
SoK: Understanding BFT Consensus in the Age of Blockchains

Gang Wang
Email: email.gang.wang@gmail.com

Abstract—Blockchain as an enabler to current Internet infrastructure
has provided many unique features and revolutionized current distributed
systems into a new era. Its decentralization, immutability, and trans-
parency have attracted many applications to adopt the design philosophy
of blockchain and customize various replicated solutions. Under the hood
of blockchain, consensus protocols play the most important role to achieve
distributed replication systems. The distributed system community has
extensively studied the technical components of consensus to reach
agreement among a group of nodes. Due to trust issues, it is hard to
design a resilient system in practical situations because of the existence
of various faults. Byzantine fault-tolerant (BFT) state machine replication
(SMR) is regarded as an ideal candidate that can tolerate arbitrary faulty
behaviors. However, the inherent complexity of BFT consensus protocols
and their rapid evolution makes it hard to practically adapt themselves
into application domains. There are many excellent Byzantine-based
replicated solutions and ideas that have been contributed to improving
performance, availability, or resource efficiency. This paper conducts a
systematic and comprehensive study on BFT consensus protocols with a
specific focus on the blockchain era. We explore both general principles
and practical schemes to achieve consensus under Byzantine settings.
We then survey, compare, and categorize the state-of-the-art solutions to
understand BFT consensus in detail. For each representative protocol,
we conduct an in-depth discussion of its most important architectural
building blocks as well as the key techniques they used. We aim that
this paper can provide system researchers and developers a concrete
view of the current design landscape and help them find solutions to
concrete problems. Finally, we present several critical challenges and
some potential research directions to advance the research on exploring
BFT consensus protocols in the age of blockchains.

I. INTRODUCTION

Blockchain, as a core of many cryptocurrencies, has advanced as
a key disruptive innovation with the potential to revolutionize most
industries. Its key features of integrity, immutability, transparency,
and decentralization have attracted many applications to explore the
opportunities on the blockchain. Essentially, blockchain is a repli-
cated, decentralized, trustworthy, and immutable ledger technology,
so that data recorded on the blockchain cannot be deleted or modified,
and the correctness of data can be verified in a distributed and
decentralized manner. It allows a group of participating parties that
do not trust each other to provide trustworthy and immutable services
without the presence of a trusted intermediary [1]. Blockchain stands
in the tradition of distributed protocols for both secure multiparty
computation and replicated services for tolerating faults [2]. With
blockchain, a group of parties can act as a dependable and trusted
third party for maintaining shared states, mediating exchanges, and
providing secure computing engines [3]. Consensus is one of the most
important problems in any blockchain system, as in any distributed
systems where multiple nodes must reach an agreement, even in the
presence of faults. Many existing consensus algorithms are mostly
applicable to small-scale systems, such as the Practical Byzantine
Fault Tolerance protocol (PBFT) [4], which works well with fewer
than 20 participating nodes. However, when extending the same
protocol to a large-scale scenario, its performance may become
unacceptable or even totally unworkable.

G. Wang was with the University of Connecticut, Storrs, CT 06269 USA.

The consensus protocol is the core of blockchain to provide
agreement services, whose efficiency highly affects the performance
and scalability of a blockchain system. Without trusted intermediaries,
the parties of blockchain may behave arbitrarily and deviate from
the consensus procedures, in which we can literately consider them
in a Byzantine environment. Blockchain can benefit from many
technologies developed for reaching consensus, replicating state, and
broadcasting transactions, but in cases that network connectivity is
uncertain, nodes may crash or be subverted by an adversary. Though
there are many proof-based consensus protocols for blockchain assist-
ing to solve these issues, e.g., Proof-of-Work (PoW) in Bitcoin [5],
they are typically not energy efficient and may cause power starvation.
Fortunately, Byzantine fault-tolerant (BFT) state machine replication
(SMR) offers some opportunities to design consensus protocols that
can tolerate arbitrary faults [6]. Under the hood of BFT SMR, it
replicates the state of each replica among the replication system. The
capacity to tolerate arbitrary faults makes the BFT replicated system
a reality when building some practical and critical applications.
However, designing an actual BFT system is not an easy task, due to
its inherent complexity.

In general, a consensus protocol must meet three requirements [7]:
(a) Non-triviality. If a correct entity outputs a value v, then some
entity proposed v; (b) Safety. If a correct entity outputs a value v, then
all correct entities output the same value v; (c) Liveness. If all correct
entities initiated the protocol, then, eventually, all correct entities
output some value. Later, Fisher, Lynch, and Paterson (FLP) [8]
proved that a deterministic agreement protocol in an asynchronous
network cannot guarantee liveness if one entity may crash, even
when links are assumed to be reliable. This is the well-known FLP
impossibility for asynchronous systems. In an asynchronous system,
one cannot distinguish between a crashed node and a correct one.
Theoretically, deciding the full network’s state and deducing from
it an agreed-upon output is impossible. However, there exist some
extensions to circumvent the FLP result to achieve an asynchronous
consensus, e.g., randomization, timing assumptions, failure detectors,
and strong primitives [9]. Over two decades of development, BFT
algorithms have evolved into a wide range of protocols and appli-
cations. However, these progress were typically designed specifically
for some closed groups according to detailed application scenarios.

We distinguish two types of fault-tolerant consensus: crash fault-
tolerant consensus (aka. CFT) and non-crash (Byzantine) fault-
tolerant consensus (aka. BFT) [10]. Different failure models have
been considered in the literature, and they have distinct behaviors. In
general, a crash fault is where a machine simply stops all computation
and communication, and a non-crash fault is where it acts arbitrarily,
but cannot break the cryptographic primitives, such as cryptographic
hashes, MACs, message digests, and digital signatures. For instance,
in a crash fault model, nodes may fail at any time. When a node
fails, it stops processing, sending, or receiving messages. Typically,
failed nodes remain silent forever although some distributed protocols
have considered node recovery. Tolerating crash faults (e.g., corrupted
participating nodes) as well as network faults (e.g., network partitions

1



or asynchrony) reflects the inability of otherwise correct machines
to communicate with each other in a timely manner. This reflects
how a typical CFT fault affects the system functionalities. Classic
CFT and BFT explicitly model machine faults only. And these faulty
models can be combined with some orthogonal network models, e.g.,
synchronous or asynchronous networks. Thus, the related work can
be roughly classified into four categories: synchronous CFT [11],
asynchronous CFT [12], synchronous BFT [13], and asynchronous
BFT [14] [15]. The Byzantine setting is of relevance to security-
critical settings and traditional consensus protocols that tolerate crash
failures only.

BFT consensus protocols as the core part of blockchain directly
decide if the blockchain technology can be largely applied to practical
applications. In the literature, many works discuss various aspects
of Byzantine-related protocols, from theory to practical prototype
deployment. Although applying BFT protocols to the blockchain is
promising, it still faces many design challenges when taking the
specific requirements of blockchain into consideration. For example,
blockchain typically requires the ordered sequences of transactions in
the form of a block including the previous block hash, while some
generic BFT algorithms do not need to consider these requirements
and only require getting an agreement on the currently processed
requests. A systematic-level study on BFT consensus protocols for
blockchain is thus highly required. The goal of this paper is to provide
a comprehensive survey on the existing Byzantine-related protocols
and provide detailed discussions on existing solutions. We aim to
provide a concrete view on the state-of-the-art literature in the domain
of Byzantine-related consensus and help researchers and system
designers find solutions to their specific problems. For each surveyed
paper, we try our best to provide detailed information and some po-
tential issues when applying them to blockchain scenarios. Generally
speaking, there is some nice literature discussing BFT consensus
protocols in some general forms or from architectural/theoretical
perspectives. Correia et al. [16] discuss the essential components to
achieve consensus under (potential) Byzantine replicas, which focuses
on analyzing various Byzantine consensus primarily from a theoretical
perspective. Berger and Reiser [17] focus on improving scalability
issues for Byzantine consensus, whose application scenarios are for
blockchains and distributed ledgers. Bano et al. [18] discuss consensus
protocols in general in the age of blockchains, including classic
consensus protocols (e.g., Proof-of-X (PoX)) and BFT consensus
protocols. Distler [6] provides a complete survey of BFT SMR from a
system perspective, by adopting the modulation approach, to discuss
each key component in a BFT consensus procedure.

In general, BFT SMR protocols are often challenged for their
scalability in terms of replicas, and have not been thoroughly tested
for blockchain [19]. From a high-level perspective, most early works
focus on the theoretical parts of Byzantine replicated systems, e.g.,
proof and prototype design, while most recent works focus on the
implementation of these prototypes with new feature guarantees, such
as paralleling execution and responsiveness. According to current
works of literature and their main features, we classify them into
different categories. For each category, we present the state-of-the-
art literature works in that category and provide some discussion for
that category. As a systematization of knowledge on BFT consensus
protocols for blockchain, we also provide some research challenges
and research directions, which may help interested readers to explore
more in the corresponding areas.

The rest of this paper is organized as follows. Section II introduces

some preliminary information on Byzantine general problems, BFT
algorithms, distributed consensus, and distributed ledger technologies.
Section III discusses some commonly used systems models on
network’s synchrony and adversary ability. Section IV details the
existing Byzantine fault-tolerant protocols with clear classification
and description. Section V presents the essential components of BFT
protocols. Section VI outlines some well-known blockchain consensus
algorithms, including PoX and BFT. Section VII discusses some
challenges in applying BFT to blockchain. Section VIII provides
some discussion and future directions in this domain, and section IX
concludes this paper.

II. PRELIMINARIES

This section provides some preliminary information on Byzantine
fault tolerance, such as Byzantine generals problem, BFT algorithms,
and reliable distributed systems.

A. Byzantine Generals Problem

The Byzantine Generals Problem (BGP) was first introduced by
Leslie Lamport, Robert Shostak, and Marshall Pease in 1982 [20].
Practically, it initially was used to handle network communication
issues among disconnected units without a coordinator. Originally,
it describes a situation where several disconnected Byzantine armies
surround an enemy city, and the action of each army is commanded by
its own general. The generals can only communicate by messengers
with other generals and solely rely on the information from mes-
sengers. However, some generals may not work loyally, like traitors
(e.g., they try to prevent the loyal generals reaching an agreement),
also the messengers do not work in a reliable manner (e.g., with
no reliable and authenticated communication channel). Especially,
anyone can show the general messages and claim these messages
from other generals. A half-baked attack on an enemy city would be
a disaster, so all the generals must agree and execute the same plan
so that they can gain success. According to the original work [20],
in the Byzantine Generals Problem, a commanding general (e.g., one
of the generals, working in a leader role) sends an order to his n− 1
lieutenant generals with the following requirements: (1) All loyal
lieutenants obey the same order (e.g., on decision ‘retreat’ or ‘attack’);
(2) If the commanding general is loyal, then every individual loyal
lieutenant should obey the order sent by the commanding general. The
above two requirements together are called the interactive consistency
conditions [21]. The problem was shown there to be solvable if
and only if fewer than one-third of the generals are faulty - unless
unforgeable, signed messages are assumed. In particular, no practical
approach works for three generals even with a single traitor.

The Byzantine Generals Problem involves obtaining agreement
among a collection of generals, some of which may be faulty.
A follow-up work on the Weak Byzantine Generals Problem was
proposed as a transaction commit problem for a distributed database
by Leslie Lamport in 1983 [22]. In a transaction commit problem,
there exists a transaction coordinator, and the coordinator’s value
is its decision of whether to commit or abort the transaction. In a
Weak Byzantine Generals (WBG) Problem, it uses the process to
represent the general following the definition in the weak interactive
consistency problem. According to the work [22], in a WBG Problem,
each process i chooses a private value wi and the participating
processes must then communicate among themselves to allow each
process to compute a public value, such that: (1) If all processes are
non-faulty and all the wi have the same value, then every process

2



computes this value as its public value (e.g., final commitment);
(2) Any two non-faulty processes compute the same public value.
Clearly, any solution to the original Byzantine Generals Problem can
be considered as a solution to a WBG Problem, so the WBG Problem
is solvable if fewer than one-third of the processes may be faulty.

Briefly, the Byzantine Generals Problem defines the way that the
generals handle commands without requiring a centralized coordi-
nator, while still keeping robust even in the presence of malicious
generals who may try to betray commands. And, the WBG Problem
explains the situations to reach consensus in a system that can have
components that give conflicting information because of errors or
malicious attacks. Classic consensus algorithms are focused on both
types of problems, whose solutions are also called Byzantine-fault
tolerant algorithms. Furthermore, these solutions have been somewhat
adapted to distributed ledger systems (e.g., blockchain) to reach a
consensus among participating parties.

B. BFT Algorithms

Malicious attacks and software failures are becoming more
prevalent, which may cause faulty nodes exhibiting Byzantine (i.e.,
arbitrary) behavior, and the Byzantine fault-tolerant algorithms are
thus increasingly important in distributed systems. In a distributed
system, replication is a fundamental requirement for implementing
dependable services that are able to ensure integrity and availability
despite the occurrence of faults and intrusions [23]. In general, a
system that has an ability to tolerate Byzantine faults is called a
Byzantine tolerant system (for short Byzantine system), in which
all non-Byzantine participants (e.g., generals in Byzantine Generals
Problem) are required to follow a set of predefined protocols to
ensure a consistent state (e.g., consistent decision) among all non-
Byzantine participants. State Machine Replication (SMR) [24] [25]
is a popular replication method in Byzantine system, which enables
a set of replicas (or state machines in SMR) to execute the same
sequence of operations for a service even if a fraction of them are
faulty. SMR requires an implementation of a total order broadcast
protocol, which is known to be equivalent to the consensus problem.
Byzantine SMR algorithms typically serve as a standard method for
handling Byzantine behaviors, in which they guarantee that all non-
Byzantine replicas can together get the same consistent execution
result.

Theoretically, many Byzantine fault-tolerant (BFT) total order
broadcast protocols provide a solution to the consensus problem
and are at the core of any distributed SMR protocols. The basic
component for solving SMR in a Byzantine system is the use of
BFT reliable broadcast protocol to disseminate the requests among
replicas, which ensures that the requests are eventually executed in
some consensus instances that define the order of messages to be
executed. A Byzantine SMR algorithm typically consists of three
sub-protocols: an agreement protocol (aka. consensus protocol), a
checkpoint protocol, and a view-change protocol [26]. The agreement
protocol typically is used to guarantee the consistency among replicas,
e.g., all the requests are committed and executed in a determined
order for all non-faulty replicas; the checkpoint protocol periodically
checks and clear log information and synchronous status, which
typically runs in the background; and the view-change protocol will
be activated (e.g., replacing the current ineffective leader in a leader-
based protocol) when faults happen during a consensus procedure.

The classic Byzantine consensus in a Byzantine failure mode
should follow some properties. Specifically, the Byzantine consensus

problem guarantees the conjunction of three properties: (1) Agree-
ment, in which no two non-faulty replicas reach different decisions;
(2) Termination, in which all non-faulty replicas eventually have a
decision; and (3) Validity, in which the decision is proposed by some
replicas. An algorithm fulfilling the above properties can be extended
to resolve a Byzantine consensus problem [27]. On the other hand, a
BFT SMR algorithm must guarantee the correctness of the following
two property [28] [4]: Safety and Liveness. Safety is the property
that if any two non-faulty replicas commit on a decision, then both
commit on the same decision, while liveness is to ensure that the
consensus protocol makes progress in the current view and moves to
a new view, which means clients eventually receive replies to their
requests.

The major challenge to safety and liveness in BFT SMR algo-
rithms is the capacity of equivocation, i.e., the ability of a Byzantine
replica to send inconsistent messages to different non-faulty replicas.
Another obstacle to BFT SMR systems is the synchrony issue.
Most SMR systems, such as blockchain, operate over a network
(i.e., Internet). However, these systems often have some assumptions
on network synchrony, in which the delivery of messages must be
within a known period of time (details see Section III), and these
assumptions might not be realistic in a practical SMR system (based
on asynchronous networks). According to Fisher-Lynch-Paterson
(FLP) impossibility [29], it is known that, in asynchronous networks,
consensus is unsolvable even in the presence of a simple crash failure,
and needless to say, in Byzantine failures. To deal with this FLP
impossibility, many proposed protocols have been designed to relax
the guarantees of the classic Byzantine consensus, e.g., Practical
Byzantine Fault Tolerant Protocol (PBFT) [4] [27].

PBFT has been long-termly as a consensus protocol to cope with
Byzantine systems, which can tolerate up to a 1/3 fraction of Byzan-
tine faults in a system. We briefly describe its consensus procedures
(details can refer to Section IV). One replica, the primary/leader
replica, decides the order for clients’ requests, and forwards them
to other replicas, the secondary replicas. All replicas together then
run a three-phase (pre-prepare/prepare/commit) agreement protocol to
agree on the order of requests. Each replica processes every request
and sends a response to the corresponding client. The PBFT protocol
guarantees that safety is maintained even during periods of timing
violations, because progress only depends on the leader. On detecting
that the leader replica is faulty through the consensus procedure,
the replicas trigger a view-change protocol to select a new leader to
coordinate the consensus procedure. The leader-based protocol works
very well when the number of participating replicas are small, but,
it is subject to scalability issues. In general, PBFT is regarded as
the baseline for almost all BFT protocols published afterward. Even
though many PBFT-like solutions are proposed in the literature, most
of them are still subject to scalability issues, which cause them not
to fit some large-scale mainstream distributed systems, such as public
blockchain systems.

C. Distributed Consensus

The need for reaching agreement among processes which are
separated geographically has long been one of the fundamental prob-
lems in distributed systems. The distributed consensus problem (and
its ‘twin’ Byzantine Agreement) provide perhaps the most abstract
perception for such issues, whose solutions (even in theory) influence
many practical designs and implementations [30]. Consensus means

3



that a set of processes reach agreement on a common value by inter-
acting with each other. Reaching such an agreement is a trivial task if
both the participants and the underlying communication network are
completely trustworthy and reliable. However, such assumptions are
not practical in real systems, which often are subject to various faults
and attacks, such as service or system crashes, network partitioning,
and dropped, malformed, or duplicated messages. We can even
consider more Byzantine types of faults, in which faulty processes
may behave arbitrarily or a consortium of processes collaboratively
behave maliciously [29]. Thus, it is desirable to design a reliable
agreement protocol even in the presence of these kinds of faults.

Fault-tolerant consensus problems have been extensively studied
in the domain of distributed systems. Even with the existence of
various faulty processes and unreliable networks, the fault-tolerant
consensus protocol still has the ability to guarantee the requirements
of agreement among all non-faulty participants. This is the basic
requirement to guarantee the normal and correct functioning of
distributed systems [31]. In the literature, there are many fault-tolerant
consensus protocols proposed, either for Byzantine or for fail-stop
faults (i.e., fail to respond to the requests). In general, there are three
basic aspects to evaluate the quality of an algorithm for distributed
consensus: resiliency (e.g., the maximum tolerable number of faulty
processes), the number of communication rounds, and the maximum
message size [30]. Thus, it is desirable to achieve higher quality in
these three aspects for a distributed consensus.

Different types of faults (e.g., Byzantines or fail-stop faults) affect
the design of a consensus protocol, and the choice of communication
models also affects the quality of a consensus protocol. According to
different application scenarios, various delicate distributed consensus
protocols have been proposed to achieve higher quality by relaxing
the conditions of a distributed system. In general, five critical factors
affect the design of a distributed consensus as well as its quality,
as discussed in [32]: (1) Processors synchronous or asynchronous;
(2) Communication synchronous or asynchronous; (3) Message order
synchronous or asynchronous; (4) Broadcast transmission or point-to-
point transmission; and (5) Atomic receive/send or separate receive
and send. The detailed information on synchronous and asynchronous
refers to Section III.

As discussed in BFT algorithms, a correct consensus protocol
must satisfy at least three conditions: Agreement (e.g., all non-faulty
processes choose the same value), Termination (e.g., all non-faulty
processes eventually decide), and Validity (e.g., the final output is a
value proposed by some process).

D. Distributed Ledger Technologies

Distributed Ledger Technology (DLT) is a general term to de-
scribe technologies for the storage, distribution, and exchange of data
between users over private or public distributed computer networks,
and its database is spread and stored over different locations. Es-
sentially, a distributed ledger is a type of database or entity, shared,
replicated, and maintained by the peers of a P2P network. This shared
database is available and accessible for all network participants within
the system, whose data (aka. transactions in terms of a database) are
replicated across multiple storage nodes with equal rights. The action
of recording transactions can be considered a result of data exchange
among the participants of the network, and only validated results
can be appended into the ledger. Also, the distributed ledger can be
organized in a decentralized manner, where no trusted third party is
required to manage and control the system run, and the participating

nodes can automatically reach an agreement via a well-established
consensus mechanism. A consensus mechanism is designed to achieve
agreement on the respective state of replications of stored data
between distributed database nodes under consideration of network
failures [33]. DLT in general offers some unique advantages compared
with traditional information systems (e.g., databases) and provides
some new features and structures to modern applications. Among
exiting DLTs, the most well-known data structure is the blockchain.
Blockchain-based ledger systems provide some novel features, such
as decentralization, trustworthiness, and replicated data synchronized
among separated network nodes. In the blockchain, each block
associates with a cryptographic hash to its previous block and a
timestamp, which makes the ledger immutable and auditable. Any
modifications on the transaction inevitably produce an altered hash
within its branch, and this alternation is easily detected with little
computational effort.

Based on different application scenarios, blockchain can be
roughly classified into three categories, namely public (or permis-
sionless), private (or permissioned), and consortium (or federated)
blockchain [34] [35] [36] [37].

a) Public Blockchain: A public blockchain is an open and
transparent network, which implies that anyone can join and make
transactions as well as participate in a consensus process. Also,
it is referred to as permissionless blockchain, which functions in
a completely distributed and decentralized way. The permissionless
blockchain makes it possible for anyone to maintain a copy of the
blockchain and participate in the validation process of new blocks.
Typically, this type of blockchain is adopted by cryptocurrency
cases, such as Bitcoin and Ethereum. A permissionless blockchain
is typically designed to accommodate a large number of anonymous
nodes, so minimizing potential malicious activities is essential. Due
to the anonymous participating process, it requires some kind of
“proofs” to show the validity of new blocks before publishing them
in a public blockchain. For example, proof could be solving the
computationally intensive puzzle or staking one’s cryptocurrency.

b) Private Blockchain: A private blockchain, on the other
hand, is an invitation-only network managed by a central authority1.
All participants in this blockchain must be permissioned by a valida-
tion mechanism to publish or issue transactions. This implies that any
node joining a private blockchain is a known and authorized member
of a single organization. Typically, a private blockchain is suitable for
a single enterprise solution and is used as a distributed synchronized
database designed to track information transfers between different
departments or individuals. In particular, private blockchain does not
need incentive mechanisms (e.g., currencies or tokens) to work, so
the transaction processing fee is not needed. Note that the blocks in
a private blockchain can be published and agreed on by delegated
nodes within the network, hence, its tamper-resistance might not be
as effective as a public blockchain.

c) Consortium Blockchain: Consortium blockchain, also
known as the federated blockchain, is similar to the settings on a
private blockchain, meaning that consortium blockchain requires per-
mission to access the blockchain network. Consortium blockchains,
in most cases, cover many parties, which together maintain consis-
tency and transparency among involved parties. Thus, a consortium

1This central authority does not participate in blockchain construction, and
it mainly provides identification-related services.

4



blockchain can be considered as a verifiable and reliable communi-
cation medium, which is used to trace the shared and synchronized
information among its participating members. Similar to the private
blockchain, the consortium blockchain also has no transaction pro-
cessing fees or computational expenses for publishing a new block.

Due to the internal drawbacks of BFT protocols (e.g., scalability),
it is a difficult task to apply BFT in a public blockchain system. We
typically adopt BFT protocols in private or consortium blockchains
to achieve a consensus within the participating nodes.

III. SYSTEM MODELS

This section provides the models that a typical BFT consensus
may consider during the design. Specially, we focus on the network
models and adversary models. And these models defined in this
section align with other literature works, e.g., [27], [38], and [39].

A. Network Models

We first explore some potential network connectivity between
participants to fulfill the blockchain setting, and then discuss the
models of network synchrony. In this paper, we consider the terms
node, replica, party, entity, and participant having the same meaning
as participating node.

1) Communications: Participants in BFT consensus protocols are
required to know the status of their neighbors (like the generals in
BGP Problem), whose network layer enables participants to send
messages to each other. Specially, in the blockchain era, it often
requires a ‘full’ connectivity. Technically, this ‘full’ connectivity can
be achieved in two manners: point-to-point connectivity, and message
“diffusion" (e.g., in a peer-to-peer (P2P) communication setting) [39].

a) Point-to-Point Channel: The point-to-point protocol (PPP)
is a basic link transport protocol that can transport packets between
two endpoints or parties, whose channel can deliver packets in
order [40]. The endpoints are pairwised with reliable and authentic
channels. Thus, the point-to-point channel can provide a reliable
message transmission. When an endpoint sends a message, it requires
to clearly specify its recipient, and the message is typically guaranteed
to be received by its recipient as long as there exists a connection
between them. The recipient can have the ability to identify the
sender as well when receiving a message. And, all parties can know
the other parties running the protocol by such a fixed connectivity
setting. In some earlier consensus scenarios (e.g., [20]), the full
connectivity is considered as the standard communication setting. In
PPP, the communication costs are typically measured by the number
of messages exchanged during a protocol run. Due to the existence
of full connection (as well as communication complexity in the
number of messages), the efficiency would be compromised. Thus,
it is difficult to be adopted into large-scale consensus protocols, and
current popular blockchain systems prefer peer-to-peer diffusion.

b) Peer-to-Peer Diffusion: P2P networks are distributed sys-
tems in nature, without any hierarchical organization or centralized
control, and peers form self-organizing overlay networks that over-
layed on the Internet Protocol (IP) with each peer having symmetry
in roles [41]. In a P2P setting, message transmission typically is
via a “gossiping" process, i.e., messages received by a peer are
transmitted to its neighboring peers (as long as it is not the recipient),
whose message transmitting operation can be considered as a kind of
messages “diffusion". In general, a P2P network does not provide

a reliable message transmission, e.g., no authenticated transmission
and no guarantee on the order of messages. If an honest party
diffuses a message, it typically does not need to specify a particular
recipient, and it can ensure that all its active honest parties get the
same message. However, if the sender is compromised, it cannot
guarantee that property which means different parties may receive
different messages. Thus, P2P diffusion focuses on the message
transmission of honest behaviors. The peers have no information
about their neighbors, e.g., neither know the identities of their
neighbors nor their precise number. And this feature perfectly fits the
setting on Byzantine scenarios and the blockchain setting using BFT
as its consensus protocol. In P2P, the communication cost depends
highly on the underlying network graph, and there are many novel
gossiping protocols that achieve O(n) communication complexity,
e.g., gossiping protocol based on Information Dispersal Algorithm
(IDA) in RapidChain [42]. In general, gossip-based protocols is
achieved by the peer-to-peer diffusion, considering that each node has
some direct point-to-point connections with other neighboring nodes
(e.g., at least a subset of nodes in the network - aka. the degree of the
node), and this degree typically is a security parameter to guarantee
the connectivity of the underlying network.

Both PPP and P2P models have their advantages and disadvan-
tages. For example, when adopting PPP protocol in a large-scale
distributed system, the communication complexity and links may be
big issues, and the P2P model does not have a reliable communication
guarantee. Besides the above two popular network communication
models, there exist some other mixed models considering various
real-world scenarios in message passing. For example, an intermediate
model by integrating point-to-point channels and diffusion [43]; other
intermediate models integrate different criteria (e.g., in terms of
partial knowledge of parties [44] and authentication [45]) to improve
message passing efficiency.

2) Synchrony: Consensus protocols typically require certain as-
sumptions on the timing information of how messages will be
propagated across nodes, which is an important aspect during a
protocol design. In BFT protocols, the protocol execution is typically
in the form of rounds, where each party has the opportunity to send
messages for some special event (e.g., a vote on messages) and
those messages are supposed to be received by their recipients before
the next round. Practically, the concept of round provides a certain
level of coordination to guide the protocol execution. And network
synchrony is used to define the level of timing coordination among
all participating parties. Following the literature work [46] [39] [47],
the network synchrony literally can be categorized into three levels,
namely synchronous, partially synchronous, and asynchronous.

a) Synchronous: This level of synchrony model is the
strongest assumption among the three levels, whose message trans-
mission has a strict time constraint among the parties. Synchronous
protocols typically proceed in rounds, and in each round, all processes
have a strict requirement on time and the network connectivity is
good, so that the message transmitted from one node to its recipient
follows the clear time limitation. In general, we say a network
is synchronous if its message delivery process (including message
processing and message transmission) can be finished within a fixed
delay (e.g., the delay δ). Typically, this level of synchrony would
require a centralized clock synchronization service. We emphasize
that the delay δ must be a pre-fixed value between the honest nodes.

b) Asynchronous: This level of asynchrony model is the
weakest assumption, where operations of processes are hardly co-

5



ordinated. An asynchronous network does not provide any guarantee
on message delay except that the message will be eventually delivered
to its destination. Under an asynchronous setting, the message can be
arbitrarily delayed and there is no reliable estimation of this kind of
delay. That means, messages between honest nodes can get delivered,
however, no upper bound in time can be estimated on their delivery.
This kind of asynchrony is typically caused by the lack of clock
synchronization service or the existence of the adversary over the
communication channels (e.g., delaying or dropping messages). In
this kind of network, the message transmission is solely driven by
some events (e.g., message delivery events). In a fully asynchronous
setting mentioned in [48], the messages may get arbitrarily delayed or
simply dropped and the communication is public and unauthenticated.
In this kind of setting, the consensus is trivially impossible.

c) Partially Synchronous: This level of synchrony model
lies in the middle of synchronous model and asynchronous model.
Following the definition in [46], there exist at least two ways to
achieve partially synchrony. One possible situation could be that
an upper bound δ on message delivery time exists, but we do not
know what it is prior; another possible situation is that we know
this upper bound δ, but the message processing system may be
unreliable, causing the message delivery to be late or not at all. The
unreliable message processing system may work like an asynchronous
counterpart, that is, with no time guarantee on when the message will
be sent out. Thus, communication is considered as being partially
synchronous if one of these two situations holds: δ exists but is not
known, or δ is known and has to hold from some unknown point on.

According to the FLP impossibility [29], under the asynchronous
setting, it has been proven that no deterministic consensus protocol
exists even under a single crash failure. However, in practice, the
FLP impossibility restriction can get circumvented by using some
randomized protocols, e.g., the work [9].

B. Adversary Models

In the context of a consensus protocol, the adversary model
(also referred to as the failure model) typically is used to describe
the fraction of malicious or faulty nodes that can be tolerated.
The literature on consensus protocols typically considers two types
of parties -honest parties and corrupted parties. Typically, honest
parties are assumed to behave honestly and strictly follow the pre-
defined protocol, also they are assumed to be online for the entire
execution processes of the protocol [49]. We can roughly categorize
the corrupted faults into two classes: fail-stop fault and Byzantine
fault.

1) Fail-stop: This kind of fault also refers to the crash failure
in some literatures. In this model, nodes may get failed at any time,
e.g., failing to provide service or response [18] [50]. The failed node
typically keeps silent forever (like a “dead" node), and once stopped
they cannot restart by themselves. Some common reasons can cause
this fault, such as a power shutdown, a software error, and a DoS
attack [47]. Under this type of fault, the systems can still continue
working correctly if the number of failure nodes is less than half
of the total number of participating nodes [51]. There exist some
well-known consensus protocols to tolerate a crash failure [38], e.g.,
Paxos [52] [53], Viewstamped Replication (VSR) [12], ZooKeep [54],
and Raft [55].

2) Byzantine: The term of Byzantine failure (aka. Byzantine)
came from the Byzantine Generals Problem in distributed systems.

Fig. 1. Abstract classification of Byzantine faults.

Compared with crash failures, a Byzantine failure is a much server,
whose process may behave arbitrarily but appears to be a normal one
to other nodes. For example, a Byzantine node can send some specific
messages to bias the other nodes; also, it can send contradicting
messages to different nodes to subvert the consensus. Typically,
Byzantine nodes are under the control of the adversary with some
malicious intent. Thus, the most common reason for a Byzantine
failure is to perform the adversarial influence (actively from either
internal or external adversaries), such as a malware injection and a
physical device modification. Also, a group of Byzantine processes
can collude together to launch a more severe attack, and they may be
under the control of one or more adversaries. One of the most known
algorithms to handle Byzantine failure is the PBFT, which can achieve
consensus in the presence of a certain number of Byzantine nodes.
We will discuss the PBFT protocol later in detail.

From different perspectives, a Byzantine failure can be further
categorized into different categories. For example, according to mes-
sage authentication mechanisms, a Byzantine failure can either be an
authenticated Byzantine or a general Byzantine [46]. An authenticated
Byzantine may behave arbitrarily, but its transmitted messages get
correctly signed by the message sender and its signature cannot
be forged by any other process. A general Byzantine also behaves
arbitrarily and without a signature mechanism, but we typically
assume that it is easy to obtain the identity of the message sender.

