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Abstract

Structured encryption (STE) is a form of database encryption that enables search-
ing directly over symmetrically encrypted “structured databases”. STE is known to
be vulnerable to leakage-abuse attacks that allow data/query reconstruction given only
some auxiliary information about the original database. Many existing countermea-
sures against leakage-abuse attacks perturb the leakage from STE schemes so as to
render the attacks infeasible in practice.

We present the first leakage-abuse attacks that achieve practically efficient and
highly scalable query reconstruction against state-of-the-art STE schemes with per-
turbed leakage profiles while relying only no noisy co-occurrence pattern leakage and
without making strong assumptions on the auxiliary information available to the ad-
versary. Our attacks subvert the query privacy guarantees of STE schemes with differ-
entially private access patterns (Chen et al., INFOCOM’18) and STE schemes built in
a naturally efficient manner from volume-hiding encrypted multi-maps (Kamara and
Moataz, Eurocrypt’19 and Patel et al., CCS’19).

Many existing leakage-abuse attacks only work in a strong known-data model where
the auxiliary information available to the adversary is either an exact replica of or a
“noise-free” subset of the target database. Our attacks are the first to work in a
weaker and more realistic inference model where the auxiliary information available
to the adversary is sampled independently from but statistically close to the target
database. Compared to (a handful of) existing inference attacks, our attacks make
significantly relaxed assumptions about the nature of auxiliary information available
to the adversary.

Technically, our attacks exploit insufficiencies in existing leakage-perturbation tech-
niques as well as novel observations surrounding inevitable system-wide leakage from
efficient realizations of STE. We model the attacks as optimization problems with
carefully designed objective functions that are maximized via simulated annealing. We
demonstrate the practical effectiveness of our attacks via extensive experimentation
over real-world databases. Our attacks achieve up to 90% query reconstruction against
STE implementations using recommended security parameters, with 5x greater scala-
bility than any existing attack exploiting access pattern leakage.
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1 Introduction

Database Encryption. Database encryption is the study of cryptographic techniques
that allow efficient query processing over encrypted databases without the need to decrypt
them first. Database encryption is a key enabler for secure storage-as-a-service, wherein
clients can securely outsource the storage and processing of large databases to (potentially
untrusted) third party servers.

Efficiency, Leakage, Expressiveness. There exists a wide spectrum of cryptographic
techniques for database encryption that offer varying tradeoffs between efficiency, infor-
mation leakage, and query expressiveness. Solutions such as fully-homomorphic encryp-
tion (FHE) [19], functional encryption (FE) [8] and oblivious RAM (ORAM) [21] offer high
security and query expressiveness, but are currently too inefficient in practice. Solutions
such as deterministic encryption [3], order-preserving encryption [7] and, more generally,
property-preserving encryption [46, 44], offer high practical efficiency and query expressive-
ness, but are vulnerable to attacks due to information leakage [40].

Structured Symmetric Encryption. Structured symmetric encryption (STE), intro-
duced by Chase and Kamara in [13], is a special sub-class of database encryption that
aims to support a specific class of search queries over symmetrically encrypted “structured
databases”. A simple example of functionality enabled by structured encryption is the fol-
lowing: given an encrypted document collection in which each document is tagged with
keywords, find the set of all documents tagged with a given keyword w. The most well-
known sub-class of structured encryption is searchable symmetric encryption (SSE) [52, 20,
15, 12, 11] that supports searching over document collections and relational databases. Most
existing constructions of SSE are built from encrypted multi-maps [31, 33, 45] – an abstract
STE for efficient encrypted query processing. In this paper, we focus primarily on SSE/STE
for static document collections. This has historically received the most attention.

At a high level, a static STE scheme consists of two protocols – a setup protocol and a search
protocol – executed between a client (owning a structured database) and a server (modeled
as an adversary). The setup protocol allows the client to encrypt and offload the structured
database to the server, such that the encrypted database can later be queried using the
search protocol. In the search protocol, the client typically generates a query token and
sends this to the server; the server then uses this token to process the query and returns the
corresponding result.

Leakage. The term “leakage” is popularly used in the STE literature to denote any
information that the server learns about either the database itself or the queries made by
the client. For any STE scheme, leakage can be of two kinds - setup leakage – information
learnt by the server from the encrypted database it receives at setup (i.e., prior to any
query execution), and query leakage – information learnt by the server from the query token
and the interaction between the query token and the encrypted database. Informally, an
STE scheme is “more” secure if it incurs “less” leakage. Ideally, an STE scheme should be
leakage-free, but this comes at huge performance overheads [52, 20]. In practice, all efficient
STE schemes incur some setup and query leakage [15, 12, 11, 31, 32, 37].
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Leakage Cryptanalysis. A natural question to ask is: how do we analyze the impact of
leakage on the real-world security of STE? Unfortunately, there currently exist no formal
metrics that can universally categorize leakage into “benign” (meaning that it does not
impact security) or “critical” (meaning that it adversely impacts security). The practice
commonly adopted in the STE literature is to perform leakage cryptanalysis. This involves
developing concrete cryptanalytic attacks that exploit the leakage to subvert some security
guarantee (such as data/query privacy) of the STE scheme. If a leakage profile stands up
to such cryptanalysis over a period of time, it can then be considered benign.

Starting with the seminal work of Islam et al. [30], leakage cryptanalysis has been studied
extensively in the context of STE [9, 54, 34, 35, 23, 24, 27, 5]. Generally, any leakage
cryptanalysis of STE is characterized by the following factors:

• Attack Model. The adversary may be snapshot (with access to only the encrypted
database) or persistent (with access to both the encrypted database and the “history”
of query operations). Quite naturally, snapshot adversaries are less powerful as com-
pared to persistent adversaries and are typically easier to thwart (see [25, 2, 5] for
more details).

• Attack Target. The adversary may target either data recovery or query reconstruc-
tion (or both).

• Attack Assumptions. The adversary may have access to some auxiliary data. In a
known-data attack, the adversary knows a subset of entries in the original database. In
an inference attack the adversary has a set of entries that are distributed statistically
close to the entries in the database (but not necessarily an actual subset of the data).
In a known-query attack, the adversary knows a subset of the queries made by the
client.

• Attack Nature. The adversary may either passively observe the leakage (referred
to as leakage-abuse attacks) or actively create leakage by tampering with the client’s
database (referred to as injection attacks).

In this paper, we focus on persistent adversaries against STE for document collections. We
consider adversaries targeting query reconstruction via inference attacks.

Leakage Types. An important characteristic of any leakage-abuse attack is the leakage
type (also known as “leakage profile”) that it exploits. The commonly studied leakage
profiles with respect to STE for document collections are:

• Response Length Pattern. For a given query on a keyword w, the response length
pattern leakage reveals the size of the query response set, i.e., number of documents
containing w.

• Co-occurrence Pattern. For a pair of queries over keywords wi and wj , the co-
occurrence leakage reveals the number of documents containing both wi and wj .

• Search Pattern. For a pair of queries over keywords wi and wj , the search pattern
leakage reveals whether wi and wj are identical.
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• Access Pattern. For a given query on a keyword w, the access pattern leakage reveals
the set of (potentially randomized) identifiers pertaining to documents containing w.

Known-Data Attacks on STE. We summarize here the most well-known leakage-abuse
attacks on STE for document collections. All of these attacks are known-data and exploit
one or more of the aforementioned leakage profiles.

• The IKK Attack. The first attack to be proposed against STE for document collec-
tions was the IKK attack due to Islam et al. [30] that exploited co-occurrence leakage.
The IKK attack was presented as an inference-style attack, but was shown to be inef-
fective in this form in practice by Cash et al. [9]. Hence, this attack should be classified
as a known-data attack. The attack also requires known queries.

• The Count Attack. The Count attack was proposed by Cash et al. [9, 10] as an
improved known-data attack against STE for document collections. It does not rely
on known queries. It also has a higher query recovery rate. The Count attack can be
instantiated in the setting where only a fraction of the documents are known to the
adversary. However, experiments [9, 10, 5] have shown that the attack is only effective
when over 70% of the documents are known.

• Newer Attacks. In a recent work, Blackstone et al. [5] introduced new known-data
attacks that are significantly better than the Count attack and its variants. These
attacks require no knowledge about the client’s queries and perform well even when
as little as 5% of the documents are known to the adversary. These attacks exploit a
variety of leakage patterns. In certain cases, they exploit the (exact) response length
pattern leakage pattern from the actual documents. In other cases, they exploit the
full (and exact) access pattern leakage pattern. These attacks are known-data attacks:
the adversary needs to know a subset of the target database.

Inference Attacks on STE. As already mentioned, known-data attacks require the
auxiliary data available to the adversary to be either identical to or a subset of the target
database. Inference attacks, on the other hand, make the weaker assumption that the
adversary has access to auxiliary data that is independent of but still statistically close to
the target database. This is a more realistic assumption, and has motivated the investigation
of inference-based leakage-abuse attacks on STE. We summarize two such attack approaches
below.

• Graph Matching Attacks. Pouliot and Wright [48] proposed an improved version
of the IKK attack that exploits co-occurrence pattern leakage and relies on graph
matching algorithms. The attack was shown to be effective against ShadowCrypt [29]
and Mimesis Aegis [38], albeit under the strong assumption that the auxiliary and
target datasets are highly correlated, i.e., the leakage is only weakly perturbed. As shown
in [42], the attack efficiency degrades significantly when the leakage perturbation is
high (which is expected to be the case in practice).

• The SAP Attack. In a recent preprint [42], Oya and Kerschbaum proposed a max-
imum likelihood estimation-based leakage-abuse attack against STE with perturbed
leakage profiles, including the schemes in [14, 45, 16]. This attack, called the SAP at-
tack, simultaneously exploits the (exact) search pattern leakage and (potentially noisy)
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response length pattern leakage. However, as Oya and Kerschbaum clarify in [42], the
SAP attack crucially relies on the availability of auxiliary information about query
frequency patterns, which is seemingly a very strong assumption in practice.

Efficiency and Scalability. It appears that nearly all of the existing leakage-abuse
attacks on STE for document collections fail to scale in a robust and efficient manner when
attempting query-recovery over large query histories and/or in the presence of noisy auxiliary
data. As an illustration, the analysis due to Blackstone et al. in [5] are based on the Enron
database [53] for only 150 queries. The SAP attack[42] has a query recovery rate of only 22%
when the auxiliary information available to the adversary has a large number of keywords,
indicating a lack of robustness against high levels of noise in the leakage. However, for a
leakage-abuse attack to be truly practical, it should ideally maintain efficiency when scaling
to larger query histories while also being robust to the presence of high noise levels in the
auxiliary data. It is currently open to design such leakage abuse attacks.

