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Abstract

A two-party authenticated key exchange (AKE) protocol allows each of the two parties to share a
common secret key over insecure channels even in the presence of active adversaries who can actively
control and modify the exchanged messages. To capture the various kind of malicious behaviors of
the adversaries, there have been lots of efforts to define the security models. Amongst them, the
extended Canetti-Krawczyk (eCK) security model is considered as one of the strongest ones and
widely adopted.

In this paper, we present a pairing-based eCK-secure AKE protocol in the standard model. The
underlying assumptions of our construction are the hardness of the decisional bilinear Diffie-Hellman
(DBDH) problem and the existence of pseudorandom functions. It is notable that the previous
constructions either relied their security on random oracles or used somewhat strong assumptions
such as the existence of strong-pseudorandom functions. We believe our construction is well-suited
for real-world implementations such as the TLS protocol suite since our construction is simple and
based on standard assumptions without random oracles.

Keywords: Authenticated key exchange eCK model Standard Model Pairing Weaker assumptions

1 Introduction

A two-party key exchange protocol has been a fundamental building block of cryptography and network
security. It allows any two parties to share a common session key over an insecure channel. Since its
early introduction in 1976, the Diffie-Hellman key exchange protocol [DH76] has been the most famous
key exchange protocol. However, as is well known, the Diffie-Hellman protocol is insecure against the
man-in-the-middle attack, where an adversary impersonates one party to the other to read and modify
the exchanged message between two parties. This vulnerability is possible since the parties are not
authenticated in the Diffie-Hellman protocol.

To capture such vulnerabilities, including the man-in-the-middle attack, there have been many
attempts [BR93, BR95, Can01, LLM07] to define security models for key exchange protocols in the
presence of active adversaries who can actively read and modify the exchanged messages. Amongst
several security models, the extended Canetti-Krawczyk (eCK) model proposed by LaMacchia, Lauter,
and Mityagin [LLM07] is considered as one of the strongest security models, since it captures various
possible behaviors of an active adversary. For instance, the properties captured by the eCK model include
the following:

• Implicit Key Authentication: If a key exchange protocol provides a guarantee that no party
apart from the protocol participants can compute the session key, the key exchange protocol is said to
provide implicit key authentication. If a key exchange protocol provides implicit key authentication
it is said to be an authenticated key exchange (AKE) protocol.
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comments.
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• Key Confirmation: If a key exchange protocol provides a guarantee that each party is assured
that all other participants possess the same session key, the key exchange protocol is said to provide
key confirmation.

• Known Key Security: The knowledge of a session key should not allow the adversary to learn
the session keys in other sessions; all session keys should not depend on the session keys of the other
sessions.

• Security against Unknown Key Share (UKS) Attacks: Party A should not share a session
key with party B, believing that it is sharing the session key with party C. The public keys and
identities of the parties should be certified and confirmed or incorporated into protocol execution.

• Security against Key Compromise Impersonation (KCI) Attacks: Knowledge of the long-
term secret key of party A should not enable the adversary to impersonate the other honest parties
to the party A.

• (weak) Forward Secrecy: A (passive) adversary who knows the long-term secret keys of any two
parties should not be able to compute the past session keys of the two parties.

Since the proposal of the eCK security model, many eCK-secure AKE protocols have been presented
[LLM07, KFU09, MO09, Ust08, Yan13, ASB15]. However, some of them [LLM07, KFU09, Ust08, ASB15]
are constructed to be secure under the ideal-world assumption of the random oracle model (ROM), and
the others are constructed to be secure in the standard model but based on somewhat strong hardness
assumptions such as the existence of strong-pseudorandom functions [MO09] or randomness extractor
functions [Yan13].

Our Contribution. In this paper, we construct an eCK-secure AKE protocol based on pairings. Our
construction is proven to be secure without the ROM assumption, and the only assumptions are the
existence of pseudorandom functions and the hardness of the decisional bilinear Diffie-Hellman (DBDH)
problem. We remark that we use fewer and more standard assumptions compared to the previous works.
As a result, we believe our construction is well-suited for real-world implementations such as the TLS
protocol suite.

To help the reader’s understanding, we provide a comparison of our protocol with several existing
eCK-secure AKE protocols in Table 1. In general, the AKE protocols in the standard model require
more computational costs compared to those in the ROM. Nevertheless, it is remarkable that, among
the AKE protocols in the standard model, our protocol outperforms Yang’s P1 protocol [Yan13] and is
comparable to Yang’s GC-KKN protocol [Yan13] and MO protocol [MO11]. Also, note that our protocol
uses a weaker assumption (the existence of the pseudorandom functions) than those protocols where
they rely on the assumption of the existence of either the target collision-resistant function or the strong
pseudorandom function.

