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Abstract

Symmetric Searchable Encryption (SSE) schemes enable keyword searches over
encrypted documents. To obtain efficiency, SSE schemes incur a certain amount of
leakage. The vast majority of the literature on SSE considers only leakage from one
component of the overall SSE system, the encrypted search index. This component is
used to identify which documents to return in response to a keyword query. The ac-
tual fetching of the documents is left to another component, usually left unspecified in
the literature, but generally envisioned as a simple storage system matching document
identifiers to encrypted documents.

This raises the question: do SSE schemes actually protect the security of data and
queries when considered from a system-wide viewpoint? We answer this question in
the negative. We do this by introducing a new inference attack that achieves practi-
cally efficient, highly scalable, accurate query reconstruction against end-to-end SSE
systems. In particular, our attack works even when the SSE schemes are built in the
natural way using the state-of-the-art techniques (namely, volume-hiding encrypted
multi-maps) designed to suppress leakage and protect against previous generations of
attack.

A second question is whether the state-of-the-art leakage suppression techniques can
instead be applied on a system-wide basis, to protect both the encrypted search index
and the encrypted document store, to produce efficient SSE systems. We also answer
this question in the negative. To do so, we implement SSE systems using those state-
of-the-art leakage suppression methods, and evaluate their performance. We show that
storage overheads range from 100× to 800× while bandwidth overheads range from
20× to 100×, as compared to a näıve baseline system.

Our results motivate the design of new SSE systems that are designed with system-
wide security in mind from the outset. In this regard, we show that one such SSE
system due to Chen et al. (IEEE INFOCOM 2018), with provable security guarantees
based on differential privacy, is also vulnerable to our new attack.

In totality, our results force a re-evaluation of how to build end-to-end SSE systems
that offer both security and efficiency.
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1 Introduction

Searchable Symmetric Encryption. Database encryption is a key enabler for secure
storage-as-a-service, wherein clients can securely outsource the storage and processing of
large databases to (potentially untrusted) third party servers. Searchable symmetric encryp-
tion (SSE) [SWP00,CGKO06,CK10,CJJ+13] is a special sub-class of database encryption
that aims to efficiently support search queries over symmetrically encrypted databases. The
core functionality enabled by SSE is the following: given an encrypted document collection
in which each document is tagged with keywords, find the set of all documents tagged with a
given keyword w. In this paper, we focus primarily on SSE for static document collections.
This has historically received the most attention.

Leakage. The term “leakage” is popularly used in the SSE literature to denote any in-
formation that the server learns about either the database itself or the queries made by
the client. For any SSE scheme, leakage can be of two kinds: setup leakage – information
learnt by the server from the encrypted database it receives at setup (i.e., prior to any
query execution), and query leakage – information learnt by the server from the query token
and the interaction between the query token and the encrypted database. Informally, an
SSE scheme is “more” secure if it incurs “less” leakage. Ideally, an SSE scheme should be
leakage-free, but this comes at the cost of huge performance overheads. The vast majority of
SSE schemes incur some leakage as the price for acceptable efficiency (e.g. [CGKO06,CK10,
KPR12,CJJ+13,CJJ+14,SPS14,NPG14,FJK+15,Bos16,BMO17,KM17,KM18,CPPJ18]).

Leakage Cryptanalysis. A natural question to ask is: how should we assess the impact of
leakage on the real-world security of SSE? The practice commonly adopted in the SSE lit-
erature is to perform leakage cryptanalysis. This involves developing concrete cryptanalytic
attacks that exploit the leakage to subvert some security guarantee (such as data/query
privacy) of the SSE scheme. Starting with the seminal work of Islam et al. [IKK12], leak-
age cryptanalysis has been studied extensively in the context of SSE for document collec-
tions [CGPR15,PW16,GPPW20,BKM20,OK21a,OK21c,NHP+21,DHP21]. The commonly
studied leakage profiles for SSE are:

� Response Length. For a given query on a keyword w, the response length (or
volume) leakage reveals the size of the query response set, i.e., number of documents
containing w.

� Access Pattern. For a given query on a keyword w, the access pattern leakage
reveals the set of (potentially randomized) identifiers for documents containing w.

� Co-occurrence Pattern. For a pair of queries over keywords wi and wj , the co-
occurrence leakage reveals the number of documents containing both wi and wj .

� Search Pattern. For a pair of queries over keywords wi and wj , the search pattern
leakage reveals whether wi and wj are identical.

Structure-Only SSE. The structure-only approach to designing SSE schemes was intro-
duced and formalized by Chase and Kamara in [CK10]. In this approach, a search query
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Figure 1: A “system-wide” view of structure-only SSE schemes (e.g., [CGKO06, CK10, KPR12,
CJJ+13,CJJ+14,SPS14,NPG14,FJK+15,Bos16,BMO17,KM17,KM18,CPPJ18,KM19,PPYY19]).
While structure-only SSE design focuses only on leakage from the encrypted search index (depicted
by the inner green box), end-to-end SSE design focuses on system-wide leakage (depicted by the
outer red box).

is broken down into two phases. The first phase, called the index retrieval phase, uses a
specially designed encrypted search index to efficiently recover the set of (encrypted) doc-
ument identifiers corresponding to documents matching the query. The second phase is
the document retrieval phase, in which the client actually fetches the encrypted documents
matching the query.

We illustrate the structure-only approach to SSE in Figure 1. The inner green box in
Figure 1 depicts an structure-only SSE sub-system, while the outer red box depicts the SSE
system-as-a-whole. In the rest of the paper, we use the term structure-only SSE to refer
to the sub-system depicted by the inner green box, and end-to-end SSE to refer to the
system-as-a-whole depicted by the outer red box.

The vast majority of SSE schemes follow the structure-only approach approach. Examples
include [CGKO06,CK10,KPR12,CJJ+13,CJJ+14,SPS14,NPG14,FJK+15,Bos16,BMO17,
KM17, KM18, CPPJ18]. These all focus only on designing a secure encrypted search in-
dex (i.e. the inner green box in Figure 1). None of them concretely specify how the
document retrieval phase is to be executed. And, in each case, their security analysis con-
siders only leakage from the index retrieval phase, ignoring any leakage from the document
retrieval phase.

As the above list of papers shows, the structure-only approach has the become de facto
standard one in the SSE literature. There exist only a handful of alternative design ap-
proaches that target end-to-end SSE with in-built leakage suppression for both index and
document retrieval. These include SSE with differentially private access-patterns [CLRZ18]
and SWiSSSE [GPPW20]. However, structure-only SSE schemes are not useful on their own
unless they are used in conjunction with secure, efficient mechanisms for document retrieval.
The research community’s focus on the structure-only approach has yielded little progress
on the question of how to build secure, efficient, end-to-end SSE systems.

Leakage Suppression in SSE. Motivated by the need to counter leakage cryptanalysis,
recently proposed SSE schemes have started to use dedicated techniques to suppress setup
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and search leakage. The state-of-the-art is represented by volume-hiding encrypted multi-
maps (EMMs) [KM19,PPYY19]. These follow the same structure-only approach described
above. In particular, while it is clear how to apply volume-hiding EMMs to search indices
to obtain low-leakage, structure-only SSE schemes, the authors of [KM19,PPYY19] do not
specify how to design end-to-end SSE systems based on volume-hiding EMMs.

System-Wide Leakage in SSE. In this paper, we revisit the current dominant approach to
leakage analysis for SSE by taking an alternative “system-wide” perspective. Consider two
kinds of adversaries – one that observes the leakage from the encrypted search index (e.g., by
passively corrupting the server that stores this index), and one that observes the leakage from
the final query processing step on the encrypted documents themselves (e.g., by passively
corrupting the server that stores the encrypted documents, potentially different from one
storing the index). In terms of real-world security, any realization of end-to-end SSE should
be secure against cryptanalysis of system-wide leakage.1

Since the vast majority of SSE schemes, including state-of-the-art schemes based on volume-
hiding EMMs, are structure-only schemes, they only focus on security against the first kind
of adversary. Consequently, it is unclear what kind of system-wide leakage is incurred
when these schemes are used to build end-to-end SSE systems, and whether such leakage
potentially leads to attacks. It is also unclear whether volume-hiding EMMs can be used to
mitigate this leakage without compromising on efficiency.

1.1 Our Contributions

System-Wide Security of Structure-Only SSE. In this paper, we analyze the system-
wide leakage that arises when state-of-the-art structure-only SSE schemes are used in the
natural way to build end-to-end SSE systems. In particular, we focus on the simple construc-
tion where only the leakage from the index is mitigated using techniques such as volume-
hiding EMMs, while the document retrieval is implemented using a straightforward look-up
table of encrypted documents. In the absence of any statements to the contrary in the
extensive literature, this seems to be the generally assumed mechanism. In this context, we
ask the following:

Do structure-only SSE schemes result in secure end-to-end SSE systems when system-wide
leakage is taken into account?

We answer this question in the negative. We show that all the structure-only SSE schemes
[CGKO06,CK10,KPR12,CJJ+13,CJJ+14, SPS14,NPG14,FJK+15,Bos16,BMO17,KM17,
KM18,CPPJ18], including those built from volume-hiding EMMs [KM19,PPYY19], incur
damaging system-wide leakage when used to construct end-to-end SSE systems in the nat-
ural way. Concretely, we show that for all of the above-cited schemes, the leakage from
document retrieval is actually different from and significantly more damaging than the

1A widely used assumption in the SSE literature is that these two adversaries are non-colluding. Our
analysis also extends to this setting since the attack we develop targets leakage from document retrieval
only (in fact, for all of our target schemes, the leakage from document retrieval subsumes the leakage from
index retrieval).
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leakage from index retrieval, and that this leakage can be exploited to launch a strong
query-recovery attack.2

Our attack establishes that using structure-only SSE schemes in the natural way leads to
end-to-end SSE systems that are insecure in practice. Fundamentally, this is because the
careful leakage mitigation for the encrypted search index, obtained using techniques such
as volume-hiding EMMs, is undermined by the system-wide leakage that arises from the
document retrieval phase. This clearly motivates the need for new security definitions that
carefully model system-wide leakage in end-to-end SSE systems, as well efficient techniques
to mitigate such leakage.

System-Wide Leakage Mitigation. A natural approach to mitigating system-wide leak-
age in end-to-end-SSE systems would be to apply existing leakage suppression techniques
such as volume-hiding EMMs [KM19,PPYY19] to both the encrypted index and the final
document retrieval step. Intuitively, this enhances resistance to system-wide attackers, but
potentially degrades efficiency. In this context, we now ask the following question:

Can existing leakage suppression techniques efficiently mitigate system-wide leakage?

