwise

β = b′. Then Adv0 = Pr[β = 1|b = 1]− Pr[β = 1|b = 0].

In the next games, we gradually modify the simulations of OKeyGen and RoREncaps oracles,
but always (at least) with random ω, ξ, ξ′, (σt)

$← Zq, (a`,0), (π`,λ)
$← Zq, and random a`,0-

labeling (a`,λ)λ of the access-tree T` for each OKeyGen-query.

Game G1: One chooses random τ
$← Zq, and sets (which differs for the ciphertext only)

c0 = (ω, τ, ξ)B ct = (σt(1, t), ω, τ, 0, 0)D

k∗`,0 = (a`,0, 0, 1)B∗ k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, 0, 0, 0)D∗

The previous game and this game are indistinguishable under the DDH assumption in G1:
one applies the SubSpace-Ind property from Theorem 19, on (B,B∗)1,2 and (D,D∗)3,4. Indeed,
we can consider a triple (a · G1, b · G1, c · G1), where c = ab + τ mod q with either τ = 0 or

τ
$← Z∗q , which are indistinguishable situations under the DDH assumption.

Let us assume we start from random dual orthogonal bases (U,U∗) and (V,V∗) of size 3 and
6 respectively. Then we define the matrices

B =

(
1 a
0 1

)
1,2

B′ =

(
1 0
−a 1

)
1,2

D =

(
1 a
0 1

)
3,4

D′ =

(
1 0
−a 1

)
3,4

B = B · U B∗ = B′ · U∗ D = D · V D∗ = D′ · V∗

Note that we can compute all the basis vectors excepted b∗2 and d∗4, that nobody needs: the
vectors below have these coordinates at zero. So one can set

c0 = (b, c, ξ)U = (b, τ, ξ)B ct = (σt(1, t), b, c, 0, 0)V = (σt(1, t), b, τ, 0, 0)D

k∗`,0 = (a`,0, 0, 1)B∗ k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, 0, 0, 0)D∗

When τ = 0, this is exactly the previous game, with ω = b, for a random τ , this is the current
game: Adv0 − Adv1 ≤ AdvddhG1

(t).

Game G2: One continues to modify the ciphertext, with random τ, (zt)
$← Zq:

c0 = (ω, τ, ξ)B ct = (σt(1, t), ω, τ, 0, τzt)D

k∗`,0 = (a`,0, 0, 1)B∗ k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, 0, 0, 0)D∗

The previous game and this game are indistinguishable under the DDH assumption in G1:
one applies again the SubSpace-Ind property from Theorem 19, on (D,D∗)(1,2),6. Indeed, we
can consider a triple (a · G1, b · G1, c · G1), where c = ab + ζ mod q, with either ζ = 0 or

ζ
$← Z∗q , which are indistinguishable situations under the DDH assumption.

Let us assume we start from random dual orthogonal bases (B,B∗) and (V,V∗) of size 3 and
6 respectively. Then we define the matrices

D =

1 0 a
0 1 a
0 0 1

1,2,6

D′ =

 1 0 0
0 1 0
−a −a 1

1,2,6

D = D · V D∗ = D′ · V∗

Note that we can compute all the basis vectors excepted d∗6, that nobody needs: the vectors

below have these coordinates at zero. One chooses additional random scalars αt, βt
$← Zq to

32

virtually set bt = αt · b+ βt and ct = αt · c+ βt · a, which makes ct − abt = αt · ζ. One can set

c0 = (ω, τ, ξ)B ct = (bt(1, t), ω, τ, 0, ct(t+ 1))V

= (bt(1, t), ω, τ, 0, ct(t+ 1)− abt − abtt)D
= (bt(1, t), ω, τ, 0, ct(t+ 1)− abt(1 + t))D

= (bt(1, t), ω, τ, 0, αt · ζ · (t+ 1))D

= (bt(1, t), ω, τ, 0, τzt)D

k∗`,0 = (a`,0, 0, 1)B∗ k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, 0, 0, 0)D∗

where zt = αt · ζ · (t + 1)/τ . When ζ = 0, this is exactly the previous game, as zt = 0, with
πt = bt = αt ·b+βt, whereas for a random ζ, this is the current game: Adv1−Adv2 ≤ AdvddhG1

(t).

Game G3: We introduce a second independent s`,0-labeling s`,λ for each access-tree T` and a
random r`,0 to define

k∗`,0 = (a`,0, r`,0, 1)B∗ k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, 0, 0, s`,λ/ztk,λ)D∗

But to this, we move to a sub-sequence of hybrid games, with distinct ways for answering
the k − 1 first key queries and the last ones, as explained on Figure 11: for the `-th key
generation query on T`, the challenger chooses three random scalars a`,0, r`,0, s`,0

$← Zq, and
two random a`,0-labeling (a`,λ)λ and s`,0-labeling (s`,λ)λ of the access-tree T`, and builds the

key (k∗`,0, (k
∗
`,λ)λ), with π`,λ

$← Zq:

` < k k∗`,0 = (a`,0, r`,0, 1)B∗ k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, 0, 0, s`,λ/zt`,λ)D∗

` ≥ k k∗`,0 = (a`,0, 0, 1)B∗ k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, 0, 0, 0)D∗

For this game, we have to anticipate the values zt, for each attribute t, before knowing Γ , for
the challenge ciphertext, as we have to introduce zt`,λ during the creation of the leaves. These
zt are thus random values chosen as soon as an attribute t is involved in the security game.

G2.k.0 Hybrid game for G2, with 1 ≤ k ≤ K + 1 (from Figure 6)
c0 = (ω τ ξ) ct = (σt(1, t) ω | τ 0 τzt)

` < k k∗`,0 = (a`,0 r`,0 1) k∗`,λ = (π`,λ(t`,λ,−1) a`,λ | 0 0 s`,λ/zt`,λ)
` ≥ k k∗`,0 = (a`,0 0 1) k∗`,λ = (π`,λ(t`,λ,−1) a`,λ | 0 0 0)

G2.k.1 SubSpace-Ind Property, on (B∗,B)1,2 and (D∗,D)3,4, between 0 and sk,∗

k∗k,0 = (ak,0 sk,0 1) k∗k,λ = (πk,λ(tk,λ,−1) ak,λ | sk,λ 0 0)

G2.k.2 Masking of the labeling. See Figure 12 in the appendix B

k∗k,0 = (ak,0 sk,0 1) k∗k,λ = (πk,λ(tk,λ,−1) ak,λ | 0 0 sk,λ/ztk,λ)

G2.k.3 Limitations on KeyGen-queries: sk,0 unpredictable, replaced by a random rk,0

k∗k,0 = (ak,0 rk,0 1) k∗k,λ = (πk,λ(tk,λ,−1) ak,λ | 0 0 sk,λ/ztk,λ)

Fig. 11: Sequence of games on the K keys for the IND-security proof of our KP-ABE (recall of
Figure 7)

When k = 1, this is exactly the game G2: G2 = G2.1.0, whereas for k = K + 1 this is
exactly the expected game G3: G3 = G2.K+1.0. We now consider any k ∈ {1, . . . ,K}, to show
that G2.k.3 = G2.k+1.0, where all the keys for ` 6= k will be defined using the basis vectors
of (B∗,D∗) and known scalars. We only focus on the k-th key and the ciphertext, but still

with random ω, τ, ξ, ξ′, (σt), (zt)
$← Zq, random ak,0, (πk,λ)

$← Zq, as well as a random ak,0-

labeling (ak,λ)λ of the access-tree Tk, but also sk,0
$← Zq and a second independent random

sk,0-labeling (sk,λ)λ of the access-tree Tk:

Appendix 33

Game G2.k.0 This is exactly as described above, for ` = k:

c0 = (ω, τ, ξ)B ct = (σt(1, t), ω, τ, 0, τzt)D

k∗k,0 = (ak,0, 0, 1)B∗ k∗k,λ = (πk,λ(tk,λ,−1), ak,λ, 0, 0, 0)D∗

Game G2.k.1 One now introduces the second labeling:

c0 = (ω, τ, ξ)B ct = (σt(1, t), ω, τ, 0, τzt)D

k∗0 = (ak,0, sk,0, 1)B∗ k∗k,λ = (πk,λ(tk,λ,−1), ak,λ, sk,λ, 0, 0)D∗

This game is indistinguishable from the previous one under the DDH assumption in G2: one
applies the SubSpace-Ind property from Theorem 19 on (B∗,B)1,2 and (D∗,D)3,4. Indeed,
we can consider a triple (a ·G2, b ·G2, c ·G2), where c = ab+ ρ mod q, with either ρ = 0 or

ρ
$← Z∗q , which are indistinguishable situations under the DDH assumption.

Let us assume we start from random dual orthogonal bases (U,U∗) and (V,V∗) of size 3
and 6 respectively. Then we define the matrices

B′ =

(
1 a
0 1

)
1,2

B =

(
1 0
−a 1

)
1,2

D′ =

(
1 a
0 1

)
3,4

D =

(
1 0
−a 1

)
3,4

B∗ = B′ · U∗ B = B · U D∗ = D′ · V∗ D = D · V

Note that we can compute all the basis vectors excepted b2 and d4. But we can define the
ciphertext vectors in the original bases (U,V), and all the keys in bases (B∗,D∗), excepted
the k-th one:

c0 = (ω, τ, ξ)U = (ω + aτ, τ, ξ)B

ct = (σt(1, t), ω, τ, 0, τzt)V = (σt(1, t), ω + aτ, τ, 0, τzt)D

k∗k,0 = (b0, 0, 1)B∗ + (b, c, 0)U∗ = (b0, 0, 1)B∗ + (b, ρ, 0)B∗ = (b0 + b, ρ, 1)B∗

k∗k,λ = (πk,λ(tk,λ,−1), bλ, 0, 0, 0)D∗ + (0, 0, b · b′λ, c · b′λ, 0, 0)V∗

= (πk,λ(tk,λ,−1), bλ, 0, 0, 0)D∗ + (0, 0, b · b′λ, ρ · b′λ, 0, 0)D∗

= (πk,λ(tk,λ,−1), bλ + b · b′λ, ρ · b′λ, 0, 0)D∗

with b0
$← Zq, a random b0-labeling (bλ)λ, and a random 1-labeling (b′λ)λ of Tk. When ρ = 0,

this is exactly the previous game, with ω = ω + aτ , and ak,0 = b0 + b, ak,λ = bλ + b · b′λ,
whereas for a random ρ, this is the current game, with additional sk,0 = ρ, sk,λ = ρ · b′λ:
Adv2.k.0 − Adv2.k.1 ≤ AdvddhG2

(t).

Game G2.k.2 With the same inputs, one just changes as follows

c0 = (ω, τ, ξ)B ct = (σt(1, t), ω, τ, 0, τzk)D

k∗k,0 = (ak,0, sk,0, 1)B∗ k∗k,λ = (πk,λ(tk,λ,−1), ak,λ, 0, 0, sk,λ/zk)D∗

Unfortunately, for the latter gap, which intuitively exploits the Swap-Ind property from
Theorem 21, we cannot do all the changes at once. Then, the Index-Ind property will be
applied first, with Theorem 23.
We will thus describe another sequence of games, as shown on Figure 12, where G2.k.1.p.0

with p = 1 is the previous game: G2.k.1 = G2.k.1.1.0; for any p, G2.k.1.p.5 is G2.k.1.p+1.0; and
G2.k.1.p.0 with p = P + 1 is the current game: G2.k.2 = G2.k.1.P+1.0. For each p, we prove
that

Adv2.k.1.p.0 − Adv2.k.1.p.5 ≤ 2P × AdvddhG1
(t) + 3× AdvddhG2

(t).

Hence, globally, we have

Adv2.k.1 − Adv2.k.2 ≤ 2P 2 × AdvddhG1
(t) + 3P × AdvddhG2

(t).

But before proving this huge gap, let us conclude the analysis.

34

Game G2.k.3 In the above game, to be a legitimate attack (that does not output a random
bit β in the Finalize procedure, but the actual output b′ of the adversary), for all the
key queries T`, one must have T`(Γ) = 0. In particular, Tk(Γ) = 0: this means that there
are missing attributes in the ciphertext, and thus false leaves to make the access-tree no
acceptable. More concretely, a missing attribute t means ct is not provided to the adversary,
and so no information about zt is leaked. As the key only contains sk,λ/ztk,λ , the missing
ztk,λ guarantees that no information leaks about sk,λ: all the false leaves λ correspond to
these sk,λ that are unknown: only (sk,λ)λ∈LΓ is known, and so the root sk,0 is unpredictable.

Remark 25. One may wonder whether previous keys that involve those ztk,λ could leak
some information and contradict the above argument. Let us focus on the leaf λ associated
to the attribute p, and so the information one could get about zp when cp is not part of
the challenge ciphertext. At least, this argument holds for the first key generation, when
we are in the first sequence of games, in G2.k.2 with k = 1: zp is only used in cp, that is not
revealed to the adversary, and so s1,λ/zp does not leak any information about s1,λ. And
this is the same for all the leaves associated to missing attributes. Then s1,0 can definitely
be replaced by a random and independent r1,0: which is the current game G2.k.3 for k = 1.
When we are in G2.k.2 for k = 2, the adversary may now have some information about
s1,λ/zp and s2,λ/zp, but no information about s1,0 that has already been replaced by a
random r1,0, which makes s1,λ unpredictable, and so no additional information leaks about
zp: s2,λ is unpredictable. Again, the same argument holds for all the leaves associated to
missing attributes: s2,0 can also be replaced by a random and independent r2,0.
This is the reason of this hybrid sequence of game: if we would have first introduced the
zp in all the keys, it would not have been possible to replace all the s`,0 by r`,0 in the end.
This is only true when all the previous keys have already been modified.
One can thus modify the key generation algorithm for the k-th key, with an independent
rk,0

$← Zq:

c0 = (ω, τ, ξ)B ct = (σt(1, t), ω, τ, 0, τzt)D

k∗k,0 = (ak,0, rk,0, 1)B∗ k∗k,λ = (πk,λ(tk,λ,−1), ak,λ, 0, 0, sk,λ/ztk,λ)D∗

This concludes this sequence of sub-games with, for each k,

Adv2.k.0 − Adv2.k.3 ≤ 2P 2 × AdvddhG1
(t) + (3P + 1)× AdvddhG2

(t).

Hence, globally, we have

Adv2 − Adv3 ≤ 2KP 2 × AdvddhG1
(t) + (3P + 1)K × AdvddhG2

(t).

Game G4: In this game, one chooses a random θ to define the matrices

B =

(
1 −θ
0 1

)
2,3

B′ =

(
1 0
θ 1

)
2,3

B = B · U B∗ = B′ · U∗

which only modifies b2, which is hidden, and b∗3, which is kept secret:

c0 = (ω, τ, ξ)U = (ω, τ, τθ + ξ)B = (ω, τ, ξ′′)B

k∗`,0 = (a`,0, r`,0, 1)U∗ = (a`,0, r
′
`,0, 1)D∗

As a consequence, any value for θ can be used, without impacting the view of the adversary,
as r′`,0 is indeed independent of the other variables. In this last game, a random value ξ′′ is

used in the ciphertext, whereas K0 = gξt and K1 = gξ
′

t : the advantage of any adversary is 0
in this last game.

Appendix 35

If we combine all the steps:

Adv0 = Adv0 − Adv4

≤ AdvddhG1
(t) + AdvddhG1

(t) + 2KP 2 × AdvddhG1
(t) + (3P + 1)K × AdvddhG2

(t)

≤ 2(KP 2 + 1)× AdvddhG1
(t) + (3P + 1)K × AdvddhG2

(t)

We now present the sub-sequence of games for proving the gap from the above G2.k.1 to G2.k.2.

c0 = (ω τ ξ) h∗0 = (δ ρ 0)

G2.k.1.p.0 Hybrid game for G2.k.1, with 1 ≤ p ≤ P + 1 (from Figure 7)
ct = (σt(1, t) ω | τ 0 τzt)

t < p h∗t = (πt(t,−1) δ | 0 0 ρ/zt)
t ≥ p h∗t = (πt(t,−1) δ | ρ 0 0)

G2.k.1.p.1 Formal basis change, on (D,D∗)4,5, to duplicate τ

ct = (σt(1, t) ω | τ τ τzt)

G2.k.1.p.2 Swap-Ind Property, on (D∗,D)2,4,5, for 0 and ρ in h∗p only
ct = (σt(1, t) ω | τ τ τzt)

h∗p = (πp(p,−1) δ | 0 ρ 0)

G2.k.1.p.3 Index-Ind Property, on (D,D∗)1,2,5, between τ and τzt/zp
cp = (σp(1, p) ω | τ τ τzp)

t 6= p ct = (σt(1, t) ω | τ τzt/zp τzt)

G2.k.1.p.4 Formal basis change, on (D,D∗)5,6, to cancel τ

ct = (σt(1, t) ω | τ 0 τzt)

h∗p = (πp(p,−1) δ | 0 α ρ/zp)

G2.k.1.p.5 SubSpace-Ind Property, on (D∗,D)2,5, between α and 0
ct = (σt(1, t) ω | τ 0 τzt)

t < p h∗t = (πt(t,−1) δ | 0 0 ρ/zt)

h∗p = (πp(p,−1) δ | 0 0 ρ/zp)

t > p h∗t = (πt(t,−1) δ | ρ 0 0)

Fig. 12: Sequence of sub-games on the P attributes for the IND-security proof of our KP-ABE,
where k∗`,0 = (a`,0, 0, 1)B∗ + s`,0 · h∗0 and k∗`,λ = (Π`,λ(t`,λ,−1), a`,λ, 0, 0, 0)D∗ + s`,λ · h∗tk,λ , for all
the leaves λ of all the keys `, with h∗0 = (δ, ρ, 0)B∗ and h∗0 = (πt(t,−1), δ, ρ, 0, 0)D∗ for all the
possible attributes t. We only make the latter (h∗0, (h

∗
t)t) to evolve along this sequence.