Protocol Proof Model Hardness Assumptions Overall Computational Cost
at a protocol principal

NAXOS [LLM07] ROM GDH 4E
CMQV [Ust08] ROM GDH 3E
MO [MO09] Standard DDH, CR, πPRF 3E, 2CR, 1ME, 1πPRF
KFU P1 [KFU09] ROM GDH 3E
KFU P2 [KFU09] ROM CDH 5E
Yang P1[Yan13] Standard DBDH, PRF, TCR 2E, 4ME, 4Pair, 2TCR, 1PRF
Yang GC-KKN[Yan13] Standard DDH, TCR, PRF, FAC, EXT 7E, 2ME, 2TCR, 3PRF
ASB [ASB15] ROM GDH 6Exp
EC-P1 (this paper) Standard DBDH, PRF 3E, 1ME, 2Pair, 1PRF

Key: ROM – random oracle model; GDH – gap DH; CDH – computational DH; DDH – decisional DH; DBDH –
decisional bilinear DH; PRF – pseudorandom function; πPRF – strong-pseudorandom function; CR – collision
resistant function; TCR – target collision resistant function; FAC – factorization; EXT – randomness extractor
function; E – exponentiation operation; ME – multi-exponentiation operation; Pair – pairing operation

Table 1: Basic characteristics of few eCK-secure AKE protocols
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2 Preliminaries

Now we recall the preliminaries that we use in our protocol construction.

2.1 Pseudorandom Function

We describe the security definition of pseudorandom functions [KL07].

Definition 2.1 (Pseudorandom Function). Let F : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be an efficient, length
preserving, keyed function. We say F is a pseudorandom function, if for all probabilistic polynomial-time
adversaries A, there exists a negligible function εPRF in the security parameter k such that,∣∣∣Pr[AF (key,·)(1k) = 1]− Pr[Afrnd(·)(1k) = 1]

∣∣∣ ≤ εPRF,

where key ∈ {0, 1}k is chosen uniformly at random an frnd is chosen uniformly at random from the set
of functions mapping k-bit strings to k-bit strings.

2.2 Decisional Bilinear Diffie-Hellman Assumption

We describe the decisional bilinear Diffie-Hellman assumption (DBDH) assumption [BF03].

Definition 2.2 (Decisional Bilinear Diffie-Hellman assumption (DBDH)). Let k be the security parameter
and G be a group generation algorithm. Let (G,GT , q, e) ← G(1k), where q is a prime number, the
description of two groups G,GT of order q, and the description of an admissible bilinear map e : G×G→
GT . Let g, g1 be two arbitrary generators of G.

The decisional bilinear Diffie-Hellman (DBDH) problem in (G,GT , q, e) is as follows: Consider two
distributions (g, g1, g

a, gb, e(g, g1)ab) and (g, g1, g
a, gb, T ) for some a, b ∈ Zq, and random T ∈ GT . It

is said that decisional BDH assumption holds in (G,GT , q, e), if for all probabilistic polynomial-time
algorithms A, the advantage in distinguishing the two distributions is given as,

AdvDBDH
G,GT ,q,e(A) =

∣∣∣Pr
[
A
(
g, g1, g

a, gb, e(g, g1)ab
)

= 1
]
− Pr

[
A
(
g, g1, g

a, gb, T
)

= 1
]∣∣∣

is negligible for a given security parameter k.

3 Extended Canetti-Krawczyk Model (eCK)

The motivation of LaMacchia et al. [LLM07] in designing the eCK model was that an adversary should
have to compromise both the long-term and ephemeral secret keys of a party to recover the session key.

Parties and Long-term Keys. Let U = {U1, . . . , UNP
} be a set of NP parties. Each party Ui where

i ∈ [1, NP ] has a pair of long-term public and secret keys, (pkUi
, skUi

). Each party Ui owns at most NS
number of protocol sessions.

Sessions. Each party may run multiple instances of the protocol concurrently or sequentially; we use
the term principal to refer a party involved in a protocol instance, and the term session to identify a
protocol instance at a principal. The notation Πs

U,V represents the sth session at the owner principal U ,
with intended partner principal V . The principal which sends the first protocol message of a session is the
initiator of the session, and the principal which responds to the first protocol message is the responder of
the session. A session Πs

U,V enters an accepted state when it computes a session key. Note that a session
may terminate without ever entering into the accepted state. The information of whether a session has
terminated with or without acceptance is public.