We also answer this question in the negative. We demonstrate that it is practically infeasible
to use volume-hiding EMMs [KM19,PPYY19] to hide system-wide leakage in structure-only
SSE schemes. We validate this observation by experimentally evaluating the storage and
query processing overheads incurred when applying EMMs to encrypt the whole database,
and not just the search index. We concretely establish that, with currently available tech-
niques, we can have either efficient and scalable structure-only SSE schemes that suffer
from damaging system-wide leakage (as illustrated by our attack), or we can have end-to-
end leakage-protected SSE systems that are inefficient in practice and do not scale to large
databases.

Differentially Private Access Patterns. As a final contribution, we show that the end-
to-end SSE system based on differentially private access patterns in [CLRZ18], which we
henceforth call DPAP-SE, is also vulnerable to our new query recovery attack. Our attack
breaksDPAP-SE for the same parameter set that the authors of [CLRZ18] advocated using
to counter leakage-abuse attacks. While it is possible to degrade our attack’s efficiency by
altering the parameter set, this also greatly reduces the practical efficiency of the resulting
scheme. Our attack does not invalidate the original security properties proven by the authors
of [CLRZ18], but instead indicates that these security properties (and the corresponding
usage of differential privacy techniques) are, in fact, insufficient in practice. In fact, the
scheme in [CLRZ18] does resist näıve adaptations of existing cryptanalytic attacks [IKK12,
CGPR15,CGPR16,BKM20] that work only for unperturbed leakage such as co-occurrence
patterns and access patterns, as was claimed in [CLRZ18]. However, we demonstrate the
possibility of a stronger attack that is not restricted to unperturbed leakage and, hence,
bypasses the limitations of existing attacks.

2Note that even though the document retrieval phase is implemented straightforwardly, the leakage
from this phase is not necessarily the trivial (unperturbed) access pattern leakage. In particular, since
document retrieval is performed based on the encrypted document identifiers from index retrieval, any
leakage mitigation techniques used in index retrieval may perturb the leakage arising in document retrieval.
Exploiting this leakage for query-recovery is non-trivial, and is a novel aspect of our attack.
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Putting everything together, we see that, while significant progress has been made over the
last decade in designing secure structure-only SSE schemes, none of these schemes actually
yield practically efficient end-to-end SSE systems with resistance to system-wide leakage
attacks. At the same time, we show that one alternative design approach for end-to-end
SSE design also suffers from damaging system-wide leakage. Indeed, the only candidate
end-to-end SSE scheme that we do not break is SWiSSSE [GPPW20]. This is perhaps not
surprising since, aside from [CLRZ18], it is (as far as we are aware) the only scheme that
was designed with system-wide leakage in mind.

We expand further on our main contributions below.

1.2 Attack on System-Wide Leakage

We show that the vast majority of structure-only SSE schemes, including state-of-the-art
schemes built from volume-hiding EMMs [KM19, PPYY19], incur damaging system-wide
leakage when used in the natural way to build end-to-end SSE systems. We show that
such system-wide leakage can be exploited to launch a query recovery attack, and in certain
cases, document recovery attacks against these schemes. We experimentally validate the
practical efficiency of our attacks over the Enron email corpus,3 which is widely regarded as
the standard choice of experimental database in the SSE literature [IKK12,BKM20,OK21b].

Modeling and Attacking System-Wide Leakage. In a prior work, Gui et al. [GPPW20]
discussed system-wide leakage in SSE schemes, and its impact on the security guarantees of
SSE schemes. However, they only presented a system-wide analysis of their own construc-
tion, SWiSSSE and did not address the impact of system-wide leakage for SSE schemes
more generally. In this paper, we refine and extend the analysis of [GPPW20] to develop
a full-fledged query reconstruction attack. We apply the attack against end-to-end SSE
schemes built in the natural way from different variants of volume-hiding EMMs, includ-
ing PRT-EMM [KM19], as well as FP-EMM and DP-EMM [PPYY19]. Our attack
works for volume-hiding EMM implementations using the same parameters and the same
design/implementation choices advocated in [KM19] and [PPYY19].

We show how to statistically model the noisy co-occurrence leakage pattern arising in SSE
schemes using the different volume-hiding EMMs as a function of the keyword queries,
the system-wide leakage, and auxiliary data in the form of an approximate version of the
original database. We then use the resulting models to develop a new inference-style leakage-
abuse attack that targets query reconstruction. The core idea of our attack is to solve an
optimization problem, where the objective function is the statistical likelihood of observing
a given assignment of keywords to queries, given the observed leakage and auxiliary data as
prior information. We then maximise the objective function using simulated annealing; this
corresponds to maximising the likelihood of the solution. Thus the simulated annealing, if it
works, will produce “good” solutions in which many keywords in the solution are correctly
assigned to queries. This approach requires careful mathematical analysis to derive the
likelihood functions for each targeted scheme and to efficiently implement their evaluation on
large sets of queries and leakage. Of course, one could also use any performant optimization

3https://www.cs.cmu.edu/~./enron/
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Attack Attack Assumption Leakage Exploited Additional Requirements Perturbed Leakage?
IKK [IKK12] Known-data Co-occurrence pattern Known queries No
Count* [CGPR15] Known-data Co-occurrence pattern Known queries No
BKM20 [BKM20] Known-data Co-occurrence/access pattern – No
LEAP [NHP+21] Known-data Co-occurrence pattern – No
Graph Matching Attacks** [PW16] Inference Co-occurrence pattern – Yes
SAP [OK21a] Inference Search and volume pattern Auxiliary info on query frequency pattern Yes
GPPW20*** [GPPW20] Inference Co-occurrence pattern – Yes
IHOP [OK21c] Inference Search/volume/co-occurrence pattern Auxiliary info on the target leakage(s) Yes
DHP21 [DHP21] Inference Co-occurrence pattern Known queries No
This work Inference Co-occurrence pattern – Yes

Table 1: Comparison of existing leakage-abuse attacks achieving query reconstruction based on
co-occurrence and/or access pattern leakage. *Count attack does not need known queries if the
entire database is known by the attacker; known queries are only helpful when only part of the
database is known by the attacker. **The attack targets in [PW16] only have weakly perturbed
leakage, while our attack remains robust in the presence of significantly larger perturbation of the
leakage. ***Gui et al. [GPPW20] also presented a system-wide leakage based attack; however,
their attack techniques are specifically designed for cryptanalyzing their own construction called
SWiSSSE (unlike our attacks, their attack cannot be generically used to break the vast majority
of SSE schemes in the literature), and require significantly stronger assumptions on the auxiliary
leakage available to the adversary compared to our attacks.

technique in place of simulated annealing.

We note that most well-known leakage-abuse attacks [IKK12,CGPR15,CGPR16,BKM20]
rely on stronger models of auxiliary data: they are essentially known-data attacks, where
the adversary knows a subset of the entries in the original database. On the other hand, our
attack is an inference attack, where the auxiliary data about the database that is available
to the adversary is independent but statistically “close” to the target database. Table 1
compares our attack to existing ones.

Experimental Evaluation. In Section 5, we present extensive experimental evaluations
to validate the practicality of our proposed attack. Rather surprisingly, our apparently
simple approach yields a very powerful system-wide leakage-abuse attack. Our experiments
show that our attacks achieve high success rate with reasonable practical efficiency even if:
(a) the target SSE scheme uses aggressive security parameters (beyond those advocated for
the employed EMMs); (b) the keyword universe of the auxiliary information is significantly
larger than the set of queried keywords (in contrast to existing attacks); and (c) the auxiliary
information available to the adversary is very “noisy”. Our attacks achieve over 60% query
reconstruction rate in most of the settings we have tested. These include settings where
the target SSE schemes use aggressive security parameters even beyond those originally
proposed, as well as settings where the auxiliary information available to the adversary is
significantly perturbed. With accurate auxiliary information, our attacks can achieve over
80% query reconstruction rate. Beyond query reconstruction, our attacks are also capable
of (approximate) database reconstruction in certain cases (see Section 4.3 for more details).

1.3 On Using EMMs to Hide System-Wide Leakage

We also address the question of whether existing leakage suppression techniques can be
efficiently applied to both the encrypted index and the final document retrieval step in
order to mitigate system-wide leakage in end-to-end SSE systems. We demonstrate that
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it is practically infeasible to use volume-hiding EMMs, including the PRT-EMM scheme
of [KM19], as well as the FP-EMM and DP-EMM schemes of [PPYY19], to hide system-
wide leakage. We validate this observation by experimentally evaluating the concrete storage
overheads and query processing overheads incurred when applying these state-of-the-art
EMM techniques to encrypt the whole database, and not just the search index. We also
study the overheads when using state-of-the-art ORAM and PIR schemes to do this.

Our experiments show that applying the volume-hiding EMM schemes from [KM19,PPYY19]
to encrypt the whole database incurs prohibitively expensive storage overheads, ranging
from 100 to 800 times the size of a näıve encrypted document store. Our experiments also
establish that the volume hiding EMM schemes in [KM19,PPYY19] incur additional compu-
tational and communication overheads during query execution due to their usage of padding
techniques. While this cost is manageable when querying the search index alone, it blows up
to impractical proportions if applied directly to encrypted document retrieval, ranging from
20 to 100 times the communication costs for the näıve solution. Our volume-hiding EMM
implementations use the same parameters and the same design/implementation choices ad-
vocated in [KM19] and [PPYY19].

2 Preliminaries

2.1 Syntax of Searchable Symmetric Encryption (SSE)

Let T be an abstract data type4 supporting query operation Query. Then, an SSE scheme
Σ for T is a tuple Σ = (Setup,Querye) where:

� Setup is the setup algorithm (locally executed by the client) which takes as input a
plaintext database D of structure T , and outputs a secret key sk and an encrypted
database ED.

� Querye is the query execution protocol between the client and server. The client
takes as input a secret key sk and a query q (this could be a single keyword or a
Boolean formula over multiple keywords), and the server takes as input the encrypted
database ED; after the interaction between the client and server, the client obtains a
final result rsp, which is the set of (encrypted) documents matching the query q.

Correctness. We say that Σ is correct if for any database D and any query q, an execution
of the query protocol Query on the encrypted data ED ← Setup(sk,D) yields the same
response as a direct execution of the Query operation on the plaintext database D for query
q.

Security. The security of an SSE scheme is defined formally with respect to a leakage
profile, which is an upper bound on the information about the plaintext data and queries
that an attacker can learn from the encrypted database ED and subsequent executions of
Querye. We refer the reader to [CGKO06,CJJ+13] for the formal security definition.

4An abstract data type is a collection of data objects and a set of operations defined on those objects.
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2.2 Notations

For the rest of our paper, we model a database in a searchable encryption scheme as target
abstract data type. A database DB consists of a set of documents di, each associated to
a set of keywords kw(di), so DB = {(di, kw(di))}. It supports keyword search queries.
For a keyword search query q on the keyword kw(q), the set of documents containing this
keyword, denoted as DB(kw(q)) = {di | kw(q) ∈ kw(di)}, is returned. To emphasize that
we are only considering keyword search queries, we denote the query protocol as Srch.

