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Abstract. The bulk of Internet interactions is highly redundant and also security sensitive. To
reduce communication bandwidth and provide a desired level of security, a data stream is first
compressed to squeeze out redundant bits and then encrypted using authenticated encryption. This
generic solution is very flexible and works well for any pair of (compression, encryption) algorithms.
Its downside, however, is the fact that the two algorithms are designed independently. One would
expect that designing a single algorithm that compresses and encrypts (called compcrypt) should
produce benefits in terms of efficiency and security.
The work investigates how to design a compcrypt algorithm using the ANS compression. First,
we examine basic properties of ANS and show that a plain ANS with a hidden encoding table
can be broken by statistical attacks. Next, we study ANS behaviour when its states are chosen at
random. Our compcrypt algorithm is built using ANS with randomised state jumps and a sponge
MonkeyDuplex encryption. Its security and efficiency are discussed. The design provides 128-bit se-
curity for both confidentiality and integrity/authentication. Our implementation experiments show
that our compcrypt algorithm processes symbols with a rate up to 269 MB/s (with a slight loss of
compression rate).

1 Introduction

Shannon in his seminal paper [17] investigates a problem of data transmission via a noisy and
unreliable communication channel. He has shown that errors during transmission can be corrected
if data are encoded with enough redundancy. Error correcting codes are developed to provide a
carefully designed redundancy so the original data can be recovered even if some bits have been
corrupted during transmission. The reverse problem and main focus of theory of compression
is how to remove redundancy from transmitted data. This is extremely important for growing
Internet applications, where almost all data transmitted are highly redundant (for instance,
photos, music and video streaming). Compression of data simply saves time and bandwidth.
Original data can be easily recovered by running a decompression algorithm.

The first compression algorithm applies the well-known Huffman coding [9]. It offers optimal
compression for symbols that follow a probability distribution that are integer powers of 1/2.
It is suboptimal, however, for any probability distribution that deviates from it. An interesting
analysis of the code can be found in [8]. The arithmetic/range coding [12, 14, 16] offers a significant
improvement as it allows to compress symbols for an arbitrary probability distribution. Its main
weakness, however, is a heavy computation overhead. Asymmetric numeral systems (ANS) are
relatively a newcomer that provides both efficient and close to optimal compression (see [5, 6,
15]). Since its invention, ANS has been adopted widely in the IT industry. It is being used in
the following compressors: Facebook Zstandard, Apple LZFSE, Google Draco 3D, PIK image,
CRAM DNA and Dropbox DivANS, to name a few most prominent ones. It is recommended
by RFC 8478 for MIME and HTTP. ANS is also used by the JPEG XL next generation image
compression standard.

The recent Covid19 pandemic is forcing people to social-distance themselves by working/inter-
acting via Internet. This further boosts already accelerating trend for people to turn to the Inter-
net for entertainment (games and video streaming) and work teleconferencing (via Zoom, Skype,



Webex or Microsoft Teams). Clearly, these events put data compression and security (confiden-
tiality, authentication and integrity) at the forefront [10]. A natural solution is to use compression
followed by encryption. A better option is to design a joint compression and encryption (further
called compcrypt). It is expected that it is possible to exploit the natural properties of ANS to
simplify encryption without compromising security. A research problem we address in this work
is the design of a compcrypt algorithm such that

cost(compcrypt) � cost(compression) + cost(encryption);
security(compcrypt) = security(encryption);

comp_rate(compcrypt) ≈ comp_rate(compression),

where comp_rate stands for compression rate.
Duda and Niemiec consider a plain ANS as a compcrypt algorithm in their work [7]. In

their solution, a sender designs ANS by selecting a symbol spread function using pseudorandom
bit generator (PRBG) initialized with a cryptographic key. The symbol spread determines en-
coding and decoding tables. The receiver also gets an encrypted final ANS state that serves as
an authentication/integrity tag. The receiver checks if after decompression, ANS arrives in the
correct state. The compcrypt algorithm holds up well against ciphertext-only adversaries. It is
completely defenceless against integrity attacks as shown in the work [3]. The work also pro-
poses three versions of compcrypt with a better security level. The versions target low-security
devices/sensors with limited computing resources. They apply as little cryptography as possible.
In fact, the only cryptographic tool is PRBG. An integrity tag is implemented by encrypted final
state that provides 11-bit security for ANS with 2048 states.

Motivation. All major teleconferencing vendors (Zoom, Webex and Microsoft) have already im-
plemented end-to-end encryption. Likewise, video streaming services (Netflix, Stan, Foxtel, etc.)
routinely apply strong encryption. Encryption is done for already compressed video/voice bit-
streams using a full AES. This is expensive as it does not exploit potential benefits flowing from
designing a single algorithm that compresses and encrypts. Compcrypt algorithms published so
far are appropriate for lightweight applications only. This paper fills the gap and proposes 128-bit
secure compcrypt that can be easily upgraded to a higher security level if needed. This is due to
the fact that encryption is done using a sponge structure.

Contribution. The work starts from an analysis of a plain ANS, whereby plain ANS, we mean
ANS without encryption. The analysis guides our design effort. More precisely, we claim the
following contributions:

– Analysis of a plain ANS compression rate. We exploit Markov chains to determine precisely
probability distribution of ANS states. As a result, we can calculate probability distribution
of the lengths of binary encodings.

– Statistical attacks on a plain ANS. We show that a adaptive-statistics adversary is able
to apply a divide-and-conquer algorithm to determine an encoding table (or equivalently a
symbol spread function) much faster than the exhaustive search.

– Variant of ANS with a uniformly random probability distribution of ANS states. This is
implemented using a random bit generator (RBG). We prove that the variant leaks no in-
formation about the internal ANS structure. It is used as a basic building block for our
compcrypt algorithm.

– Design of 128-bit secure compcrypt algorithm. The algorithm uses a sponge structure with
the Keccak round permutation P .

– Evaluation of security and efficiency of the compcrypt algorithm.
– Extension of the compcrypt algorithm for infinite streams.



2 Asymmetric Numeral Systems

The main idea behind ANS is an observation that for any integer x ∈ N, it is possible to append
an encoding of a symbol s ∈ S that occurs with probability ps, hence carrying lg(1/ps) bits of
information (lg ≡ log2). Assuming that we need lg x bits to represent the integer x, the new
integer x′ ∈ N that includes the encoding of x and s should contain lg(x′) ≈ lg x + lg 1/ps
bits. In other words, we need to find a suitable reversible encoding function C(x, s) such that
x′ = C(x, s) ≈ x/ps.

Consider a binary case, when s ∈ {0, 1} and occurs with the probability ps. ANS uses an
encoding function C(x, s) = x′ = 2x + s. A decoding function D(x′) allows to recover both x
and s as D(x′) = (x, s) = (bx′/2c, x′ (mod 2)). A standard binary coding C(s, x) for uniform
probability distribution ps = 1/2 is represented by Table 1. The coding function generates a

s \ x′ 0 1 2 3 4 5 6 7 8 9 · · ·
s = 0 0 1 2 3 4 · · ·
s = 1 0 1 2 3 4 · · ·

Table 1. Encoding table for binary symbols with probabilities ps = 1/2

set of all integers. It splits into two disjoint subsets I0 = {x′|x′ = C(x, s = 0);x ∈ N} all even
integers and I1 = {x′|x′ = C(x, s = 1);x ∈ N} all odd integers. For example, to encode a
sequence of symbols 0111 starting from x = 0, we have the following sequence x = 0

0−→ 0
1−→

1
1−→ 3

1−→ 7. Decoding is done in reverse. This works as for each x′, there is a unique pair (x, s)
or D(x′) = (x, s). If starting with x = 1 instead, decoder could easily determine when to stop.