Countermeasures. In recent years, researchers have attempted to design STE schemes
that specifically counter leakage-abuse attacks. Examples of such countermeasures in-
clude volume-hiding EMMs [33, 45] and STE schemes with differentially private access-
patterns [14]. At a high level, these schemes aim to “perturb” the co-occurrence leak-
age and the access-pattern leakage from the STE scheme. Since the leakage-abuse attacks
in [30, 9, 10, 5] rely on the “exact” knowledge of various leakage profiles, they either do not
work or are practically infeasible against such perturbed leakage profiles. The only known
attack to achieve query recovery against STE schemes with perturbed leakage profiles is the
SAP attack [42]. However, this attack relies on exact search pattern leakage in addition
to noisy access patterns. Also, as already mentioned, it makes strong assumptions on the
availability of auxiliary information about query frequency patterns.

Our Contribution. In this paper, we ask the following question:

Can we design efficient and scalable inference-style leakage-abuse attacks on state-of-the-art
STE schemes with perturbed leakage profiles that only rely on (noisy) co-occurrence pattern
leakage and avoid strong assumptions on the availability of auxiliary information about query
frequency patterns?

We answer this question in the affirmative. We propose and experimentally demonstrate
the first inference-style leakage-abuse attacks that achieve efficient and highly scalable query
reconstruction against STE schemes with perturbed leakage profiles while relying only on
noisy co-occurrence pattern leakage and while assuming no auxiliary information about
query frequency patterns. We target the following STE schemes:

• STE schemes for document collections with differentially private access patterns, such
as the scheme proposed by Chen et al. [14].

• STE schemes for document collections that are built from various instantiations of
volume-hiding encrypted multi-maps (EMMs), including those proposed by Kamara
and Moataz [33], and by Patel et al. [45].

At a high level, our attacks exploit subtle gaps that exist between the security guarantees
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Attack Attack Assumption Leakage Exploited Additional Requirements Perturbed Leakage?
IKK [30] Known-data Co-occurrence pattern Known queries No
Count [9] Known-data Co-occurrence pattern Known queries* No
BKM20 [5] Known-data Co-occurrence or access pattern – No
Graph Matching Attacks [48] Inference Co-occurrence pattern – Yes**
SAP [42]*** Inference Search pattern and response length Query frequency patterns Yes

(auxiliary information)
GPPW20 [28]**** Inference Co-occurrence pattern – Yes
This work Inference Co-occurrence pattern – Yes

Table 1: Comparison of existing passive and persistent query reconstruction attacks based on
co-occurrence and/or access pattern leakage. *Count attack does not need known queries if
the entire database is known by the attacker; known queries are only helpful when only part
of the database is known by the attacker. ** The attack targets in [48] have weakly perturbed
leakage. *** The SAP attack makes strong assumptions on the availability of auxiliary
information about query frequency patterns. **** Gui et al. [28] only presented a system-
wide leakage based cryptanalysis of their own construction called SWiSSSE while making
stronger assumptions on the auxiliary leakage available to the adversary as compared to our
attacks. They also did not propose any attacks on differentially private access patterns.

that would be expected for the aforementioned STE schemes and the actual security guar-
antees that they achieve when used to design functioning STE systems over large databases.
In certain cases (such as for STE with differentially private access patterns), these gaps
arise from insufficiencies in the security guarantees provided by perturbed leakage profiles
over real-world databases. In other cases (such as for volume-hiding EMMs), these gaps
arise from the fact that the proposed countermeasures can only be applied (in a scalable
and efficient manner) to a small sub-component of the overall STE system and fail to mask
additional system-wide leakage that inevitably arises. This system-wide leakage can in turn
be abused for query reconstruction.

Our attacks use standard simulated annealing techniques to converge on a solution assigning
each query to a keyword. We use an objective function that is derived from the likelihood of
observing a given assignment of keywords to queries, given the leakage profile and the aux-
iliary data as prior information. Maximising the objective function (as simulated annealing
attempts to do) then corresponds to maximising the log likelihood of the solution. Thus the
simulated annealing, if it works, will produce “good” solutions in which many keywords in
the solution are correctly assigned to queries. This approach requires careful mathematical
analysis to derive the likelihood functions for each targeted scheme and to efficiently imple-
ment their evaluation on large sets of queries and leakage. We demonstrate the practical
effectiveness of our attacks via extensive experimentation using the Enron email corpus [53]
as the target database.

Table 1 presents a summary of our attacks and compares them against existing leakage-abuse
attacks. We expand further on our key observations and attack techniques below.

1.1 Attacks on Differentially Private Access Pattern Leakage

We present the first inference-style leakage-abuse attack based solely on noisy co-occurrence
pattern leakage on an STE scheme with differentially private access patterns. We target
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the scheme proposed by Chen et al. [14] (referred to as DPAP-SE henceforth). Our key
contributions include: (a) developing a rigorous mathematical model for the “noisy” co-
occurrence leakage patterns incurred by DPAP-SE, and (b) designing new attacks that
can reconstruct queries given only this model.

Our attacks subvert the query privacy guarantees of an implementation of DPAP-SE for
the same parameter set that the authors of [14] advocate using to counter leakage-abuse
attacks. While it is possible to degrade our attack’s efficiency by altering the parameter
set, this also greatly reduces the practical efficiency of the resulting scheme. In the end,
the query privacy of any reasonably efficient instantiation of DPAP-SE is broken by our
attacks.

Implications of Our Attacks. Our attacks do not invalidate the original security claims
of DPAP-SE, but indicate these security claims (and the corresponding usage of differen-
tial privacy techniques) are, in fact, insufficient in practice. DPAP-SE does resist näıve
adaptations of existing leakage-abuse attacks [30, 9, 10, 5] that rely on the exact leakage
such as response length patterns, co-occurrence patterns and access patterns. This is pre-
cisely the claim made by the authors of [14], and our attacks do not invalidate these claims.
Rather, we demonstrate the possibility of stronger attacks that do not rely on such exact
leakage and, hence, bypass the limitations of existing leakage-abuse attacks.

1.2 Attacks on System-Wide Leakage

We make critical observations surrounding “system-wide” leakage incurred by STE schemes
in practice and their impact on query privacy. We illustrate, both theoretically as well as via
practical experiments, that system-wide leakage can be exploited to launch stronger leakage-
abuse attacks against state-of-the-art STE schemes for document collections built from
volume-hiding EMMs, including the PRT-EMM schme due to Kamara and Moataz [33],
as well as the FP-EMM and DP-EMM schemes due to Patel et al. [45].

We note here that our attacks do not subvert the security guarantees of volume-hiding EMMs
themselves. Rather, they exploit the gap between the “ideal” security guarantees achieved
by volume-hiding EMMs operating in isolation, and the “real-world” security guarantees
that efficient STE implementations built from volume-hiding EMMs actually achieve in
practice.

Volume-Hiding EMMs vs End-to-End STE Systems. Our attacks stem from the
observation that while volume-hiding EMMs are, in isolation, resistant to leakage-abuse at-
tacks, the same is not true for (efficient and scalable) end-to-end STE systems for document
collections built from volume-hiding EMMs. State-of-the-art STE schemes for document
collections (e.g., [15, 12, 11, 31, 37])) only use EMMs as a sub-component to realize a en-
crypted search index and associated operations on that index. However, EMMs no longer
appear in the query processing step where the client actually fetches the encrypted docu-
ments matching a query.
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We note here that this approach of using (volume-hiding) EMMs as a sub-component is,
in fact, a direct and natural instantiation of the structure-only approach to designing STE
schemes introduced and formalized by Chase and Kamara in [13]. In this approach, the
designer separates the actual data items to be encrypted from the structures (e.g., the search
index) designed to search over these data items, and uses dedicated STE techniques (e.g.,
EMMs) to only encrypt these data structures. Almost all state-of-the-art STE schemes today
use this approach because it naturally yields the most modular and efficient constructions
in practice.

In theory, one could apply volume-hiding EMMs to encrypt the whole database, and not just
the search index. However, this is prohibitively expensive for large databases. For example,
our experiments show that for the Enron email database [53], there is a 36× storage overhead
incurred by applying volume-hiding EMMs to encrypt whole database (see discussion in
Appendix D.1 for more details). In addition, existing volume hiding EMMs typically incur
additional computational and communication overheads during query execution due to their
usage of padding techniques; while this cost is manageable when querying the search index
alone, it blows up to impractical proportions if applied directly to encrypted document
retrieval.

To summarize, with currently available techniques, we can have either efficient and scalable
STE schemes where volume-hiding EMMs protect only a sub-component of the overall sys-
tem, or we can have STE schemes protected end-to-end using volume-hiding EMMs that
are inefficient in practice. As a result, efficient state-of-the art STE schemes built from
volume-hiding EMMs will inevitably incur additional leakage during encrypted document
retrieval.

System-Wide Leakage. We refer to the leakage incurred during encrypted document
retrieval as system-wide leakage since it only appears in our analysis when we take a system-
wide view of STE (as opposed to focussing on individual components e.g., the encrypted
search index). In particular, existing security definitions of volume-hiding EMMs and, more
generally, STE for document collections, fail to capture system-wide leakage. In this paper,
we demonstrate that the careful leakage mitigation for the encrypted search index is, in
effect, undermined by the inevitable system-wide leakage that arises from the STE system
as a whole.

Modeling and Attacking System-Wide Leakage. In a prior work, Gui et al. [28]
discussed system-wide leakage in STE schemes, and its impact on the security guarantees
of STE schemes. However, they did not specifically focus on the impact of system-wide
leakage on volume-hiding EMMs and their usage in STE schemes; they only presented a
system-wide leakage based cryptanalysis of their own construction called SWiSSSE. In this
paper, we refine and extend the analysis of [28] to develop full-fledged query reconstruction
attacks against state-of-the-art STE schemes built from different variants of volume-hiding
EMMs, including PRT-EMM [33], as well as FP-EMM and DP-EMM [45]. Our attacks
work for volume-hiding EMM implementations using the same parameters and the same
design/implementation choices advocated in [33] and [45].
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We show how to model the noisy co-occurrence leakage pattern from STE schemes using
volume-hiding EMMs as a function of the original database, the keyword queries and system-
wide leakage. To our knowledge, this is the first attempt to formally model the co-occurrence
leakage pattern of an STE scheme in the presence of system-wide leakage. We then use these
models to develop new inference-style leakage-abuse attacks that can reconstruct queries
from a combination of: (a) noisy co-occurrence leakage from volume-hiding EMMs and
(b) additional system-wide leakage from document recovery. Beyond query reconstruction,
our attacks are also capable of (approximate) database reconstruction in certain cases (see
Section 4.4 for more details).

It is important to reiterate that our targets here are STEs built from the volume-hiding
EMMs proposed in [33, 45]. One might be concerned that, since [33, 45] did not propose
actual STEs but only EMMs, it is misleading to target specific STEs built from their EMMs.
We argue that (volume-hiding) EMMs on their own are not very useful, that the authors of
[33, 45] are clear that STEs are the main application domain for their EMMs, and that the
constructions of STEs we target are the natural, efficient ones that one obtains when using
EMMs as a starting point and when following the structure-only approach introduced and
formalized in [13].