3 Formal Description of Query Reconstruction Attacks
using Co-Occurrence Leakage

This section formally establishes the leakage profile for SSE systems that we are targeting
in the paper. We also formally describe our attack setting.

Access-pattern Leakage. Access-pattern leakage refers to the information leakage asso-
ciated to document retrieval. If a näıve searchable encryption scheme Σ leaks the “exact”
access pattern and nothing else, we can write the leakage of a query q on document collection
DB as:

LSrch(q,DB) = {i | kw(q) ∈ kw(di), (di, kw(di)) ∈ DB} ,

where kw(q) denotes the keyword associated to query q.

Co-Occurrence Leakage. Access-pattern leakage from different queries can be represented
equivalently as a matrix, known as co-occurrence pattern. Consider a small document
collection DB where

DB = {(d1, {kw1, kw2, kw3}), (d2, {kw1, kw2}), (d3, {kw3})}.

Let qi be a query on keyword kwi. If the original access pattern is leaked, we know that

LSrch(qℓ,DB) = {1, 2} for ℓ ∈ {1, 2},LSrch(q3,DB) = {1, 3} .

This allows us to take intersections between the leakages as:

LSrch(q1,DB) ∩ LSrch(q2,DB) = {1, 2} ,
LSrch(qℓ,DB) ∩ LSrch(q3,DB) = {1} for ℓ ∈ {1, 2}.

The cardinality of the intersections can be very useful in an attack. For example, the co-
occurrence pattern of the document collection above can be represented as a co-occurrence
matrix M̄ defined as follows:

M̄(q1, q2, q3;DB) =

2 2 1
2 2 1
1 1 2

 ,
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where the (i, j)-th entry of the matrix is∣∣LSrch(qi,DB) ∩ LSrch(qj ,DB)
∣∣ .

If we know the underlying document collection perfectly, we can re-identify q3 as a query
on kw3 as it is the only keyword that only shares one document with other keywords. This
qualifies as a query reconstruction attack.

We note that a co-occurrence matrix contains strictly less information than the original
access-pattern leakage as the information on intersections of more than two queries are
removed. However, the co-occurrence matrix is often sufficient in attacks so it is used instead
of the full leakage. We refer to the co-occurrence matrix as the co-occurrence leakage.

There are three complications to the representation of co-occurrence leakage in practice.
Firstly, the schemes we consider in practice usually leak query equality pattern too. That
is, if kw(qi) = kw(qj), the attacker knows that the two queries are for the same keyword.
In terms of co-occurrence leakage, we use only one of the queries in the representation to
simplify the problem. Secondly, the queries are unordered in practice. That means there
is no standard representation of the leakage in terms of the known keywords. We use the
convention that the i-th row and column of the co-occurrence matrix corresponds to the
i-th non-repeating query in our representation. Finally, not all schemes leak the original
access pattern and some schemes may even be randomised. In those cases, we need to use
a suitable representation of the co-occurrence information, which may differ from what we
have described above.

Auxiliary Information. Similar to a co-occurrence matrix, the auxiliary information the
attacker receives can be represented as a co-occurrence matrix M . The co-occurrence matrix
is indexed by the known keywords and typically contains full information on all keywords.
In stronger attacks, M is assumed to be noisy in the sense that it is not generated directly
from the target document collection. Instead, an auxiliary dataset is used for the purpose.

LetDBaux =
{
(d′i, kw(d

′
i))
}
be an auxiliary document collection with keywords

{
kw′

1, . . . , kw
′
n

}
.

In our attack, the (i, j)-th entry of M represents the empirical probability (derived from the
auxiliary data DBaux) of seeing kw′

i and kw′
j together in a document, computed as:

Mi,j =
∣∣{d′i | kw′

i ∈ kw(d′i) ∧ kw′
j ∈ kw(d′i)

}∣∣/|DBaux|,

where |DBaux| is the total number of auxiliary documents.

Attack Setting. Let Σ be a structured encryption scheme. Our attack exploits its co-
occurrence leakage M̄(·;DB) from retrieval of actual documents. If the scheme is an index-
only one, we assume that the scheme used for document retrievals leaks the access pattern
induced by the index-only scheme. We abuse the notation M̄(·;DB) to mean co-occurrence
leakage from document retrieval, and the said leakage is used in our query reconstruction
attacks.

We can describe a query reconstruction attack formally as follows. Let queries q1, . . . , ql
be a sequence of queries on the document collection, so the attacker observes co-occurrence
leakage M̄(q1, . . . , ql;DB). Suppose that the attacker has access to some auxiliary infor-
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mation M . The goal of the attacker is to recover kw(qi) after observing the co-occurrence
leakage M̄ and knowing auxiliary information M .

4 New Query Reconstruction Attacks using Co-Occurrence
Leakage

In this section, we show that all the structure-only SSE schemes [CGKO06,CK10,KPR12,
CJJ+13,CJJ+14,SPS14,NPG14,FJK+15,Bos16,BMO17,KM17,KM18,CPPJ18], including
those built from volume-hiding EMMs [KM19,PPYY19], incur damaging system-wide leak-
age when used to construct end-to-end SSE systems in the natural way. In particular, we
propose new inference-style query recovery attacks that completely break the query privacy
guarantees of these systems. We additionally show a new query recovery attack on the end-
to-end SSE system DPAP-SE (based on differentially private access patterns) proposed
in [CLRZ18].

Attack Overview. We achieve inference-style leakage-abuse attacks by using a combi-
nation of statistical modeling and simulated annealing, while assuming that the attacker
has access to noisy co-occurrence leakage from observed queries and auxiliary data that is
independent of but statistically “close” to the target database. We model the attack as an
optimization problem, where the objective function is the statistical likelihood of observing
a given assignment of keywords to queries, given the observed leakage and auxiliary data
as prior information. Then maximizing the objective function corresponds to maximising
the statistical likelihood of the solution. In this way, we obtain optimal assignments of key-
words to queries, given the available leakage and auxiliary data. We use simulated annealing
for the maximization step because it is relatively easy to implement and performs well in
practice, although one could use any other suitable optimization technique..

In the rest of this section, we detail how we identify and mathematically model the (poten-
tially “noisy”) leakage information from each targeted scheme as a function of the auxiliary
data and a given keyword assignment, and how we transform the resulting model into an ap-
propriately structured input to the simulated annealing algorithm. We begin by describing
the targets for our attacks more precisely.

4.1 Attack Targets

As mentioned earlier, we target system-wide leakage from end-to-end SSE systems con-
structed in a natural way from structure-only SSE schemes, which are in turn built from
volume-hiding EMMs [KM19,PPYY19]. We begin by recalling the natural way to design
end-to-end SSE from EMMs.

End-to-End SSE from EMMs. At a high level, a multi-map is a set of key-value pairs,
i.e.

{
(keyi,

−→vi )
}
, where keyi’s are the keys which are assumed to be non-repeating and −→vi ’s

are the tuples of values associated to their keys. The natural way to design a structure-only
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SSE scheme from an EMM is to realize an encrypted search index as follows: let each key
of the EMM be a deterministic function of a keyword in the database, and let the corre-
sponding value be the set of encrypted document identifiers pertaining to the documents
matching this keyword. This is precisely the approach taken by all of the structure-only SSE
schemes [CGKO06,CK10,KPR12,CJJ+13,CJJ+14,SPS14,NPG14,FJK+15,Bos16,BMO17,
KM17,KM18, CPPJ18] (while the exact specification/implementation of the EMM might
vary from scheme-to-scheme depending on the nature of queries supported by the scheme,
the overall approach is the same). Finally, the natural and widely accepted approach to
transition from structure-only SSE to end-to-end SSE is to additionally realize document
retrieval using a simple storage system matching document identifiers to encrypted docu-
ments. We refer the reader to [CGKO06,CK10,CJJ+13] for a more formal exposition of the
overall approach.

Our Targets. We target system-wide leakage from end-to-end SSE built in the aforemen-
tioned natural way from state-of-the-art volume-hiding EMMs [KM19,PPYY19], which are
specially designed EMMs equipped with additional cryptographic mechanisms for leakage
suppression. Our attacks rely on the leakage from the document retrieval phase, which sub-
sumes the leakage from the index-retrieval phase. It is important to note that even though
the document retrieval phase is implemented as a simple storage system, the leakage from
this phase is not the trivial (unperturbed) access pattern leakage. In particular, since docu-
ment retrieval is performed based on the encrypted document identifiers from index retrieval,
the leakage mitigation from the volume-hiding EMM also induces noise/perturbation in the
leakage from document retrieval. Hence, we specifically design our attacks to be robust
against such noisy leakage. Since the exact nature of the leakage depends on the specific
realization of volume-hiding EMM used, we recall the schemes from [KM19,PPYY19].

PRT-EMM. Our first target is an end-to-end SSE scheme realized naturally from the first
construction of volume-hiding EMM via pseudorandom transform (abbreviated as PRT-
EMM throughout) due to Kamara and Moataz [KM19]. At a high level, their idea is to
pad or truncate the query response lengths of queries on any EMM with a pseudorandom
function (PRF) as follows. Let key be a key for the multi-map and Fsk(·) be a PRF with key
sk. The client computes: n′

key = λ+Fsk(key||nkey), as the new query response length, where
λ is a free parameter which the client can choose and nkey is the original query response
length. These new query response lengths are used to build a multi-map on as follows:

� If nkey ≤ n′
key, add ⊥ symbols in the multi-map on key key before encryption.

� If nkey > n′
key, truncate the multi-map on keyword key to the first n′

key entries.

We note here that the original construction in [KM19] pads query responses with ⊥ symbols
if the real query response length is shorter. If the ⊥ symbols are ignored in actual document
retrieval, the attacker will be able to learn the true query response lengths when there is
padding. In our attack, we assume the ⊥ symbols are replaced by randomly picked indices,
so the true query response lengths are not leaked.

Our attack targets “noisy” co-occurrence leakage during document retrieval in an end-to-end
SSE scheme realized naturally from PRT-EMM. Due to lack of space, the detailed formal
derivation of the precise leakage distribution for this SSE scheme is deferred to Appendix
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A.

FP-EMM and DP-EMM. We next target end-to-end SSE scheme realized naturally from
two constructions of volume-hiding EMM based on hash-tables presented in [PPYY19]. The
first scheme (abbreviated as FP-EMM throughout) uses full padding, meaning that all
query response lengths are padded to the maximum query response length. Concretely, this
is done by querying additional addresses in the hash-table deterministically (generated by
a PRF) for each key.