Partnering. Legitimate execution of a key exchange protocol between two principals U and V makes
two partnering sessions owned by U and V respectively. Two sessions Πs

U,V and Πs′

U ′,V ′ are said to be
partners if all of the following hold:

1. both Πs
U,V and Πs′

U ′,V ′ have computed session keys;

2. messages sent from Πs
U,V and messages received by Πs′

U ′,V ′ are identical;
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3. messages sent from Πs′

U ′,V ′ and messages received by Πs
U,V are identical;

4. U ′ = V and V ′ = U ;

5. Exactly one of U and V is the initiator and the other is the responder.

The protocol is said to be correct if two partner sessions compute identical session keys.

Adversarial Powers. The adversary A is a probabilistic polynomial time algorithm in the security
parameter k, that has the control over the whole network. A interacts with set of sessions which represent
protocol instances. A can adaptively ask following queries.

• Send (U, V, s,m) query- This query allows A to run the protocol. It sends the message m to the

session
∏s
U,V as coming from the session

∏s′

V,U .
∏s
U,V will return to A the next message according

to the protocol conversation so far or decision on whether to accept or reject the session. A can also
use this query to initiate a new protocol instance with blank m. This query captures capabilities of
active adversary, who can initiate sessions and modify or delay protocol messages.

• SessionKeyReveal (U, V, s) query- If a session
∏s
U,V has accepted and holds a session key, A gets

the session key of
∏s
U,V . A session can only accept a session key once. This query captures the

known key attacks.

• EphemeralKeyReveal (U, V, s) query- Gives all the ephemeral keys (per session randomness) of the
session

∏s
U,V to A.

• Corrupt (U) query- A gets all the long-term secrets of the principal U . Then A may set up
long-term secrets at principal U at will. But this query does not reveal any session keys to A. This
query captures the KCI attacks, UKS attacks and (weak) forward secrecy

• Test (U, s) query- Once a session
∏s
U,V has accepted and holds a session key, A can attempt to

distinguish it from a random key. When A asks the Test query, the session
∏s
U,V first chooses a

random bit b ∈ {0, 1} and if b = 1, the actual session key is returned to A, otherwise a random
session key is chosen uniformly at random from the same session key distribution, and is returned
to A. This query is only allowed to be asked once.

Freshness. A session
∏s
U,V is said to be fresh if and only if all of the following hold:

1. The session
∏s
U,V and its partner (if it exists),

∏s′

V,U have not been asked the Session- Key reveal

query.

2. If partner
∏s′

V,U exists none of the following combinations have been asked:

(a) Corrupt(U) and EphemeralKeyReveal(U, V, s)

(b) Corrupt(V ) and EphemeralKeyReveal(V,U, s′)

3. If partner
∏s′

V,U does not exist none of the following combinations have been asked

(a) Corrupt(V )

(b) Corrupt(U) and EphemeralKeyReveal(U, V, s)

Security Game.

• Stage 0: The challenger generates the keys by using the security parameter k.

• Stage 1: A is executed and may ask any of Send, SessionKeyReveal, EphemeralKeyReveal,
Corrupt queries to any session at will.

• Stage 2: At some point A chooses a fresh session and asks the Test query.

• Stage 3: A continue asking Send, SessionKeyReveal, EphemeralKeyReveal,Corrupt queries.
The only condition is that A cannot violate the freshness of the test session.

• Stage 4: At some point A outputs the bit b′ ∈ {0, 1} which is its guess of the value b on the test
session. A wins if b′ = b.

4



Definition of Security. Let SuccA be the event that the adversary A wins the eCK game.

Definition 3.1. A protocol (π) is said to be secure in the eCK model if there is no probabilistic polynomial-
time adversary A who can win the eCK game with non-negligible advantage in the security parameter k.
The advantage of an adversary A is defined as:

AdveCK
π (A) = |2Pr(SuccA)− 1| .

4 Construction of the Pairing-based eCK-secure AKE Protocol

We present a pairing-based construction of an eCK-secure AKE protocol, namely protocol EC-P1. Security
of the protocol EC-P1 is proven in the standard model, assuming the hardness of the decisional bilinear
Diffie-Hellman (DBDH) problem, and the existence of pseudorandom functions.