Similarly, according to the detectability during the process execu-
tion, a Byzantine failure can be roughly categorized into detectable
and non-detectable Byzantine faults [56] [57]. We follow the def-
initions in the literature [56]. The non-detectable Byzantine fault
includes two main faults: (1) unobservable faults (i.e., cannot be
observed by processes based on the messages they received), and
(2) undiagnosable (i.e., cannot be attributed to a particular process).
For instance, if a Byzantine process sends to all processes a message
claiming that its initial value is something other than its internal input
value, then this behavior is unobservable. Alternatively, if a Byzantine
process sends a message that purportedly was sent by another process
but that does not contain a valid signature, in the absence of
further information, then this fault is undiagnosable. The detectable
Byzantine faults typically are caused by the external behavior of a
process, whose deviations from the specified protocol can be observed
by the messages sent (or not sent) by processes during a particular
execution of the protocol. This kind of detectable faults can also
further be divided into the omission faults and commission faults. An
omission fault occurs when a process fails to send a message that
it should have sent in the execution of protocol (e.g., withholding
messages at a particular protocol step and no correct process ever
received this message), and this behavior can be sensed and observed
at the recipient. And, a commission fault happens in the case that a
process sends some messages that it is supposed to send during the

6



Fig. 2. Abstract of BFT replication system. Users send requests to replicas
via client interfaces (with well-defined client library). Replicas together run
an agreement protocol to obtain an order on clients’ requests, and then each
replica executes them in its stateful application [6].

execution of the protocol (e.g., sending unnecessary/vague messages
at a particular protocol step, or sending contradictory messages to
different correct processes).

Fig. 1 shows an abstract classification of Byzantine faults. The
fault level means the malice (i.e., the desire or intention to perform
malicious behavior), and typically a higher malice means it is con-
trolled by a stronger adversary. Typically, the Byzantine faults that
we discussed in the later sections lie in the domain of detectable
Byzantine faults.

IV. DETAILED BYZANTINE PROTOCOLS

This section lists some critical Byzantine replicated protocols in
detail. We conduct a systematical and comprehensive review of the
state-of-the-art protocols to tolerate Byzantine behaviors. Specially,
we carefully studied more than one hundred well-known Byzantine-
related research works in the range of last 30 years, from PBFT in
1999 to the most recent works in 2021. We tried to group them into
distinct categories. However, many protocols involve multiple cate-
gories. Instead of categorizing them into distinct categories, we clas-
sify them according to these main technologies/features/contributions
to distinct categories to avoid overlapping discussion in different
categories. Each category is not orthogonal, and some of the protocols
in them can also be put into other categories. Besides, for each
category, we typically follow a chronological order (e.g., when the
work is published) until the writing of this work. In this whole section,
when we say “prior" or “previous" works, it means these works that
were published before the time of the current discussed paper; while
we use the term “the state-of-the-art" to represent the time of writing
this paper.

We note that, to guarantee the originality and integrity of the
studied papers in this section, we try to use the same terminologies the
authors used and keep these original descriptions on some complex
schemes. For example, different papers may utilize different terms,
such as “party", “peer", “participant" or “participating node", to
represent a replica in a traditional Byzantine replication system.

A. Classic BFT Protocols

From the formal description of Byzantine Generals Problem in
1982 [20], many distributed algorithms and protocols have been
proposed to tolerate Byzantine failure with regard to various con-
texts. In this subsection, we first select and discuss some classic
BFT protocols, e.g., PBFT [4], Q/U [58], Zyzzyva [59], and BFT-
SMART [60], and these classic protocols provide some initiatives
and baselines to design other BFT protocols. For instance, PBFT has
inspired numerous BFT consensus protocols with enhanced security
and performance, e.g., Quorum/Update (Q/U) [58], Hybrid Quorum

(HQ) [61], and Zyzzyva [62]. Many works extend these classic
protocols to make some improvements and robustness.

From a high-level perspective, almost all Byzantine fault-tolerant
protocols share a basic objective of assigning each client a unique
order in the global service history, and executing it in that order [63].
Fig. 2 shows an abstract of BFT replication system. Users send
requests to replicas via client interfaces (with a well-defined client
library). Replicas together run an agreement protocol to obtain an
order on clients’ requests, and then each replica executes them in
its stateful application [6]. Roughly speaking, there exist two sets
of Byzantine fault-tolerant protocols: agreement-based protocols and
quorum-based protocols. The representative protocols for agreement-
based and quorum-based scenarios are PBFT and Q/U, respectively.
For agreement-based protocols, they first have replicas communi-
cating with each other to agree on a sequence number of a new
request and, when agreed, execute that request after have executed
all preceding requests in that order. For instance, PBFT engages
a three-phase agreement protocol among replicas before a replica
executes a request. For quorum-based protocols, they instead restrict
their communication to happen only between clients and replicas, as
opposed to among replicas; each replica assigns a sequence number
to a request and executes it as long as the submitting client appears
to have a current picture of the whole replica population, otherwise
uses some conflict resolution schemes to bring enough replicas up to
speed. For instance, Q/U has a one-phase protocol in the fault-free
case, however, when faults occur or clients contend to write the same
object the protocol has more phases.

In general, the quorum-based protocols require the clients to cache
the historical information (e.g., the request sequence) of all (at least
“preferred quorum") replicas, putting many burdens on clients, and
this typically is not affordable for lightweight clients.

Besides, there exist some hybrid agreement/quorum protocols that
share some agreement-based characteristics and some quorum-based
features. The speculative protocol Zyzzyva belongs to in this category,
in which Zyzzyva has a primary to get an agreement, and when the
primary is faulty, it resorts to a quorum-based recovery procedure.

1) PBFT: PBFT is the first practical BFT SMR protocol devel-
oped by Castro and Liskov in 1999 [4], which has gained wide
recognition for practicality. It can be implemented in Byzantine and
partially synchronous settings. The protocol operates in a sequence
of views, each coordinated by a leader, which takes the inspiration
from Paxos [52]. Paxos is an SMR scheme proposed by Lamport in
1999 that imitates the ancient Paxos part-time parliament. In general,
Poxas is designed specially for fault-tolerant consensus protocols
while bearing many similarities to Viewstamped Replication (VR)
in 1988, which is a server replication scheme for handling server
crashes [12] [64]. Different from Paxos, PBFT can be operated
in Byzantine and partially synchronous settings, with the help of
the leader to coordinate other replicas. In general, PBFT consists
of three sub-protocols: 1) Normal operation, 2) Checkpoint, and
3) View-change [47]. In literature, when mentioning PBFT as a
consensus protocol, we typically focus on the normal operation
protocol, however, the other two sub-protocols are also important.

The normal operation protocol is shown in Algorithm 1 and
its graphic communication pattern is shown in Fig. 3. The normal
operation is based onview and, within each view, the leader orders the
requests, and propagates them through a three-step reliable broadcast
to the replicas. Replicas are responsible to monitor the behaviors

7



Algorithm 1 PBFT (Normal-operation)
1: Client sends an operation request to the primary; . Phase 0:

Request
2: The primary replays this request to replicas via Pre-prepare

messages; . Phase 1: Pre-prepare
3: Replicas record the request and update local states;
4: Replicas send Prepare messages to all servers (replicas and the

primary); . Phase 2: Prepare
5: Once receiving ≥ 2f+1 Prepare messages, every server updates

local state and is ready to commit;
6: Servers send Commit messages to each other; . Phase 3:

Commit
7: Once receiving ≥ 2f + 1 Commit messages, every server starts

to execute the client requests and then updates local states;
8: Every server replies its result to the client; . Phase 4: Reply

Fig. 3. Message patterns of PBFT

of a leader for both safety and liveness, and can propose a view
change request in a case that the leader is unavailable or behaves
maliciously [18]. The definitions of safety and liveness can refer
to Section II-B. At the end of normal operation, ideally, all results
replied to the client should be the same, otherwise, the client chooses
the majority result. Typically, the checkpoint protocol is served as
a logging tool that keeps a sliding window, whose lower bound is
the stable checkpoint, to track active operation requests. The latest
stable checkpoint can be used to discard the older request safely
from the operation log, as well as facilitate the view change protocol
when abnormal cases occur. For instance, in case of a leader failure,
the view-change protocol will be triggered by all honest replicas
(e.g., detecting a timeout of the leader’s message). They think the
current leader is compromised and broadcast a view-change message
to each other. After receiving more than 2f view-change messages
from distinct replicas, the next in-line (e.g., following round-robin
order) replica becomes the newly elected leader and informs the rest to
resume the normal operation. In a batch process, the new leader may
select a set of different requests for processing, and all non-committed
requests in previous normal operations are still in the buffer [65].

In more details on normal operation, PBFT requires 3f + 1
replica to tolerate f faulty replicas. As shown in Fig. 3, a client
broadcasts its request to all replicas, and the primary (e.g., S0) among
them assigns a sequence number to the request, and broadcasts this
assignment to replicas in a Pre-prepare message. A backup replica
(e.g., S1, S2, and S3) that receives such assignment acknowledges
that and synchronizes with all other replicas on this assignment by
broadcasting a Prepare message to its neighboring replicas (including
itself). When a replica has received 2f + 1 correct Prepare messages
from distinct replicas, it promises to commit the request at that

sequence number by broadcasting a Commit message. When a replica
has received 2f+1 such promises for the same request and sequence
number, it finally accepts that assignment and executes the request
in its local state after it has executed all other requests with lower
sequence number, and sends a Rely message to the client with the
result. A client accepts the result if f + 1 replicas send the matching
Reply messages, and otherwise retransmits the request.

The message complexity of PBFT normal operation is O(n2) to
achieve consensus, where n is the number of participating replicas.
This quadratic complexity is due to the mutual messaging in both
Prepare and Commit phases, as shown in Fig. 3. The checkpoint
protocol typically does not involve any kind of communication com-
plexity. Besides, the view change protocol also requires a quadratic
messaging complexity, as it needs to ensure an agreement on the
new leader and view, as well as guarantee the safety of messages
agreed in previous views. In case of fault tolerance, the properties
(e.g., safety and liveness) of PBFT protocol can be guaranteed if
n >= 3f + 1, where f is the number of Byzantine replicas. A short
answer for this conclusion is that a replica needs to receive more
than 2f + 1 Prepare/Commit messages in Prepare/Commit phases
respectively before proceeding to the next action, and this will require
at least 2f + 1 honest servers in the same state after Commit phase
and producing the same result so that the f Byzantine replicas are
not able to sway the majority consensus. For detailed proofs on this
conclusion, interested readers can refer to the original PBFT [4].

PBFT protocol has been perceived to be a communication-heavy
protocol (e.g., by employing replication to achieve resilience against
Byzantine failures). This results in PBFT protocol not scalable. And,
considering the performance, it is hard to apply PBFT to large-scale
distributed systems. Also, it was shown that PBFT can be attacked
by an adversary using some specific scheduling mechanism, halting
the consensus (e.g., forcing to wait a long timeout when the leader
is partitioned and unsynchronized) [66]. However, PBFT, as the first
BFT SMR protocol, has indeed inspired numerous BFT consensus
protocols with enhanced security and performance, e.g., QU/HQ,
Zyzzyva, and HoneyBadger [66]. We will discuss these protocols in
the following parts.

2) Q/U: The Query/Update (Q/U) protocol is an optimistic
quorum-based protocol enabling fault-scalable Byzantine fault-
tolerant services, which was presented by Micheal et al. in 2005 [58].
The optimistic quorum-based nature allows it to provide better
throughput and fault-scalability than replicated state machines using
agreement-based protocols. A fault-scalable service is the one in
which performance degrades gradually, if at all, as more server
faults are tolerated. And the experience shows that, for Byzantine
fault tolerance scenarios, the agreement-based approach is not fault-
scalable. This is because in an agreement-based protocol (e.g., [4],
[67], [68], [69], [70], [71] ), every server processes each request and
performs server-to-server broadcast; while in a quorum-based protocol
(e.g., [72], [73], [74], [75], [76], [77]), only quorums (or subsets) of
servers process each request and the server-to-server communication
is generally avoided. Services built with the Q/U protocol are fault-
scalable, and it provides an operations-based interface that allows
services to be built in a similar manner to replicated state machines.
Q/U objects exporting interfaces consists of deterministic methods:
queries that do not modify objects, and updates that do. Compared
with previous BFT protocols, the Q/U protocol does not have the
concept of the commit phase (not even a lazy commit).

In general, the Q/U protocol requires 5f + 1 servers to tolerate

8



Fig. 4. Message patterns of Q/U. (a) Q/U common case operation, (b) Q/U
with replica failure.

f Byzantine faulty servers, while most agreement-based approaches
only require 3f + 1 servers. Even with this imperfection on fault-
tolerance rate, the Q/U protocol still achieves its better performance
and fault-scalability. This is benefited from the combination of
several techniques, i.e., optimism, quorum, and cryptography. The
optimism is enabled by the use of non-destructive updates at the
versioning service, which permits operations to efficiently resolve
contention and/or failed updates. By combining versioning and local
timestamping scheme at each update operation, it is impossible for
a faulty client to submit different updates at the same timestamp,
as these updates intrinsically have different timestamps. The Q/U
protocol applies a strategy for accessing the quorums using a preferred
quorum per object so as to make server-to-server communication an
exceptional case. For example, clients initially send requests to an
object’s preferred quorum and do not issue queries prior to updates for
objects. Besides, it employs efficient cryptographic technologies (e.g.,
authenticators in Q/U) to optimize the operation cost. The efficiency
of the Q/U protocol is a combinational result of the above three
techniques.

In more details on execution, Q/U is a single-phase quorum-based
protocol that tolerates up to f faulty replicas in a system of 5f+1. As
shown in Fig. 4, clients cache replicas’ histories (the request sequence
known by a replica), which they include in requests to replicas, and
which they update using replies from replicas. These histories allow
a replica that receives a client request to optimistically execute the
request immediately, as long as its request history is reflected in a
client’s view. When a client receives replies, e.g., 4f + 1 replies
indicating they optimistically executed their requests, the request
completes. Normally, a client only contacts its “preferred quorum"
of replicas instead of the whole replicas set. If some quorum replicas
are slow to respond, a client might engage more replicas in via a
“probe" hoping to complete the quorum. If the number of replies that
accept the request is between 2f + 1 and 4f , even others refuse the
request, e.g., due to a stale replica history, the client infers there exists
a concurrent request from another client. In Q/U’s design, it provides
a recovery scheme to resolve the conflict in which clients back off
and later resubmit requests, after repairing the replicas to make them
consistent. Fig. 4(a) shows the best case for a client’s request, and
Fig. 4(b) illustrates the probing mechanism.

The Q/U protocol is assumed under an asynchronous communi-
cation timing model, and both clients and servers may be Byzantine.
And the adopted server failure model is a hybrid failure model that
combines Byzantine failures with crash-recovery failures. And the
rate of the number of Byzantine servers over the total number of
hybrid failure servers affects the result. The authors implemented a

Fig. 5. Protocol communication patterns within a view for (a) gracious
execution and (b) faulty replica cases. The numbers refer to the main steps of
the protocol numbered in the text [59].

prototype library to demonstrate the efficiency of the Q/U protocol.
Overall, the performance of the Q/U protocol decreases by only 36%
as the number of Byzantine faults tolerated increases from one to five,
whereas the performance of the replicated state machine decreases by
83%.

However, the Q/U protocol has two shortcomings that prevent
the full benefit of a quorum-based system. 1) It requires a large
number of replicas, e.g., 5f + 1 to tolerate f failures, which is much
higher than the theoretical minimum of 3f + 1 for agreement-based
protocols. This potentially increases in the replica set size. 2). Q/U
performs poorly when there are contentions among concurrent write
operations. It resorts to exponential back-off to resolve these con-
nections, highly reduced the overall throughput, and its performance
would be worse when many applications concurrently perform the
write operations [61].

3) Zyzzyva: Zyzzyva [59] [62] is a speculative Byzantine fault-
tolerant protocol that was proposed by Kotla in 2007, which uses
the speculation technology to reduce the cost of BFT replication
system. The concept of speculation is that replicas speculatively
execute requests without running an expensive agreement protocol to
definitively establish the order as in PBFT. The main idea behind this
is that most replicas in a distributed system are normal (e.g., no fault)
in most cases, and there is no need to execute the expensive commit
protocol for every request. It utilizes fast track and actively involves
the client in consensus process. So, in Zyzzyva, replicas reply to a
client’s request without first running a three-phase BFT like consensus
protocol. Replica speculatively receives the requested order from the
primary and responds to the client immediately. The client then waits
for replies from all peers. In the best-case scenario, if the client re-
ceives 3f+1 replies, it then commits the request. In general, Zyzzyva
potentially improves system performance (e.g., via high throughput
pipeline of SMR) without too many Byzantine replicas, however,
with more Byzantine replicas involved, its consensus efficiency will
be compromised. For instance, in the case when the client receives
between 2f + 1 and 3f replies, a regular consensus algorithm (e.g.,
non-speculative slow consensus) is used, and this speculative process
definitely decreases system performance [78]. Different from PBFT
which does not involve the client in consensus process, the client
in Zyzzyva is a key player, who is responsible for checking the
integrity of replicas. Fig. 5 shows an abstract communication pattern

9



of Zyzzyva scheme.

Speculation technology does improve BFT’s performance, and
Zyzzyva is an efficient and scalable consensus protocol for its
speculative path. However, this efficiency comes at a price, in the
form of fragility, which is mainly due to its two commit paths [79].
One path is the speculative path (aka. fast path), and the other path
is a two-phase path that resembles PBFT (aka. slow path). The fast
path does not have commit messages, and a client commits a decision
by seeing 3f + 1 prepare messages. The optimistic mode is coupled
with a recover mode that guarantees the progress in face of failure,
and this recovery mode typically intertwines the PBFT two-phase
steps [80]. For example, if the speculative execution fails and the
client must execute its non-speculative fallback, this requires at least
two additional rounds of communication in addition to the time spent
waiting for the timeout. This definitely negates its key feature of
high performance. When applying this to a fast response system
(e.g., blockchain system), it may come out two decision tracks of
the protocol (via fast and slow paths respectively). In the fast track,
a possible decision value manifests itself as f + 1 prepare messages;
while in the slow track, it manifests itself as a commit-certificate (as
in PBFT). This scenario may lead Zyzzyva to break safety, as showed
in [80]. Besides, the view-change protocol of Zyzzyva fails to provide
safety against a faulty leader.

In more detail, Zyzzyva requires 3f + 1 replicas to tolerate
f faults. In general, Zyzzyva runs in a hybrid model of agree-
ment/quorum protocol. Like PBFT, it uses a primary to order requests.
Clients send the request only to the primary. Once the primary has
ordered these requests, it submits the ordered requests in an OrderReq
message to replicas, which respond to the client immediately as in
Q/U. In fault-free and synchronous execution, in which all 3f + 1
replicas return the same response to the client, Zyzzyva is efficient
since requests complete in three message delays, and unlike Q/U,
write-contention by multiple clients is mitigated by the primary’s
ordering of requests. When some replicas are slower or faulty and the
client receives between 2f + 1 and 3f matching responses, it must
marshal those responses and re-send them to the replicas (including
the primary), to convince them that a quorum of at least 2f + 1
has chosen the same ordering for the request. If it receives 2f + 1
matching responses to this second phase, it completes the request
in five message delays. However, Zyzzyva’s view change protocol is
more heavy-weight and complex than a PBFT, according to the results
shown in [59], even one replica is faulty, e.g., muteness, Zyzzyva is
slower than PBFT.

In general, Zyzzyva uses fast and speculative scheme to drive
its latency near the optimal for an agreement protocol. As in the
family of speculative BFT protocols, it also has several variants,
e.g., Zyzzyva5 [59] [62], MinZyzzyva [81], AZyzzyva [14] [82],
and SACZyzzyva. Here we only provide a brief description of these
variants, and detailed information on these variants will be provided
in the following sections. Zyzzyva5 is introduced in the same paper
as Zyzzyva, which is used to avoid the non-speculative fallback at
the expense of fault-tolerant rate by relaxing the number of replicas
from 3f + 1 to 5f + 1. In protocol, it allows the client to complete
requests after receiving 4f + 1 replies. However, this comes with a
lower fault-tolerant rate to b(n − 1)/5c compared with Zyzzyva’s
b(n − 1)/3c. AZyzzyva is a protocol to mimic the behaviors of
Zyzzyva in best-case situations, by combing the speculative (fast) path
of Zyzzyva (called Zlight in the protocol) with a recovery protocol,
e.g., PBFT. In case that Zlight fails to make progress, AZyzzyva

TABLE I. COMPARISON OF SPECULATIVE BFT PROTOCOLS
TOLERATING f FAULTS, WHERE RESILIENCE REFERS TO THE MAXIMUM

NUMBER OF REPLICAS THAT CAN BE NON-RESPONSIVE WITHOUT FALLING
BACK TO NON-SPECULATIVE OPERATION [79].

Protocol Total # of
Replicas Resilience Monotonic

Total
Counter
Active

Zyzzyva 3f+1 0 - -
Zyzzyva5 5f+1 f - -

MinZyzzyva 2f+1 0 2f+1 2f+1
AZyzzyva 3f+1 - - -

SACZyzzyva 3f+1 f f+1 1

switches to a new view that executes PBFT for a fixed number of
log slots. In this way, it can easily be extended to a pipeline of state-
machine commands without being vulnerable to the safety violation
of Zyzzyva exposed [80]. MinZyzzyva is also based on speculation,
which improves Zyzzyva with the help of a trusted monotonic counter
in each replica. And this trusted counter can guarantee integrity by the
underlying hardware. MinZyzzyva allows a reduction of the number
of replicas of Zyzzyva from 3f + 1 to 2f + 1, and preserves the
same safety and liveness properties. SACZyzzyva is a Single-Active
Counter Zyzzyva, by addressing some concerns on resilience to slow
replicas. It requires the number of 3f +1 replicas to tolerate f faulty
replicas with only one replica needing an active monotonic counter at
any given time, compared with each replica equipped with an active
monotonic counter in MinZyzzyva.

Table I shows a comparison of the above speculative BFT
protocols, where f is the number of faulty replica the system can
tolerate.

4) BFT-SMART: BFT-SMART is an open-source library that
implements a modular SMR protocol to tolerate Byzantine faults
in some replicas, whose work was started around 2010 [60]. It
features the increased reliability and modularity, as well as flexi-
ble programming interfaces. The original open-source library was
developed in Java and implements a protocol for SMR similar to
other Byzantine fault-tolerant protocols, e.g., PBFT, and now it can
be extended to different versions on other different programming
languages, which will improve the diversity of BFT-SMART for
various applications [83]. As an SMR, BFT-SMART provides several
benefits, from high-level perspectives: (1) It is highly capable for
modern hardware, e.g., multi-core systems; (2) It comes with high
performance, compared with other protocols, e.g., PBFT and UpRight,
in terms of consensus time (i.e., the time to process a client’s request);
(3) It can achieve high accuracy in replicated data when a Byzantine
faulty behavior is exhibited; and (4) It supports reconfiguration of
replicas sets, e.g., addition and removal nodes [84] [85]

Following some existing literatures [83] [86] [87], we describe the
working principle of BFT-SMART and its features for practical de-
ployment as an SMR. Fig. 6 shows an abstract communication pattern
of BFT-SMART, and detailed information refers to the work [60].

a) SMR Consensus Protocol: BFT-SMART utilizes the Mod-
SMART protocol, as a total order multicast service, to implement
the SMR functionalities. Mod-SMART functions as a modular SMR
protocol that works by executing a sequence of consensus instances
based on the leader-based Byzantine consensus algorithms (e.g.,
PBFT). During its normal operation, the communication pattern is
similar to PBFT protocols, where clients send their requests to all
replicas and wait for the replies. Following PBFT, each consensus

10



Fig. 6. Message patterns of BFT-Smart [60].

instance begins with a leader proposing a batch of client operations to
be decided. Specially, each instance consists of three communication
steps whose message pattern is shown in Fig. 6. The first step
requires the consensus’s leader to send a batched PROPOSE message
to all other replicas, which is followed by two rounds of all-to-
all communications consisting of WRITE and ACCEPT messages
respectively. In general, PROPOSE messages contain a batch of
requests to be decided, while both WRITE and ACCEPT messages
only contain the cryptographic hash of such batch to reduce the
communication cost.

The above operations are the Mod-SMART normal phase execu-
tion, which take place in the absence of faults and in the presence of
synchrony. When these conditions are not satisfied, e.g., the leader is
faulty and/or the network experiences a period of asynchrony, Mod-
SMART may trigger a synchronization phase to elect a new leader
for consensus instances and synchronize all correct replicas. In this
phase, BFT-SMART may make some replicas trigger the state transfer
protocol.

b) State Transfer: As an efficient and practical SMR, BFT-
SMART allows crashed replicas to recover and resume execution
without restarting the whole replicated service. To achieve this, BFT-
SMART utilizes an intermediate layer between the Mod-SMART
protocol and the replicated service, which is responsible for triggering
service checkpoints and managing the request log. It thus requires the
use of a stable storage to recover this whole system. Typically, there
are two ways to achieve state transfer. One utilizes a similar approach
in PBFT, in which it requires storing the request log in memory
which is periodically truncated after a snapshot of the service state
is created. And this is provided by the checkpoint sub-protocol of
PBFT. The other way to achieve state transfer is by implementing
the efficient durability layers described in [84]. When this layer is
enabled, BFT-SMART stores the request log into a stable storage to
preserve the service state even if all replicas fail by crashing. The key
ideas behind this layer include: 1) logging batches of operations in a
single disk while these operations are being executed by the service,
2) taking snapshots at different points of the execution in different
replicas to avoid stopping the system, and 3) performing state transfer
in a collaborative way, with each replica sending different parts of
the state to recover replica. To make the task of writing requests to
disk efficiently, these requests can be written to the durable log in
parallel; and to utilize the bandwidth efficiently, the system can try
to write multiple batches at once.

In general, the durability layer under state transfer enables replicas
to execute checkpoints at different moments of their execution and
a collaborative state transfer. And, the state transfer service is an
independent model, without influencing the consensus protocol.

c) Configuration: BFT-SMART provides a certain mecha-
nism to enable the features of adding and removing replicas from the
system on-the-fly, reconfiguring the replica set (e.g., the information
on view). Such a process assumes the existence of a distinguished
trusted client, known as the View Manager, which has the ability to
issue updates on the replica set by using the aforementioned SMR
information. To reconfigure the current replica set, the View Manager
issues a special type of operation which is submitted to the Mod-
SMART algorithm just like any other client operation, to notify the
system that it wants to add replicas to (or remove replicas from) the
system. Since these special operations are totally ordered, all correct
replicas will adopt the same view as the system’s current view at
any given point in the execution of client operations. Besides, these
special operation requests are never delivered to applications, and the
installation is only used to update the view.

After the View Manager receives confirmation from the current
replicas that the update is executed (with the verification on the
request signature), it notifies the joining replicas that they can start
participating in the replication protocol, or the removing replicas will
not receive messages from the current replica set. The newly joined
replicas then invoke the state transfer protocol to retrieve the latest
application state from other replicas before actively participating in
the replication protocol. After these replicas successfully update their
state, they can start to process new requests.

The above discussion gives a brief overview of the BFT-SMART
protocol. In fact, BFT-SMART was the rare known project that
was developed before the permissioned blockchains surged around
2015 [88]. And there is widespread agreement today that BFT-
SMART provides extremely advanced and widely tested implemen-
tation of a BFT consensus protocol available [51]. For example,
several well-known blockchain projects adopt the BFT-SMART as
their consensus protocol, such as Hyperledger Fabric (V1) [89],
Symbiont [90], and R3 Corda [91]. Besides, there exist some variants
on BFT-SMART, e.g., WHEAT optimized for geo-replicated environ-
ment [86], and some visualization services for BFT-SMART, e.g., the
work [92].

B. Leaderless BFT Protocols

Most classic BFT protocols in Section IV-A are based on the
correct leaders or coordinators to advance or terminate the progress
of consensus. For example, protocols run in a series of views, and each
view has a delegated node called leader to coordinate all consensus
decisions [93]. In general, leader-based BFT protocols rely on the
process of view synchronization with the help of leaders. And in
“common case" (e.g., no faulty leaders), the leader-based consensus
protocols work well and achieve required features. However, when
the leader behaves maliciously or goes wrong, it may go through
very complex view synchronization to get a correct view to continue.
These consensus protocols are mainly based on an ad-hoc way to
rotating leaders and synchronize nodes to the same view. However,
many literatures [94] [95] [66] [96] have demonstrated that the view
synchronization process is complicated and bug-prone. For example,
traditional view synchronization relies on the all-to-all communication
to ensure all correct nodes reaching the same decision with absolute
certainty, which involves a quadratic communication overhead. This
would make the protocol difficult to scale to a large number of
participants [97]. Besides, the leader may be very slow but correct,
which prevents the whole consensus process, and the centralized
leader makes the process vulnerable to numerous attacks. Thus,

11



leaderless consensus protocols would help to achieve more features
in some applications.

Typically, leader-based consensus protocols would require some
assumptions on network synchrony (e.g., time interval for each view
or operation). With the wide adoption of blockchain into real-world
applications (e.g., via Internet connection), more and more practical
blockchain applications require asynchronous. The main idea of asyn-
chronous rounds is that it allows the replicas to commit the request
as long as they receive threshold messages, instead of having to wait
for a message from a leader/coordinator that may be slow. Leaderless
consensus protocols would not require this kind of coordination,
in which each replica plays a similar role in the execution of the
consensus and make the decision inherently “democratic". Also,
without the leader, the protocol works in a decentralization manner,
which can avoid bottlenecks by balancing the load and make the
consensus more scalable.

From a high-level perspective, a leaderless consensus protocol
requires an efficient gossip algorithm and some primitives (e.g.,
atomic broadcast protocols) to achieve the consensus without relying
on some classic coordinators. Different leaderless protocols may have
different primitives to achieve their consensus process among replicas.
This section presents some well-known leaderless BFT consensus
protocols.

1) DBFT: Democratic Byzantine fault tolerance (DBFT) is a
leaderless Byzantine consensus for blockchain, proposed by Crain et
al. in 2018 [98]. DBFT allows processes to complete asynchronous
rounds as soon as they receive a threshold of messages, instead of
having to wait for a message from a coordinator that may be slow.
DBFT is appealing for blockchains for two reasons: 1) each node
plays a similar role in the execution of the consensus, hence making
the decision inherently “democratic"; 2) decentralization avoids bot-
tlenecks by balancing the load, making the solution scalable. Essen-
tially, DBFT is deterministic, assumes partial synchrony, is resilience
optimal, time-optimal, and does not need signatures. Also, the authors
present a simple safe binary Byzantine consensus algorithm, modify
it to ensure termination, and finally present an optimized reduction
from the multivalue consensus to a binary consensus whose fast path
terminates in four message delays.

In general, leader-based Byzantine consensus protocols typically
take advantages in case that the leader is non-faulty and the messages
are delivered in a timely manner even in an asynchronous round.
However, a faulty coordinator can dramatically impact the algorithm
performance. DBFT can be used to solve this issue by not relying on a
classic coordinator or leader. Instead, DBFT uses a weak coordinator
that does not impose its value. This provides several benefits: 1) it
allows non-faulty processes to decide a value quickly without the help
of the coordinator; 2) the coordinator helps the algorithm terminating
if non-faulty processes know that they propose values that might
all be decided; 3) a weak coordinator allows rounds to be executed
optimistically without waiting for a specific message (e.g., from the
coordinator in traditional scenarios). In more detail, DBFT assumes
an asynchronous process and a reliable asynchronous communication
network. Asynchronous processes mean that each process proceeds at
its own speed, which can vary with time and remains unknown to the
other processes, while a reliable asynchronous network means that
there is no bound on message transferring delays but these delays
are finite. Based on the above assumptions, the authors propose a
binary Byzantine consensus (BBC) algorithm, which relies on binary
value all-to-all communication abstraction, denoted BV-broadcast,

originally introduced for randomized consensus [99]. The authors
also present a safe asynchronous BBC algorithm, which consists of
three phases. That means, during a round, each non-faulty process
proceeds in three phases: Phase 1 is to broadcast binary value to filter
out the values of Byzantine processes; Phase 2 is used to exchange
the estimates to coverage to an agreement; and Phase 3 is to decide
upon estimate convergence to round number modulo 2 (as a binary
scheme). Interested readers can refer to the work [98].

2) EZBFT: EZBFT is a leaderless distributed Byzantine fault-
tolerant consensus protocol to minimize the client-side latency in
WAN deployments, proposed by Arun et al. in 2019 [100]. The
authors claim that, to achieve minimize client-side latency, EZBFT (i)
has no designated primary replica, and instead, enables every replica
to order the requests that it receives from clients; (ii) uses only
three communication steps to order requests in the common case;
(iii) involves client actively in the consensus process. Also, EZBFT
minimizes the potentially negative effect of a Byzantine replica on the
overall system performance. Many previous protocols do not reduce
client-side latencies in a geo-scale setting, where the latency per
communication step is as important as the number of communication
steps. For example, a distant client will incur high latency for the first
communication step of sending the request to the primary. While
leaderless protocols can potentially resolve this problem, in which
a client sends its requests to the nearest replicas and continues to
do so as long as the replica is correct. This does not require the
primary being involved. To enable leaderless operations, EZBFT
exploits a particular characteristic of client commands: interference.
In the absence of concurrent interfering commands, EZBFT’s client
receives a reply in an optimal three communication steps. However,
when commands interfere, both clients and replicas coherently com-
municate to establish a consistent total order, consuming an additional
zero or two communication steps.