The second scheme (abbreviated as DP-EMM throughout) uses differentially-private vol-
ume hiding as opposed to full padding. Let 2nkey be the true query response length of a
query on key key (where the factor of 2 arises from the usage of two hash tables in Cuckoo
hashing). Then the scheme pads the query response length to 2nkey + n∗ + Lapsk(2/ϵ),
where n∗ is a parameter set by the client to offset the query response length in case the
latter random variable is negative, and Lapsk(·) is a Laplace distribution with secret key
sk as the seed.

As in the case of PRT-EMM, we design attacks targeting “noisy” co-occurrence leakage
during document retrieval in end-to-end SSE schemes realized naturally from FP-EMM
and DP-EMM, respectively. The formal derivation of the precise leakage distribution for
each of these SSE schemes is again deferred to Appendix A.

DPAP-SE. Finally, we also target the end-to-end SSE system DPAP-SE (based on differ-
entially private access patterns) proposed in [CLRZ18]. At a high level, this scheme uses a
differential privacy mechanism is to “obfuscate” the plaintext database prior to encryption,
such that a slight change in the real access pattern does not affect the obfuscated access
pattern significantly. There are two key ingredients in their construction. First, an erasure
code [DGWR07] is used to split every document into m shards, each with size 1

k of the
original document. The erasure code has the property that any k shards of a document can
be used to reconstruct the original document. The client then picks two probabilities p and
q, and does the following to each shard:

1. For any keyword that is originally in the shard, remove the keyword with probability
1− p.

2. For any keyword that is originally not in the shard, add it to the shard with probability
q.

For our attack, we rely on the observation that the resulting leakage from this scheme can be
interpreted as follows: since the scheme effectively transforms query response into “noisy”
keyword response lengths on the shards, the observed co-occurrence counts are actually
“noisy” co-occurrence counts on the shards, rather than the actual documents. We then
design an attack procedure that takes this noisy leakage on the shards into account. As
in our earlier attacks, we again rely on precisely modeling this noisy co-occurrence leakage,
albeit on the shards. Details can be found in Appendix A.
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4.2 Attack Technique

We now detail our attack technique. For all of our attacks, we assume that the precise
leakage modeling steps outlined above (and described formally in Appendix A) yield an
observed co-occurrence matrix M̄ , which is the leakage from the observed queries on the
actual target database. To simulate the auxiliary information available to the attacker,
we build an auxiliary co-occurrence matrix M from an auxiliary database. This auxiliary
database consists of a subset of uniformly randomly sampled documents from a second
database (independent of the target database). To simulate different noise levels, we vary
the number of such sampled documents – fewer documents means more noise. The level
of noise determines how “close” the auxiliary co-occurrence matrix M is to the observed
matrix M̄ .

The goal of our attack is to find the assignment P between the queries and the keywords
with the maximum statistical likelihood, given the observed leakage M̄ and auxiliary co-
occurrence M as prior information. In other words, we aim to maximize the likelihood
function L

[
P | M̄,M

]
. As we will show, the function L

[
P | M̄,M

]
can be derived from

the leakage distributions obtained above. We use simulated annealing [AeOJIP+12] for the
maximization step.

Simulated Annealing. At a high level, simulated annealing is a probabilistic technique
for searching for the global optimum of a given function. It is very similar to a greedy
search algorithm – randomize the input of the function, in our case, that is the assignment
P , recompute the score, and if the score is larger than before, the assignment is kept as
the new solution, and it is discarded otherwise – except that a worse solution is accepted in
simulated annealing if it is not too bad. This is to prevent the algorithm from getting stuck in
a local optima. More concretely, simulated annealing uses a temperature T which decreases
per iteration and the differences between the current score of the target function and the
previous best score maintained by the algorithm to compute an acceptance probability p,
and with probability p the new solution is accepted. This probability is 1 if the new score
is higher than the previous best, and less than 1 otherwise. For the same difference in
the scores, a lower temperature T leads to a lower acceptance probability, which means
simulated annealing behaves as a greedy search algorithm progressively.

Formally, simulated annealing consists of five subroutines, namely a function InitPerm

to generate an initial assignment, a cooling scheme Cooling, a neighbourhood generation
algorithm Neighbour, a function Score to compute the score and a function AccptProb to
compute the acceptance probability. The syntax of the subroutines are defined below:

� InitPerm: takes as input an observed co-occurrence matrix M̄ and an auxiliary co-
occurrence matrix M , and outputs an assignment P .

� Cooling: takes as input a temperature T and the current iteration number i and
outputs a new temperature T ′.

� Neighbour: takes as input an assignment P , an observed co-occurrence matrix M̄ and
an auxiliary co-occurrence matrix M , and outputs a new assignment P ′.

� Score: takes as input an observed co-occurrence matrix M̄ , a auxiliary co-occurrence
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Algorithm 1 Simulated Annealing

1: procedure Attack(M̄,M, T0, imax)
2: P ← InitPerm(M̄,M)
3: T ← T0

4: s← Score(M̄,M,P )
5: for i← 1, . . . , imax do
6: T ← Cooling(T, i)
7: P ′ ← Neighbour(P, M̄,M)
8: s′ ← Score(M̄,M,P ′)
9: if AccptProb(T, s, s′) > rand(0, 1) then

10: P ← P ′

11: s← s′

12: return P

matrix M and an assignment P , and outputs a score.

� AccptProb: takes as input a temperature T , a previous best score s and the new score
s′, and outputs a probability.

The algorithm begins with an initial temperature T0 and a random assignment P . An initial
score s is computed on this assignment P . Then, the algorithm computes a new temper-
ature T ← Cooling(T0, 1), find a new assignment P ′ using the neighbourhood function
Neighbour(·), and compute a new score s′ with the score function Score(·). An acceptance
probability is computed as p← AccptProb(T, s, s′). A random number between 0 and 1 is
generated and if the random number is less or equal to p, the new solution s′ is accepted
by the algorithm and kept as the new optimum solution. This process is repeated until the
maximum number of iteration is reached. See Algorithm 1 for the formal description.

Our Query Reconstruction Attacks. Our proposed query reconstruction attacks on all
of the attack targets described earlier use the aforementioned simulated annealing proce-
dure for maximum likelihood estimation. In all our attacks, we use T ′ ← 0.995T as our
cooling scheme Cooling(·) and p ← exp(− s−s′

T ) as our function AccptProb(·) to compute
the acceptance probability. The precise score function Score(·) that we aim to maximise is
the likelihood function L

[
P | M̄,M

]
. We defer the formal description of how this function

is derived for each target scheme to Appendix B.

We next describe our choices of the initial assignment finding subroutine InitPerm(·) and
neighbourhood generation subroutine Neighbour(·) which have a significant impact on the
performance and effectiveness of our attacks. The choices we make are tuned for maximizing
the attack recovery rate.

InitPerm(·). An initial assignment finding subroutine InitPerm(·) is an efficient algorithm
for guessing keywords/keys of the queries, so as to provide a starting point for the more
expensive iterative steps later. For our attacks, only the query response lengths are used
to avoid expensive computations. We observe that although the observed query response
lengths are different from the true query response lengths for all of the schemes we target,
these two are related. In particular, for DP-EMM [PPYY19] and DPAP-SE [CLRZ18],
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we can compute the expected observed query response lengths from the query response
lengths in the auxiliary co-occurrence matrix, and match the queries to the keywords in
the auxiliary co-occurrence matrix as well as we can. For PRT-EMM [KM19] and FP-
EMM [PPYY19], the observed keyword frequencies are independent from the true keyword
frequencies, .

Neighbour(·). A neighbourhood generation subroutine generates new assignments for the
attacks. Although a uniformly randomly picked assignment works all the time, it may
not be the most efficient choice. In particular, for DP-EMM [PPYY19] and DPAP-
EMM [CLRZ18], we know that if an observed query response length is too far from the
expectation, the assignment is very unlikely, and can be safely discarded. This means the
neighbourhood generation subroutines for the attacks on these two schemes can make use
of this, and output a new assignment only if it is sound.

We note that these neighbourhood generation subroutines may prevent some correct assign-
ments in the output of the attacks if their observed query response lengths are too far from
the expected query response lengths. By relaxing the bounds, we can make the chance of
that happening arbitrarily small. However, the algorithm would then be less efficient as
more iterations are required for a convergence. Hence, we see our choice of bounds as a
trade-off between query recovery rate and attack efficiency.

For PRT-EMM [KM19] and FP-EMM [PPYY19], we have to use uniformly randomly
picked assignments, since the observed query response lengths are independent from the
true query response lengths.

Detailed pseudocodes for the neighbourhood generation subroutines can be found in Ap-
pendix C.

4.3 From Query Reconstruction to Database Reconstruction

It turns out that for some of the targeted schemes, our query reconstruction attacks can
be extended to database reconstruction attacks (by which we mean recovering the keywords
associated with the encrypted documents).

DP-EMM. Our query reconstruction attack on the end-to-end SSE system built naturally
from DP-EMM [PPYY19] implies a database reconstruction attack for practical security
parameters; we rely on the noisy access pattern leakage during document retrieval to recovers
the actual keywords occurring in the encrypted documents retrieved across various queries.

Recall that in DP-EMM, the response length to a query on some key is padded to
(2nkey + n∗ + Lapsk(2/ϵ)), where nkey is the real response length, and n∗ is a fixed con-
stant that depends solely on the choice of ϵ. For example, the authors of [PPYY19] suggest
using ϵ = 0.2, which yields n∗ = 567. Our attack stems from the observation that the
leakage perturbation is rather small for more frequent keywords, since the corresponding
response length nkey is much larger than n∗. Hence, for the choice of parameters suggested
in [PPYY19], our query reconstruction attack also allows us to progressively recover the set
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of keywords associated with a given document as more and more queries are observed, lead-
ing to a database reconstruction attack. The reconstruction rate is somewhat close to 50%
due to the padding-factor of 2× in DP-EMM, which causes half of the recovered keywords
to be “fake”. While this attack can be prevented by altering the parameter ϵ for increased
leakage perturbation, such alteration also significantly degrades the practical performance
of the scheme. In other words, all practically efficient realizations of the natural end-to-end
SSE from DP-EMM are broken by our database reconstruction attack.

Our attack does not immediately extend to the end-to-end SSE systems built naturally
from PRT-EMM [KM19] and FP-EMM [PPYY19] due to the inherently different and
somewhat larger perturbation to the access pattern leakage in these schemes, and we leave
it as an open question to investigate database reconstruction attacks on such schemes.