We still focus on the challenge ciphertext (c0, (ct)) and the k-th key we will denote, for the sake
of clarity, as

k∗k,0 = (a0, 0, 1)B∗ + s0 · h∗0
k∗k,λ = (Πk,λ(tk,λ,−1), aλ, 0, 0, 0)D∗ + sλ · h∗tk,λ

where h∗0 = (δ, ρ, 0)B∗ and h∗t = (πt(t,−1), δ, ρ, 0, 0)D∗ for all the possible attributes. This
corresponds to

ak,0 = a0 + δ · s0 ak,λ = aλ + δ · sλ
sk,0 = ρ · s0 sk,λ = ρ · sλ

πk,λ = Πk,λ + sλ · πtk,λ
All the other keys will be generated using the basis vectors: we stress that they all have a
zero 5-th component, then d∗5 will not be needed. In the new hybrid game, the critical point
will be the p-th attribute, where, when p = 1, G2.k.1.p.0 is exactly the above Game G2.k.1,
and when p = P + 1 this is the above Game G2.k.2. And it will be clear, for any p, that
G2.k.1.p.5 = G2.k.1.p+1.0: with random ω, τ, ξ, ξ′, δ, ρ, (zt), (σt), (πt)

$← Zq,

36

Game G2.k.1.p.0: One defines the hybrid game for p:

c0 = (ω, τ, ξ)B ct = (σt(1, t), ω, τ, 0, τzt)D

h∗0 = (δ, ρ, 0)B∗ h∗t = (πt(t,−1), δ, 0, 0, ρ/zt)D∗ t < p

h∗t = (πt(t,−1), δ, ρ, 0, 0)D∗ t ≥ p

Game G2.k.1.p.1: One defines the matrices

D =

(
1 −1
0 1

)
4,5

D′ =

(
1 0
1 1

)
4,5

D = D · V D∗ = D′ · V∗

which modifies the hidden vectors d4 and d∗5, and so are not in the view of the adversary:

ct = (σt(1, t), ω, τ, 0, τzt)V = (σt(1, t), ω, τ, τ, τzt)D

h∗t = (πt(t,−1), δ, 0, 0, ρ/zt)V∗ = (πt(t,−1), δ, 0, 0, ρ/zt)D∗ t < p

h∗t = (πt(t,−1), δ, ρ, 0, 0)V∗ = (πt(t,−1), δ, ρ, 0, 0)D∗ t ≥ p

For all the other keys, as the 5-th component is 0, the writing in basis V∗ is the same in basis
D∗. Hence, the perfect indistinguishability between the two games: Adv2.k.1.p.1 = Adv2.k.1.p.0.

Game G2.k.1.p.2: We apply the Swap-Ind property from Theorem 21, on (D∗,D)2,4,5: Indeed,
we can consider a triple (a · G2, b · G2, c · G2), where c = ab + θ mod q with either θ = 0 or
θ = ρ, which are indistinguishable situations under the DSDH assumption. Let us assume
we start from random dual orthogonal bases (B,B∗) and (V,V∗) of size 3 and 6 respectively.
Then we define the matrices

D′ =

1 a −a
0 1 0
0 0 1

2,4,5

D =

 1 0 0
−a 1 0
a 0 1

2,4,5

D∗ = D′ · V∗ D = D · V

Note that we can compute all the basis vectors excepted d4,d5, but we define the ciphertext
on the original basis V:

ct = (σt(1, t), ω, τ, τ, τzt)V = (σt, σtt+ aτ − aτ, ω, τ, τ, τzt)D
= (σt(1, t), ω, τ, τ, τzt)D

h∗t = (πt(t,−1), δ, 0, 0, ρ/zt)D∗ t < p

h∗p = (πp(p,−1), δ, ρ, 0, 0)D∗ + (b(p,−1), 0,−c, c, 0)V∗

= (πp(p,−1), δ, ρ, 0, 0)D∗ + (b(p,−1), 0, ab− c,−ab+ c, 0)D∗

= (πp(p,−1), δ, ρ− θ, θ, 0)D∗

h∗t = (πt(t,−1), δ, ρ, 0, 0)D∗ t > p

With θ = 0, this is as in the previous game, with θ = ρ, this is the current game: Adv2.k.1.p.1−
Adv2.k.1.p.2 ≤ 2 · AdvddhG2

(t).

Game G2.k.1.p.3: We keep the τ value (at the 5-th hidden position) in the ciphertext for the
p-th attribute only, and replace all the other values by τzt/zp:

cp = (σt(1, t), ω, τ, τ, τzt)D

ct = (σt(1, t), ω, τ, τzt/zp, τzt)D t 6= p

To show this is possible without impacting the other vectors, we use the Index-Ind property
from Theorem 23, but in another level of sequence of hybrid games, for γ ∈ {1, . . . , P}\{p}:

Appendix 37

Game G2.k.1.p.2.γ: We consider

cp = (σp(1, p), ω, τ, τ, τzp)D

ct = (σt(1, t), ω, τ, τzt/zp, τzt)D p 6= t < γ

ct = (σt(1, t), ω, τ, τ, τzt)D t ≥ γ
h∗t = (πt(t,−1), δ, 0, 0, ρ/zt)D∗ t < p

h∗p = (πp(p,−1), δ, 0, ρ, 0)D∗

h∗t = (πt(t,−1), δ, ρ, 0, 0)D∗ t > p

When γ = 1, this is the previous game: G2.k.1.p.2.1 = G2.k.1.p.2, whereas with γ = P + 1,
this is the current game: G2.k.1.p.2.P+1 = G2.k.1.p.3.
For any γ ∈ {1, . . . , P}, we consider a triple (a ·G1, b ·G1, c ·G1), where c = ab+ ζ mod q,
with either ζ = 0 or ζ = τ(zγ/zp − 1), which are indistinguishable situations under the
DSDH assumption. We define the matrices

D =
1

p− γ
×

 p −γ ap
−1 1 −a
0 0 p− γ

1,2,5

D′ =

 1 1 0
γ p 0
−a 0 1

1,2,5

and then D = D · V, D∗ = D′ · V∗: we cannot compute d∗5, but the components on this
vector are all 0 excepted for h∗p we will define in V∗:

cp = (σp(1, p), ω, τ, τ, τzp)D

cγ = (b, 0, ω, τ, τ + c, τzγ)V = (b, bγ, ω, τ, τ + c− ab, τzγ)D

= (b(1, γ), ω, τ, τ + ζ, τzγ)D

ct = (σt(1, t), ω, τ, τzt/zp, τzt)D p 6= t < γ

ct = (σt(1, t), ω, τ, τ, τzt)D t > γ

h∗t = (πt(t,−1), δ, 0, 0, ρ/zt)D∗ t < p

h∗p = ((p− γ) · (π, 0), δ, 0, ρ, 0)V∗

= (p · π + apρ,−π − aρ, δ, 0, ρ, 0)D∗

= ((π + aρ) · (p,−1), δ, 0, ρ, 0)D∗

h∗t = (πt(t,−1), δ, ρ, 0, 0)D∗ t > p

which is the hybrid game with πp = π+ aρ and the 5-th component of cγ is τ + ζ, which is
either τ when ζ = 0, and thus the game G2.k.1.p.2.γ or τzγ/zp when ζ = τzγ/zp−τ , which is
G2.k.1.p.2.γ+1: hence, the distance between two consecutive games is bounded by AdvdsdhG1

(t).

Hence, we have Adv2.k.1.p.2 − Adv2.k.1.p.3 ≤ 2P × AdvddhG1
(t).

Game G2.k.1.p.4: We can now insert 1/zp in the p-th last component, and then make some

cleaning with the matrices, for α
$← Z∗q

D =

(
α/ρ 0
1/zp 1

)
5,6

D′ =

(
ρ/α −ρ/αzp

0 1

)
5,6

and then D = D · V, D∗ = D′ · V∗. As the four vectors d5,d6 and d∗5,d
∗
6 are hidden, the

modifications will not impact the view of the adversary. This consists in applying successively
the matrices :

D =

(
1/zp 0

0 1

)
5,6

D =

(
1 0
1 1

)
5,6

D =

(
αzp/ρ 0

0 1

)
5,6

38

Then, working in (V,V∗) gives, in (D,D∗):

cp = (σp(1, p), ω, τ, τ, τzp)V = (σp(1, p), ω, τ, 0, τzp)D

ct = (σt(1, t), ω, τ, τzt/zp, τzt)V

= (σt(1, t), ω, τ, (τzt/zp − τzt/zp) · ρ/α, τzt)D t 6= p

= (σt(1, t), ω, τ, 0, τzt)D

h∗t = (πt(t,−1), δ, 0, 0, ρ/zt)V∗ = (πt(t,−1), δ, 0, 0, ρ/zt)D∗ t < p

h∗p = (πp(p,−1), δ, 0, ρ, 0)V∗ = (πp(p,−1), δ, 0, α, ρ/zp)D∗

h∗t = (πt(t,−1), δ, ρ, 0, 0)V∗ = (πt(t,−1), δ, ρ, 0, 0)V∗ t > p

We stress again that for all the other keys, as the 5-th component is 0, the writing in basis
V∗ is the same in basis D∗. Hence, the perfect indistinguishability between the two games:
Adv2.k.1.p.4 = Adv2.k.1.p.3.

Game G2.k.1.p.5: We can now remove the α value in the p-th element of the key: We can

consider a triple (a ·G2, b ·G2, c ·G2), where c = ab+ α mod q, with either α = 0 or α
$← Z∗q ,

which are indistinguishable situations under the DDH assumption. We define the matrices

D′ =

(
1 a
0 1

)
2,5

D =

(
1 0
−a 1

)
2,5

and then D = D ·V, D∗ = D′ ·V∗: we cannot compute d5, but the components on this vector
are all 0:

cp = (σt(1, t), ω, τ, 0, τzt)D

ct = (σt(1, t), ω, τ, 0, τzt)D t 6= p

h∗t = (πt(t,−1), δ, 0, 0, ρ/zt)D∗ t < p

h∗p = (−b(p,−1), δ, 0, c, ρ/zp)V∗ = (−b(p,−1), δ, 0, c− ab, ρ/zp)D∗
= (−b(p,−1), δ, 0, α, ρ/zp)D∗

h∗t = (πt(t,−1), δ, ρ, 0, 0)D∗ t > p

which is the either the previous game when α 6= 0 or the current game with α = 0, where
πp = −b: Adv2.k.1.p.4 − Adv2.k.1.p.5 ≤ AdvddhG2

(t).

C Security Proofs of our SA-KP-ABE Scheme

C.1 Proof of Theorem 13 – Del-IND-Security for Encaps

Proof. We will proceed to prove this by a succession of games. At some point, our game will be
in the same state as Game G0 in the proof of IND for our KP-ABE scheme, in the appendix B,
which allows us to conclude.

Game G0: The first game is the real game, where the simulator honestly runs the setup, with
PK = {(b1,b3,b

∗
1), (d1,d2,d3,d

∗
1,d
∗
2,d
∗
3)}, SK = {d7}, and MK = {b∗3,d∗7}, from random

dual orthogonal bases.
OKeyGen(T̃`): The adversary is allowed to issue KeyGen-queries on an access-tree T̃` (for the

`-th query), for which the simulator chooses a random scalar a`,0
$← Zq and a random

a`,0-labeling (a`,λ)λ of the access-tree T̃`, and builds the key:

k∗`,0 = (a`,0, 0, 1)B∗ k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, 0, 0, 0, r`,λ)D∗

for all the leaves λ, where t`,λ = A(λ) in T`, π`,λ $← Zq and r`,λ
$← Z∗q if λ is an active

leave or r`,λ = 0 if it is passive. The decryption key dk` = (k∗`,0, (k
∗
`,λ)λ) is kept private,

and will be used for delegation queries;

Appendix 39

ODelegate(T̃ , T̃ ′): The adversary is allowed to issue Delegate-queries for an access-tree T̃ ′, of
an already queried decryption key with access-tree T̃ = T̃`, with the only condition that
T̃ ′ ≤ T̃ . From dk` = (k∗0, (k

∗
λ)λ), for λ ∈ L, then the simulator computes the delegated

key as:

k′∗0 = k∗0 + (a′0, 0, 0)B∗ k′∗λ = k∗λ + (π′λ(tλ,−1), a′λ, 0, 0, 0, 0)D∗ , ∀λ ∈ L′,

where k∗λ = (0, 0, 0, 0, 0, 0, 0)D∗ if λ was not in L, and a′0
$← Zq and (a′λ)λ is an a′0-labeling

of T ′.

RoREncaps(Γv, Γi = ∅): On the unique query on a set of attributes Γ = Γv, the simulator

chooses random scalars ω, ξ, ξ′
$← Zq. It then sets K0 = gξt and K1 = gξ

′

t . It generates the
ciphertext C = (c0, (ct)t∈Γ) where

c0 = (ω, 0, ξ)B ct = (σt(1, t), ω, 0, 0, 0, 0)D

for all the attributes t ∈ Γ and σt
$← Zq. According to the real or random game (bit

b
$← {0, 1}), one outputs (Kb, C).

From the adversary’s guess b′ for b, if for some T̃ ′ asked as a delegation-query, T̃ ′(Γv, Γi) = 1,

then β
$← {0, 1}, otherwise β = b′. We denote Adv0 = Pr[β = 1|b = 1]− Pr[β = 1|b = 0].

We stress that in this game, we deal with delegation queries, but only want to show they
do not help to break indistinguishability of the encapsulated keys with the official Encaps
algorithm, and not the private Encaps∗ one. Hence, Γi = ∅ in the challenge ciphertext.

Game G1: We now show it can be reduced to Game G0 from the IND security game on
our KP-ABE, in the proof provided in the appendix B. The challenge ciphertext is already
exactly the same, as we only consider Encaps. But we have to emulate the key-generation
and key-delegation oracles OKeyGen and ODelegate using only the key-generation oracle from
Game G0 in the proof provided in the appendix B, we denote OKeyGen′, as it only partially
generates our new keys, with a 7-th coordinate r`,λ. First, we instantiate a list Λ.

OKeyGen(T̃`). The simulator calls the oracle OKeyGen′(T`), and chooses r`,λ
$← Z∗q or sets

r`,λ ← 0 according to whether λ ∈ La or λ ∈ Lp. It then adds the last component r`,λ
on every k∗`,λ using d∗7 which is known to the simulator. Finally, it updates Λ with a new
entry Λ` = (r`,λ)λ;

ODelegate(T̃`, T̃ ′). The simulator calls the oracle OKeyGen′(T ′) to get the decryption key dk.
As already noted, in our KP-ABE, a delegated key is indistinguishable from a fresh key.
Then, we pick the entry r`,λ from Λ`, to the last component r`,λ on every k∗λ using d∗7
which is known to the simulator. We stress that for any new leaf, not present in T̃` is
necessarily passive in the delegated tree T̃ ′. So, if a leaf is not in Λ`, r`,λ = 0.

In this new game, we are exactly using the security game from the IND security on our KP-
ABE, and simulating the 7-th component using d∗7. As this component does not change nor
intervene at all in any of the games from the proof in the appendix B, and this is exactly the
same situation as in Game G0 in that proof, we conclude by following those security games,
which leads to the adversary having zero advantage in the last game.

We stress that this simulation of ODelegate will be used in all the following proofs: a delegated
key is identical to a fresh key, excepted the common r`,λ for keys delegated from the same
original key.