In more details, EZBFT requires at least 3f+1 replicas to tolerate
f faulty replicas. EZBFT uses two kinds of quorums: a fast quorum
with 3f + 1 replicas and a slow quorum with 2f + 1 replicas. Safety
is guaranteed as long as only up to f replicas fail, while liveness is
guaranteed during periods of synchronous communication. In general,
EZBFT can deliver decisions in three communication steps from
the client’s point-of-view, if there is no contention, no Byzantine
failures, and synchronous communication between replicas. However,
this is an ideal condition. According to the authors, these three
communication steps include: (i) a client sending a request to any
one of the replicas (closest preferably); (ii) a replica forwarding the
request to other replicas with a proposed order; and (iii) other replicas
speculatively executing the requests as per the proposed order and
replying back to the client. These three steps constitute EZBFT’s core
novelty. In general, EZBFT puts many burdens on final decisions to
the clients, this assumption does not suit well for lightweight clients.

In EZBFT, it includes many assumptions which help the design
of a leaderless consensus protocol, and some of these assumptions are
not practical. For example, as the work [101] pointed out, “EZBFT
violates the safety property of a consensus protocol. EZBFT also
violates liveness and execution consistency; a requirement for total
ordering of non-commutative commands." The work [101] provides
some enhancements to achieve the original EZBFT claimed proper-
ties. Interested readers can read the work [101].

3) Aleph: Aleph is an atomic broadcast protocol in asynchronous
networks with Byzantine nodes, proposed by Gkagol et al. in
2019 [102]. Its deprecated version [103] is presented by Gkagol and

12



Swietek in 2018 targeting for leaderless protocol. From a high-level
perspective, Aleph is based on the design of Asynchronous Byzantine
Fault Tolerant (ABFT) systems, which allows formally reasoning
about correctness, efficiency, and security in the strictest possible
model. Also, it makes some improvements on the HoneyBadger
BFT by reducing the asymptotic latency while matching the optimal
communication complexity. Aleph does not require a trusted dealer
with the help of a trustless ABFT randomness beacon. In general,
ABFT models are resistant to some harsh network conditions, e.g.,
arbitrarily long delays on messages, node crashes, or even multiple
nodes colluding in order to break the system. However, ABFT models
are often considered purely theoretical due to the heavy mathematical
formalism. The ABFT protocol proposed in Aleph keeps all of
the good properties of HoneyBadger BFT and improves upon it
in two important aspects, e.g., tightening the complexity bounds
on latency from logarithmic to constant and eliminating the need
for a trusted dealer. Aleph is designed for an asynchronous setting,
however, it matches the optimistic-case performance of three-round
validation time of synchronous protocols [4]. Also, the trustless ABFT
randomness beacon generates common, unpredictable randomness.

In more details, a robust atomic broadcast protocol should meet
several requirements, such as total order, agreement, and censorship
resilience. The properties of total order and agreement are used to
ensure that all the honest nodes always produce the same ordering,
while the censorship resilience is used to guarantee that no transaction
is lost due to censorship, but also guarantee that the system makes
progress and does not become stuck as long as new transactions are
being received. The Aleph protocol solves Atomic Broadcast over
N >= 3f + 1 nodes in an asynchronous network, of which f is
the number of dishonest nodes, and these nodes have the following
properties: 1) Latency – the expected number of asynchronous rounds
until a transaction is output by every honest node is O(N/k), where
k is the number of honest nodes; 2) Communication complexity –
the total communication complexity of the protocol in R rounds
is O(T + R × N2logN) per node, where T is the total number
of transactions input to honest nodes during R rounds. The sec-
ond contribution of Aleph is a stand-alone component that allows
removing the trusted dealer assumption, which can be considered as
a protocol for generating unpredictable common randomness with
the ABFT randomness beacon. Such randomness is indispensable
in any ABFT protocol for atomic broadcast. Besides, the Aleph
protocol is based on a modular structure, which separates entirely
the network communication layer from the protocol logic. This is
used to maintain a common data structure called a Communication
History DAG, and the protocol logic is then stated entirely through
the combinatorial properties of this structure. Also, Aleph is resistant
against the Fork Bomb, a spam attack scenario that affects most
known DAG-based protocols, through the use of reliable broadcast
to disseminate information among nodes.

4) PnyxDB: PnyxDB is a leaderless democratic BFT replicated
datastore that exhibits both scalability and low latency, proposed
by Bonniot et al. in 2020 [104]. From a high-level perspective, it
hinges on a conditional endorsement that tracks conflicts between
transactions. PnyxDB also supports application-level voting, e.g.,
individual ones can endorse or reject a transaction according to
application-defined policies without compromising the consistency.
Within PnyxDB, clients may perceive conflicting views of the data-
store for a short period of time, but they will achieve eventually
consistency on different views. With the help of conditional endorse-
ments within quorums, PnyxDB can flag and handle conflicts by

Fig. 7. Overview of PnyxDB. The application submits transactions to
be executed on shared state and polls the appplication back for transaction
approval before creating conditional endorsements [104].

Fig. 8. Transaction state diagram, as viewed by a node. From the Pending
state, a transaction evolves either to Dropped or Committed given received
messages. Dropped and Committed are eventually consistent across all nodes.
However, Pending, Applicable, and Applied are intermediate states local to
each node which might not be consistent [104].

allowing each node to specify a set of transactions that must not be
committed for the endorsement to be valid. PnyxDB consists of two
key components: leaderless quorums for scalability and conditional
endorsement for eventual consistency. Fig. 8 shows an overview of
PnyxDB, where the application submits transactions to be executed on
a shared state and polls the application back for transaction approval
before creating conditional endorsement.

In more details, PnyxDB does not rely on any coordinator, rotating
or elected, which removes a recurring performance bottleneck. This
trades off weaker consistency guarantees for high scalability. Trans-
actions only need to be endorsed by a Byzantine quorum of endorsers
(e.g., more than (n+ f)/2) to be permanently committed to the sys-
tem’s state. The eventual consistency of PnyxDB is based on Conflict-
Free Replicated DataTypes (CRDTs) [105] [106] and leverages the
fact that many operations in distributed datastores either commute or
are independent. This ensures that the transactions can be executed out
of order on different nodes without breaking local consistency [107],
while allowing every correct node to eventually coverage to the
same global datastore state. However, the leaderless quorums may
lead to some deadlocks in case of conflicts, e.g., when modifying
the same key with conflicting operations. This can be overcome by
using the conditional endorsements mechanism. When an endorser
broadcasts an endorsement, it publishes a list of transactions that must
not be committed for the endorsement to be valid. These conflicting
transactions are the conditions of the endorsement. All correct nodes
use the same heuristics to decide which one to promote over the other,
ensuring a consistent conflict resolution. With cooperative work of
leaderless quorums and conditional endorsements, valid transactions
can successfully proceed through their light cycle. Fig. 8 shows a
transaction state diagram in PnyxDB.

5) Other Leaderless Consensuses: Leaderless Byzantine Paxos is
a brief announcement proposed by Lamport in 2011 [95]. It presents
a simple method for implementing a leaderless Byzantine agreement

13



algorithm, by replacing the leaders in an ordinary Byzantine Paxos al-
gorithm with a virtual leader that is implemented using a synchronous
Byzantine agreement algorithm. Each server decides what message
the leader should send next and proposes it as the leader’s next
message. The servers then execute a synchronous Byzantine algorithm
to try to agree on the vector of proposed messages, a vector contain-
ing one proposal for each server. Each server uses a deterministic
procedure to choose the message sent by the virtual leader, and it
acts as if it had received this message. A malicious virtual leader
can prevent the progress, but does not cause inconsistency because a
Byzantine Paxos algorithm can tolerate a malicious leader. In general,
leaderless Paxos adds to a Byzantine Paxos algorithm the cost on the
leader agreement algorithm. The time required by a leader agreement
algorithm that tolerates F faulty servers is F + 1 message delays,
which replaces the one message delay of a leader simply sending a
message.

Leaderless BFT (LBFT) aims to design a protocol in partial
synchronous network model, provided by Niu and Feng in 2020 [93].
From a high-level perspective, all proposers in LBFT can complete
proposing blocks once they find some block proofs, and some of
these blocks will eventually be committed with no explicit leader.
The LBFT protocol contains three key components: block proposing,
voting, and committing rules. The proposers in LBFT complete to
generate new blocks to extend some certified blocks chosen by the
proposing rule, in which a proposer is allowed to generate a new
block once it finds an associated block proof. The voters typically
broadcast votes for the valid block if it satisfies the specified voting
rule. When nodes collect more than 2f + 1 votes for a block, this
block will be certified, and nodes will check whether there exist new
committed blocks by following the committing rule. For these three
rules, interested readers can refer to Section III of [93]. Currently, the
LBFT is still on the proof-of-concept stage, and no implementation
is proposed to evaluate its performance.

Leaderless consensus aims to provide a general framework for
consensus algorithms, proposed by Antoniadis et al. in 2021 [108].
It first gives a precise definition of leaderless algorithms, and then
presents three indulgent leaderless consensus algorithms: for shared
memory, for message passing with omission failures, and for message
passing with Byzantine failures (with and without authentication). In
general, this work is much conceptual, which aims to instruct how to
design a leaderless consensus. The first proposed leaderless consensus
algorithm, called Archipelago, works in shared memory and builds
upon a new variant of classic adopt-commit object [109] that returns
maximum values to help different processes converge towards the
same output. The second algorithm is a generalization of Archipelago
in a message-passing system with omission failures. And the third
algorithm, called BFT-Archipelago, is a generalization of Arhipelogo
for Byzantine failures. BFT-Archipelago shares the same asymptotic
communication complexity as a classic BFT consensus algorithm and
can execute optimistically a fast path to terminate in two message
exchanges under good conditions. Regarding the complexity, BFT-
Archipelago can terminate deterministically by exchanging and stor-
ing at most O(n4) messages and bits (each message is of length O(1)
bits), and can terminate within O(n) rounds and O(n4) calculations
and signature checks.

C. Randomized BFT Protocols

In general, randomization can help to bypass the FLP impossibil-
ity by guaranteeing probabilistic properties instead of deterministic

ones [27]. Randomization itself cannot be directly used to resolve
consensus problems, it must cooperate with other techniques. For
example, Robin [110] presents a solution to achieve Byzantine con-
sensus in asynchronous cases by incorporating cryptographic primi-
tives (i.e., digital signatures) and a trusted leader with randomization.
On average, it can terminate in a constant expected time. When we
discuss the randomized consensus protocols, they typically cannot
achieve a deterministic termination. Instead, we consider if they can
achieve a consensus “with a high probability". For example, Ben-Or’s
consensus protocol [111] was the first one to ensure consensus and
guarantee termination with a high probability in crash failure model.
For the Byzantine model, it is more complex, and most existing ran-
domized Byzantine consensus protocols target asynchronous settings.
Thus, some protocols presented in this section also can be categorized
into asynchronous BFT consensus.

Different from deterministic protocols, randomized protocols have
the ability to achieve the consensus even under a fully asynchronous
setting to ensure liveness and responsiveness with a high probability,
without any extra assumptions on network synchrony [112]. This
also removes complicated timeout schemes over the unstable global
communication network (like the Internet). Thus, the randomized
algorithms are typically used to bypass the FLP impossibility under
asynchronous Byzantine settings. The key idea of a randomized
protocol is that it makes progress as if every replica is the leader and
retroactively decides on a leader, and this makes the adversary have
only a small probability of guessing which nodes to corrupt [113].
Also, most existing randomized protocols have some drawbacks, e.g.,
a quadratic communication complexity even under good network
conditions. This section discusses the randomized BFT consensus
protocols.

1) HoneyBadgerBFT: HoneyBadgerBFT is the first practical
asynchronous BFT protocol that guarantees liveness without making
any timing assumption, proposed by Miller et al. in 2016 [66].
By the well-known FLP impossibility, it is impossible to achieve
deterministic asynchronous protocols for atomic broadcast and many
other tasks. To get a deterministic protocol, it must therefore make
some stronger timing assumptions, e.g., the assumptions in partial
synchrony. With this regard, almost all modern prior BFT protocols
rely on timing assumptions to guarantee liveness. However, in reality,
e.g., the Internet, there are no such assumptions. Randomness, e.g.,
via cryptographic primitives, provides an alternative to achieve a
consensus under a purely asynchronous environment. Roughly speak-
ing, HoneyBadgerBFT utilizes a novel atomic broadcast protocol to
achieve an optimal asymptotic efficiency, with O(N) communication
complexity (where N is the number of total replicas). With Hon-
eyBadgerBFT, it uses a threshold public-key encryption to prevent
the targeted censorship attacks, and uses a sub-optional instantiation
of Asynchronous Common Subset (ACS) sub-component. With the
help of ACS, HoneyBadgerBFT combines efficient reliable broadcast
using erasure codes [114] and a reduction from ACS to reliable
broadcast from multi-party computation [115]. HoneyBadgerBFT’s
design is optimized for a cryptocurrency-like deployment scenario
where network bandwidth is a scarce resource, but computation
is relatively ample. Besides, HoneyBadgerBFT assumes that, in an
asynchronous network, messages are eventually delivered but no other
timing assumption is made.

In more details, HoneyBadgerBFT consists of two main com-
ponents: threshold encryption and ACS. In every round, each node
chooses a set of transactions as its proposal and encrypts it through a

14



Fig. 9. HoneyBadger BFT [116].

threshold encryption scheme, then submits the ciphertext as input to
the ACS module, and a common subset of these ciphertexts will be
output. At the end of the round, the subset will be decrypted still by
a threshold encryption scheme to get final consensus results [116].
Fig. 9 shows an abstract architecture of HoneyBadgerBFT. The
threshold encryption scheme TPKE used in HoneyBadgerBFT is from
Baek and Zheng [117]. A (t, n)-TPKE scheme can guarantee that a
ciphertext can be decrypted if and only if at least t honest users
cooperate. If the number of cooperating users is less than t, no
information about the plaintext is leaked. This property is important
to applications where a party does not fully trust other individuals,
but possibly trusts a group of individuals [118]. By using a TPKE
scheme, HoneyBadgerBFT ensures that an adversary controlling less
than t faulty replicas cannot get a plaintext without the help of honest
nodes. As TPKE is secure under an adaptive chosen ciphertext attack,
it helps HoneyBadgerBFT to realize censorship resilience property
which prevents the adversary from delaying honest client requests
on purpose. ACS serves as the main module to reach consensus
among replicas, which further consists of the Reliable Broadcast (RB)
module and Binary Agreement (BA) module. In HoneyBadgerBFT,
the RBC module from the work [119] with erasure codes [114] is
used to transmit the proposal for each node to all other nodes, while
the BA module from Mostefaoui [120] is used to decide on a bit
vector indicating which proposals should be output as the consensus
result.

Besides, the authors implemented the HoneyBadgerBFT protocol,
and experimental results show that the system can achieve throughput
of tens of thousands of transactions per second, also, it can scale over
a hundred nodes over a WAN. Also, the authors conduce experiments
over Tor, without needing to tune any parameters. With the guaranteed
both safety and liveness, HoneyBadgerBFT has abundant application
scenarios, e.g., banks and financial institutions.

There is no timing restriction on message passing. However,
HoneyBadgerBFT assumes a traditional static BFT protocol which
means that it could not support a consensus node join or leave
the consensus group without reconfiguring the whole system. And
malicious or inactive nodes still exist in the system, and the current
protocol lacks the function to detect these malfunctioning nodes to
exclude them from the system. The malfunctioning nodes may hamper
the long-term benign working of the system.

2) Algorand: Algorand is a cryptocurrency-based blockchain net-
work that confirms transactions within latency on the order of minutes
while scaling to many users, proposed by Gilad et al. in 2017 [121]. It
keeps strong consistency that users will never have divergent views on
confirmed transactions. This is enforced by a Byzantine Agreement
(BA) protocol to reach a consensus among users on the next set
of transactions. This also allows Algorand to reach a consensus
on a new block with low latency, without the possibility of forks.
To achieve scalability, Algorand utilizes verifiable random functions
which allow users to privately check whether they are selected
to participate in the BA to agree on the next set of transactions,

with proof to show they were selected. Users in BA protocol do
not require to keep any private state except for their private keys,
enabling Algorand to replace participants immediately after they
send a message. To applying Algorand for public blockchains, it
needs to overcome several challenges, e.g., avoiding Sybil attacks,
achieving scalability, and resilience to denial-of-services attacks. To
address these challenges, Algorand adopts several techniques, namely,
weighted users, consensus by committee, cryptographic sortition, and
participant replacement. To prevent Sybil attacks, Algorand assigns
a weight to each user. BA? is designed to guarantee consensus as
long as a weighted fraction (e.g., a constant greater than 2/3) of the
users are honest. To achieve scalability, BA? selects a committee, a
small set of representatives randomly from a total set of users, to run
each step of protocol. And this selection typically is based on the
users’ weights. All other users observe the protocol messages, which
allows them to learn the agreed-upon block. To prevent an adversary
from targeting committee members, e.g., DoS attacks, BA? selects
committee members in a private and non-interactive way. Every user
itself can independently determine if they are chosen to be on the
committee, by computing a VRF function on their private key and
public information from the blockchain. Due to the non-interactive
nature during member selection, an adversary does not know which
user to target until that users start participating in BA?. To prevent
an adversary from targeting a committee members, once that member
sends a message, BA? mitigates this attack by requiring committee
members to speak just once.

More specially, Algorand grows the blockchain in asynchronous
rounds, which is similar to Bitcoin. Each client running Algorand can
be considered as an Algorand user, and the communication between
users is via a gossip protocol. For example, users can submit new
transactions via a gossip protocol, and the other users collect a block
of pending transactions that they hear about. In the gossip protocol,
each user selects a small fraction set of peers to gossip messages to,
and a good gossip protocol can avoid a forwarding loop. Algorand
uses BA? to reach a consensus on one of these pending blocks. In
general, BA? executes in steps, communicates over the same gossip
protocol, and produces a new agreed-upon block. BA? can produce
two kinds of consensus: final consensus and tentative consensus. Once
a user reaches the final consensus, any other user that reaches the final
or tentative consensus in the same round must agree on the same block
value. However, a tentative consensus means that other users may
have reached a tentative consensus on a different block (as long as no
user reached a final consensus). A user will confirm a transaction from
a tentative block only if and when a successor block reaches the final
consensus. To participate in consensus, all Algorand users execute
cryptographic sortition to determine if they are selected to process a
block in a given round. This sortition process ensures that a small
fraction of users are selected at random, weighted by their account
balance, and provides each selected user with a priority. Meanwhile,
the sortition can let Algorand be scalable. Interested readers can
refer to the work [121], and some proof works on Algorand can
refer [122] [123].

3) ACE: A leader-based view (LBV) abstraction is presented
in the work of ACE which provides a general framework for
the software design of fault-tolerant SMR systems, proposed by
Spiegelman and Rinberg in 2019 [124]. Essentially, ACE provides a
simple generic framework for asynchronous boosting, which converts
consensus algorithms designed according to the leader-based view-
by-view paradigm in a partial synchrony model into randomized
fully asynchronous SMR solutions. ACE is a model agnostic, in

15



which it has no model assumptions, and thus can be applied to any
leader-based protocol in the Byzantine or crashed failure model. ACE
provides a formal characterization of the leader-based view-by-view
protocols by defining an LBV abstraction, which encapsulates the
core properties of a single view and provides an API that allows de-
coupling of the leader-based phase from the view-change phase. The
view-change phase can be triggered by timers, e.g., parties start a
timer in each view, and if the timer expires before the leader drives
progress, parties move to the view-change phase. Also, ACE provides
a wave mechanism to control the trigger of view-change phas. The
wave mechanism uses an API provided by the LBV abstraction to
generically rearrange views in view-by-view protocols. It composes
several LBV abstractions which allows progress at network speed
during a period of asynchrony. If the leader of a view is correct and
timers never expire, eventually a decision will be made in this view.

4) Validated Asynchronous Byzantine Agreement: Another the-
oretical work on the optimization of communication complexity is
proposed by Abraham et al. in 2019 [125]. It targets to a Validated
Asynchronous Byzantine Agreement (VABA) in an authenticated
setting. VABA is the key building block in constructing atomic
broadcast and fault-tolerant SMR in an asynchronous setting. The
proposed VABA protocol has optimal resilence of f < n/3 Byzantine
failures and asymptotically optimal expected O(1) running time to
reach an agreement. Honest parties in protocol send only an expected
O(n2) messages where each message contains a value and a constant
number of signatures, whose total expected communication is O(n2)
words. While the best previous result of Cachin et al. from 2001 [126]
solves VABA with optimal resilience and O(1) expected time but with
O(n3) expected word communication. Thus, the proposed VABA
protocol improves the expected word communication from O(n3) to
asymptotically optimal O(n2). More specially, the proposed VABA
is secure against an adaptive adversary that controls up to f < n/3
parities. The overall design is based on a modular implementation,
consisting of three sub-protocols: a simple two-round broadcast prim-
itive (called Provable-Broadcast), a simple Leader-Election protocol,
and another primitive (called Proposal-Promotion). The Proposal-
Promotion is further built on top of sequential instances of Proposal-
Broadcast. Interested readers can refer to Section 3 of [125].

5) Gosig: Gosig is a BFT-based blockchain protocol that jointly
optimizes the consensus and gossip protocols, proposed by Li et al. in
2020 [127]. Gosig guarantees safety even in asynchronous networks
fully controlled by adversaries, by combining secret leader selection
with multi-round votings. It adopts transmission pipelining to fully
utilize the network bandwidth, and uses aggregated signature gossip
to reduce the number of message. These optimizations help Gosig
to achieve unprecedented single-chain performance. In general, most
existing BFT-based blockchains face several significant challenges:
the targeted-single-point-failure, in which it is easy for the adversaries
to launch DDoS attacks targeting an honest node and partition it
from others (e.g., under adaptive attacks), the limited bandwidth and
the long latency, in which the burdens on the large block and the
broadcast scheme may become the source of bottleneck, and the
limitation by the slowest nodes, in which both the communication
and computation overheads on a single node (e.g., the leader) limit
the protocol scalability. Even some threshold signatures schemes, like
SBFT or HotStuff, help to reduce the total communication overheads
(e.g., reducing the total number of messages), however, the nodes
need to wait until some collectors receive signature shares from all
nodes, in which case the performance is limited by their single node
capability. Gosig is a fast scalable and fully decentralized BFT system

Fig. 10. Overview of a Gosig round without pipelining [127].

that solves the above three challenges by integrating the protocol with
the underlying gossip network. Essentially, Gosig operates in rounds,
and each round contains two stages: the block proposing stage and the
signature collection stage. In the block proposing stage, Gosig first
randomly selects several proposers, and then each proposer packs
transactions into a new block and broadcasts the block to all other
nodes. In the signature collection stage, each node chooses one block
received to vote, signs its decision, and keeps relaying the aggregated
signatures signed by itself and received from the others. Gosig uses a
gossip network to propagate all messages, and the consensus protocol
ensures that messages in the same stage can be effectively aggregated
during gossiping.

In more details, Gosig adopts some key techniques, e.g., electing
a random proposer for every new block, pipelining all possible
processes, and aggregating all signatures on the fly using gossip-
based broadcast. Gosig uses a secure and cheap proposer replacement
to change the proposer for every block. By using a verifiable random
function (VRF), it makes the selection randomly and unpredictably.
Also, Gosig eliminates the expensive view-change process in standard
PBFT, by including a small proof in every proposal to prove a
new proposer’s validity. Since the protocol proceeds in synchronous
rounds, at most one block can be committed in a round. Gosig uses
an aggregated signature gossip protocol to optimize the signature
collection, which combines multiple received signatures into one
aggregated signature. This makes the signature message size be up to
two orders of magnitude smaller and significantly reduces the total
data transfer during the signature collection stage. When applying the
aggregated signature gossip, the vote exchanging is latency-bound,
and a significant portion of the network bandwidth is under-utilized.
So, Gosig pipelines at both the gossip layer and the BFT voting layer
to maximize network utilization.

Gosig maintains a blockchain, and each node relays transactions
to others and packs them into blocks in a specific order later.
It can tolerate up to f faulty replicas by using 3f + 1 replicas,
and safety is guaranteed in an asynchronous network with liveness
guaranteed in a partially synchronous network. Gosig proceeds in
rounds and each round consists of a proposer selection step and two
subsequent stages with a fixed length. Fig. 10 shows an overview
of a typical round. At the start of each round, some nodes secretly
realize they are potential proposers of this round with a cryptographic
sortition algorithm, and an adversary cannot target the proposers
better than randomly guessing. At stage I, each selected potential
proposer packs non-conflicting uncommitted transactions into a block
proposal, disseminates it with gossip, and then just like a normal node
afterward. At stage II, it aims to reach an agreement on some block
proposal by votes exchanging. A node voting a block by adding its

16



digital signature of the block to a prepare message (“P message") and
gossip it. Upon receiving at least 2f +1 signatures from P messages
for a block, the node tentatively commits on this block, and starts
sending tentatively-commit messages (“TC message") for it. Once a
node receives 2f+1 TC messages, it finally commits the block to its
local blockchain replica. Interested readers can refer to the work [127]
for more details.

6) Dumbo: Dumbo is an asynchronous BFT protocol by pro-
viding two atomic broadcast protocols to improve the running time
asymptotically and practically, proposed by Gao et al. in 2020 [128].
It provides two atomic broadcast protocols, called Dumbo1 and
Dumbo2. Both protocols are based on the work of HoneyBadger BFT
(as the first practical asynchronous atomic broadcast protocol), and
make some improvements on HoneyBadger BFT. Roughly speaking,
the asynchronous common subset protocol (ACS) of Dumbo1 only
runs a small k (independent of n) instances of asynchronous binary
agreement protocol (ABA), while that of Dumbo2 further reduces
it to a constant. At the core are two observations: 1) reducing the
number of ABA instances significantly improves efficiency; and 2)
using multi-valued validated Byzantine agreement (MVBA) which is
considered sub-optimal for ACS. The design of these asynchronous
protocols is based on two practical requirements: actual network
environment and responsiveness. In general, asynchronous protocols
may be favorable in a practical environment due to their efficiency,
particularly a property called responsiveness. A synchronous BFT
protocol is typically parameterized by the assumed network latency,
which is normally chosen to be large so that the actual network latency
is indeed smaller thus the synchrony assumption can be ensured. This
causes the efficiency of synchronous BFT protocols depends on the
assumed network latency. While the responsiveness should relate only
to the actual network latency. Also, asynchronous protocols simplify
the engineering efforts, e.g., no timeout mechanism is needed. And
the ACS protocol is the core component to achieve an asynchronous
agreement under the Byzantine environment. Thus, it is important to
carefully design the ACS protocol to improve both the asymptotic
and practical efficiency.

More specifically, two ACS protocols are provided to meet these
requirements. Based on the FLP impossibility, an ABA protocol must
be a randomized version. However, the randomized ABA instances
do not really execute in a fully concurrent fashion, as 1) not all
instances start at the same time, e.g., some of the instances may
start later as inputs have not been delivered, and 2) normal nodes
also have an efficiency degradation facing large scale concurrent
execution. The Dumbo1-ACS protocol aims to solve these issues.
Dumbo1-ACS only needs to run k instead of all n ABA instances,
and achieves O(logk) running time, where k is a security parameter
independent of n. Simply, the first phase of ACS remains unchanged,
e.g., every node broadcasts its input through an RBC instance. In
reliable broadcast (RBC) phases, it selects a small number k of
nodes as the “leaders" such that at least one of them is honest with
overwhelming probability. It needs to take care in the case that two
honest nodes may receive different values from different selected
“leaders", which requires honest nodes to decide which of the k
selected nodes to believe. It relies on an added coin-tossing protocol
to select k nodes, which is just one sub-routine of ABA protocol.
When one honest node determines to output the values corresponding
to Si, it must be the case that the i−th ABA instance outputs a bit
1. And the ABA protocol can ensure that 1) all other honest nodes
will also output 1, and 2) at least one honest knows the inputs 1 for
this ABA instance. The Dumbo2 uses a mechanism of multi-value

validated Byzantine agreement (MVBA) to output one of the inputs
of n peers as long as the inputs satisfy some pre-defined predicate.
This helps Dumbo2 to achieve optimal (constant) running time, e.g.,
Dumbo2 only needs to run three consecutive instances of ABA. Since
ACS outputs a subset of inputs, it requires preparing each peer node
with a vector of inputs via RBC type of protocols. Dumbo2 utilizes a
provable reliable broadcast (PRBC) which augments RBC and further
outputs a succinct proof (even by a malicious node) that at least one
honest peer has received the input. Dumbo2 uses a threshold signature
on the RBC index to achieve this. Thus, the ABA implemented in
MVBA only needs to be repeated three times to achieve a single
instance via the corresponding proofs. Interested readers on detailed
design for both Dumboes can refer to the work [128].

Another follow-up work, called Bolt-Dumbo Transformer (BDT),
was proposed by Lu et al. in 2021 [112]. It presents a generic
framework for optimistic asynchronous atomic broadcast. The frame-
work provides an abstraction of the optimistic case protocol, where
can be prepared to design a highly efficient fallback mechanism
(compared with MVBA), and can be instantiated easily. It reduces
the communication complexity by a factor of O(n) and replaces
the cumbersome MVBA protocol with a type of binary agreement
only. More specifically, BDT is a randomized asynchronous BFT
protocol with optimistic deterministic execution. The optimistic case
is taken place if the network is benign, and the Bolt will be run.
If no progress can be made using Bolt, in the pessimistic case, an
asynchronous BFT protocol Dumbo will start to run. And there is a
pace synchronization phase, called Transformer, which will execute
if enough honest peers do not make progress and will agree on how
to restart. Overall, it provides an abstraction on running specifically
designed BFT protocols.

7) Dumbo-MVBA: Dumbo-MVBA is an optimization to reduce
the communication complexity of MVBA protocol to the order of
O(n2) (where n is the number of participating nodes), proposed by
Lu et al. in 2020 [129]. Original multi-valued validated asynchronous
Byzantine agreement (MVBA) [126] requires around the O(ln2 +
λn2 + n3) communication (where n is the number of parties, l is
the input length, and λ is the security parameter). And later, this
communication complexity is reduced by removing the term n3 when
the input is small [125]. However, when the input length l ≥ λb, the
communication is dominated by the λn2 and the problem of O(n3)
communication remains open. Dumbo-MVBA intends to bridge this
gap with O(ln2 + λn2) communicated bits, which is optimal when
l ≥ λn. It also maintains other benefits including optimal resilience to
tolerate up to n/3 adaptive Byzantine corruption, optimal expected
constant running time, and optimal O(n2) messages. At the core
of Dumbo-MVBA is an asynchronous provable dispersal broadcast
(APDB) in which each input can be split and dispersed to every
party and later recovered in an efficient way. Based on the proposed
APDB and asynchronous binary agreement, the authors design and
present a self-bootstrap framework Dumbo-MVBAF to reduce the
communication cost of existing MVBA protocols.

In more details, the original MVBA protocol only outputs a single
party’s input, which is unnecessary for every party to send its input
to all parties. The design of Dumbo-MVBA achieves a reduction
from MVBA to ABA by using a dispersal-then-reset methodology
to reduce communication. Instead of allowing each party directly
send its input to everyone, Dumbo-MVBA lets everyone disperse the
coded fragments of its input across the network. After the dispersal
phase has been completed, the parties could randomly choose a

17



dispersed value to collectively recover it. And every party can locally
check the validity of the recovered value, so they can consistently
decide to output the value or to repeat random election of another
dispersed value to recover. A typical MVBA protocol would require
an asynchronous verifiable information dispersal (AVID) [130] [131]
that needs O(n2) messages to disperse a value. In Dumbo-MVBA,
it uses APDB to weaken the agreement of AVID when the sender is
corrupted. By doing so, it can realize a dispersal protocol with only
O(n) message complexity. By optimizing the methods in [125] (e.g.,
combining APDB), each fragment sent by a party has only O(l/n)
bits, so n dispersals of l−bit input incur only O(ln) bits, and the
nodes can reconstruct a valid value after an expected constant number
of ABA and recoveries.

D. Asynchronous BFT protocols

Even under the FLP impossibility, there still exist some literature
works achieving consensus under an asynchronous setting. These
works are typically achieved by relaxing/weakening other conditions
on models (e.g., fault-tolerant rate) or adding certain external assis-
tance (e.g., cryptographic primitives). This section discusses some
BFT protocols with the feature of the asynchronous setting.

1) Proactive Recover BFT: Proactive recover BFT was first
proposed to recover Byzantine-faulty replica proactively by Gastro
and Liskov in 2000 [132]. Different from partially synchronous PBFT,
this BFT protocol targets an asynchronous SMR systems, offering
both integrity and high availability in the presence of Byzantine faults.
Proactive recover BFT provides two main features: 1) it improves
security by recovering replicas proactively; 2) it is based on symmetric
cryptography (rather than public-key cryptography) for authentication,
which allows it to perform well so that it can be used in practice.
The recovery mechanism allows tolerating any number of faults over
the lifetime of the system provided fewer than 1/3 of the replicas
become faulty within a window of vulnerability that is small (e.g., a
few minutes) under some conditions. The recover algorithm provides
detection of denial-of-service attacks aimed at increasing the window.
For example, replicas can time how long recovery takes and alter their
administrator if it exceeds some pre-established bound. The recovery
algorithm recovers replicas periodically independent of any failure
detection mechanism, thus it allows replicas to continue participating
in the request processing protocol while it is recovering.

Even under secure cryptographic co-processors to sign messages,
an attacker can still launch replay attacks. To prevent this, proactive
recovery BFT utilizes the notion of the authentication freshness, and
replicas reject messages that are not fresh. To prove to a third party
that some messages they received are authentic, the algorithm enables
the use of symmetric cryptography for authentication of all protocol
messages. This eliminates the use of heavy public-key cryptography
which also eliminates the major performance bottleneck. To guarantee
a recovering replica up to the date, proactive recovery BFT develops
an efficient hierarchical state transfer mechanism based on hash
chaining and incremental cryptography, which can tolerate Byzantine
faults and state modification while state transfers are in progress.
Also, the proposed algorithm ensures both safety and conditional
liveness. As stated in [132], non-faulty clients eventually receive
replies to their requests provided that: 1) at most f replicas become
faulty within the window of vulnerability, and 2) denial-of-service
attacks do not last forever. Besides, it provides a generic program
library with a simple interface, and the experimental results on

Network File System (NFS) service show that even a small window
of vulnerability has little impact on service latency.

