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Abstract. In this paper, we show that a software implementation of CCA secure
Saber KEM protected by first-order masking and shuffling can be broken by deep
learning-based power analysis. Using an ensemble of deep neural networks created
at the profiling stage, we can recover the session key and the long-term secret key
from 257 × N and 24 × 257 × N traces, respectively, where N is the number of
repetitions of the same measurement. The value of N depends on the implementation,
environmental factors, acquisition noise, etc.; in our experiments N = 15 is enough to
succeed. The neural networks are trained on a combination of 80% of traces from the
profiling device with a known shuffling order and 20% of traces from the device under
attack captured for all-0 and all-1 messages. “Spicing” the training set with traces
from the device under attack helps minimize the negative effect of device variability.
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1 Introduction
Public-key cryptographic schemes used today depend on the intractability of certain
mathematical problems that are known to be efficiently solved with a large-scale quantum
computer [Sho99]. Even if it will take many years until this is a reality, the need for long
term security makes it urgent to investigate new solutions.

To address this need, the National Institute of Standards and Technology (NIST)
started some years ago a project for standardizing post-quantum cryptographic primitives,
NIST PQ. Candidate primitives rely on problems that are not known to be targets for a
quantum computer, such as lattices problems and decoding problems in Hamming metric.
In rounds 1 and 2, security and implementation aspects were the main focus in evaluation.
The project has entered round 3, where security in relation to side-channel attacks is a
main topic of investigation.
Previous Work: The first side-channel protected implementation of a lattice-based
cryptosystem was proposed in [RRVV15] followed by [RdCR+16], based on masking.
Masking involves doing linear operations twice, whereas non-linear operations needs more
complex solutions decreasing the speed substantially. The implementation approach
in [RRVV15] increases the number of CPU cycles on an ARM Cortex-M4 by a factor more
than 5 compared to a standard implementation, see [BDK+20, p. 2].

These protected implementations focus on Chosen-Plaintext Attack (CPA)-secure lattice
schemes, but more relevant are secure primitives designed to withstand Chosen-Ciphertext
Attacks (CCA). CCA secure primitives are usually obtained from a CPA secure primitive
using a transform, such as the Fujisaki-Okamoto (FO) transform or some variation of
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it [HHK17]. The CCA-transform is itself susceptible to side-channel attacks and should
be protected [RRCB20]. Examples of recent masked implementations are: [OSPG18] of a
KEM similar to NewHope; and [BBE+18, MGTF19, GR19] being lattice-based signature
schemes.

For the NIST round 3 finalists, only the candidate Saber has a protected software
implementation available [BDK+20]. It utilizes a first-order masking of the Saber CCA-
secure decapsulation algorithm with an overhead factor of only 2.5 compared to an
unmasked implementation.

Side-channel attacks on unprotected implementations of NIST PQ project candidates
have appeared in some recent papers. In [SKL+20] a message recovery attack was described
on the unprotected encapsulation part of some of the round 3 candidates; in [RRCB20]
side-channel attacks on several round 2 candidates were described; in [XPRO] unprotected
Kyber was attacked as a case study, using an electromagnetic (EM) side-channel approach.
A way of turning a message recovery attack to a secret key recovery attack was proposed,
using e.g. 184 traces for 98% success rate. In [UXT+21] another power/EM-based secret
key recovery attack on some round 3 candidates KEMs was presented. In [GJN20] similar
ideas were used for timing attacks.

In [RBRC20], the authors improve the key recovery attacks on unprotected implemen-
tations of three NIST PQ finalists, including Saber. They also discuss how to attack
masked implementations by attacking shares individually. However, no actual attack on
masked Saber is performed. Finally, in [NDGJ21] a higher-order side-channel attack on a
the masked implementation of the CCA secure Saber KEM is demonstrated. It recovers
both the session key and the long-term secret key using a deep neural network trained at
the profiling stage. The secret key recovery attack requires 24 traces.
Contributions: In this paper, we present the first side-channel attack on a masked and
shuffled implementation of CCA secure Saber KEM. Until now, these countermeasures
combined together were believed to provide an adequate protection against power and EM
analysis.

We show how to recover the session key and the long-term secret key by deep learning-
based power analysis from 257×N and 24× 257×N traces, respectively, captured using
the execution of the decapsulation algorithm, where N is the number of repetitions of
the same measurement. The value of N depends on the implementation, environmental
factors, acquisition noise, etc.; in our experiments, N = 15 is enough to succeed. Following
the method presented in [NDGJ21], our deep neural networks learn a higher-order model
directly, without explicitly extracting random masks at each execution. However, since
we attack an implementation in which the message bits are shuffled, it is not possible
to directly recover the message from a signed trace, as in [NDGJ21]. Only the message
Hamming weight (HW) can be derived. To find the order of message bits, traces for 256
additional decapsulations have to be captured and analyzed for each chosen chiphertext
(hence ×257).

We quantify the success rate of the message HW recovery as a function of the success
rate of a single message bit recovery and show that the latter should be of the order of
0.999 to recover the message HW with a high probability. To increase the success rate of a
single message bit recovery, we introduce a novel approach for training neural networks
which uses a combination of traces from the profiling device with a known shuffling order
and traces from the device under attack captured for all-0 and all-1 messages. We also use
an ensemble of models to increase the success rate of message recovery from the derived
HWs.