C.2 Proof of Theorem 14 – Del-IND-Security for Encaps∗

Proof. The proof will proceed by games, with exactly the same sequence as in the previous
proof following the IND-security proof of the KP-ABE in the appendix B, except the RoREncaps-
challenge that allows non-empty Γi. For the same reason, the OEncaps-queries on pairs (Γv, Γi),

40

with Γi 6= ∅ can be simulated. Indeed, as above, everything on the 7-th component can be done
independently, knowing both d7 and d∗7, as these vectors will be known to the simulator, almost
all the time, excepted in some specific gaps. In theses cases, we will have to make sure how
to simulate the OEncaps ciphertexts. As explained in the proof, Section C.1, we can simulate
ODelegate-queries as OKeyGen-queries, since a delegated key is identical to a fresh key, excepted
the common r`,λ for keys delegated from the same original key. We thus just have to take care
about the way we choose r`,λ. This will be critical in G2.k.2.3.p.6, and it will be correct as the
same constraint will be applied to y`,λ introduced in G2.k.2.2

As in the IND-security proof of the KP-ABE, the idea of the sequence is to introduce an
additional labeling (s`,0, (s`,λ)λ) in each `-th key (in G2.k.1, from Figure 7), where each label is
masked by a random zt for each attribute t (in G2.k.2).

However, in order to go to game G2.k.3, one cannot directly conclude that sk,0 is independent
from the view of the adversary: we only know T̃k(Γv, Γi) = 0, but not necessarily Tk(Γv ·∪Γi) = 0,
as in the previous proof.

G2.k.2.0 Intermediate sequence from G2.k.2 (from Figure 7)
ct = (σt(1, t) ω | τ 0 τzt ut)

` < k k∗`,0 = (a`,0 r`,0 1)
k∗`,λ = (π`,λ(t`,λ,−1) a`,λ | 0 0 s′`,λ/zt`,λ r`,λ)

` = k k∗k,0 = (ak,0 sk,0 1)
k∗k,λ = (πk,λ(tk,λ,−1) ak,λ | 0 0 sk,λ/ztk,λ rk,λ)

` > k k∗`,0 = (a`,0 0 1)
k∗`,λ = (π`,λ(t`,λ,−1) a`,λ | 0 0 0 r`,λ)

s′`,λ is either the label s`,λ when r`,λ · ut`,λ = 0, or a random scalar in Zq otherwise

G2.k.2.1 SubSpace-Ind Property, on (D,D∗)4,5, between τ and 0

ct = (σt(1, t) ω | 0 0 τzt ut)

G2.k.2.2 SubSpace-Ind Property, on (D∗,D)2,4, between 0 and y`,λ
k∗k,0 = (ak,0 sk,0 1)

k∗k,λ = (πk,λ(tk,λ,−1) ak,λ | yk,λ 0 sk,λ/ztk,λ rk,λ)

G2.k.2.3 Formal basis change, on (D,D∗)5,7, to duplicate r`,λ

` < k k∗`,0 = (a`,0 r`,0 1) k∗`,λ = (. . . | y`,λ r`,λ s′`,λ/zt`,λ r`,λ)

` = k k∗k,0 = (ak,0 sk,0 1) k∗k,λ = (. . . | yk,λ rk,λ sk,λ/ztk,λ rk,λ)

` > k k∗`,0 = (a`,0 0 1) k∗`,λ = (. . . | y`,λ r`,λ 0 r`,λ)

G2.k.2.4 Alteration of the labeling. See Figure 14

` < k k∗`,0 = (a`,0 r`,0 1) k∗`,λ = (. . . | y`,λ 0 s′`,λ/zt`,λ rl,λ)

` = k k∗k,0 = (ak,0 sk,0 1) k∗k,λ = (. . . | yk,λ 0 s′k,λ/ztk,λ rk,λ)

` > k k∗`,0 = (a`,0 0 1) k∗`,λ = (. . . | y`,λ 0 0 r`,λ)

G2.k.2.5 Limitations on KeyGen-queries: sk,0 unpredictable, replaced by a random rk,0

` = k k∗k,0 = (ak,0 rk,0 1) k∗k,λ = (. . . | yk,λ 0 s′k,λ/ztk,λ rk,λ)

G2.k.2.6 SubSpace-Ind Property, on (D∗,D)2,4, between y`,λ and 0
k∗k,0 = (ak,0 rk,0 1)

k∗k,λ = (πk,λ(tk,λ,−1) ak,λ | 0 0 s′k,λ/ztk,λ rk,λ)

G2.k.2.7 SubSpace-Ind Property, on (D,D∗)4,5, between 0 and τ

ct = (σt(1, t) ω | τ 0 τzt ut)

Fig. 13: Sequence of games on the keys for the Del-IND-security proof of our SA-KP-ABE (recall
of Figure 9)

Hence, we revisit this gap with an additional sequence presented in the Figure 9 where we
focus on the k-th key and the ciphertext, with random ω, τ, ξ, ξ′, (σt), (zt)

$← Zq, but for all

Appendix 41

G2.k.2.3.p.0 Hybrid game for G2.k.2.3, with 1 ≤ p ≤ P + 1 (from Figure 9)
c0 = (ω τ ξ)
ct = (σt(1, t) ω | 0 0 τzt ut)

` < k k∗`,0 = (a`,0 r`,0 1)
k∗`,λ = (π`,λ(t`,λ,−1) a`,λ | y`,λ r`,λ s′`,λ/zt`,λ r`,λ)

` = k k∗k,0 = (ak,0 sk,0 1)
tk,λ < p k∗k,λ = (πk,λ(tk,λ,−1) ak,λ | yk,λ rk,λ s′k,λ/ztk,λ rk,λ)
tk,λ ≥ p k∗k,λ = (πk,λ(tk,λ,−1) ak,λ | yk,λ rk,λ sk,λ/ztk,λ rk,λ)

` > k k∗`,0 = (a`,0 0 1)
k∗`,λ = (π`,λ(t`,λ,−1) a`,λ | y`,λ r`,λ 0 r`,λ)

s′`,λ is either the label s`,λ when r`,λ · ut`,λ = 0, or a random scalar in Zq otherwise

G2.k.2.3.p.1 Swap-Ind Property, on (D,D∗)5,7, for 0 and up in cp only

cp = (. . . | 0 up τzp 0) ct = (. . . | 0 0 τzt ut)

G2.k.2.3.p.2 Index-Ind Property, on (D∗,D)1,2,5, between r`,λ and 0, for all t`,λ 6= p
cp = (. . . | 0 up τzp 0) ct = (. . . | 0 0 τzt ut)

t`,λ 6= p, ` < k k∗`,λ = (. . . | y`,λ 0 s′`,λ/zt`,λ r`,λ)

k∗`,λ = (. . . | y`,λ r`,λ s′`,λ/zp r`,λ) t`,λ = p, ` < k

tk,λ < p, ` = k k∗k,λ = (. . . | yk,λ 0 s′k,λ/ztk,λ rk,λ)

k∗k,λ = (. . . | yk,λ rk,λ sk,λ/zp rk,λ) tk,λ = p, ` = k

tk,λ > p, ` = k k∗k,λ = (. . . | yk,λ 0 sk,λ/ztk,λ rk,λ)

t`,λ 6= p, ` > k k∗`,λ = (. . . | y`,λ 0 0 r`,λ)

k∗`,λ = (. . . | y`,λ r`,λ 0 r`,λ) t`,λ = p, ` > k

G2.k.2.3.p.3 Formal change of basis on column 5, multiplying ciphertext by τzp/up

cp = (. . . | 0 τzp τzp 0) ct = (. . . | 0 0 τzt ut)

k∗`,λ = (. . . | y`,λ r`,λup/τzp s′`,λ/zp r`,λ) t`,λ = p, ` < k

k∗k,λ = (. . . | yk,λ rk,λup/τzp sk,λ/zp rk,λ) tk,λ = p, ` = k

k∗`,λ = (. . . | y`,λ r`,λup/τzp 0 r`,λ) t`,λ = p, ` > k

G2.k.2.3.p.4 Index-Ind Property, on (D,D∗)1,2,5, between 0 and τzt, for t 6= p

cp = (. . . | 0 τzp τzp 0) ct = (. . . | 0 τzt τzt ut)

G2.k.2.3.p.5 Swap-Ind Property, on (D∗,D)4,5,6, between rk,λup/τzp and 0, for tk,λ = p only
cp = (. . . | 0 τzp τzp 0) ct = (. . . | 0 τzt τzt ut)

k∗`,λ = (. . . | y`,λ r`,λup/τzp s′`,λ/zp r`,λ) t`,λ = p, ` < k

k∗k,λ = (. . . | yk,λ 0
sk,λ+rk,λup/τ

zp
rk,λ) tk,λ = p, ` = k

k∗`,λ = (. . . | y`,λ r`,λup/τzp 0 r`,λ) t`,λ = p, ` > k

Fig. 14: Sequence of sub-games on the attributes for the Del-IND-security proof of our SA-KP-
ABE

42

G2.k.2.3.p.6 SubSpace-Ind Property, on (D∗,D)4,7, to randomize rk,λ for tk,λ = p
cp = (. . . | 0 τzp τzp 0) ct = (. . . | 0 τzt τzt ut)

t`,λ 6= p, ` < k k∗`,λ = (. . . | y`,λ 0 s′`,λ/zt`,λ r`,λ)
tk,λ < p, ` = k k∗k,λ = (. . . | yk,λ 0 s′k,λ/ztk,λ rk,λ)

k∗`,λ = (. . . | y`,λ r`,λup/τzp s′`,λ/zp r`,λ) t`,λ = p, ` < k

k∗k,λ = (. . . | yk,λ 0 s′k,λ/zp r′k,λ) tk,λ = p, ` = k

k∗`,λ = (. . . | y`,λ r`,λup/τzp 0 r`,λ) t`,λ = p, ` > k
tk,λ > p, ` = k k∗k,λ = (. . . | yk,λ 0 sk,λ/ztk,λ rk,λ)
t`,λ 6= p, ` > k k∗`,λ = (. . . | y`,λ 0 0 r`,λ)

G2.k.2.3.p.7 Swap-Ind Property, on (D∗,D)4,5,6, between 0 and r′k,λup/τzp, for tk,λ = p only
cp = (. . . | 0 τzp τzp 0) ct = (. . . | 0 τzt τzt ut)

k∗`,λ = (. . . | y`,λ r`,λup/τzp s′`,λ/zp r`,λ) t`,λ = p, ` < k

k∗k,λ = (. . . | yk,λ r′k,λup/τzp
s′k,λ−r

′
k,λup/τ

zp
r′k,λ) tk,λ = p, ` = k

k∗`,λ = (. . . | y`,λ r`,λup/τzp 0 r`,λ) t`,λ = p, ` > k

G2.k.2.3.p.8 Index-Ind Property, on (D,D∗)1,2,5, between τzt and 0

cp = (. . . | 0 τzp τzp 0) ct = (. . . | 0 0 τzt ut)

t`,λ 6= p, ` < k k∗`,λ = (. . . | y`,λ 0 s′`,λ/zt`,λ r`,λ)
tk,λ < p, ` = k k∗k,λ = (. . . | yk,λ 0 s′k,λ/ztk,λ rk,λ)

k∗`,λ = (. . . | y`,λ r`,λup/τzp s′`,λ/zp r`,λ) t`,λ = p, ` ≤ k
k∗`,λ = (. . . | y`,λ r`,λup/τzp 0 r`,λ) t`,λ = p, ` > k

tk,λ > p, ` = k k∗k,λ = (. . . | yk,λ 0 sk,λ/ztk,λ rk,λ)
t`,λ 6= p, ` > k k∗`,λ = (. . . | y`,λ 0 0 r`,λ)

G2.k.2.3.p.9 Formal change of basis

cp = (. . . | 0 up τzp 0) ct = (. . . | 0 0 τzt ut)

k∗`,λ = (. . . | y`,λ r`,λ s′`,λ/zp r`,λ) t`,λ = p, ` ≤ k

k∗`,λ = (. . . | y`,λ r`,λ 0 r`,λ) t`,λ = p, ` > k

G2.k.2.3.p.10 Index-Ind Property, on (D∗,D)1,2,5, between 0 and r`,λ, for all t`,λ 6= p
cp = (. . . | 0 up τzp 0) ct = (. . . | 0 0 τzt ut)

t`,λ 6= p, ` < k k∗`,λ = (. . . | y`,λ r`,λ s′`,λ/zt`,λ r`,λ)

tk,λ < p, ` = k k∗k,λ = (. . . | yk,λ rk,λ s′k,λ/ztk,λ rk,λ)

k∗`,λ = (. . . | y`,λ r`,λ s′`,λ/zp r`,λ) t`,λ = p, ` ≤ k
k∗`,λ = (. . . | 0 r`,λ 0 r`,λ) t`,λ = p, ` > k

tk,λ > p, ` = k k∗k,λ = (. . . | yk,λ rk,λ sk,λ/ztk,λ rk,λ)

t`,λ 6= p, ` > k k∗`,λ = (. . . | y`,λ r`,λ 0 r`,λ)

G2.k.2.3.p.11 Swap-Ind Property, on (D,D∗)5,7, for 0 and up

cp = (. . . | 0 0 τzp up) ct = (. . . | 0 0 τzt ut)

Fig. 14: Sequence of sub-games on the attributes for the Del-IND-security proof of our SA-KP-
ABE (Cont’ed)

Appendix 43

the OKeyGen-query, random a`,0, (π`,λ)
$← Zq, as well as a random a`,0-labeling (a`,λ)λ of the

access-tree Tk, but also s`,0
$← Zq and a second independent random s`,0-labeling (s`,λ)λ of the

access-tree Tk, and an independent random r`,0
$← Zq. The goal is to replace each label sk,λ by

a random independent value s′k,λ when utk,λ · rk,λ 6= 0. As a consequence, we will consider below
that s′k,λ denotes either the label sk,λ when utk,λ · rk,λ = 0 or a random scalar:

Game G2.k.2.0 The first game is exactly G2.k.2, where the simulator honestly runs the setup,
with PK = {(b1,b3,b

∗
1), (d1,d2,d3,d

∗
1,d
∗
2,d
∗
3)}, SK = {d7}, and MK = {b∗3,d∗7}, from ran-

dom dual orthogonal bases.
OKeyGen(T`) (or ODelegate-queries): The simulator builds the `-th key:

` < k k∗`,0 = (a`,0, r`,0, 1)B∗

k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, 0, 0, s
′
`,λ/zt`,λ , r`,λ)D∗

` = k k∗k,0 = (ak,0, sk,0, 1)B∗

k∗k,λ = (πk,λ(tk,λ,−1), ak,λ, 0, 0, sk,λ/ztk,λ , rk,λ)D∗

` > k k∗`,0 = (a`,0, 0, 1)B∗

k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, 0, 0, 0, r`,λ)D∗

with r`,λ
$← Zq if λ ∈ La or r`,λ = 0 if λ ∈ Lp. The decryption key dk` is then (k∗`,0, (k

∗
`,λ)λ).

OEncaps(Γm,v, Γm,i): The simulator builds the m-th ciphertext using all the known vectors
of the basis:

cm,0 = (ωm, 0, ξm)B cm,t = (σm,t(t,−1), ωm, 0, 0, 0, um,t)D

with ωm, ξm
$← Zq, σm,t $← Zq and um,t

$← Z∗q if t ∈ Γm,i or um,t ← 0 if t ∈ Γm,v. The
ciphertext Cm is then (cm,0, (cm,t)t);

RoREncaps(Γv, Γi): On the unique query on a set of attributes (Γv ·∪ Γi), the simulator gen-
erates the ciphertext C = (c0, (ct)t∈(Γv ·∪Γi)) where

c0 = (ω, τ, ξ)B ct = (σt(1, t), ω, τ, 0, τzt, ut)D

for all the attributes t ∈ (Γv ·∪ Γi), with ut
$← Zq if t ∈ Γi or ut = 0 if t ∈ Γv. According

to the real or random game (bit b
$← {0, 1}), one outputs (Kb, C).

From the adversary’s guess b′ for b, if for some T̃ , T̃ (Γv, Γi) = 1, then β
$← {0, 1}, otherwise

β = b′. We denote Adv2.k.2.0 = Pr[β = 1|b = 1] − Pr[β = 1|b = 0]. The goal of this sequence
of games is to replace sk,0, that can be derived by an acceptable set of sk,λ, by a random and
independent value rk,0, in the key generated during the k-th OKeyGen-query.
Indeed, to be a legitimate attack (that does not randomize the adversary’s guess b′), for all
the key queries T̃`, one must have T̃`(Γv, Γi) = 0. In particular, T̃k(Γv, Γi) = 0: this means
that
– either the regular access-tree policy is not met, i.e., Tk(Γv ·∪ Γi) = 0.

– or the regular access-tree policy is met, but one active key leaf matches one invalid cipher-
text attribute: ∀T ′ ∈ EPT(Tk, Γv ·∪Γi), ∃λ ∈ T ′∩La, A(λ) ∈ Γi, and from the assumptions,
for any such tree T ′, the active leave is an independent leave.