One of the follow-up works on proactive recovery was proposed,
named BFT-PR (BFT with proactive recovery), by Gastro and Liskov
in 2002 [15]. BFT-PR mainly extends their previous work presented in
1999 with more detailed descriptions and detailed implementation on
NFS systems with clear interface design. Before the BFT-PR scheme,
another work based on proactive recovery BFT was presented in
2001 [133], whose focus is on the performance evaluation of BFT-
PR in asynchronous systems. An evaluation on a replicated NFS file
system using BFT shows that BFS (Byzantine fault-tolerant NFS file
system) performs 2% faster to 24% slower than production imple-
mentation of the NFS protocol that is not replicated. We recommend
interested readers on proactive recovery can refer to the work [15].

2) FaB Paxos: FaB Paxos is a two-step Byzantine fault-tolerant
consensus protocol proposed by Martin and Alvisi in 2006 [134] and
its preliminary work is published in 2004 [135]. The protocol can
reach consensus under an asynchronous setting in a common case,
which can be used to build a replicated state machine that requires
only three communication steps per request in the common case.
As in classic consensus problems, e.g., [28], FaB Paxos considered
three classes of agents: proposers who propose values, acceptors who
together are responsible for choosing a single proposed value, and
learners who must learn the chosen value. Typically, Paxos is a leader-
based protocol, and the leader is responsible for communicating and
coordinating with other acceptors. In FaB Paxos, the leader is chosen
from the proposers instead of acceptors. And FaB Paxos focuses
on improving the performance in a common case scenario, but in
a Byzantine model. In general, a common case scenario must meet
three requirements: 1) there is a unique correct leader, 2) all correct
acceptors agree on its identity, and 3) the system is in a period of
synchrony. Other processes other than the leader may still fail during
the normal cases. For the fault-tolerant rate, FaB Paxos requires 5f+1
acceptors to tolerant f Byzantine fault in the common case, while
its Parameterized FaB Paxos (a generalization of FaB Paxos) only
requires 3f + 2t + 1 acceptors to tolerate f Byzantine failures and
is a two-step scheme as long as at most t acceptors fail.

FaB Paxos works under an authenticated asynchronous fair links
model, whose model still follows the asynchronous model with
some restrictions. Specifically, if a message is sent infinitely many
times, then it arrives at its destination infinitely many times, and
the recipient of a message knows who the sender is. Under this
condition, the consensus may take more than two communication
steps to terminate, e.g., when all messages sent by the leader in the
first round are dropped. And the authenticated asynchronous fair links
models literally enforce an end-to-end retransmission scenario. For
example, the caller sends its request repeatedly, and the callee sends
a single response every time it receives a request. FaB Paxos requires
5f + 1 processes to tolerate f Byzantine fault in two communication
steps. Specially, it requires 5f + 1 acceptors, 3f + 1 proposers, and
3f+1 learners; and each process in FaB Paxos can play one or more
of these three roles. When FaB Paxos is in connection with state
machine replication, it assumes that an arbitrary number of clients of
the state machine can be Byzantine. Interested readers can refer to
the work [134].

Before the FaB Paxos protocol, there exist some similar literature
works on Paxos, e.g., FastPaxos (in 2003) [136] and Kursawe’s work
(in 2002) [71], to optimize the performance as a consensus protocol.
Note that “FastPaxos" is not the Lamport’s “Fast Paxos" [137] in

18



2006. In FastPaxos, processes can only fail by crashing, and it only
requires 2f + 1 acceptors to tolerate the faulty processes. FastPaxos
can also achieve consensus in two communication steps on the
eventual leader oracle. Kursawe’s optimistic asynchronous Byzantine
agreement assumes a Byzantine failure model and operates only with
3f + 1. However, his protocol with much stronger assumptions.
For example, to achieve consensus in two communication steps,
the proposed optimistic protocol requires that channels are timely
and no process is faulty. A single faulty process can cause the
fast optimistic protocol to switch to a traditional pessimistic slower
consensus protocol. Interested readers can read these corresponding
papers.

3) Shuttle: Shuttle is a Byzantine Chain Replication (BCR)
protocol for asynchronous environments, proposed by van Renesse et
al. in 2012 [138]. It provides a framework with the help of an external
reconfiguration service. By leveraging an external reconfiguration
service, the Shuttle does not base on Byzantine consensus (instead
based on BCR), does not require a majority based on quorums during
normal operations, and the set of replicas is easy to reconfigure. In
practice, the configurations of replicated services are usually managed
by an external scalable configuration service, and this configuration
service is used only in the face of failures. In the absence of failure,
replication protocols that do not rely on quorums can be performed
efficiently and robustly. The BCR protocols are based on Chain
Replication (CR) [139], which is typically used in scalable fault-
tolerant systems. Chain replication uses an external configuration
service, but cannot tolerate even general crash failures as the protocol
depends on accurate failure detection. Compared with protocols based
on CR, the protocols based on BCR are easily reconfigurable, do not
require accurate failure detection, and are able to tolerate Byzantine
failures. The authors also presented a BCR protocol, called Shuttle.

In more details, in Shuttle, each replica maintains a running state
in addition to its local history of order proofs. A centralized configu-
ration service called Olympus implements an oracle and generates a
series of configurations, issuing an initial configuration statement (a
statement with the order proofs) for each instance. A configuration
statement includes the sequence number of the configuration and an
ordered list of replica identifiers. And the service Olympus generates
a configuration upon receiving reconfiguration request statements. To
prevent DoS attacks, Olympus only accepts reconfiguration results
that are sent by replicas in the current configuration or accompanied
by proof of misbehavior. Via such kind of chain service, it can achieve
a replication service among replicas. For example, suppose a client
wants to execute an operation o to obtain a result, this client is
required to first obtain the current configuration from Olympus, and
then sends o to the head of the chain. The head orders incoming
operations by assigning increasing slot numbers to them, and creating
shuttles that are sent along the chain. Typically, a shuttle instance
consists of two proofs: an order proof for < s, o >, and a result
proof for the result of o. The authors describe how to verify these
two proofs to provide authentication services. Also, the authors
provide two simple implementations (from a theoretical perspective)
based on Shuttle: one that can tolerate Byzantine failures in their
full generalities, and one that tolerates “accidental failures" such as
crashes, bit flips, concurrently bugs, etc. This work focuses on the
theoretical models without any practical implementations.

4) Multidimensional Approximate Agreement: Multidimensional
approximate agreement in Byzantine asynchronous systems is a
ε−approximate agreement problem in the aspect of multidimensional

(e.g., dimension value m ≥ 1), proposed by Mendes and Herlihy in
2013 [140]. The authors generalize the ε−approximate agreement in
Byzantine asynchronous system to consider values that lie in Rm, for
m ≥ 1, and present an optimal protocol with regard to fault tolerance.
The proposed work is much theoretical compared to some traditional
works on Byzantine fault-tolerant protocols. Following the work of
FLP impossibility, the combination of asynchrony and failures that it
is impossible to distinguish between a faulty process that has halted
(e.g., crashed) and a non-faulty process that is simply slow to respond.
There exist many attempts to circumvent this impossibility, and one
attempt is to use (uni-dimensional) ε−approximate agreement [141].
Compared with strong consensus in the Byzantine environment, the
uni-dimensional asynchronous ε−approximate agreement is possible,
however, it is limited in a uni-dimension. Practically, the multidi-
mensional version can be used in many applications, e.g., robot
convergence (applying robots in 2 or 3-dimensional space) and
distributed voting (by assigning weights to voting options).

The authors provide a generalization on the ε-approximate agree-
ment under asynchrony. In a multidimensional ε-approximate agree-
ment task, for arbitrary ε > 0 and m ≥ 1, each process starts
with an input value in Rm, and all non-faulty processes must choose
output values that meet the following conditions: 1) in Rm; 2) all
outputs lie within ε of one another; and 3) all outputs lie in the
convex hull of the inputs of the non-faulty processes. Based on the
above generalization, the authors provide an optimal protocol to solve
these problems, satisfying the properties of agreement and convexity.
Agreement means that, for any non-faulty processes, the Euclidean
distance between their outputs (of two non-faulty processes) must
≤ ε, an error tolerance fixed a priori; while convexity means that, for
any non-faulty process, its output is in the convex hull of the non-
faulty inputs. Interested readers can read the original paper [140] for
more details.

5) BVP: Byzantine Vertical Paxos is a framework design to
provide a method to produce a high throughput BFT SMR, tailed for
a permissioned blockchain environment, proposed by Abraham and
Malkhi in 2016 [142]. It briefly discusses the manifestation in several
modes: synchronous, asynchronous, and asynchronous with the help
of the Trusted Platform Module (TPM). BVP is a protocol to address
both elasticity (dynamic reconfiguration) and throughput, which is
based on Vertical Paxos (VP) [143]. VP separates a scheme into two
modes: a steady-state protocol and a reconfiguration protocol. The
steady-state protocol adopts a primary-backup scenario to multiple
nodes via Chain Replication (CR) [139] or Two-Phase Commit (2PC),
while the reconfiguration protocol is a Paxos-based reconfiguration
engine. By using VP, the steady-state can be optimized for high
throughput and the Paxos is used only when reconfiguration is
necessary. There exist some prior works, e.g., Byzantine Chain
Replication (BCR) protocol [138], used in an asynchronous Byzantine
setting. However, BCR requires 2f+1 replicas for its steady-state and
3f + 1 for the reconfiguration management. The proposed BVP can
provide safe progress with as few as f+1 replicas with a full-fledged
reconfiguration mechanism. For example, in a weak synchronous
network, BVP requires only f + 1 replicas and 2f + 1 replicas
for reconfiguration. The core of BVP is to “wedge" a replicated
state machine and capture its “closing state". It requires a wedging
coordinator to access one non-Byzantine replica participating in a
consensus decision.

In more details, the reconfiguration scheme changes the steady-
state mode by employing a wedging scheme. A wedging coordinator

19



is required to obtain validation from a wedge, a subset of the replicas,
then obtain the latest state of the wedge stores. In general, the
wedging coordinator is implemented by a separate Byzantine consen-
sus engine, reconfiguration engine, whose reconfiguration consensus
decision has two components: next configuration and closing state.
Once a wedging procedure is complete, a reconfiguration consensus
decision is reached. The authors provide two skeleton options for
synchronous-reconfiguration model: a 4-round (4 message delays)
solution with f + 1 replicas and a 3-round solution with 2f + 1
replicas. For the asynchronous model with a TPM, BVP assumes a
weak sequential broadcast (WScast) [144] [145], a broadcast scheme,
with the following several features, e.g., FIFO-like same order deliv-
ery and eventual delivery among correct replicas. For this model, BVP
can achieve a 3-round solution with f+1 replicas for a steady model
incurring a linear message complexity, and its reconfiguration can be
done in constant time using 2f + 1 replicas.

6) XFT: XFT is an acronym of cross fault tolerance, which is an
approach to building a reliable and secure distributed SMR system,
proposed by Liu et al. in 2016 [10]. In asynchronous BFT SMR,
the system designers typically assign an extraordinary power to the
adversary, which may control both the Byzantine faulty machines
and the entire network in a coordinated way. For example, the
classic BFT adversary can partition any number of otherwise correct
machines at will. However, based on the observation in deployed
systems, this kind of Byzantine faulty model is a much stronger
faulty model, which appears irrelevant in many application scenarios,
especially for geo-replicated systems and WANs. From a high-level
perspective, XFT can be used to build efficient resilient distributed
systems that tolerate both non-crash (Byzantine) faults and network
faults (asynchrony). According to the authors’ description on XFT,
“XFT allows building resilient systems that (a) do not use extra
resources (replicas) compared with asynchronous CFT; (b) preserve
all reliability guarantees of asynchronous CFT (in the absence of
Byzantine faults); (c) provide correct service even when Byzantine
faults do occur as long as a majority of the replicas are correct and can
communicate with each other synchronously (e.g., when a minority of
the replicas are Byzantine-faulty or partitioned because of a network
fault)".

In more details, the XFT model relaxes the assumption that an
adversary can launch coordinated attacks, which is unlikely in geo-
scale replicated system deployments, but it still sufficient to shield
applications from crash faults, network faults, and non-crash non-
malicious faults. By this relaxed assumption, the XFT model can use
the same quorum size and the same number of communication steps
as the CFT model by assuming that a majority of processes are correct
and asynchronous. In XFT model, the total number of faults are
bounded by tnc+tc+tp ≤ bn−1

2
c, where tnc are the number of non-

crash faulty or Byzantine processes, tc is the number of crash-faulty
processes, and tp is the number of partitioned processes. Replica p
is partitioned if p is not in the largest subset of replicas, in which
every pair of replicas can communicate among each other within
delay ∆. In any other case, the system will be considered to be in
anarchy. A protocol is an XFT protocol if it satisfies safety in all
executions in which the system is never in anarchy. The above is the
major description of the XFT model. In general, XFT can be used
in use cases in which an adversary cannot easily coordinate enough
network partitions and non-crash-faulty machine actions at the same
time. There indeed exist several application scenarios, e.g., tolerating
“accidental non-crash faults, wide-area networks, and geo-replicated
system, blockchains.

XPaxos is a leader-based SMR protocol based on the XFT
model with performance similar to CFT-based Raft/Multi-Paxos [55]
protocols. XPaxos specifically targets good performance in geo-
replicated settings, which are characterized by the network being
the bottleneck, with a high link latency and a relatively low, het-
erogeneous link bandwidth. Following the generic Paxos protocol,
XPaxos consists of a common-case protocol, view-change protocol, a
faulty detection mechanism. More details of the basic operations on
XPaxos can refer the Section 4 of [10]. However, XPaxos provides
poor scalability and performance, partially because XPaxos inherits
the shortcomings of the leader-based approaches. For example, leader-
based protocols typically have imbalanced load distribution, where the
leader does more work than other replicas; there exists high latency
for requests originating from non-leader nodes due to the requirement
of forwarding requests to the leader; and there exist cases that the
inability to deliver any commands whenever the current leader is low
or Byzantine pending a view-change message.

A follow-up work based on the XFT model, called Elpis, was
proposed by Garg et al. in 2019 [146]. Elpis is a multi-leader
XFT consensus protocol. By adapting the Generalized Consensus
specification, Elpis exploits the commutativity property inherent in
the commands ordered by the systems to provide fast decisions in
three communication steps from any node, in the common case.
Elpis exploits the workload locality that is very common in geo-
scale deployments. The key idea of Elpis is to enable ownership
at a finer granularity. For example, instead of having a single
leader for ordering all commands (regardless of their commutative
property), Elpis assigns ownership to individual nodes such that each
node mostly proposes only commutative commands with respect to
other nodes. Also, Elpis allows for dynamic ownership changes. For
more details on XFT and Elpis, interested readers can refer to the
work [146].

7) BEAT: BEAT is a set of BFT protocols for the asynchronous
environment, consisting of five asynchronous BFT protocols that
are designed to meet different goals, proposed by Duan et al. in
2018 [147]. Essentially, it provides an orchestral of different asyn-
chronous BFT protocols for different purposes, e.g., performance met-
rics and application scenarios. Each protocol in BEAT is based on the
design principle of modularity, and features of these protocols can be
mixed to achieve some meaningful trade-offs between functionalities
and performance for various applications. In general, asynchronous
BFT protocols are appealing solutions to adopt in a WAN environment
as these protocols are more resilient to the timing and DoS attacks.
Asynchronous BFT typically can ensure the liveness of the protocol
without depending on any timing assumption even with a strong
adversary. However, existing asynchronous BFT protocols are subject
to some challenges, e.g., performance (latency and throughput) issues.

In more details, BEAT leverages secure and efficient crypto-
graphic support and more flexible and efficient erasure-coding sup-
port, which provides flexible, versatile, and extensible services, and
whose protocols can be designed to meet different needs. BEAT
includes five BEAT instances (BEAT0 - BEAT4). BEAT0, BEAT1
are general SMR that can support both off-chain and on-chain smart
contracts, while BEAT3 and BEAT4 are BFT storage that can support
off-chain smart contracts only. Specially, BEAT0 is a baseline proto-
col, by incorporates a secure and efficient threshold encryption [148],
a direct instantiation of threshold coin-flipping [130], and efficient
erasure-code support. BEAT1 additionally replaces an erasure-coded
broadcast (AVID broadcast) [114] used on HoneyBadgerBFT with

20



a replication-based broadcast [119]. BEAT2 opportunistically moves
the encryption part of the threshold encryption to the client, further
reducing latency. BEAT3 is a BFT storage system, whose bandwidth
consumption is information-theoretically optimal, and BEAT4 further
reduces read bandwidth, which is useful when it is common that
clients frequently read only a fraction of stored transactions. Interested
readers can read the work [147] for more details.

8) Mir-BFT: Mir-BFT is a BFT total order broadcast protocol
aimed at maximizing throughput in WAN, via multiple parallel
leaders, proposed by Stathakopoulou et al. in 2019 [149]. It can be
deployed in decentralized networks, such as permissioned and Proof-
of-Stake permissionless blockchain systems. It allows multiple leaders
to propose request batches independently, i.e., parallel leaders, in a
way that precludes request duplication attacks by malicious/Byzantine
clients, by rotating the assignment of a partitioned request hash
space to leaders. The approach of parallel leaders is promising to
handle scalability issues, either in a coordinated, deterministic fash-
ion [150] [151], or by using randomized protocols [147] [66] [152].
Mir-BFT removes a single-leader bandwidth bottleneck and exposes
a computation bottleneck related to authenticating clients even on a
WAN, which can boost throughput using a client signature verification
sharding optimization. Essentially, Mir-BFT is a generation of the
celebrated and scrutinized PBFT protocol, which follows PBFT
“safety-wise" with changes needed to accommodate novel features
restricted to PBFT liveness. By using parallel leaders, it needs to
prevent request duplication, especially in the form of two attacks:
1) the request censoring attack by Byzantine leader(s), in which a
malicious leader simply drops or delays a client’s request/transaction,
and 2) the request duplication attack, in which Byzantine clients
submit the exact same request multiple times. Some naive approaches
to solve this issue are: 1) clients are requested to sequentially send to
one leader at the time, or 2) simply to pay transaction fees for each
duplicate. However, these approaches do not work well in practical
settings. In general, Mir-BFT adopts a BFT total order broadcast
(TOB) protocol that is to combine parallel leaders with robustness
to attacks [153].

In more details, Mir-BFT uses 3f + 1 replicas to tolerate up to
f faulty replicas, and can work robustly under arbitrarily long (yet
finite) periods of asynchrony. Essentially, Mir-BFT allows multiple
parallel leaders to propose batches of requests concurrently, in a
sense multiplexing several PBFT instances into a single total order,
in a robust way. To achieve that, Mir-BFT partitions the request hash
space across replicas, preventing request duplication, while rotating
this partitioned assignment across protocol configurations/epochs,
addressing the request censoring attack. Also, Mir-BFT uses a client
signature verification, sharding throughput optimization to offload
CPU. The design of Mir-BFT is to avoid “design-from-scratch",
which is known to be error-prone for BFT [14] [80]. It follows
the well-scrutinized PBFT protocol and follows the “safety-wise" of
PBFT. It also makes some improvements based on PBFT protocol.
For example, Mir-BFT uses signatures for requests authentication to
avoid concerns associated with “faulty client" attacks compared to
MAC authentication in PBFT, in which these signatures can prevent
any number of colluding nodes from impersonating a client. Mir-
BFT processes requests in batches which can improve the throughput
of PBFT. Besides, Mir-BFT makes some improvements on protocol
round structure, selecting epoch leaders, handling request duplication
and request censoring attacks, and buckets and request partitioning.
Interested readers can refer to the work [149] for more details.

E. X-assisted BFT Protocols

X-assisted BFT consensus is typically used to either increase
robustness or improve scalability/efficiency. Here “X" can be some
software primitives (such as crypto-primitives) or hardware com-
ponents (such as trusted hardware). The key idea of X-assisted
BFT consensus is to guarantee the authenticity of communicated
messages. For example, some protocols (e.g., SBFT [65]) are assisted
with threshold signature schemes to ensure that there are enough
replicas that can collaboratively work on the requests, and some
protocols (e.g., Steroids [154]) may consider using a trusted execution
environment (such as Intel SGX) as trusted hardware to provision
the authenticity of messages. Also, both cryptographic primitives-
based approaches and trusted hardware-based approach can be work
together to improve efficiency. For instance, FastBFT [155] combines
TEEs with a lightweight secret-sharing scheme for efficient message
aggregation to achieve scalable Byzantine consensus. This section
discusses the works on X-assisted BFT consensus protocols.

1) A2M: A2M is an acronym for Attested Append-Only Memory
to eliminate equivocation proposed by Chun et al. in 2007 [144]. A2M
severed as a trusted system facility that is small, easy to implement,
and easy to verify formally. It provides a programming abstraction of
a trusted log, which leads to protocol designs immune to equivocation.
Equivocation is the ability of a faulty replica to lie in different
ways to different clients or servers, and it is the common source
of Byzantine headaches. The proposed A2M protocol can an add-on
component to add on existing Byzantine fault-tolerant replicated state
machines (e.g., PBFT, Q/U. HQ), producing A2M-enabled protocols.
Typically, for replicated state machines, the target safety guarantee is
linearizability, which completes client requests appear to have been
processed in a single, totally ordered, serial schedule that is consistent
with the order in which clients submitted their requests and received
their responses. A2M utilizes a small trusted log abstraction as its
primitive to achieve linearizability. A key insight behind A2M is
that it provides a mechanism (trusted log) that prevents participants
from equivocating, thereby improving the fault-tolerance of Byzantine
protocols to f out of 2f+1. With A2M, once an action is recorded in
the log, it cannot be overwritten as A2M did not provide the interface
of modification.

The overall design of A2M is based on a classic client-server
system, where clients request authenticated operations and the server
responds to the requesting clients. Its network model is based on the
partially synchronous model, where there exists a finite upper bound
for message delivery. The fault models of A2M has two cases: faulty
application model, which the node’s owner is well-intentioned but
unaware the node’s software has been compromised by a third party,
and faulty operator model, where the node’s Byzantine behavior is
because of a malicious owner instructing it to do so. For different
fault models, A2M has two different trusted computing bases. For
the first model, the trusted computing base is set up by the service
owner; while for the second model, the owners cannot be trusted,
but trust a third party to set up the trusted computing base. Using an
A2M implementation within the trusted computing base, a protocol
can assume that a seemingly correct host can give only a single
response to every distinct protocol request. So, informally, an A2M
can be considered equipping a host with a set of trusted, undeniable,
ordered logs. An A2M log offers methods to append values, to lookup
values within the log or to obtain the end of the log, as well as
to truncate and to advance the log suffix stored in memory. There
are no methods to replace values that have already been assigned,

21



as A2M uses cryptography to enforce its properties and to attest the
log’s contents to other machines. By equipped with A2M in its trusted
computing base, reliable service can mitigate the effects of Byzantine
faults in its untrusted components, by being able to rely on some
small fallback information about individual operations or histories of
operations that cannot be tampered with.

A different implementation of the A2M scenarios leads to dif-
ferent threat models and degrees of trust in the resulting system.
Typically, according to trusted computing base (e.g., H/W, OS, App),
there are five levels of A2M implementation scenarios: trusted service,
trusted software isolation, trusted VM, trusted VMM, and trusted
hardware. For the details on each scenario, interested readers can refer
to Section 3 of [144]. Also, the authors present several state machine
replication protocols by integrating A2M to improve their fault
tolerance by rendering equivocation extinct or evident. For example,
A2M-PBFT-E is a simple extension of PBFT that uses A2M logs
to protect the execution portion of PBFT, which ensures that replicas
cannot equivocate about their locally computed results for a particular
requested client operation when replying to that, or any other clients.
Another example is A2M-PBFT-EA to protect against equivocation
during an agreement, in which it requires replicas to append to
A2M logs all protocol messages before sending them to their peers.
Fig. 11 shows a comparison of different scenarios to equip A2M
to PBFT. Besides the above two PBFT based protocols, A2M can be
adopted to other Byzantine fault-tolerant systems e.g., SUNDR [156],
Q/U [58]. The authors also presented an A2M-Storage, which is an
A2M-enabled storage system on a single untrusted server shared by
multiple clients. The A2M-Storage provides linearizability in contrast
to SUNDR’s weaker fork consistency and is simpler than SUNDR.

Despite these improvements on existing replication systems, dis-
tributed protocol designers may be reluctant to start assuming the
availability of the trusted modules as in A2M. One concern is that
the abstraction of a trusted log may require more storage space and
complexity than researchers are comfortable assuming, especially for
an embedded module inside a potentially hostile component. Another
concern is that designers may have difficulty appreciating how broadly
applicable a trusted module can be to distributed protocols.

2) TrInc: TrInc is an acronym for Trust Incrementer, a small
trusted component that combats equivocation in large-scale distributed
systems, proposed by Levin et al. in 2009 [157]. TrInc is motivated by
a common supposition that individual components in the system are
completely untrusted. They must require some trusted technologies
to ensure trustworthiness and eliminate the equivocations, e.g., A2M
using trusted logs. However, the modules of trusted logs require
more storage space and are hard to implement and deploy in a
large distributed system. The fundamental security goal of TrInc is to
remove participants’ ability to equivocate. By using a non-decreasing
trusted counter and a key, TrInc provides a new primitive: unique,
once-in-a-lifetime attestations. With such primitive, TrInc can run
a broader range of protocols, which includes not only client-server
systems but all peer-to-peer systems. In general, TrInc provides a
smaller size and simpler semantics that make it easier to deploy, as it
can be implemented on off-the-shelf available trusted hardware. Also,
the TrInc’s core functional elements are included in a Trusted Platform
Module (TPM) [158] found on many modern devices, which lend
credence to the idea that such a component could become available.
Besides, TrInc makes use of a shared symmetric session key among
all participants in protocol instances, which significantly decreases
the cryptographic overhead.

One of the common ways to solve equivocation is to use
heavy-communication protocols under a threshold number of faulty
participants, such as PBFT. TrInc targets to minimize both the
communication overhead and the number of non-faulty participants
required. With trusted hardware, it is possible to remove the ability of
a (malicious) participant to equivocate without requiring communica-
tion among other participants. As a trusted primitive, TrInc must be
practical for distributed systems. For instance, a trusted component
must be small so that it is feasible to manufacture and deploy, and it
is difficult and costly to make tamper-resistant for large components.
The trinket is a such trusted piece of hardware in TrInc. The trinket’s
API depends only on its internal state, so, unlike a typical TPM, the
trinket does not need to access the state of the host devices (e.g.,
computers). All it needs is an untrusted channel over which it can
receive input and produce output.

More precisely, a trinket instance enables an attestation by using
a counter that monotonically increases with each new attestation.
In such a way, once a certain counter value has been bound to a
message, it is impossible to bind a different message to that value.
While some applications or protocols may require using multiple
counters. Theoretically, anything done with multiple counters can
be done with a single counter, but multiple counters allow certain
performance optimization and simplifications. The users of a trinket
may participant in multiple protocols, each requiring its own counter
or counters, and a trinket has the ability to allocate new counters.
However, each of them must be uniquely identified so that a malicious
user cannot create a new counter with the same identity as an old
counter. For performance optimization, TrInc allows its attestation
to be signed with shared symmetric keys, which can vastly improve
the performance over using asymmetric cryptography or even secure
hashes. To ensure participants cannot generate arbitrary attestations,
following the mechanism in TPM, the symmetric key is stored in
trusted memory (e.g., the enclave of TPM), so that users cannot read
it directly. Meanwhile, symmetric keys are only shared among trinkets
using a secure communication scheme to ensure that these keys will
not be exposed to untrusted parties. Besides, from the implementation
and evaluation of TrInc, it shows that TrInc can eliminate most
of trusted storage needed to implement A2M, significantly reduces
communication overhead in PeerReview, and solves an open incen-
tives issue in BitTorrent [159]. Interested readers can refer to the
work [157].

3) MinBFT: Both MinBFT and MinZyzzyva are trust-assisted
BFT protocols, requiring only 2f + 1 replicas to tolerate f faulty
replicas, proposed by Veronese in 2011 [81]. Both MinBFT and
MinZyzzyva are asynchronous algorithms, which are based on PBFT
and Zyzzyva, respectively. To make it clear, we focus on the PBFT
version, MinBFT, to discuss its technical merits. MinBFT improves
efficiency compared with previous ones in terms of three metrics:
the number of replicas, trusted service simplicity, and the number
of communication steps. The efficiency of MinBFT mainly comes
from the use of a simple trusted component. More precisely, 1)
MinBFT requires only 2f + 1 replicas, instead of the usual 3f + 1,
to tolerate f faulty replicas. 2) The trusted services in which assist
to reduce the number of replicas are quite simple, making a verified
implementation straightforward and even feasible using commercial
trusted hardware. 3) In graceful cases, MinBFT and MinZyzzyva
run in the minimum number of communication steps for the non-
speculative and speculative algorithms, respectively, four and three
steps. Besides the above merits, the algorithms based on hardware
are much simpler, being closer to crash fault-tolerant replication

22



Fig. 11. Three-phase agreement protocol. Thicker lines denote messages that are attested by A2M [144].

algorithms. The authors provided a detailed discussion on these merits
with previous ones.

The successful usage of trusted services is based on USIG
(Unique Sequential Identifier Generator), which provides an interface
with operations only to increment the counter and to verify if
other counter values (incremented by other replicas) are correctly
authenticated. Essentially, the USIG is a local service that exists
in every server, whose duty is to assign messages the value of a
counter and signs it. By USIG, the identifiers are unique, monotonic,
and sequential for that server. USIG typically has three properties:
1) uniqueness, USIG will never assign the same identifier to two
different messages; 2) monotonicity, USIG will never assign an
identifier that is lower than a previous one, and 3) sequentiality,
USIG will never assign an identifier that is not the successor of
the previous one. These three properties are guaranteed even if the
server is compromised, so the service has to be implemented in a
tamper-proof module or a trusted component. Luckily, the trusted
component can be implemented even on commercial off-the-shelf
trusted hardware, such as trusted platform module [160].

In general, the MinBFT algorithm follows a message exchange
pattern similar to PBFT’s. The fundamental idea of MinBFT is that the
primary uses trusted counters to assign sequence numbers to client
requests. Besides the task of assigning a number, the tamper-proof
component produces a signed certificate that proves unequivocally
that the number is assigned to that message (and not other), and that
the counter was incremented, so that the same number cannot be
used twice. This is one property of USIG, and each server contains
a local trusted/tamper-proof component implementing USIG service.
This is used to guarantee that all non-faulty replicas consider that all
messages with a certain identifier are the same and, ultimately, agree
on the same order for the execution of requests.

MinBFT is a non-speculative 2f + 1 BFT algorithm, which has
only two communication steps, not three communication steps like in
PBFT or A2M-PBFT-EA. The main role of the primary is to assign
a sequence number to each request, and this number is the counter
value returned by the USIG service in the unique identifier. These
numbers are sequential while the primary does not change, but not
when there is a view change. Typically, messages sent by a server
are kept in a message log in case they have to be resent. To discard
messages from the log, MinBFT uses a garbage collection mechanism
based on checkpoints, similar to PBFT’s. MinZyzzyva is based on the
speculative algorithm Zyzzyva, whose design principle is almost the
same as the MinBFT. Besides, the authors present the implementation
with some level of isolation for a trusted component used to improve
BFT algorithms, and implemented several versions of USIG service
with different cryptography mechanisms that are isolated both in a
separate virtual machine and trusted hardware. Interested readers on
the details of MinBFT and MinZyzzyva can refer to the work [81].

4) CheapBFT: CheapBFT is a resource-efficient BFT system
based on a trusted subsystem to prevent equivocation, proposed by

Kapitza in 2012 [161]. CheapBFT can tolerate all but one of the
replicas active in normal case operation become faulty. In general, it
runs a composite agreement protocol and exploits passive replication
to save resources, and when there are no faults, CheapBFT requires
only f + 1 replicas to actively agree on client requests and execute
them during the normal case. When suspected faulty behavior hap-
pens, CheapBFT triggers a transition protocol that activates f extra
passive replicas, and brings all non-faulty replicas into a consistent
state again. From a high-level perspective, the agreement protocol of
CheapBFT consists of three sub-protocols: the normal case protocol
CheapTiny, the transition protocol CheapSwitch, and the fall-back
protocol MinBFT. More specifically, CheapTiny utilizes the concept
of passive replication to save resources during normal case operations,
which requires only f + 1 active replicas. In case of suspected or
detected faulty behavior of replicas, CheapBFT runs CheapSwitch to
bring all non-faulty replicas into a consistent state. When finished the
transition of CheapSwitch, the passive replicas will be resumed, and
all 2f + 1 replicas become active and execute the MinBFT protocol
temporarily to tolerate up to f faults, before eventually switching
back to CheapTiny. Essentially, CheapBFT relies on an FPGA-based
trusted subsystem, called CASH, preventing equivocation.