The remainder of this paper is organized as follows. Section 2 gives the necessary
background on Saber algorithm and profiled side-channel attacks. Section 3 describes
the implementation of masked and shuffled Saber KEM which is used in our experiments.
Section 4 presents equipment for trace acquisition. Section 5 shows how points of interest
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Saber.PKE.KeyGen()
1: seedA ← U({0, 1}256)
2: A = gen(seedA) ∈ Rl×lq

3: r ← U({0, 1}256)
4: s← βµ(Rl×1

q ; r)
5: b = ((AT s + h) mod q)� (εq − εp) ∈ Rl×1

p

6: return (pk .= (seedA,b), sk .= s)

Saber.PKE.Dec(s, (cm,b′))
1: v = b′T (s mod p) ∈ Rp
2: m′= ((v +h2 −2εp−εT cm) mod p)� (εp−1)∈ R2
3: return m′

Saber.PKE.Enc((seedA,b),m; r)
1: A = gen(seedA) ∈ Rl×lq

2: if r is not specified then
3: r ← U({0, 1}256)
4: end if
5: s′ ← βµ(Rl×1

q ; r)
6: b′ = ((As′ + h) mod q) � (εq−
εp) ∈ Rl×1

p

7: v′ = bT (s′ mod p) ∈ Rp
8: cm =((v′+h1−2εp−1m) mod p)�

(εp − εT ) ∈ RT
9: return (c = (cm,b′))

Figure 1: Description of Saber.PKE from [D+20].

Saber.KEM.KeyGen()
1: (seedA,b, s) = Saber.PKE.KeyGen()
2: pk = (seedA,b)
3: pkh = F(pk)
4: z ← U({0, 1}256)
5: return (pk = (seedA,b), sk = (z, pkh, pk, s))

Saber.KEM.Encaps((seedA,b))
1: m← U({0, 1}256)
2: (K̂, r) = G(F(pk),m)
3: c = Saber.PKE.Enc(pk,m; r)
4: K = H(K̂, c)
5: return (c,K)

Saber.KEM.Decaps((z, pkh, pk, s),c)
1: m′ = Saber.PKE.Dec(s, c)
2: (K̂′, r′) = G(pkh,m′)
3: c′ = Saber.PKE.Enc(pk,m′; r′)
4: if c = c′ then
5: return K = H(K̂′, c)
6: else
7: return K = H(z, c)
8: end if

Figure 2: Description of Saber.KEM from [D+20].

are located in side-channel measurements. Sections 6 and 7 describe the profiling and
the attack stages, respectively. Section 8 summarizes the experimental results. Section 9
concludes the paper and describes future work.

2 Background
This section briefly describes Saber and profiled side-channel attacks. A more detailed
description of Saber can be found in [D+20].

2.1 Saber design description
Saber is a package of cryptographic algorithms whose security relies on the hardness of the
Module Learning With Rounding problem (Mod-LWR) [D+20]. It contains a CPA-secure
public key encryption scheme, Saber.PKE, and a CCA-secure key encapsulation mechanism,
Saber.KEM, based on a post-quantum version of the Fujisaki-Okamoto transform.

Pseudocodes of Saber.KEM and Saber.PKE are shown in Fig. 1 and 2, respectively.
We follow the notation of [NDGJ21].

Let Zq be the ring of integers modulo q and Rq be the quotient ring Zq[X]/(Xn + 1).
The rank of the module is denoted by l. The rounding modulus is denoted by p.

The notation x ← χ(S) stands for denote sampling x according to a distribution χ over
a set S. The uniform distribution is denoted by U . The centered binomial distribution with
parameter µ is denoted by βµ, where µ is an even positive integer. The term βµ(Rl×kq ; r)
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generates a matrix in Rl×kq where the coefficients of polynomials in Rq are sampled in a
deterministic manner from βµ using seed r.

The functions F , G, and H are SHA3-256, SHA3-512 and SHA3-256 hash functions,
respectively. The gen is an extendable output function which is used to generate a
pseudorandom matrix A ∈ Rl×lq from seedA. It is instantiated with SHAKE-128.

The bitwise right shift operation is denoted by “�”. It is extendable to polynomials and
matrices by performing the shift coefficient-wise. To allow for an efficient implementation,
Saber design uses power of two moduli q, p, and T , namely q = 2εq , p = 2εp , and
T = 2εT . In order to implement rounding operations by a simple bit shift, three constants
are used: polynomials h1 ∈ Rq and h2 ∈ Rq with all coefficients being 2εq−εp−1 and
2εp−2 − 2εp−εT−1 + 2εq−εp−1, respectively, and a constant vector h ∈ Rl×1

q in which each
polynomial is equal to h1.

In the round 3 Saber document [D+20], three sets of parameters are proposed for
the security levels of NIST-I, NIST-III, and NIST-V: LightSaber, Saber and FireSaber,
respectively. All results presented in this paper are for Saber, but it is trivial to extend
them to the other versions. Saber uses n = 256, l = 3, q = 213, p = 210, T = 24, and µ = 8.
Its decryption failure probability is bounded by 2−136.

2.2 Profiled side-channel attacks
Side-channel attacks can be carried out in two settings: profiled and non-profiled. Profiled
attacks first learn a leakage profile of the targeted cryptographic algorithm’s implementation
using a device similar to the device under attack, called profiling device. The profiling
can be done by creating a template [APSQ06, CPM+18, HGA+19], or training a neural
network model [MPP16, CDP17, KPH+19, BFD20]. Then, the resulting template/model
is used to recover the secret variable, e.g. the key, from the device under attack [MPP16].
Non-profiled attacks attack directly [Tim18].

Profiled side-channel attacks typically assume that:

1. The attacker has at least one profiling device similar to the device under attack
which runs the same implementation.

2. The attacker has a full control over the profiling device.

3. The attacker has a direct physical access to the device under attack to measure
side-channel signals for chosen inputs.

3 Implementation of masked and shuffled Saber
All experiments presented in this paper are performed on a masked and shuffled im-
plementation of Saber which we created ourselves. To the best of our knowledge, no
implementation protected by both countermeasures are available at present.