4.1 Construction Details

The protocol EC-P1 shown in Table 2 is a Diffie-Hellman-style [DH76] key exchange protocol. Let k be
the security parameter and G be a group generation algorithm. Let (G,GT , q, e) ← G(1k), where q is
a prime number, the description of two groups G,GT of order q, and the description of an admissible
bilinear map e : G × G → GT . Let g, g1 be arbitrary generators of G such that g1 = gα for arbitrary
α ∈ Zq.

Let (a1, a2) and (b1, b2) be the long-term secret keys of Alice and Bob respectively, whereas A and B
be the long-term public keys of Alice and Bob respectively. Let x, X and y, Y be the ephemeral secret
and public keys of Alice and Bob respectively for the current session. The execution of the protocol
EC-P1 is clearly illustrated in Table 2.

Alice (Initiator) G,GT , q, e, g, g1 ← G(1k) Bob (Responder)

Initial Setup
a1, a2 ← Zq, A← ga1ga2 b1, b2 ← Zq, B ← gb1gb2

Protocol Execution
x← Zq, X ← gx1 y ← Zq, Y ← gy1

W1 ← e(ga2 , X) W2 ← e(gb2 , Y )
Alice,W1,X−−−−−−−→
Bob,W2,Y←−−−−−−

Z1 ←
(
e(Y,B)
W2

)a1x
Z2 ←

(
e(X,A)
W1

)b1y
K ← PRF(Z1, Alice||W1||X||Bob||W2||Y ) K ← PRF(Z2, Alice||W1||X||Bob||W2||Y )

K is the session key

Table 2: Protocol EC-P1

4.2 Security Analysis of the Protocol EC-P1

Theorem 4.1. Let k be the security parameter and G be a group generation algorithm. Let (G,GT , q, e)←
G(1k), where q is a prime number, the description of two groups G,GT of order q, and the description of
an admissible bilinear map e : G×G→ GT . Let g, g1 be arbitrary generators of G such that g1 = gα, where
α ∈ Zq. If the DBDH assumption holds in e : G×G → GT and the function PRF is a pseudorandom
function, then the protocol EC-P1 is secure in the eCK model.

Let U = {U1, . . . , UNP
} be a set of NP parties. Each party Ui owns at most Ns number of protocol

sessions. Let A be any adversary against the eck challenger of the protocol EC-P1. Then, the advantage
of A against the eCK security challenge of the protocol EC-P1, AdveCK

EC-P1 is:

AdveCK
EC-P1(A) ≤ N2

PNs
2
(

AdvDBDH
G,GT ,q,e(C) + εPRF

)
.

where C is the algorithm against a DBDH challenger.
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Proof. We split the proof of Theorem 4.1 into two main cases: when the partner to the test session exists,
and when it does not.

1. A partner to the test session exists.

(a) Adversary corrupts both the owner and the partner principals to the test session - Case 1a

(b) Adversary corrupts neither the owner nor the partner principal to the test session - Case 1b

(c) Adversary corrupts the owner to the test session, but does not corrupt the partner to the test
session - Case 1c

(d) Adversary corrupts the partner to the test session, but does not corrupt the owner to the test
session - Case 1d

2. A partner to the test session does not exist: the adversary is not allowed to corrupt the peer to the
target session.

(a) Adversary corrupts the owner to the test session - Case 2a

(b) Adversary does not corrupt the owner to the test session - Case 2b

We show that the advantage of the adversary A in each of the above cases is negligible.

Case 1a: Adversary corrupts both the owner and partner principals to the
test session.

Game 1: This is the original game. When Test query is asked the game 1 challenger will choose a
random bit b← {0, 1}. If b = 1, the real session key is given to A, otherwise a random value chosen from
the same session-key space is given. Hence,

AdvGame 1(A) = AdveCK
EC-P1,Case 1a(A) . (1)

Game 2: Same as game 1 with the following exception: Before A begins, two distinct random principals
U∗, V ∗ ← {U1, ..., UNP

} are chosen and two random numbers s∗, t∗ ← {1, ...Ns} are chosen, where NP is
the number of protocol principals and Ns is the number of sessions on a principal. The session Πs∗

U∗,V ∗

is chosen as the target session and the session Πt∗

V ∗,U∗ is chosen as the partner to the target session. If

the test session is not the session Πs∗

U∗,V ∗ or partner to the session is not Πt∗

V ∗,U∗ , the game 2 challenger
aborts the game. Unless the incorrect choice happens, the game 2 is identical to the game 1. Hence,

AdvGame 2(A) =
1

NP
2N2

s

AdvGame 1(A) . (2)

Game 3: Same as game 2 with the following exception: The game 3 challenger randomly chooses

δ ← Zq and computes K according to the protocol description, using Z1 =
(
e(g, g1)δ

)a1b1
. When the

adversary asks the Test(U∗, V ∗, s∗) query, game 3 challenger will answer with K.
We construct an algorithm C against a DBDH challenger, using the adversary A as a subroutine.