CASH is an acronym of Counter Assignment Service in Hardware
to assist CheapBFT for message authentication and verification. To
prevent equivocation, each replica in CheapBFT should equip with a
trusted CASH subsystem, and it is with initialized a secret key and
uniquely identified by a subsystem id, which corresponding to the
replicas that hosts the subsystem. To provide trusted counter service,
CASH prevents equivocation by issuing message certificates for
protocol messages, which consists of the identity id of the subsystem,
the counter value assigned, and a MAC generated with the secret
key. In CASH, it utilizes symmetric-key cryptographic operations for
message authentication and verification. The basic version of CASH
provides functions for creating (via createMC) and verifying (via
checkMC) message certificate, which targets for single counter cases.
To support distinct counter instances and several concurrent protocols,
the full version of CASH supports multiple counters, each specified by
a different counter name. To make CASH practical, it should meet two
design goals: minimal trusted computing base and high performance.
The code size of CASH must be small to reduce the probability of
program errors that could be exploited by attacks, and with each
interaction involves authenticated messages, CASH should have a
high throughput to meet system requirements. However, the trusted
CASH subsystem may fail only by crashing and its key remains secret
even at Byzantine replicas.

In more details, CheapBFT is safe in an asynchronous environ-
ment. To guarantee liveness, it requires the network and process to be
partially synchronous. Fig. 12 shows a CheapBFT architecture with
two active replicas and a passive replica (e.g, f = 1) for normal case
operation. For the consensus part, as shown in Fig. 13, each replica
follows a total of four phases of communication, which resembles the
phases in PBFT. As CheapBFT replicas rely on a trusted subsystem to

23



Fig. 12. CheapBFT architecture with two active replicas and a passive replica
(f = 1) for normal-case operation [161].

Fig. 13. CheapTiny protocol messages exchanged between a client, two active
replicas, and a passive replica (f = 1) [161].

prevent equivocation, the CheapTiny protocol does not require a pre-
pare phase. However, with only f+1 replicas actively participating in
the protocol, CheapTiny is not able to tolerate faults, and it requires
MinBFT to provide a more resilient protocol via CheapSwitch. The
main task of non-faulty replicas in CheapSwitch is to agree on a
CheapTiny abort history, and an abort history should be verified to
correct even if it has only been provided by a single replica.

5) OMADA: OMADA is a BFT protocol that is able to benefit
from additional hardware resources on heterogeneous services, pro-
posed by Eischer and Distler in 2017 [162]. OMADA first parallelizes
agreement into multiple groups, and then executes requests handled
by different groups in a deterministic order. By varying the number
of requests to be ordered between groups as well as the number of
groups that a replica participates in between servers, OMADA offers
the possibility to individually adjust the resource usage per server.
OMADA is based on two practical observations. One observation is
that, in traditional BFT protocols, additional replicas typically come at
the cost of an increased computational and network overhead, which
can further degrade performance. Another is that, traditional BFT
protocols assume all replicas run on homogeneous servers, and it is
not always possible to operate a BFT system under such conditions,
e.g., replicas may run on heterogeneous physical servers. And it is
basically impossible for a user to ensure the homogeneity of servers
when deploying a BFT system on them. OMADA tries to exploit
computing resources that existing protocols are not able to utilize, for
example, additional agreement replicas and spare capability on fast
servers. To achieve this goal, OMADA parallelizes agreement into
multiple heterogeneous groups and varying the agreement workload
between them, which allows OMADA to individually adjust the
ordering responsibilities of replicas to fit the particular performance
capabilities of their servers. For instance, replicas on powerful servers
can participate in more than one group that are responsible for
ordering a large fraction of replicas, whereas a replica on a less
powerful server might only be part of a single group handling a small

Fig. 14. An overview of the OMADA architecture relying on multiple, possi-
bly overlapping, agreement groups. To invoke an operation at the application,
a client (1) sends a request to one of the agreement groups, which then (2)
orders the request using PBFT and (3) forwards it to a set of executors. Having
processed the request, (4) the executors return their results to the client. [162].

portion of the workload.

In more details, OMADA exploits additional replicas and spare
capacities on heterogeneous servers. Fig. 14 shows an overview of
the OMADA architecture relying on multiple, possibly overlapping,
agreement groups. Even replicas are divided into multiple groups,
each group still consists of 3f + 1 agreement replicas. By separating
the agreement stage from the execution stage, it only requires 2f + 1
execution replicas. That means, requests do not necessarily need to
be processed by the same replicas by which they have been ordered.
In OMADA, the roles of replicas can be roughly classified into three
categories with different responsibilities: coordinating an agreement
group (leader), assisting in a group (follower), and executing requests
(executor). One replica of OMADA can participate in more than one
agreement group and further assume multiple roles, which allows
OMADA to tailor the responsibilities of each replica to the indi-
vidual performance capability of its server. Despite having multiple
agreement groups that operate independently to each other, OMADA
is nevertheless able to establish a total order on all client requests.
To achieve this, OMADA splits the sequence number space into
partitions of equal size and statically maps one partition to each
agreement group. The knowledge about the partitions of agreement
groups is static and available throughout the system. Thus, it allows a
client to randomly select a group at startup which from then on will
be responsible for handling all the requests from clients. For more
detailed operations of OMADA, interested readers can refer to the
work [162].

6) Hybster: Hybster is a hybrid BFT protocol, utilizing a trusted
subsystem for message authentication to prevent equivocation, pro-
posed by Behl et al. in 2017 [154]. It requires only 2f + 1
replicas to tolerate up to f Byzantine faults, with the help of Intel
SGX [163]. In general, modern multi-core systems equip with new
parallelization schemes, which can help traditional BFT protocol
reach unprecedented performance levels. Some latest general-purpose
processors can provide a trusted execution environment to protect
software components even against malicious behaviors of an untrusted
operating system. Hybster is a hybrid SMR protocol that is highly
parallelizable and formally specified. Almost all prior SMR systems
that are based on a hybrid fault model require sequential processing
either of consensus instances that are performed to agree on the
order in which replicas must execute commands, or all of the
incoming messages. Also, from an abstract perspective, all hybrid
systems prevent undetected equivocation by cryptographically binding
sensitive outgoing messages to a unique monotonically increasing
timestamp by means of the trusted subsystem. However, the features

24



Fig. 15. A parallelizable Hybrid [154].

of parallelism are not well explored. Fig. 15 shows an abstract of a
parallelizable Hybster, in which multiple instances can be executed
at the same time at some physical replicas. This potentially speeds
up the throughput of the system.

In more details, Hybster is designed around a two-phase ordering
to prevent equivocation by means of multiple instances of a TrInc-
based trusted subsystem realizing using Intel SGX. Though there exist
some trusted schemes, such as A2M-PBFT and MinBFT, Hybster is
distinct from these schemes in three major ways: relaxed, formal,
and parallelizable. For the feature of relaxed, Hybster is based on
the observation that it suffices to ensure that only instances must
be revealed that are not guaranteed to be propagated by correct
replicas, yet have potentially led to the execution of requests. In other
words, Hybster allows faulty replicas to conceal their own messages
as long as they are not critical to ensure safety, which reduces the
complexity of the view-change protocol significantly and prevents
histories. For the feature of formal, there is not only an informative
description of the basic protocol of Hybster but is also formally
specified. For the feature of parallelizable, Hybster has the ability to
perform consensus instances in parallel, which benefits from multi-
core platforms. Hybster builds on a trusted subsystem abstraction
that is akin but not equal to TrInc [157], called TrInX. Hybster is
implemented in Java, and with a consensus-oriented parallelization
scheme, is optimized to fully exploit multi-core CPUs. It achieves
high performance via parallelization, where the performance scales
well along with the number of NIC and CPU cores.

7) FastBFT: FastBFT is a fast and scalable BFT protocol with
the help of trusted hardware, proposed by Liu et al. in 2018 [155].
Essentially, FastBFT utilizes a message aggregation technique that
combines a hardware-based trusted execution environment (TEE) with
lightweight secret sharing scheme. From a high-level perspective,
FastBFT also combines several other optimizations, e.g., optimistic
execution, tree topology, and failure detection, to achieve low latency
and high throughput even for large-scale networks. By using message
aggregation, it can reduce the message complexity from O(n2) to
O(n), and the message aggregation in FastBFT does not require
any public-key operations (e.g., multisignatures), which can further
reduce the computation/communication overhead. By a tree topology
design in arranging nodes, FastBFT can balance computation and
communication load, so that inter-server communication and message
aggregation take place along edges of the tree. By the optimistic
design, FastBFT only requires a subset of nodes to actively run
the protocol. Besides, FastBFT utilizes a simple failure detection
mechanism to handle non-primary faults efficiently.

In general, there exist two big categories to improve BFT
performance on the fact that replicas rarely fail: speculative and

Fig. 16. Message patterns of FastBFT [155].

optimistic. The speculative mechanism typically is without running
any explicit agreement protocol (e.g., Zyzzyva); while the optimistic
mechanism only requires a subset of replicas to run the agreement
protocol, and other replicas passively update their states and become
actively involved only in case of the agreement protocol fails. The
FastBFT protocol adopts an optimistic mechanism. By including a
TEE environment, the replicas can remotely verify (e.g., via remote
attestation) the behaviors of other replicas. And TEE can only crash
but not be Byzantine. FastBFT guarantees safety in asynchronous
networks but requires weak synchrony for liveness, and each replica
holds a hardware-based TEE that maintains a monotonic counter
and a rollback-resistant memory. TEEs can verify one another us-
ing remote attestation and establish secure communication channels
among replicas. Fig. 16 shows a message communication pattern of
FastBFT consensus protocol. Essentially, the consensus protocol of
FastBFT consists of four phases: pre-processing, request, prepare and
commit. For commit phase, it has two sub-phases that are used to
update the state of replicas (a similar procedure for execution phase
in traditional BFTs). Besides, the overall FastBFT also includes the
failure detection and view-change processes. Interested readers can
refer to the work [155].

8) SACZyzzyva: SACZyzzyva is an acronym of Single-Active
Counter Zyzzyva to provide resilience to slow replicas and requiring
only 3f + 1 replicas, with only one replica needing an active
monotonic counter at any given time, proposed by Gunn et al.
in 2019 [79]. Speculative BFT protocols, e.g., Zyzzyva, Zyzzyva5,
have extremely simple and efficient speculative execution paths when
there are no faults or delays. However, they require a trade-off. For
example, Zyzzyva requires 3f + 1 replicas to tolerate f faults, but
even a single slow replica can make Zyzzyva fall back to a more
expensive non-speculative operation. Even Zyzzyva5 does not require
a non-speculative fallback, but requires 5f + 1 replicas to tolerate
f replicas. Realistic communication networks, such as the Internet,
are only partially synchronous, a single slow but not faulty replica
can trigger the non-speculative execution for each protocol run of
Zyzzyva, and therefore undermining the efficiency promise of the
speculative approach. SACZyzzyva can overcome these drawbacks,
which requires only a single replica, the primary, to have an active
monotonic counter. Essentially, it can eliminate the need for a non-
speculative fallback, and tolerate a subset of replicas being slow
while requiring only 3f+1 replicas. SACZyzzyva utilizes the trusted
hardware to some replicas (not all replicas) to assist its process. And
this follows a practical setting in real work that only some devices will
have the necessary hardware support. Other BFT protocols can also
adapt the single active counter approach of SACZyzzyva to reduce the
latency while avoiding the need to equip all replicas with hardware-
supported monotonic counters.

In more details, SACZyzzyva assumes a weak-synchrony model,
and this model enables to analyze liveness during a period of syn-

25



Fig. 17. The communication patterns of Zyzzyva and SACZyzzyva with one
faulty replica. Without faults or network delays, Zyzzyva and SACZyzzyva
have identical communication patterns, but if any replicas are faulty, Zyzzyva
requires two extra rounds of communication [79].

chrony that will eventually occur. Also, SACZyzzyva assumes some,
but not all, replicas are equipped with a trusted component and, in
particular, with a trusted monotonic counter. The goal of SACZyzzyva
is to build an efficient SMR protocol that allows replicas to complete
a request in the following conditions: 1) in a linear number of
messages, and 2) without significant performance reductions in the
event of up to f faults. The basic principle of SACZyzzyva is to
use trusted monotonic counter in the primary to bind to a sequence
of consecutive counter values to incoming requests, ordering requests
while avoiding the need for communication between replicas, whether
directly or via the client. It does this by signing a tuple consisting of
the cryptographic hash of request and a fresh counter value, a single
active counter. Thus, SACZyzzyva requires only that f + 1 replicas
have a trusted component, enough that there will always be at least
one correct replica that can function as primary.

The communication pattern of SACZyzzyva, as shown in Fig. 17,
follows the pattern of the original Zyzzyva. The primary gathers the
requests from clients and sends them to all replicas in an order-
request message, in which this order-request message is bound to
a monotonic counter value to prevent equivocation by the primary.
All replicas execute the requests and reply to the client directly if the
trusted monotonic counter is sequential to those that the primary has
previously sent. If the client receives 2f + 1 replies with matching
values and histories, this request can be considered to be complete.
Otherwise, the client repeatedly sends the requests directly to the
replicas, so that they can detect misbehavior by the primary and so
elect a new one. However, this cannot prevent a malicious client.
The authors also prove that SACZyzzyva is optimally robust and that
trusted components cannot increase fault tolerance unless they are
present in greater than two-thirds of replicas.

9) TBFT: TBFT is a TEE-based BFT protocol with inspiration
from CFT protocol, which provides a simple and understandable
structure, proposed by Zhang et al. in 2021 [164]. Most existing TEE-
based BFT protocols are mostly designed via improving traditional
BFT protocols and using complex operations to overcome security
issues introduced by TEE, whose protocols are difficult to understand
and implement. And practically, many protocols eliminated Byzantine
failures to crashed failures since the adversary assumption of TEE-
based BFT is more similar to CFT rather than traditional BFT.
It would be better to design a TEE-based BFT protocol on the
basis of CFT protocols to inherit the advantages of CFT, e.g., with
a high resilient fault rate. The authors first summarized the key
differences between TEE-based BFT and CFT protocols and propose
four principles to help bridging the gap between them. Based on these

principles, TBFT makes some improvements on both performance and
security, including pipeline mechanisms, TEE-assisted secret sharing
scheme, and trusted leader election, all of which provides better
performance and scalability.

In more details, most protocols assume that TEE may crash but
will never provide malicious execution results, which makes TEE-
based BFT is more similar to CFT rather than BFT. However, even
with the existence of TEE, a Byzantine host can still terminate TEE at
any moment, schedule TEE arbitrarily, or drop, reply, delay, reorder,
modify the I/O messages of TEE. This simply can be stated that the
host in TEE-based BFT may be Byzantine. Thus, it is necessary to
bridge the gap between TEE-based BFT and CFT. To bridge the gap,
the authors proposed four principles: one protocol, one vote, restricted
commit, and restricted log generation. For one proposal, the leaders
need to call a function, e.g., create counter for trusted monotonic
counters based TEE, to assign a (c, v) (c is a monotonic counter,
v is the current view) for each proposal while other replicas will
keep track of the leader’s (c, v). Upon calling this function, TEE will
increase its local monotonic counter, and hence there will never two
different protocols that have the same (c, v). In this way, the leader
cannot propose multiple proposals in the same round. For one vote,
TEE-based BFT should guarantee that a replica cannot vote for more
than one conflicting proposal, and this is achieved by verifying the
counter number in (c, v) of the proposal. If matched with its local
(c, v), TEE will increase its local monotonic counter, otherwise, reject
to vote for it. For restricted commit, the leader should prove that a
proposal has been safely replicated to majority replicas by collecting
at least f + 1 votes. For restricted log generation, it is used to handle
the limited resource issues within a TEE.

TBFT protocol can tolerate up to f replicas with 2f +1 replicas,
which can guarantee safety in an asynchronous network and guarantee
liveness in a partial synchronous network. It follows the above four
principles to solve Byzantine behaviors on TEE. In general, TBFT
can achieve O(n) message complexity in both normal case and
view-change. Also, TBFT utilizes the pipeline scheme to improve
throughput, and replace multi-signature with TEE-assisted secret
sharing scheme to reduce the computation overhead. Besides, it
uses an efficient TEE-based Distributed Verifiable Random Function
(DVRF) for verifiable and random leader election. Interested readers
can refer to the work [164] for more details.

F. Unclassified BFT Protocols

This section provides some unclassified BFT protocols, because
either of being less explored research areas or of containing some
mixed techniques, as well as some Byzantine faults related literature.
After PBFT, many research efforts contributing to the improvement of
Byzantine fault-related topics are with a clear focus. Some protocols
target on performance and cost issues, e.g., HQ [61], Zyzzyva [59],
and AZyzzva [14]. And some other protocols aim to improve robust-
ness, e.g., Ardvark [153] and RBFT [165]. We put all kinds of these
protocols in this section, with certain exceptions, e.g., Zyzzyva in
classic BFT protocols.

Even though the protocols discussed in this section are catego-
rized as “unclassified BFT protocols", we do classify them into differ-
ent sub-classes by adding a label after the protocol name. We provide
five labels: feature, architecture, theory, middleware, and blockchain.
The label feature means that the discussed protocol typically adds
some new features compared with previous protocols, or provides
some enhancements on some key features (such as responsiveness,

26



Fig. 18. BASE function calls and upcalls [166].

throughput, and scalability). The label architecture means that the
discussed protocol typically focuses on the architecture design on
existing protocols, and this architecture design typically includes
some new communication pattern and new BFT framework. The label
theory means that the discussed protocol focuses on a theoretical
work, e.g., fault tolerance rate under the specified conditions. The
label middleware typically means that the discussed work is as a
middleware to some specific applications and provides the replicated
services for these applications. The label blockchain means that
the discussed work focuses on the construction of blockchain with
customized BFT as its consensus protocol. We must note that some
protocols have multiple labels. To emphasizes their main contribu-
tions, we provide only one label for each discussed protocol.

1) BASE - (architecture): The BASE is an acronym for BFT
with Abstract Specification Encapsulation, which was proposed by
Rodrigues, Castro, and Liskov in 2001 [166] [167]. The BASE is
a replication technique working on data abstraction [168], which
uses abstraction to reduce the cost of Byzantine fault tolerance and
to improve its ability to mask software errors. The abstraction in
BASE hides implementation details to enable the reuse of off-the-shelf
implementation of important services (e.g., file systems, databases).
The original BFT library in [4] [15] provides Byzantine fault tolerance
with good performance and strong correctness guarantees, however,
it cannot tolerate deterministic software errors, which can cause all
replicas to fail concurrently. The BASE scheme improves availability
because each replica can be repaired periodically using an abstract
view of state stored by correct replicas, and because each replica
can run distinct or non-deterministic service implementations, which
reduces the probability of common-mode failures.

Fig. 18 shows an abstract BASE function calls and upcalls. The
involved BASE client interacts with BASE replica via BASE protocol,
which further interacts with the confirmation wrapper to abstract orig-
inal implementations. The communication between BASE replica and
confirmation wrapper is via well-defined function calls (from BASE
replicas to confirmation wrapper) and via upcalls (from confirmation
wrapper to BASE replicas).

The key idea of BASE is to utilize the concepts of abstract
specification and abstraction function from work on data abstraction.
In general, the BASE offers several advantages. 1) It reuses the
existing code base: BASE implements a form of SMR, which allows
replication of services that perform arbitrary computations with the
feature of determinism. For instance, many implementations produce
timestamps based on local clocks, which can cause the states of
replicas to diverge. The BASE can resolve this determinism problem
by the models of the confirmation wrapper and the abstract state
conversions to reuse of existing implementation without modifica-
tions. Also, these implementations can be non-deterministic, which
reduces the probability of common-mode failures. 2) BASE enables
software rejuvenation through proactive recovery: BASE combines
proactive recovery with abstraction to counter the problem (as ob-

Fig. 19. Inclusion relation between different types of failures [174].

served in [169]) that there potentially exists a correlation between
the length of time software runs and the probability that it fails.
Typically, replicas auto-run the proactive recovery periodically to
ensure that the service remains available during rejuvenation. For
instance, when a replica is recovered, it is rebooted and restarted from
a clean state. 3) BASE enables opportunistic N-version programming:
N-version programming [170] exploits design diversity to reduce the
probability of correlated failures, however, with several issues, e.g.,
increasing development and maintenance costs, adding unacceptable
time delays to the implementation [171]. By abstraction design, BASE
enables an opportunistic form of N-version programming, which
offers advantages of applying distinct, off-the-shelf implementation
of common services.

The authors of BASE also built a prototype on the NFS service
where each replica can run a different off-the-shelf file system
implementation, and a prototype on an object-oriented database where
the replicas run the same, non-deterministic implementation. There
also exists an extension work with detailed implementation and
evaluation published in 2003 [172].

Besides the work on abstraction Byzantine faults, there exist
similar literatures to model and encapsulate crash faults to an arbitrary
fault. For example, Baldoni, Helary, and Raynal presented a generic
methodology to transform a protocol resilient to process crashes into
one resilient to arbitrary failure (in the case where processes run
the same text and regularly exchange messages) in 2000 [173]. The
proposed methodology follows a modular approach to encapsulating
the detection of arbitrary failures in specific modules. The work can
serve as a starting point for designing tools that allow automatic
transformation. Interested readers on this transformation process can
refer to the work [173].

2) Byzantine Failure Detector - (architecture): An encapsulation-
based failure detection for Byzantine failures was proposed by
Doudou, Carbinato, and Guerraoui in 2002 [174]. It extends a
modular-based crash failure detector [175] to a encapsulation-based
Byzantine failure detector. The crash failures are the simplest form
of failures, and the work [175] has shown the feasibility to detect
crash failures, by using black-box failure detectors, in the context of
a distributed system. However, solving agreement in the Byzantine
environment is harder than that in the crash-failure model, since
Byzantine detectors need to consider timing assumption as well. The
work on the Byzantine failure detector discusses the feasibility of the
encapsulation-based approach, and they claim that, in a Byzantine
context, it is just impossible to achieve the level of encapsulation of
the original crash failure detector model. However, it is possible to get
an intermediate approach where algorithms that solve the agreement
problem can still benefit from grey-box failure detectors by partially
encapsulating Byzantine failure detection.

27



The proposed intermediate approach focuses muteness failures.
A muteness failure can be viewed as a special case of Byzantine
failures, yet is more general than crash failures, as shown in Fig. 19.
It encompasses the physical and algorithmic crashes. And muteness
failure detectors encapsulate a sufficient level of synchrony to solve
a consensus problem under Byzantine assumption, however, the
specification of muteness failure detectors is not orthogonal to the
algorithms using them. Besides, on the consensus synchrony model,
the proposed failure detector implementation is based on a partially
synchronous model.

To design a successful Byzantine failure detector, several as-
pects are required to consider. 1) Specification orthogonality. Due
to inherent nature of Byzantine failure, it is impossible to design
a failure detector that is independent of the agreement algorithms
(such as consensus or atomic broadcast). Instead, the proposed work
looks for an intermediate approach to detect muteness failures, which
can still capture the tricky part of Byzantine failures and restrict
the dependency between the algorithms and the failure detector. 2)
Implementation generality. A crash failure detector can be considered
a black-box, of which implementation can change without any impact
on the algorithm that uses it. However, the Byzantine failure does
not have this feature. Thus, the proposed work switches a grey-box
approach with a parameterized implementation of a muteness failure
detector that is capable to solve consensus problems in a Byzantine
environment. 3) Failure encapsulation. In a Byzantine context, some
failures cannot simply be encapsulated inside a failure detector (e.g.,
timing-related issues), which should rely on some additional modules
to handle these failures. The proposed work uses the instance of
each broadcast and certification protocol to solve these failures. 4)
Failure transparency. The failure of transparency is simply impossible
in the Byzantine context which requires external resources to assist
the process of transparency failure. The proposed work utilized an
atomic broadcast algorithm to achieve this, e.g., some failures are
masked by the consensus algorithm. Interested readers on the model
definitions and detection methodologies can refer to the work [174].

3) Separating Agreement from Execution - (architecture): An
architecture on Separating Agreement from Execution for BFT (SAE-
BFT) is proposed by Yin et al. in 2003 [176]. Traditionally, an
SMR scheme relies on first agreeing on a linearizable order of all
requests, and then executing these requests on all state machine
replicas. And, it is a common practice to tightly couple these two
functions together, however, coupling both agreement and execution
is not so effective considering confidentiality. The key principle
of SAE-BFT is to separate agreement from execution, and this
separation can clearly yield some fundamental advantages. On the
one hand, this separation architecture can reduce replication costs,
as this architecture can tolerate faults up to half of the total of
replicas that are responsible for executing requests. However, the
system still requires 3f + 1 agreement replicas to order requests
using f−resilient Byzantine agreement. This means, it only requires
a simple majority of correct execution replicas to process the ordered
requests. The choice of doing this separation is based on the fact
that execution replicas are likely to be much more expensive than
agreement replicas, from both the hardware and software perspectives.
Even the n-version programming helps to some extent, however, it
will increase the cost of each different service. On the other hand, this
separation architecture leads to a practical and general privacy firewall
architecture to protect confidentiality through Byzantine replication.
Though traditional replication architectures (e.g., PBFT) can achieve
integrity and availability [25], they cannot ensure confidentiality,

Fig. 20. High level architecture of (a) traditional Byzantine BFT SMR,
(b) separate BFT agreement and execution, and (c) optimization-enabled by
separation of agreement and execution [176].

in which a malicious client is allowed to observe the confidential
information leaked by faulty servers.

Fig. 20 shows an abstract of the high-level architectures of (a)
traditional Byzantine fault-tolerant SMR (combining both agreement
and execution together), (b) separate Byzantine fault-tolerant agree-
ment and execution, and (c) an optimized version on the separation
of agreement and execution [176]. The pre-requisite to separated
architectures (showing in both Fig. 20(b) and Fig. 20(c)) relies
on some cryptographically verifiable primitives, and the exchanged
certificate can be verified by any server. Thus, it is possible to separate
the execution replicas from the agreement replicas.

SAE-BFT can function on a distributed asynchronous system
with the guarantee of safety only. Due to the FLP impossibility,
it is impossible to guarantee liveness under asynchronous settings
unless some assumptions are made on communication synchrony and
message loss. However, the system can make progress under some
relatively weak bounded fair links. From the definition of fair links,
we can literately consider these links are one branch of partially
synchronous cases. Interested readers on these assumptions can refer
to the work [176]. Besides, the authors also built a prototype system
to evaluate the proposed architecture. The system utilizes a threshold
signature scheme to guarantee confidentiality. The evaluations on
both micro-benchmarks and an NFS server show that the architecture
adds modest latency compared with the unreplicated systems, and the
evaluated performance is competitive with the existing (of the year
2003) Byzantine fault-tolerant systems.

4) BART - (architecture): BART is an acronym for Byzantine
Altruistic Rational (BAR) Tolerant for cooperative services proposed
by Aiyer et al. in 2005 [177]. Typically, the cooperative services
span multiple administrative domains (MADs), and the BAR model
in cooperative services should accommodate three classes of nodes.
Altruistic [178] nodes follow the suggested protocol exactly. Intu-
itively, altruistic nodes correspond to correct nodes in the fault-
tolerant literature. Rational [179] nodes participate in the system to
gain some net benefits and can depart from a proposed program in
order to increase their net benefits. These nodes are self-interested and
seek to maximize their benefits according to a known utility function.
And Byzantine nodes can depart arbitrarily from the proposed pro-
gram whether it benefits them or not. The BART protocol provably
provides its non-Byzantine participants with the desired safety and
liveness properties. The proposed BART protocol assumes that at
most (n − 2)/3 of the nodes in the system are Byzantine and that
every non-Byzantine node is rational, which does not depend on the

28



Fig. 21. Three-level architecture of BART service [177].

existence of altruistic nodes in the system.

To achieve a cooperative service, a general three-level architecture
for BART services is built, as shown in Fig.21. The bottom level,
basic primitives level, implements a small set of key abstractions,
e.g., state machine replication and terminating reliable broadcast,
that simplify implementing and reasoning about BART distributed
services. The middle layer, work assignment lever, partitions and
assigns work to individual nodes, whose assignment is done through a
Guaranteed Response protocol that generates either a verifiable match
between a request and the corresponding response or a verifiable proof
that a node failed to respond to a request. The top-level, application
level, implements the application-specific aspects of BART services,
e.g., verifying that responses to requests confirm to application
semantics. In general, the lower levels provide reliable communication
and authoritative request-response bindings, while the application is
responsible for providing a net benefit and defining legal request-
response pairs.

The authors also implemented BAR-B, a BART cooperative
backup service. The BART protocol assumes that there exists a trusted
authority to control which nodes may enter the system, e.g., using
cryptographic public keys as their unique identities. For BAR-B and
the underlying BART replicated state machine, they have different
timing assumptions. For example, BAR-B relies on synchrony to
guarantee both its safety and liveness, and data trusted to BAR-
B is guaranteed to be retrievable only until the lease associated
with it expires. While the underlying BART state machine is safe
even in an asynchronous system, though liveness is only guaranteed
during periods of synchrony. The BRAT asynchronous replicated
state machine (RSM) is based on PBFT with modifications motivated
by the BAR model. These modifications are based on four guiding
principles (from a high-level perspective): ensure long-time benefit to
participants, limit non-determinism, mitigate the effects of residual
non-determinism, and enforce predictable communication patterns.
Interested readers on these principles and detailed BART protocol
can refer to the work [177].

A follow-up work on BRA model, called BAR Primer, is proposed
by Clement et al. in 2008 [180]. The authors formalize a classic syn-
chronous repeated terminating reliable broadcast (R-TRB) problem
as a game, which leads towards a provably BAR-tolerant solution.
It focuses on some proof work to show the safety of the proposed
BAR-tolerant R-TRB protocol.

Besides the Byzantine fault-tolerant protocol based on the BAR
model, there exist some other works on gossip protocols based on
the BAR model, e.g., BAR Gossip [181] in 2006. Gossip algorithms
were first introduced by Oppen et al. to manage replica consistency
in the Xerox Clearinghouse Services [182]. Now it is developed for
the use cases in P2P networks. BAR gossip is a P2P streaming media
application designed for a BAR model, which describes a method for
an altruistic broadcast to stream a live event to a pool of clients. It pro-

vides a salable mechanism for information dissemination that ensures
predictable throughput. Technically, BAR Gossip relies on verifiable
pseudo-random partner selection to eliminate non-determinism that
can be used to game the system while maintaining the robustness and
rapid convergence of the traditional gossip. The robustness of BAR
Gossip is enhanced by the randomness to randomly select partners.
Also, a fair enough exchange primitive entices cooperation among
selfish nodes on short timescales, avoiding the need for long-time
node reputations as well as avoid the free rides. Interested readers on
how BAR Gossip achieves consistency can refer to the work [181].

5) HQ - (architecture): HQ is a hybrid Quorum-based Byzantine
fault-tolerant state machine replication protocol proposed by Cowling
et al. in 2006 [61]. Typically, there exist two approaches to providing
replication service under Byzantine faults: the replica-based approach
(aka. agreement-based approach), e.g., BFT, that uses communication
between replicas to agree on a proposed ordering of requests; and
the quorum-based approach, such as Q/U, in which clients contact
replicas directly to optimistically execute operations. For replica-
based approaches, e.g., BFT, the quadratic cost of inter-replica
communication is unnecessary when there is no contention, while
for quorum-based approaches, e.g., Q/U, it requires a large number
of replicas and performs poorly under contention. HQ employs a
lightweight quorum-based protocol when there is no contention, but
uses BFT to resolve contention when it arises. And HQ requires
only 3f + 1 replicas to tolerate f faults, which provides optimal
resilience to failure nodes. Specifically, when no contention occurs,
HQ utilizes a quorum protocol in which reads require one round trip
of communication between client and replicas, and writes require
two round trips. However, when contentions occur, it uses the BFT
state machine replication algorithm to efficiently order the contending
operations.

In HQ, both clients and servers can be Byzantine nodes, which
may deviate arbitrarily from their specifications, and it is assumed
that an asynchronous distributed system with the network is fully
connected. The operations of HQ are phase-based, e.g., two phases for
a write operation and one phase for a read operation when no failure
and no contention occur. Each phase consists of a client issuing an
RPC call to all replicas and collecting a quorum of replicas. The HQ
protocol requires 3f + 1 replicas to tolerate f failures, by using the
quorums of size 2f + 1. The authors also made some improvements
on the communication scheme among replicas of BFT system, by
using TCP instead of UDP, to avoid costly message loss in case of
congestion. Also, the use of TCP can avoid exponentially back-off
resolution to contention which greatly leads a reduced throughput.
The other improvement is the use of MACs instead of authenticators
in protocol messages. Also, the improved BFT is allowed to use
the scheme of preferred quorums. However, on the batch process to
improve the throughput, HQ cannot batch concurrent client requests
as they do not have a primary replica funneling all requests to other
replicas. As shown in the evaluation of [62], the inability to support
the batching scheme increases the cryptographic overhead per request
at the bottleneck node, by factors approaching 4 when one fault
(f = 1) is tolerated, and by higher factors in system that tolerates
more faults. Interested readers can refer to these detailed protocols
and optimizations in [61].