We used the masked implementation of Saber presented in [BDK+20] as a base and
added shuffling on the top as described below.

3.1 Masking
Masking is a well-known countermeasure against power/EM analysis [CJRR99]. First-
order masking protects against attacks leveraging information in the first-order statistical
moment. A first-order masking partitions any sensitive variable x into two shares, x1
and x2, such that x = x1 ◦ x2, and executes all operations separately on the shares. The
operator “◦” depends on the type of masking, e.g. it is “+” is arithmetic masking and “⊕”
is Boolean masking.
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Carrying out operations on the shares x1 and x2 prevents leakage of side-channel
information related to x as computations do not explicitly involve x. Instead, x1 and
x2 are linked to the leakage. Since the shares are randomized at each execution of
the algorithm, they are not expected to contain exploitable information about x. The
randomization is usually done by assigning a random mask r to one share and computing
the other share as x− r for arithmetic masking or x⊕ r for Boolean masking.

A challenge in masking lattice-based cryptosystems is the integration of bit-wise
operations with arithmetic masking which requires methods for secure conversion between
masked representations. Saber can be efficiently masked due to specific features of its
design: power-of-two modulo q, p and T , and limited noise sampling of LWR. Due to the
former, modular reductions are basically free. The latter implies that only the secret key s
has to be sampled securely. In contrast, LWE-based schemes also need to securely sample
two additional error vectors.

Masking duplicates most linear operations, but requires more complex routines for non-
linear operations. The first-order masked implementation of Saber presented [BDK+20]
uses a custom primitive for masked logical shifting on arithmetic shares, called poly_A2A(),
and an adapted masked binomial sampler from [SPOG19]. Particular attention is de-
voted in [BDK+20] to the protection of the decapsulation algorithm since it involves
operations with the long-term secret key s. At its first step (see Saber.KEM.Decaps()
in Fig. 2) the decapsulation algorithm calls Saber.PKE.Dec() to decrypt the input ci-
phertext c. Fig. 3 shows the implementation of Saber.PKE.Dec() from [BDK+20] called
indcpa_kem_dec_masked().

3.2 Shuffling
Shuffling is another well-known countermeasure against power/EM analysis. We use the
modernized version of the Fisher-Yates (FY) algorithm [Dur64] which generates a random
permutation of a finite sequence. The generated sequence is used as the loop iterator
to index the inner loop function’s data processing. This effectively scrambles the order
in which the elements of an array are processed as opposed the linear sequence of a
non-shuffled loop. Shuffling makes power analysis and neural network training significantly
more difficult as this removes the linear correlation of index sequence with time.

Figure 3 shows our masked and shuffled implementation of Saber.PKE.Dec() called
indcpa_kem_dec_masked_and_shuffled().

We implement bitwise shuffling of a 256-bit message in the primitive poly_A2A()
by calling the FY_Gen() function to randomly permute a list of the same length (see
poly_A2A_shuffled()). The shuffled values (in the range from 0 to 255) are then subse-
quently referenced at the start of every loop iteration, resulting in randomized execution
order.

In a similar way, we implement bytewise shuffling of a message in the procedure
POL2MSG() (see POL2MSG_shuffled()) by calling the FY_Gen() to randomly permute a
list of the length equal to the number of bytes, 32.

3.3 Known vulnerabilities
In previous work, a number of vulnerabilities were discovered in the non-masked LWE/LWR-
based PKE/KEMs [ACLZ20, SKL+20, RRCB20, RBRC20]. One is Incremental-Storage
vulnerability resulting from an incremental update of the decrypted message in memory
during message decoding [RBRC20]. The decoding function iteratively maps each polyno-
mial coefficient into a corresponding message bit, thus computing the decrypted message
one bit at a time.

It was further observed in [RBRC20] that a non-masked implementations of the decoding
function contains two points with exploitable Incremental-Storage vulnerability. The first
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void indcpa_kem_dec_masked(uint16_t
sksv1[], uint16_t sksv2[], char *ct,
char m1[], char m2[])
uint16_t pksv[K][N];
uint16_t v1[N]={0}, v2[N]={0};

1: SABER_un_pack(&ct,v1);
2: for (i = 0; i < N; i++) do
3: v1[i] = h2-(v1[i]«(EP-ET));
4: end for
5: BS2POLVEC(ct,pksv,P);
6: InnerProd(pksv,sksv1,P-1,v1);
7: InnerProd(pksv,sksv2,P-1,v2);
8: poly_A2A(v1,v2);
9: POL2MSG(v1,m1);
10: POL2MSG(v2,m2);

void poly_A2A(uint16_t A[N], uint16_t
R[N])
uint32_t A, R;

1: for (i = 0; i < N; i++) do
2: A = A[i]; R = R[i];
3: ... /* processing */
4: A[i] = A; R[i] = R;
5: end for

void FY_Gen(uint8_t* fylist, int max)

1: for (i = 0; i < max; i++) do
2: fylist[i] = i
3: end for
4: for (i = max-1; i >= 0; i--) do
5: int index = rand() % max;
6: uint8_t temp = fylist[index];
7: fylist[index] = fylist[i];
8: fylist[i] = temp;
9: end for

void indcpa_kem_dec_masked_and_shuffled
(uint16_t sksv1[], uint16_t sksv2[],
char *ct, char m1[], char m2[])
uint16_t pksv[K][N];
uint16_t v1[N]={0}, v2[N]={0};

1: SABER_un_pack(&ct,v1);
2: for (i = 0; i < N; i++) do
3: v1[i] = h2-(v1[i]«(EP-ET));
4: end for
5: BS2POLVEC(ct,pksv,P);
6: InnerProd(pksv,sksv1,P-1,v1);
7: InnerProd(pksv,sksv2,P-1,v2);
8: poly_A2A_shuffled(v1,v2);
9: POL2MSG_shuffled(v1,m1);
10: POL2MSG_shuffled(v2,m2);

void poly_A2A_shuffled(uint16_t A[N],
uint16_t R[N])
uint8_t fylist[256];
uint32_t A, R;