The binary case can be generalised for an arbitrary probability distribution ps 6= 1/2. This
time we need to modify sets Is; s ∈ {0, 1}, such that the cardinality of the set Is ∩ [0, x) follows
closely ps · x or |Is ∩ [0, x)| ≈ ps · x, where [0, x) := {0, 1, . . . , x− 1} denotes a set of all integers
between 0 and x (including 0). Let us take an example, when s ∈ {0, 1} with probabilities
p0 = 1/4 and p1 = 3/4. Our encoding function x′ = C(x, s) is given by Table 2. Take the same

s \ x′ 0 1 2 3 4 5 6 7 8 9 · · ·
s = 0 0 1 2 · · ·
s = 1 0 1 2 3 4 5 6 · · ·

Table 2. Encoding table for binary symbols with probabilities p0 = 1/4 and p1 = 3/4

sequence of symbols 0111 and start from x = 0. The encoding is as follows: x = 0
0−→ 0

1−→
1

1−→ 2
1−→ 3. We can see that this encoding is shorter than for the encoding considered in the

first example.
The approach described above can be extended for an arbitrary number of symbols, where

s ∈ S and |S| ≥ 2. Sequence of natural numbers N is divided into intervals, each containing 2R

integers, where R is an integer parameter. Each interval includes Ls ≈ 2Rps integers/states, where∑
s Ls = 2R. Given a symbol s and an interval with 2R integers, whose locations are indexed

by integers from 0, . . . , 2R − 1. Then integers/states assigned to s are put in Ls consecutive
locations from [cs, cs+1), where cs is the first location, cs+1 − 1 is the last location and cs =∑s−1

i=0 Li. For example consider blocks of 4 columns (intervals) from Table 2. For s = 1, each block
contains states at locations [1, 4), where L0 = 1 and L1 = 3. We can construct an appropriate



encoding table that has n = |S| rows and enough column so you can process a long enough
sequence of symbols. Due to an elegant mathematical structure, encoding can be done using
simple calculations. Given a state x ∈ N and a symbol s ∈ S, then we can calculate C(x, s) as
follows:

– Identify a block/interval that contains x. The integer 2Rbx/Lsc points to first x′ of the block.
– Compute an offset (within Ls block locations), which is (xmod Ls).
– Find cs, which gives the location of first state associated with s in the block.
– Determine C(x, s) = 2Rbx/Lsc+ (xmod Ls) + cs

A decoding functionD(x′) = (x, s) can be calculated asD(x′) =
(
Lsbx′/2Rc+ x′mod 2R − cs, s

)
,

where s is identified by checking if cs ≤ xmod 2R ≤ cs+1. For instance, consider Table 2 and
its C(x, s). Finding state x′ = C(6, 1) can done directly from the table but also computed as
x′ = 22 · b6/3c + (6 mod 3) + 1 = 9. To decode x′ = 9, we first determine s by computing x′

mod 2R = 1. This is a first location for s = 1. Knowing that s = 1, we can find x = 3·2+1−1 = 6.
We have shown that compression operations can be simplified by defining an appropriate

interval/block of the length 2R. However, while encoding a sequence of ` symbols s ∈ S, the final
state x′ grows very quickly and lg(x′) ≈ `H(S), where H(S) is an entropy of the symbol source.
Clearly, handling very large integers (thousands or millions of bits) becomes a major efficiency
bottleneck. To deal with this, ANS uses the so-called re-normalisation operation. The idea is
to keep a state x within an interval of a fixed length, for instance x ∈ I = [2α, 22α). If ANS
is in the state x and gets a sequence of symbols so x′ ≥ 22α, then it outputs bits x′ (mod 2α)
(as partially compressed bits) and reduces the state x ←− bx′/2αc. Note that re-normalisation
is reversible. Knowing the pair (x′ (mod 216), bx′/216c), it is easy to reconstruct x′. In practice,
ANS applies I = [2048, 4096) for 256 symbols. Using re-normalisation allows ANS to achieve
efficient compression and also it can be conveniently represented as an encoding table - we focus
here on this fully tabled case (called tANS).

The ANS compression can be seen as a triplet 〈I,C,D〉, where I is an initialization algo-
rithm executed once before compression by communicating parties. C is a compression algorithm
performed by a sender and D is a decompression algorithm used by a receiver.

Initialisation I

Input: A set of symbols S, their probability distribution p : S→ [0, 1],
∑

s ps = 1 and a parameter R ∈ N+.
Output: Instantiation of coding and decoding functions:

– the encoding functions C(s, x) and ks(x);
– the decoding functions D(x) and k(x).

Steps: Initialisation proceeds as follows:
– calculate the number of states L = 2R;
– determine the set of states I = {L, . . . , 2L− 1};
– for each symbol s ∈ S, compute integer Ls ≈ Lps, where ps is probability of s;
– define the symbol spread function s : I→ S, such that |{x ∈ I : s(x) = s}| = Ls;
– establish the coding function C(s, y) = x for the integer y ∈ {Ls, . . . , 2Ls − 1}, which assigns states
x ∈ Ls according to the symbol spread function;

– compute the function ks(x) = blg(x/Ls)c for x ∈ I and s ∈ S. The function shows the number of output
bits generated during a single encoding step;

– construct the decoding function D(x) = (s, y), which for a state x ∈ I assigns its unique symbol (given
by the symbol spread function) and the integer y, where Ls ≤ y ≤ 2Ls − 1. Note that D(x) = C−1(x).

– calculate the function k(x) = R− blg(x)c, which determines the number of bits that need to be read out
from the bitstream in a single decoding step.

The algorithm C takes a sequence of symbols further called a frame and generates a stream
of bits.

Frame Coding C



Input: A sequence of symbols (frame) s = (s1, s2, . . . , s`) ∈ S∗ and an initial state x = x` ∈ I; where ` = |s|.
Output: An output bit stream b = (b1|b2| . . . |b`) ∈ B∗, where |bi| = ksi(xi) and xi is state in i-th step.
Steps: For i = `, `− 1, . . . , 2, 1 do
{
s := si;
k = ks(x) = blg(x/Ls)c;
bi = x mod 2k;
x := C(s, bx/2kc);
};
Store the final state x0 = x;

The next algorithm takes a stream of output bits and the final state and produces symbols of
the corresponding frame in reverse.

Stream Decoding D

Input: A stream of bits b ∈ B∗ and the final state x = x0 ∈ I of the encoder.
Output: Sequence of symbols s ∈ S∗
Steps: while b 6= ∅:
{
(s, y) = D(x);
k = k(x) = R− blg(x)c;
b = MSB(b)k;
b := LSB(b)|b|−k;
x := 2ky + b;
}

Note that LSB(b)` and MSB(b)` stand for ` least and most significant bits of b, respectively.
The following instance of ANS is used throughout the work. Given a symbol source S =

{s0, s1, s2}, where p0 = 3
16 , p1 = 8

16 , p2 = 5
16 and the parameter R = 4. The number of states is

L = 2R = 16 and the state set equals I = {16, 17, . . . , 31}. A symbol spread function s : I→ S is
chosen as follows:

s(x) =


s0 if x ∈ {18, 22, 25} = L0

s1 if x ∈ {16, 17, 21, 24, 27, 29, 30, 31} = L1

s2 if x ∈ {19, 20, 23, 26, 28} = L2

where L0 = |{18, 22, 25}| = 3, L1 = |{16, 17, 21, 24, 27, 29,

30, 31}| = 8 and L2 = |{19, 20, 23, 26, 28}| = 5. The frame encoding table E(xi, si) = (xi+1, bi)
def
≡(xi+1

bi

)
is shown below.