The game 3 challenger sets all the long-term secret/public key pairs of the protocol principals. The
algorithm C runs a copy of A and interacts with A, such that A is interacting with either game 2 or game
3. The DBDH challenger sends values (g, g1, g

β
1 , g

γ
1 , e(g, g1)δ) such that either δ = βγ or δ ← Zq, as the

inputs to the algorithm C. The game 3 challenger uses g and g1 as the generators for the protocol setup.
Moreover, the game 3 challenger sets the value X of the target session (Πs∗

U∗,V ∗) as gβ1 , the value Y of the

target session (Πs∗

U∗,V ∗) as gγ1 , and computes W1 = e(gβ , g)a2 and W2 = e(gγ , g)b2 . Upon receiving the

Test(U∗, V ∗, s∗) query, the game 3 challenger computes the K using
(
e(g, g1)δ

)a1b1
and answers. The

game 3 challenger can answer all the other queries normally.
If C’s input satisfies δ = βγ, simulation constructed by the game 3 challenger is identical to game 2,

otherwise it is identical to game 3. If A can distinguish the difference between games, then C can answer
the DBDH challenge. Hence,

|AdvGame 2(A)−AdvGame 3(A)| ≤ AdvDBDH
G,GT ,q,e(C) . (3)
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Game 4: Same as game 3 with the following exception: the game 4 challenger randomly chooses
K ← {0, 1}k and sends it to the adversary A as the answer to the Test(U∗, V ∗, s∗) query.

The game 4 challenger sets all the long-term secret/public key pairs and all the encryption key pairs
of the protocol principals. Therefore, the challenger can answer all the queries normally.

If K is computed using the real pseudorandom function with a hidden key, the simulation is identical
to game 3, whereas if K is chosen randomly from the session key space, the simulation constructed is
identical to game 4. Hence,

|AdvGame 3(A)−AdvGame 4(A)| ≤ εPRF . (4)

Semantic security of the session key in Game 4: Since the session key K of Πs∗

U∗,V ∗ is chosen
randomly and independently from all other values, A does not have any advantage in game 4. Hence,

AdvGame 4(A) = 0 . (5)

Using equations (1)–(5) we find,

AdveCK
EC-P1,Case 1a(A) ≤ N2

PNs
2
(

AdvDBDH
G,GT ,q,e(C) + εPRF

)
.

Case 1b: Adversary corrupts neither the owner nor the partner principals to
the test session.

Game 1: This is the original game. When Test query is asked the game 1 challenger will choose a
random bit b← {0, 1}. If b = 1, the real session key is given to A, otherwise a random value chosen from
the same session-key space is given. Hence,

AdvGame 1(A) = AdveCK
EC-P1,Case 1b(A). (6)

Game 2: Same as game 1 with the following exception: Before A begins, two distinct random principals
U∗, V ∗ ← {U1, ..., UNP

} are chosen and two random numbers s∗, t∗ ← {1, ...Ns} are chosen, where NP is
the number of protocol principals and Ns is the number of sessions on a principal. The session Πs∗

U∗,V ∗

is chosen as the target session and the session Πt∗

V ∗,U∗ is chosen as the partner to the target session. If

the test session is not the session Πs∗

U∗,V ∗ or partner to the session is not Πt∗

V ∗,U∗ , the game 2 challenger
aborts the game. Unless the incorrect choice happens, the game 2 is identical to the game 1. Hence,

AdvGame 2(A) =
1

NP
2N2

s

AdvGame 1(A). (7)

Game 3: Same as game 2 with the following exception: The game 3 challenger randomly chooses
δ ← Zq and computes K according to the protocol description, using Z1 =

(
e(g, g1)δ

)xy
. When the

adversary asks the Test(U∗, V ∗, s∗) query, game 3 challenger will answer with K.
We construct an algorithm C against a DBDH challenger, using the adversary A as a subroutine.