In both cases, we will use the same technique to show sk,0 is independent from any other
value. But first, we will replace all the active leaves associated to invalid ciphertexts in the
challenge ciphertext by inactive leaves.
Of course, in the following sequence, we will have to take care of the simulation of the challenge
ciphertext, but also of the OEncaps-oracle. For the latter, we will have to make precise this
simulation when public vectors (d1,d2,d3) or the private vector d7 are impacted.

44

Game G2.k.2.1 In this game, we first clean the 4-th column of the ciphertext from the τ . To
this aim, we are given a tuple (a ·G1, b ·G1, c ·G1) in G1, where c = ab+µ mod q with either
µ = 0 or µ = τ (fixed from c0). When we start from random dual orthogonal bases (U,U∗)
and (V,V∗) of size 3 and 7 respectively, one considers the matrices:

D =

(
1 a
0 1

)
3,4

D′ =

(
1 0
−a 1

)
3,4

D∗ = D′ · V∗ D = D · V

We can calculate all vectors but d∗3. Hence, there is no problem for simulating the OEncaps-
queries. For the challenge ciphertext, we exploit the DSDH assumption:

ct = (σt(1, t), b, c, 0, τzt, ut)V = (σt(1, t), b, c− ab, 0, τzt, ut)D
= (σt(1, t), b, µ, 0, τzt, ut)D

which is correct, with ω = b and according to µ, this is either τ , as in the previous game or
0 as in this game. For the keys, one notes that the 4-th component is 0, and so the change of
basis has no impact on the 3-rd component, when using basis V∗:

k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, 0, . . .)V∗ = (π`,λ(t`,λ,−1), a`,λ, 0, . . .)D∗

Then, we have Adv2.k.2.0 − Adv2.k.2.1 ≤ 2 · AdvddhG1
(t).

Game G2.k.2.2 In this game, we can now introduce noise in the 4-th column the keys. In order
to properly deal with delegated keys, as for r`,λ that have to be the same values for all the
leaves delegated from the same initial key, we will also set the same random y`,λ. To this
aim, we are given a tuple (a · G2, b · G2, c · G2) in G2, where c = ab + ζ mod q with either

ζ = 0 or ζ
$← Z∗q . We choose additional random scalars α`,λ, β`,λ

$← Zq (but the same α`,λ for
all the leaves delegated from the same initial key), to virtually set b`,λ = α`,λ · b + β`,λ and
c`,λ = α`,λ · c+ β`,λ · a, then c`,λ − ab`,λ = ζ · α`,λ, which are either 0 or independent random
values. When we start from random dual orthogonal bases (U,U∗) and (V,V∗) of size 3 and
7 respectively, one considers the matrices:

D =

(
1 0
a 1

)
2,4

D′ =

(
1 −a
0 1

)
2,4

D∗ = D′ · V∗ D = D · V

We can calculate all vectors but d4, which is not used anywhere. Then, for the keys, we
exploit the DDH assumption:

k∗`,λ = (b`,λ(t`,λ,−1), a`,λ, c`,λ, . . .)V∗ = (b`,λ(t`,λ,−1), a`,λ, c`,λ − ab`,λ, . . .)D∗
= (b`,λ(t`,λ,−1), a`,λ, ζ · α`,λ, . . .)D∗

Which is either the previous game, with π`,λ = b`,λ, when ζ = 0, or the current game with
y`,λ = ζ · α`,λ (the same random y`,λ for all the leaves delegated from the same initial key):
Adv2.k.2.1 − Adv2.k.2.2 ≤ AdvddhG2

(t).

Game G2.k.2.3 In this game, we duplicate every r`,λ into the 5-th column of the key. To this
aim, one defines the matrices

D =

(
1 1
0 1

)
5,7

D′ =

(
1 0
−1 1

)
5,7

D∗ = D′ · V∗ D = D · V

which only modifies d5, which is hidden, and d∗7, which is secret, so the change is indistin-
guishable for the adversary. One can compute the keys and ciphertexts as follows, for all
leaves λ of each query ` of the adversary:

k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, y`,λ, 0, s`,λ/zt`,λ , r`,λ)V∗

= (π`,λ(t`,λ,−1), a`,λ, y`,λ, r`,λ, s`,λ/zt`,λ , r`,λ)D∗

ct = (σt(1, t), ω, 0, 0, τzt, ut)V = (σt(1, t), ω, 0, 0, τzt, ut)D

Appendix 45

As the 5-th component in the ciphertext is 0, the change of basis makes no change. And
this is the same for the ciphertexts generated by the OEncaps-simulation. Hence, the perfect
indistinguishability between the two games: Adv2.k.2.3 = Adv2.k.2.2.

Game G2.k.2.4 In this game, we target the k-th OKeyGen-query, and replace sk,λ by an inde-
pendent s′k,λ for all the active leaves that correspond to an invalid attribute in the challenge
ciphertext. For the sake of simplicity, s′`,λ is either the label s`,λ when r`,λ · ut`,λ = 0, or a
random independent scalar in Zq:

k∗k,0 = (ak,0, sk,0, 1)B∗

k∗k,λ = (πk,λ(tk,λ,−1), ak,λ, yk,λ, 0, s
′
k,λ/ztk,λ , rk,λ)D∗

But to this aim, we will need an additional sequence of sub-games G2.k.2.3.p.∗, that will operate
iteratively on each attribute p, to convert G2.k.2.3 into G2.k.2.4, as presented in the Figure 14.
But we first complete the first sequence, and details the sub-sequence afterwards.

Game G2.k.2.5 For the k-th key query, one can now replace sk,0 by rk,0. Indeed, as explained in
the Remark 25, for missing ciphertexts in the challenge ciphertext, the associated leaves in the
key have unpredictable sk,λ. In addition, for active leaves that correspond to invalid attributes
in the challenge ciphertext, sk,λ have been transformed into s′k,λ, random independent values.
Then, we can consider that all the leaves associated to attributes not in Γ are false, but
also active leaves associated to attributes in Γi are false. As T̃k(Γv, Γi) = 0, the root label is
unpredictable. One thus generates the k-th key query as:

k∗k,0 = (ak,0, rk,0, 1)B∗

k∗k,λ = (πk,λ(tk,λ,−1), ak,λ, yk,λ, 0, s
′
k,λ/ztk,λ , rk,λ)D∗

Game G2.k.2.6 We can now invert the above step, when we added y`,λ: Adv2.k.2.5−Adv2.k.2.6 ≤
AdvddhG2

(t).

Game G2.k.2.7 We can now invert the above step, when we removed τ from the ciphertext:
Adv2.k.2.6 − Adv2.k.2.7 ≤ 2 · AdvddhG1

(t).

We now detail the sub-sequence starting from G2.k.2.3.p.0 to prove the indistinguishability be-
tween G2.k.2.3 and G2.k.2.4. In the new hybrid game G2.k.2.3.p.0, the critical point will be the p-th
ciphertext, where, when p = 1, this is exactly the above Game G2.k.2.3, and when p = P + 1,
this is the above Game G2.k.2.4. And it will be clear, for any p, that G2.k.2.3.p.11 = G2.k.2.3.p+1.0.

With random ω, τ, ξ, ξ′, (σt), (zt)
$← Zq, but for all the OKeyGen-query, random a`,0, (yλ),

(π`,λ)
$← Zq, as well as a random a`,0-labeling (a`,λ)λ of the access-tree Tk, but also s`,0

$← Zq
and a second independent random s`,0-labeling (s`,λ)λ of the access-tree Tk, and an independent

random r`,0
$← Zq:

Game G2.k.2.3.p.0: One defines the hybrid game for p:

k∗k,0 = (ak,0, sk,0, 1)B∗

tk,λ < p k∗k,λ = (πk,λ(tk,λ,−1), ak,λ, yk,λ, rk,λ, s
′
k,λ/ztk,λ , rk,λ)D∗

tk,λ ≥ p k∗k,λ = (πk,λ(tk,λ,−1), ak,λ, yk,λ, rk,λ, sk,λ/ztk,λ , rk,λ)D∗

where s′`,λ is either the label s`,λ when r`,λ · ut`,λ = 0, or a random independent scalar in Zq
(when this is an active leaf that corresponds to an invalid ciphertext).
So one can note that if at the challenge query p ∈ Γv, then up = 0, and so we can jump to
G2.k.2.3.p.11, but we do not know it before the challenge-query is asked, whereas we have to
simulate the keys. This is the reason why we need to know the super sets Av and Ai: the
challenge ciphertext is anticipated with up = 0 if p ∈ Av or with up

$← Z∗q if p ∈ Ai.

46

Game G2.k.2.3.p.1: The previous game and this game are indistinguishable under the DDH
assumption in G1: one essentially uses theorem 21. Given a tuple (a · G1, b · G1, c · G1) in
G1, where c = ab + µ mod q with either µ = 0 or µ = up, the 7-th component of the p-th
ciphertext. When we start from random dual orthogonal bases (U,U∗) and (V,V∗) of size 3
and 7 respectively, one considers the matrices:

D =

1 a −a
0 1 0
0 0 1

1,5,7

D′ =

 1 0 0
−a 1 0
a 0 1

1,5,7

D = D · V D∗ = D′ · V∗

We can calculate all vectors but d∗5 and d∗7, which are not in the public key. Through V, we
calculate the challenge ciphertext for the attribute of the p-th ciphertext

cp = (0, 0, ω, 0, 0, τzp, up)D + (b(1, p), 0, 0, c, 0,−c)V
= (0, 0, ω, 0, 0, τzp, up)D + (b(1, p), 0, 0, c− ab, 0, ab− c)D
= (b(1, p), ω, 0, µ, τzp, up − µ)D

If µ = 0, we are in the previous game. If µ = up, then we are in the current game. Then,
every other ciphertext is computed directly in D:

∀t 6= p, ct = (σt(1, t), ω, 0, 0, τzt, ut)D

as well as the answers to OEncaps-queries. The keys are calculated through V∗ but are
unchanged by the change of basis because the 5-th and 7-th components are exactly the
same for every key query `, and thus cancel themselves in the 1st component. We thus have
Adv2.k.2.3.p.0 − Adv2.k.2.3.p.1 ≤ 2 · AdvddhG1

(t).

Game G2.k.2.3.p.2: We keep the r`,λ value (at the 5-th hidden position) in the keys such that
t`,λ = p, and replace it in all other keys by 0, in order to prepare the possibility to later
modify the ciphertexts on this component. To show this is possible without impacting the
other vectors, we use the Index-Ind property from Theorem 23, but in another level of sequence
of hybrid games, for γ ∈ {1, . . . , P}\{p}:
Game G2.k.2.3.p.1.γ: We consider the following hybrid game, where the first satisfied condition

on the indices is applied:

cp = (σp(1, p), ω, 0, up, τzp, 0)D ct = (σt(1, t), ω, 0, 0, τzt, ut)D t 6= p

k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, y`,λ, r`,λ, s
∗
`,λ/zt`,λ , r`,λ)D∗ t`,λ = p

k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, y`,λ, 0, s
∗
`,λ/zt`,λ , r`,λ)D∗ p 6= t`,λ < γ

k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, y`,λ, r`,λ, s
∗
`,λ/zt`,λ , r`,λ)D∗ p 6= t`,λ ≥ γ

where s∗`,λ is either s′`,λ, s`,λ, or 0:

s∗`,λ = s′`,λ if ` < k, or ` = k, tk,λ < p

s∗`,λ = s`,λ if ` = k, tk,λ ≥ p
s∗`,λ = 0 if ` > k

When γ = 1, this is the previous game: G2.k.2.3.p.1.1 = G2.k.2.3.p.1, whereas with γ = P + 1,
this is the current game: G2.k.2.3.p.1.P+1 = G2.k.2.3.p.2.

We will gradually replace the r`,λ values, at the 5-th hidden position, by 0 (when t`,λ 6= p):
in this game, we deal with the case t`,λ = γ, for all the `-th keys. We consider a triple

Appendix 47

(a · G2, b · G2, c · G2), where c = ab + ζ mod q with either ζ = 0 or ζ = 1, which are
indistinguishable under the DSDH assumption. We define the matrices

D =

−p −γ 0
1 1 0
0 a 1

1,2,5

D′ =
1

γ − p
×

 1 −1 a
γ −p ap
0 0 γ − p

1,2,5

and then D = D · V, D∗ = D′ · V∗: we cannot compute d5, but this component is always
0, except for cp which will be defined in the original basis V. The other ciphertexts will be
directly generated in D. Similarly, we will define all the keys k∗`,λ for t`,λ 6= γ in D∗, but for

t`,λ = γ, we choose additional random scalars β`,λ
$← Zq, to virtually set b`,λ = r`,λ · b+β`,λ

and c`,λ = r`,λ · c+ β`,λ · a, then c`,λ − ab`,λ = ζ · r`,λ, which is either 0 or r`,λ. One can set

cp = (0, 0, ω, 0, 0, τzp, 0)D + ((p− γ)σ(0, 1), 0, 0, up, 0, 0)V

= (0, 0, ω, 0, 0, τzp, 0)D + (σ(1, p) + aup(1, p)/(γ − p), 0, 0, up, 0, 0)D

= ((σ + aup/(γ − p))(1, p), ω, 0, up, τzp, 0)D

= (σp(1, p), ω, 0, up, τzp, 0)D

k∗`,λ = (0, 0, a`,λ, y`,λ, 0, s
∗
`,λ/zt`,λ , r`,λ)D∗ + (b`,λ · (0,−1), 0, 0, c`,λ, 0, 0)V∗

= (0, 0, a`,λ, y`,λ, 0, s
∗
`,λ/zt`,λ , r`,λ)D∗ + (b`,λ · (γ,−1), 0, 0, c`,λ − ab`,λ, 0, 0)D∗

= (b`,λ · (γ,−1), a`,λ, y`,λ, ζ · r`,λ, s∗`,λ/zt`,λ , r`,λ)D∗

when t`,λ = γ. This is either the current game G2.k.2.3.p.1.γ , if ζ = 1, or the next game
G2.k.2.3.p.1.γ+1, if ζ = 0.

With all this sequence, we have Adv2.k.2.3.p.1 − Adv2.k.2.3.p.2 ≤ 2P · AdvddhG2
(t).

Game G2.k.2.3.p.3: The previous game (in bases (U,U∗,V,V∗)) and this game (in bases (B,B∗,D,D∗))
are perfectly indistinguishable by using a formal change of basis, on hidden vectors, with

D =
(
τzp
up

)
5

D′ =
(
up
τzp

)
5

D = D · V D∗ = D′ · V∗

The challenge ciphertext and keys that are impacted become:

cp = (σp(1, p), ω, 0, up, τzp, 0)V

= (σp(1, p), ω, 0, τzp, τzp, 0)D

∀`, t`,λ = p, k∗`,λ = (π`,λ(p,−1), a`,λ, y`,λ, r`,λ, s
∗
`,λ/zp, r`,λ)V∗

= (π`,λ(p,−1), a`,λ, y`,λ, r`,λup/τzp, s
∗
`,λ/zp, r`,λ)D∗

All the other vectors have a zero in these components (included the OEncaps-ciphertexts).
Hence, Adv2.k.2.3.p.3 = Adv2.k.2.3.p.2. Note however this is because of this game the security
result requires the semi-adaptive super-set setting: the change of basis needs to know that
up 6= 0.