Implications of Our Attacks. Our attacks essentially underline the fact that existing
proofs of security for (volume-hiding) EMMs, and more generally STE scheme built from
volume-hiding EMMs via the structure-only approach proposed in [13], ignore system-wide
leakage, and thus fail to account for potential attacks abusing this leakage. We believe that
this motivates a more fundamental change of perspective with respect to STE design and
leakage-mitigation. While the existing approach of focusing on the leakage arising from
specific sub-components (such as the encrypted search index) of STE schemes facilitates
modular design and analysis, it also brings the risk of incomplete leakage analysis from the
system as a whole.

1.3 Inference Attacks: Techniques and Evaluation

A leakage-abuse attack is an inference attack when the adversary only has access to auxiliary
data that is independent but statistically “close” to the target database. As mentioned
earlier, the existing leakage-abuse attacks [30, 9, 10, 5] do not work as inference attacks
as they necessarily rely on stronger models of auxiliary data. We make the first concrete
progress towards practical realizations of inference-style attacks based on noisy co-occurrence
pattern leakage. All of our leakage-abuse attacks on differentially private access patterns
and system-wide leakage are inference attacks.

Our Techniques. We achieve inference-style leakage-abuse attacks by using a combination
of statistical modeling and simulated annealing. The core technical idea is quite simple and
natural. We model the attack as an optimization problem, where the objective function is
the statistical likelihood of observing a given assignment of keywords to queries, given the
observed leakage and auxiliary data as prior information. We then maximise the objective
function using simulated annealing (we developed our own implementation of simulated
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annealing for speed and flexibility, but one could use any off-the-shelf implementation here).
The bigger hurdle lies in identifying and mathematically modeling the (potentially “noisy”)
leakage information available to the adversary as a function of the auxiliary data and a
given keyword assignment, and how to transform the resulting model into an appropriately
structured input to the simulated annealing algorithm.

Experimental Evaluation. In Section 5, we present extensive experimental evaluations
to validate the practicality of our proposed attacks. Rather surprisingly, our apparently sim-
ple approach yields extremely powerful leakage-abuse attacks against state-of-the-art STE
schemes equipped with leakage-suppressing countermeasure techniques. Our experiments
show that our attacks achieve high success rate with reasonable practical efficiency even
if: (a) the target STE schemes use aggressive security parameters (beyond those advocated
by the authors of these schemes); (b) the keyword universe of the auxiliary information is
significantly larger than the set of queried keywords (existing attacks ); and (c) the auxiliary
information available to the adversary is very “noisy”.

As in prior work on leakage-abuse attacks (notably [5]), we use the Enron email corpus [53]
as the target database for our evaluations. We use uniformly distributed keyword queries to
evaluate our attacks. This is exactly as used in previous attacks [30, 9, 5]. We opt to split
the overall database into two halves: a selection from one half is used to form the auxiliary
data available to the adversary, while the other half is used as the target database for attack
evaluation. We present additional discussion justifying this choice in Section 5.

Our attacks achieve over 75% query reconstruction rate in most of the settings we have
tested. These include settings where the target STE schemes use aggressive security pa-
rameters even beyond those originally proposed, as well as settings where the auxiliary
information available to the adversary is significantly perturbed (with upto 3000 keywords).
As a comparison, for similar security and noise parameters, the SAP attack [42] achieves only
22% query reconstruction rate; we achieve 3.5x better query recovery rate while relying on
a weaker leakage profile and while making more realistic assumptions about auxiliary data.
In certain cases, our attacks achieve more than 90% query reconstruction rate when the
parameters for the target STE schemes are identical to those originally proposed. Finally,
our attacks achieve 5× greater scalability than any existing leakage-abuse attack.

1.4 Other Related Work

Naveed et al. [40] proposed the first inference attacks against property-preserving encryp-
tion (PPE), and more specifically against CryptDB [6], using techniques such as `2-optimization
and frequency analysis. Their attacks showcased vulnerabilities in well-known sub-classes of
PPE such as deterministic encryption [3] and order-preserving encryption [6]. Other well-
known inference attacks on PPE include the graph-based attack due to Grubbs et al. [26],
the maximum likelihood estimation-based attack due to Lacharité and Paterson [36], and
the Bayesian inference-based attack due to Bindschaedler et al. [4]. Our attacks share some
similarities with the latter two attacks [36, 4], albeit for a different class of target schemes.

10



2 Preliminaries

2.1 Abstract Data Types

An abstract data type is a collection of data objects and a set of operations defined on
those objects. For instance, set with an operation to initialise a set and the common set
operations is an abstract data type. Operations on abstract data types can be broadly
categorised into two groups: static operations which do not change the data objects; and
dynamic operations which may change the data objects. Our attacks in this paper focus on
abstract data types with static operations only.

2.2 Syntax of Static Structured Encryption

Let T be an abstract data type supporting query operation Query. Then, a private-key
structured encryption scheme Σ for T is a tuple Σ = (Setup,Querye) where:

• Setup is the setup algorithm which takes as input some data D of structure T , and
outputs a secret key sk and some encrypted data ED.

• Querye is the query protocol between the client and server. The client takes as input
a secret key sk and a query q, and the server takes as input some encrypted data ED;
after the interaction between the client and server, the client obtains a response rsp.

Correctness. We say that scheme Σ is correct if for all data D and all queries q, an
execution of the query protocol Querye on the encrypted data ED← Setup(sk,D) yields
the same response as an execution of query operation Query on data D and query q.

2.3 Security of Structured Encryption

Unlike some other primitives, structured encryption needs to leak some information to
be efficient. Hence, its security is parametrised by leakage, that is, an upper bound on
the information of the data and queries for which an attacker can learn from the Setup
algorithm and subsequent queries. Formally, security of structured encryption can be defined
as follows.

Definition 1 (CQA2-security). Let Σ = (Setup,Querye) be a private-key structured en-
cryption scheme for abstract data type T . Consider the following probabilistic experiments
between a challenger C and an adversary A:

• RealΣ,A(k): the adversary A generates data D and sends it to the challenger C. The
challenger C runs the Setup algorithm to generate a secret key sk and some encrypted
data ED. The encrypted data ED is sent to the adversary. After that, the adversary
picks a polynomial number of queries adaptively and send them to the challenger.
The challenger and adversary executes the Querye protocol on the queries where the
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challenger plays the client and the adversary plays the server. Finally, the adversary
outputs a bit b that is output by the experiment.

• IdealΣ,A,S(k): the adversary A generates data D and LSetup(D) is sent to the simu-
lator S. The simulator S generates encrypted data ED using the leakage and sends it
back to the adversary. The adversary picks a polynomial number of queries q1, . . . , ql
adaptively and LQuerye

(q1,D), . . . ,LQuerye
(ql,D) is sent to the simulator. The simu-

lator and adversary executes the Querye protocol on the queries where the simulator
plays the client and the adversary plays the server. Finally, the adversary outputs a
bit b that is output by the experiment.

We say that Σ is (LSetup,LQuerye
)-secure against adaptive chosen-query attacks if for all

probabilistic polynomial-time (PPT) adversaries A, there exists a PPT simulator S such
that

|Pr [RealΣ,A(k) = 1]−Pr [IdealΣ,A,S(k) = 1]| ≤ negl(k).

2.4 Abstract Data Type in our Attacks

For the rest of our paper, we use database for searchable encryption as target abstract
data type. A database DB consists of a set of documents di, each associated to a set
of keywords kw(di), so DB = {(di, kw(di))}. It supports keyword search queries. For a
keyword search query q on keyword kw(q), the set of documents containing the keyword
{di | kw(q) ∈ kw(di)} is returned. To emphasis that we are only considering keyword search
queries, we denote the query protocol as Srch.

Multi-maps have a different abstract data type to database for searchable encryption, but
it can be transformed to look like the latter. Specifically, instead of representing the data
type as a set of key-value pairs

{
(keyi,

−→vi )
}

, it can be represented as a set of value-key pairs{
(vi,
−−→
keyi)

}
. The latter representation takes the same shape as a database for searchable

encryption and has the same functionality. Indeed, encrypted multi-maps [31, 33, 45] are
proposed to be used as searchable encryption schemes. As a result, an attack against a
certain leakage from a searchable encryption scheme is applicable directly to an encrypted
multi-map scheme with the same leakage.

3 Formal Description of Query Reconstruction Attacks
using Co-Occurrence Leakage

This section establishes the leakage we are targeting in the paper and the attack setting.

Access-pattern Leakage. Access-pattern leakage refers to the information leakage as-
sociated to document retrieval. For instance, in a näıve searchable encryption scheme, the
Srch protocol may return the exact set of encrypted documents matching the queried key-
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word, hence, leaking the information that the given set of documents contains the queried
keyword. We use an example to demonstrate how it is represented below.

If scheme Σ leaks the “exact” access pattern and nothing else, we can write the leakage of
a query q on document collection DB as

LSrch(q,DB) = {i | kw(q) ∈ kw(di), (di, kw(di)) ∈ DB} ,

where kw(q) denotes the keyword associated to query q. We note that although the leakage
here is represented by the document identifiers, it is equivalent to an encrypted document
based representation. We choose the former as the representation is more compact.

Co-Occurrence Leakage. Access-pattern leakage from different queries can be repre-
sented equivalently as a matrix, known as co-occurrence pattern. Consider a small document
collection DB where

DB = {(d1, {kw1, kw2, kw3}), (d2, {kw1, kw2}), (d3, {kw3})}.

Let qi be a query on keyword kwi. If the original access pattern is leaked, we know that

LSrch(q1,DB) = LSrch(q2,DB) = {1, 2} ,LSrch(q3,DB) = {1, 3} .

This allows us to take intersections between the leakages as follows:

LSrch(q1,DB) ∩ LSrch(q2,DB) = {1, 2} ,
LSrch(q`,DB) ∩ LSrch(q3,DB) = {1} for ` ∈ {1, 2}.

The cardinality of the intersections can be very useful in an attack. For example, the co-
occurrence pattern of the document collection above can be represented as a co-occurrence
matrix M̄ :

M̄(q1, q2, q3; DB) =

2 2 1
2 2 1
1 1 2

 ,
where the i, j-th entry of the matrix is∣∣LSrch(qi,DB) ∩ LSrch(qj ,DB)

∣∣ .
If we know the underlying document collection perfectly, we can re-identify q3 as a query
on kw3 as it is the only keyword that only shares one document with other keywords. This
qualifies as a query reconstruction attack.

We note that a co-occurrence matrix contains strictly less information than the original
access-pattern leakage as the information on intersections of more than two queries are
removed. However, the co-occurrence matrix is often sufficient in attacks so it is used instead
of the full leakage. We refer to the co-occurrence matrix as the co-occurrence leakage.