1: FY_Gen(fylist, 256);
2: for (i = 0; i < N; i++) do
3: y = fylist[i]
4: A = A[y]; R = R[y];
5: ... /* processing */
6: A[y] = A; R[y] = R;
7: end for
void POL2MSG_shuffled(uint16_t *v, chair
*m)
uint8_t fylist[32];
1: FY_Gen(fylist, 32);
2: for (j = 0; j < BYTES; j++) do
3: y = fylist[j]
4: m[y] = 0;
5: for (i = 0; i < 8; i++) do
6: m[y] = m[y]|(v[8*y+i]«i);
7: end for
8: end for

Figure 3: The masked implementation of Saber.PKE.Dec() from [BDK+20] (left) and the
presented masked and shuffled implementation of Saber.PKE.Dec() (right).
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one is where the message bits are computed and stored in a 16-bit memory location in an
unpacked fashion. Since the memory location can take only two possible values, 0 or 1, an
attacker can recover the message bit by distinguishing between 0 and 1. The second point
is in POL2MSG() procedure where the decoded message bits are packed into a byte array in
memory.

In [NDGJ21] it was demonstrated that, despite partitioning the message into two shares
in a first-order masked implementation of Saber, the leakage point in POL2MSG() procedure
can still be exploited. In addition, a new the leakage point in poly_A2A() procedure was
discovered (highlighted in red in Figure 3). The attacks presented in this paper are based
on the corresponding point in poly_A2A_shuffled()) (highlighted in red in Figure 3).

4 Equipment for trace acquisition
The equipment we use for trace acquisition consists of the ChipWhis- perer-Lite board,
the CW308 UFO board and two CW308T-STM32F4 target boards.

The ChipWhisperer is a hardware security evaluation toolkit based on a low-cost open
hardware platform and an open-source software [New]. It can be used to measure power
consumption and to make communication between the target device and the computer
easier. Power is measured over a shunt resistor connected between the power supply and
the target device. ChipWhisperer-Lite employs a synchronous capture method, which
greatly improves trace synchronization while also lowering the required sample rate and
data storage.

The CW308 UFO board is a general-purpose platform for evaluating multiple tar-
gets [CW3]. The target board is plugged into a dedicated U connector.

The target board CW308T-STM32F4 contains a 32-bit ARM Cortex-M4 CPU with
STM32F415-RGT6 device. The board operates at 24 MHz and it is sampled at 24 MHz,
i.e. 1 point per clock cycle.

In our experiments, the Cortex-M4 is programmed with the masked and shuffled Saber
implementation described in the previous section. The implementation is compiled with
arm-none-eabi-gcc at the highest level of compiler optimization -O3 (recommended
default) which is typically the most difficult to break by side-channel analysis [SKL+20].

5 Locating points of interest
The attacks on unprotected implementations of LWE/LWR-based KEMs [RRCB20,
SKL+20] typically locate leakage points in side-channel measurements using techniques
such as Test Vector Leakage Assessment (TVLA) [GJJR11], or Correlation Power Anal-
ysis (CPA). However, such a method is not applicable to a protected implementation
since masked implementations change random masks for each execution and shuffled
implementations change shuffling order for each execution.

In this section, we describe our method for locating points of interest in a masked and
shuffled implementation of Saber. Fig. 4(a) shows a power trace obtained by averaging 50K
measurement made during the execution of Saber.KEM.Decaps() for random ciphertexts.
We can clearly see different blocks with different structure. Our aim is poly_A2A()
procedure which processes 256 message bits one-by-one. The segment of Fig. 4(a) marked
by two red lines is a possible candidate. By zooming in, see Fig. 4(b) and (c), one can
verify that the number of repeating peaks is indeed 256.

By measuring the distance between the peaks, we can find that the processing of one
bit by poly_A2A() takes 51 points. This parameter is referred to as bit_offset in the
sequel. Since for poly_A2A() the shares A[i] and R[i] are processed immediately following
each other (see line 4 of poly_A2A() in Fig. 3), bit_offset contains both shares.
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1 bit 

(b)  

(c)  

(a)   

Figure 4: (a) A power trace representing the execution of the first step of
Saber.KEM.Decaps() (average of 50K measurements sampled with decimation 15); (b) A
detailed view of poly_A2A(v1,v2) (sampled with decimation 1); (d) The first 15 bits of
poly_A2A(v1,v2).

By locating the first peak, we can find the starting point of poly_A2A() procedure.
This parameter is referred to as offset. Note that we do not need to know neither the value
of a random mask, nor the shuffling order to compute the offset and bit_offset.
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Table 1: The MLP architecture.
Layer type (Input, output) shape # Parameters
Batch Normalization 1 (90, 90) 360
Dense 1 (90, 128) 11648
Batch Normalization 2 (128, 128) 512
ReLU (p128, 128) 0
Dense 2 (128, 32) 4128
Batch Normalization 2 (32, 32) 128
ReLU (32, 32) 0
Dense 3 (32, 16) 528
Batch Normalization 2 (16, 16) 64
ReLU (16, 16) 0
Dense 4 (16, 1) 17
Softmax (1, 1) 0
Total parameters: 17,385
Trainable parameters: 16,853

6 Profiling stage
The aim of profiling is to construct a neural network model capable of distinguishing
between the message bit values ‘0’ and ‘1’. At the attack stage, we use this model to count
the number of ‘1’s in the message is order to determine its HW.