DPAP-SE. For implementations of DPAP-SE [CLRZ18] with reasonably practical pa-
rameters (e.g. p = 0.89999 and q = 6.997 × 10−6, where p and q are the parameters
described earlier), our query reconstruction attack allows guessing the real keywords in the
shards (obtained as part of the document retrieval process) with high probability (more
concretely, probability p; recall that p needs to be large for the scheme to satisfy correct-
ness in practice). As in the case of DP-EMM-based end-to-end SSE, we rely on the noisy
access pattern leakage for this database reconstruction attack. Again, while this attack
can be prevented by altering the parameters p and q, such alteration also significantly de-
grades the practical performance of the scheme. Hence, all practically efficient realizations
of DPAP-SE are broken by our database reconstruction attack.

5 Experimental Evaluation

5.1 Overview of Experimental Setup

Experimental Data and Auxiliary Information. We use the Enron email corpus [WWC]
as the target dataset for all of our attacks. A description of the dataset and our pre-
processing step can be found in Appendix D. A major challenge for inference-style leakage-
abuse attacks is deciding an appropriate model for evaluating their effectiveness in practice.
Such a model should take into account both the distribution of queries as well as the distri-
bution of the auxiliary information available to the adversary. Unfortunately, there do not
exist concrete guidelines in the literature for how to construct such models; given this lack
of precedence, we make certain assumptions that we believe are reasonable in practice.

Query Distribution. We use uniformly distributed keyword queries to evaluate our attacks.
This is exactly as in previous attacks [IKK12, CGPR15, BKM20]. We note here that our
attacks do not explicitly depend on the distribution of queries; hence a uniform distribution
appears to be a reasonable choice.

Auxiliary Data Distribution. For the IKK attack, Islam et al. [IKK12] proposed a method
to model auxiliary information in an inference-style attack setting; their suggestion was to
use an auxiliary co-occurrence pattern leakage obtained by adding Gaussian noise to the
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original co-occurrence pattern. However, this implicitly assumes a homogeneous distribution
of keywords amongst the documents, which may not always be the case in practice. Instead,
we opt to split the overall dataset into two halves: out of the 480,000 documents in the
dataset, half of the documents are used as the attack target and a fraction of the other half of
the documents are used to generate auxiliary information about the dataset. Measurements
of ‘noisiness’ of our auxiliary data can be found in Appendix E. In total, we generate 10
different splits of the documents. For each split, we run 10 independent attacks with freshly
generated observed co-occurrence matrices. We measure the fraction of correctly guessed
keywords and report the average over the 100 runs as the query recovery rate.

Keyword Extraction. We extract keywords using the Natural language toolkit [Pro] in
Python. Keywords with frequency higher than 5% are removed. We do not apply stemming
to the keywords as that does not affect query recovery rate in our experiments.

Keyword and Query Selection. We use the 1,000, 2,000, 3,000 and 4,000 most frequent
keywords to build auxiliary co-occurrence matrices, and sample uniformly randomly without
replacement from these most frequent keywords subsets of 250, 500, 750 keywords as queried
keywords. These queried keywords are used to build observed co-occurrence matrices. These
observed and auxiliary co-occurrence matrices are then used as the inputs to our attacks.

Security Parameter Selection for the Target Constructions. We use the security
parameters suggested in the original papers to run our attacks. We also investigate how
changes in the security parameters affect query reconstruction rates.

PRT-EMM Recall that PRT-EMM from [KM19] allows the client to pick a public
parameter λ which controls the padded query response lengths as: n′

key = λ+Fsk(key||nkey).
The authors suggested to set λ between 0 and 0.25nmax. We used λ = 0 and 0.25nmax in
our experiments. In addition, we used λ = 0.5nmax to see the effect of additional padding
on query reconstruction rate.

FP-EMM and DP-EMM FP-EMM from [PPYY19] does not have any tunable pa-
rameters and so we run our attacks on the FP-EMM as it is. DP-EMM from [PPYY19]
uses parameter ϵ to set query response volumes to (2nkey + n∗ + Lapsk(2/ϵ)). The au-
thors suggested ϵ = 0.2 and we use the same value. We also run experiments where ϵ is
significantly smaller, ranging from 0.1 to 0.01.

DPAP-SE ForDPAP-SE [CLRZ18], the authors suggestedm = 6 (the number of shards
per document), k = 2 (a parameter of the erasure code which does not affect our attack),
p = 0.88703 (the probability for which a keyword is kept in a shard) and q = 0.04416 as
the parameters to use for the Enron [WWC] dataset. We used similar parameters (m =
6, k = 2, p = 0.89 and q = 0.045) in our experiments. A smaller p or a bigger q significantly
reduces the efficiency of the construction so we opt to not run additional experiments with
those parameters. Instead, we investigate how a smaller q affects query reconstruction rate.
We use q = 0.0045, 0.00045 and 0.000045 as additional choices of parameters.
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Implementation. We implemented our attacks in C using GNU Scientific Library [Gou09]
for randomness generation and probability calculations. We used our own custom code
for simulated annealing for best performance. We parallelized our implementation using
OpenMP [Ope18]. Our implementation is highly scalable. It takes less than one minute
per run on the differentially-private schemes (DPAP-SE and DP-EMM) and no more
than 6 minutes per run on the other schemes (PRT-EMM and FP-EMM) for all of our
experimental settings, on a machine with an 8-core (16-thread) Sandy Bridge CPU clocked
at 2.6 GHz.

Experiments. We present three sets of experimental results on the target constructions
discussed above. In Section 5.2, we present the experimental results in basic settings, where
the auxiliary co-occurrence matrix is built from 48,000 documents (20% of the available
auxiliary data) using the 1,000 most frequent keywords. We set the number of queried
keywords to 250, 500 or 750, and the security parameters are allowed to vary. In Section
5.3, we set the number of queried keywords to 250, 500 or 750, and the security parameters
to those suggested in the original papers, and vary the number of keywords used to build
auxiliary information between 1,000 and 4,000. Just as before, 48,000 documents are used
in building auxiliary information. Finally, in Section 5.4, we use anywhere from 12,000
to 96,000 documents to build the auxiliary co-occurrence matrix, as a means to simulate
auxiliary information with different levels of noise. The number of keywords used is set to
1,000, and the number of queries is allowed to vary from 250 to 750. The security parameters
are set to the ones recommended in the original papers.

5.2 Varying the Security Parameters of the Constructions

PRT-EMM. The experimental results on PRT-EMM are shown in Figure 2a. We observe
an increasing query recovery rate with more queried keywords and larger λ. The attack
performs significantly worse when λ = 0.

The worse performance of our attack on small λ is caused by truncations of query response
volumes (see Section 4.1) which lead to loss of co-occurrence information. It should be noted
that although a smaller λ leads to better query privacy, it results in more truncations and
less complete query responses.

FP-EMM. The experimental results of our attack on FP-EMM are shown in Figure 2b.
As expected, the attack performs better with more queried keywords. The attack is able to
recover over 70% of the queried keywords if over 500 keywords have been queried, suggesting
that full padding is ineffective at adding noise to the co-occurrence leakage.

DP-EMM. The experimental results on DP-EMM are shown in 2c. The attack performs
slightly better with a smaller ϵ, suggesting that our attack is over-fitting the auxiliary data.

DPAP-SE. The results of our attacks are shown in Figure 2d. The attack is able recover
between 50% and 80% of the queries in all cases we have considered.
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(a) PRT-EMM [KM19]. nmax is the maxi-
mum query response length.

(b) FP-EMM [PPYY19].

(c) DP-EMM [PPYY19]. (d) DPAP-SE [CLRZ18].

Figure 2: Experimental results with varying security parameters. The 1,000 most frequent
keywords are used in the auxiliary information.

As opposed to what one might expect, the attack performs better with a larger q. It is
certainly true that a larger q masks the true co-occurrences better as there are more fake
keywords introduced to each document, but it also reduces the effectiveness of perturbation
with respect to keyword frequencies.

For simplicity, consider a database with N documents, of which n documents contain key-
word kw. With parameters m, p and q, the frequency of keyword kw in the resultant
database processed by DPAP-SE is k(np+ (N − n)q). A larger q increases the separation
of frequencies for different keywords, and we believe that is the main reason why our attack
performs better with larger q.

5.3 Varying the Number of Keywords in Auxiliary Information

Our experimental results on varying the number of keywords in the auxiliary information
are shown in Figure 3. The security parameters we used can be found in the captions.

As the keywords are uniformly randomly picked, the attacks with more auxiliary keywords
are necessarily less successful. There are two main reasons for this. Firstly, since we have
fixed the number of queried keywords, the search space for the attacks with more auxiliary
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(a) PRT-EMM [KM19]. λ is set to 0.25nmax. (b) FP-EMM [PPYY19].

(c) DP-EMM [PPYY19]. ϵ = 0.2. (d) DPAP-SE [CLRZ18]. (m, k, p, q) =
(6, 2, 0.89, 0.045).

Figure 3: Experimental results with varying number of keywords in auxiliary information.

keywords are larger, and there is naturally more uncertainty associated to those attacks.
Secondly, as we have picked the queried keywords uniformly, it is more likely for the at-
tacks with more auxiliary keywords to hit low frequency keywords, which naturally contain
less co-occurrence information to begin with. Nevertheless, the constructions behave very
differently with respect to the number of keywords in the auxiliary information.

Our attacks on PRT-EMM and DP-EMM work reasonably well for up to 2,000 auxiliary
keywords. More queries are required for the attack to succeed with 3,000 and 4,000 auxiliary
keywords.

Our attack is less successful on FP-EMM when the number of auxiliary keywords is large.
This shows that full padding is effective at masking co-occurrence information if there is
enough uncertainty within the queries.

For DPAP-SE, the attacks with more auxiliary keywords do not perform well when only
250 keywords are queried. However, the query recovery rate increases significantly as more
keywords are queried. The attack is able to recover over 50% of the queries even if only 750
out of 4,000 keywords have been queried.
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(a) PRT-EMM [KM19]. λ is set to 0.25nmax. (b) FP-EMM [PPYY19].

(c) DP-EMM [PPYY19]. ϵ is set to 0.2. (d) DPAP-SE [CLRZ18]. (m, k, p, q) =
(6, 2, 0.89, 0.045).

Figure 4: Experimental results with varying auxiliary information.

5.4 Varying the Level of Noise in Auxiliary Information

Given that there is no widely accepted way of modelling noise in auxiliary information, we
opt to use different numbers of documents in auxiliary information as a way to simulate
different levels of noise – fewer documents means more noise. We use absolute distance and
modified probability score to measure the level of noise introduced in each set of experiments
we run (see Appendix E for details).