There are three complications to the representation of co-occurrence leakage in practice.
Firstly, the schemes we consider in practice usually leak query equality pattern too. That
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is, if kw(qi) = kw(qj), the attacker knows that the two queries are for the same keyword.
In terms of co-occurrence leakage, we use only one of the queries in the representation to
simplify the problem. Secondly, the queries are unordered in practice. That means there
is no standard representation of the leakage in terms of the known keywords. We use the
convention that the i-th row and column of the co-occurrence matrix corresponds to the
i-th non-repeating query in our representation. Finally, not all schemes leak the original
access pattern and some schemes may even be randomised. In those cases, we need to use
a suitable representation of the co-occurrence information, which may differ from what we
have described above.

Auxiliary Information. Similar to a co-occurrence matrix, the auxiliary information the
attacker receives can be represented as a co-occurrence matrix M . The co-occurrence matrix
is indexed by the known keywords and typically contains full information on all keywords.
In stronger attacks, M is assumed to be noisy in the sense that it is not generated directly
from the target document collection. Instead, an auxiliary dataset is used for the purpose.

Let DB = {(di, kw(di))} be an auxiliary document collection with keywords {kw1, . . . , kwn}.
In our attack, the i, j-th entry of M represents the empirical probability (derived from
the auxiliary data DB) of seeing kwi and kwj together in a document. It is computed
as: Mi,j = |{di | kwi ∈ kw(di) ∧ kwj ∈ kw(di)}|

/
|DB|, where |DB| denotes the number of

documents in the collection.

Attack Setting. Let Σ be a structured encryption scheme. Our attack exploits its
co-occurrence leakage M̄(·; DB) from retrieval of actual documents. If the scheme is an
index-only one, we assume that the scheme used for document retrievals leaks the full
access pattern induced by the index-only scheme. We abuse the notation M̄(·; DB) to
mean co-occurrence leakage from document retrieval, and the said leakage is used in our
query reconstruction attacks.

We can describe a query reconstruction attack formally as follows. Let queries q1, . . . , ql
be a sequence of queries on the document collection, so the attacker observes co-occurrence
leakage M̄(q1, . . . , ql; DB). Suppose that the attacker has access to some auxiliary infor-
mation M . The goal of the attacker is to recover kw(qi) after observing the co-occurrence
leakage M̄ and knowing auxiliary information M .

4 New Query Reconstruction Attacks using Co-Occurrence
Leakage

4.1 Attack Overview

Attacks on Differentially Private Access Pattern Leakage. Differential privacy
[18] is a statistical methodology to publish aggregated statistics without disclosing informa-
tion on individuals. It is achieved by applying an obfuscation mechanism on a database,
such that the chance of obtaining the resultant database is almost the same as if an indi-
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vidual (or an entry) is removed before applying the obfuscation mechanism. This protects
information of individuals as they are not ‘important’ in the final database.

This idea was extended to structured encryption as a mechanism to hide access-pattern
leakage in many works [39, 14, 50]. In our paper, we show differentially private access
pattern does not imply security against query reconstruction attacks using [14] as a case
study.

Attacks on System-Wide Leakage. As discussed in the introduction, the most natural
and efficient approach to use EMMs to build an end-to-end STE systems incurs system-wide
leakage. In this paper, we exploit system-wide leakage in the form of co-occurrence leakage
(from encrypted document retrievals) from end-to-end STE built for document collections
from volume-hiding EMMs [33, 45].

4.2 Attack Targets and Co-occurrence Leakages

Searchable Encryption with Differentially-Private Access Pattern. Chen et
al. proposed using differential privacy as a means to prevent leakage-abuse attacks that
exploit access pattern leakages. They proposed an STE scheme for document collections
where a differential privacy mechanism is used to obfuscate the plaintext database before
building an encrypted database, such that a slight change in the real access pattern does
not affect the obfuscated access pattern significantly. There are two key ingredients in their
construction. Firstly, they used an erasure code [17] to split every document into m shards,
each with size 1

k of the original document. The erasure code has the property that any k
shards of a document can be used to reconstruct the original document. The client then
picks two probabilities p and q, and does the following to each shard:

1. For any keyword that is originally in the shard, remove the keyword with probability
1− p.

2. For any keyword that is originally not in the shard, add it to the shard with probability
q.

We refer to this scheme as DPAP-SE.

Intuitively, a smaller p and a larger q means more distortion to the co-occurrence informa-
tion, and hence more “secure” against access-pattern leakage attacks. However, to ensure
that enough shards are returned with high probability, p has to be decently large. Sim-
ilarly, to control the communication overhead, q has to be small. In terms of the effect
of the countermeasure on the co-occurrence leakage, it transforms query response lengths
into noisy keyword response lengths on the shards; co-occurrence counts are now leaked as
noisy co-occurrences on the shards. The derivation of the distribution of the co-occurrence
leakage can be found in Appendix A.

Volume-hiding EMMs via Pseudo-random Transform. As a potential countermea-
sure to leakage-abuse attacks, Kamara and Moataz [33] introduced the concept of volume-
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hiding encrypted multi-maps (EMMs) that hide response length patterns (and exact ac-
cess patterns) while providing better search performance compared to näıve (or worst-case)
padding. Kamara and Moataz proposed the first construction of volume-hiding EMMs based
on an obfuscation mechanism called pseudo-random transform. Their idea is to pad or trun-
cate the query response lengths of queries on a multi-map with a pseudo-random function
as follows. Let key be a key for the multi-map and Fsk(·) be a pseudo-random function
with key sk. The client computes: n′key = λ + Fsk(key||nkey), as the new query response
length, where λ is a free parameter which the client can choose and nkey is the original
query response length. These new query response lengths are used to build a multi-map on
document identifiers as follows:

• If nkey ≤ n′key, add ⊥ symbols in the multi-map on key key before encryption.

• If nkey > n′key, truncate the multi-map on keyword key to the first n′key entries.

The multi-map is then encrypted with an underlying encrypted multi-map scheme and
uploaded to the server. We refer to this encrypted multi-map scheme as PRT-EMM.

It was not clear if the underlying encrypted multi-map scheme is an index-only one or not –
our attack applies when it is, and we assume so based on our argument in the introduction.

We note that the original construction pads query responses with ⊥ symbols if the real query
response length is shorter. If the ⊥ symbols are ignored in actual document retrieval, the
attacker will be able to learn the true query response lengths when there is padding. In our
attack, we assume the ⊥ symbols are replaced by randomly picked indices, so the true query
response lengths are not leaked. The derivation of the distribution of the co-occurrence
leakage for PRT-EMM can be found in Appendix A.

Newer Constructions of Volume-hiding EMMs . Recently, Patel et al. proposed two
volume-hiding EMM constructions in [45]. Both of the constructions use Cuckoo hashing
[43] as the underlying data structure. Just like PRT-EMM [33], we assume that the
constructions are index-only schemes.

The two schemes proposed by the authors are only different in terms of the padding mech-
anism on the query response lengths. The first scheme uses full padding, meaning that all
query response lengths are padded to the maximum query response length. In terms of the
hash table, this is done by querying additional addresses deterministically (generated by a
pseudo-random function) for each key. We refer to this scheme as FP-EMM.

The second scheme uses differentially-private volume hiding as opposed to full padding. Let
2nkey be the true query response length of a query on key key, where 2 comes from the fact
that Cuckoo hashing uses two hash tables. Then the scheme pads the query response length
to 2nkey + n∗ + Lapsk(2/ε), where n∗ is a parameter set by the client to offset the query
response length in case the latter random variable is negative, and Lapsk(·) is a Laplace
distribution with secret key sk as the seed. We refer to this scheme as DP-EMM.

The derivation of the distributions of the co-occurrence leakages for FP-EMM and DP-
EMM can be found in Appendix A.
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4.3 Attack Model

Attack Overview. Given the observed co-occurrence matrix M̄ and auxiliary co-occurrence
matrix M (which may not have the same dimensions), the goal of the adversary is to find an
assignment P between the queries and the keywords such that the observed co-occurrence
matrix fits the auxiliary information. In our formulation, the diagonal entries in the ob-
served co-occurrence matrix are the query response lengths, and the off-diagonal entries are
the number of documents accessed by two queries at the same time; the diagonal entries in
the auxiliary co-occurrence matrix are probabilities such that a document contains the given
keywords. For simplicity, we assume identical and independent distribution of the keywords,
meaning that the true query response lengths can be modelled as binomial distributions.
Furthermore, we assume that the off-diagonal entries in the auxiliary co-occurrence matrix
specify the distribution of co-occurrences of keywords, and we use multinomial distributions
to model the distributions. Given that there is randomness in the generation of leakage, we
propose to use a likelihood function L

[
P | M̄,M

]
to measure the fitness of the data. As the

search space for the assignment is huge, a brute-force approach is impractical. We propose
to use simulated annealing [1] to search for the most likely assignment. In the next section,
we explain how simulated annealing works and outline the subroutines of the algorithm.

Simulated Annealing. We give a brief overview of simulated annealing [1] in this section.
Simulated annealing is a probabilistic technique for searching for the global optimum of a
given function. It is very similar to a greedy search algorithm – randomize the input of
the function, in our case, that is the assignment P , recompute the score, and if the score is
larger than before, the assignment is kept as the new solution, and it is discarded otherwise
– except that a worse solution is accepted in simulated annealing if it is not too bad. This
is to prevent the algorithm from sticking in a local optimum. More concretely, simulated
annealing uses a temperature T which decreases per iteration and the differences between
the current score of the target function and the previous best score maintained by the
algorithm to compute an acceptance probability p, and with probability p the new solution
is accepted. This probability is 1 if the new score is higher than the previous best, and less
than 1 otherwise. For the same difference in the scores, a lower temperature T leads to a
lower acceptance probability, which means simulated annealing acts more and more like a
greedy search algorithm as the iterations go on.

Formally, simulated annealing consists of five subroutines, namely a function InitPerm

to generate an initial assignment, a cooling scheme Cooling, a neighbourhood generation
algorithm Neighbour, a function Score to compute the score and a function AccptProb to
compute the acceptance probability. The syntax of the subroutines are defined below:

• InitPerm: takes as input an observed co-occurrence matrix M̄ and a auxiliary co-
occurrence matrix M , and outputs an assignment P .

• Cooling: takes as input a temperature T and the current iteration number i and
outputs a new temperature T ′.

• Neighbour: takes as input a assignment P , an observed co-occurrence matrix M̄ and
a auxiliary co-occurrence matrix M , and output a new assignment P ′.
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• Score: takes as input an observed co-occurrence matrix M̄ , a auxiliary co-occurrence
matrix M and an assignment P , and output a score.

• AccptProb: takes as input a temperature T , a previous best score s and the new score
s′, and output a probability.