We use neural networks with a multilayer perceptron (MLP) architecture shown in
Table 1. It is the same as the one in [NDGJ21] except for the input size. This architecture
was selected using the grid search algorithm [GBC16] which trains a model for every joint
specification of hyperparameter values in the Cartesian product of the set of values for
each individual hyperparameter.

During training, we use Nadam optimizer, which is an extension of RMSprop with
Nesterov momentum, with a learning rate of 0.001 and a numerical stability constant
epsilon=1e-08. Binary cross-entropy is used as a loss function. The training is run for
a maximum of 100 epochs, with a batch size of 128 and an early stopping. 70% of the
training set is used for training, and 30% is used for validation.

Unlike [NDGJ21] where eight models were trained, one for each bit position of a byte,
we train a single model capable of recovering all message bits. This is accomplished by
composing the training set as a union of trace intervals corresponding to individual bit
processing. As a result, we get a universal model which has “learned” features for all 256
bits. Using a cut-and-join technique like this, we can increase the size of the training set
by a factor of 256 without having to capture 256 times as many traces. For example, the
2M training set used in our experiments is composed from 7.8K captured traces. On an
ARM Cortex-M4 running at 24MHz, it takes less than 17 minutes to capture the latter
and 3 days to capture the former.

The cut-and-join technique is applicable to poly_A2A() leakage point because poly_A2A()
procedure processes all message bits in the same way during their storage in memory.
Thus, traces representing the execution of poly_A2A() appear identical for all message bits
except the first and last, as we can see from Fig 5. Because of the Cortex-M4’s three-stage
pipeline, the next instruction begins before the previous instruction has finished. As a
result, the power consumed during the processing of the first and the last bits differs from
the power consumed during the processing of other bits.

Similarly to [NDGJ21], we defeat masking by training models on traces containing
the bits of both shares labelled by the value of the corresponding message bit. Thus, the
models are capable of recovering the message bits directly, without explicitly extracting
the mask. However, since the message bits are also shuffled in our case, we cannot train on
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Figure 5: Power traces depicting the precessing of message bits 0, 1 and 255 by poly_A2A()
(average of 10K measurements). The traces for the remaining bits have the same shape as
bit 1.

traces captured from the device under attack for random messages, as in [NDGJ21] because
the order of bits (and thus training labels) is unknown. Instead, we train on a combination
of traces from the profiling device running an implementation with deactivated shuffling,
and traces from the device under attack captured for all-0 and all-1 messages. Obviously,
the labels of all bits are the same for all-0 and all-1 messages. However, as we show in the
experimental results section, training on only all-0 and all-1 messages does not produce
good results. Traces of all-0 and all-1 messages do not allow the neural network to learn all
possible features due to the above-mentioned impact of the previous and next instructions
on power consumption.

The pseudocode of the profiling algorithm is shown in Fig. 6. TrainModel() takes as
input the number of traces to be captured, τ , the neural network’s input size, in_size,
and a parameter k ∈ I, I = {x ∈ R | 0 ≤ x ≤ 1}, which defines which fraction of traces is
captured from the profiling device, Dp. For example, k = 0.8 means that 80% of traces
are from Dp. The rest of traces is captured from the device under attack, Da, for all-0
and all-1 messages in equal parts, r = (1− k)/2.

At step 1, ComposeTrainingSet() procedure is called to create a set of training traces,
T , and the corresponding set of labels, L. In ComposeTrainingSet(), k∗τ messages are
selected at random and encrypted by a fixed public key1. The profiling device Dp, which is
running an implementation with deactivated shuffling, is used to decapsulate the resulting
set of ciphertexts. During its execution, the power traces are captured.

Similarly, τ ∗r all-0 and τ ∗r all-1 messages are generated and encrypted. The device
under attack Da is used to decapsulate the resulting ciphertexts, and the power traces are
captured (step 4-8).

Next, the initial offset, offset, and the distance between the message bits in T ′,
bit_offset, are determined as described in Section 5. Finally, the cut-and-join technique
is used to divide T ′ into intervals representing individual message bit processing and to

1It is also possible to train with different keys. This does not affect the outcome.
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TrainModel(τ , in_size, k)
1: (T ,L) = ComposeTrainingSet(τ , in_size, k)
2: Train NN : Rin_size → I on (T ,L)
3: return NN

ComposeTrainingSet(τ , in_size, k)
1: m = ∅,T ′ = ∅
2: M = {0, 1}256

3: (m,T ′) = CaptureTrace(M ,m,T ′, Dp, 1, k∗τ)
4: r = (1− k)/2
5: M = {0}256

6: (m,T ′) = CaptureTrace(M ,m,T ′, Da, k∗τ + 1, r∗τ)
7: M = {1}256

8: (m,T ′) = CaptureTrace(M ,m,T ′, Da, (k + r)∗τ + 1, r∗τ)
9: Determine initial offset and bit_offset from T ′

10: T = ∅, L = ∅
11: for each b ∈ {0, 1, . . . , 255} do
12: start = offset + b∗bit_offset
13: stop = start + in_size
14: T = T ∪ T ′[:, start :stop]
15: L = L ∪ { l(Ti) ∈ {0, 1} | l(Ti) = mi[b],∀i ∈ {1, . . . , τ}}
16: end for
17: return (T ,L)
CaptureTrace(M ,m,T ′, D, a, b)
1: for each i ∈ {a, a+ 1, . . . , a+ b} do
2: mi ← U(M)
3: m = m ∪ {mi}
4: ri ← U({0, 1}256)
5: pki ← U({0, 1}256)
6: ci = Saber.PKE.Enc(pki,mi; ri)
7: Ti ⇐ D[Saber.KEM.Decaps(ci)]
8: T ′ = T ′ ∪ {Ti}
9: end for
10: return (m,T ′)

Figure 6: Profiling algorithm.
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Table 2: Pairs (k1, k0) which are used to derive secret key coefficients s[i] from eight
message bits [NDGJ21].

s[i] The message bit value for the pair (k1, k0)
(186,0)(293,7)(311,7)(615,2)(613,2)(890,4)(903,4)(199,0)

-4 0 1 1 1 1 0 0 0
-3 1 1 1 0 0 0 0 1
-2 1 0 0 1 1 0 0 1
-1 0 0 0 0 0 0 0 0
0 0 1 1 0 0 1 1 0
1 0 0 0 1 1 1 1 0
2 1 0 0 0 0 1 1 1
3 1 1 1 1 1 1 1 1
4 1 1 0 1 0 0 1 0

generate the set of labels L containing the corresponding message bit values.