The game 3 challenger sets all the long-term secret/public key pairs of the protocol principals except
for the principals U∗ and V ∗. The algorithm C runs a copy of A and interacts with A, such that A is
interacting with either game 2 or game 3. The DBDH challenger sends values (g, g1, g

β , gγ , e(g, g1)δ) such
that either δ = βγ or δ ← Zq, as the inputs to the algorithm C. The game 3 challenger uses g and g1
as the generators for the protocol setup. For the principal U∗, the long-term public key is computed as
gβga2 , and for the principal V ∗, the long-term public key is computed as gγgb2 . The game 3 challenger
computes W1 = e(g, g1)a2x and W2 = e(g, g1)b2y. Upon receiving the Test(U∗, V ∗, s∗) query, the game 3
challenger computes the K using

(
e(g, g1)δ

)xy
and answers. The game 3 challenger can answer all the

other queries normally.
If C’s input satisfies δ = βγ, simulation constructed by the game 3 challenger is identical to game 2,

otherwise it is identical to game 3. If A can distinguish the difference between games, then C can answer
the DBDH challenge. Hence,

|AdvGame 2(A)−AdvGame 3(A)| ≤ AdvDBDH
G,GT ,q,e(C) . (8)
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Game 4: Same as game 3 with the following exception: the game 4 challenger randomly chooses
K ← {0, 1}k and sends it to the adversary A as the answer to the Test(U∗, V ∗, s∗) query.

The game 4 challenger sets all the long-term secret/public key pairs and all the encryption key pairs
of the protocol principals, as in the previous game. Therefore, the challenger can answer all the queries
normally.

If K is computed using the real pseudorandom function with a hidden key, the simulation is identical
to game 3, whereas if K is chosen randomly from the session key space, the simulation constructed is
identical to game 4. Hence,

|AdvGame 3(A)−AdvGame 4(A)| ≤ εPRF . (9)

Semantic security of the session key in Game 4: Since the session key K of Πs∗

U∗,V ∗ is chosen
randomly and independently from all other values, A does not have any advantage in game 4. Hence,

AdvGame 4(A) = 0. (10)

Using equations (6)–(10) we find,

AdveCK
EC-P1,Case 1b(A) ≤ N2

PNs
2
(

AdvDBDH
G,GT ,q,e(C) + εPRF

)
.

Case 1c: Adversary corrupts the owner to the test session, but does not
corrupt the partner.

Game 1: This is the original game. When Test query is asked the game 1 challenger will choose a
random bit b← {0, 1}. If b = 1, the real session key is given to A, otherwise a random value chosen from
the same session-key space is given. Hence,

AdvGame 1(A) = AdveCK
EC-P1,Case 1c(A). (11)

Game 2: Same as game 1 with the following exception: before A begins, two distinct random principals
U∗, V ∗ ← {U1, ..., UNP

} are chosen and two random numbers s∗, t∗ ← {1, ...Ns} are chosen, where NP is
the number of protocol principals and Ns is the number of sessions on a principal. The session Πs∗

U∗,V ∗

is chosen as the target session and the session Πt∗

V ∗,U∗ is chosen as the partner to the target session. If

the test session is not the session Πs∗

U∗,V ∗ or partner to the session is not Πt∗

V ∗,U∗ , the game 2 challenger
aborts the game. Unless the incorrect choice happens, game 2 is identical to game 1. Hence,

AdvGame 2(A) =
1

NP
2N2

s

AdvGame 1(A). (12)

Game 3: Same as game 2 with the following exception: the game 3 challenger randomly chooses δ ← Zq

and computes K according to the protocol description, using Z1 =
(
e(g, g1)δ

)a1y
. When the adversary

asks the Test(U∗, V ∗, s∗) query, game 3 challenger will answer with K.
We construct an algorithm C against a DBDH challenger, using the adversary A as a subroutine.

The game 3 challenger sets all the long-term secret/public key pairs of the protocol principals except for
the principals V ∗. The algorithm C runs a copy of A and interacts with A, such that A is interacting
with either game 2 or game 3. The DBDH challenger sends values (g, g1, g

β , gγ , e(g, g1)δ) such that
either δ = βγ or δ ← Zq, as the inputs to the algorithm C. The game 3 challenger uses g and g1 as the
generators for the protocol setup. For the principal V ∗, the long-term public key is computed as gβgb2 .
Moreover, the game 3 challenger sets the value X of the target session (Πs∗

U∗,V ∗) as gγ , and computes

W1 = e(gγ , g)a2 and W2 = e(g, g1)b2y. Upon receiving the Test(U∗, V ∗, s∗) query, the game 3 challenger
computes the K using

(
e(g, g1)δ

)a1y
and answers. The game 3 challenger can answer all the other queries

normally.
If C’s input satisfies δ = βγ, simulation constructed by the game 3 challenger is identical to game 2,

otherwise it is identical to game 3. If A can distinguish the difference between games, then C can answer
the DBDH challenge. Hence,

|AdvGame 2(A)−AdvGame 3(A)|AdvDBDH
G,GT ,q,e(C) . (13)
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Game 4: Same as game 3 with the following exception: the game 4 challenger randomly chooses
K ← {0, 1}k and sends it to the adversary A as the answer to the Test(U∗, V ∗, s∗) query.