We are now ready to give an overview of simulated annealing. The algorithm begins with
an initial temperature T0 and a random assignment P . An initial score s is computed on
this assignment P . Then, the algorithm computes a new temperature T ← Cooling(T0, 1),
find a new assignment P ′ using the neighbourhood function Neighbour(·), and compute a
new score s′ with the score function Score(·). An acceptance probability is computed as
p← AccptProb(T, s, s′). A random number between 0 and 1 is generated and if the random
number is less or equal to p, the new solution s′ is accepted by the algorithm and kept as
the new optimum solution. This process is repeated until the maximum number of iteration
is reached. Pseudocode for our simulated annealing approach is presented in Algorithm 1.

Algorithm 1 Simulated Annealing

1: procedure Attack(M̄,M, T0, imax)
2: P ← InitPerm(M̄,M)
3: T ← T0

4: s← Score(M̄,M,P )
5: for i← 1, . . . , imax do
6: T ← Cooling(T, i)
7: P ′ ← Neighbour(P, M̄,M)
8: s′ ← Score(M̄,M,P ′)
9: if AccptProb(T, s, s′) > rand(0, 1) then

10: P ← P ′

11: s← s′

12: return P

Application of Simulated Annealing to Query Reconstruction Attacks using
Access-pattern Leakage. In this section, we specify the subroutines we used in our
attacks. We used T ′ ← 0.995T as our cooling scheme Cooling(·) and p ← exp(− s−s′

T )
as our function AccptProb(·) to compute the acceptance probability for all three leakages
we have considered. We used the likelihood functions as the score functions Score(·), and
detailed derivations of them are shown in Appendix B. We find the choices of InitPerm(·)
and Neighbour(·) have a significant impact on the performance and effectiveness of our
attacks. The subroutines presented in this section are the most effective variants we have
found.

Initial Assignment Finding Subroutine InitPerm(·). An initial assignment finding
subroutine InitPerm(·) is an efficient algorithm for guessing keywords/keys of the queries,
so as to provide a starting point for the more expensive iterative steps later. For our
attacks, only the query response lengths are used to avoid expensive computations. We
observe that although the observed query response lengths are different from the true query
response lengths for all of the schemes we target, these two are related. In particular, for
DPAP-SE [14] and DP-EMM [45], we can compute the expected observed query response
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lengths from the query response lengths in the auxiliary co-occurrence matrix, and match
the queries to the keywords in the auxiliary co-occurrence matrix as well as we can. For
PRT-EMM [33] and FP-EMM [45], the observed keyword frequencies are independent
from the true keyword frequencies, .

Neighbourhood Generation Subroutine Neighbour(·). A neighbourhood generation
subroutine generates new assignments for the attack. Although a uniformly randomly picked
assignment works all the time, it may not be the most efficient choice. In particular, for
DPAP-EMM [14] and DP-EMM [45], we know that if an observed query response length
is too far from the expectation, the assignment is very unlikely, and can be safely discarded.
This means the neighbourhood generation subroutines for the attacks on these two schemes
can make use of this, and output a new assignment only if it is sound. The pseudocode
for these subroutines can be found in Algorithms 2 and 3 in Appendix C. We note that
these neighbourhood generation subroutines may prevent some correct assignments in the
output of the attack if their observed query response lengths are too far from the expected
query response lengths. By relaxing the bounds, we can make the chance of that happening
arbitrarily small. However, the algorithm would then be less efficient as more iterations are
required for a convergence. Hence, we see our choice of bounds as a trade-off between query
recovery rate and attack efficiency.

For PRT-EMM [33] and FP-EMM [45], we have to use uniformly randomly picked as-
signments, since the observed query response lengths are independent from the true query
response lengths. The pseudocode of this neighbourhood generation subroutine can be found
in Algorithm 4 in Appendix C.

4.4 From Query Reconstruction to Database Reconstruction

In this section, we discuss how some of our query reconstruction attacks can be extended
to database reconstruction attacks. Here, by database reconstruction, we mean recovery of
keywords in the encrypted documents.

DPAP-SE [14]. As the documents are transformed into document shards, it is impossible
to reconstruct the keywords in the documents. However, as access pattern on the shards is
leaked by the scheme, we can use our query reconstruction attack to guess the keywords in
the shards.

Recall that the scheme uses parameters p and q to control the number of real keywords and
fake keywords in each shard. In our attack, we used p = 0.89 and q = 0.045, meaning that
on average, 89% of the real keywords of a document are kept by its shards and 4.5% of
the remaining keywords are introduced as fake keywords. This makes our attack a terrible
database reconstruction attack as there are over 30 thousand keywords in Enron email
corpus, and we are expected to see about 1300 fake keywords per shard.

These choices of parameters, however, make the scheme very inefficient in terms of query
response time as 4.5% of the database needs to be retrieved on average per query just as
noises. Practitioners are likely going to use more optimistic parameters such as p = 0.89999
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and q = 6.997 × 10−6 as suggested as alternative parameters in the paper. In that case,
each shard is expected to receive less than one fake keyword, so there is an overwhelming
probability that the keywords we recover from the shards are real keywords. In general,
what this means is that for small q, our attack is able to recover p fraction of the real
keywords for each shard in expectation.

PRT-EMM [33] and FP-EMM [45]. Our query reconstruction attack cannot be ex-
tended to a database reconstruction attack on PRT-EMM as the signal to noise ratio is
too low. For a similar reason, our attack on FP-EMM cannot be extended to a database
reconstruction attack.

DP-EMM [45]. Our attack on DP-EMM on the other hand, implies a database recon-
struction attack for practical security parameters. Just as before, as access pattern is leaked
in actual document retrievals, our query reconstruction attack recovers the keywords in the
retrieved documents.

Recall that for DP-EMM, the user picks a parameter ε, and the query response length is
padded to

2nkey + n∗ + Lapsk(2/ε),

where n∗ is a fixed constant to offset the latter Laplace random variable. For a large ε,
n∗ is small. For example, with ε = 0.2 as suggested in the original paper, n∗ = 567. The
most frequent keywords have frequencies one or two orders of magnitudes higher than n∗,
which means the later two terms contributes very little as noises. The major source of noise
comes from the multiplicative factor of 2, which means our query reconstruction attacks
recovers as many keywords for each document as the query reconstruction rate specifies,
except that about half of the keywords we recover are fake ones due to the padded query
response lengths.

5 Experimental Evaluation

5.1 Overview

Experimental Data and Auxiliary Information. We use the Enron email corpus
[53] as the target dataset for all of our attacks. A description of the dataset and our
pre-processing step can be found in Appendix D. A major challenge for inference-style
leakage-abuse attacks is deciding an appropriate model for evaluating their effectiveness in
practice. Such a model should take into account both the distribution of queries as well
as the distribution of the auxiliary information available to the adversary. Unfortunately,
there do not exist concrete guidelines in the literature for how to construct such models;
given this lack of precedence, we make certain assumptions that we believe are reasonable
in practice.

Query Distribution. We use uniformly distributed keyword queries to evaluate our
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attacks. This is exactly as in previous attacks [30, 9, 5]. We note here that our attacks do
not explicitly depend on the distribution of queries; hence a uniform distribution appears
to be a reasonable choice.

Auxiliary Data Distribution. For the IKK attack, Islam et al. [30] proposed a method
to model auxiliary information in an inference-style attack setting; their suggestion was to
use an auxiliary co-occurrence pattern leakage obtained by adding Gaussian noise to the
original co-occurrence pattern. However, this implicitly assumes a homogeneous distribution
of keywords amongst the documents, which may not always be the case in practice. Instead,
we opt to split the overall dataset into two halves: out of the 480000 documents in the
dataset, half of the documents are used as the attack target and (a subset of) the other half
of the documents are used to generate auxiliary information about the dataset. In total,
we generate 10 different splits of the documents. For each split, we run 10 independent
attacks with freshly generated observed co-occurrence matrices. We measure the fraction
of correctly guessed keywords/keys and report the average over the 100 runs as the query
recovery rate.

Keyword Extraction and Stemming. We extract keywords using the Natural language
toolkit [49] in Python. The experimental results we present in the main body of the paper
uses the keywords as they are. Since previous attacks [30, 9, 5] used stemming, we run
additional experiments with stemming and study its effects on query reconstruction rate in
Section 5.5.

Keyword and Query Selection. We use the 1000, 2000, 3000 and 4000 most frequent
keywords to build auxiliary co-occurrence matrices, and sample uniformly randomly without
replacement from these most frequent keywords subsets of 250, 500, 750 keywords as queried
keywords. These queried keywords are used to build observed co-occurrence matrices. These
observed and auxiliary co-occurrence matrices are then used as the inputs to our attacks.
Further discussion on the choice of keywords for our attacks is presented in Section 6.

Security Parameter Selection for the Target Constructions. We use the se-
curity parameters suggested in the original papers to run our attacks. We also investigate
how changes in the security parameters affect query reconstruction rates.

DPAP-SE. For DPAP-SE [14], the authors suggested m = 6 (the number of shards
per document), k = 2 (a parameter of the erasure code which does not affect our attack),
p = 0.88703 (the probability for which a keyword is kept in a shard) and q = 0.04416 as
the parameters for the Enron [53] dataset. We used similar parameters where m = 6, k =
2, p = 0.89 and q = 0.045 in our experiments. A smaller q or a bigger q significantly reduces
the efficiency of the construction so we opt to not run additional experiments with those
parameters. Instead, we investigate how a smaller q affects query reconstruction rate. We
use q = 0.0045, 0.00045 and 0.000045 as additional choices of parameters in our experiments.
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PRT-EMM. Recall that PRT-EMM from [33] allows the client to pick a public param-
eter λ which controls the padded query response lengths as:

n′key = λ+ Fsk(key||nkey).

The authors suggested to set λ between 0 and 0.25nmax. We used λ = 0 and 0.25nmax in
our experiments. In addition, we used λ = 0.5nmax to see the effect of additional padding
on query reconstruction rate.

FP-EMM and DP-EMM. FP-EMM from [45] does not have a tunable parameter and
we run our attacks on the FP-EMM as it is. DP-EMM from [45] uses parameter ε to set
query response volumes to:

2nkey + n∗ + Lapsk(2/ε).

The authors suggested ε = 0.2. In our attack, we use ε = 0.2 just as suggested in the original
paper. We also run experiments where ε is significantly smaller, ranging from 0.1 to 0.01.

Implementation. We implemented our attacks in C using GNU Scientific Library [22]
for randomness generation and probability calculations. We used our custom code for
simulated annealing for the best performance. We parallelized our implementation using
OpenMP [41]. Our implementation is highly scalable. It takes less than one minute per
run on the differentially-private schemes (DPAP-SE and DP-EMM) and no more than 6
minutes per run on the other schemes (PRT-EMM and FP-EMM) for all of our experi-
mental settings, on a machine with an 8-core (16-thread) Sandy Bridge CPU clocked at 2.6
GHz.