7 Attack Stage
To defeat the combined masked and shuffled countermeasures, we make use of the existing
key and message recovery techniques presented in [NDGJ21] and [RBRC20] for masked-
only and shuffled-only LWE/LWR-based KEMs, respectively, and introduce two new
algorithms.

In this section, we outline the main steps of the proposed secret and session key recovery
approaches, then describe the key and message recovery techniques from from [NDGJ21]
and [RBRC20], and finally present the new algorithms.

7.1 Main steps
Secret key recovery:

1. Construct 24 chosen ciphertexts c1, . . . , c24 as described in Section 7.2.

2. For each ci, i ∈ {1, . . . , 24}, construct 256 ciphertexts ci0 , . . . , ci255 such that cij
decrypts to m′ij = Saber.PKE.Dec(s, cij ) which is equal to the message m′i =
Saber.PKE.Dec(s, ci) with the jth bit is flipped, for j ∈ {0, . . . , 255}. The procedure
is described in Section 7.3.

3. For each of 24× 257 resulting ciphertexts, acquire a power trace during the decap-
sulation of the ciphertext by the device under attack. Repeat N times for each
ciphertext.

4. Use the acquired 24× 257×N power traces to recover the messages m′i contained in
the ciphertexts ci, for all i ∈ {1, . . . , 24}, using RecoverMessage() algorithm presented
in Section 7.4.

5. Derive the secret key from the 24 recovered messages m′1, . . . , m′24 as described in
Section 7.2.

Session key recovery: Assume that the adversary has a properly generated ciphertext c
which is decapsulated by the device under attack. The adversary follows the steps (2)-(5)
of the secret key recovery algorithm described above to extract the message m′ contained
in c from 257 ×N power traces. Given m′, he/she computes (K̂ ′, r′) = G(pkh,m′) and
gets the session key as K = H(K̂ ′, c).
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7.2 Chosen ciphertext construction
In [NDGJ21] an approach based on error-correcting codes (ECC) was introduced to recover
the secret key from masked Saber. We use the same chosen ciphertexts as in [NDGJ21]
for recovering the secret key from masked and shuffled Saber.

The ciphertexts are constructed as cj = (cm,b′) where cm = k0
∑255
i=0 x

i ∈ RT and

b′ =


(k1, 0, 0) ∈ R3×1

p for j = {1, . . . , 8},
(0, k1, 0) ∈ R3×1

p for j = {9, . . . , 16},
(0, 0, k1) ∈ R3×1

p for j = {17, . . . , 24},

where the pairs (k0, k1) are listed in Table 2. In this table, the ith coefficient of the secret
key s, s[i], is mapped into a codeword of the [8, 4, 4]2 extended Hamming code composed
from the eight message bits. The first 256 secret key coefficients are derived from messages
recovered from c1, . . . , c8, the second 256 coefficients - from c9, . . . , c16, and the last 256
coefficients - from c17, . . . , c24.

The approach in [NDGJ21] works because decryption of (cm,b′) yields the message

m′ = ((b′T (s mod p) + h2 − 2εp−εT cm) mod p)� (εp − 1) ∈ R2,

whose ith bit, m′[i], is a function of the triple (k0, k1, s[i]):

m′[i] = ((k1 · (s[i] mod p) +H − 2εp−εT k0) mod p)� (εp − 1), (1)

where H = 2εp−2 − 2εp−εT−1 + 2εq−εp−1. Thus, m′[i] leaks information about s[i].

7.3 Bit-flip technique
In [RBRC20] a technique called bit-flip was introduced to recover the message m′ contained
in ciphertext c which is decapsulated by the device under attack implementing a shuffled
LWE/LWR-based KEM algorithm. We use a “fuzzy” version of this technique, presented
in Section 7.4, for recovering messages contained in 24 chosen ciphertexts which are
decapsulated by the device under attack implementing masked and shuffled Saber.

Given a ciphertext c = (cm,b′), the bit-flip technique [RBRC20] constructs 256
ciphertexts cj , j ∈ {0, . . . , 255}, in which the value of the center of the integer ring Zq is
subtracted from the jth coefficient of cm. Since the message polynomial is only additively
hidden within the ciphertext, this results in a ciphertext decrypting m′j which is equal
m′ = Saber.PKE.Dec(s, c) with jth bit flipped.

For c and each cj , a side-channel HW classifier is applied to find the HW of m′ and each
m′j , for j ∈ {0, . . . , 255}. In [RBRC20], the HW classifier is constructed by the template
approach. From the obtained HWs, the message m′ is recovered bit-by-bit as follows:

m′[i] =
{

0 if HW (m′j [i]) = HW (m′[i]) + 1
1 if HW (m′j [i]) = HW (m′[i])− 1. (2)

7.4 Message HW recovery algorithm
In this section, we present the algorithm RecoverHW() which we use to recover HW of

messages contained in 24 chosen ciphertexts and their bit-flipped versions. Its pseudo-code
is shown in Fig. 7.