Game G2.k.2.3.p.4: We keep the τzp value (at the 5-th hidden position) in the ciphertext for
the p-th attribute only, and replace all the other values from 0 to τzt, which is the same value
as in the 6-th component of each ciphertext, to allow a later swap of the key elements from
the 6-th component to the 5-th:

cp = (σt(1, t), ω, 0, τzp, τzp, 0)D

ct = (σt(1, t), ω, 0, τzt, τzt, ut)D t 6= p

To show this is possible without impacting the other vectors, we use the Index-Ind property
from Theorem 23, but in another level of sequence of hybrid games, for γ ∈ {1, . . . , P}\{p}:

48

Game G2.k.2.3.p.4.γ: We consider

cp = (σp(1, p), ω, 0, τzp, τzp, 0)D

ct = (σt(1, t), ω, 0, τzt, τzt, ut)D p 6= t < γ

ct = (σt(1, t), ω, 0, 0, τzt, ut)D p 6= t ≥ γ
k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, y`,λ, r`,λ, s

∗
`,λ/zt`,λ , r`,λ)D∗ t`,λ = p

k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, y`,λ, 0, s
∗
`,λ/zt`,λ , r`,λ)D∗ t`,λ 6= p

When γ = 1, this is the previous game: G2.k.2.3.p.4.1 = G2.k.2.3.p.3, whereas with γ = P + 1,
this is the current game: G2.k.2.3.p.4.P+1 = G2.k.2.3.p.4.
For any γ ∈ {1, . . . , P}\{p}, we consider a triple (a·G1, b·G1, c·G1), where c = ab+ζ mod q
with either ζ = 0 or ζ = τzt, which are indistinguishable under the DSDH assumption. We
define the matrices

D =
1

p− γ
×

 p −γ ap
−1 1 −a
0 0 p− γ

1,2,5

D′ =

 1 1 0
γ p 0
−a 0 1

1,2,5

and then D = D · V, D∗ = D′ · V∗: we cannot compute d∗5, but the components on this
vector are all 0 except for k∗`,λ with t`,λ = p which will be defined in V∗, for all `. All other
keys are directly defined in D∗, as well as the ciphertexts that are directly defined in D
excepted cγ :

cγ = (0, 0, ω, 0, 0, τzγ , uγ)D + (b, 0, 0, 0, c, 0, 0)V

= (0, 0, ω, 0, 0, τzγ , uγ)D + (b, bγ, 0, 0, c− ab, 0, 0)D

= (b(1, γ), ω, 0, ζ, τzγ , uγ)D

k∗`,λ = (0, 0, a`,λ, y`,λ, 0, s
∗
`,λ/zp, r`,λ)D∗ + ((p− γ) · (π, 0), 0, 0, r`,λ, 0, 0)V∗

= (0, 0, a`,λ, y`,λ, 0, s
∗
`,λ/zp, r`,λ)D∗ + (pπ + apr`,λ,−π − ar`,λ, 0, 0, r`,λ, 0, 0)D∗

= ((π + ar`,λ) · (p,−1), a`,λ, y`,λ, r`,λ, s
∗
`,λ/zp, r`,λ)D∗

which is the hybrid game with π`,λ = π + ar`,λ and the 5-th component of cγ is ζ, which
is either 0 and thus the game G2.k.2.3.p.4.γ or τzγ and thus the game G2.k.2.3.p.4.γ+1: hence,
the distance between two consecutive games is bounded by AdvdsdhG1

(t).
With all this sequence, we have Adv2.k.2.3.p.3 − Adv2.k.2.3.p.4 ≤ 2P · AdvddhG1

(t).

Game G2.k.2.3.p.5: All ciphertexts now have exactly the same value in 5-th and 6-th positions.
We will thus use r`,λ in the 5-th position, for keys with t`,λ = p, to modify the 6-th position of
said keys with a swap. The previous game and this game are indistinguishable under the DDH
assumption in G2: one essentially uses theorem 21. We consider a triple (a ·G2, b ·G2, c ·G2),
where c = ab+ζ mod q with either ζ = 0 or ζ = up/τzp, which are indistinguishable under the
DSDH assumption. When we start from random dual orthogonal bases (U,U∗) and (V,V∗)
of size 3 and 7 respectively, one considers the matrices:

D =

 1 0 0
−a 1 0
a 0 1

1,5,6

D′ =

1 a −a
0 1 0
0 0 1

1,5,6

D = D · V D∗ = D′ · V∗

We can calculate all vectors but d5 and d6, which are not in the public key: However the
challenge ciphertext computation through V is trivial since the 5-th and 6-th components
cancel each other out. We can thus simulate them in D.
For challenge ciphertexts, we set

cp = (σt(1, t), ω, 0, τzp, τzp, 0)V = (σt(1, t), ω, 0, τzp, τzp, 0)D

ct = (σt(1, t), ω, 0, τzt, τzt, ut)V = (σt(1, t), ω, 0, τzt, τzt, ut)D t 6= p

Appendix 49

The only keys that are calculated through V∗ are the ones from the k-th query so that tk,λ = p.

We choose additional random scalars βk,λ
$← Zq, to virtually set bk,λ = rk,λ · b + βk,λ and

ck,λ = rk,λ · c+ βk,λ · a, then ck,λ − abk,λ = ζ · rk,λ, which is either 0 or rk,λ · up/τzp.

k∗k,λ = (0, 0, ak,λ, yk,λ, 0, 0, rk,λ)D∗

+ (b(p,−1), 0, 0, 0, rk,λ · up/τzp − ck,λ, ck,λ + sk,λ/zp, 0)V∗

k∗k,λ = (0, 0, ak,λ, yk,λ, 0, 0, rk,λ)D∗

+ (b(p,−1), 0, 0, bk,λ, rk,λ · up/τzp − (ck,λ − abk,λ),

(ck,λ − abk,λ) + sk,λ/zp, 0)D∗

k∗k,λ = (b(p,−1), ak,λ, yk,λ, rk,λ · up/τzp − ζ · rk,λ, ζ · rk,λ + sk,λ/zp, rk,λ)D∗

If ζ = 0, we are in the previous game. If ζ = up/τzp, then ζ · rk,λ = rk,λ ·up/τzp and we are in
the current game. All other keys are unchanged and calculated through D∗ directly, without
any change. And, Adv2.k.2.3.p.4 − Adv2.k.2.3.p.5 ≤ 2 · AdvddhG2

(t).

Game G2.k.2.3.p.6: In this game, we want to replace rk,λ when tk,λ = p by a random value
in the 7-th column, independently of the value in the 6-th column, so that this 6-th column
value can be really random and independent from other values. We will exploit the random
yk,λ in the 4-th column: We consider a triple (a ·G2, b ·G2, c ·G2), where c = ab+ζ mod q with

either ζ = 0 or ζ
$← Z∗q , which are indistinguishable under the DDH assumption. We choose

additional random scalars αλ, βλ
$← Zq, to virtually set bλ = αλ ·b+βλ and cλ = αλ ·c+βλ ·a,

then cλ−abλ = ζ ·αλ, which are either 0 or independent random values. When we start from
random dual orthogonal bases (U,U∗) and (V,V∗) of size 3 and 7 respectively, one considers
the matrices:

D =

(
1 0
−a 1

)
4,7

D′ =

(
1 a
0 1

)
4,7

D = D · V D∗ = D′ · V∗

We can calculate all vectors but d7, which is not in the public key. Through V, we calculate
the challenge ciphertext, and the OEncaps-answers, when the 7-th component is non-zero, as
the 0 value of the 4-th component does not impact the 7-th during the change of basis.
On the other hand, all the keys can be directly generated in D∗, except kk,λ when tk,λ = p,
for which we use the DDH assumption:

k∗k,λ = (πk,λ(p,−1), ak,λ, 0, 0,
sk,λ + rk,λ · up/τ

zp
, rk,λ)D∗

+ (0, 0, 0, bλ, 0, 0, cλ)V∗

= (πk,λ(p,−1), ak,λ, 0, 0,
sk,λ + rk,λ · up/τ

zp
, rk,λ)D∗

+ (0, 0, 0, bλ, 0, 0, cλ − abλ)D∗

= (πk,λ(p,−1), ak,λ, bλ, 0,
sk,λ + rk,λ · up/τ

zp
, rk,λ + ζ · αλ)V∗

When ζ = 0, this is the previous game, with yk,λ = bλ, when tk,λ = p. Whereas when ζ
$← Z∗q ,

r′k,λ = rk,λ+ζ ·αλ is independent of rk,λ, which makes s′k,λ = (sk,λ+rk,λ ·up/τ)/zp independent

of sk,λ when rk,λ · up 6= 0. Then, Adv2.k.2.3.p.5 − Adv2.k.2.3.p.6 ≤ AdvddhG2
(t).

In order to keep the same r`,λ for all the leaves delegated from the same initial key, we also
apply this additional vector (0, 0, 0, bλ, 0, 0, cλ)V∗ . This will also keep the same y`,λ for all
these leaves.

Game G2.k.2.3.p.7: All ciphertexts have exactly the same value in 5-th and 6-th positions. We
will thus use the Swap-Ind property to revert the change made in game G2.k.2.3.p.5, with the

50

notable difference we are now working with r′k,λ (which has just been randomized) instead
of rk,λ, for keys with tk,λ = p. We are thus not restoring the initial sk,λ but we get a truly
random value s′k,λ. The previous game and this game are indistinguishable under the DDH
assumption in G2: one essentially uses theorem 21. We consider a triple (a ·G2, b ·G2, c ·G2),
where c = ab+ζ mod q with either ζ = 0 or ζ = up/τzp, which are indistinguishable under the
DSDH assumption. When we start from random dual orthogonal bases (U,U∗) and (V,V∗)
of size 3 and 7 respectively, one considers the matrices:

D =

 1 0 0
−a 1 0
a 0 1

4,5,6

D′ =

1 a −a
0 1 0
0 0 1

4,5,6

D = D · V D∗ = D′ · V∗

We can calculate all vectors but d5 and d6, which are not in the public key: However, the
challenge ciphertext computation through V is trivial since the 5-th and 6-th component
cancel each other out. We can thus simulate them through V. We can revert as above by
setting in V∗ the keys from the k-th query so that tk,λ = p. And, Adv2.k.2.3.p.6−Adv2.k.2.3.p.7 ≤
2 · AdvddhG2

(t). We stress that after the swap, we get, for tk,λ = p

k∗k,λ = (πk,λ(p,−1), ak,λ, yk,λ, r
′
k,λup/τzp, (s

′
k,λ − r′k,λup/τ)/zp, r

′
k,λ)D∗

where s′k,λ is a truly random value independent of r′k,λ. So we are not back to game G2.k.2.3.p.4,
but still with a random value in the 6-th component of the key.

Game G2.k.2.3.p.8: We keep the τzp value (at the 5-th hidden position) in the ciphertext for
the p-th attribute only, and replace all the other values from τzt to 0

cp = (σt(1, t), ω, 0, τzp, τzp, 0)D

ct = (σt(1, t), ω, 0, 0, τzt, ut)D t 6= p

To show this is possible without impacting the other vectors, we use the Index-Ind property
from Theorem 23, but in another level of sequence of hybrid games, for γ ∈ {1, . . . , P}\{p}:
Game G2.k.2.3.p.8.γ: We consider

cp = (σp(1, p), ω, 0, τzp, τzp, 0)D

ct = (σt(1, t), ω, 0, 0, τzt, ut)D p 6= t < γ

ct = (σt(1, t), ω, 0, τzt, τzt, ut)D p 6= t ≥ γ
k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, y`,λ, r

′
`,λ, s

∗
`,λ/zt`,λ , r

′
`,λ)D∗ t`,λ = p

k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, y`,λ, 0, s
∗
`,λ/zt`,λ , r`,λ)D∗ t`,λ 6= p

When γ = 1, this is the previous game: G2.k.2.3.p.8.1 = G2.k.2.3.p.7, whereas with γ = P + 1,
this is the current game: G2.k.2.3.p.8.P+1 = G2.k.2.3.p.8.

For any γ ∈ {1, . . . , P}\{p}, we consider a triple (a·G1, b·G1, c·G1), where c = ab+ζ mod q
with either ζ = 0 or ζ = τzt, which are indistinguishable under the DSDH assumption. We
define the matrices

D =
1

p− γ
×

 p −γ ap
−1 1 −a
0 0 p− γ

1,2,5

D′ =

 1 1 0
γ p 0
−a 0 1

1,2,5

and then D = D · V, D∗ = D′ · V∗: we cannot compute d∗5, but the components on this
vector are all 0 except for k∗`,λ with t`,λ = p which will be defined in V∗, for all `. All other

Appendix 51

keys are directly defined in D∗, as well as the ciphertexts that are directly defined in D
excepted cγ :

cγ = (0, 0, ω, 0, 0, τzγ , uγ)D + (b, 0, 0, 0, c, 0, 0)V

= (0, 0, ω, 0, 0, τzγ , uγ)D + (b, bγ, 0, 0, c− ab, 0, 0)D

= (b(1, γ), ω, 0, ζ, τzγ , uγ)D

k∗`,λ = (0, 0, a`,λ, y`,λ, 0, s
∗
`,λ/zp, r`,λ)D∗ + ((p− γ) · (π, 0), 0, 0, r`,λ, 0, 0)V∗

= (0, 0, a`,λ, y`,λ, 0, s
∗
`,λ/zp, r`,λ)D∗ + (pπ + apr`,λ,−π − ar`,λ, 0, 0, r`,λ, 0, 0)D∗

= ((π + ar`,λ) · (p,−1), a`,λ, y`,λ, r`,λ, s
∗
`,λ/zp, r`,λ)D∗

which is the hybrid game with π`,λ = π + ar`,λ and the 5-th component of cγ is ζ, which
is either τzt and thus the game G2.k.2.3.p.8.γ or 0 and thus the game G2.k.2.3.p.8.γ+1: hence,
the distance between two consecutive games is bounded by AdvdsdhG1

(t).

With all this sequence, we have Adv2.k.2.3.p.7 − Adv2.k.2.3.p.8 ≤ 2P · AdvddhG1
(t).

Game G2.k.2.3.p.9: The previous game (in bases (U,U∗,V,V∗)) and this game (in bases (B,B∗,D,D∗))
are perfectly indistinguishable by using a formal change of basis, on hidden vectors, with

D =
(
up
τzp

)
5

D′ =
(
τzp
up

)
5

D = D · V D∗ = D′ · V∗

The challenge ciphertext and keys that are impacted become:

cp = (σp(1, p), ω, 0, τzp, τzp, 0)V

= (σp(1, p), ω, 0, up, τzp, 0)D

∀`, t`,λ = p, k∗`,λ = (π`,λ(p,−1), a`,λ, y`,λ, r`,λ · up/τzp, s∗`,λ/zp, r`,λ)D∗

= (π`,λ(p,−1), a`,λ, y`,λ, r`,λ, s
∗
`,λ/zp, r`,λ)V∗

All the other vectors have a zero in these components (included the OEncaps-ciphertexts).
Hence, Adv2.k.2.3.p.9 = Adv2.k.2.3.p.8.

Game G2.k.2.3.p.10: We keep the r′`,λ value (at the 5-th hidden position) in the keys such that
t`,λ = p, and replace back the 0 in all other keys by r`,λ, in order to prepare the possibility to
later modify the ciphertexts on this component. To show this is possible without impacting
the other vectors, we use the Index-Ind property from Theorem 23, but in another level of
sequence of hybrid games, for γ ∈ {1, . . . , P}\{p}:
Game G2.k.2.3.p.9.γ: We consider the following hybrid game, where the first satisfied condition

on the indices is applied:

cp = (σp(1, p), ω, 0, up, τzp, 0)D ct = (σt(1, t), ω, 0, 0, τzt, ut)D t 6= p

k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, y`,λ, r`,λ, s
∗
`,λ/zt`,λ , r`,λ)D∗ t`,λ = p

k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, y`,λ, r`,λ, s
∗
`,λ/zt`,λ , r`,λ)D∗ p 6= t`,λ < γ

k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, y`,λ, 0, s
∗
`,λ/zt`,λ , r`,λ)D∗ p 6= t`,λ ≥ γ

where s∗`,λ is either s′`,λ, s`,λ, or 0

When γ = 1, this is the previous game: G2.k.2.3.p.9.1 = G2.k.2.3.p.9, whereas with γ = P + 1,
this is the current game: G2.k.2.3.p.9.P+1 = G2.k.2.3.p.10.

We will gradually replace the 0 values, at the 5-th hidden position, by r`,λ (when t`,λ 6= p):
in this game, we deal with the case t`,λ = γ, for all the `-th keys. We consider a triple

52

(a · G2, b · G2, c · G2), where c = ab + ζ mod q with either ζ = 0 or ζ = 1, which are
indistinguishable under the DSDH assumption. We define the matrices

D =

−p −γ 0
1 1 0
0 a 1

1,2,5

D′ =
1

γ − p
×

 1 −1 a
γ −p ap
0 0 γ − p

1,2,5

and then D = D · V, D∗ = D′ · V∗: we cannot compute d5, but this component is always
0, except for cp which will be defined in the original basis V. The other ciphertexts will be
directly generated in D. Similarly, we will define all the keys k∗`,λ for t`,λ 6= γ in D∗, but for

t`,λ = γ, we choose additional random scalars β`,λ
$← Zq, to virtually set b`,λ = r`,λ · b+β`,λ

and c`,λ = r`,λ · c+ β`,λ · a, then c`,λ − ab`,λ = ζ · r`,λ, which is either 0 or r`,λ. One can set

cp = (0, 0, ω, 0, 0, τzp, 0)D + ((p− γ)σ(0, 1), 0, 0, up, 0, 0)V

= (0, 0, ω, 0, 0, τzp, 0)D + (σ(1, p) + aup(1, p)/(γ − p), 0, 0, up, 0, 0)D

= ((σ + aup/(γ − p))(1, p), ω, 0, up, τzp, 0)D

= (σp(1, p), ω, 0, up, τzp, 0)D

k∗`,λ = (0, 0, a`,λ, y`,λ, 0, s
∗
`,λ/zt`,λ , r`,λ)D∗ + (b`,λ · (0,−1), 0, 0, c`,λ, 0, 0)V∗

= (0, 0, a`,λ, y`,λ, 0, s
∗
`,λ/zt`,λ , r`,λ)D∗ + (b`,λ · (γ,−1), 0, 0, c`,λ − ab`,λ, 0, 0)D∗

= (b`,λ · (γ,−1), a`,λ, y`,λ, ζ · r`,λ, s∗`,λ/zt`,λ , r`,λ)D∗

when t`,λ = γ. This is either the current game G2.k.2.3.p.9.γ , if ζ = 0, or the next game
G2.k.2.3.p.9.γ+1, if ζ = 1.