6) BFT2F - (theory): BFT2F is an extension of PBFT protocol
to explore the design space beyond f failures (of n = 3f + 1
total replicas, a constant number), proposed by Li and Mazieres in
2007 [183]. The “2F" in BFT2F means it can tolerate up to 2f

29



Fig. 22. Comparison of the safety and liveness guarantees of PBFT, BFT2F,
and BFTx. As we can see, BFT2F provides extra safety guarantees without
compromising liveness, which is strictly better than PBFT [183].

faulty replicas out of 3f + 1 with some assumptions. Typically, most
BFT protocols make a strong assumption that some predetermined
fraction of server replicas are honest. For example, the highest fraction
of failure that an asynchronous BFT system can survive without
jeopardizing safety or liveness is f out of 3f+1 replicas. The reason
as stated in the FLP impossibility is that asynchronous communication
makes it impossible to differentiate slow replicas from failed ones.
Thus, to progress safely with f unresponsive replicas, the majority
of the remaining 2f + 1 responsive ones must be honest. The goal
of BFT2F is to limit the damage when more than f out of 3f + 1
servers in a replicated SMR fail. To achieve this goal, the authors
deviated to a weaker consistency model, called fork? consistency,
based on previous work on fork consistency of PBFT. In general,
even without fork? consistency, BFT2F has the same liveness and
safety guarantee as PBFT when no more than f replicas fail. With
fork? consistency, it is possible to bound a system’s behavior when
between f + 1 and 2f replicas have failed. When 2f + 1 or more
replicas fail, it is unfortunately not possible to make any guarantees
without simultaneously sacrificing liveness for cases where f or fewer
replicas fail.

Fig. 22 shows a comparison of the safety and liveness guarantees
of PBFT, BFT2F and BFTx (where 2f < x <= 3f ). When more
than f but no more than 2f replicas failed, two outcomes are possible.
1) System may cease to make progress, in which BFT2F does not
guarantee liveness when more than f replicas are compromised. 2)
System may continue to operate and offer fork? consistency, which
is a preferable option compared to arbitrary behaviors. The case of up
to 2f malicious replicas failed is equal to the case where a majority
of the replicas may fail. Also, BFT2F can be easily extended to a
parameterized version, as shown in term BFTx of Fig. 22. When
the number of faulty replicas is greater than f , the results highly
depend on the fork? consistency, which is a weaker consistency
model and has a chance to fail to achieve the correct consistency. The
fork? consistency can be achieved in a single-round protocol. The
major difference compared with fork consistency is that each request
specifies the precise order in which the same client’s previous request
was supposed to have been executed. Doing so may possibly make
an honest replica execute an operation out of order, however, at least
any future request from the same client will make the attack evident.
Interested readers can refer to the work [183] for the details on the
fork? consistency and the BFT2F algorithm.

7) HRDB - (middleware): HRDB is an acronym for Heteroge-
neous Replicated Database to tolerate Byzantine faults in transaction
processing systems using a concurrency control protocol proposed
by Vandiver et al. in 2007 [184]. As stated in the paper, the
main challenge in designing a replication scheme for a transac-
tion processing system is to ensure that different replicas execute

Fig. 23. HRDB system architecture [184].

transactions in equivalent serial orders while allowing a high de-
gree of concurrency. A transaction processing system functioning
errors may experience different faults, e.g., crash faults or Byzantine
faults. In cases of Byzantine faults, examples include concurrency
control errors, incorrect query executions, a database table or index
corruption, and so on. HRDB is a replication scheme to handle
both Byzantine and crash faults in transaction processing systems,
without modification to any database replica software. To design
such a system, two goals should be met: correctness (e.g., providing
a single-copy serialization view of database) and high performance
(e.g., performance not worse than a single database). Technically,
achieving both goals simultaneously is challenging because databases
achieve high performance through concurrency. While concurrency
may cause inconsistency, which further breaks the correctness of
concurrent systems. HRDB presents a concurrency control protocol,
called commit barrier scheduling (CBS), that allows the system to
guarantee a correct behavior while achieving its high concurrency.
CBS constrains the order in which queries are sent to replicas just
enough to prevent conflicting schedules while preserving most of the
concurrency in a workload.

Fig. 23 shows an abstract of high-level HRDB system architec-
ture. In HRDB, clients do not interact directly with database replicas,
instead of communicating with a shepherd which acts as a front-end
to the replicas and coordinates them. All transactions that run on the
replicas are sent via the shepherd, and the shepherd is assumed to be
trusted and does not have the Byzantine fault. In HRDB, it requires
only 2f +1 database replicas to tolerate f number of simultaneously
faulty replicas since the replicas do not carry out the agreement
and simply execute statements sent to them by the shepherd. The
shepherd runs a single coordinator and one replicas manager for each
back-end replica. To achieve the “ACID" semantics on transaction
processing, the shepherd implements a commit barrier scheduling
scheme (CBS). The CBS ensures that all non-faulty replicas execute
committed transactions in equivalent serial orders, while at the same
time preserving much of the concurrency of the individual replicas.
In CBS, one replica is designated to be the primary, and runs
statements of transactions slightly in advance of the other secondary
replicas. The order in this process on the primary determines a serial
order, a kind of vector. And the shepherd observes which queries
from different transactions are able to execute concurrently without
conflicts at the primary, and allows the secondaries to execute these
queries concurrently. Technically, the CBS schedule highly depends
on the assumption that replicas use a strict two-phase locking scheme
to ensure correctness.

30



In brief, HRDB uses a trusted node to coordinate the replicas.
And the coordinator chooses which requests to forward concurrently
to maximize the amount of parallelism between concurrent requests.
According to the evaluation on practical databases, HRDB provides a
good performance, however, it requires trust in the coordinator, which
might be problematic if replication is being used to tolerate attacks.
Besides, HRDB can ensure the single-copy serializability, in which
the group of replicas must together act as a single copy if no more
than half of the replicas are faulty. We refer interested readers to read
the work [184] for detailed CBS scheduling.

8) Erasure-coded BFT - (feature): An erasure-coded BFT pro-
tocol is proposed for block storage by Hendricks in 2007 [185].
Different from replicated state machines-based BFT, in which each
request is sent to a server replica and each non-faulty replica sends a
response, an erasure-coded BFT protocol relies on the erasure codes.
Taking m-of-n erasure code as an example, each block is encoded into
n fragments such that any m correct fragments can be used to decode
that block. To avoid expensive overhead, e.g., on communication,
the authors proposed a mechanism to optimize for the common case
when faults and concurrency are rare. This optimization minimizes the
number of rounds of communications, the number of computations,
and the number of servers that must be available at any time. One
novelty of this work is that the block is erasure-coded at the server,
and this will eliminate the verification of concurrency on clients.
Also, the proposed scheme utilizes a homomorphic fingerprinting
technique to ensure that a blockchain is encoded correctly, and the
homomorphic fingerprinting technique can eliminate the need for the
versioned storage and a separate garbage collection protocol.

PASIS is another Byzantine fault-tolerant erasure-coded storage
protocol proposed by Goodson et al. in 2004 [186]. It describes a
decentralized consistency protocol for survivable storage that exploits
local data versioning with each storage node. By exploiting versioning
storage nodes, the protocol shifts most work to clients and allows
highly optimistic operations, e.g., reads occur in a single round-trip
unless clients observe concurrency or write failure. In PASIS, servers
do not verify if a block is correctly encoded during a write operation.
Instead, clients verify during read operations that a block is correctly
encoded. Besides, PASIS requires 4f + 1 servers to tolerate f faulty
servers.

AVID is an asynchronous verifiable information dispersal protocol
proposed by Cachin and Tessaro in 2005 [114]. It is also an erasure-
coded storage protocol for Byzantine fault tolerance, which requires
only 3f + 1 replicas to tolerate f faulty replicas. In AVID, a client
sends each server an erasure-coded fragment, and each server then
sends its fragment to all other servers such that each server can
verify that the block is encoded correctly. Specially, it combines
an asynchronous reliable broadcast protocol with erasure coding to
achieve efficient communication. However, essentially, this is still an
all-to-all communication, which consumes slightly more bandwidth
in the common case than a typical replication protocol.

Compared with replication-based Byzantine fault-tolerant pro-
tocols, the erasure-coded Byzantine fault-tolerant scheme is more
suitable for storage operations to avoid case conflicts on writes and
the corresponding concurrency issues. While the replication-based
BFT systems focus on the consistency of the states among replicas to
ensure their safety and liveness. Interested readers on erasure-coded
BFT schemes can refer to these above-mentioned papers.

9) Prime - (feature): Prime is an acronym for Performance-
oriented Replication In Malicious Environments, an SMR protocol
to resilient to performance degradation under attacks, proposed by
Amir et al. in 2008 [187] and its extended version in 2010 [188].
Practically, faulty processes can significantly degrade performance
by causing the system to make progress at an extremely slow rate,
and the systems that are vulnerable to performance degradation are of
limited practical use in an adversarial environment. Prime is a Byzan-
tine fault-tolerant SMR protocol to mitigate performance attacks
and bridge this “practicality gap" for intrusion-tolerant replication
systems. In Byzantine environments, faulty processors can exploit the
vulnerability on “stable periods" during synchrony to degrade system
performance to a level far below what would be achievable with only
correct processors. For example, a small number of faulty processors,
especially if containing the leader of leader-based BFT protocols, can
cause the system to make progress at an extremely slow rate. Prime
explores this kind of performance degradation attacks, and called
them Byzantine performance failure. This failure is different from
the traditional classification of Byzantine failures, such as failures in
the value domain (e.g., sending incorrect or conflicting messages) or
in the time domain (e.g., timeout of messages). Processors exhibiting
performance failures can send correct messages slowly but without
triggering protocol timeouts. Thus, Prime proposes a performance-
oriented metric to evaluate Byzantine failures and presents an SMR
protocol that performs well under the metric.

Prime focuses on classic leader-based Byzantine SMR protocols,
in which they rely on a leader to coordinate the global ordering and
are thus vulnerable to performance degradation caused by a slow
leader. In general, Prime can guarantee the safety and validity of all
executions, including those in which the network is asynchronous and
may drop or duplicate messages. Validity means only an update that
was proposed by a client may be executed. Since no asynchronous
Byzantine agreement protocol can always be both safe and live, Prime
guarantees liveness only in execution in which the network even-
tually meets certain stability conditions (e.g., PRIME-STABILITY
defined in [188]). The PRIME-STABILITY puts some constraints
on the minimum latency on messages transmission between cor-
rect replicas. Under PRIME-STABILITY, PRIME-LIVENESS can be
guaranteed. Compared with the traditional liveness in existing leader-
based protocols, PRIME-LIVENESS only requires a strong degree of
stability only. Also, under PRIME-STABILITY, Prime can provide a
stronger performance guarantee, which is called BOUNDED-DELAY.
BOUNDED-DELAY states that there exists a time after which the
update latency for any update initiated by a stable server is upper-
bounded. However, resource exhaustion denial of service attacks may
cause PRIME-STABILITY to be violated for the duration of attacks.
And, Prime handles the case that malicious leaders can slow down the
system without triggering defense mechanisms, and focuses on two
scenarios: Pre-prepare delay attack and timeout manipulation attack.
In Pre-prepare delay attack, a faulty server delays the ordering of
requests from some of the clients, causing a considerable increase in
the latency of these requests and a great reduction of the throughput.
In the timeout manipulation attack, faulty servers manage to increase
the timeout used in PBFT, seriously degrading the performance of the
system. Also, these attacks apply to some of the algorithms that derive
from PBFT. Prime tolerates these attacks by adding a pre-ordering of
three communication steps to BFT. In general, defending against these
two performance attacks allows Prime to meet BOUNDED-DELAY.

Prime requires 3f + 1 servers to tolerate f Byzantine faults, and
the Prime protocol includes two main components: Prime ordering

31



protocol and detecting malicious leaders. In Prime ordering protocol,
it consists of three phases: preordering phase, global ordering phase,
and reconciliation. To detect malicious leaders, three mechanisms are
adopted: enforcing up-to-date Pre-preparing messages, Pre-prepare
flooding, and suspect-leader protocol. We refer interested readers to
read the protocol and detection mechanisms in details [188].

10)Nysiad - (architecture): Nysiad is a system that transforms a
scalable distributed system or network protocol tolerating only crash
failures into the one that tolerated Byzantine failure, proposed by
Ho et al. in 2008 [189]. The key idea of Nysiad is to assign each
host a certain number of guard hosts, optionally chosen from the
available collection of hosts, with assumptions that no more than
a configurable number of guards of a host are faulty. Nysiad then
enforces that a host either follows the system’s protocol and handles
all its inputs fairly, or ceases to produce output messages altogether.
Nysiad leverages the case that most distributed systems already deal
with crash failures, and translates arbitrary failures into crash failures,
so that the translated system can tolerate arbitrary failures in the
content of crash failures. By doing this translation, it can avoid solving
consensus during the normal operation (e.g., getting an agreement
among replicas). However, Nysiad does need a consensus only when a
host needs to communicate with new peers or when one of its replicas
is being replaced. Rather than treating replicas as symmetric (e.g., in
most SMR systems), Nysiad’s replication scheme adopts a primary-
backup with the host that is being replicated acting as a primary, and
other replicas as the backups. And a voting protocol within a Nysiad’s
replicated state machine (RSM) of host ensures that the output of the
RSM is valid.

The Nysiad system distinguishes two kinds of systems, original
system and translated system, which refer to the systems before and
after translation, respectively. The original system tolerates only crash
failures, while the translated system tolerates Byzantine failures as
well. Also, Nysiad assumes that each host runs a deterministic state
machine that transitions in response to receiving messages or expiring
timers. Besides, the Nysiad system works under an asynchronous
environment. The Nysiad transformation requires a “guard graph",
which is a communication graph to establish a connection between
hosts. We can literally consider each guard as a backup on the
primary-backup scenario of RSM. And, a t−guard graph means for
each host at most t of its guards are Byzantine, and Nysiad works
with guard graph to perform translation. With this regards, Nysiad
translates the original system by replicating the deterministic state
machine of a host onto its neighbor guards. In general, a Nysiad
instance includes four sub-protocols. The replication protocol ensures
that guards of a host remain synchronized. The attestation protocol
guarantees that messages delivered to guards are messages produced
by a valid execution of the protocol. The credit protocol forces a
host to either process fall its input fairly, or to ignore all input. And,
the epoch protocol allows the guard graph to be bootstrapped and
reconfigured in response to host churn.

However, there exist some potential equivocation in Nysiad, in
which the most may send different messages to different guards
or order its messages differently for different guards. To handle
this equivocation, the guards gossip among each other to agree
on the order and content of messages sent by the host. And the
communication complexity of the adopted gossip is quadratic in
terms of guards. Besides, Nysiad can handle non-deterministic state
machines, however, doing so requires protocol changes to treat non-
deterministic events as inputs [157]. For details of design principles,

interested readers can refer to Section 4 in [189].

A similar and earlier work on this type of RSM for Byzantine
failure is the PeerReview, which was proposed by Haeberlen et
al. in 2007 [190]. PeerReview is a system that employs witnesses
to collect a tamper-evident record of all messages in a distributed
system for subsequence checking against a reference implementation.
Essentially, PeerReview provides accountability [191] in distributed
systems, which ensures that Byzantine faults whose effects are
observed by a correct node are eventually detected and irrefutably
linked to a faulty node. Also, the peer review process can ensure
that a correct node can always defend itself against false accusations.
PeerReview assumes that each host implements a protocol using
a deterministic state machine. It works by maintaining a secure
record of the incoming and outgoing messages by each node, and
periodically, runs logs through the state machines, and checks output
against outgoing logs. It can only detect a subclass of Byzantine
failures, and only after the fact.

However, PeerReview does not provide fault tolerance, instead, it
provides eventual fault detection and localization, which the system’s
designers argue leads to fault deterrence. Its tamper-evident record is a
distributed hash chain, which is used to detect equivocation about the
messages recorded in the log. Besides, the communication required
to collectively manage the tamper-evident message log is quadratic
in the size of the witness set.

11) BFTSim - (architecture): BFTSim is a simulation tool
to Byzantine fault-tolerant protocols proposed by Singh et al. in
2008 [63]. It equips with a declarative networking system with a ro-
bust network simulator for various protocols. Protocols can be rapidly
implemented from pseudocode in a high-level declarative language,
and the network conditions and measured costs of communication
packages and crypto primitives can be plugged into the latter. In
general, BFTSim can be used as a fast prototype module to predict the
performance of designed protocols before practical implementation.
As a simulation framework, BFTSim couples a high-level protocol
specification language and an execution system with a computation-
aware network simulator built atop ns−2 [192]. This allows the users
to rapidly implement protocols based on pseudocode descriptions,
evaluate their performance under a variety of conditions, and isolate
the effects of implementation artifacts on the core performance of
each protocol. Fig. 24 shows an abstract of the BFTSim software
architecture. Interested readers can refer to the work [63] for more
details. From the BFTSim open source tool online (http://bftsim.mpi-
sws.org/), it seems, from 2009, these source codes were out of
maintenance.

12) Byzantium - (middleware): Byzantium is a Byzantine fault-
tolerant database replication middleware that provides snapshot iso-
lation (SI) semantics, proposed by Preguica et al. in [193]. Like
commit barrier scheduling (CBS) in HRDB [184], Byzantium is a
kind of middleware to enhance concurrency. Byzantium improves
on the existing BFT replication schemes for database, in which it
has no centralized components, of whose correctness the integrity
of the system depends; and it allows an increased concurrency to
achieve good performance. Fig. 25 shows an abstract of system
architecture. Under Byzantium, it uses the PBFT state machine
replication algorithm as its consensus protocol, and follows the system
models of PBFT, e.g., using 3f + 1 replicas to tolerate f faulty
replicas and asynchronous communication model. And SI is a weaker
form of semantics that is supported by most commercial databases,
which allows a transaction to logically execute in a database snapshot.

32



Fig. 24. The BFTSim software architecture [63].

Fig. 25. Byzantium system architecture [193].

Only when there is no write-write conflict with any committed
concurrent transaction, a transaction can commit, otherwise, it must
abort. Compared with serializability in replicated machine systems, SI
can increase concurrency among transactions. This is because, with
the SI, only write-write conflicts must be avoided, which is beneficial
for read-only transactions without needing to block or to abort them.
Besides, Byzantium as a middleware can be used with off-the-shelf
database systems and builds on top of an existing BFT library.

13)Zeno - (feature): Zeno is a BFT state machine replication pro-
tocol that trades consistency for higher availability, proposed by Singh
et al. in 2009 [194]. Most proposals for Byzantine fault-tolerant pro-
tocol have focused on strong semantics, such as linearizability [195],
where the replicated systems appear to the clients as a single, correct,
and sequential server. With the popularity of data centers and cloud
services, ensuring correct and continuous operation of these services
is critical, which requires a higher availability. Zeno is designed to
meet the needs of modern services running in corporate data centers.
More preciously, Zeno favors service performance and availability, at
the cost of providing weaker consistency guarantees than traditional
BFT replications when network partitions and other infrequent events
reduce the availability of individual servers. Still, Zeno offers eventual
consistency semantics [196], in which different clients can be unaware
of the effects of each other’s operations, e.g., during a network
partition, but operations are never lost and will eventually appear
in a linear history of the service once enough connectivity is re-
established. The authors also describe the necessaries and sufficiency
of the eventual consistency from the standpoint of many applications.
For example, when a network partition occurs, eventual consistency
is necessary to offer high availability to clients on both sides of the
partitions.

Zeno adapted Zyzzyva to provide availability mainly because
Zyzzyva explores the speculation to conclude operations fast and
cheaply, having an ability to yield high service throughout during
favorable system conditions. As a BFT replication protocol, Zeno
requires 3f + 1 replicas to tolerate f faults, with an arbitrary
number of Byzantine clients. Based on the baseline Zyzzyva (a
hybrid agreement/quorum model), it made some modifications on the
levels of consistency. For example, Zeno distinguishes two kinds of
quorums: strong quorums consisting of any group of 2f + 1 distinct
replicas, and weak quorums of f+1 distinct replicas. Like most tradi-
tional BFT protocols, Zeno has three components: sequence number
assignment to determine the total order of operations, view change to
handle leader replica election, and checkpointing to deal with garbage
collection of protocol and application state. We recommend interested
readers to read Section 4 of [194] on each operation.

In general, a weak consistency allows replicas to temporarily
diverge and users may see inconsistent data, however, with better
availability and performance. There are some trade-offs on choosing
between consistency and availability. Different applications may have
different choices. For example, a cluster of distributed data centers
may favor availability, while a decentralized distributed ledger system
may instead favor consistency. However, to property of consistency
itself, for some permissionless blockchain settings (e.g., PoW as a
consensus), it temporarily allows a certain level of diverging (in the
form of forks), however, an eventual consistency must be maintained.
While for a BFT based blockchain system, a strong consistency (or
linearizability) is more critical.

14)Aardvark - (architecture): Aardvark is a BFT system designed
to be robust to failures, proposed by Clement in 2009 [153]. It
criticizes the existing BFT (before 2009) state machine replication
protocols, although fast, did not tolerate Byzantine faults very well.
For example, even a single faulty client or server is capable of
rendering PBFT, Q/U, HQ, and Zyzzyva, and make them virtually un-
usable. For those BFTs, the complexity often undermines robustness
in two ways: 1) the protocols’ design include fragile optimizations
that allow a faulty client and server to knock the system off of the
optimized execution path to an expensive alternative path, and 2) the
protocols’ implementation often fails to handle properly all of the
intricate corner cases. Based on the above observations, the authors
advocate a new approach to build robust BFT (RBFT) systems and
avoid performing fragile optimizations. The goal of RBFT is to shift
the focus from constructing high-strong systems that maximize best-
case performance to constructing systems that offer acceptable and
predictable performance under the broadest possible set of circum-
stances. Aardvark was based on a new design philosophy to provide a
robust BFT replication system. Essentially, Aardvark itself was built
on the classic PBFT protocol under a practical asynchronous network
where synchronous intervals, during which messages are delivered
with a bounded delay, occur infinitely often.

The authors define a set of principles for constructing BFT ser-
vices that remain useful even when Byzantine faults occur. Specially,
the temptation of fragile optimizations should be avoided in a practical
design, and a BFT system should be designed around an execution
path that meets some properties. More precisely, a BFT system should
provide acceptable performance; a BFT system should be easy to
implement; and a BFT system should be robust against Byzantine
attempts to push the system away from it. Also, optimizations for
the common case should be acceptable only if they do not endanger
these properties. Due to the FLP impossibility, the liveness of protocol

33



cannot be guaranteed in an asynchronous environment. Even it cannot
achieve liveness, a BFT protocol should perform well under a weak
assumption, e.g., uncivil executions. An execution is uncivil iff (a) the
execution is synchronous with some implementation-dependent short
bound on message delay, (b) up to f servers and an arbitrary number
of clients are Byzantine, and (c) all remaining clients and servers are
correct.

Aardvark is based on the above design philosophy and a weak
assumption on uncivil executions. The Aardvark protocol essentially
consists of three stages: client request transmission, replica agree-
ment, and primary view change. And there are three main design
differences between Aardvark and previous BFT systems, namely,
signed client requests, resource isolation, and regular view change.
For signed client requests, Aardvark clients use digital signatures
to authenticates their requests. Digital signatures can provide non-
repudiation and ensure all correct replicas make identical decisions
about the validity of each client request. Aardvark uses them only
for client requests which push the expensive generation of signature
onto the client and leave the servers with less expensive verification
operations. Meanwhile, the communication on primary-to-replica,
replica-to-replica, and replica-to-client rely the MAC authentication
scheme (a fast and less expensive operation). For resource isolation,
the Aardvark prototype implementation explicitly isolates network
and computational resources. For example, implementing replica-
to-replica communication reduces the potential hazardous cases on
message transmission. For regular view changes, the Aardvark pro-
tocol invokes view change operations on a regular basis to prevent
a primary from achieving tenure and exerting absolute control on
system throughput. For example, Aardvark monitors the performance
of the primary and changes the view in case it seems to be performing
slowly. Based on the above optimization on Aardvark, the work [153]
also presented detailed implementation and evaluation on Aardvark.
Interested readers can look into the details.

15) Client Speculation - (middleware): Client speculation is a
technique to perform a speculative execution at the clients to reduce
the impact of network and protocol latency, proposed by Wester et al.
in 2009 [197]. The features of the geographical distribution of replicas
in an SMR system increase the network latency between replicas,
and many applications and protocols for SMR are highly sensitive to
latency. For example, in traditional Byzantine fault-tolerant protocols,
it must wait for multiple replicas to reply, and the effective latency
of services is limited by the latency of the slowest replica (even an
honest one) being waited for. Agreement-based protocols, e.g., PBFT,
typically require multiple message rounds to reach an agreement
which further exacerbates the user experience (e.g., high network
latency). Client speculative execution allows clients of replicated
services to be less sensitive to high latencies caused by network delays
and protocol messages. These phenomena are more clear in the case
that faults are generally rare or in the absence of faults, and the
response from even a single replica is an excellent predictor of the
final. Based on these observations, the clients in client speculation can
proceed after receiving the first response, thereby hiding considerable
latency in the common case in which the first response is correct.
And this will clear if at least one replica is located nearby. To
ensure the safety in the case where the first response is incorrect,
a client may only continue executing in the way speculatively, until
enough responses are collected to confirm the prediction. Besides,
client speculation hides the latency of the replicated service from the
client, and replicated servers can optimize their behavior to maximize
their throughput and minimize load, e.g., by handling agreement in

large batches.

To combine the client speculation technique into existing repli-
cation protocols, some modifications are required on these proto-
cols. The authors provide some design principles for using client
speculation with replicated services, e.g., generating early replies,
prioritizing throughput over latency, avoiding speculative state on
replicas, and using replica-resolved speculation. For generating early
replies, to minimize the latency, a protocol should be designed to
get the first reply to the client as quickly as possible, in which
the fastest reply can be from the closest replica and that replica
responds immediately. Thus, a client speculation-supported protocol
should have one or more replicas immediately respond to a client
with the replica’s best tentative result (or guess) for the final outcome
of the operation. Due to the nature of the guess, that reply is not
guaranteed to be correct in the presence of a malicious responded
replica. For instance, for agreement-based protocols like PBFT, a
more practical way is to have only the primary execute the request
early and respond to the client, and such predictions are correct
unless the primary is faulty. However, this way presumably assumed
that the primary is located near the client to get minimized latency.
For prioritizing throughput over latency, when there is a case that
needs to make a trade-off between throughput and latency, a better
choice is to consider the one that improves throughout over one that
improves latency (even under client speculation). This is because the
speculation can do much to hide replica latency but little to improve
replica throughput. Even the client can get an early response, however,
the final outcome of an operation depends on the latency of the
overall operations among the replicas. For avoiding a speculative state
on replicas, speculative execution must avoid output commits that
externalize speculative output to ensure correctness, as such output
cannot be undone once externalized. To avoid the inconsistency of
replicas, the authors recommend selecting the smallest boundary of
speculation, which disallows replicas from storing the speculative
state. For using replica-resolved speculation, even with the smallest
boundary of speculation, the clients are still allowed to issue new
requests that depend on the speculative state (or called speculative
requests). These requests can be handled concurrently, increasing
throughput when the replicas are not already fully saturated. However,
there is no mechanism for a replica to determine whether or not a
client received a correct speculative response. Interested readers can
refer to Section 2 of [197] for more detailed design principles.

Besides, following these mentioned design protocols, the authors
presented a prototype of a modified protocol, PBFT-CS, based on
PBFT protocol, and applied the modified protocol on replicated NFS
and counter services. Evaluation results show that client speculation
trades in 18% maximum throughput to decrease the effective latency
under light workloads, which speed up to run time 1.08 − 19X on
the case of a single-client co-located with the primary.

16)UpRight - (feature): UpRight is a state replication system and
provides a library for fault-tolerant services, proposed by Clement et
al. in 2009 [198]. The UpRight library seeks to make Byzantine fault
tolerance a simple and viable alternative to crash fault tolerance for
a range of cluster services. On the design choices, UpRight favors
simplifying adoption by existing applications, and performance is a
secondary concern. To make a BFT system competitive with the CFT
system, it does not only enhance the optimizations on performance,
hardware overhead, and availability, but also in terms of engineering
efforts. The UpRight draws heavily to retain performance, hardware
overhead, and availability; however, it favors minimizing intrusiveness

34



Fig. 26. Failure hierarchy. Byzantine failures include omission failures and
commission failures. Crash failures are a subset of omission failures [198].

to existing applications over the raw performance. By applying
the UpRight library, the authors construct UpRight-Zookeeper and
UpRight-HDFS using open-source codes based on the Zookeeper [54]
and HDFS (Hadoop Distributed File System) [199]. Both UpRight-
based systems provide improvements in fault tolerance. For example,
the original HDFS system can be halted by a single fail-stop node,
while UpRight-HDFS has no single point of failures and also provides
end-to-end Byzantine fault tolerance against faulty clients, DataN-
odes, and NameNodes. UpRight makes standard assumptions for
Byzantine fault-tolerant systems with few modifications. For example,
the safety of UpRight holds in any asynchronous distributed systems,
however, the liveness is guaranteed only during synchronous intervals
in which messages sent between correct nodes are processed within
some fixed (but potentially unknown) worst-case delay from when
they are sent.

UpRight distinguishes two kinds of Byzantine failures: Omission
failures (including crash failures) in which a node fails to send one
or more messages specified by the protocol and sends no incorrect
messages (or nothing) based on the protocols and its inputs, and
commission failures, which include all failures that are not omission
failures, including all failures, e.g., a node sends a message that
is not specified by the protocol. Fig. 26 shows a failure hierarchy.
And UpRight can provide the following properties: 1) an UpRight
system is safe despite r commission failures and any numbers of
omissions failures; 2) an UpRight system is safe and eventual live
(“up") during sufficiently long synchronous intervals when there are
at most u failures of which at most r are commission failures and
the rest are omission failures, where u >= r. For example, when
u = r, the system is equivalent to the one based on a full Byzantine
failure model, and when r = 0, the system is equivalent to the one
based on a crash failure model. UpRight implements state machine
replication, which tries to isolate applications from the details of
the underlying replication protocol. This kind of design principle
makes it easy to convert a CFT application into a BFT one or to
construct a new fault-tolerant application. Essentially, the UpRight
library should ensure some features, e.g., each application server
replica sees the same sequence of requests and maintains a consistent
state, and an application client sees responses consistent with this
sequence and state. To achieve these features, the applications must
address some specific challenges in request execution and checkpoint
management. For the request execution, applications must account for
non-determinism, multi-threaded execution, read-only requests, and
spontaneous server-initiated replies. For the checkpoint management,
the checkpoints should be inexpensive to generate, inexpensive to
apply, deterministic, and nonintrusive on the codebase.

Fig. 27 shows an UpRight’s high-level architecture. It is important
to describe how it works for cluster applications. As the figure shown,
UpRight requires three modules to execute a client request: request
quorum (RQ), order, and execution. An UpRight client deposits its

Fig. 27. UpRight architecture [198].

request at the request quorum, which stores the request, forwards
a digest of the request to the order module, and supplies the full
request to the execution module. The order module produces a totally
ordered sequence of batches of request digests. The execution module
embodies the application’s server, which executes requests from the
ordered batches and produces replies. Although UpRight’s core is a
Byzantine agreement protocol, it departs from prior BFT protocols in
some aspects. In general, the RQ stage of UpRight helps avoiding
complex corner cases, and avoids sending large requests through
the order state. The agreement protocol combines ideas from three
prior replication systems, i.e., Zyzzyva’s speculative execution [59],
Aardvark’s techniques on robustness [153], and Yin et al.’s techniques
for separating agreement and execution [176]. Besides, it supports a
parameterized and easy configuration to minimize replication costs.
For example, the UpRight prototype allows its users to separately
configure u (the number of failures it can tolerate while remaining
up) and r (the number of failures it can tolerate while remaining
right). Interested readers can refer to the work [198] for more detailed
information.

17)Spinning - (feature): Spinning is a BFT algorithm to mitigate
performance attacks by changing the primary, proposed by Veronese
et al. in 2009 [200]. Most leader-based Byzantine fault-tolerant
replication systems have a primary replica that is in charge of
ordering the clients’ requests. However, it was shown that this kind
of dependence allows a faulty primary has the ability to degrade the
performance of the system to a small fraction of what the environment
allows (e.g., PBFT’s performance attacks proposed in Prime [187]). In
performance attacks, it generally has two types: pre-prepare delays (an
attack to delay the ordering of the requests) and timeout manipulations
(to increase the timeouts used in BFT). For example, in a pre-prepare
delay attack, the primary imposes a maximum delay on the execution
of requests, but only on the first request of a queue of pending
requests, so a faulty primary can process one request at a time,
strongly delaying most requests. These two types of attacks can also
apply to some of the algorithms derived from PBFT. According to
the description of the Spinning algorithm, which modifies the usual
form of operations of PBFT, instead of changing the primary when
it is suspected of being faulty, it changes the primary whenever it
defines the order of a single batch of requests. Simply, in each view
the primary orders only one batch. As views are always changing, it
has no view change operation, instead, it has a merge operation. The
merge operation is in charge of putting together the information from
different servers to decide if requests in views that “went wrong" are
to be executed or not.

Even with a Spinning algorithm, a faulty replica still has a chance
to be the primary to impact the average performance of services. To

35



solve this issue, Spinning algorithms use a punishing misbehavior
mechanism to punish the primary when something goes wrong. For
example, basically putting them in a blacklist, a server in the blacklist
does not become the primary. Spinning primary has some benefits.
One benefit is that it can avoid the above-mentioned performance
attacks made by faulty primaries in a very simple and efficient way,
and the view change in Spinning does not occur. The view is changed
automatically after the three communication steps are executed by the
servers. Another benefit is that Spinning can improve the throughput
of PBFT when there are no faulty servers by balancing the load
of ordering requests among all correct servers. Intuitively, ordering
requests requires that all servers exchange messages, causing load in
all of them, however, most load is in the primary so changing the
primary improves the throughput of the algorithm by a factor of 20%
(some similar work by Mao et al. in Mencius [201]).