Experiments. We present three sets of experiments on the target constructions in this
section. In Section 5.2, we present the experimental results in basic settings, where the
auxiliary co-occurrence matrix is built from all of the documents allocated for auxiliary
information (50% of the total) using the 1000 most frequent keywords. We set the number
of queried keywords to 250, 500 or 750, and the security parameters are allowed to vary.
In Section 5.3, we set the number of queried keywords to 250, 500 or 750, and the security
parameters to those suggested in the original papers, and vary the number of keywords used
to build auxiliary information between 1000 and 4000. Just as before, all available documents
are used in building auxiliary information. Finally, in Section 5.4, we use anywhere from
2.5% to 20% of the documents (5% to 40% of the 50% of documents allocated for auxiliary
information) to build the auxiliary co-occurrence matrix, as a means to simulate auxiliary
information with different levels of noise. The number of keywords used is set to 1000, and
the number of queries is allowed to vary from 250 to 750. The security parameters are set
to the ones recommended in the original papers.

5.2 Varying the Security Parameters of the Constructions

Differentially-private Access Pattern for Searchable Encryption. The results
of our attacks are shown in Figure 1a. The attack is able recover over 80% of the queries
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(a) DPAP-SE [14]. (b) PRT-EMM [33]. nmax is the maximum
query response length.

(c) FP-EMM [45]. (d) DP-EMM [45].

Figure 1: Experimental results with varying security parameters. The 1000 most frequent
keywords are used in auxiliary information.

in all cases we have considered. The attack does not seem to perform worse with fewer
observed queries. Interestingly, the attack performs better with a larger q. Intuitively, a
larger q should generate more noise in the co-occurrence matrix, but it works in the favour
of our attack. One possible explanation is that the auxiliary co-occurrence matrix is very
different from the observed one, so our neighbourhood generation subroutine over-fits the
assignments.

PRT-EMM. The experimental results on PRT-EMM are shown in Figure 1b. We observe
an increasing query recovery rate with more queried keywords and larger λ. The attack
performs significantly worse with λ = 0. This is likely due to removal of co-occurrence
counts as the query response lengths are significantly shorter.

FP-EMM. The experimental results of our attack on FP-EMM [45] are shown in Figure
1c. As expected, the attack performs better with more queried keywords. The attack is
able to recover over 80% of the queried keywords if over 500 keywords have been queried,
suggesting that full padding is ineffective at adding noise to the co-occurrence leakage.

DP-EMM. The experimental results are shown in 1d. The attack does not seem to be
affected by the number of observed queries and the choice of ε much.
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(a) DPAP-SE [14]. The security parame-
ters used are m = 6, k = 2, p = 0.89 and
q = 0.045.

(b) PRT-EMM [33]. λ is set to 0.25nmax.

(c) FP-EMM [45]. (d) DP-EMM [45]. ε = 0.2.

Figure 2: Experimental results with varying number of keywords in auxiliary information.

5.3 Varying the Number of Keywords in Auxiliary Information

Our experimental results on varying the number of keywords in the auxiliary information
are shown in Figure 2. The security parameters we used can be found in the captions.
Interestingly, the constructions behave very differently with respect to the number of key-
words in the auxiliary information. In particular, our attack on DPAP-SE [14] is able to
recover more than 70% of the keywords even with 4000 queried keywords. Our attack on
PRT-EMM [33] works reasonably well with large numbers of keywords in the auxiliary
information, managing over 50% query recovery rate except for the case with 250 queried
keywords and 4000 keywords in the auxiliary information.

Our attacks are less successful on FP-EMM and DP-EMM [45]. For FP-EMM, the query
recovery rate falls rapidly as soon as the number of keywords in the auxiliary information is
greater than 2000, whereas our attack on DP-EMM has lower query reconstruction rates
with more than 3000 keywords in the auxiliary information. This suggests that FP-EMM
and DP-EMM (with our choice of parameters) introduces more uncertainty than the other
schemes.
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5.4 Varying the Level of Noise in Auxiliary Information

Given that there is no widely accepted way of modelling noise in auxiliary information, we
opt to use different numbers of documents in auxiliary information as a way to simulate
different levels of noise – fewer documents means more noise. We use absolute distance and
modified probability score to measure the level of noise introduced in each set of experiments
we run. We treat the co-occurrence matrix used as the target database as a sample from a
distribution of co-occurrence matrices specified by the co-occurrence matrix used as auxiliary
information. There is no known test statistics for this scenario so we propose our own
measurements for the level of noise.

Absolute Distance. Inspired by the Kolmogorov–Smirnov test [51], we define absolute
distance to be the maximum absolute difference between the target co-occurrence matrix
and auxiliary co-occurrence matrix:

D = max
i,j

∣∣∣∣M̄P (i),P (j)

N
−Mi,j

∣∣∣∣ ,
where M̄ is the co-occurrence matrix generated from the target database (without using any
construction on top), M is the co-occurrence matrix generated for auxiliary information, P
is the true keyword assignments between the queries and keywords, and N is the number
of documents in the target database. Intuitively, more noisy auxiliary information means a
larger absolute distance.

Modified Probability Score. The second measurement of the level of noise we propose
is the probability score. As the name suggests, the measurement is simply:

Pr
[
M̄ |M

]
.

It is clear that less noisy auxiliary information produces a larger probability score.

The probability score is very small for our datasets, so we use

D = log(− log(Pr
[
M̄ |M

]
))

as a modified probability score instead. Less noisy auxiliary information produces a larger
modified probability score just as before.

Measurements on the Level of Noise. The measurements on the level of noise for the
auxiliary datasets used in our attacks can be found in Figure 3. It can be seen clearly that
the absolute distance and modified probability score increase as less documents are used as
auxiliary information.

Our experimental results on varying auxiliary information are shown in Figure 4. The
security parameters we used can be found in the captions. We observed that the attacks
do not perform well when only 2.5% of the documents are used to construct the auxiliary
information. This is likely due to the fact that the keywords are not identically distributed
within the documents, as indicated by Figure 3. On the other hand, our attacks have
comparable query reconstruction rates with 10% and 50% of the documents in the auxiliary
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(a) Absolute distance. (b) Modified probability score.

Figure 3: Measurements of the level of noise of the auxiliary data in our experiments.

(a) DPAP-SE [14]. The security parame-
ters used are m = 6, k = 2, p = 0.89 and
q = 0.045.

(b) PRT-EMM [33]. λ is set to 0.25nmax.

(c) FP-EMM [45]. (d) DP-EMM [45]. ε is set to 0.2.

Figure 4: Experimental results with varying auxiliary information.

information, suggesting that 10% of the documents is sufficient as auxiliary information and
that our attacks are robust in a noisy setting.
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5.5 Experimental Results with Stemming

This section provides additional experimental results on the Enron dataset after stemming.
We used the Porter Stemming Algorithm [47] implemented in the Natural language toolkit
[49] as our stemming algorithm. The security parameters used for the constructions can be
found in the captions.

Varying the Number of Keywords in Auxiliary Information. Our experimental
results with varying number of keywords in auxiliary information is shown in Figure 5.
The security parameters for the constructions used in our experiments can be found in
the captions. The experimental results with stemming agree with those without stemming
(Section 5.3), except for PRT-EMM, which performs worse with stemming as the number of
keywords in auxiliary information increases. This is possibly because significantly more noise
is introduced with stemming for PRT-EMM, as indicated by the frequency distribution
plot in Figure 8 (Appendix D).

(a) DPAP-SE [14]. The security parame-
ters used are m = 6, k = 2, p = 0.89 and
q = 0.045.

(b) PRT-EMM [33]. λ is set to 0.25nmax.

(c) FP-EMM [45]. (d) DP-EMM [45]. ε = 0.2.

Figure 5: Experimental results with varying number of keywords in auxiliary information.

Varying the Level of Noise in Auxiliary Information. Our experimental results
with varying level of noise in auxiliary information is shown in Figure 6. Just like before,
the most frequent 1000 keywords are used to build auxiliary information. The security
parameters for the constructions used in our experiments can be found in the captions.
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The performance of our attacks on auxiliary information with stemmed keywords is almost
indistinguishable from those on auxiliary information with unmodified keywords.

(a) DPAP-SE [14]. The security parame-
ters used are m = 6, k = 2, p = 0.89 and
q = 0.045.

(b) PRT-EMM [33]. λ is set to 0.25nmax.

(c) FP-EMM [45]. (d) DP-EMM [45]. ε is set to 0.2.

Figure 6: Experimental results with varying auxiliary information.

6 Discussion

In this section, we discuss the implications of our attacks, the choices made in our experi-
ments, and the practicality of our attacks.

On Differentially Private Access Patterns. Our attack on DPAP-SE [14] serves as
a warning about the potential pitfalls of applying techniques from the differential privacy
literature to STE without appropriately modeling and analyzing the resulting leakage. As
pointed out by Chen et al. in [14], differentially private access patterns provide provable
guarantees of the form: an adversary cannot distinguish between queries over keywords
such that their access pattern leakage is within a small statistical distance of each other. As
demonstrated by our experiments, the provable guarantees provided by differential privacy
do not necessarily translate into security guarantees against leakage-abuse attacks in general.

We note here that the authors of [14] did establish the security of DPAP-SE (for certain
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sets of parameters) against existing attacks [30, 9], which necessarily rely on exact co-
occurrence leakage. However, it is perhaps unwise to assume that security against a small
set of known attacks translates to security against all possible attacks. Rather, one should
assume that attacks can always get stronger. This is precisely what we demonstrate by
showcasing stronger leakage-abuse attacks that work even in the presence of “noisy” co-
occurrence pattern leakage.

On System-Wide leakage. Our attacks on state-of-the-art STE schemes built from
volume-hiding EMMs highlight the threats posed by system-wide leakage and highlight the
need to revisit existing security definitions that ignore such leakage. In particular, suppose
that we ask the following question:

How do we transition from volume-hiding EMMs to efficient leakage-hiding STE schemes
for document collections?

Unfortunately, the authors of [33, 45] do not offer a concrete answer to this question.
As demonstrated by our attacks, the naturally efficient (and widely prevalent) structure-
only [13] method for achieving this transition (that of applying volume-hiding EMMs to
only the encrypted index) inevitably incurs system-wide leakage and, in fact, result in in-
secure systems. The alternative approach (that of applying volume-hiding EMMs to the
entire database) is secure but renders all state-of-the-art STE schemes impractical.

Note that many of the STE constructions built from EMMs were designed prior to the pro-
posal of volume-hiding EMMs; in their original form, these constructions used EMMs that
themselves leak the exact access-pattern. In this case, the leakage from the encrypted search
index subsumes the leakage from encrypted document retrieval (see [15, 12] for relevant dis-
cussions). In that context, security definitions that focussed purely on the encrypted search
index proved simple and useful in analyzing the leakage profiles for these constructions.

However, this analysis approach is no longer valid when such access pattern-revealing EMMs
are replaced by volume-hiding EMMs. In this case, the additional system-wide leakage
during encrypted document retrieval is no longer covered by security definitions that focus
purely on the encrypted search index. At the same time, this leakage is observable by any
adversary that takes a system-wide view of STE.