With all this sequence, we have Adv2.k.2.3.p.9 − Adv2.k.2.3.p.10 ≤ 2P · AdvddhG2
(t).

Game G2.k.2.3.p.11: The previous game and this game are indistinguishable under the DDH
assumption in G1: one essentially uses theorem 21. Given a tuple (a · G1, b · G1, c · G1) in
G1, where c = ab + µ mod q with either µ = 0 or µ = up, the 5-th component of the p-th
ciphertext. When we start from random dual orthogonal bases (U,U∗) and (V,V∗) of size 3
and 7 respectively, one considers the matrices:

D =

1 a −a
0 1 0
0 0 1

1,5,7

D′ =

 1 0 0
−a 1 0
a 0 1

1,5,7

D = D · V D∗ = D′ · V∗

We can calculate all vectors but d∗5 and d∗7, which are not in the public key. Through V, we
calculate the challenge ciphertext for the attribute of the p-th ciphertext

cp = (0, 0, ω, 0, 0, τzp, up)D + (b(1, p), 0, 0, c, 0,−c)V
= (0, 0, ω, 0, 0, τzp, up)D + (b(1, p), 0, 0, c− ab, 0, ab− c)D
= (b(1, p), ω, 0, µ, τzp, up − µ)D

If µ = up, we are in the previous game. If µ = 0, then we are in the current game. Then,
every other ciphertext is computed directly in D:

∀t 6= p, ct = (σt(1, t), ω, 0, 0, τzt, ut)D

as well as the answers to OEncaps-queries. The keys are calculated through V∗ but are
unchanged by the change of basis because the 5-th and 7-th components are exactly the
same for every key query `, and thus cancel themselves in the 1st component. We thus have
Adv2.k.2.3.p.10 − Adv2.k.2.3.p.11 ≤ 2 · AdvddhG1

(t).

Appendix 53

C.3 Proof of Theorem 15 – dKey-IND-Security

Proof. In this security game, the adversary has access to the OEncaps-oracle, but only for distinct
key-indistinguishability: all the invalid attributes t ∈ Γm,i in a OEncaps-query correspond to
passive leaves λ ∈ Lp from the challenge key. We will prove it as usual with a sequence of
games:

Game G0: The first game is the real game where the simulator plays the role of the chal-
lenger, with PK = {(b1,b3,b

∗
1), (d1,d2,d3,d

∗
1,d
∗
2,d
∗
3,d
∗
7)}, SK = {d7}, and MK = {b∗3},

from random dual orthogonal bases. We note that d∗7 can be public.
OKeyGen(T̃`) (or ODelegate-queries): The adversary is allowed to issue KeyGen-queries on

an access-tree T̃` = (T`,L`,a,L`,p) (for the `-th query), for which the simulator chooses

a random scalar a`,0
$← Zq and a random a`,0-labeling (a`,λ)λ of the access-tree T`, and

builds the key:

k∗`,0 = (a`,0, 0, 1)B∗ k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, 0, 0, 0, r`,λ)D∗

for all the leaves λ, where t`,λ = A(λ), π`,λ
$← Zq and r`,λ

$← Z∗q if λ ∈ L`,a, or else r`,λ ← 0
if λ ∈ L`,p. The decryption key dk` is then (k∗`,0, (k

∗
`,λ)λ);

OEncaps(Γm,v, Γm,i): The adversary is allowed to issue Encaps∗-queries on disjoint unions
Γm = Γm,v ·∪ Γm,i of sets of attributes, for which the simulator chooses random scalars

ωm, ξm
$← Zq. It then setsKm = gξmt and generates the ciphertext Cm = (cm,0, (cm,t)t∈(Γm,v ·∪Γm,i))

where

cm,0 = (ωm, 0, ξm)B cm,t = (σm,t(t,−1), ωm, 0, 0, 0, um,t)D

for all the attributes t ∈ Γm,v ·∪ Γm,i, σm,t $← Zq and um,t
$← Z∗q if t ∈ Γm,i or um,t ← 0 if

t ∈ Γm,v.
RoAPKeyGen(T̃ ,La,Lp): On the unique query on an access-tree T̃ of its choice, with a list

L = (La ·∪Lp) of active and passive leaves, the simulator chooses a random scalar a0
$← Zq,

and a random a0-labeling (aλ)λ of the access-tree. It then sets the real key dk0 as follows,

with rλ
$← Z∗q if λ ∈ La, or rλ ← 0 if λ ∈ Lp:

k∗0 = (a0, 0, 1)B∗ k∗λ = (πλ(tλ,−1), aλ, 0, 0, 0, rλ)D∗

On the other hand, it sets the all-passive key dk1 as:

k∗0 = (a0, 0, 1)B∗ k∗λ = (πλ(tλ,−1), aλ, 0, 0, 0, 0)D∗

for all λ. According to the real or all-passive (b
$← {0, 1}), one outputs dkb.

From the adversary’s guess b′ for b, one forwards it as the output β, unless for some (Γm,v, Γm,i)
asked to the OEncaps-oracle, some active leaf λ ∈ La from the challenge key corresponds to
some invalid attribute t ∈ Γm,i, in which case one outputs a random β

$← {0, 1}. We denote
Adv0 = Pr[β = 1|b = 1]− Pr[β = 1|b = 0].
We stress that in this distinct key-indistinguishability security game, the active keys in the
challenge key (λ ∈ La with possibly rλ 6= 0) correspond to valid ciphertexts only (t ∈ Γm,i
with um,t = 0, for all queries). But we do not exclude accepting access-trees.

Game G1: In the second and final game, we set rλ ← 0 for all the leaves in the real key dk0:

k∗0 = (a0, 0, 0)B∗ k∗λ = (πλ(tλ,−1), aλ, 0, 0, 0, 0)D∗

It is then clear than Adv1 = 0, as all challenge keys are independent from b.
We detail the sub-sequence starting from G0.p.0 to prove the indistinguishability between
G0 and G1. In the new hybrid sequence G0.p.∗, we will modify all the keys associated to
the p-th attribute, in an indistinguishable way, using the Index-Ind property. It is clear that
G0.1.0 = G0, whereas G0.P+1.0 = G1, and G0.p.4 = G0.p+1.0.

54

c0 = (ω 0 ξ) k∗`,0 = (a`,0 0 1)

G0.p.0 Hybrid game for G0, with 1 ≤ p ≤ P + 1, such that um,p = 0 for all m
cm,t = (σm,t(1, t) ωm | 0 0 0 | um,t)

tλ < p k∗λ = (πλ(tλ,−1) aλ | 0 0 0 | 0)
tλ ≥ p k∗λ = (πλ(tλ,−1) aλ | 0 0 0 | rλ)

G0.p.1 Formal basis change, on (D,D∗)6,7, to duplicate um,t in the 6-th column

cm,t = (σm,t(1, t) ωm | 0 0 um,t | um,t)

tλ < p k∗λ = (πλ(tλ,−1) aλ | 0 0 0 | 0)
tλ ≥ p k∗λ = (πλ(tλ,−1) aλ | 0 0 0 | rλ)

G0.p.2 Swap-Ind Property, on (D,D∗)1,6,7, to swap rλ, for tλ = p, in the 6-th column
cm,t = (σm,t(1, t) ωm | 0 0 um,t | um,t)

tλ < p k∗λ = (πλ(tλ,−1) aλ | 0 0 0 | 0)

tλ = p k∗λ = (πλ(p,−1) aλ | 0 0 rλ | 0)

tλ > p k∗λ = (πλ(tλ,−1) aλ | 0 0 0 | rλ)

G0.p.3 Index-Ind Property, on (D,D∗)1,2,6, between um,t and 0, for t 6= p
cm,p = (σm,t(1, t) ωm | 0 0 0 | 0)

t 6= p cm,t = (σm,t(1, t) ωm | 0 0 0 | um,t)

tλ < p k∗λ = (πλ(tλ,−1) aλ | 0 0 0 | 0)
tλ = p k∗λ = (πλ(p,−1) aλ | 0 0 rλ | 0)
tλ > p k∗λ = (πλ(tλ,−1) aλ | 0 0 0 | rλ)

G0.p.4 SubSpace-Ind Property, on (D∗,D)1,6, between up and 0
cm,t = (σm,t(1, t) ωm | 0 0 0 | um,t)

tλ < p k∗λ = (πλ(tλ,−1) aλ | 0 0 0 | 0)

tλ = p k∗λ = (πλ(p,−1) aλ | 0 0 0 | 0)

tλ > p k∗λ = (πλ(tλ,−1) aλ | 0 0 0 | rλ)

Fig. 15: Sub-sequence of games for Distinct Key-Indistinguishability

Game G0.p.0: One defines the hybrid game for p :

cm,t = (σm,t(1, t), ωm, 0, 0, 0, um,t)D

tλ < p k∗λ = (πλ(tλ,−1), aλ, 0, 0, 0, 0)D∗

tλ ≥ p k∗λ = (πλ(tλ,−1), aλ, 0, 0, 0, rλ)D∗

Game G0.p.1: In this game, we duplicate every um,t into the 5-th column of the ciphertext.
To this aim, one defines the matrices

D =

(
1 0
1 1

)
6,7

D′ =

(
1 −1
0 1

)
6,7

D∗ = D′ · V∗ D = D · V

which only modifies d7, which is secret, and d∗6, which is hidden, so the change is indistin-
guishable for the adversary. One can compute the keys and ciphertexts as follows, for all
leaves λ, and for each of each query m of the adversary:

cm,t = (σm,t(1, t), ωm, 0, 0, 0, um,t)V

= (σm,t(1, t), ωm, 0, 0, um,t, um,t)D

tλ < p k∗λ = (πλ(tλ,−1), aλ, 0, 0, 0, 0)V∗

= (πλ(tλ,−1), aλ, 0, 0, 0, 0)D∗

tλ ≥ p k∗λ = (πλ(tλ,−1), aλ, 0, 0, 0, rλ)V∗

= (πλ(tλ,−1), aλ, 0, 0, 0, rλ)D∗

Hence, the perfect indistinguishability between the two games: Adv0.p.1 = Adv0.p.0.

Appendix 55

Game G0.p.2: The previous game and this game are indistinguishable under the DSDH
assumption in G2: one essentially uses theorem 21. Given a tuple (a · G2, b · G2, c · G2) in
G2, where c = ab+µ mod q with either µ = 0 or µ = 1, the 7-th component of the leaf λ of
the challenge key, with tλ = p. When we start from random dual orthogonal bases (U,U∗)
and (V,V∗) of size 3 and 7 respectively, one considers the matrices:

D =

 1 0 0
a 1 0
−a 0 1

2,6,7

D′ =

1 −a a
0 1 0
0 0 1

2,6,7

D = D · V D∗ = D′ · V∗

We can calculate all vectors but d6 and d7, which are not in the public key. Through V,
we calculate the challenge key for the attribute of the p-th ciphertext

We choose additional random scalars βλ
$← Zq, to virtually set bλ = rλ · b + βλ and

cλ = rλ · c+ βλ · a, then cλ − abλ = µ · rλ, which is either 0 or rλ.

tλ = p k∗λ = (0, 0, aλ, 0, 0, 0, rλ)D∗ + (bλ(tλ,−1), 0, 0, 0, cλ,−cλ)V∗

= (0, 0, aλ, 0, 0, 0, rλ)D∗ + (bλ(tλ,−1), 0, 0, 0, cλ − abλ,−cλ + abλ)D∗

= (bλ(tλ,−1), aλ, 0, 0, µ · rλ, rλ − µ · rλ)D∗

If µ = 0, we are in the previous game. If µ = 1, then we are in the current game. Then,
every other key is computed directly in D∗:

tλ < p k∗λ = (πλ(tλ,−1), aλ, 0, 0, 0, 0)D∗

tλ > p k∗λ = (πλ(tλ,−1), aλ, 0, 0, 0, rλ)D∗

as well as the answers to OKeyGen-queries.

The ciphertexts are calculated through V but are unchanged by the change of basis because
the 6-th and 7-th components are exactly the same for every ciphertext query m, and thus
cancel themselves in the 2nd component. We thus have Adv0.p.1 − Adv0.p.2 ≤ 2 · AdvddhG2

(t).

Game G0.p.3: We keep the um,p value (at the 6-th hidden position) in the ciphertexts, and
replace it in all other ciphertexts by 0. To show this is possible without impacting the other
vectors, we use the Index-Ind property from Theorem 23, but in another level of sequence
of hybrid games, for γ ∈ {1, . . . , P}\{p}:
Game G0.p.2.γ: We consider the following hybrid game, where the first satisfied condition

on the indices is applied:

cm,p = (σm,p(1, p), ωm, 0, 0, um,p, um,p)D

cm,t = (σm,t(1, t), ωm, 0, 0, 0, um,t)D p 6= t < γ

cm,t = (σm,t(1, t), ωm, 0, 0, um,t, um,t)D p 6= t ≥ γ

Keys are unchanged throughout the hybrid game

k∗λ = (πλ(tλ,−1), aλ, 0, 0, 0, 0)D∗ tλ < p

k∗λ = (πλ(tλ,−1), aλ, 0, 0, rλ, 0)D∗ tλ = p

k∗λ = (πλ(tλ,−1), aλ, 0, 0, 0, rλ)D∗ tλ > p

When γ = 1, this is the previous game: G0.p.2.1 = G0.p.2, whereas with γ = P + 1, this
is the current game: G0.p.2.P+1 = G0.p.3.
We will gradually replace the um,t values, at the 6-th hidden position, by 0 (when t 6= p):
in this game, we deal with the case t = γ, for the m-th ciphertext query. We consider a

56

triple (a ·G1, b ·G1, c ·G1), where c = ab+ ζ mod q with either ζ = 0 or ζ = 1, which are
indistinguishable under the DSDH assumption. We define the matrices

D =
1

p− γ
×

 p −γ ap
−1 1 −a
0 0 p− γ

1,2,6

D′ =

 1 1 0
γ p 0
−a 0 1

1,2,6

and then D = D ·V, D∗ = D′ ·V∗: we cannot compute d∗6, but this component is always
0, except for k∗λ with tλ = p which will be defined in the original basis V∗.

k∗λ = (0, 0, aλ, 0, 0, 0, 0)D∗ + ((p− γ) · (π, 0), 0, 0, 0, rλ, 0)V∗

= (0, 0, aλ, 0, 0, 0, 0)D∗ + (pπ + aprλ,−π − arλ, 0, 0, 0, rλ, 0)D∗

= ((π + arλ) · (p,−1), aλ, 0, 0, rλ, 0)D∗

The other keys will be directly generated in D∗, since they have no 6-th component.
Similarly, we will define all the ciphertexts cm,t for t 6= γ in D∗, but for t = γ, we

choose additional random scalars βm,t
$← Zq, to virtually set bm,t = um,t · b + βm,t and

cm,t = um,t · c+βm,t ·a, then cm,t−abm,t = ζ ·um,t, which is either 0 or um,t. One can set

cm,t = (0, 0, ωm, 0, 0, 0, um,t)D + (bm,t, 0, 0, 0, 0, cm,t, 0)V

= (0, 0, ωm, 0, 0, 0, um,t)D + (bm,t(1, γ), 0, 0, 0, cm,t − abm,t, 0)D

= (bm,t(1, γ), ωm, 0, 0, ζ · um,t, um,t)D

when t = γ 6= p. This is either the current game G0.p.2.γ , if ζ = 1, or the next game
G0.p.2.γ+1, if ζ = 0.
We remind that um,p = 0 because rλ 6= 0. If rλ = 0, then we would have skipped directly
to the hybrid p+ 1 game.

With all this sequence, we have Adv0.p.2 − Adv0.p.3 ≤ 2P · AdvddhG1
(t).

Game G0.p.4: In this final game for p, we can finally cancel out rλ in each key with tλ = p
because it corresponds to a coordinate where all other values (in keys and ciphertexts) are
0. We consider a triple (a · G2, b · G2, c · G2), where c = ab + α mod q, with either α = 0
or α = rλ. One defines the matrices

D =

(
1 0
a 1

)
1,6

D′ =

(
1 −a
0 1

)
1,6

D = D · V D∗ = D′ · V∗

Note that we can compute all the basis vectors excepted d6, but all the ciphertexts have a
0 components in 6-th position. So one can set all the values honestly in D and D∗, except
for

kλ = (0, 0, aλ, 0, 0, 0, 0)D + (b(p,−1), 0, 0, 0, c, 0)V

= (0, 0, aλ, 0, 0, 0, 0)D + (b(p,−1), 0, 0, 0, c− ab, 0)D

= (b(1, p), aλ, 0, 0, α, 0)D

When α = 0, this is exactly the current game, with πλ = b, whereas α = rλ, this is the
previous game. Then, Adv0.p.3 − Adv0.p.4 ≤ 2 · AdvddhG2

(t).