The authors also designed a prototype based on PBFT under a
partial synchrony system model with 3f + 1 replicas to tolerate f
faulty replicas. The communication pattern of the Spinning algorithm
almost follows the PBFT to reach an agreement. Due to no view
change sub-protocol of in PBFT, instead, Spinning resorts to a merge
operation, which has the similar objective to ensure liveness. To
short, the algorithm has to merge the information from the different
servers to agree on the requests that were accepted and go to the
next view. Also, the Spinning algorithm defines some mechanisms
to punish the misbehavior of faulty primaries. Besides, the authors
also presented several optimizations to the basic Spinning algorithm,
including batches of requests, piggybacking pre-prepare messages,
using MAC vectors, and parallel executions. Interested readers can
refer to Section III-F of [200] for more details.

18)Zzyzx - (feature): Zzyzx is a scalable Byzantine fault-tolerant
protocol through Byzantine Locking, proposed by Hendricks et al. in
2010 [202]. By using a Byzantine Locking scheme, Zzyzx allows a
client to extract state from an underlying replicated state machine and
access it via a second protocol specialized for use by a single client.
The second protocol requires just one round trip and 2f+1 responsive
servers. And the extracted state can be transferred to other servers,
allowing non-overlapping sets of servers to manage different states.
This enables Zzyzx’s throughput to be scaled by adding servers when
concurrent data sharing is not common. Practically, it can perform
well and achieves scalability in the case that faults are rare and the
concurrency is uncommon (aka. a benign environment). However,
when the concurrency is common, Zzyzx performs similarly to its
underlying protocol (e.g., PBFT). Zzyzx takes inspiration from the
locking mechanism used by many distributed systems to achieve high
performance in a benign environment. For example, the metadata
service of most distributed file systems contains a distinct object
for each file or directory, and the case of concurrent sharing is
rare [203] [204].

Byzantine Locking is layered atop on BFT consensus protocol,
and it temporarily gives a client exclusive access to state in a
replicated state machine, which has the ability to extract the relevant
state of the underlying replicated state machine. In general, Byzantine
Locking is only a performance tool. To ensure the liveness of a
replicated system, a locked state is kept on servers, and a client
that tries to access objects locked by another client can request that
the locks be revoked, forcing both clients back to the underlying
replicated state machine to ensure consistency. Zzyzx uses 3f + 1
servers to tolerate up to f Byzantine servers, and a physical server
can take different roles, e.g., log servers or state machine replicas.

Byzantine Locking provides a client an efficient mechanism to modify
replicated objects by providing the client temporary exclusive access
to the object. A client that holds temporary exclusive access to an
object is said to have locked the object. Simply, the execution of
Zzyzx can be divided into three interfaces/sub-protocols: substrate
interface, log interface, and unlock sub-protocol. If a client has not
locked the objects needed for an operation, the client uses a substrate
interface protocol, such as PBFT or Zyzzyva. If a client holds locks
for all objects touched by an operation, the client uses the lock
interface. If a client tries to access an object for which another client
holds a lock, then the unlock sub-protocol is been effective. For more
details on each operation, interested readers can refer to Section 4
in [202].

19) Generic Consensus Algorithm - (architecture): Generic con-
sensus algorithm is not a specific consensus algorithm, instead
highlighting the basic and common features of known consensus
algorithms, proposed by Rutti et al. in 2010 [205]. It provides a
generic framework for the building of consensus algorithms, which
is a parameterized formation of the algorithm. Numerous consensus
algorithms had been proposed with different features and different
fault models. Considering these numerous algorithms, a classification,
e.g., via parameter forms, would be helpful to identify the basic
mechanisms on which they rely. The parameters of the generic
algorithm encapsulate the core differences between various consensus
algorithms, including leader-based and leader-free algorithms, ad-
dressing benign faults, authenticated Byzantine faults, and Byzantine
faults. The generic consensus algorithm consists of some successive
phases where each phase is composed of three rounds: a selection
round, a validation round, and a decision round. Some existing
algorithms may skip the validation round, which introduces some
dichotomy among consensus algorithms, the ones that require the
validation round, and the others for which the validation round is not
necessary.

In general, the proposed generic algorithm is based on four
parameters: the FLV function, the Selector function, the threshold
parameters, and the flag FLAG. The functions FLV and Selector are
characterized by abstract properties; the threshold parameter is defined
with respect to n (the number of processes), f (the maximum number
of benign faults), and b (maximum number of Byzantine processes).
The authors proved the correctness of the generic consensus algorithm
by referring only to the abstract properties of the above-mentioned
parameters. Also, the authors argued that the correctness proof of any
specific instantiated consensus algorithm consists simply in proving
that instantiations satisfy the abstract properties of the corresponding
functions. The generic consensus algorithm provides more detailed
and elaborated classifications, e.g., on the honesty of nodes. The
honest processes can be differentiated into correct or faulty, where an
honest process is faulty if it eventually crashes, and is correct other-
wise. Also, it assumes that among n processes, there exist at most b
Byzantine processes and at most f faulty (honest) processes. Besides,
it distinguishes different Byzantine faults in literature: authenticated
Byzantine faults, where the communicated messages are signed by
their sending process (with the assumption that signatures cannot be
forged by any other process), and Byzantine faults, where there is no
mechanism for signatures (but the receiver of a message knows the
identity of the sender). Also, the authors discussed the way to adopt
to support randomized consensus algorithms. Interested readers on
the framework and instantiations of the generic consensus algorithm
can refer to the work [205].

36



Besides the above generic consensus algorithm, there exist several
literatures on this topic. For example, Mostéfaoui et al. [206] proposed
a consensus framework restricted to benign faults, which allows
unification of leader oracle, random oracle, and failure detector oracle.
Gueraoui and Raynal [207] also proposed a generic consensus
algorithm, where its generality is encapsulated in a function Lambda,
which further encapsulates both selection and validation rounds;
whose later version on Omega encapsulates communication abstrac-
tion. And Song et al. [208] proposed some key building for building
blocks replicated systems and constructing consensus algorithms.

20)Breaking the O(n2) Bit Barrier - (theory): This work presents
a scalable Byzantine agreement for an adaptive adversary, proposed
by King and Saia in 2010 [209]. It focuses on the theoretical
perspective to improve the scalability under Byzantine replicas and
the adaptive adversary. In general, the proposed algorithm is scalable
in the sense that each processor sends only Õ(

√
n) bits, where n is

the total number of processors. It also works with a high probability
against an adaptive adversary, which can take over processors at any
time during the protocol, up to the point of taking over arbitrarily
close to a 1/3 fraction of the total replicas. The system model is
based on synchronous commutation but with a rushing adversary.
More precisely, the algorithm introduces only Õ(

√
n) bits processor

overhead, which leads to it with Õ(
√
n) bit complexity. And the

communication with Õ(
√
n) bit complexity can be considered as

a distributed version of a bit-fixing random source. Due to the
randomness, it still has a small probability of errors. Based on
the observations, the authors claim that any algorithm that uses
cryptography is subject to errors with a certain probability, since the
adversary may get lucky and break the cryptography.

The proposed consensus algorithm is assumed to build on a net-
work with private and unauthenticated peer-to-peer communication
channels. For example, whenever a processor sends a message directly
to another, the identity of the sender is known to the recipient without
resorting to cryptographic assumptions. An adaptive adversary is not
only can take over processors at any point during the protocol, but also
can learn the processor’s state, so that the bad processors can engage
in any kind of deviation from the protocol. Also, these bad processors
can send any number of messages, a kind of flooding attack. On the
network synchrony assumption, the proposed algorithm works under a
synchronous model with the rushing adversary. In a rushing adversary,
the bed processors may wait to receive all messages sent by the good
processors before they need to send out their own messages. Many
theoretical results and proofs are presented in the paper, and interested
readers can read the paper [209] for more details.

21)Abstract - (architecture): Abstract is an acronym of Abortable
Byzantine faulT toleRant stAte maChine replicaTion, an abstraction to
reduce the development cost of BFT protocols, proposed by Guerraoui
et al. in 2010 [14]. In the work of Abstract, it shows another two BFT
protocols: AZyzzyva, a protocol that mimics the behavior of Zyzzyva
in the best-case scenario, and Aliph, a BFT protocol that outperforms
previous (before the year of 2010) BFT protocols both in terms
of latency and throughput. Abstract treats each BFT protocol as a
composition of instances of the Abstract framework and each instance
can be developed and analyzed independently. When designing and
implementing an SMR protocol, two objectives typically are very
crucial: robustness and performance. Robustness shows the ability to
ensure availability (liveness) and one-copy semantics (safety) despite
failures and asynchrony. While, performance measures the time it
takes to respond to a request (latency) and the number of requests

that can be processed per time unit (throughput). With various models
and settings for consideration in replicated systems, many of those
designed Byzantine protocols are notoriously difficult to develop, test,
and prove. Even under the best-case scenario, there is no “one size
fits all" BFT protocol [63]. For example, the performance differences
among the protocols can be heavily impacted by the actual networks,
the size of the messages, the vary nature of the “common" cases,
etc. One can design new protocols outperforming all others under
specific circumstances, however, it is hard to evaluate performance
with previously designed protocols in different circumstances. The
Abstract provides an abstraction to reduce the deployment cost of
BFT protocols.

Following the divide-and-conquer principle, the Abstract views
BFT protocols as a composition of an instance of its framework, and
each instance can target and optimize for specific system conditions.
In general, an instance of Abstract looks like BFT SMR, with
only one exception that it may sometimes abort a client’s request.
We can consider a BFT protocol as a composition of instances of
Abstract, and each instance itself is a protocol that commits clients’
requests except if certain conditions are not satisfied (e.g., it can
abort requests). This provides a way of composability, as well as
flexibility, for the design of BFT protocols. More specifically, the
composition of any two Abstract instances is idempotent, yielding
yet another Abstract instance. Thus, the processes of developing a
BFT protocol (e.g., design, test, proof, and implementation) can be
simplified into two easy-going tasks: developing individual Abstract
instances and ensuring that a request is not aborted by all instances.
The first task is typically much simpler than developing a full-fledged
BFT protocol and allows for very effective schemes. A single Abstract
instance can be crafted solely with its progress in mind, irrespective
of other instances. The second task can also be easily achieved via
Abstract, for example, by simply reusing, as a black-box, an existing
BFT protocol as one of its instances, without indulging in some
complex modifications. This requires that the designer of a BFT
protocol only has to ensure two things. One is that individual Abstract
implementations are correct, respectively of each other, and the other
is that the composition of the chosen instances is live, e.g., that every
request will eventually be committed. AZyzzyva and Aliph provide
two examples on the above design principles and implementations.

AZyzzyva is a protocol to illustrate the ability of Abstract to
significantly easing the design, implementation, and proof of BFT
protocols. It is a full-fledged BFT protocol to mimic Zyzzyva in its
“common case", and it can be considered as a composition of two
Abstract instances: ZLight and Backup. Note that the “common case"
also called “best-case", e.g., when there are no link or server failures,
relying on ZLight; while the “other cases", e.g., the periods with
asynchrony/failures, rely on Backup. Roughly speaking, ZLight is an
Abstract instance that guarantee progress in the Zyzzyva’s “common
case", while Backup is an Abstract instance with strong progress: it
guarantees to commit an exact certain number of requests k (k is itself
configurable) before it starts aborting. The Backup instance can be as
a black-box to handle a legacy BFT protocol. More precisely, Backup
works as follows: it ignores all requests delivered by the underlying
BFT protocol until it receives a request containing a valid init history,
e.g., an unforgeable abort history generated by the preceding Abstract
(ZLight in the case of AZyzzyva). Besides, the code line count and
the proof size required to obtain the AZyzzyva are conservatively less
than 1/4 those of Zyzzyva.

Aliph is a protocol to demonstrate the ability of Abstract to

37



develop efficient BFT protocols. Along with the Backup instance
used in AZyzzyva, Apliph uses two other new instances: Quorum and
Chain. A Quorum instance commits requests in an ideal case, e.g.,
the case that there are no server/line failures, no client Byzantine
failures, and no contention. In general, the Quorum implements a
very simple communication pattern and gives Aliph the low latency
flavor when its progress conditions are satisfied. It requires only
one round-trip of message exchange between client and replicas
to commit a request, in which the client sends the request to all
replicas that speculatively execute the request and send a reply to
the client. While the Chain provides exactly the same progress
guarantee as ZLight, e.g., it commits requests as long as there are
no server/link failures or Byzantine clients. Chain implements a
pipeline pattern (with all replicas knowing the fixed ordering of
replicas’ IDs and a novel authentication technique), and allows Aliph
to achieve better peak throughput than all existing protocols (before
the year of 2010). Also, Aliph uses the following static switching
orderings to orchestrate its underlying protocols: Quorum-Chain-
Backup-Quorum-Chain-Backup-etc. Besides, each of Quorum and
Chain can be developed independently and requires much less of
the code needed to develop the previous BFT protocols.

Interested readers on the details of constructions of Abstract,
AZyzzyva, and Aliph can refer to the work [14].

22) Byzantizing Paxos - (feature): Byzantizing Paxos presents a
process to derive Byzantine Paxos consensus algorithm by the so-
called Byzantizing, proposed by Lamport in 2011 [210]. Specially,
the process derives a 3f + 1 Byzantine Paxos consensus protocol by
Byzantizing a variant of the ordinary Paxos algorithm. This process
is achieved by having 2f + 1 non-faulty processes to emulate the
ordinary Paxos algorithm despite in the presence of f malicious
processes. Besides, the author also presented a formal, machine-
checked proof that the Byzanitized algorithm can implement the
ordinary Paxos consensus algorithm under a suitable refinement
mapping scenario.

In more details, the Paxos algorithm typically uses 2f + 1
processes to tolerate the benign failure of any f of them. While,
the Byzantine algorithm, e.g., PBFT, uses 3f + 1 processes to
tolerate f Byzantine (malicious faulty) processes. Strictly, they are
different fault-tolerant algorithms, and the Byzantine algorithm is not
a Byzantine version of Paxos algorithms even both algorithms can be
used to tolerate failures. Also, there already existed some attempts,
from the aspect of abstract and non-distributed algorithm, to explain
the relation between a Byzantine Paxos algorithm and an ordinal
Paxos algorithm in [211]. The work proposed in [210] took a direct
approach and derived a Byzantine Paxos algorithm from a distributed
non-Byzantine one by a procedure of Byzantizing. The Byzantizing
procedure converts an N -process algorithm that tolerates the benign
failure of up to f processes into an (N + f ) process algorithm that
tolerates f Byzantine processes. In the Byzantine algorithm, the N
good processes emulate the execution of the original algorithm despite
in the presence of f Byzantine ones.

The author presented a detailed process to Byzantine a variant of
the classic Paxos consensus algorithm, called PCon, and a detailed
process to Byzantine an abstract generalization of the Castro-Liskov
Byzantine consensus algorithms (i.e., PBFT), called BPCon. More
specifically, BPCon is derived from PCon via a TLA+ theorem [212],
which asserts that BPCon implements PCon under a suitable refine-
ment mapping [213]. Besides, the author argued that other Byzantine
Paxos consensus algorithms can also be derived by Byzantizing

versions of Paxos. Interested readers can refer to the work [210] for
more details.

23)Obfuscated BFT (OBFT) - (feature): Obfuscated BFT (OBFT)
explores the idea of obfuscation in a BFT context, which is currently
a technical report by Shoker et al. in 2011 [214]. In OBFT, with the
honest but possible crash-prone clients, the replicas remain unaware
of each other to achieve obfuscation property by avoiding any direct
inter-replica communication. Classic BFT protocols rely on inter-
replica communication to ensure one-copy semantics, which makes
these protocols fragile. In that scenario, the replicas must share some
access information about each other, where a distributed DoS attack
may threaten the system security by accessing those shared access
information. By avoiding any direct inter-replica communication, no
replica knows anything about the others. In this case, the client plays
a crucial role in OBFT, and OBFT assumes that clients cannot be
malicious though they can fail by crashing. Practically, if replicas do
not communicate, a malicious client can easily violate consistency.
Even under the fact that clients are trusted, OBFT still faces several
challenges. A good obfuscating BFT protocol should handle some
critical scenarios and meet some criteria. For example, clients can
still crash. If the corresponding obfuscated BFT does not tolerate a
crashed client, the unique request ordering among replicas can be
compromised by the other clients. Upon failures detected, a recovery
is needed. Besides, the obfuscated BFT should handle contending
clients that can force the copies of an object on different replicas to
skew.

In general, the proposed OBFT requires 3f+1 replicas to tolerate
f Byzantine faults, and the client in OBFT communicates with 2f+1
Active replicas in its Speculative phase. OBFT assumes that clients
may fail by crashing, but they do not behave maliciously, and the
liveness is guaranteed by the assumption of eventually synchronous.
Typically, using 2f + 1 replicas only at a time can sustain faults
but cannot ensure the progress. Thus, OBFT launches a Speculative
phase on 2f + 1 Active replicas. Upon failures detected, it recovers
by replacing the Suspicious replicas with some correct replicas from
the f Passive ones, and then resumes to the speculative phase on a
new Active set in a new view. At any time, the protocol distributes the
replicas over three sets: Active set, Passive set, and Suspicious set.
The Active set consists of 2f + 1 replicas or active replicas, which
are used in the speculative phase; the Passive set consists of f idle
replicas that are used as the recovery backups; and the Suspicious set
is a virtual set, consisting of up to f replicas that are either faulty
or slow, which comprises the Passive replicas during the speculative
phase. Upon the finish of failure detection, i.e., in recovery phase, the
client identifies f Suspicious replicas, and replaces them with another
f replicas, possibly from the Passive set or from the entire 3f + 1
replicas.

The OBFT algorithm consists of two main phases: a speculative
phase and a recovery phase. For the speculative phase, its communi-
cation pattern in a failure-free scenario is simple, which is concerned
only with the Active set. For the recovery phase, it takes place
using both Passive and Active sets. During the speculative phase,
OBFT makes some optimizations compared to the classic speculative
protocols, such as Zyzzyva. For instance, OBFT pushes multi-cast and
MAC overhead towards to its client, and keeps a light primary. Ex-
cluding the primary, all replicas validate the order of clients’ requests
upon their receipts. To maintain failure independence, obfuscation
aspects require replicas to be unknown and unaware of each other.
Replicas usually need to communicate for two purposes: ensure the

38



atomic request execution and validate the correctness of response.
However, the final decision is made by the client. The recovery phase
is composed of three major steps: aborting, collecting abort history,
and cleaning the Active set from any suspicious replicas. Although
much detailed information still needs to be filled until the time we
reviewed this technique report, interested readers can refer the more
details on the description of the protocol.

Besides, the authors state that OBFT is designed to be deployed
on WANs, and preferably cloud of distinct providers, different plat-
forms, and located in geographically distinct locations around the
universe. Also, OBFT achieves a certain level of scalability compared
with the prior protocols. For example, OBFT reduces the load on
replicas by pushing multicast and expensive cryptographic operations
off the clients, and it imposes an almost identical load on all replicas
(including the primary).

24) ZZ - (feature): ZZ is an approach to reduce the replication
cost of BFT services from 2f + 1 to practically f + 1, proposed by
Wood et al. in 2011 [215]. From a high-level perspective, the key
insight in ZZ is the use of f + 1 execution replicas in the normal
case, e.g., there are no faults, and to activate additional sleeping
replicas only upon failures. By multiplexing fewer replicas onto a
given set of shared servers, ZZ can provide more server capability
to each replica. In an application case of datacenter, e.g., multiple
application targets hosting on a physical server, ZZ reduces the
aggregate number of execution replicas running in the data center,
improving throughput and response time. Besides, ZZ relies on the
virtualization for fast replication activation upon failures, and enables
newly activated replicas to immediately begin processing requests
by fetching state on-demand. More clearly, ZZ is not a new “BFT
protocol" that is typically used to refer to the agreement protocol;
instead, ZZ is an execution approach that can be interfaced with
existing BFT-SMAR agreement protocols. Based on that purpose, the
prototype of ZZ is not to seek to optimize the agreement throughput,
but to demonstrate the feasibility of ZZ’s execution approach with a
reasonable agreement protocol.

More precisely, ZZ was motivated by the observations that the
request executions of BFT replication systems dominate the total cost
of processing requests in BFT services, and the hardware capacity
needed for request executions is far exceeded that for running the
agreement protocol. The authors argue that the total cost of a BFT
service can be practically reduced only when the total overhead
of request executions, instead of the cost of reach a consensus, is
somehow reduced. Another motivation is from the PBFT, which
claimed “it is possible to reduce the number of copies of the state
to f + 1 but the details remain to be worked out". ZZ works on
these motivations and distinguishes two request execution cases. In
a normal case (or graceful case), ZZ enables general BFT services
to be constructed with a replication cost close to f + 1, halving
the 2f + 1 or higher cost incurred by prior approaches, which
in turn achieves higher throughput and lower response times for
request executions. However, in the worst case (e.g., all applications
experience simultaneous faults), ZZ requires an additional f replicas
per application, matching the overhead of the 2f+1 approach. In such
cases that failures occur, ZZ incurs a higher latency to execute some
requests until its failure recovery protocol is complete. The overall
construction of ZZ still requires 3f + 1 agreement replicas. Also,
the ability to quickly activate additional replicas upon fault detection
is critical for ZZ since it is related to the response times of request
executions.

Fig. 28. The normal agreement and execution protocol in ZZ proceed through
steps 1-5. Step 5 is needed only after a fault. Checkpoints (step 6) are created
on a periodic basis [215].

The ZZ design distinguishes two types of replicas: agreement
replicas that assign an order to a client request, and execution replicas
that maintain application state and execution client requests. Replicas
fail independently, and ZZ assumes an upper bound g on the number
of faulty agreement replicas and a bound f on the number of faulty
execution replicas in a given window of vulnerability (initially set
to infinity), and an adversary may coordinate the actions of faulty
nodes in an arbitrary manner. The safety of ZZ is guaranteed in an
asynchronous network, and the liveness of ZZ is guaranteed only
during periods of synchrony. From a high-level perspective on ZZ
design, there exist two insights helping ZZ reducing the replication
cost of BFT from 2f + 1 to nearly f + 1. One is that if a system
is designed to be correct in an asynchronous environment, it must
be correct even if some replicas are out of date. For example, those
replicas can be considered in a sleep mode and do not respond under
the assumption of asynchrony. The other one is that, during fault-
free periods, a system designed to be correct despite f Byzantine
faults must be unaffected if up to f replicas are turned off. Based
on the above insights, ZZ leverages the second insight on fault-free
periods to turn off f replicas, which only require f + 1 replicas
to actively execute requests. However, when a failure occurs, ZZ
leverages the first one on asynchrony assumption, and behaves exactly
as if the f standby replicas were slow but correct replicas. The
switch between two execution modes highly depends on a quick
replica weak-up mechanism. Practically, virtualization can provide
this capability by maintaining additional replicas in a “dormant" state.
ZZ assumes that replicas are run inside virtual machines, and it is
possible to run multiple replicas on a single physical server. By
using virtualization, ZZ can fast replica activation, and optimizes the
recovery protocol to allow newly activated replicas to immediately
begin processing requests through an amortized state transfer strategy.
Typically, ZZ consists of a six-step procedure, and Fig. 28 shows the
normal agreement and execution protocol in ZZ. Besides, the authors
implement a prototype of ZZ by enhancing the BASE library and
combining it with the Xen virtual machine and the ZFS file system
to evaluate the performance. For example, ZZ’s use of only f + 1
execution replicas in the fault-free case yields response time and
throughput improvements of up to 66%. Interested readers can refer
to Sections 4 and 5 of [215] for more details on these steps and
implementations, respectively.

25)On-Demand Replica Consistency - (middleware): On-demand
replica consistency is an extension to existing BFT architectures, aim-
ing to increase performance for the default number of replicas, pro-
posed by Distler and Kapitza in 2011 [216]. The proposed approach
executes a request only within a selected subset of replicas, using
a selector component co-located with each replica, to optimize the
resource utilization of their execution states. The improved throughput
under the common case is even beyond that of the corresponding
unreplicated services. To avoid the divergent replica states, a selector
on-demand updates outdated objects on its local replica prior to

39



processing a request. Typically, an agreement-based BFT replication
system consists of two stages: agreement and execution [176]. The
agreement stage is responsible for imposing a total order on client
requests, while the execution stage processes the requests on all
replicas, preserving the order determined by the agreement stage to
ensure consistency. Due to the requirements on consistency among
all replicas, the maximum throughput achievable for a fault-tolerant
service is bounded by the throughput of a single replica. The approach
is motivated by the fact that to tolerant f faults, f + 1 identical
replicas provided by different replicas prove a reply correct. Thus, it
can execute each request on only a subset of f + 1 replicas during a
common case operation. While, in case of failures, additional replicas
are required to process the request. The subset of replicas to execute
a request is selected for each request individually. In particular, the
approach divides the service state into objects, and assigns each object
to f + 1 replicas.

In general, the states of replicas are not completely identical at all
times but may differ across replicas, which depends on the requests a
replica has executed. As clients may send requests accessing objects
assigned to different replicas, a selector module co-located with every
service replicas provides on-demand replica consistency (ODRC).
Also, the selector ensures that all objects possibly read or modified
by a request are consistent with the current service state by the
time the request is executed. However, other objects that do not
belong to this domain are unaffected and may remain outdated.
The approach can guarantee safety under an asynchronous model,
and liveness under some bounded fair links. Also, the approach
requires deterministic state machines. By separating agreement and
execution stages, the agreement stage and execution stage can be
located on different replicas. Besides replicas, the approach assumes
that there exist voters, whose responsibility is to identify correct
replicas, and the clients perform the functionalities of voters. To apply
ODRC, a non-faulty replica should have the following properties:
total request ordering, request execution, and reply cache. For total
request ordering, it requires that even under an arbitrary sequence
of client requests (e.g., may differ between replicas as inputs), the
agreement stage outputs a stable totally-ordered sequence of requests,
e.g., requiring identical across all replicas. For request execution, on
the totally-ordered sequence of requests, each replica in the execution
stage outputs a set of replies that is identical to the output of all other
non-faulty replicas. For reply cache, each replica caches replies in
order to provide them to voters on demand. To apply to ODRC, a non-
faulty voter should have the following properties: reply verification
and incomplete voting notification. For reply verification, as the voter
receives f + 1 identical replies from different replicas, the result of a
client request should be accepted. For incomplete voting notification,
all non-faulty replicas eventually learn about the incomplete voting.

In general, a selector module is deployed between the agreement
stage and execution stage. Each replica has its own selector. Selectors
of different replicas do not interact with each other, but rely on the
same deterministic state machine and operate on the same input.
Based on the totally-ordered sequence of requests from the agreement
stage, all non-faulty selectors should behave in a consistent manner
due to the deterministic state machine. The selectors ensure an ODRC
consistency, and the ODRC consistency is “on demand" in two
dimensions. One dimension is that the consistency is only ensured
when a request to be executed actually demands it, called the time
dimension; the other dimension is that the consistency is only ensured
for the objects actually accessed by the request, called the space
dimension. The proposed approach uses ODRC as a general term

Fig. 29. Mod-SMaRt replica architecture. The reliable and authenticated
channels layer guarantee the delivery of point-to-point messages, while the VP-
Consensus module is used to establish agreement on messages to be delivered
in a consensus instance [23].

for applying selective request execution in conjunction with on-
demand replica consistency. Besides, the ODRC scheme also requires
a BFT system to provide a mechanism to checkpoint the service
state and a mechanism to restore the service state based on the
checkpoint. The evaluation shows that, with the proposed approach,
the overall performance of a BFT NFS can be almost doubled, and
even outperforms the unreplicated NFS system.

26)MOD-SMART - (architecture): MOD-SMART is an acronym
of Modular State Machine Replication, which is a transformation from
Byzantine consensus to BFT state machine replication, proposed by
Sousa and Bessani in 2012 [23]. In general, a solution to a consensus
problem is at the core of any distributed SMR protocols, however,
such protocols are monolithic, in which they do not separate clearly
the consensus primitive from the remaining protocol. Actually, the
consensus protocol can be considered as a black-box primitive, which
can be further considered as a module in modular transformations.
A latency-optimal protocol for BFT SMR, e.g., PBFT, typically
requires at least three communication steps for its consensus plus two
extra steps to receive the request from the client and send a reply
back. MOD-SMART implements SMR using a special Byzantine
consensus primitive called Validated and Provable Consensus (VP-
Consensus), which can be easily obtained by modifying existing
leader-driven consensus algorithms. MOD-SMART is a modular
BFT SMR protocol built over a well-defined consensus module that
requires only the optimal number of communication steps, i.e., the
number of communication steps of a consensus plus two. In MOD-
SMART, the VP-Consensus is a “grey-box" abstraction that allows
the modular implementation of an SMR without using some reliable
broadcast protocols. By doing so, it can avoid extra communication
steps required to safely guarantee that all requests arrive at all correct
replicas. And, the monolithic protocols can avoid those extra steps
by merging a reliable broadcast with a consensus protocol. Also,
MOD-SMART avoids mixing protocols by using some rich interfaces
exported by VP-Consensus, which allows it to handle request timeouts
and triggers internal consensus timeouts.

More specifically, MOD-SMART is a theoretical work, how-
ever, it can be implemented on some practical projects, e.g., BFT-
SMART [217] (an open-source Java-based BFT SMR library). MOD-
SMART as a modular BFT SMR protocol consists of three sub-
phases: client operation, normal phase, and synchronization phase.
Fig. 29 shows a general architecture of a replica. In general, MOD-
SMART builds on top of a reliable and authenticated point-to-
point communication substrate and a VP-Consensus implementation.
Such modules may also use the same communication support to
exchange messages among processes. MOD-SMART operates the
VP-Consensus to execute a sequence of consensus instances, where

40



Fig. 30. RBFT overview (f = 1) [165].

each instance operates a batch of requests for its execution, and
the same proposed batch is decided on each correct replica. During
the normal phase, MOD-SMART assumes each correct replica can
execute concurrently only on the current instance i and the previous
consensus instance i − 1. All correct replicas remain available to
participate in consensus instance i − 1 even if they are already
executing i. When conditions of the normal phase are not satisfied,
e.g., no agreed block generated, the synchronization phase may be
triggered. By modulization an SMR BFT, it is easy to implement.
Besides, the authors discuss how to make simple modifications to the
leader-driven consensus algorithms to make them compatible with the
transformation.

27) RBFT - (architecture): RBFT is a Redundant BFT protocol
to execute multiple instances of a BFT protocol executed in parallel,
proposed by Aublin et al. in 2013 [165]. These multiple instances
are the same BFT protocol and each with a primary replica executing
on a different node. This means that each instance has a primary
replica, and various primary replicas are all executed on different
machines. In general, it requires all instances to order the requests
of clients, but only one instance, namely master instance, effectively
executes them. And all other instances, namely backup instances,
order requests in order to compare the throughput they achieve with
that achieved by the master instance. In case that a master instance is
slower than its backup instances, the primary of that master instance
is considered to be malicious and replicas elect a new primary, at
each protocol instance. Also, RBFT implements a fairness mechanism
between clients by monitoring the latency of requests, which assures
that client requests are fairly processed.

In general, the leader-based BFT protocols are not robust because
they rely on a dedicated replica, the primary, to order requests.
Even if some mechanisms in literature have been exploited to detect
and recover from a malicious primary, it still has a chance that a
primary smart enough to launch attacks. Based on the analysis on
prior “claimed" robust BFT protocols, e.g., Prime, Spinning, and
Aardvark, these protocols are not effectively robust enough. Most
of these robustness are based on some strong assumptions, and a
primary node can be smartly malicious and causes huge performance
degradation without being detected. For instance, Prime is robust
under a certain level of network synchrony, and if the variance of the
network is too high, there exists a chance that a malicious primary can
heavily affect the performance of the system. Similarly, Aardvark is
based on the static load, and Spinning is based on the correct primary.
For example, the malicious primary in Spinning can delay the sending
of the ordering messages up to maximal allowed time, which is hard
to be identified as a faulty replica. From a high-level perspective,
similarly to these robust protocols, RBFT utilizes replicas to monitor
the throughput of the primary and trigger the recovery mechanism
when the primary is low.

In more details, RBFT requires 3f + 1 replicas (i.e., 3f + 1
physical machines) to tolerate f failures. Each replica runs f + 1

Fig. 31. RBFT protocol steps (f = 1) [165].

protocol instances of a BFT protocol in parallel, as shown in Fig. 30.
Theoretically, f+1 protocol instances are sufficient to detect a faulty
primary and ensure the robustness of the protocol. This indicates that
each of the N replicas in a system can run locally one replica for
each protocol instance, in which different instances order the requests
following a PBFT like protocol. As shown in Fig. 30, primary replicas
of various instances are distributed on replicas and the distribution
should follow certain rules: at any time, there is at most one primary
replica per node. All instances participate in the order of client
requests, but only the requests ordered by the master instance are
executed by replicas, and the main responsibility of backup instances
is to monitor the master instance. Each replica runs a monitoring
module that computes the throughput of the f +1 protocol instances.
If 2f + 1 replicas observe that the ratio between the performance of
the master instance and the backup instance is lower than a given
threshold, then the primary of the master instance is considered to be
malicious, and a new one is required to elect. To increase the overall
throughout, RBFT can leverage multicore architecture to run multiple
instances of the same protocol in parallel.

Fig. 31 shows an abstract message pattern of RBFT protocol in
the case of f = 1, which is a six-step protocol. Simply, in step
one, the client sends a request to all nodes; in step two, the correct
node propagates the request to all nodes; in step three, four, and five,
the replicas of each protocol instance execute a three-phase commit
protocol to order the request; and in the last step, nodes execute the
request and send a reply message to the client. For more detailed
information on each step, interested readers can refer to Section IV
of [165].