RecoverHW() takes as input the neural network trained at the profiling stage, NN ,
the neural network’s input size, in_size, the initial offset, offset, the distance between the
bits, bit_offset, the ciphertext c for which the message HW has to be recovered, and the
degree of repetition of the same measurement, N .
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RecoverHW(NN,in_size, offset, bit_offset, c,N)
1: for each i ∈ {1, . . . , N} do
2: T̂i ⇐ Da[Saber.KEM.Decaps(c)]
3: HWi = 0
4: for each b ∈ {0, . . . , 255} do
5: start = offset + b∗bit_offset
6: stop = start + in_size
7: sb = NN (T̂ [start:stop])
8: if sb > 0.5 then
9: HWi = HWi + 1
10: end if
11: end for
12: end for
13: N ′ = RemoveOutliers(HW1, . . . ,HWN )
14: HW = Median(HW1, . . . ,HWN ′)
15: return HW

Figure 7: Message HW recovery algorithm.

First, N trials are performed to recover the HW of the message m′ contained in c. The
device under attack is used to decapsulate c, and a power trace T̂i is captured during its
execution (step 2). The interval corresponding to the processing of b in T̂i is located based
on offset and bit_offset for each of the 256 bit positions b ∈ {0, 1, . . . , 255} (representing
the message bits in an unknown shuffled order) (steps 5-6). This interval is fed into the
neural network NN trained during the profiling stage to determine whether the message
bit in position b has a value of 0’ or 1’. If the resulting score sb is greater than 0.5 (i.e. ‘1’
has a higher probability), the HW is incremented. Otherwise, the HW is not changed.

The HW is then determined by first removing the outliers and then computing the
median of the remaining HWs (steps 13-14). An outlier is defined as a HW that differs
from the median HW by more than 10%. We explored a variety of combining methods.
The one we present consistently outperforms others in our experiments.

7.5 Message recovery algorithm
In this section, we present a ‘fuzzy” version of the bit-flip technique, RecoverMessage().

We construct 256 ciphertexts containing bit-flipped messages in the same way as in the
original method [RBRC20]. However, we take a different approach to deciding the final
message bit values. We also quantify the success rate of message HW recovery as a function
of the success rate of single bit recovery.

The pseudo-code is shown in Fig. 8. RecoverMessage() takes as input the same
parameters as RecoverHW() algorithm. First, the HW of m′ contained in c is recovered
by calling RecoverHW(). Then, the following loop is repeated 256 times: For each
i ∈ {0, . . . , 255}, the ciphertext ci is constructed using BitFlip(), i.e. the value of the
center of Zq is subtracted from the ith coefficient of c. The HW of m′i contained in ci is
recovered by calling RecoverHW(). If HW(m′i) > HW(m′), the ith bit of m′ is assigned
‘0’. If HW(m′i) < HW(m′), the ith bit of m′ is assigned ‘1’. Otherwise the ith bit of m′ is
assigned ‘2’ to indicate that the bit is not recovered correctly. In the experiments, we call
this case a detectable error.

Next we quantify the probability to recover the message HW as a function of the
probability to recover the single message bit. The property below assumes that the
message is balanced, i.e. has equal number of ‘1’s and ‘0’s.
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RecoverMessage(NN,in_size, offset, bit_offset, c,N)
1: HW(m′) = RecoverHW(NN ,in_size, offset, bit_offset, c,N)
2: for each i ∈ {0, . . . , 255} do
3: ci = BitFlip(c, i)
4: HW(m′i) = RecoverHW(NN ,in_size, offset, bit_offset, ci, N)
5: if HW(m′i) > HW(m′) then
6: m′[i] = 0
7: else
8: if HW(m′i) < HW(m′) then
9: m′[i] = 1
10: else
11: m′[i] = 2 /* error detected */
12: end if
13: end if
14: end for
15: return m′

Figure 8: Message recovery algorithm.

Property 1. Let m be a balanced n-bit binary message. If p is the success rate of single
bit recovery and bit errors are mutually independent events, then the success rate of
message HW recovery is given by:

pHW =
n/2∑
i=0

(
n/2
i

)2
pn−2i(1− p)2i (3)

Proof. The proof is based on the fact that, if, for any 0 ≤ k ≤ n/2, k message bits change
as 0→ 1 and other k message bits change as 1→ 0, then the message HW does not change.

A n-bit balanced binary message has n/2 ‘0’s and n/2 ‘1’s. There are
(
n/2
k

)
choices to

select k elements from a set of size n/2. Thus, for a fixed k, the number of possible 2k-bit
errors in which k bits flip in one direction and the rest of bits flip in another direction is(
n/2
k

)2
. Since the probability of a 2k-bit error in an n-bit message is pn−2k(1− p)2k, we

get (3).

Using Property 1 we can estimate the success rate of single bit recovery required to
recover the message HW. Table 3 lists some examples. According to the table, the success
rate of single bit recovery should be of the order of 0.999 to recover the message HW with
a high probability.

Table 3: Success rate of 256-bit message HW recovery.
p pHW

0.99 0.279883
0.999 0.879911
0.9999 0.987280
0.99999 0.998719

8 Experimental results
In the experiments, we use two identical CW303 ARM devices, DP and DA. DP is the
profiling device. We have complete control over DP , which means we can reload it with a
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Table 4: The impact of training set composition on message recovery success rate.
Training # Detected (d) and undetected (u) errors in the test set

set 0 1 2 3 4 5 6 7 8 9 Average

DP : DA d u d u d u d u d u d u d u d u d u d u d u

0:100 7 98 4 101 5 104 6 102 4 111 8 100 7 102 0 113 10 86 12 75 6.3 99.2
20:80 3 138 0 127 0 125 0 126 0 126 0 129 1 129 0 114 4 124 3 133 1.1 127.1
50:50 0 142 0 128 0 126 0 126 0 126 0 131 0 130 0 114 0 138 0 144 0 130.5
80:20 1 1 2 3 0 0 0 2 2 3 0 1 0 0 2 5 0 4 0 2 0.7 2.1
100:0 0 1 1 4 2 2 1 4 3 5 0 4 1 4 2 24 0 1 1 0 1.1 4.9

different implementation, change its secret key, etc. DA is the device that is being attacked.
We use DA to capture traces for key recovery and a part of traces for training.