The game 4 challenger sets all the long-term secret/public key pairs and all the encryption key pairs
of the protocol principals, as in the previous game. Therefore, the challenger can answer all the queries
normally.

If K is computed using the real pseudorandom function with a hidden key, the simulation is identical
to game 3, whereas if K is chosen randomly from the session key space, the simulation constructed is
identical to game 4. Hence,

|AdvGame 3(A)−AdvGame 4(A)| ≤ εPRF . (14)

Semantic security of the session key in Game 4: Since the session key K of Πs∗

U∗,V ∗ is chosen
randomly and independently from all other values, A does not have any advantage in game 4. Hence,

AdvGame 4(A) = 0. (15)

Using equations (11)–(15) we find,

AdveCK
EC-P1,Case 1c(A) ≤ N2

PNs
2
(

AdvDBDH
G,GT ,q,e(C) + εPRF

)
.

Case 1d: Adversary corrupts the partner to the test session, but does not
corrupt the owner.

The analysis of this case is similar the analysis of case 1c. The only difference at the game 3. We briefly
explain the simulation of game 3 as follows:

We construct an algorithm C against a DBDH challenger, using the adversary A as a subroutine.
The game 3 challenger sets all the long-term secret/public key pairs of the protocol principals except for
the principals U∗. The algorithm C runs a copy of A and interacts with A, such that A is interacting
with either game 2 or game 3. The DBDH challenger sends values (g, g1, g

β , gγ , e(g, g1)δ) such that
either δ = βγ or δ ← Zq, as the inputs to the algorithm C. The game 3 challenger uses g and g1 as the
generators for the protocol setup. For the principal U∗, the long-term public key is computed as gβga2 .
Moreover, the game 3 challenger sets the value Y of the target session (Πs∗

U∗,V ∗) as gγ , and computes

W1 = e(g, g1)a2x and W2 = e(gγ , g)b2 . Upon receiving the Test(U∗, V ∗, s∗) query, the game 3 challenger

computes the K using
(
e(g, g1)δ

)b1x
and answers. The game 3 challenger can answer all the other queries

normally.
Apart from the foregoing changes in game 3 simulation, the rest of the simulation of case 1d is the

same as case 1c. Therefore, we get,

AdveCK
EC-P1,Case 1d(A) ≤ N2

PNs
2
(

AdvDBDH
G,GT ,q,e(C) + εPRF

)
.

Case 2a: Adversary corrupts the owner to the test session.

There is no partner existing to the target session. Note that the owner of the target session is U∗. We
can further classify this case into two subcases as follows:

• (2a.1) There is no peer session existing to the target session, the adversary computes the protocol
message itself as the peer principal.

• (2a.2) There is a peer session existing to the target session, the adversary tricks the peer principal
to compute the protocol message and delivers it to the owner principal.

2a.1: There is no peer session existing to the target session, the adversary
computes the protocol message itself as the peer principal.

In this case, the peer session is supposed to be at the principal V ∗, but the peer session does not exist
at V ∗. If there is no peer session existing, the adversary A needs to compute the protocol message as
the partner of the target session by itself. In order to compute this message the adversary needs the
long-term secret key b2 of the principal V ∗. Even for an unbounded adversary b2 value is information
theoretically hidden, as the corresponding long-term public key B is computed as gb1gb2 . Therefore, the
advantage of the adversary in this case is zero. Therefore, we get,

AdveCK
EC-P1,Case 2a.1(A) = 0.
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2a.2: There is a peer session existing to the target session, the adversary
tricks the peer principal to compute the protocol message and delivers it to
the owner principal.