Table 3. ANS for 16 states (ps0 = 3/16, ps1 = 8/16, ps2 = 5/16)

si\xi 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

s0
(
22
00

) (
22
01

) (
22
10

) (
22
11

) (
25
00

) (
25
01

) (
25
10

) (
25
11

) (
18
000

) (
18
001

) (
18
010

) (
18
011

) (
18
100

) (
18
101

) (
18
110

) (
18
111

)
s1

(
16
0

) (
16
1

) (
17
0

) (
17
1

) (
21
0

) (
21
1

) (
24
0

) (
24
1

) (
27
0

) (
27
1

) (
29
0

) (
29
1

) (
30
0

) (
30
1

) (
31
0

) (
31
1

)
s2

(
26
0

) (
26
1

) (
28
0

) (
28
1

) (
19
00

) (
19
01

) (
19
10

) (
19
11

) (
20
00

) (
20
01

) (
20
10

) (
20
11

) (
23
00

) (
23
01

) (
23
10

) (
23
11

)

3 Properties of ANS

We investigate properties of a plain ANS. The goal is to identify potential cryptographic weak-
nesses but also strengths. The findings guide a design process of our compcrypt algorithm.



3.1 Compression Rate of ANS

There is no proof that ANS achieves optimal compression (symbols are encoded into binary
strings with no redundancy). However, experiments show that the ANS compression is very
close to optimal. This sorry state is due to the complexity of the internal structure of ANS. In
particular, the ANS symbol spread function can be chosen in many different ways. The main
roadblock for computing the entropy of output/compressed bits is the difficulty of finding the
state probabilities (we treat ANS as FSM). Typically, given a state x, it is argued that it occurs
with the probability ≈ 1/x (see [4]). The approximation does not work well for a small numbers of
states and even for larger numbers of states, it introduces a slight bias. The algorithm given below
allows us to determine the probability distribution of the ANS states x ∈ {2R, . . . , 2R+1 − 1}
precisely. Denote that we use a shorthand X = {2R, . . . , 2R+1 − 1}.

Algorithm 1: Calculating probabilities of ANS states
Input: ANS represented by its encoding table E for symbols s ∈ S (rows) and states x ∈ X (columns)
Output: Probabilities P (x), where x ∈ X.
begin

Assume that E describes a stationary Markov chain, where the probabilities before and after a
single compression step are the same.

for x = 2R, . . . , 2R+1 − 1 do
create a linear relation Rx ≡ P (x) =

∑
y∈X P (y)psy , where x = E(sy, y);

Ensemble a system of linear equations 〈Rx|x ∈ X〉 (note that
∑

x∈X P (x) = 1).
Solve the system using the Gaussian elimination algorithm.

Let us make few observations about Algorithm 1, namely, it allows

– to evaluate the compression rate of ANS without experiments. This seems to be very crucial
for ANS with a very large number of states (thousands),

– to choose a variant of ANS that provides the best compression rate. If the compression rate
is equal to the symbol source entropy, it is possible to claim the optimal solution.

Example 1. Consider ANS given by Table 3. After running Algorithm 1, we have got the prob-
abilities as shown below

x 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
P (x) 0.08 0.08 0.079 0.081 0.067 0.067 0.06 0.064 0.062 0.048 0.05 0.055 0.05 0.052 0.051 0.051

It is easy to compute the average output bit length per symbol, which is 1.478. The symbol
entropy is H(S) = 1.477. Indeed, ANS is very close to the optimal one.

3.2 ANS Compression Losses

Ideally, ANS is expected to remove all redundancy and produce an uncorrelated random sequence
of bits. In practice, however, there are circumstances, in which redundancy is unavoidable. Let
us consider a few, which are relevant to our work.

– A source generates a short burst of symbols that may not follow the source statistics. A
possible solution is to customise ANS for the current observed statistics. However, as a symbol
frame is short and gain from compression low, a good option could be to avoid compression
altogether.

– A symbol source statistics differs from the statistics used to design ANS. This increases
redundancy of output bits.



– Any tampering with the internal structure of ANS (such as state jumps) may introduce extra
redundancy.

Let us discuss the last two points. Feeding symbols with probability distribution P = {p(s)|s ∈ S}
to ANS designed for probability distribution Q = {q(s)|s ∈ S} causes a compression loss. The
Kullback-Leibler relative entropy can be used to approximate the loss as

∆H =
∑
s∈S

ps lg
ps
qs
≈ 1

ln (4)

∑
s∈S

(ps − qs)2

ps

Unfortunately, this approximation is very rough. The main reason is that the symbol probability
distribution Q changes the probability distribution of ANS states as the corresponding Markov
chain attains a new equilibrium. This fact is ignored in the approximation given above. To get
a precise evaluation of compression loss, it is necessary first to compute state probabilities for a
corresponding Markov chain and then calculate the average number of output bits per symbol.

Example 2. Let us take ANS given by Table 3 and assume that symbol source probability is
P = {1/4, 1/2, 1/4} instead of expected Q = {3/16, 1/2, 5/16}. The equilibrium probabilities for
ANS states are given below.

x 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
P (x) 0.083 0.083 0.105 0.061 0.058 0.058 0.083 0.047 0.065 0.061 0.042 0.063 0.042 0.052 0.047 0.047

The average output bit length per symbol is 1.52. The compression loss is ∆H ≈ 0.04 bits
per symbol. Note that calculation for the Kullback-Leibler divergence gives ∆H = 0.02. This
illustrates the point that a change of symbol statistics causes a compression loss that is attributed
to both a “wrong” symbol statistics and a change of ANS state probability distribution induced
by it.

The work [3] proposes a variant of ANS, where ANS states are chosen randomly using a crypto-
graphically strong pseudorandom bit generator (PRBG). This means that ANS state probability
distribution is uniform. For ANS from Table 3 with state jumps, compression loss is ∆H ≈ 0.03
bits per symbol. The reader is referred to the papers [3, 4] for a detailed discussion of ANS prop-
erties. An important property of ANS is that compressed bits are concatenated together in a
single continuous stream. The information about how many bits need to concatenated are kept
in the current ANS state. This forces a potential adversary to make guesses about how to parti-
tion a long stream into varying length substrings corresponding to the processing of individual
symbols. As ANS is, in fact, FSM with a finite number of states, it has a cyclic nature that allows
an adversary to inject/remove output bits without detection (see [3] for details).