Our experimental results on varying auxiliary information are shown in Figure 4. The
security parameters we used can be found in the captions. The attacks do not perform
well when only 12,000 documents are used to construct the auxiliary information. However,
the query reconstruction rate increases as the number of auxiliary documents increases.
Interestingly, the query reconstruction rates using 48,000 and 96,000 auxiliary documents
are comparable, suggesting that using 48,000 documents (10% of the total in the Enron
dataset) is sufficient as auxiliary information and that our attacks are robust in a noisy
setting. This aligns with the observation that the level of noise measured in Figure 7 of
Appendix E stabilises at 48,000 documents.
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6 Document Retrieval with EMMs and Other Primi-
tives

In this section, we explore the alternative possibility of building end-to-end SSE systems
where leakage-suppression techniques (such as volume-hiding EMMs) are applied to the
whole system (i.e. to both the encrypted index and the encrypted document collection). In
such a system, the document retrieval step is only allowed to leak ‘trivial’ information such
as the number of documents and the number of keyword-document pairs, but not potentially
sensitive information such as the access pattern. We will show that, with currently avail-
able techniques, no end-to-end SSE system using volume-hiding EMMs (or similar leakage-
suppression techniques) can achieve this without incurring significant storage, computation
and/or bandwidth overheads.

6.1 Primitives for Index and Document Retrieval

In the rest of this section, we assume the SSE system follows the two-phase approach il-
lustrated in Figure 1. We also assume that the index retrieval phase (where the client
recovers the set of (encrypted) document identifiers corresponding to documents matching
the query) is implemented using one of the state-of-the-art schemes PRT-EMM [KM19] or
FP-EMM [PPYY19], so the leakage from this phase consists of at most: (a) the number
of documents |DB|, (b) search pattern (query equality), and (c) the maximum response
length maxkw |DB(kw)|. This leakage profile is a consequence of the properties of the afore-
mentioned volume-hiding EMMs. We demand that the leakage from the second document
retrieval phase should be no more than that in the first phase, in order to achieve effective
system-wide leakage-suppression. This naturally leads us to consider a variety of different
cryptographic primitives for realizing the document retrieval step, namely EMMs (again),
Private Information Retrieval, and Oblivious RAM.

Using EMMs for Document Retrieval. The state-of-the-art EMMs [KM19,PPYY19]
can be easily transformed into document retrieval schemes by replacing the values stored
in the EMMs with the encrypted documents themselves. We then obtain the same leakage
from document retrieval as from the underlying EMM. We note that the resulting scheme
does not actually need an index retrieval phase as the entire process can be carried out just
using the document retrieval phase.

Using Private Information Retrieval. A Private Information Retrieval (PIR) scheme
can be used to retrieve the documents. Here, we focus on computational PIR schemes [ABFK16,
ACLS18] for which there is provably no leakage (per retrieval). As we are only permit-
ted to leak the maximum response length in the document retrieval phase (in order to
match the leakage profile of the first phase), we need to call the underlying PIR scheme
maxkw |DB(kw)| times per query (padding with dummy retrievals if necessary) in order
to hide the true response length. We use the single message version of SealPIR [ACLS18]
in our evaluation below. This is a state-of-the-art PIR scheme using Fully Homomorphic
Encryption (FHE) as a subcomponent.
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Scheme Storage (Server)
Query (Client) Query (Server)

Computation Communication Computation Communication

Näıve* 470 MB
f prf
f dec

32 B f acc f KB

Duplication 17 GB (36x)
24K prf
24K dec

750 KB (46x) 24K acc 23 MB (46x)

PRT-
EMM [KM19]

390 GB (860x)
12K prf
12K dec

370 KB (23x) 12K acc 12 MB (23x)

FP-
EMM [PPYY19]

43 GB (94x)
48K prf
48K dec

1.5 MB (92x) 48K acc 47 MB (92x)

SealPIR [ACLS18] 7.3 GB (16x)
1 henc
1 hdec

370 MB (24,000x)
23B hmul
11B hsub
11B hadd

370 MB (740x)

Non-
recursive Path
ORAM [SvS+13]

1.8 GB (4x)
3.4M acc
1.7M dec
1.7M enc

1.65 GB (110,000x) 3.4M acc 1.7 GB (3,300x)

Table 2: Evaluation of different document retrieval primitives with minimal leakage. The numbers
in the brackets indicate overheads beyond the baseline provided by the Näıve scheme. We assume
522 documents (mean keyword frequency) are retrieved by the Näıve scheme in the computations
of the overheads. *: f is the real query response volume (since there is no padding).

Using Oblivious RAM. Oblivious RAM (ORAM) [Gol87, DMN11, SvS+13, CNS18] is
another primitive that achieves zero-leakage per access. We use it to protect the entire
document collection. Similarly to PIR, the number of data accesses for ORAM has to be
padded to the maximum response length in order to hide true response lengths. We use the
non-recursive version of Path ORAM [SvS+13] in our evaluation below. This specific choice
is amongst the most efficient ORAM schemes available.

6.2 Performance Evaluation

Additional Schemes. On top of the four primitives mentioned above, we also add the
following two schemes in our comparison as a baseline:

� Näıve: The scheme simply encrypts the documents and stores them in an array. To
retrieve documents, the user sends the array locations (used as document identifiers)
to the server and the server returns all documents in those locations. This scheme is
insecure in a system-wide attack setting, e.g. it is vulnerable to our inference attack.

� Duplication: The scheme is identical to Näıve except that the encrypted documents
are duplicated for each keyword in the same way as the encrypted document identifiers
are duplicated in the search index of a traditional structure-only SSE scheme, e.g.
[CGKO06,CK10,CJJ+13]. This represents a baseline method for using an EMM to
build an end-to-end SSE scheme.

Experimental Data. A concrete dataset is necessary for the evaluation as the duplication
techniques used in Duplication, PRT-EMM and FP-EMM are data-dependent. We
again pick the Enron email corpus [WWC], details in Appendix D. We used 480K documents
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in the evaluation below. To simplify the evaluation, we assume that all documents have size
1 KB even if some of them are larger than that in reality. If we were to use document
splitting into fixed-size chunks instead, this would result in a 10× larger storage overhead
because of increased duplication of the chunks compared to the original files.

Parameters. The following parameters are used in our evaluation. We use PRFs with 256-
bit output. We use the most space-efficient parameters for PRT-EMM proposed in the
original papers [KM19], namely α = 0.5. For SealPIR, we assume that the FHE ciphertexts
are 16 KB in size each, as per the original paper [ACLS18]. For Path ORAM [SvS+13], we
assume each block has size 1 KB and there are 4 blocks per bucket.

Evaluation. We report communication volume, storage cost, and the number of core
cryptographic operations needed for each option described above in Table 2. We split
computation and communication costs into client and server costs, and report only server
storage costs (client storage costs are low).

Storage and communication costs are measured in total volumes. Additional overheads
arising from how the data is structured and packaged for communication are ignored.

Computation costs are measured by the number of core cryptographic operations. The
operations that we consider include: prf for PRF computation; enc and dec for encryption
and decryption with a symmetric primitive; acc for disk/RAM access (read or write); henc
and hdec for encryption and decryption with FHE; hmul, hsub, hadd for multiplication,
substitution and addition for FHE ciphertexts. Reporting operation counts in place of
running times makes our comparison independent of implementation details.

We opt to not include latency as this depends on several factors such as data access speed
and network delay, and these are hard to compare concretely and fairly.

Discussion. It is clear that all of the options suffer significant storage overheads. For
Duplication, PRT-EMM and FP-EMM, this is caused by duplication. The expansion
factor grows linearly with the number of keywords per document. For PIR, the expansion
factor comes from the use of homomorphic encryption. It is not clear how the ciphertexts
can be compressed to reduce the overhead. It is conceivable that alternative PIR schemes
might avoid such expansion. For ORAM, the overhead comes from the use of multiple blocks
per bucket. This is necessary to prevent overflowing buckets, meaning the storage overhead
cannot be reduced significantly.

With regard to queries, Duplication, PRT-EMM and FP-EMM have reasonable com-
putational costs, but the communication costs from the server to the client are high in each
case. The server needs to send 2.5% to 10% of the entire document collection to the client
per query, which is a lot more than the average keyword frequency might suggest (0.109%
for the Enron corpus). The PIR and ORAM options naturally suffer from high computa-
tion and/or communication overheads since they are not designed for large-scale document
retrieval.

We note that the primitives we have chosen in making our comparison of options are not
necessarily optimal. Future work on these primitives should result in more efficient op-
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tions. Nevertheless, the concrete numbers we provide are indicative of what is possible by
employing state-of-the-art approaches.

7 Discussion

On System-Wide leakage. Our attacks on end-to-end SSE schemes built from volume-
hiding EMMs in the natural way highlight the threats posed by system-wide leakage and
the need to revisit existing security definitions that ignore such leakage. Note that many
SSE constructions were designed prior to the proposal of volume-hiding EMMs; in their
original form, these constructions effectively used EMMs that themselves leak the exact
access-pattern. In this case, the leakage from the encrypted search index subsumes the
leakage from encrypted document retrieval and so the latter leakage can be ignored in
security analysis (see [CGKO06,CJJ+13] for relevant discussions). However, this approach
to analysis is no longer valid when such access pattern-revealing EMMs are replaced by
volume-hiding EMMs. In this case, the leakage arising from encrypted document retrieval
is no longer covered by security definitions that focus purely on the encrypted search index.

Of course, one could try to use state-of-the art techniques like volume-hiding EMMs to
protect both the encrypted search index and the encrypted document store, thereby reducing
the system-wide leakage to an acceptable level. We have shown that the obvious way of
doing this incurs enormous overheads.

On Differentially Private Access Patterns. Our attack applied toDPAP-SE [CLRZ18]
does not negate the core idea of [CLRZ18], which is to design end-to-end SSE schemes that
take into account leakage from the document retrieval phase. Rather, our attack serves
as a warning about the potential pitfalls of applying differential privacy to SSE without
appropriately modeling and analyzing the resulting leakage. As pointed out in [CLRZ18],
differentially private access patterns provide provable guarantees of the form: an adversary
cannot distinguish between queries over keywords such that their access pattern leakage
is within a small statistical distance of each other. As demonstrated by our attack and
our experiments, the provable guarantees provided by differential privacy do not necessarily
translate into security guarantees against leakage-abuse attacks in general.

On the Practicality of Our Attack. Our attack is an inference attack in that it as-
sumes the adversary has access to auxiliary data that is independent of but statistically
“close” to the target database. We believe that this a weaker (and more realistic) attack
setting compared to existing known-data attacks [IKK12, CGPR15, BKM20]. Our attack
achieves high keyword recovery rates even when the target schemes use aggressive security
parameters, or when the auxiliary data available to the adversary is relatively noisy (which
is the case when we sample the auxiliary data from a small portion of the database). These
observations further reinforce the practicality of our attack.