8.1 Message recovery

In this section we evaluate the impact of training set composition on the success rate of
RecoverMessage() algorithm.

We trained MLP models on trace sets of size 2M with varying proportions of DP and
DA traces, denoted by DP : DA. We tried five cases: DP : DA = {0:100, 20:80, 50:50,
80:20, 100:0}. The notation x : y means that x% of traces are from DP and y% are from
DA.

For each fraction DP : DA = x : y, we trained ten models with the architecture in
Table 1 using TrainModel() with input parameters τ = 2M and k = x/100 and selected
the best.

We tested the models on ten different ciphertexts created by encrypting a random
message with a random public key. To recover the message, 257×N = 5140 traces from
DA were captured for each ciphertext, for N = 20.

Table 4 lists the number of detected and undetected errors for each of the ten test
sets. Recall that detected errors are those for which RecoverMessage() returns “2” as the
message bit value. The ability to detect errors is very useful since e detected bit errors
can be handled by enumerating 2e possible choices, computing (K̂ ′, r′) = G(pkh,m′) and
then checking if c = Saber.PKE.Enc(pk,m′; r′).

We can see from Table 4 that the model trained on a combination of 80% of traces
from DP and 20% of traces from DA produces the best results. It seems that including a
small number of traces from the device under attack helps to mitigate the negative effect
of device variability on classification accuracy. The next best option is to train on all
of the traces from the profiling device. Its primary advantage is that profiling can be
completed prior to the attack. However, it is worth noting that, thanks to the cut-and-join
technique, we only need to capture 1.5K traces from DA to contribute 20% of traces to
the 2M training set, which takes less than 4 min. As a result, composing the training set
as 80:20 has no significant effect on physical access time to the device under attack.

Table 4 also shows that a single model trained on an 80:20 training set has no undetected
errors in only 2 out of 10 cases. It is possible to improve the success rate by increasing the
value of N ; for example, for N = 40, there are no undetected errors in all cases.

However, a larger N increases capture time for attack traces, which is undesirable.
Thus, in the experiments that follow, rather than increasing N , we use an ensemble of
models to improve the success rate of message recovery. The ensemble approach increases
training time, but this is not as critical as increasing physical access time to DA.
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Table 5: Success rate of key recovery (average for 10 tests)

N
# Models in
ensemble, k

# Errors Attack time
Detected Undetected Post-proc. Capture

20 11 0.8 0 32.9 min 5.6 h
123,360
traces

7 1.6 0 22.3 min
5 3.8 0 15.2 min
3 11.5 0.2 8.9 min

15 11 7 0 25.9 min 4.2 h
92,520
traces

7 8.2 0 18.2 min
5 12.4 0 12.5 min
3 29.7 2.4 7.2 min

10 11 21.8 0.4 19.4 min 3.2 h
61,680
traces

7 28.6 1.1 12.4 min
5 36.3 1.9 8.9 min
3 62.6 3.8 5.4 min

8.2 Secret key recovery
To evaluate the success rate of the secret key recovery attack, we captured ten test sets of
24× 257×N traces representing the decapsulation of ciphertexts constructed following
steps 1-3 of the procedure in Section 7.1, for N = 10, 15 and 20. Each test set was captured
for a different secret key.

To recover the secret messages contained in the ciphertexts, we use an ensemble of
models trained on a combination of 80% of traces from DP and 20% of traces from DA.
The ensemble method is known to be useful in side-channel analysis [WD20, PCP20].
Table 5 shows the results for ensembles of size k ∈ {3, 5, 7, 11}.

The output of an ensemble of k models is obtained as follows. For each j ∈ {0, 1, . . . , 255},
models that result in m′[j] = 2 (i.e. detected error) are excluded from voting, and then
the mean of the m′[j]s produced by the remaining models is computed. If the mean is ≤
0.5, the jth message bit is set to ‘0’; otherwise it is set to ‘1’. Finally, the secret key is
derived from the 24 recovered messages using the procedure in Section 7.1, step 5.

Since we use the ECC-based method [NDGJ21] which is able to correct single errors
and detects one additional error in the recovered message, we can mark the positions of
the detected incorrect key coefficients for later enumeration. With d detected incorrect key
coefficients, 9d enumerations are required to find the true key. For example, for N = 20
and V = 11, 90.8 ≈ 6 enumerations are required.

Undetected errors are positions that are not handled by the ECC. We determine them
by comparing the recovered key to the true key. One can see from the Table 5 that, for
N ≥ 15 and k ≥ 5, there are no undetected errors. Certainly, the values of N and k may
vary depending on the implementation, environmental conditions, acquisition method, etc.

The last two columns of Table 5 show the time required for capturing traces and
post-processing. Note that capture requires physical access to the device under attack,
whereas post-processing does not.

9 Conclusion
We demonstrated that it is possible to break a masked and shuffled implementation of
Saber KEM. These countermeasures, when combined, were thought to provide adequate
protection against power/EM analysis. The presented message and key recovery attacks
are not specific to Saber and might be applicable to other LWE/LWR-based PKE/KEMs.
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Future work includes designing stronger countermeasures for LWE/LWR-based PKE/
KEMs.
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