3.3 Statistical Attacks against ANS

Assume that an adversary A has an access to a communication channel so it can see the binary
stream. Additionally, suppose A knows a symbol source statistics and an algorithm used to
construct ANS. This is a typical ciphertext-only adversary. ANS seems to be immune to it.
However, in some circumstances, A may be more powerful and can interfere with symbol source
statistics. This is to say that we deal with a adaptive-statistics adversary, who

– sees an output binary stream and can calculate its length,
– can force symbol source statistics to follow an arbitrary probability distribution including

probabilities, where a single symbol occurs with probability 1,
– knows the number of processed symbols,
– is familiar with a design algorithm for ANS (but does not know its encoding table).



The goal of A is to recover the ANS encoding table or equivalently its symbol spread function.
The idea behind the attack is an observation that we can use Markov chains (see Algorithm
1) to calculate state probabilities and consequently, compression rate (measured by bits per
symbol). The calculated compression rate is used as a litmus test. The very first version of our
attack is given below. The algorithm exhaustively enumerates all possible spread functions. The

Algorithm 2: Exhaustive Statistical Attack against ANS
Input: An instance of ANS with a adaptive-statistics adversary and the symbol source probability

distribution S.
Output: Encoding table or symbol spread function used by ANS.
begin

Collect n output bits from the target ANS and calculate its compression rate β = n
`
, where ` is the

number of symbols processed by ANS;
for ANSi ∈ {all instances of ANS} do

use Algorithm 1 to compute state probabilities for ANSi;
compute its compression rate βi for the distribution S;
if β ≈ βi then

return ANSi;

important point here is that A is able to identify the correct instance of ANS by checking its
compression rate. The check can fail if the observed output stream is not long enough so β is
far away from its real value. To fix this, A may need to collect a very long sequence. In case
that there are few other ANS instances, whose compression rates are close to β, A may test
other symbol statistics. The complexity of Algorithm 2 is determined by the number of all ANS
instances that need to be tested, which is

L!∏
s∈S Ls!

=

(
L

Ls1

)(
L− Ls1
Ls2

)
· · ·
(
L−

∑n−2
i=1 Li

Lsn−1

)
≈ 2LH({Ls/L}) for H({ps}) = −

∑
s

ps lg(ps),

(1)
where n = |S| and Ls is the number of states assigned by the symbol spread function for the
symbol s [11].

Algorithm 2 can be substantially improved by applying the divide-and-conquer principle. Note
that A can select in arbitrary way the symbol source distribution. The most promising strategy
for A seems to be to choose a pair of symbols with nonzero probabilities making the others
equal to zero. This excludes states associated with missing symbols from symbol processing. To
illustrate the point, consider ANS given by Table 3. If A chooses ps0 = α, ps1 = 0 and ps2 = 1−α,
then states {16, 17, 21, 24, 26, 27, 29, 30, 31} occur with zero probability. Table 3 becomes

si\xi 18 19 20 22 23 25 26 28

s0
(
22
10

) (
22
11

) (
25
00

) (
25
10

) (
25
11

) (
18
001

) (
18
010

) (
18
100

)
s2

(
28
0

) (
28
1

) (
19
00

) (
19
10

) (
19
11

) (
20
01

) (
20
10

) (
23
00

)
In other words, the encoding table is “reduced” to two rows only and other rows play no role
in compression (also columns of inactive states can be removed). We can start from a pair of
symbols with the smallest probabilities as they involve the smallest number of ANS states. We
run Algorithm 2 to determine states in the two rows of the encoding table (encoding table reduced
to two rows). Now we repeat the procedure but this time we select a pair of rows (symbols): one
with states already found and the other with states that need to be determined. The flowchart



of the attack is given by Algorithm 3. Note that we denote Γi = {x|s̄(x) = si} a subset of states
assigned to the symbol si ∈ S by the symbol spread function s̄(x); i = 1, . . . , n.

Algorithm 3: Divide-and-Conquer Statistical Attack against ANS
Input: An instance of ANS with a adaptive-statistics adversary and the symbol source probability

distribution S.
Output: Encoding table or symbol spread function used by ANS.
begin

Choose two rows s1 and s2 of encoding table whose symbol probabilities are the smallest;
Create a reduced encoding table for the pair of symbols;
Run Algorithm 2 for the reduced encoding table;
Store Γ1 = {x|s̄(x) = s1} and Γ2 = {x|s̄(x) = s2} ;
for i = 3, . . . , n− 1 do

Run Algorithm 2 for reduced encoding table for s1 and si;
Store Γi = {x|s̄(x) = si};

Return the symbol spread function s̄(x);

The work load needed to calculate Γ1 and Γ2 takes generation of
(
L
Ls1

)(L−Ls1
Ls2

)
variants of

(reduced) ANS. The j-th step in the “for” loop of Algorithm 3 costs
(L−∑j−1

i=1 Li

Lsj

)
. The complexity

of the algorithm is dominated by(
L

Ls1

)(
L− Ls1
Ls2

)
+
n−1∑
j=3

(
L−

∑j−1
i=1 Li

Lsj

)
. (2)

Note a significant complexity reduction of the exhaustive attack given by Equation (1) compared
to the divide-and-conquer one described by Equation (2).

Example 3. Consider this attack for realistic parameters with the number of states L = 1024
and 15 symbols that follow a geometric probability distribution P (S = k) = (1− p)k−1p, where
p = 0.3. The results are displayed in the table below, where WF stands for work factor.

s 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Ls 307 215 150 105 73 52 36 26 19 13 9 7 5 4 3
WF 0

(
522
215

) (
672
150

) (
777
105

) (
850
73

) (
902
52

) (
938
36

) (
964
26

) (
983
19

) (
996
13

) (
1005
9

) (
1012
7

) (
1017
5

) (
1021
4

) (
1024
3

)
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

2350 2353 2439 2354 2282 2149 2117 291 296 271 257 243 235 227

The attack starts from testing our target ANS by collecting a long enough bitstream for the
two least probable symbols s ∈ {15, 14} with some chosen probability distribution. Note that
the target ANS encoding table can be reduced by removing all states that do not belong to
the symbols s ∈ {15, 14}. Next, we enumerate all possibilities for symbol spread function for
s ∈ {15, 14}. This takes 262 steps. In each step, we create a partial encoding table for the
two symbols (i.e. table has two rows only). We calculate state equilibrium probabilities and the
corresponding probabilities of different lengths of encodings. We calculate the mean and standard
deviation. If the observed length for the target ANS falls within 3× σ from the mean we accept
otherwise reject. We hope to end up with only a few instances of symbol spread function. We
can further test using different symbol probabilities. Once we have a unique solution, we try the
next symbol s = 13 and repeat the attack. At this point, we can experiment with two rows or
with three to identify the correct symbol spread function for s = 13.



Example 4. In this example, we show how to distinguish the ANS given by Table 3 from its
variant, where states are chosen uniformly at random. After simple calculations, we can determine
the probability distribution of binary encodings with the different lengths for both ANSes as given
below.

Probability\ANS Plain ANS ANS with state jumps

P (1) 0.59994550 0.57812500

P (2) 0.3210917750 0.32812500

P (3) 0.07896232500 0.093750000

After observing 10,000 symbols, the plain ANS generates bitstreams of the average length
14, 790 bits with σ = 63.8, while the other ANS gives bitstream of of the average length 15, 156
bits with σ = 66. If we run few experiments, we can distinguish them with non-negligible prob-
ability.