A drawback of our attack is that it assumes auxiliary information involving high-frequency
keywords. This is a relatively strong assumption in practice (although one also made by
all previous leakage-abuse attacks). One can of course filter out leakage from low frequency
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keywords based on response volume before running our attack. We leave it as an open
problem to extend the attack to such keywords.

Future Research on SSE. We argue that, if the goal of the research community is to
develop SSE towards practice, then a fundamental shift in approach is needed. In particular,
researchers need to take a system-wide view of SSE and its security. This requires considering
all components of an end-to-end SSE system when doing security analysis, and investigating
techniques that reduce leakage and maintain efficiency of the SSE system as a whole. In
this context, our view is that the approaches taken in [CLRZ18] and [GPPW20], where
end-to-end SSE schemes are designed from scratch and dedicated leakage suppression for
both index and document retrieval is included, represent the right way forward.
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A Mathematical Derivations of the Co-occurrence Ma-
trices

Derivation for PRT-EMM [KM19]. Recall that in PRT-EMM, the query response
lengths are padded or truncated as:

n′
key = λ+ Fsk(key||nkey).

Let DB be a multi-map and q1, . . . , ql be non-repeating search queries with associated keys
key1, . . . , keyl on DB encrypted with PRT-EMM. We abuse the notation key(qi) to mean
the key associated to qi. By denoting the maximum value of the PRF F as |F |, the diagonal
entries of the co-occurrence matrix can be expressed as:

M̄(q1, . . . , ql;DB)i,i ∼ λ+Uniform(0, |F |),

where Uniform(·) is a uniform distribution.

There are three cases to be considered for the off-diagonal entries of the co-occurrence
matrix. Without loss of generality, let the keys in concern be keys keyi and keyj . In the
first case, both of the query response lengths associated to the keys are larger than the true
query response lengths. This corresponds to n′

keyi
−|DB(keyi)| random document retrievals

for queries on key keyi and n′
keyj
−
∣∣DB(keyj)

∣∣ random document retrievals for queries on key

keyj . These random document retrievals can create additional co-occurrence counts among
themselves or with the real document retrievals. The co-occurrence counts in this case can
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be approximated by:

M̄(q1, . . . , ql;DB)i,j ∼
∣∣DB(keyi, keyj)

∣∣
+HGeom

(
n′
keyi
− |DB(keyi)| , |DB| , n′

keyj

)
+HGeom

(
n′
keyj
−
∣∣DB(keyj)

∣∣ , |DB| , n′
keyi

)
,

where HGeom(n,N,K) denotes a hypergeometric distribution which makes n draws with-
out replacement, from a population of size N that contains exactly K objects with the
desired feature.

In the second case, one of the query response lengths is truncated and the other one is
padded. Without loss of generality, let key keyi be the truncated key and key keyj be
the padded key. Then, the co-occurrence count associated to keys keyi and keyj can be
modelled as a process where the co-occurrence count is first reduced by the truncation and
then increased by the padding. Its distribution is given below:

x ∼ HGeom
(
n′
keyi

, |DB(keyi)| ,
∣∣DB(keyi, keyj)

∣∣ ),
M̄(q1, . . . , ql;DB)i,j ∼ x+HGeom

(
n′
keyj
−
∣∣DB(keyj)

∣∣ , |DB| , n′
keyi
− x
)
.

Finally, in the last case, both of the query response lengths are truncated. Similar to above,
the distribution of the co-occurrence count associated to keys keyi and keyj can be expressed
as:

x ∼ HGeom
(
n′
keyi

, |DB(keyi)| ,
∣∣DB(keyi, keyj)

∣∣ ),
M̄(q1, . . . , ql;DB)i,j ∼HGeom

(
n′
keyj

,
∣∣DB(keyj)

∣∣ , x).
Derivation for new volume-hiding multi-maps in [PPYY19]. The volume-hiding
multi-maps in [PPYY19] are special cases of PRT-EMM [KM19], where the query response
lengths are either padded to the maximum query response length or ones that are larger than
the true query response lengths. Specifically, for the full padding version (PRT-EMM),

M̄(q1, . . . , ql;DB)i,i ∼ 2max
key
|DB(key)| .

And for the differentially-private version (DP-EMM),

M̄(q1, . . . , ql;DB)i,i ∼ 2 |DB(key)|+ n∗ + Lap(2/ϵ),

where n∗ is a fixed constant to offset the query response length in case the latter random
variable is negative.
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For the co-occurrence counts, we get:

M̄(q1, . . . , ql;DB)i,j ∼
∣∣DB(keyi, keyj)

∣∣
+HGeom

(
n′
keyi
− |DB(keyi)| , |DB| , n′

keyj

)
+HGeom

(
n′
keyj
−
∣∣DB(keyj)

∣∣ , |DB| , n′
keyi

)
,

where n′
keyi

and n′
keyj

are the padded query response lengths for keyword kwi and kwj

respectively.

Derivation for DPAP-SE [CLRZ18]. Let DB be a database and q1, . . . , ql be non-
repeating search queries with associated keywords kw1, . . . , kwl on DB encrypted with the
searchable encryption scheme above [CLRZ18]. The diagonal entries of the co-occurrence
matrix M̄(q1, . . . , ql;DB), i.e. the query response volumes, represent the numbers of shards
retrieved by the client. For a particular query qi, the number of shards retrieved is deter-
mined by:

� The number of shards which contain keyword kwi before the pre-processing step, and
the keyword is not removed from them.

� The number of shards which do not contain keyword kwi before the pre-processing
step, but the keyword is added to them.

Formally, the diagonal entries of the co-occurrence matrix can be expressed in terms of the
true query response lengths as:

M̄(q1, . . . , ql;DB)i,i ∼ Bin(m · |DB(kwi)| , p) +Bin(m · |DB| −m · |DB(kwi)| , q),

where m comes from splitting the documents into shards, DB(kwi) denotes the set of
documents containing keyword kwi associated to query qi, |DB| denotes the total number
of documents, and Bin(·) denotes a binomial distribution.

For the off-diagonal entries of the co-occurrence matrix, assume without loss of generality
that the keywords in concern are kwi and kwj . The co-occurrence count for keywords kwi

and kwj can increase if:

� A shard contains one of the keywords, say kwi, and the keyword is not removed by
the scheme. At the same time, the other keyword, kwj in this case, is added to the
shard.

� A shard contains none of the keywords, and both of the keywords are added to the
shard.

On the other hand, the co-occurrence count for keywords kwi and kwj can decrease if a
shard contains both of the keywords and at least one of the keywords is removed.

The actual distribution of the off-diagonal entries of the co-occurrence matrix is complicated
due to dependencies. However, if we ignoring the fact that we already know the query
response lengths for keywords kwi and kwj , the off-diagonal entries of the co-occurrence
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matrix can be approximated as:

M̄(q1, . . . , ql;DB)i,j ∼Bin(m · |DB(kwi, kwj)| , p2)
+Bin

(
m · (|DB| − |DB(kwi)| − |DB(kwj)|+ |DB(kwi, kwj)|) , q2

)
+Bin(m · |DB(kwi)| − |DBkwi, kwj | , pq)
+Bin(m · |DB(kwj)| − |DBkwi, kwj | , pq).

B Mathematical Derivations of the Likelihood Func-
tions

Likelihood Function and its Decomposition. The likelihood function L
[
P | M̄,M

]
can be written as follows:

L
[
P | M̄,M

]
=Pr

[
M̄,M | P

]
=

∑
M ′∈NN×N

Pr
[
M̄,M,M ′ | P

]
=

∑
M ′∈NN×N

Pr
[
M̄ |M,M ′, P

]
Pr [M ′ |M,P ]

=
∑

M ′∈NN×N

Pr
[
M̄ |M ′, P

]
Pr [M ′ |M ] ,

where N is the number of documents and NN×N is all N by N natural number valued
matrices. In the third line of the equation, we used the law of total probability to turn
the likelihood into a summation over all possible real co-occurrence matrices. The lines
after break the probability into a sum of products of two probabilities. The first probability
Pr
[
M̄,M ′ | P

]
is the probability that M̄ is the observed co-occurrence matrix and M ′ is

the real co-occurrence matrix given P is the permutation. The second probability is the
probability of getting M ′ as the real observed co-occurrence matrix knowing that M is the
auxiliary co-occurrence matrix.

We assume the same structure of the auxiliary co-occurrence matrix M for all of our leakage
functions so its derivation is shared by all three leakage functions. We note that only some
of the real co-occurrence matrices generate a non-zero likelihood, as the sum of off-diagonal
entries of a row must be less or equal to the diagonal entry for correctness. By writing a
row of a matrix M without the i-th entry as Mi,·, for those real co-occurrence matrices, we
can derive the probability as:

Pr [M ′ |M ] =
∑
i

Pr
[
M ′

i,i |Mi,i

]
Pr
[
M ′

i,· |M ′
i,i,Mi,·

]
.

In the second line of the above expression, the first term is the probability of getting M ′
i,i

documents containing keyword kwi, and the second term is the probability of observing the
off-diagonal co-occurrence counts.
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Derivation for PRT-EMMs. For PRT-EMMs [KM19], query response lengths may be
truncated by a random amount. This means that based on the query response length in
the auxiliary co-occurrence matrix M ′ and that in the observed co-occurrence matrix, an
attacker can estimate how many documents in the off-diagonal entries are expected to be
removed. For observed co-occurrence count between keywords kwj and kwj where i ̸= j, the
real process can be modelled as a sequential application of two hypergeometric distributions
on the real co-occurrence count.∏
i<j

∑
k

Pr
[
HGeom

(
M ′

P (i),P (i),M
′
P (i),P (j), M̄i,i

)
= k

]
Pr
[
HGeom

(
M ′

P (j),P (j), k, M̄j,j) = M̄i,j

]
.

Derivation for FP-EMMs [PPYY19]. To simplify the first term of the likelihood
decomposition, we assume independence of the entries in the observed co-occurrence matrix.
Without loss of generality, we assume that all query response lengths are padded to m. This
means we can express the probability as:∏

i<j

Pr
[
HGeom

(
2N, 2m− 2M ′

P (i),P (i), 2m− 2M ′
P (j),P (j)

)
= M̄i,j −M ′

P (i),P (j)

]
.

Derivation for DP-EMMs [PPYY19]. The first term of the likelihood decomposition
for differentially private volume-hiding EMMs [PPYY19] is similar to that of the full padding
version, except that the query response lengths are padded according to a Laplacian dis-
tribution as opposed to padding to the maximum query response length. Let n∗ be the
constant to offset the Laplacian random variable Lap(2/ϵ), the first term of the likelihood
decomposition can be expressed as:∑

i=j

Pr
[
M̄,M ′ | P

]
×
∑
i<j

Pr
[
M̄,M ′ | P

]
=
∑
i

Pr
[
2M ′

P (i),P (i) + n∗ + Lap(2/ϵ) = M̄i,i

]
×
∑
i<j

Pr
[
HGeom(2N, 2M̄i,i − 2M ′

P (i),P (i), 2M̄j,j − 2M ′
P (j),P (j)) = M̄i,j − 2M ′

P (i),P (j)

]
.