We believe that our attacks on system-wide leakage fundamentally motivate the need to
revisit: (a) how the leakage of STE schemes is currently modeled in the literature, and (b)
how countermeasures should be designed to minimize leakage.

On Keyword Frequencies for Our Experiments. As pointed out by Blackstone et
al. [5], the choice of client queries is an important consideration to make when evaluating the
performance of any leakage-abuse attack. In our experiments, we used keywords with high-
frequency of occurrence in the document collection, for both the auxiliary data available to
the adversary, as well as the queries that the adversary eventually observes during the attack
phase. We note here that all of the existing leakage-abuse attacks on STE for document
collections in [30, 9, 5] only work for high-frequency keywords. In fact, as reported by
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Blackstone et al. [5], the Count attacks in [30] and [9] have zero query reconstruction rate
on keywords in the Enron corpus with frequency less than 20 (even in the known-data
setting where the entirety of the target database for evaluation is known to the adversary
as auxiliary information). Blackstone et al. [5] also pointed out that, for their own attacks,
query reconstruction rates drop significantly if keywords with low-frequency are used to
build auxiliary datasets and to generate queries. Our attacks exhibit a similar trend.

On the Practicality of Our Attacks. As already mentioned, the leakage-abuse attacks
proposed in this paper are inference attacks and work when the adversary has access to
auxiliary data that is independent of but statistically “close” to the target database. We
believe that this a weaker (and more realistic) assumption on adversarial capabilities com-
pared to the assumptions made in previous attacks [30, 9, 5] which are all of the known-data
variety. Our attacks also achieve high keyword recovery rates even when the target schemes
use aggressive security parameters, or when the auxiliary data available to the adversary
is relatively noisy (as arises when we sample the auxiliary data from a small portion of
the database). These observations further reinforce the practicality of our proposed at-
tacks. We could potentially extend/strengthen our attacks based on other related attacks
on PPE/STE. For example, we could use Bayesian inference as in [4] if a good model for
the prior distribution could be established.

A potential drawback of our attacks is that they assume auxiliary information involving
high-frequency keywords. This is a relatively strong assumption in practice (although one
made by all previous leakage-abuse attacks); in a real-world scenario, it is likely that the
user queries keywords with a mixture of frequencies. One can of course filter out leakage
from low frequency keywords based on response volume before running our attacks. It is
also possible that our attacks could be improved to work for low-frequency keywords as well,
though we leave this as an open problem.

In summary, our results demonstrate the security limitations of state-of-the-art STE schemes
with perturbed leakage profiles, and serve as motivation for designing STE schemes with
reduced leakage profiles that satisfy more comprehensive, system-wide security definitions.
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A Derivations of the Co-occurrence Matrices

Derivation for DPAP-SE [14]. Let DB be a database and q1, . . . , ql be non-repeating
search queries with associated keywords kw1, . . . , kwl on DB encrypted with the searchable
encryption scheme above [14]. The diagonal entries of the co-occurrence matrix M̄(q1, . . . , ql; DB),
i.e. the query response volumes, represent the numbers of shards retrieved by the client.
For a particular query qi, the number of shards retrieved is determined by:

• The number of shards which contain keyword kwi before the pre-processing step, and
the keyword is not removed from them.

• The number of shards which do not contain keyword kwi before the pre-processing
step, but the keyword is added to them.

Formally, the diagonal entries of the co-occurrence matrix can be expressed in terms of the
true query response lengths as:

M̄(q1, . . . , ql; DB)i,i ∼ Bin(m · |DB(kwi)| , p)
+ Bin(m · |DB| −m · |DB(kwi)| , q),
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where m comes from splitting the documents into shards, DB(kwi) denotes the set of
documents containing keyword kwi associated to query qi, |DB| denotes the number of
documents in database DB, and Bin(·) denotes a binomial distribution.

For the off-diagonal entries of the co-occurrence matrix, assume without loss of generality
that the keywords in concern are kwi and kwj . The co-occurrence count for keywords kwi

and kwj can increase if:

• A shard contains one of the keywords, say kwi, and the keyword is not removed by
the scheme. At the same time, the other keyword, kwj in this case, is added to the
shard.

• A shard contains none of the keywords, and both of the keywords are added to the
shard.

On the other hand, the co-occurrence count for keywords kwi and kwj can decrease if a
shard contains both of the keywords and at least one of the keywords is removed.

The actual distribution of the off-diagonal entries of the co-occurrence matrix is complicated
due to dependencies. However, if we ignoring the fact that we already know the query
response lengths for keywords kwi and kwj , the off-diagonal entries of the co-occurrence
matrix can be approximated as:

M̄(q1, . . . , ql; DB)i,j

∼Bin(m · |DB(kwi, kwj)| , p2)

+Bin
(
m · (|DB| − |DB(kwi)| − |DB(kwj)|+ |DB(kwi, kwj)|) , q2

)
+Bin(m · |DB(kwi)| − |DBkwi, kwj | , pq)
+Bin(m · |DB(kwj)| − |DBkwi, kwj | , pq).

Derivation for PRT-EMM [33]. Recall that in PRT-EMM, the query response lengths
are padded or truncated according to:

n′key = λ+ Fsk(key||nkey).

Let DB be a multi-map and q1, . . . , ql be non-repeating search queries with associated keys
key1, . . . , keyl on DB encrypted with PRT-EMM. We abuse the notation key(qi) to mean
the key associated to qi. By denoting the maximum value of the PRF F as |F |, the diagonal
entries of the co-occurrence matrix can be expressed as:

M̄(q1, . . . , ql; DB)i,i ∼ λ+ Uniform(0, |F |),

where Uniform(·) is a uniform distribution.

There are three cases to be considered for the off-diagonal entries of the co-occurrence
matrix. Without loss of generality, let the keys in concern be keys keyi and keyj . In the
first case, both of the query response lengths associated to the keys are larger than the true
query response lengths. This corresponds to n′keyi −|DB(keyi)| random document retrievals
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for queries on key keyi and n′keyj−
∣∣DB(keyj)

∣∣ random document retrievals for queries on key

keyj . These random document retrievals can create additional co-occurrence counts among
themselves or with the real document retrievals. The co-occurrence counts in this case can
be approximated by:

M̄(q1, . . . , ql; DB)i,j

∼
∣∣DB(keyi, keyj)

∣∣
+Hypergeometric

(
n′keyi − |DB(keyi)| , |DB| , n′keyj

)
+Hypergeometric

(
n′keyj −

∣∣DB(keyj)
∣∣ , |DB| , n′keyi

)
,

where Hypergeometric(n,N,K) denotes a hypergeometric distribution which makes n
draws without replacement, from a population of size N that contains exactly K objects
with the desired feature.

In the second case, one of the query response lengths is truncated and the other one is
padded. Without loss of generality, let key keyi be the truncated key and key keyj be
the padded key. Then, the co-occurrence count associated to keys keyi and keyj can be
modelled as a process where the co-occurrence count is first reduced by the truncation and
then increased by the padding. Its distribution is given below:

x ∼ Hypergeometric
(
n′keyi , |DB(keyi)| ,

∣∣DB(keyi, keyj)
∣∣ ),

M̄(q1, . . . , ql; DB)i,j ∼x+ Hypergeometric
(
n′keyj −

∣∣DB(keyj)
∣∣ ,

|DB| , n′keyi − x
)
.

Finally, in the last case, both of the query response lengths are truncated. Similar to above,
the distribution of the co-occurrence count associated to keys keyi and keyj can be expressed
as:

x ∼ Hypergeometric
(
n′keyi , |DB(keyi)| ,

∣∣DB(keyi, keyj)
∣∣ ),

M̄(q1, . . . , ql; DB)i,j ∼Hypergeometric
(
n′keyj ,∣∣DB(keyj)

∣∣ , x).
Derivation for new volume-hiding multi-maps in [45]. The volume-hiding multi-
maps in [45] are special cases of PRT-EMM [33], where the query response lengths are
either padded to the maximum query response length or ones that are larger than the true
query response lengths. Specifically, for the full padding version (PRT-EMM),

M̄(q1, . . . , ql; DB)i,i ∼ 2 max
key
|DB(key)| .
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And for the differentially-private version (DP-EMM),

M̄(q1, . . . , ql; DB)i,i ∼ 2 |DB(key)|+ n∗ + Lap(2/ε),

where n∗ is a fixed constant to offset the query response length in case the latter random
variable is negative.

For the co-occurrence counts, we get:

M̄(q1, . . . , ql; DB)i,j

∼
∣∣DB(keyi, keyj)

∣∣
+Hypergeometric

(
n′keyi − |DB(keyi)| , |DB| , n′keyj

)
+Hypergeometric

(
n′keyj −

∣∣DB(keyj)
∣∣ , |DB| , n′keyi

)
,

where n′keyi and n′keyj are the padded query response lengths for keyword kwi and kwj

respectively.

B Derivations of the Likelihood Functions

Likelihood Function and its Decomposition. The likelihood function L
[
P | M̄,M

]
can be written as follows:

L
[
P | M̄,M

]
=Pr

[
M̄,M | P

]
=

∑
M ′∈NN×N

Pr
[
M̄,M,M ′ | P

]
=

∑
M ′∈NN×N

Pr
[
M̄ |M,M ′, P

]
Pr [M ′ |M,P ]

=
∑

M ′∈NN×N

Pr
[
M̄ |M ′, P

]
Pr [M ′ |M ] ,

where N is the number of documents and NN×N is all N by N natural number valued
matrices. In the third line of the equation, we used the law of total probability to turn
the likelihood into a summation over all possible real co-occurrence matrices. The lines
after break the probability into a sum of products of two probabilities. The first probability
Pr
[
M̄,M ′ | P

]
is the probability that M̄ is the observed co-occurrence matrix and M ′ is

the real co-occurrence matrix given P is the permutation. The second probability is the
probability of getting M ′ as the real observed co-occurrence matrix knowing that M is the
auxiliary co-occurrence matrix.

We assume the same structure of the auxiliary co-occurrence matrix M for all of our leakage
functions so its derivation is shared by all three leakage functions. We note that only some
of the real co-occurrence matrices generate a non-zero likelihood, as the sum of off-diagonal
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entries of a row must be less or equal to the diagonal entry for correctness. By writing a
row of a matrix M without the i-th entry as Mi,·, for those real co-occurrence matrices, we
can derive the probability as:

Pr [M ′ |M ]

=
∑
i

Pr
[
M ′i,i |Mi,i

]
Pr
[
M ′i,· |M ′i,i,Mi,·

]
.

In the second line, the first term is the probability of getting M ′i,i documents containing key-
word kwi, and the second term is the probability of observing the off-diagonal co-occurrence
counts.