In total, this sequence of games, for a given p, satisfies Then,

AdvG0.p.4 − AdvG0.p.0 ≤ 2 · AdvddhG2
(t) + 2P · AdvddhG1

(t) + 2 · AdvddhG2
(t)

≤ 4 · AdvddhG2
(t) + 2P · AdvddhG1

(t) ≤ (2P + 4) · Advsxdh(t)

In the last game, the adversary has zero advantage. Indeed, whether b = 0 or b = 1, the
distributions of dk0 and dk1 are perfectly identical, with all-passive leaves.

Appendix 57

C.4 Proof of Theorem 16 – dAtt-IND-Security

Proof. We start with the distinct variant, where all the invalid attributes in the challenge
ciphertext do not correspond to any active leaf in the obtained keys. Our proof will proceed by
games.

Game G0: This is the real security game, where the simulator honestly emulates the chal-
lenger, with PK = {(b1,b3,b

∗
1), (d1,d2,d3,d7,d

∗
1,d
∗
2,d
∗
3)} and MK = {b∗3,d∗7}, from random

dual orthogonal bases. The public parameters PK are provided to the adversary. Since d7 is
public (empty SK), there is no need to provide access to an encryption oracle.
OKeyGen(T̃`) (or ODelegate-queries): The adversary is allowed to issue KeyGen-queries on

an access-tree T̃` = (T`,L`,a,L`,p) (for the `-th query), for which the simulator chooses

a random scalar a`,0
$← Zq and a random a`,0-labeling (a`,λ)λ of the access-tree T`, and

builds the key:

k∗`,0 = (a`,0, 0, 1)B∗ k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, 0, 0, 0, r`,λ)D∗

for all the leaves λ, where t`,λ = A(λ), π`,λ
$← Zq and r`,λ

$← Z∗q if λ is an active leaf, or
r`,λ ← 0 otherwise. The decryption key is dk` = (k∗`,0, (k

∗
`,λ)λ);

RoAVEncaps(Γv, Γi): The challenge ciphertext is built on a set of attributes Γv ·∪ Γi, with

random scalars ω, ξ
$← Zq to set K = gξt . Then, the simulator generates the ciphertext

C0 = (c0, (ct)t), for all the attributes t ∈ Γv ·∪ Γi, with σt
$← Zq, and where ut

$← Z∗q if
t ∈ Γi, or ut = 0 if t ∈ Γv:

c0 = (ω, 0, ξ)B ct = (σt(1, t), ω, 0, 0, 0, ut)D

On the other hand, it computes C1 = (c0, (ct)t) for all t ∈ Γv ·∪ Γi as:

c0 = (ω, 0, ξ)B ct = (σt(1, t), ω, 0, 0, 0, 0)D

According to the real or all-valid game (bit b
$← {0, 1}), one outputs (K,Cb).

From the adversary’s guess b′ for b, if for some T̃` = (T`,L`,a,L`,p), there is some active

leaf λ ∈ L`,a such that tλ = A(λ) ∈ Γi, then β
$← {0, 1}, otherwise β = b′. We denote

Adv0 = Pr[β = 1|b = 1]− Pr[β = 1|b = 0].
We stress that in this distinct attribute-indistinguishability security game, the invalid at-
tributes in the challenge ciphertext (t ∈ Γi with possibly ut 6= 0) correspond to passive leaves
only (λ ∈ L`,p with r`,λ = 0, for all queries). But we do not exclude accepting access-trees.

Game G1: The second and final game simply corresponds to the situation where ut = 0 in
C0, clearly leading to Adv1 = 0.
Using the indexing technique, we can show this game is indistinguishable the previous game.
But we need to describe a sub-sequence of games (see Figure 16) for proving the gap from
the above G0 to G1, with the sequence G0.p.∗, that will modify the p-th ciphertext in the
challenge ciphertext, for p ∈ {1, . . . , P + 1}, where G0 = G0.1.0, and G1 = G0.P+1.0. In these
games, we describe how we generate the keys and the real encapsulation C0. C1 will be easily
simulated in an honest way.

Game G0.p.0: One thus chooses random scalars and defines the hybrid game for some p,
where the first components of the ciphertext are all-valid, and the last ones are real:

k∗`,0 = (a`,0, 0, 1)B∗ k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, 0, 0, 0, r`,λ)D∗

c0 = (ω, 0, ξ)B ct = (σt(1, t), ω, 0, 0, 0, 0)D if t < p

c0 = (ω, 0, ξ)B ct = (σt(1, t), ω, 0, 0, 0, ut)D if t ≥ p

58

c0 = (ω 0 ξ) k∗`,0 = (a`,0 0 1)

G0.p.0 Hybrid game for G0 and G1, with 1 ≤ p ≤ P + 1
k∗`,λ = (π`,λ(t`,λ,−1) a`,λ | 0 0 0 | r`,λ)

t < p ct = (σt(1, t) ω | 0 0 0 | 0)
t ≥ p ct = (σt(1, t) ω | 0 0 0 | ut)

G0.p.1 Formal basis change, on (D,D∗)6,7, to duplicate r`,λ in the 6-th column

k∗`,λ = (π`,λ(t`,λ,−1) a`,λ | 0 0 r`,λ | r`,λ)

t < p ct = (σt(1, t) ω | 0 0 0 | 0)
t ≥ p ct = (σt(1, t) ω | 0 0 0 | ut)

G0.p.2 Swap-Ind Property, on (D,D∗)1,6,7, to swap up alone in the 6-th column
k∗`,λ = (π`,λ(t`,λ,−1) a`,λ | 0 0 r`,λ | r`,λ)

t < p ct = (σt(1, t) ω | 0 0 0 | 0)

cp = (σp(1, p) ω | 0 0 up | 0)

t > p ct = (σt(1, t) ω | 0 0 0 | ut)

G0.p.3 Index-Ind Property, on (D,D∗)1,2,6, between r`,λ and 0, for t`,λ 6= p
t`,λ = p k∗`,λ = (π`,λ(p,−1) a`,λ | 0 0 0 | 0)

t`,λ 6= p k∗`,λ = (π`,λ(p,−1) a`,λ | 0 0 0 | r`,λ)

t < p ct = (σt(1, t) ω | 0 0 0 | 0)
cp = (σp(1, p) ω | 0 0 up | 0)

t > p ct = (σt(1, t) ω | 0 0 0 | ut)

G0.p.4 SubSpace-Ind Property, on (D,D∗)1,6, between up and 0
k∗`,λ = (π`,λ(p,−1) a`,λ | 0 0 0 | r`,λ)

t < p ct = (σt(1, t) ω | 0 0 0 | 0)

cp = (σp(1, p) ω | 0 0 0 | 0)

t > p ct = (σt(1, t) ω | 0 0 0 | ut)

Fig. 16: Sub-sequence of games for Distinct Attribute-Indistinguishability

Of course, the values r`,λ and ut are random in Z∗q or 0 according to L`,a/L`,p and Γi/Γv.
In particular, if up = 0, we can directly go to G0.p.4, as there is no change from this game.
The following sequence only makes sense when up 6= 0, but then necessarily r`,λ = 0 for all
the pairs (`, λ) such that t`,λ = p. We thus assume this restriction in this sequence: up 6= 0
and r`,λ = 0 for all (`, λ) such that t`,λ = p.

Game G0.p.1: One defines the matrices

D =

(
1 1
0 1

)
6,7

D′ =

(
1 0
−1 1

)
6,7

D = D · V D∗ = D′ · V∗

which modifies the hidden and secret vectors d6 and d∗7, and so are not in the view of the
adversary:

k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, 0, 0, 0, r`,λ)V∗

= (π`,λ(t`,λ,−1), a`,λ, 0, 0, r`,λ, r`,λ)D∗

ct = (σt(1, t), ω, 0, 0, 0, 0)V = (σt(1, t), ω, 0, 0, 0, 0)D if t < p

ct = (σt(1, t), ω, 0, 0, 0, ut)V = (σt(1, t), ω, 0, 0, 0, ut)D if t ≥ p

We thus have Adv0.p.1 = Adv0.p.0.

Game G0.p.2: We use the Swap-Ind-property on (D,D∗)1,6,7: Indeed, we can consider a triple
(a · G1, b · G1, c · G1), where c = ab + θ mod q with either θ = 0 or θ = up. We define the
matrices

D =

1 a −a
0 1 0
0 0 1

1,6,7

D′ =

 1 0 0
−a 1 0
a 0 1

1,6,7

D = D · V D∗ = D′ · V∗

Appendix 59

Note that we can compute all the basis vectors excepted d∗6,d
∗
7, but we define the keys on

the original basis V∗:

k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, 0, 0, r`,λ, r`,λ)V∗

= (π`,λ · t`,λ + ar`,λ − ar`,λ,−π`,λ, a`,λ, 0, 0, r`,λ, r`,λ)D∗

= (π`,λ(t`,λ,−1), a`,λ, 0, 0, r`,λ, r`,λ)D∗

ct = (σt(1, t), ω, 0, 0, 0, 0)D if t < p

cp = (σ(1, p), ω, 0, 0, 0, up)D + (b(1, p), 0, 0, 0, c,−c)V
= (σ(1, p), ω, 0, 0, 0, up)D + (b(1, p), 0, 0, 0, c− ab,−c+ ab)D

= ((σ + b)(1, p), ω, 0, 0, θ, up − θ)D
ct = (σt(1, t), ω, 0, 0, 0, ut)D if t > p

With θ = 0, this is as in the previous game, where σp = σ + b. When θ = up, this is the
current game: Adv0.p.1 − Adv0.p.2 ≤ 2 · AdvddhG1

(t).

Game G0.p.3: We make all the r`,λ values (at the 6-th hidden position) in the keys to be 0,
excepted for t`,λ = p. The case t`,λ = p is already r`,λ = 0, by assumption in this sequence,
as up 6= 0. For that, we iteratively replace all the values by zero, using Index-Ind-property,
in another level of sequence of hybrid games, for γ ∈ {1, . . . , P}\{p}:

Game G0.p.2.γ: We consider

k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, 0, 0, 0, 0)D∗ if t`,λ = p

k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, 0, 0, 0, r`,λ)D∗ if p 6= t`,λ < γ

k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, 0, 0, r`,λ, r`,λ)D∗ if p 6= t`,λ ≥ γ
ct = (σt(1, t), ω, 0, 0, 0, 0)D if t < p

cp = (σp(1, p), ω, 0, 0, up, 0)D

ct = (σt(1, t), ω, 0, 0, 0, ut)D if t > p

When γ = 1, this is the previous game: G0.p.2.1 = G0.p.2, whereas with γ = P + 1, this
is the current game: G0.p.2.P+1 = G0.p.3.
We can consider a triple (a ·G2, b ·G2, c ·G2), where c = ab+ ζ mod q with either ζ = 0
or ζ = 1. We define the matrices

D′ =
1

γ − p
×

 1 −1 a
γ −p ap
0 0 γ − p

1,2,6

D =

−p −γ 0
1 1 0
0 a 1

1,2,6

and then D = D ·V, D∗ = D′ ·V∗: we cannot compute d6, but this component is always
0, excepted for cp we will define in the original basis V. One chooses additional random

scalars β`,λ
$← Zq, for all (`, λ) such that t`,λ = γ, to virtually set b`,λ = −r`,λ · b + β`,λ

60

and c`,λ = −r`,λ · c+ β`,λ · a, c`,λ − ab`,λ = −r`,λ · ζ. One can set

k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, 0, 0, 0, 0)D∗ if t`,λ = p

k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, 0, 0, 0, r`,λ)D∗ if p 6= t`,λ < γ

k∗`,λ = (b`,λ(0,−1), a`,λ, 0, 0, r`,λ + c`,λ, r`,λ)V∗ if t`,λ = γ

= (b`,λ(γ,−1), a`,λ, 0, 0, r`,λ + c`,λ − ab`,λ, r`,λ)V∗

= (b`,λ(γ,−1), a`,λ, 0, 0, r`,λ · (1− ζ), r`,λ)V∗

k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, 0, 0, r`,λ, r`,λ)D∗ if p 6= t`,λ > γ

ct = (σt(1, t), ω, 0, 0, 0, 0)D if t < p

cp = ((p− γ)σ(0, 1), ω, 0, 0, up, 0)V

= (σ(1, p) + aup(1, p)/(γ − p), ω, 0, 0, up, 0)D

= ((σ + aup/(γ − p))(1, p), ω, 0, 0, up, 0)D

= (σp(1, p), ω, 0, 0, up, 0)D

ct = (σt(1, t), ω, 0, 0, 0, ut)D if t > p

When ζ = 0, this G0.p.2.γ , when ζ = 1, this is G0.p.2.γ+1.
As a consequence, Adv0.p.2 − Adv0.p.3 ≤ 2P · AdvddhG2

(t).

Game G0.p.4: One can easily conclude by removing up in the ciphertext cp, as it corresponds
to a coordinate where all the other values (in the keys and the ciphertext) are 0. To this
aim, we can consider a triple (a · G1, b · G1, c · G1), where c = ab + α mod q with either
α = 0 or α = up. One defines the matrices

D =

(
1 a
0 1

)
1,6

D′ =

(
1 0
−a 1

)
1,6

D = D · V D∗ = D′ · V∗

Note that we can compute all the basis vectors excepted d∗6, which has only 0 components
in the keys. So one can set all the values honestly in D and D∗, excepted

cp = (b(1, p), ω, 0, 0, c, 0)V = (b(1, p), ω, 0, 0, c− ab, 0)D

= (b(1, p), ω, 0, 0, α, 0)D

When α = 0, this is exactly the current game, with σp = b, whereas for α = up, this is the
previous game. Then, Adv0.p.3 − Adv0.p.4 ≤ 2 · AdvddhG1

(t).

In total, this sequence of games, for a given p, satisfies Then,

AdvG0.p.4 − AdvG0.p.0 ≤ 2 · AdvddhG1
(t) + 2P · AdvddhG2

(t) + 2 · AdvddhG1
(t)

≤ 4 · AdvddhG1
(t) + 2P · AdvddhG2

(t) ≤ (4 + 2P) · Advsxdh(t)

C.5 Proof of Theorem 17 – Att-IND-Security

Proof. We now prove the attribute-indistinguishability, where there are no restrictions between
active leaves in the keys and invalid attributes in the challenge ciphertext, but just that the
access-trees of the obtained keys reject the attribute-set of the challenge ciphertext, even in the
all-valid case. Our proof will proceed by games. Not that we also assume active keys correspond
to independent leaves with respect to the set of attributes Γ = Γv ·∪Γi in the challenge ciphertext.

Game G0: This is the real security game, where the simulator honestly emulates the chal-
lenger, with PK = {(b1,b3,b

∗
1), (d1,d2,d3,d7,d

∗
1,d
∗
2,d
∗
3)} and MK = {b∗3,d∗7}, from random

dual orthogonal bases. The public parameters PK are provided to the adversary. Since d7 is
public (empty SK), there is no need to provide access to an encryption oracle.

Appendix 61

OKeyGen(T̃`) (or ODelegate-queries): The adversary is allowed to issue KeyGen-queries on
an access-tree T̃` = (T`,L`,a,L`,p) (for the `-th query), for which the simulator chooses

a random scalar a`,0
$← Zq and a random a`,0-labeling (a`,λ)λ of the access-tree T`, and

builds the key:

k∗`,0 = (a`,0, 0, 1)B∗ k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, 0, 0, 0, r`,λ)D∗

for all the leaves λ, where t`,λ = A(λ), π`,λ
$← Zq and r`,λ

$← Z∗q if λ is an active leaf, or
r`,λ ← 0 otherwise. The decryption key is dk` = (k∗`,0, (k

∗
`,λ)λ);

RoAVEncaps(Γv, Γi): The challenge ciphertext is built on a set of attributes Γv ·∪ Γi, with

random scalars ω, ξ
$← Zq to set K = gξt . Then, the simulator generates the ciphertext

C1 = (c0, (ct)t), for all the attributes t ∈ Γv ·∪ Γi, with σt
$← Zq:

c0 = (ω, 0, ξ)B ct = (σt(1, t), ω, 0, 0, 0, 0)D

On the other hand, it computes C0 = (c0, (ct + (0, 0, 0, 0, 0, 0, ut)D)t), where ut
$← Z∗q if

t ∈ Γi, or ut = 0 if t ∈ Γv. According to the real or all-valid game (bit b
$← {0, 1}), one

outputs (K,Cb).
From the adversary’s guess b′ for b, if for some T̃` = (T`,L`,a,L`,p), for which tree a key has

been obtained, T̃`(Γv ·∪Γi, ∅) = 1 then β
$← {0, 1}, otherwise β = b′. We denote Adv0 = Pr[β =

1|b = 1]− Pr[β = 1|b = 0].
We now proceed with exactly the same sequence as in the IND-security proof of the KP-ABE
in the appendix B, except the RoREncaps-challenge is instead a RoAVEncaps-challenge, where
we require T̃`(Γv ·∪ Γi, 0) = 0 for all the obtained keys. For the same reason, the OEncaps-
queries on pairs (Γm,v, Γm,i), with Γm,i 6= ∅ can be simulated. Indeed, as above, everything
on the 7-th component can be done independently, knowing both d7 and d∗7, as these vectors
will be known to the simulator, almost all the time, excepted in some specific gaps. In theses
cases, we will have to make sure how to simulate the OEncaps ciphertexts.
As in that proof, the idea of the sequence is to introduce an additional labeling (s`,0, (s`,λ)λ)
in the hidden components of each key, with a random s`,0, as the trees are rejecting. We are
thus able to go as in G3, from Figure 6, where each label is masked by a random zt for each
attribute t. The following sequence is described on Figure 17.