In this case, the adversary A corrupts the owner principal U∗. Then, the adversary picks an ephemeral
secret key, computes a protocol message as coming from the owner U∗ (or the adversary may also use a
previous message computed by the the principal U∗), and sends it to the peer principal V ∗. That way the
adversary can trick the peer principal to compute a protocol message. Once the peer computes a protocol
message as a response to the message sent by the adversary (as came from U∗), the adversary use this
message to send to the owner principal U∗, as the message from the peer principal V ∗. This message can
be used as a responding message, if the principal U∗ is the initiator of the target session. Otherwise,it
can be used as an initial message if the principal U∗ is the responder of the target session. Note that
at this case, the adversary does not know the ephemeral secret key, that is picked at the intended peer
principal V ∗.

We construct an algorithm C against a DBDH challenger, using the adversary A as a subroutine.
Game hopping simulation of this case is the same as the cases 1c. Thus,

AdveCK
EC-P1,Case 2a.2(A) ≤ N2

PNs
2
(

AdvDBDH
G,GT ,q,e(C) + εPRF

)
.

Case 2b: Adversary does not corrupt the owner to the test session.

We can further classify this case into two subcases as follows:

• (2b.1) There is no peer session existing to the target session, the adversary computes the protocol
message itself as the peer principal.

• (2b.2) There is a peer session existing to the target session, the adversary tricks the peer principal
to compute the protocol message and delivers it to the owner principal.

2b.1: There is no peer session existing to the target session, the adversary
computes the protocol message itself as the peer principal.

In this case, the peer session is supposed to be at the principal V ∗, but the peer session does not exist
at V ∗. If there is no peer session existing, the adversary A needs to compute the protocol message as
the partner of the target session by itself. In order to compute this message the adversary needs the
long-term secret key b2 of the principal V ∗. Even for an unbounded adversary b2 value is information
theoretically hidden, as the corresponding long-term public key B is computed as gb1gb2 . Therefore, the
advantage of the adversary in this case is zero. Therefore, we get,

AdveCK
EC-P1,Case 2b.1(A) = 0.

2b.2: There is a peer session existing to the target session, the adversary
tricks the peer principal to compute the protocol message and delivers it to
the owner principal.

In this case, the adversary A does not corrupt the owner principal U∗. The adversary may use a previous
message computed by the the principal U∗, and sends it to the peer principal V ∗. That way the adversary
can trick the peer principal to compute a protocol message. Once the peer computes a protocol message
as a response to the message sent by the adversary (as came from U∗), the adversary use this message to
send to the owner principal U∗, as the message from the peer principal V ∗. This message can be used as
a responding message, if the principal U∗ is the initiator of the target session. Otherwise,it can be used
as an initial message if the principal U∗ is the responder of the target session. Note that at this case, the
adversary does not know the ephemeral secret key, that is picked at the intended peer principal V ∗.

We construct an algorithm C against a DBDH challenger, using the adversary A as a subroutine.
Game hopping simulation of this case is the same as the cases 1d (but without allowing to corrupt the
peer to the target session). Thus,

AdveCK
EC-P1,Case 2b.2(A) ≤ N2

PNs
2
(

AdvDBDH
G,GT ,q,e(C) + εPRF

)
.
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Combining all the above cases: According to the analysis we can see the adversary A’s advantage
of winning against the eCK challenger of the protocol EC-P1 is:

AdveCK
EC-P1(A) ≤ N2

PNs
2
(

AdvDBDH
G,GT ,q,e(C) + εPRF

)
.

4.3 Computational Costs

We provide the overall computational cost of our protocol at a protocol principal (either the initiator or
the responder) in Table 3. Note that the costs for light computations such as the multiplication/division
are ignored. In total, our protocol costs three exponentiations, one multi-exponentiation, two pairings
and one execution of the underlying pseudorandom function.

Computation Cost
at the initiator or the responder

Initial setup A or B 1ME

Protocol execution X or Y 1E
W1 or W2 1E, 1Pair
Z1 or Z2 1E, 1Pair

K 1PRF

Key: PRF – pseudorandom function; E – exponentiation operation; ME –
multi-exponentiation operation; Pair – pairing operation

Table 3: Overall computational cost at a protocol principal

5 Conclusions and Future Works

Usually, the AKE protocols that are proven to be secure in the standard model require strong hardness
assumptions to achieve the eCK security. We construct a standard model eCK-secure AKE protocol
based on pairings, only assuming the existence of pseudorandom functions and the hardness of the DBDH
problem. We emphasize that we use fewer and more standard assumptions compared to the previous
works. Thus, our contribution is a significant improvement in the context of key exchange protocols. As
a future work, we can implement this protocol to be used with the TLS protocol suite. Moreover, it is
worthwhile to research on quantum-safe and leakage-resilient AKE protocols.
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