Derivation for DPAP-SE. Recall that in DPAP-SE [14], the documents are split into
shards and the keywords for the shards are randomized. This means that each diagonal entry
of the observed co-occurrence matrix contain the counts from the real shards which have
kept the keyword, and the counts from the other shards which have gained the keyword from
the randomization process. Similarly, each off-diagonal entry of the observed co-occurrence
matrix contain the counts from the real shards which have kept both of the keywords, and
the other counts from the other shards which have gained one of the keywords or both
of them from the randomization process. Let p be the probability that a shard keeps its
keywords, q be the probability that a fake keyword is introduced to a shard, and m to be
the number of shards, we can express the first term in the likelihood decomposition as:

Pr
[
M̄,M ′ | P

]
=
∏
i=j

Pr
[
M̄,M ′ | P

]
×
∏
i<j

Pr
[
M̄,M ′ | P

]
=
∏
i

Pr
[
M̄i,i,M

′ | P
]
×
∏
i<j

Pr
[
M̄i,j ,M

′
P (i),P (j) | P

]
=
∏
i

Pr
[
Bin

(
mM ′P (i),P (i), p

)
+ Bin

(
mM ′P (j),P (j), q

)
= M̄i,i

]
×
∏
i<j

Pr

[
Bin

(
mM ′P (i),P (j), p

2
)

+Bin

(
m

(
M ′P (i),P (i) −

∑
k>1

M ′P (i),P (k)

)
, pq

)

+Bin

(
m

(
M ′P (j),P (j) −

∑
k>1

M ′P (j),P (k)

)
, pq

)

+Bin
(
m
(
N −M ′P (i),P (i) −M

′
P (j),P (j) +M ′P (i),P (j)

)
, q2
)

= M̄i,j

]
.

Derivation for PRT-EMMs. For PRT-EMMs [33], query response lengths may be
truncated by a random amount. This means that based on the query response length in
the auxiliary co-occurrence matrix M ′ and that in the observed co-occurrence matrix, an
attacker can estimate how many documents in the off-diagonal entries are expected to be
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removed. For observed co-occurrence count between keywords kwj and kwj where i 6= j, the
real process can be modelled as a sequential application of two hypergeometric distributions
on the real co-occurrence count.

Pr
[
M̄,M ′ | P

]
=
∏
i<j

Pr
[
M̄i,j ,M

′ | P
]

=
∏
i<j

∑
k

Pr
[
Hypergeometric

(
M ′P (i),P (i),M

′
P (i),P (j), M̄i,i

)
= k

]
Pr
[
Hypergeometric

(
M ′P (j),P (j), k, M̄j,j) = M̄i,j

]
.

Derivation for FP-EMMs [45]. To simplify the first term of the likelihood decomposi-
tion, we assume independence of the entries in the observed co-occurrence matrix. Without
loss of generality, we assume that all query response lengths are padded to m. This means
we can express the probability as:

Pr
[
M̄,M ′ | P

]
=
∏
i<j

Pr
[
M̄i,j ,M

′
P (i),P (j) | P

]
=
∏
i<j

Pr
[
Hypergeometric

(
2N, 2m− 2M ′P (i),P (i),

2m− 2M ′P (j),P (j)

)
= M̄i,j −M ′P (i),P (j)

]
.

Derivation for DP-EMMs [45]. The first term of the likelihood decomposition for
differentially private volume-hiding EMMs [45] is similar to that of the full padding version,
except that the query response lengths are padded according to a Laplacian distribution as
opposed to padding to the maximum query response length. Let n∗ be the constant to offset
the Laplacian random variable Lap(2/ε), the first term of the likelihood decomposition can
be expressed as:

Pr
[
M̄,M ′ | P

]
=
∑
i=j

Pr
[
M̄,M ′

]
+
∑
i<j

Pr
[
P | M̄,M ′ | P

]
=
∑
i

Pr
[
M̄i,i,M

′
P (i),P (i) | P

]
+
∑
i<j

Pr
[
M̄i,j ,M

′
P (i),P (j) | P

]
=
∑
i

Pr
[
2M ′P (i),P (i) + n∗ + Lap(2/ε) = M̄i,i

]
+
∑
i<j

Pr
[
Hypergeometric(2N, 2M̄i,i − 2M ′P (i),P (i),

2M̄j,j − 2M ′P (j),P (j)) = M̄i,j − 2M ′P (i),P (j)

]
.
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Approximation Techniques. As it can be seen, it is computationally infeasible to sum
over all possible real co-occurrence matrices. We propose to sum over all possible real
co-occurrence matrices such that Pr

[
M ′ | M̄

]
is significant. In our experiment, we used

symmetric endpoints on every entry of M ′ such that the resultant interval covers at least
95% of the probability density function. We use Normal approximation in the first term of
the likelihood decomposition for PRT-EMM [33] to remove the need of a convolution. To
further improve the computational efficiency, we used simple rectangle rule to approximate
large summations, such as the convolutions in the first term of the likelihood decomposition
for DPAP-SE [14].

Speeding up the Score function. The Score functions are by far the most computa-
tionally demanding functions of our attacks. If we just implement them näıvely, the amount
of computation required in an iteration is proportional to l2, where l is the number of non-
repeating queries observed (it is also the dimension of the observed co-occurrence matrix
M̄). However, we note that the score functions in our attacks are essentially likelihood
functions of the shape ∏

i≤j

Pr
[
M̄P (i),P (j),M

]
,

and the neighbourhood function Neighbour only changes the assignment P for one or two
values. Without loss of generality, let P (a) be the changed assignment. It means only the
probabilities with P (a) involved are changed, that is, the new likelihood function can be
written as ∏

i≤j
i,j 6=a

Pr
[
M̄P (i),P (j),M

]
×
∏
i≤a

Pr
[
M̄P (i),P (a),M

]
×
∏
a<j

Pr
[
M̄P (a),P (j),M

]
.

The terms in the first product were already computed in the previous iteration so they can
be used directly. The only terms that need re-computation are in the second and third
products. This reduces the amount of computation required for the Score function (from
the second iteration onwards) to something that is proportional to l.

In our implementation, we maintain an l-by-l matrix where the i, j-th entry of the matrix
records Pr

[
M̄P (i),P (j),M

]
. Only l (or 2l if the assignment is changed on two queries) of

these entries are updated according to the likelihood function, and the score function simply
outputs the sum of the entries of this matrix.
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C Detailed Pseudocodes

Algorithm 2 Neighbourhood Generation Algorithm for DPAP-SE [14]

1: procedure Neighbour(P, M̄,M)

2: i
$←− {1, . . . , |kw(DB)|}

3: j
$←− {1, . . . , |kw(DB)|}

4: b0 ← kpNMj,j + kqN(1−Mj,j)− 1.96kNMj,j(1−Mj,j)− 1.96kN(p+ q)
5: b1 ← kpNMj,j + kqN(1−Mj,j) + 1.96kNMj,j(1−Mj,j) + 1.96kN(p+ q)
6: if there exists k such that P (k) = j then
7: b2 ← kpNMP (i),P (i) + kqN(1 − Mj,j) − 1.96kNMP (i),P (i)(1 − MP (i),P (i)) −

1.96kN(p+ q)
8: b3 ← kpNMP (i),P (i) + kqN(1 − Mj,j) − 1.96kNMP (i),P (i)(1 − MP (i),P (i)) −

1.96kN(p+ q)
/* Check the condition with k only if it exits */

9: while ¬(b0 < M̄i, i < b1) ∨ ¬(b2 < M̄k,k < b3) do
10: Resample i, j, k

11: P ′ ← P
12: P ′(i)← j
13: if there exists k such that P (k) = j then
14: P ′(k)← P (i)

15: return P ′

Algorithm 3 Neighbourhood Generation Algorithm for DP-EMM [45]

1: procedure Neighbour(P, M̄,M)

2: i
$←− {1, . . . , |kw(DB)|}

3: j
$←− {1, . . . , |kw(DB)|}

4: b0 ← NMj,j − 1.96NMj,j(1−Mj,j)− 1.96/ε
5: b1 ← NMj,j + 1.96NMj,j(1−Mj,j) + 1.96/ε
6: if there exists k such that P (k) = j then
7: b2 ← NMP (i),P (i) − 1.96NMP (i),P (i)(1−MP (i),P (i))− 1.96/ε
8: b3 ← NMP (i),P (i) + 1.96NMP (i),P (i)(1−MP (i),P (i)) + 1.96/ε

/* Check the condition with k only if it exits */
9: while ¬(b0 < M̄i, i < b1) ∨ ¬(b2 < M̄k,k < b3) do

10: Resample i, j, k

11: P ′ ← P
12: P ′(i)← j
13: if there exists k such that P (k) = j then
14: P ′(k)← P (i)

15: return P ′
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Without Stemming With Stemming
# documents 480000 480000
# keywords 33366 24947
# keyword-document pairs 17415721 16881119
Max. keyword frequency 23989 40714
Min. keyword frequency 1 1
Mean keyword frequency 522.0 676.7
Max. # keywords per document 3483 2939
Min. # keywords per document 1 1
Mean # keywords per document 36.8 35.7

Figure 7: General statistics of the Enron email corpus after pre-processing.

Algorithm 4 Neighbourhood Generation Algorithm for PRT-EMM [33] and FP-
EMM [45]

1: procedure Neighbour(P, M̄,M)

2: i
$←− {1, . . . , |kw(DB)|}

3: j
$←− {1, . . . , |kw(DB)|}

4: P ′ ← P
5: P ′(i)← j
6: if there exists k such that P (k) = j then
7: P ′(k)← P (i)

8: return P ′

D Experimental Data

D.1 General Information about Enron Email Corpus

The Enron email corpus [53] is a collection of over 600 thousand emails generated by 158
employees of the Enron Corporation and acquired by the Federal Energy Regulatory Com-
mission (FERC) during its investigation of the Enron scandal. At the conclusion of the
investigation, and upon the issuance of the FERC staff report, the email corpus is released
to the public for historical research and academic purposes. The Enron dataset is widely
used as a target for cryptanalysis on structured encryption [30, 9, 5] as it is one of the only
public real-world datasets.
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Figure 8: Frequency distribution of the 5000 most frequent keywords.

D.2 Pre-processing

We implemented our email processing and keyword extraction script in python using the
Natural Language Toolkit [49] module as the tokeniser. The English stop words and other
keywords with frequency higher than 5% are removed. The experiments in Section 5 are
run with the keywords as they are, whereas the experiments in Section 5.5 are run with
stemmed keywords. Further details of how stemming is used can be found in Section 5.5.

D.3 General Statistics of Enron Email Corpus

Figure 7 gives some general statistics of the Enron email corpus after pre-processing. We
note that if the index-only EMMs are used on the documents directly to build a searchable
database for the Enron email corpus, the storage overhead is over 36× (the ratio between the
number of keyword-document pairs and number of keywords), assuming that the documents
are padded to the maximum size by the underlying EMMs.

Figure 8 shows the frequency distribution of the 5000 most frequent keywords after pre-
processing.
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