Game G1: This is as G1, with a random τ in the challenge ciphertext.

Game G2: This is as G2, with random zt in the challenge ciphertext.

Game G3: This is as G3, with an additional independent s`,0-labeling (s`,λ) for each access-
tree T` and a random r`,0 to define

k∗`,0 = (a`,0, r`,0, 1)B∗ k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, 0, 0, s`,λ/ztk,λ , r`,λ)D∗

We stress that all these steps are not impacted by the values ut in the 7-th component of the
challenge ciphertext:

c0 = (ω, 0, ξ)B ct = (σt(1, t), ω, τ, 0, τzt, (1− b) · ut)D

where b is the random bit of the challenger: when b = 0, the ciphertext is in the real case,
whereas for b = 1, one gets an all-valid ciphertext.

Game G4: We remove all ut from the RoAVEncaps challenge query, in the case b = 1:

c0 = (ω, 0, ξ)B ct = (σt(1, t), ω, τ, 0, τzt, 0)D

k∗`,0 = (a`,0, r`,0, 1)B∗ k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, 0, 0, s
′
`,λ/ztk,λ , r`,λ)D∗

62

G0 Real Att-IND-Security game
c0 = (ω 0 ξ) ct = (. . . | 0 0 0 (1− b) · ut)

k∗`,0 = (a`,0 0 1) k∗`,λ = (. . . | 0 0 0 r`,λ)

G1 SubSpace-Ind Property, on (B,B∗)1,2 and (D,D∗)3,4, between 0 and τ
$← Zq

c0 = (ω τ ξ) ct = (. . . | τ 0 0 (1− b) · ut)

k∗`,0 = (a`,0 0 1) k∗`,λ = (. . . | 0 0 0 r`,λ)

G2 SubSpace-Ind Property, on (D,D∗)(1,2),6, between 0 and τzt

c0 = (ω τ ξ) ct = (. . . | τ 0 τzt (1− b) · ut)

k∗`,0 = (a`,0 0 1) k∗`,λ = (. . . | 0 0 0 r`,λ)

G3 Additional random-labeling as in the IND-security proof. See Figure 7
c0 = (ω τ ξ) ct = (. . . | τ 0 τzt (1− b) · ut)

k∗`,0 = (a`,0 r`,0 1) k∗`,λ = (. . . | 0 0 s`,λ/zt`,λ r`,λ)

G4 Index-Ind property to suppress ut, when b = 0. See Figure 18

c0 = (ω τ ξ) ct = (. . . | τ 0 τzt 0)

k∗`,0 = (a`,0 r`,0 1) k∗`,λ = (. . . | 0 0 s′`,λ/zt`,λ r`,λ)

G5 Limitation of independent active leaves
c0 = (ω τ ξ) ct = (. . . | τ 0 τzt 0)

k∗`,0 = (a`,0 r`,0 1) k∗`,λ = (. . . | 0 0 s`,λ/zt`,λ r`,λ)

Fig. 17: Global sequence of games for the Att-IND-security proof of our SA-KP-ABE

G3.p.0 Hybrid game for G3 and G4, with 1 ≤ p ≤ P + 1
t < p ct = (σt(1, t) ω | τ 0 τzt 0)
t ≥ p ct = (σt(1, t) ω | τ 0 τzt ut)

k∗`,0 = (a`,0 r`,0 1)
k∗`,λ = (π`,λ(t`,λ,−1) a`,λ | 0 0 s`,λ/zt`,λ r`,λ)

G3.p.1 Formal basis change, on (D,D∗)5,7, to duplicate r`,λ in the 5-th column
cp = (σp(1, p) ω | τ 0 τzp up)

k∗`,λ = (π`,λ(t`,λ,−1) a`,λ | 0 r`,λ s`,λ/zt`,λ r`,λ)

G3.p.2 Swap-Ind Property, on (D,D∗)1,5,7, to swap up alone in the 5-th column

cp = (σp(1, p) ω | τ up τzp 0)

t 6= p ct = (σt(1, t) ω | τ 0 τzt ut)

G3.p.3 Index-Ind Property, on (D∗,D)1,2,5, between r`,λ and 0, for t`,λ 6= p
cp = (σp(1, p) ω | τ up τzp 0)

t`,λ 6= p k∗`,λ = (π`,λ(t`,λ,−1) a`,λ | 0 0 s`,λ/zt`,λ r`,λ)

t`,λ = p k∗`,λ = (π`,λ(t`,λ,−1) a`,λ | 0 r`,λ s`,λ/zt`,λ r`,λ)

G3.p.4 SubSpace-Ind Property, on (D,D∗)6,5, between up and 0

cp = (σp(1, p) ω | τ 0 τzp 0)

t`,λ 6= p k∗`,λ = (π`,λ(t`,λ,−1) a`,λ | 0 0 s`,λ/zt`,λ r`,λ)

t`,λ = p k∗`,λ = (π`,λ(t`,λ,−1) a`,λ | 0 r`,λ s′`,λ/zt`,λ r`,λ)

G3.p.5 SubSpace-Ind Property, on (D∗,D)6,5, between r`,λ and 0, for t`,λ = p
t ≤ p ct = (σt(1, t) ω | τ 0 τzt 0)
t > p ct = (σt(1, t) ω | τ 0 τzt ut)
t`,λ 6= p k∗`,λ = (π`,λ(t`,λ,−1) a`,λ | 0 0 s`,λ/zt`,λ r`,λ)

t`,λ = p k∗`,λ = (π`,λ(t`,λ,−1) a`,λ | 0 0 s′`,λ/zt`,λ r`,λ)

Fig. 18: Hybrid game on p for the Att-IND-security proof of our SA-KP-ABE, when b = 0

Appendix 63

where s′`,λ is either the label s`,λ or an independent random value when utk,λ · rk,λ 6= 0, in
the case b = 0. And nothing is changed when b = 1. To this aim, we use a different sequence
G3.p.∗ presented in the Figure 18, when b = 1 only, for p ∈ {1, . . . , P}, that will modify the
p-th ciphertext in the challenge ciphertext, where G3 = G3.1.0, and G4 = G3.P+1.0.

Game G3.p.0 One thus chooses random scalars and defines the hybrid game for some p,
where the first components of the ciphertext are all-valid, and the last ones are real:

k∗`,0 = (a`,0, r`,0, 1)B∗ k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, 0, 0, s`,λ/zt`,λ , r`,λ)D∗

c0 = (ω, 0, ξ)B ct = (σt(1, t), ω, τ, 0, τzt, 0)D if t < p

c0 = (ω, 0, ξ)B ct = (σt(1, t), ω, τ, 0, τzt, ut)D if t ≥ p

Of course, the values r`,λ and ut are random in Z∗q or 0 according to L`,a/L`,p and Γi/Γv.
In particular, if up = 0, we can directly go to G3.p.5, as there is no change from this game.
But there is no need to know it in advance, and so we can follow this sequence in any case
and set up in the ciphertext at the challenge-time.

Game G3.p.1 One defines the matrices

D =

(
1 1
0 1

)
5,7

D′ =

(
1 0
−1 1

)
5,7

D = D · V D∗ = D′ · V∗

which modifies the hidden and secret vectors d6 and d∗7, and so are not in the view of the
adversary:

k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, 0, 0, s`,λ/zt`,λ , r`,λ)V∗

= (π`,λ(t`,λ,−1), a`,λ, 0, r`,λ, s`,λ/zt`,λ , r`,λ)D∗

ct = (σt(1, t), ω, τ, 0, τzt, 0)V = (σt(1, t), ω, τ, 0, τzt, 0)D if t < p

ct = (σt(1, t), ω, τ, 0, τzt, ut)V = (σt(1, t), ω, τ, 0, τzt, ut)D if t ≥ p

We thus have Adv3.p.1 = Adv3.p.0.

Game G3.p.2 We use the Swap-Ind-property on (D,D∗)1,5,7: Indeed, we can consider a triple
(a · G1, b · G1, c · G1), where c = ab + θ mod q with either θ = 0 or θ = up. We define the
matrices

D =

1 a −a
0 1 0
0 0 1

1,5,7

D′ =

 1 0 0
−a 1 0
a 0 1

1,5,7

D = D · V D∗ = D′ · V∗

Note that we can compute all the basis vectors excepted d∗5,d
∗
7, but we define the keys on

the original basis V∗:

k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, 0, r`,λ, s`,λ/zt`,λ , r`,λ)V∗

= (π`,λ · t`,λ + ar`,λ − ar`,λ,−π`,λ, a`,λ, 0, r`,λ, s`,λ/zt`,λ , r`,λ)D∗

= (π`,λ(t`,λ,−1), a`,λ, 0, r`,λ, s`,λ/zt`,λ , r`,λ)D∗

ct = (σt(1, t), ω, τ, 0, τzt, 0)D if t < p

cp = (σ(1, p), ω, τ, 0, τzp, up)D + (b(1, p), 0, 0, c, 0,−c)V
= (σ(1, p), ω, τ, 0, τzp, up)D + (b(1, p), 0, 0, c− ab, 0,−c+ ab)D

= ((σ + b)(1, p), ω, τ, θ, τzp, up − θ)D
ct = (σt(1, t), ω, τ, 0, τzt, ut)D if t > p

With θ = 0, this is as in the previous game, where σp = σ + b. When θ = up, this is the
current game: Adv3.p.1 − Adv3.p.2 ≤ 2 · AdvddhG1

(t).

64

Game G3.p.3 We make all the r`,λ values (at the 5-th hidden position) in the keys to be
0, excepted when t`,λ = p. For that, we iteratively replace all the values by zero, using
Index-Ind-property, in another level of sequence of hybrid games, for γ ∈ {1, . . . , P}\{p}:
Game G3.p.2.γ: We consider

k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, 0, r`,λ, s`,λ/zt`,λ , r`,λ)D∗ if t`,λ = p

k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, 0, 0, s`,λ/zt`,λ , r`,λ)D∗ if p 6= t`,λ < γ

k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, 0, r`,λ, s`,λ/zt`,λ , r`,λ)D∗ if p 6= t`,λ ≥ γ
ct = (σt(1, t), ω, τ, 0, τzt, 0)D if t < p

cp = (σp(1, p), ω, τ, up, τzp, 0)D

ct = (σt(1, t), ω, τ, 0, τzt, ut)D if t > p

When γ = 1, this is the previous game: G3.p.2.1 = G3.p.2, whereas with γ = P + 1, this
is the current game: G3.p.2.P+1 = G3.p.3.
We can consider a triple (a ·G2, b ·G2, c ·G2), where c = ab+ ζ mod q with either ζ = 0
or ζ = 1. We define the matrices

D′ =
1

γ − p
×

 1 −1 a
γ −p ap
0 0 γ − p

1,2,5

D =

−p −γ 0
1 1 0
0 a 1

1,2,5

and then D = D ·V, D∗ = D′ ·V∗: we cannot compute d5, but this component is always 0,
excepted for cp that we will define in the original basis V. One chooses additional random

scalars β`,λ
$← Zq, for all (`, λ) such that t`,λ = γ, to virtually set b`,λ = −r`,λ · b + β`,λ

and c`,λ = −r`,λ · c+ β`,λ · a, c`,λ − ab`,λ = −r`,λ · ζ. One can set

k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, 0, r`,λ, s`,λ/zt`,λ , r`,λ)D∗ if t`,λ = p

k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, 0, 0, s`,λ/zt`,λ , r`,λ)D∗ if p 6= t`,λ < γ

k∗`,λ = (b`,λ(0,−1), a`,λ, 0, r`,λ + c`,λ, s`,λ/zt`,λ , r`,λ)V∗ if t`,λ = γ

= (b`,λ(γ,−1), a`,λ, 0, r`,λ + c`,λ − ab`,λ, s`,λ/zt`,λ , r`,λ)D∗

= (b`,λ(γ,−1), a`,λ, 0, r`,λ · (1− ζ), s`,λ/zt`,λ , r`,λ)D∗

k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, 0, r`,λ, s`,λ/zt`,λ , r`,λ)D∗ if p 6= t`,λ > γ

ct = (σt(1, t), ω, τ, 0, τzt, 0)D if t < p

cp = ((p− γ)σ(0, 1), ω, τ, up, τzp, 0)V

= (σ(1, p) + aup(1, p)/(γ − p), ω, τ, up, τzp, 0)D

= ((σ + aup/(γ − p))(1, p), ω, τ, up, τzp, 0)D

= (σp(1, p), ω, τ, up, τzp, 0)D

ct = (σt(1, t), ω, τ, 0, τzt, ut)D if t > p

When ζ = 0, this G3.p.2.γ , when ζ = 1, this is G3.p.2.γ+1.

Game G3.p.4 We use the SubSpace-Ind-property on (D,D∗)6,5: Indeed, we can consider a
triple (a ·G1, b ·G1, c ·G1), where c = ab+ θ mod q with either θ = 0 or θ = up. We define
the matrices

D =

(
1 0
a 1

)
5,6

D′ =

(
1 −a
0 1

)
5,6

D = D · V D∗ = D′ · V∗

Appendix 65

Note that we can compute all the basis vectors excepted d∗5 that is not public, and not
used excepted for the keys with t`,λ = p, which will be defined in the original basis V∗:

k∗`,λ = (π`,λ(p,−1), a`,λ, 0, r`,λ, s`,λ/zp, r`,λ)V∗

= (π`,λ(p,−1), a`,λ, 0, r`,λ, s`,λ/zp + ar`,λ, r`,λ)D∗

= (π`,λ(p,−1), a`,λ, 0, r`,λ, s
′
`,λ/zp, r`,λ)D∗

ct = (σt(1, t), ω, b, 0, bzt, 0)D if t < p

cp = (σp(1, p), ω, b, c, bzp, 0)V = (σp(1, p), ω, b, c− ab, bzp, 0)D

= (σp(1, p), ω, b, θ, bzp, 0)D

ct = (σt(1, t), ω, b, 0, bzt, ut)D if t > p

When θ = 0, this is this game, whereas when θ = up, this is the previous game, with τ = b
and s′`,λ = s`,λ+azpr`,λ a new random and independent value for each active leaf associated
to the attribute p.

Game G3.p.5 We use the SubSpace-Ind-property on (D∗,D)6,5: Indeed, we can consider a
triple (a ·G2, b ·G2, c ·G2), where c = ab+ ζ mod q with either ζ = 0 or ζ = 1. We define
the matrices

D′ =

(
1 0
a 1

)
5,6

D =

(
1 −a
0 1

)
5,6

D = D · V D∗ = D′ · V∗

Note that we can compute all the basis vectors excepted d5 that is not public, and not
used in the ciphertext. All the vectors can be computed in the new bases, excepted the
keys for t`,λ = p, for which one chooses additional random scalars β`,λ

$← Zq, to virtually
set b`,λ = r`,λ · b+ β`,λ and c`,λ = r`,λ · c+ β`,λ · a, c`,λ − ab`,λ = r`,λ · ζ.

k∗`,λ = (π`,λ(p,−1), a`,λ, 0, c`,λ, b`,λ, r`,λ)V∗

= (π`,λ(p,−1), a`,λ, 0, c`,λ − ab`,λ, b`,λ, r`,λ)D∗

= (π`,λ(p,−1), a`,λ, 0, ζ · r`,λ, b`,λ, r`,λ)D∗

When ζ = 0, this is this game, whereas when ζ = 1, this is the previous game, with
s′`,λ = zp · b`,λ, a truly random and independent value for each active leaf associated to the
attribute p.

Game G5: Under the assumption of independent active leaves with respect to the set of
attributes Γ = Γv ·∪Γi in the challenge ciphertext, the random values s′`,λ are indistinguishable
from real labels s′`,λ. Indeed, labels that correspond to leaves that are associated to attributes
not in Γ are unknown, as the masks zt are not revealed. This shows that the advantage of
the adversary in this last game is 0.

	Key-Policy ABE with Delegation of Rights
	Appendix
	Appendix