So far we have not discussed the case, where an adversary A is forcing a single symbol to occur
with probability one. The Markov chain for state probabilities degenerates to few disjoint cycles
that happen with probability 1. If A can switch for a moment to a different symbol, then it can
reset the internal state and by repeating the experiment with the same symbol, it can discover
the next cycle. By continuing this procedure, A can identify all cycles. This knowledge can be
used to

– speed up the divide-and-conquer attack by considering instances of reduced ANS that contain
the identified cycles only and

– significantly improve probability of guessing the output bitstream (if A does not have access
to it).

4 Compression and Encryption

Security sensitive applications (such as video streaming) can protect compressed stream by using
standard encryption algorithms such AES [13]. In this case, a simple solution is to first compress
symbols and then encrypt. It, however, ignores the fact that compression itself provides some
degree of security. To launch an attack, an adversary needs to guess a split of output binary
stream into symbol encodings (with different lengths). Thus, one would be expected that using
full-blown encryption is overkill. In other words, the research problem in hand is how to weaken
encryption (by reducing a number of rounds for example) so the concatenation of ANS and a
weaken encryption maintains the same security level while improving efficiency.

A different approach for compression and encryption is taken by Duda and Niemiec in [7].
Encryption is incorporated by a secret selection of symbol spread function. The selection is
then communicated to a receiver as an encrypted decoding table (using a standard AES). For
this solution, compression efficiency is as good as in the original ANS. Also, security against
a ciphertext-only adversary is maintained. However, as shown in [3], bitstream is vulnerable to
integrity attacks. Also encryption of decoding tables needs to be authenticated and time-stamped
to protect it against replay attacks.

4.1 Design Principles

The currently published solutions for ANS-based compcrypt (see [3, 7]) suffer from the following
weaknesses:



– Integrity of encryption/compression is supported by sending an encrypted final ANS state.
The bitstream is considered to be authentic if the encrypted final state equals a final state of
the decoder. Even for ANS with 2048 = 211 states, this guarantees 11-bit security only, which
is much too low for transmission of highly sensitive data. This also means that an adversary
can inject/delete arbitrary segments of the bitstream and this action escapes detection with
probability 2−11.

– Related weakness of ANS is its cyclic nature (as shown in [3]). Cycles can be detected by scan-
ning bitstream for repetitions of the same pattern. Once such a cycle is correctly identified,
an adversary can remove or inject it with an arbitrary number of times without detection.

– As shown in Section 3.3, ANS is inherently susceptible to statistical attacks. As the designer
of ANS has freedom to choose a symbol spread function in many ways, this allows her to
end up with a design, whose internal states occur with a unique probability distribution. As
the result, ANS produces binary encoding with an (almost) unique probability distribution.
The probability distribution can be seen as a unique fingerprint that allows to identify the
symbol spread function and consequently encoding table (see Algorithm 3) after observing a
long enough bitstream.

Let us formulate a collection of principles that are going to guide us during the design of our
compcrypt algorithm. Our compcrypt algorithm should

– be (almost) as efficient as a plain ANS (without encryption). A slight efficiency loss, however,
is inevitable;

– preserves compression rate of the plain ANS. Again, to guarantee authenticity and integrity
of communication, additional data needs to be appended to bitstream;

– guarantee at least 128-bit security. This security level applies to chosen-plaintext attacks;
– detect any interference with encrypted bitstream with probability (1 − 2−128). This is done

by appending a 128-bit authentication tag.
– be immune against statistical attacks.

4.2 ANS with Randomised States

ANS is inherently susceptible to statistical attacks due to uneven probability distribution of states
as P (x) ≈ 1/x. An adaptive-statistics adversary A can further tamper with the distribution by
modification of symbol probability distribution. Consequently, A can switch off some states
completely making other states more probable. To mitigate this weakness, we may force states
to occur randomly and uniformly. So instead of a normal state flow

· · · si−1−→ xi−1
si−→ xi

si+1−→ xi+1
si+2−→ · · ·

we select the next state randomly and uniformly using a random bit generator (RBG) as shown
below

· · · si−1−→ xi−1
si−→ xi ←− xi ⊕ RBG

si+1−→ xi+1
si+2−→ · · ·

where RBG strings need be replicated at the receiver side. Let us see what is an impact of such
state evolution on probability of guessing an output bit stream when we know its length. In our
discussion, we need the following lemma.

Lemma 1. Given a plain ANS as described in Section 2. Then for a symbol s ∈ S, ANS generates

– 1-bit encodings and the encoding table row for the symbol s contains equal number of zeros
and ones if Ls = 2R−1,

– either empty-bit or 1-bit encodings and again the encoding table row for the symbol s contains
equal number of zeros and ones if Ls > 2R−1,



– either ks-bit or (ks + 1)-bit encodings and the encoding table row for the symbol s includes
multiples of 2ks and 2ks+1 if Ls < 2R−1, where all 2ks and 2ks+1 entries run through all
possible ks-bit or (ks + 1)-bit strings.

Proof. According to the frame coding algorithm, for a state x, the algorithm extracts ks(x) =
blg(x/Ls)c bits. As the state x ∈ {2R, . . . , 2R+1 − 1}, we can write that

blog2
2R

Ls
c ≤ ks ≤ blog2

2R+1 − 1

Ls
c (3)

Case 1 If Ls = 2R−1, then Equation (3) becomes

blog2
2R

2R−1
c ≤ ks ≤ blog2

2R+1 − 1

2R−1
c

There is a single value ks = 1, for which the above relation holds. As states x are chosen
from the range {2R, . . . , 2R+1 − 1}, it is easy to see that encodings are equal 1 if x is odd or
0, otherwise. The numbers of zeros and ones are the same (x runs through all consecutive
integers from the interval).

Case 2 If Ls > 2R−1, then the left side of Equation (3) gives ks = 0, while the right side equals
to ks = 1. We can find the smallest x, for which ks(x) = 1. It is easy to see that x = 2Ls. ANS
produces empty encodings for x ∈ {2R, . . . , 2Ls−1}. The other states output 1-bit encodings.
As the number of states in the set {2Ls, . . . , 2R+1 − 1} is even, the encodings contains equal
number of zeros and ones.

Case 3 if Ls < 2R−1, then ks = blg(2R/Ls)c. The smallest x that yields (ks + 1)-bit encoding
is x = 2ks+1Ls. All states x ∈ {2R, . . . , 2ks+1Ls − 1} generate ks-bit encodings, while x ∈
{2ks+1Ls, . . . , 2

R+1 − 1} produce (ks + 1)-bit encodings. The number of states in the set
{2i+1Ls, . . . , 2

R+1 − 1} equals to

2R+1 − 2ks+1Ls = 2ks+1(2R−ks − Ls),

where (2R−ks−Ls) ≥ 1 is a multiplier and has to be positive as the expression is positive. The
encoding table row for s contains a multiple of 2ks+1 entries. Any 2ks+1 consecutive entries
cover all possible ks + 1-bit strings as they correspond to consecutive states in the interval.
Similarly, the number of states in the set {2R, . . . , 2i+1Ls − 1} can be calculated as

2ks+1Ls − 2R = 2ks(2Ls − 2R−ks)

Using similar arguments, we conclude the proof.

Example 5. Consider the ANS instance given by Table 3. The row for s1 illustrates the case
when Ls = 2R−1. All encodings are 1-bit long and zeros and ones occur equal number of times.
The row for s0 represent a case when Ls < 2R−1. Encodings are either 2 or 3-bits long. 3-bit
encodings run through all 3-bit string once as the multiplier (2R−ks − Ls) = 24−2 − 3 = 1. 2-bit
encodings are repeated twice as their multiplier (2Ls − 2R−ks) = 6− 4 = 2.