Derivation for DPAP-SE. Recall that in DPAP-SE [CLRZ18], the documents are split
into shards and the keywords for the shards are randomized. This means that each diagonal
entry of the observed co-occurrence matrix contain the counts from the real shards which
have kept the keyword, and the counts from the other shards which have gained the keyword
from the randomization process. Similarly, each off-diagonal entry of the observed co-
occurrence matrix contain the counts from the real shards which have kept both of the
keywords, and the other counts from the other shards which have gained one of the keywords
or both of them from the randomization process. Let p be the probability that a shard keeps
its keywords, q be the probability that a fake keyword is introduced to a shard, and m to
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be the number of shards, we can express the first term in the likelihood decomposition as:∏
i=j

Pr
[
M̄,M ′ | P

]
×
∏
i<j

Pr
[
M̄,M ′ | P

]
=
∏
i

Pr

[
Bin

(
mM ′

P (i),P (i), p
)
+Bin

(
mM ′

P (j),P (j), q
)
= M̄i,i

]

×
∏
i<j

Pr

[
Bin

(
mM ′

P (i),P (j), p
2
)
+Bin

(
m

(
M ′

P (i),P (i) −
∑
k>1

M ′
P (i),P (k)

)
, pq

)

+Bin

(
m

(
M ′

P (j),P (j) −
∑
k>1

M ′
P (j),P (k)

)
, pq

)

+Bin
(
m
(
N −M ′

P (i),P (i) −M ′
P (j),P (j) +M ′

P (i),P (j)

)
, q2
)
= M̄i,j

]
.

Approximation Techniques. As it can be seen, it is computationally infeasible to sum
over all possible real co-occurrence matrices. We propose to sum over all possible real
co-occurrence matrices such that Pr

[
M ′ | M̄

]
is significant. In our experiment, we used

symmetric endpoints on every entry of M ′ such that the resultant interval covers at least
95% of the probability density function. We use Normal approximation in the first term of
the likelihood decomposition for PRT-EMM [KM19] to remove the need of convolution. To
further improve the computational efficiency, we used simple rectangle rule to approximate
large summations, such as the convolutions in the first term of the likelihood decomposition
for DPAP-SE [CLRZ18].

Speeding up the Score function. A näıve implementation of the Score functions require
l2 computations per iteration, where l is the number of non-repeating queries observed. How-
ever, we note that the Score functions in our attacks take the shape

∏
i≤j Pr

[
M̄P (i),P (j),M

]
,

and the neighbourhood function Neighbour only changes the assignment P for one or two
values. Without loss of generality, let P (a) be the changed assignment. It means only the
probabilities with P (a) involved are changed, that is, the new likelihood function can be
written as∏

i≤j
i,j ̸=a

Pr
[
M̄P (i),P (j),M

]
×
∏
i≤a

Pr
[
M̄P (i),P (a),M

]
×
∏
a<j

Pr
[
M̄P (a),P (j),M

]
.

In our implementation, we maintain an l × l matrix where the i, j-th entry of the matrix
records Pr

[
M̄P (i),P (j),M

]
. Only l (or 2l if the assignment is changed on two queries) of

these entries (which corresponds to the probabilities in the second and third products) are
updated according to the likelihood function, and the score function simply outputs the
product of the entries of this matrix.

36



Algorithm 2 Neighbourhood Generation Algorithm for PRT-EMM [KM19] and FP-
EMM [PPYY19]

1: procedure Neighbour(P, M̄,M)

2: i
$←− {1, . . . , |kw(DB)|}

3: j
$←− {1, . . . , |kw(DB)|}

4: P ′ ← P
5: P ′(i)← j
6: if there exists k such that P (k) = j then
7: P ′(k)← P (i)

8: return P ′

Algorithm 3 Neighbourhood Generation Algorithm for DP-EMM [PPYY19]

1: procedure Neighbour(P, M̄,M)

2: i
$←− {1, . . . , |kw(DB)|}

3: j
$←− {1, . . . , |kw(DB)|}

4: b0 ← NMj,j − 1.96NMj,j(1−Mj,j)− 1.96/ϵ
5: b1 ← NMj,j + 1.96NMj,j(1−Mj,j) + 1.96/ϵ
6: if there exists k such that P (k) = j then
7: b2 ← NMP (i),P (i) − 1.96NMP (i),P (i)(1−MP (i),P (i))− 1.96/ϵ
8: b3 ← NMP (i),P (i) + 1.96NMP (i),P (i)(1−MP (i),P (i)) + 1.96/ϵ

/* Check the condition with k only if it exits */
9: while ¬(b0 < M̄i, i < b1) ∨ ¬(b2 < M̄k,k < b3) do

10: Resample i, j, k

11: P ′ ← P
12: P ′(i)← j
13: if there exists k such that P (k) = j then
14: P ′(k)← P (i)

15: return P ′

C Detailed Pseudocodes

In this section, we present the detailed pseudocodes of the neighbourhood generation sub-
routines used for our simulated-annealing based attack. Algorithm 2 describes the neigh-
bourhood generation subroutine used for our attack on the end-to-end SSE schemes built
in a natural way from PRT-EMM [KM19] and FP-EMM [PPYY19]. Algorithm 3 de-
scribes the neighbourhood generation subroutine used for our attack on the end-to-end SSE
scheme built in a natural way from DP-EMM [PPYY19]. Finally, Algorithm 3 describes
the neighbourhood generation subroutine used for our attack on the end-to-end SSE scheme
DPAP-SE [CLRZ18]. In the rest of the section, when we refer to PRT-EMM, FP-EMM,
and DP-EMM, we refer to the end-to-end SSE schemes built in a natural way from the
respective EMM scheme.

In order to reduce the size of the search space for DP-EMM and DPAP-SE, neighbours
are picked such that the query response volumes (with padding) are ‘close’ to the one in the
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Algorithm 4 Neighbourhood Generation Algorithm for DPAP-SE [CLRZ18]

1: procedure Neighbour(P, M̄,M)

2: i
$←− {1, . . . , |kw(DB)|}

3: j
$←− {1, . . . , |kw(DB)|}

4: b0 ← kpNMj,j + kqN(1−Mj,j)− 1.96kNMj,j(1−Mj,j)− 1.96kN(p+ q)
5: b1 ← kpNMj,j + kqN(1−Mj,j) + 1.96kNMj,j(1−Mj,j) + 1.96kN(p+ q)
6: if there exists k such that P (k) = j then
7: b2 ← kpNMP (i),P (i) + kqN(1 − Mj,j) − 1.96kNMP (i),P (i)(1 − MP (i),P (i)) −

1.96kN(p+ q)
8: b3 ← kpNMP (i),P (i) + kqN(1 − Mj,j) − 1.96kNMP (i),P (i)(1 − MP (i),P (i)) −

1.96kN(p+ q)
/* Check the condition with k only if it exits */

9: while ¬(b0 < M̄i, i < b1) ∨ ¬(b2 < M̄k,k < b3) do
10: Resample i, j, k

11: P ′ ← P
12: P ′(i)← j
13: if there exists k such that P (k) = j then
14: P ′(k)← P (i)

15: return P ′

auxiliary information. Specifically, we require all assignments to have padded query response
volumes within 95% confidence interval of the auxiliary data (by treating the auxiliary data
as samples from a random variable containing the same number of documents). To simplify
the actual computation, we use Normal approximation and allow the padded query response
volumes of the assignments to deviate by no more than 1.96x of the standard deviation
derived from the auxiliary data.

D Experimental Data

D.1 General Information about Enron Email Corpus

The Enron email corpus [WWC] is a collection of over 600,000 emails generated by 158
employees of the Enron Corporation and acquired by the Federal Energy Regulatory Com-
mission (FERC) during its investigation of the Enron scandal. At the conclusion of the
investigation, and upon the issuance of the FERC staff report, the email corpus was re-
leased to the public for historical research and academic purposes. The Enron dataset is
widely used as a target for cryptanalysis on structured encryption [IKK12,CGPR15,BKM20]
as it is one of the only public, real-world datasets.
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D.2 Pre-processing

We implemented our email processing and keyword extraction script in python using the
Natural Language Toolkit [Pro] module as the tokeniser. The English stop words and other
keywords with frequency higher than 5% are removed.

D.3 General Statistics of Enron Email Corpus

Figure 5 gives some general statistics of the Enron email corpus after pre-processing.

# documents 480,000
# keywords 33,366
# keyword-document pairs 17,415,721
Max. keyword frequency 23,989
Min. keyword frequency 1
Mean keyword frequency 522.0
Max. # keywords per document 3,483
Min. # keywords per document 1
Mean # keywords per document 36.8

Figure 5: General statistics of the Enron email corpus after pre-processing.

Figure 6 shows the frequency distribution of the 5,000 most frequent keywords after pre-
processing.

Figure 6: Frequency distribution of the 5,000 most frequent keywords.
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E Measuring the Level of Noise in Auxiliary Informa-
tion

In our attacks, we build auxiliary co-occurrence matrices M by sampling from the Enron
email dataset. It is not clear immediately how close the co-occurrence matrices and the real
ones are. Here, we propose two measurements for the level of noise.

Absolute distance. Inspired by the Kolmogorov–Smirnov test [Smi48], we define absolute
distance to be the maximum absolute difference between the target co-occurrence matrix
and auxiliary co-occurrence matrix:

D = max
i,j

∣∣∣∣M̄P (i),P (j)

N
−Mi,j

∣∣∣∣ ,
where M̄ is the co-occurrence matrix generated from the target database (without using any
construction on top), M is the co-occurrence matrix generated for auxiliary information, P
is the true keyword assignments between the queries and keywords, and N is the number
of documents in the target database. Intuitively, more noisy auxiliary information means a
larger absolute distance.

Modified Probability Score. The second measurement of the level of noise we propose
is the probability score. As the name suggests, the measurement is simply:

Pr
[
M̄ |M

]
.

It is clear that less noisy auxiliary information produces a larger probability score.

The probability score is very small for our datasets, so we use D = log(− log(Pr
[
M̄ |M

]
))

as a modified probability score instead. Less noisy auxiliary information produces a larger
modified probability score just as before.

Measurements on the Level of Noise. The measurements on the level of noise for the
auxiliary datasets used in our attacks can be found in Figure 7. It can be seen clearly that
the absolute distance and modified probability score increase as less documents are used as
auxiliary information.
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(a) Absolute distance. (b) Modified probability score.

Figure 7: Measurements of the level of noise of the auxiliary data in our experiments.
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