ANS with Fully Randomised States

Corollary 1. Given a plain ANS as described in Section 2. Assume that the ANS algorithm
chooses next states uniformly at random (i.e. xi ← xi⊕RBG). Suppose further that an adversary
A inputs a sequence of ` symbols s, i.e. (s, s, . . . , s)︸ ︷︷ ︸

`

and A can observe the length k of the resulting

bitstream (in bits), then probability of guessing the bitstream by A is 2−k.



Proof. Knowing the length k, s and parameters of ANS, A may first try to guess lengths of
encodings (or sizes of encoding windows). For each guess, any single window of the length ks can
take 2ks possible strings as Lemma 1 asserts. This scenario occurs consistently for any encoding
length guessing and the conclusion follows. �

Example 6. Take ANS from Table 3. Our adversary inputs a two symbols (s0, s0) and knows
that ANS has produced a 5-bit string. A deals with two options, when ANS has generated first
2-bit encoding followed by 3-bit one or vice versa. For the first option, A has 22 possibilities for
2-bit encoding and 23 possibilities for 3-bit encoding. For the second option, the number is the
same. Both cases generate all 25 possible binary strings.

ANS with Partially Randomised States
An undesired side-effect of uniformity of ANS states is a loss of compression rate. The reader

can easily note that smaller states are producing shorter encodings, while bigger states – longer
ones (see Table 3 as an example). As probability of an ANS state x can be approximated by
≈ 1/x, a plain ANS favours smaller states over bigger ones giving a better compression rate.
Let us explore an option, where states are XOR-ed with a shorter PRBG sequence. Assume that
PRBG produces a sequence of u bits, where u < R. A state x can be equivalently represented by
a pair (bx/2uc, xmod 2u). During compression, ANS modifies the state according to the relation
given below

x← (bx/2uc, (x mod 2u)⊕ PRBG)

The new state keeps the same most significant bits, while the u least significant bits cover all 2u

binary strings. This is illustrated as

x
PRBG←−


(bx/2uc, 0)

...
...

(bx/2uc, 2u − 1)

(4)

Given a symbol s that is being processed. According to Lemma 1, states produce either ks or
(ks+1)-bit long encodings. An encoding is extracted from a state x chosen by PRBG and contains
either ks or (ks + 1) least significant bits. Consider the following two cases.

1. u = ks + 1, an encoding is chosen at random from the full range of 2u = 2ks+1 possibilities.
More precisely, if x ∈ {2R, . . . , 2ks+1Ls− 1}, then encodings are ks-bit long and are repeated
twice in the collection of states in Equation (4). All ks-bit long encodings happen uniformly
at random. For x ∈ {2ks+1Ls, . . . , 2

R+1 − 1}, their encodings are (ks + 1)-bit long and occur
ones only in Equation (4). This also means that all encodings are equally probable.

2. u = ks, when x ∈ {2R, . . . , 2ks+1Ls−1}, then all encodings are possible as they happen exactly
once in the list given in Equation (4). This no longer true for x ∈ {2ks+1Ls, . . . , 2

R+1 − 1}.
To see this, note that the number of all candidate states is 2u = 2ks or in other words ks bits
are random but the (ks + 1)-th bit is inherited from the old state x. Consequently, the bit is
fixed for all possible encodings.

Example 7. Consider our toy ANS from Table 3. Assume that ANS has reached the state x = 25
and PRBG generate 2-bit strings (u = 2). Then ANS chooses at random a new state from the
set {24, 25, 26, 27} or

x
PRBG←−


(110, 00)
(110, 01)
(110, 10)
(110, 11)

For a symbol s0, there are four equally probable encodings (000, 001, 010, 011). The most signif-
icant bit is fixed. Other two are random.



Corollary 2. Assume that an ANS algorithm chooses next states uniformly at random x ←
(bx/2uc, (xmod 2u) ⊕ PRBG) that randomly chooses u least significant bits of the new state.
Then

– all encodings are random (chosen by PRBG) if u = maxs∈S(ks + 1);
– encodings are random for symbols s, for which u ≥ (ks + 1);
– encodings include u random bits for symbols s, for which u < (ks + 1);

The above discussion leads to the following design hints.

– ANS with uniformly random states does not leak any information about input symbols.
From the A point of view, ANS generates random sequence of bits (assuming A cannot
break RBG). This means that ANS with RBG provides a high level of confidentiality. Thus
encryption algorithm does not need to be very strong (a single permutation layer could be
enough).

– Compression loss caused by flattening state probabilities can be mitigated by using shorter
PRBG strings. Using PRBG with u bits, ANS randomly updates a state by selecting one
from 2u consecutive states.

– There is, however, “a sting in the tail”. ANS with RBG is defenceless against integrity/deletion/injection
attacks. In other words, we need strong protection against such attacks.

– Implementation of RBG is crucial. It seems that a simple linear feedback shift register (LFSR)
controlled by a secret cryptographic key should be enough. In case this is not enough, we can
apply nonlinear feedback shift register (NFSR) or cryptographically strong PRBG. Note that
for a sponge construction, a long enough pseudorandom sequence can be generated internally
by the first collection of iterations.

4.3 MonkeyDuplex Structure

To make the lightweight ANS secure against more powerful attacks (such as a chosen-plaintext
attack), we encrypt the bitstream blocks (obtained from the ANS) with an encryption scheme
called MonkeyDuplex. In 2010, Bertoni et al. introduced a duplex construction [2], which provides
a framework for authenticated encryption. The duplex construction can be seen as a variant of
the well-known sponge construction [1]. There are two main sponge parameters: bitrate r and
capacity c. Their sum determines the size of a state. Given a fixed state size, a relation between
bitrate and capacity gives a tradeoff between speed and security. A higher bitrate results in a
faster construction but at the expense of its security and vice versa. A permutation P is the
most crucial building block of sponge. In [1] it is shown that security level can be proven under
the assumption that the underlying permutation P does not have any “exploitable” properties.
In our design, we use the well-established and thoroughly analyzed Keccak-f permutation. The
permutation is used in the SHA-3 hashing standard and in authenticated ciphers such as Keyak
and Ketje. MonkeyDuplex with the Keccak-f permutation allows efficient encryption, especially,
when dealing with a very long stream of plaintext blocks. The permutation P can operate on large
states (up to 1600 bits), which boosts the efficiency. The other factor is that only initialization
requires a full number of permutation iterations. A number of iterations between two consecutive
plaintext blocks injections can be reduced. As data compression handles very long bitstreams,
MonkeyDuplex seems to be a very attractive option.

5 Compcrypt Algorithm

The overall data flow for our proposed compcrypt algorithm is shown in Figure 1. The two main
components are ANS with state jumps and a MonkeyDuplex sponge.
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Fig. 1. Compcrypt based on ANS and sponge, where bitrate r = 512 bits, capacity c = 1088 bits and size of
sponge state is b = 1600

Let us take a closer look at the rationale behind the choice of the sponge parameters. We
follow heuristics developed by the designers of the duplex construction [2]. Let nunicity be a
number of iterations (of permutation P ), for which state-recovery attacks fail. The number
nunicity is estimated from the best results achieved for cryptanalysis of the Keccak-f permutation.
A tradeoff between the size of bitrate r and the number of iterations nstep of P used by the fstep
permutation is given by the following expression:

nunicity =

⌈
b− r
r

⌉
nstep, (5)

where b is the size of a sponge state. For Keccak-f with a 1600-bit state, nunicity is estimated
to be equal to 6. Assuming r = 512, we get nstep = 6/

⌈
1600−512

512

⌉
= 2. The heuristics assumes

that every ciphertext leaks r bits of a sponge state. This is not true in the case of compcrypt.
According Corollaries 1 and 2, ANS binary encoding are random if state jumps are random. We
can modify Equation (5) to take advantage of the extra randomness

dnunicity · (1−H)e =

⌈
b− r
r

⌉
nstep, (6)

where H is a normalized entropy (ranging between 0 and 1) of an ANS bitstream injected to
the sponge. The higher H the smaller nunicity and consequently, a smaller nstep can be chosen.
Thus, nstep is reduced to 1 or fstep = P . The choice makes the algorithm roughly two times
faster, particularly, for long data streams, where initialisation and authentication overheads are
negligible.

5.1 Description of Compcrypt

A general data flow during encryption is illustrated in Figure 1. The algorithm steps are shown
in Algorithm 4. Let us discuss its steps in more detail.



Algorithm 4: Compcrypt Encryption
Input: A symbol frame S = (s1, s2, . . . , s`) and a 128-bit secret key K.
Output: A ciphertext frame C = (c1, c2, . . . , cN ) of decoding table and compressed bit stream together

with a 128-bit tag T , where ci is a 512-bit long block; i = 1, . . . , N .
begin

(1) Upload the symbol frame and compute symbol probabilities {ps|s ∈ S};
(2) Initialise a sponge for K by running fstart = P 6, where the number of iterations nstart ≥ dR·`512

e;
(3) Design ANS instance for the symbol statistics and store ANS decoding table;
(4) Compress S in the reverse order and prepend the obtained bitstream with decoding table. This
creates a bitstream frame;

(5) Split the bitstream frame into 512-bit blocks (b1, . . . ,bN ), where the last block is padded to the
full length;

(6) Encrypt the decoding table and the bitstream frame (b1, . . . ,bN ) into (c1, c2, . . . , cN ) using
sponge;

(7) Generate 128-bit tag T ;
(8) Send the ciphertext frame and the tag T to the receiver.

Step 1 A symbol frame is uploaded into a (LIFO) stack and its statistics is computed. The
probabilities {ps|s ∈ S} are needed for constructing ANS encoding/decoding tables.

Step 2 The 1600-bit sponge is initiated by the secret key K and can include associated data
(such an initial vector, time, sequence number, etc.). The initial sponge state is translated
by fstart. The number of iterations nstart has to be big enough so the pseudorandom bits
collected from 512-bit bitrates are sufficient to randomise ANS state jumps for all symbols.
Note that for short symbol frames, nstart ≥ 6.

Step 3 We assume that ANS is designed for R = 11 so it has 2048 states. A spread symbol
function can be randomly chosen or deterministic. Both encoding and decoding tables are
created. The decoding table is stored.

Step 4 Compression starts from reading out the first symbol s`. It continues until the last symbol
s1 is taken from the stack. After each symbol, an ANS forces a state jump that is controlled
by pseudorandom bits (see Section 4.2). Pseudorandom bits are taken from the bit collection
generated by fstart during sponge initialisation. Note that the bits should be used in the re-
verse order, i.e. last generated bits must be used first. The compressed bitstream is prepended
by a binary representation of the decoding table. It includes a final ANS state xF together
with the numbers `, n, where n is the total length of bitstream frame.

Step 5 The bitstream frame is split into 512-bit blocks (b1, . . . ,bN ). The last block N can be
padded by a string of constants to the full length.

Step 6 The decoding table and the bitstream frame (b1, . . . ,bN ) are encrypted into their ci-
phertext (c1, c2, . . . , cN ) using the sponge. Note that the sponge encrypts the first part of
the frame (that contains decoding table information) using six iterations of P between two
consecutive blocks. For the second part with compressed bits, the sponge applies fstep = P
between two consecutive blocks.

Step 7 A 128-bit authentication tag T is extracted from the final state of sponge. Note that a
permutation fF consists of 6 iterations of P .

Step 8 Finally, the ciphertext frame and the tag T are sent to the receiver side.

At the receiver side, decryption starts from the initialisation of the sponge, where a big enough
collection of pseudorandom bits is stored for decompression. Next, the sponge decrypts ciphertext
frame and verifies validity of the received tag T . If T is valid, ANS recovers its decoding table
and a starting state xF . ANS decompresses bitstream and recovers a symbol frame. Note that
pseudorandomness for ANS state jumps is used in the natural order.



6 Compcrypt Security Analysis

According to the well-known Kerckhoff’s principle, an adversary A knows details of the com-
pcrypt algorithm. The only unknown part is a cryptographic key K. In our adversarial model,
we assume that A is a chosen-plaintext adversary. Table 4 takes a closer look at the adversary

Table 4. Compcrypt Adversarial Model

Attack A’s Knowledge/Ability A’s Goals
chosen- – symbol statistics {ps : s ∈ S} – finding cryptographic key K
plaintext – ANS encoding table: `, n and state xF – obtaining sponge state

– sponge construction: P , fstart, fstep, fF
– A can run compcrypt for its chosen symbol
frames (s1, s2, . . . , s`) and observe their
ciphertext blocks (c1, c2, . . . , cN )

Integrity – As above + – acceptance of tampered
– A can tamper with ciphertext blocks blocks as genuine
and tag T by injecting/deleting/modifying
their parts

ability and its goals. To avoid trivial attacks that intend to simplify ANS or even bypass it, we
make the following caveat.
Important: From now on, we assume that our compcrypt algorithm terminates if symbol frame
statistics does not cover the full range of 256 bytes. In other words, the algorithm runs only if
ANS is able to build a full-size encoding table.

6.1 Guessing Lengths of ANS Encodings

One of the distinct features of ANS is its variable-length encoding. Before applying any standard
cryptanalytic tool (such as algebraic, linear or differential), A needs to identify internal variables
of a compcrypt. According to Lemma 1, all symbols s, where ps 6= 1/2, are assigned either ks or
(ks + 1)-bit encoding. Thus, for each symbol, A needs to guess the lengths of their encodings.
Note that an ANS state is chosen uniformly at (pseudo)random after each symbol.

Consider an example, when A wishes to guess a block of 512-bits for ANS described by Table
3. Let a symbol frame consists of a long sequence of s2. Then A knows that the best probability
of a correct guess is (3/4)256 ≈ 2−106, where all encodings are 2-bit long.

Note that a correct guess is just a beginning and to apply any meaningful cryptanalysis, the
adversary needs to make many such guesses. This is to say that to be successful, A needs to
avoid guessing in its cryptanalysis.

6.2 Analysis with Fixed Length Encodings

Fortunately for A, ANS allocates 1-bit encodings for a symbol that occurs with probability
ps = 1/2. Although the event is quite unlikely, our chosen-plaintext adversary may prepare a
symbol frame that contains a long sequence of such symbols. For simplicity, we assume that A



puts the sequence at the beginning of a symbol frame. For any single bit ci of a cryptogram, A
is able to write the following relation

ci = zi ⊕ LSB(x⊕ α), (7)

where zi is the bit coming from the sponge, LSB(x ⊕ α) is the least significant bit extracted
from the ANS state after a jump and α is a corresponding pseudorandom string of R bits that
controls the state jump. Corollary 1 assures us that the encoding of s is random if α is random.
This is obviously not the case but using the heuristics from [2], we can argue that Equation (7)
provides no help to our adversary if α and ci are separated by a permutation that consists of
more than 6 iterations of P .

Note that the first part of ciphertext contains encryption of decoding table and other pa-
rameters. As this information can be public, our adversary may try to break this part. We have
assumed that a permutation between two consecutive blocks includes six iterations of P so this
part is immune against our adversary attacks.

6.3 Integrity of Compcrypt

One can claim that decoding table can be transmitted un-encrypted. Indeed, our adversarial
model makes it very clear that it is public. For a sake of argument, assume that decoding table
is communicated in plain but a compressed bitstream is encrypted (with a tag T ). The receiver
decrypts, recovers the bitstream frame and verifies the tag T . Now if an adversary has replaced an
original decoding table with a fake one, then the receiver reconstructs a wrong symbol frame. To
authenticate decoding table, it must be encrypted so any attempt to change it will be detected.

7 Efficiency Analysis

We have implemented our compcrypt algorithm on different platforms, namely PC, Raspberry Pi
3 and 4. Table 5 consists of five rows. Each row describes efficiency of its algorithm. The first three
columns give actual efficiency of our implementations. As they are not optimised, our estimation

Table 5. Comparison of Algorithms

Algorithm Measured MB/s Estimated MB/s Drop
PC RPI3 RPI4 PC RPI3 RPI4 PC RPI3 RPI4

Plain ANS 220 17 60 325 25 89
ANS∗ 182 15 49 269 22 72 17% 12% 18%

ANS∗+Keccak 178 13 48 263 19 71 19% 24% 20%
ANS+AES-NI 152 8 29 225 12 43 31% 53% 52%
ANS+AES 100 8 29 148 12 43 55% 53% 52%

Notation: ANS∗ – ANS with state jumps.

about the efficiency of optimised software implementations are given in the next three columns.
Last three columns shows efficiency drops of algorithms, where a plain ANS is a benchmark. Our
experiments have been done for a source that contains 256 symbols, whose probabilities follow
a geometric distribution with the parameter p = 0.5. Symbol frames are 32kB long. Instead of
a single state jump per symbol, we force state jump every fourth symbol. Efficiency of an ANS
with state jumps (ANS∗) drops 17% as compared to a plain ANS. Note that our compcrypt or
ANS∗+Keccak is almost as fast as ANS∗. We have experimented first with encryption done by
AES with hardware support (AES-NI) and second with AES implemented fully in software.



8 Streaming with Compcrypt

Many Internet applications need to compress and encrypt data streams. They include teleconfer-
encing (such as Zoom, Webex or Skype) and other As ANS compression and decompression must
be processed in reverse orders, it is impossible to use a single frame. A solution applied in the
Zstandard (zstd) suite of compression algorithms (see https://en.wikipedia.org/wiki/Zstandard)
splits a symbol stream into a sequence of frames. Clearly, it introduces a delay but it can be
made negligible by choosing short frames (tens of kilobytes). An input to compcrypt consists of

Compcrypt
Key

Compcrypt

Header 1 || Symbol Frame 1 Header 2 || Symbol Frame 2

Ciphertext Frame 1 Ciphertext Frame 2
Tag 1 Tag 2

Streaming →

Fig. 2. Streaming with the compcrypt algorithm

a header and symbol frame. The header determines parameters of the algorithm and in partic-
ular, includes a decoding table, a starting ANS state, the number of symbols in the frame, the
number of bits in the bitstream frame, the consecutive number of the frame, an initial vector and
perhaps a seed/salt. Figure 2 shows a data flow when the compcrypt is applied for streaming.
Note that a stream is split into symbol frames and processed in the natural order. The output of
the i-th compcrypt is an input of the (i+ 1)-th compcrypt. Tags allow a receiver to authenticate
frames. In case of a corrupted tag, the receiver aborts and resets the connection. In case when
a connection reset is not possible, frames are generated independently and corrupted ciphertext
frames are ignored.

Designing compcrypt for streaming is a delicate balancing act. A selection of short frames
reduces transmission delay but also compromises compression rate as the size of a header is
typically fixed and dominated by the size of decoding table. The list given below describes a few
possibilities for improving streaming with compcrypt.

– Instead of a full decoding table, a header may include the parts of the table that have changed
(due to variations of symbol statistics). A further improvement can be achieved by re-using
tables from previous sessions. Instead of a table, a sender can forward an identifier of a
previously applied table that is appropriate for a current frame.

– An alternative is to allow both parties to construct their tables independently. Both sending
and receiving parties need to agree on an algorithm for ANS design for symbol statistics. There
is a technical obstacle as a receiver is always one frame behind the sender in its knowledge
of symbol statistics. A way out for the sender could be to communicate a decoding table in
the first frame and allow the receiver to update it on the base of gathered symbol statistics.
This option can be used for streams with slowly changing symbol statistics.

– Pseudorandomness required for state jump control does not need to be generated at the
initialisation stage of compcrypt. To speed up frame processing, it may be produced in parallel
by a separate sponge, which is created during the execution of compcrypt for the first frame.



9 Conclusions and Future Works

Joint ANS-based compression and encryption with 128-bit security is the focus of the work.
After presenting the ANS algorithm, we investigate ANS compression rate and present a simple
algorithm that allows the calculation of its compression rate precisely. One of many interesting
features of ANS is its slight variations of compression rate depending on its symbol spread
function (or encoding table). As we have shown, this gives rise to a statistical attack. The attack
is devastating for ANS up to few hundred states and still permits to extract a part of symbol
spread function for ANS with a thousand states.

We have taken a closer look at ANS with state jumps as one of the building block for our com-
pcrypt algorithm. If state jumps are forced by a (pseudo)random bit generator, then the output
bit sequence is highly random. This randomness is used by us to reduce the number of the Kec-
cak permutations to a single P . The second building block is Keccak based the MonkeyDuplex
encryption. MonkeyDuplex supplies pseudorandom bits for ANS state jumps. It encrypts decod-
ing table and ANS bitstream frame. Note that decoding table is encrypted for authentication
as its confidentiality does not matter. We claim that our compcrypt provides 128-bit security in
terms of confidentiality of bitstream frame and authentication/integrity of ciphertext. There is
no security proof as the security algorithm is based on heuristic arguments. However, we give
a security justification. We have implemented the algorithm and compared it with other ones.
Our compcrypt is almost as fast as ANS with state jumps. This also means that the Keccak
encryption degrades efficiency slightly only.

Our compcrypt is quite flexible and can be easily adjusted to the current needs. It can be
extended to secure data streaming as shown in the work. If there is a need for a very fast com-
pcrypt, then a designer can trade state-jump properties (length of PRBG string or/and frequency
of jumps) with the number of Keccak permutations P per round. If a higher than 128-bit security
is required, then our compcrypt can be re-designed after a careful security consideration. It is
worth mentioning that it is possible to design compcrypt using a round-reduced AES and an
appropriate mode of operation. This is an attractive option as in many computing platforms,
encryption is supported by an AES coprocessor.
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