28)ClusterBFT - (middleware): ClusterBFT exploits the opportu-
nities to integrate BFT into cloud applications, proposed by Stephen
and Eugster in 2013 [218]. By leveraging a BFT replication system,
it provides a conceptual design and implementation to the existing
cloud-based data analysis to provide integrity, availability, and con-
fidentiality of cloud services. In typical cloud data-flow processing
applications, the generated data-sets (e.g., from analysis and correla-
tion with existing data-sets) must be trustworthy. While prior existing
cloud services, the lack of trust on various facets are popular, and
BFT protocols can help to establish this trust without compromising
integrity and availability. More specifically, ClusterBFT, for cloud-
based assured data processing and analysis, creates sub-graphs from
acyclic data-flow graphs that are then replicated. It performs a BFT
consensus at less overhead system-level, rather than at client request
level, which enables the system to dynamically adapt to changes
in required responsiveness and perceived threat level as well as to
dynamic deployment. ClusterBFT combines variable-grain clustering
with approximated and offline comparisons, separation of duty, and
smart deployment to keep the overhead of BFT replication low while
providing good fault isolation properties. ClusterBFT considers a

41



Fig. 32. Architecture of ClusterBFT [218].

system that is deployed on a cloud service that leases out virtual
machine (VM) to users, and each VM as a node. It distinguishes
two adversary models: a strong adversary, which can manipulate all
internal aspects of a node and collude with other malicious nodes,
and a weak adversary, which shares the same properties of a strong
adversary (but may only cause omission or commission faults).

In general, adopting a BFT replication scheme to a cloud provides
several intuitive benefits, such as attribution, portability and interoper-
ability, determinism, and heterogeneity. However, this adoption indeed
has some challenges, e.g., scalability, granularity, and rigidity. To
address these challenges, ClusterBFT follows some design principles,
e.g., variable granularity, variable, replication, approximate, offline
redundancy, separation of duty, and fault isolation. Interested readers
on these detailed challenges and design principles can refer to Section
3 of [218]. Following these design principles, ClusterBFT has several
components, as shown in Fig. 32, e.g., request handler, execution
handler, and fault identification and isolation. The request handler
component is the control tier, where it accepts scripts submitted
by the client and submits the script for execution. This handler
further consists of three logical sub-components: client handler, graph
analyzer, and job initiator and verifier. Within the execution handler,
it consists of two sub-components: execution tracker and resource
manager. The main functionalities of fault identification and isolation
are used to identify faults with the help of a fault analyzer (e.g., not
collecting enough f + 1 digests from output verifier) and to isolate
the identified faults.

29)BFT Selection - (middleware): BFT Selection is a mechanism
to help users to choose the most convenient protocol according to
the preferences of BFT user, proposed by Shoker and Bahsoun in
2013 [219]. Many BFT protocols have been introduced in replication
systems, with their advantages and disadvantages. Typically, it is
a difficult task to select a right or optimal BFT algorithm for an
application. However, the service of an application can be quantified
mathematically. Based on this observation, the selection algorithm
applies some mathematical formulas to make the selection process
easy and automatic. The selection algorithm selects a ‘preferred’ BFT
protocol, the one that matches user preference the most, among a set
of candidates. The selection algorithm has an evaluation process in
charge of matching the user preference according to both reliability
and performance. And the selected protocol typically has the highest
evaluation mathematical score. Two types of indicators are adopted:
Key Characteristic Indicators (KCI) and Key Performance Indicators
(KPI). Specially, the KCI are the properties (with boolean values) of
a protocol, which can strictly decide whether an evaluated protocol
could be selected or not, and the KPIs are the properties that evaluate
the performance of the protocol like throughput, and latency.

The selection mode can distinguish three different categories:
static, dynamic, and heuristic. The static mode is the one that the
user chooses a protocol only once, and this mode can only be
changed when the service is rebooted. A possible application for this
mode is to use it in clouds. The dynamic mode makes the system
react dynamically to the changes of the system state, which allows
the user to run multiple protocols, where a running protocol can
be stopped and another protocol is launched after performing the
selection process. Typically, this model fits the applications that as the
underlying system state changes, the performance of protocols differs
a lot. The heuristic model is much similar to the dynamic mode, the
ability to allow the user to modify the weights (e.g., preferences) as
the system state changes using some predefined heuristics. Much of
this work focuses on the mathematical perspective.

30) BFTRaft - (feature): BFTRaft is a Byzantine variant of the
Raft consensus protocol, inspired by the original Raft [55] and PBFT
algorithm, proposed by both Copeland and Zhong in 2014 [220].
From a high-level perspective, BFTRaft maintains the properties on
safety, fault tolerance, and liveness of the Raft in the presence of
Byzantine faults with the goals of simplicity and understandability.
Like Paxos, Raft targets a crashed fault model. When applying the
Byzantine fault model directly to Raft, the safety and availability of
Raft would be compromised in several aspects, e.g., leader election
and log replication. More specifically, any node in the original
Raft can trigger an election and terminate the current term, thus a
Byzantine node can effortlessly starve the whole system by perpetual
elections, and subvert Raft’s availability. In Raft, the leader typically
serves as a single point of contact between the client and the rest of
the system, this would leave a great chance for a Byzantine leader
to perform some malicious behaviors, e,g., modify client’s request,
which may cause the safety issues.

BFTRaft adopts similar technologies and decomposition to pre-
serve the simplicity and understandability of Raft with several mod-
ifications and additions to provide Byzantine fault tolerance. More
precisely, BFTRaft enables the following aspects: message signatures
to authenticate messages and verify their integrity, client intervention
to allow clients to interrupt the current leadership if no progress,
incremental hashing to a compute a blockchain similar cryptographic
hash when appending a new entry to its log, election verification to
let a quorum of nodes to verify the current leader, commit verification
to broadcast messages to each other (like PBFT) rather than just to
the leader, and lazy voters to delay the vote to a candidate unless it
believes the current leader is faulty. Similar to Raft decomposition,
the BFTRaft algorithm also decomposes the consensus problem into
two relatively independent sub-problems: log replication and leader
election. By enabling the above features, the BFTRaft offers the same
safety guarantees as Raft.

BFTRaft uses 3f + 1 replicas to tolerate up to f Byzantine
failures. In BFTRaft, each node is in one of the three roles: leader,
follower, or candidate. During the leader election, a winner of the
election serves as the leader for the rest of the term (a time unit of a
consensus round). In general, BFTRaft can maintain a high level of
coherency between nodes’ view of the current term. The authors also
implement a proof-of-concept of BFTRaft in Haskell, and its code is
available on GitHub (https://github.com/chrisnc/tangaroa). Interested
readers can refer to their work for more details [220].

31) BChain - (architecture): BChain is a chain-based BFT pro-
tocol, where replicas are organized in a chain, proposed by Duan et
al. in 2014 [221]. In general, chain-based protocols aim to achieve

42



Fig. 33. BChain-3 Replicas are Organized in a China [221].

Fig. 34. BChain-3 common case communication pattern. No conventional
broadcast is used at any point [221].

high throughput at the expense of higher latency, while BChain can
achieve a comparably performance to other protocols in fault-free
cases, and when failures occur, it can also quickly recover to its
steady-state performance. The key idea behind BChain is a Byzantine
failure detection mechanism, called re-chaining, where faulty replicas
are placed at the end of the chain, until they can be replaced.
From a high-level perspective, replicas in BChain are organized in a
chain structure. During normal case executions (best case scenarios),
clients send their requests to the head of the chain, which orders the
requests. Then, the ordered requests are forwarded along the chain and
executed by replicas. Once a request reaches a replica called proxy
tail, a reply will be sent back to the client. However, when a failure
occurs, BChain employs re-chaining to reorder the chain, and the head
performs this task. The main goal of re-chaining is to make sure that
a fault cannot affect the critical path. Each replica is monitored by its
successor along the chain, upon detecting a suspicion, the head issues
a new chain ordering where the accused replicas are moved out of the
critical path, and the accuser is moved to a position in which it cannot
continue to accuse others. The re-chaining approach is inexpensive;
and a single re-chaining request can proceed as a single client request.

Replica in BChain is organized in a metaphorical chain, as shown
in Fig. 33. Each replica is uniquely identified by its identity, e.g.,
{p1, p1, ..., pn}. Initially, the replicas’ IDs are numbered in ascending
order, which is subject to change during the re-chaining process. The
first replica in the chain structure is called the head, denoted ph, the
last replica is called the tail, and the (2f + 1)th replica is called
the proxy tail, denoted pp. There are two distinct subsets along the
chain. The first subset A contains the first 2f + 1 replicas, initially
p1 to p2f+1, and the second subset B contains the last f replicas
in the chain, initially p2f+2 to p3f+1. In general, the chain order is
maintained by every replica and can be changed by the head, and is
communicated to replicas through message transmission.

In general, BChain works under an asynchronous environment.
Like many other protocols, its safety holds in an asynchrony model,
and its liveness is ensured by assuming the existance of partial
synchrony. BChain comes two variants, BChin-3 and BChain-5.
Under the same setting, e.g., tolerating f failures, BChain-3 requires
3f + 1 replicas and a reconfiguration mechanism coupled with the
detection and re-chaining algorithms, while BChain-5 requires 5f+1
replicas but can operate without the reconfiguration mechanism. More
specifically, BChain-3 has five sub-protocols: chaining, re-chaining,
view change, checkpoint, and reconfiguration; while BChain-5 is
similar to BChain-3 except without a reconfiguration protocol. Both
BChain variants have an identical message flow. Briefly, the chaining
protocol orders clients’ requests, while the re-chaining process rec-
ognizes the chain in response to failure suspicions. Faulty replicas

Fig. 35. The IDS/ByzID architecture. Gray components is trusted [222].

are moved to the end of the chain. The view change protocol selects
a new head when the current head is faulty, or the system is slow.
The checkpoint protocol is similar to that of PBFT, which is mainly
used to reduce the cost. The reconfiguration protocol is responsible
for reconfiguring faulty replicas.

Fig. 34 shows the BChain-3 common case message communica-
tion pattern. BChain contains two types of messages along the chain:
< CHAIN > messages transmitted from the head to the proxy
tail, and < ACK > messages transmitted in reverse from the proxy
tail to the head. A request is executed after a replica accepts the
< CHAIN > message, and a request commits at a replica if it
accepts the < ACK > message. Interested readers can refer to the
work on both BChain-3 and Bchain-5. Besides, there also exist some
similar works on chain-based protocols, e.g., Aliph-Chain [82].

32) ByzID - (feature): ByzID is a primary-based Byzantine
replication protocol by combining an Intrusion Detection System
(IDS), provided by Duan et al. in 2014 [222]. By integrating the
IDS via Byzantine failure detector, ByzID itself is considered as a
BFT protocol that has cost comparable to crash-resilient protocols like
Paxos. Practically, replicated state machines (RSM) and IDS are dis-
tinct protocols to provide availability and integrity of critical network
services. An IDS is a tool for near real-time monitoring of host and
network devices to detect events that could indicate an ongoing attack.
It has three major types: anomaly-based detection [223], misuse-based
detection [224], and specification-based detection [225]. However, all
three types are not perfect, and an IDS itself not only suffers from
deficiencies that limit its utility (e.g., false positives induced by the
human administrator and false negatives when an ongoing attack is
not detected), but also is not resilient to crashes. ByzID provides a
unified approach to improve RSM resilience by leveraging intrusion
detection, rather than using each technique independently. It utilizes a
lightweight specification-based IDS as a failure detection component
to build a Byzantine-resilient RSM. In specification-based IDS, any
sequence of operations outside of the specification is considered to be
a violation. By integrating IDS, ByzID provides two main advantages:
1) its efficiency is comparable to its crash failure counterpart, and
2) its robustness protects against a wide range of failures (e.g.,
flooding, timing, and fairness attacks). But, ByzID cannot protect
against all possible attacks, only those that IDS can help with, as
IDS only captures the network packets of the protocol and analyzes
them according to the specification. Fig. 35 shows an IDS/ByzID
architecture.

More specifically, ByzID is a primary-based RSM protocol, in
which a primary receives client requests and coordinates the other
replicas (as backups). In the event of replica failure, a new replica
runs a configuration protocol to replace the failed one. Typically,
the primary reconfiguration runs in-band, and other replicas must
wait until the primary reconfiguration competes. However, the re-
configuration for other replicas can run out-of-band, where replicas
continue to run the protocol without stopping for reconfiguration.
ByzID relies on monitoring instead of ordering to detect failures,

43



Fig. 36. aPBFT control loop [227].

Fig. 37. Pipleline: an abstract for request processing in aPBFT [227].

e.g., using a trusted specification-based IDS to detect and suppress
the primary equivocation, enforce fairness, etc. It uses the IDS to
monitor the behavior of replicas, whose implementation can be in a
form of a small state machine (e.g., via BroIDS framework [226]).
Each replica is associated with a separated IDS component. Even
when an IDS experiences a crash, its hosting replica can still continue
to process requests. Besides, the ByzID can be deployed in a LAN
network with a simple rooted-tree structure, where the primary is the
root and the backups are its direct siblings (leafs). In general, BzyID
protocol uses 2f+1 replicas to tolerate f failures, and it only require
three communication rounds to reply a client’s request. The safety of
ByzID holds in any asynchronous environment, and its liveness can
be ensured under the assumption of a partial synchrony.

ByzID highly depends on the component of a Byzantine failure
detector. To make the primary order message correctly, it requires
some IDS specifications for Byzantine failure detectors. Specially,
a Byzantine failure detector has four specifications to follow: con-
sistency (preventing the primary from sending “inconsistent" order
messages to other replicas), no gap (preventing the primary from
introducing gaps in a message ordering), fairness (ensuring RSM to
execute the client requests in a FIFO order), and timely action (used
for detecting a crash-stop and slow primary). Interested readers can
refer to the work [222] for more details.

33) Adaptive PBFT - (feature): Adaptive PBFT (aPBFT) is an
extension to the original PBFT protocol with a feature of dynamic
configuration of request batching parameters, proposed by de Sá
et al. in 2013 [227]. The request batching mechanism is one of
the techniques to optimize the PBFT-based protocols, and most of
these protocols are based on some static configurations on a target
distributed system. However, when the target distributed system is
dynamic, e.g., the underlying characteristics change dynamically
(i.e., workload, channel QoS, network topology), the configuration
of a request batching mechanism must follow the dynamics of the
system or it may not yield the desired performance improvement.
For instance, if the prescribed batch timeout is too large for rather
inactive clients, it may incur a worse performance for the use
of request batching optimization compared with the non-optimized
version. Adaptive PBFT is an approach for automatic tuning of
PBFT parameters, based on a feedback control loop, which can
constantly sensor both the replication protocol performance and
the underlying distributed system behavior. The proposed adaptive
mechanism focuses on the parameters-related batching mechanism
and specifically for the PBFT family protocols. It has the ability to
self-tuning the batching mechanism at run-time.

In more details, adaptive PBFT is an adaptive extension of PBFT,
which promotes a dynamic adaptation of the batching mechanism,
namely, the batch size (BS) and the batching time (BT). To dy-

Fig. 38. Layered structure of hBFT [228].

namically adjust the scheme according to the application workload
patterns, adaptive PBFT continually estimates client workloads and
the performance of the basic PBFT protocol, which can be achieved
by implementing a feedback control loop. This feedback control
needs to collect some PBFT information, e.g., on the transmission,
reception, and processing of messages, to adjust the parameters of the
batching mechanism. Fig. 36 shows an abstract model of on adaptive
PBFT control loop, whose operations can be pipelined, as shown in
Fig. 37. Simply, a pipeline adaptive control loop consists of four
stages: checking (verify the integrity, authenticity, and validity of
the client requests), buffering and batching (valid requests kept in
the buffer for batching), ordering (run an agreement on the request
order), and processing (process requests and send related responses to
the requesting clients). Interested readers can refer to the work [227]
for more details.

34)hBFT - (feature): hBFT is a leader-based speculative Byzan-
tine fault-tolerant protocol with an optimal resilience, proposed by
Duan in 2014 [228]. hBFT uses a speculation to reduce the cost of
Byzantine agreement, while also maintaining an optimal resilience,
utilizing 3f + 1 replicas to tolerate f failures. By utilizing a spec-
ulation, correct replicas may be temporarily inconsistent, and hBFT
employs a three-phase PBFT-like checkpoint sub-protocol for both
garbage collection and contention resolution. Two events can trigger
the checkpoint sub-protocol, either by the replicas when they execute
a certain number of operations or by clients when they detect the
divergence of replies. From a high-level perspective, hBFT offers
a better performance by moving some critical jobs to the clients
while minimizing side effects that can actually reduce performance.
Also, there is no additional cost by moving some critical jobs to
the clients, with the benefits of simplifying the design and reducing
message complexity. Thus, this frees the replicas to run expensive
protocols to establish the order for every request. Also, hBFT can
tolerate an unlimited number of faulty clients. Besides, hBFT has the
same operations for both fault-free and normal cases.

Fig. 38 shows an abstract on layered structure of hBFT. In more
details, it includes four main components: agreement, checkpoint,
view change, and client suspicion. hBFT employs the same agreement
protocol for both fault-free and normal cases, and utilizes a three-
phase checkpoint sub-protocol for contention resolution and garbage
collection. The checkpoint sub-protocol can be triggered by replicas
when they execute a certain number of requests by clients if they
detect divergence of replies. The view change sub-protocol guarantees
the liveness and can coordinate the change of the primary, and it can
occur during normal operations or in the checkpoint sub-protocol.

44



Fig. 39. Replica with self-contained pillars of a Consensus-oriented Paral-
lelization (COP) [229].

And, the client suspicion sub-protocol prevents faulty clients from
attacking the system.

35) Consensus-oriented Parallelization - (architecture):
Consensus-oriented parallelization (COP) is a scheme to execute
the consensus efficiently, which disentangles consecutive consensus
instances and executes them in parallel by independent pipelines,
proposed by Behl in 2015 [229]. In general, this work requires
some background on system parallelization to understand the key
ideas behind the proposed COP scheme. The authors extensively
discussed the disadvantages of a traditional approach to executing
instances in a pipelined fashion and the need for parallelization
at a consensus level. The COP’s basic approach is to lower the
dependencies between consecutive consensus protocol instances,
to process them in independent pipelines, and to parallelize these
pipelines in their entirety and not the single stages they are composed
of. Briefly, one can think of COP as a superscalar design, where
the throughput of consensus instances scales well with the number
of operations a system has to process concurrently as long as there
are enough computing and network resources available. In more
details, the authors try to identify important tasks a replica needs to
perform over and over again to provide its services, e.g., message
authentication, agreement, execution, and checkpointing. Also, the
authors discuss the disadvantages of task-oriented parallelization,
e.g., limited throughput, limited parallelism, asymmetric load, and
high synchronization overhead, etc. The authors proposed to structure
replicas around the instances of the consensus protocol employed
within the system to agree on operations.

Fig. 39 shows a conceptual framework on consensus-oriented
parallelization. Each consensus instance is assigned to and executed
by a container, called pillar, and each pillar runs in a dedicated
thread, processing private copies of all functional modules required
to perform the entire consensus protocol and client handling. We
can literally consider each pillar runs under a separated environ-
ment. Pillars do not intend to share any modifiable state as far as
possible, and they reply private connections to other replicas. Pillars
work asynchronously and, if communication is needed with other
components of a replica, they exclusively use an in-memory message
passing. For example, if a pillar running at the leading replica receives
a request from a client or requests to create a batch, it imitates a
new consensus instance by proposing it to the other replicas via its
connections to them. As each pillar runs in parallel and cannot provide

a total order on its own, the execution stage has to enforce the order
by means of the instances’ sequence numbers before it invokes the
service implementation. Via COP, it can provide some advantages to
current consensus designs, e.g., scaling throughput and parallelism,
symmetric load, reduced synchronization overhead, and conciliated
decisions. Interested readers can refer to the original work [229].

36) Elastico - (blockchain): Elastico is a distributed agreement
protocol for permissionless blockchains, proposed by Luu et al. in
2016 [230]. By using sharding technology, Elastico can scale trans-
action rates almost linearly with available computation for mining. For
example, the more computation power in the network, the higher the
number of transaction blocks selected per unit time. The number of
committees grows proportionally to the total computation power in the
network. All committees, each of which has a small constant number
c of members, run a classical BFT consensus protocol internally
to agree on a block. Elastico can tolerate Byzantine adversaries up
to one-fourth of the total computational power. Essentially, Elastico
uniformly partitions or parallelizes the mining network into smaller
committees, each of which processes a disjoint set of transactions, or
“shards". The technology of sharding is common in a non-Byzantine
environment, e.g., databases, and Elastico is used for a secure sharding
protocol in the presence of Byzantine adversaries. A permissionless
sharding protocol typically consists of five critical components in each
consensus round [1]: identity establishment and committee formation,
overlay setup for committees, intra-committee consensus, cross-shard
transaction processing, and epoch reconfiguration. The identity estab-
lishment and committee formation are used to establish an identity
for each node before joining the protocol, and each identified node
is then assigned to one committee. This process needs to prevent the
Sybil identity [231], since Elastico targets permissionless blockchain.
The overlay setup for committees is used to discover its neighboring
nodes within the committee, and this process can be done with a
gossip protocol [232]. Elastico assumes the overlay of a committee
is a fully connected subgraph containing all the committee members.
The intra-committee consensus runs a standard consensus protocol
to agree on a single set of transactions. The cross-shard transaction
processing is used to handle the transactions that are involved in
more than one shards. And this process typically requires a kind of
“relay" transaction to synchronize among related shards. The epoch
reconfiguration is used to reconfigure the shards to guarantee the
security of the overall system. This process typically requires some
kind of randomness to prevent sophisticated attacks. The above five
components are the most critical ones for a permissionless blockchain
sharding. It also can be adapted to a permissioned blockchain setting.

In more details, Elastico performs under a static, round-adaptive
adversary, and processors controlled by the Byzantine adversary can
be arbitrarily malicious. And the round-adaptive adversary can select
which processors to corrupt at the start of each run which means once
the protocol begins its run, the choices of compromised processors
are fixed. Technically, Elastico is a probability-based consensus, and it
can guarantee the consensus protocol outputs the correct results with
a high probability. In each consensus epoch, each participant solves a
PoW puzzle based on epoch randomness obtained from the last state
of the blockchain. Typically, within a shard, the shard members run
a Byzantine fault-tolerant protocol, e.g., PBFT in Elastico, to get an
agreement within its shard.

Even via the sharding scheme, Elastico improves the performance
on throughput and latency for blockchain scenarios, however, it still
has some aspect to improve [42]. 1) Elastico requires all participants

45



Fig. 40. VFT-SMaRt communication pattern [234].

to re-establish their identities, e.g., via solve PoWs, and re-build all
committees in every epoch, and this would definitely involve a large
communication overhead. Further, this will incur a significant latency
that scales linearly with the network size as the protocol requires
more time to solve enough PoWs to fill up all committees. 2) In its
intra-committee consensus, Elastico requires a small committee size
(e.g., about 100 participants) to limit the overhead of running PBFT
in each committee. However, a small committee may increase the
failure probability of the overall protocol. 3) During the last stage,
the randomness used for establishing identity and committees can be
biased by an adversary, the generated randomness is not a “good"
randomness (e.g., with the feature of unbiased, unpredicted) [233],
which allows malicious nodes to pre-compute PoW puzzles. 4) Elas-
tico requires a trusted setup for generating initial common randomness
that is revealed to all parties at the same time. 5) Elastico only
tolerates up to a 1/4 fraction of faulty participants even with a high
failure probability, and its liveness needs to improve.

37) VFT - (architecture): VFT is an acronym of Visigoth Fault-
Tolerant protocol which essentially is a reliable stateful service,
proposed by Porto et al. in 2016 [234]. VFT introduces the Visigoth
model which makes it possible to calibrate the timing assumptions of
a system using a threshold of slow processes or messages, and also
to distinguish between non-malicious arbitrary faults and correlated
attack scenarios. The main observation behind of Visigoth model
is that the Byzantine model is too pessimistic, especially for some
relatively secure environment such as data centers. The Byzantine
adversary’s strength forces protocols to incur an unnecessary cost of
3f + 1 replicas. BFT is designed to cope with coordinated malice,
which is unlikely to happen within the security perimeter of a data
center. This is based on the observation that data centers are more
predictable and controllable than an open Internet environment, in
order to make stateful services more resource-efficient. More often,
data centers experience data corruption faults (e.g., bit flips) and
these also represent a type of arbitrary behavior. To handle these
requirements to tolerate different types of arbitrary faults, VFT
observes that it is very unlikely for data corruption to affect the
same data across multiple replicas. It is important to distinguish the
correlation of these types of faults, e.g., the number of each type.

In more details, VFT proposes a customizable model that defines
a limit of u faults, that bounds the number of allowed omission (i.e.,
crash) and commission (i.e., arbitrary) faults, a limit of o correlated
commission faults, a limit of r arbitrary faults and, for every process
pi, s correct processes pj that are slow with respect to it [235]. VFT
can reduce the replication factor to solve a fundamental consensus
problem from n ≥ 2u + r + 1 (or n ≥ 3f + 1 in the traditional
formulation) to n ≥ u+ s+ o+ 1 (or n ≥ f + s+ o+ 1) compared
with an asynchronous BFT system. This benefit comes at a cost

Fig. 41. In the fault-free case, each replica leads one of the BFT agreement
protocol instances [236].

of making an additional assumption, whose overall correctness is at
stake when these assumptions are not met. By parameterization, the
system allows an administrator to configure the system to tolerate any
combination of faults. The authors also propose a VFT state machine
replication protocol, which is adapted from the BFT-SMART, called
VFT-SMART. The message communication pattern of VFT-SMART,
as shown in Fig. 40, is identical to that of BFT-SMART with two core
message patterns. One pattern is that the first two message steps are
executed during epoch changes to collect information about previous
epochs and disseminate this information to replicas; the other pattern
is that the final sequence of two all-to-all communication steps after
the leader relays the client request, which drives all ‘common case"
execution. The authors also designed some few primitives, e.g., the
Quorum Gathering Primitive (QGP), which forms the basis for the
all to all communication pattern of the normal case operation. With
this primitive, the gather tries to collect a larger quorum of N − s
replies, which can be seen as collecting replies from the fast but
potentially faulty replicas. If a timeout occurs, the quorum is reduced
to N − u, and this can be seen as collecting replies from correct but
possible slow replicas. In general, this reduced quorum size is enough
to ensure an intersection since x replicas did not reply by the first
timeout and only s may be slow, x − s replicas must have crashed
and will not participate in future quorums.

The authors implemented a VFT protocol for a state machine
replication library, and ran several benchmarks, the evaluation shows
that VFT can tolerate uncorrelated arbitrary faults with resource
efficiency and performance that resembles that of CFT systems
instead of the BFTs.

38)SAREK - (architecture): SAREK is a parallel ordering frame-
work that instantiates multiple single-leader-based BFT protocols
independently, proposed by Li et al. in 2016 [236]. The frame-
work partitions the service state to exploit parallelism during both
agreements as well as execution, by utilizing request dependency
which is abstracted from application-specific knowledge for a service
state partitioning. One of the goals of SAREK is to distribute the
extra workload bound over all replicas and enable parallelism at
both the agreement and the execution stages. This is based on the
observation that most existing single-leader BFT systems are typically
far too pessimistic. For example, in a key-value store and many web
applications, only a small fraction of requests interfere with each
other. Thus, instead of having one leader at a time for the entire
system, it uses one leader per partition and only establishes an order
on requests accessing the same partition. Meanwhile, it supports
operations that span multiple partitions and provides a deterministic
mechanism to atomically process them. SAREK provides parallelism
at both the agreement stage where requests are ordered, and the
execution stage where they are processed. By enabling concurrent
request executions, SAREK is required to exploit parallelism during
the request ordering.

46



Fig. 42. System architecture of SAREK [236].

More specifically, SAREK partitions the service state and only
linearly orders the requests accessing the same partitions, by creating
a partition-specific schedule, so that independent requests on the
agreement can be handled concurrently. Each partition selects one
leader, which can help the overall system to balance the load-induced
across all replicas. Once the agreement in a partition is complete, a
dedicated execution instance is responsible for processing requests in
each partition according to a local schedule. However, there exists a
case where requests access multiple partitions, called “cross-border
requests", and some special requirements should be met. For example,
a cross-border request must not be executed more than once, and
the processing of that request must be consistent with individual
schedules that are determined for all affected partitions. To handle
a cross-border request, SAREK uses a mechanism that is based
on a combination of prioritizing partitions and safe reordering of
requests. For example, only the execution instance of the partition
with the highest priority actually processes a cross-border request
while the instances of other involved partitions are put on hold in the
meantime. Besides, to schedule the requests among the partitions,
SAREK relies on some application-specific knowledge to define
service-state partitions and to predict which partition a request should
operate on. In general, the application-specific knowledge is essential
to determine to which partition a state object belongs to. And each
replica holds a deterministic PREDICT() function, which identifies
the state objects to be read or written during the processing of a
particular request.

SAREK uses 3f + 1 replicas to tolerate up to f Byzantine
failures. From a high-level perspective, SAREK can be based on
an existing BFT implementation without requiring modifications to
the most complex part, e.g., the agreement protocol. Instead, the
agreement stage can be considered as a black box that is instantiated
multiple times, once for each partition. Fig. 41 shows a fault-free
case of SAREK, where a replica hosts multiple BFT instances and
each instance manages a partition of the service state. Fig. 42 shows
the system architecture of the SAREK framework. The agreement
is the same as the single-leader BFT protocol in order to make
SAREK compatible with most common BFT protocols that feature
a separation of the agreement and the execution stages. To handle

Fig. 43. After the proposal step, validators only make progress after hearing
from two-thirds or more (+2/3) of other validators. The dotted arrow extends
the consensus into atomic broadcast by moving to the next height [237].

a cross-border request, additional actions must be assured, e.g., the
request ordered by all predicted BFT instances and requests executed
exactly once. The authors provided a detailed description of the cross-
border request agreements and the cross-border request execution.
Interested readers can refer to Section IV for more details.

39) Tendermint - (blockchain): Tendermint is a secure state-
machine replication algorithm in a blockchain paradigm, by providing
a form of BFT-ABC (Atomic Broadcast) to offer accountability,
proposed by Buchman et al. in 2016 [237], and its first development
by Kwon in 2014 [238]. It is the first showcase on how the BFT
consensus can be achieved in blockchain systems [38]. Tendermint
consists of two major components, a consensus engine known as
Tendermint core and its underlying application interface called the
Application Blockchain Interface (ABCI). The Tendermint core is
responsible for deploying the consensus algorithm, while the ABCI
can be used to deploy any blockchain applications using any program-
ming language. Tendermint begins with a set of validators, identified
by their public keys, for proposing new blocks and voting on them.
Each block is assigned with an incrementing index, or height. At
each height, validators take turns proposing new blocks in rounds, so
that for any given round, at most one valid proposer exists. However,
due to the asynchrony of the network, it may take multiple rounds to
commit a block at a given height. Tendermint uses 3f + 1 replicas to
tolerate up to f Byzantine failures. In general, validators engage in
a two-phase voting process on a proposed block before that block is
committed, by following a simple locking mechanism, it can prevent
any malicious coalition of less than one-third of the validators from
compromising the safety. In each round, the consensus algorithm
contains three main components: proposals, votes, and locks.

In more details, Tendermint is based on a partial synchrony. In
proposals, a new block must be proposed by a correct proposer at each
round, then gossiped to other validators. If a proposal is not received
in sufficient time, that proposal should be skipped. In votes, a two-
phase voting scheme is adopted: pre-vote and pre-commit. A set of
pre-commits from more than two-thirds of the validators for the same
block at the same round is a valid commit block. In locks, Tendermint
ensures that no two validators commit a different block at the same
height. This is achieved by using a locking scheme that determines
how a validator may pre-vote or pre-commit depends on previous
operations at the same height. Fig. 43 shows a state transition for each
validator. At the beginning of each round, a new proposer proposes
a block, which needs a two-stage voting mechanism before it is
committed to the blockchain. So a normal case would go through the
following patterns: Propose → Propose Block → “Wait for pre-vote
from +2/3"→ Propose Block→ “Wait for pre-commit from +2/3"

47



Fig. 44. The process of validating transactions; each mintette mi is an owner
of address i. In (1), a user learns the owners of each of the addresses in its
transaction. In (2), the user collects approvals from a majority of the owners
of the input addresses. In (3), the user sends boththe transaction and these
approvals to the owners of transaction identifier. In (4), some subset of these
mintettes add the transactions to their blocks [239].

→ Commit. If some bad things/events happen (e.g., the timeout for
a proposed block or invalid block), the validator submits a special
vote called Prevote nil. If the validator does not receive enough pre-
votes for the proposed block, it submits another special vote, called
Precommit nil. If +2/3 pre-commits are not received within the pre-
commit time period, the next round is initiated where a new proposer
is selected, and the state machine repeats the above processes.

To ensure safety across rounds, the locking component of Ten-
dermint should follow some rules on the blockchain height. One
rule is that the validators must pre-vote the same block in the
next round for the same blockchain height; and the other rule is
that the unlocking operation is possible only when a newer block
receives the proposed block in a later round for the same blockchain
height. Under the assumption on the partial synchrony and locking
rules, Tendermint can guarantee safety when less than one-third of
validators exhibit Byzantine behaviors, and guarantee no fork occurs.
Besides, Tendermint favors safety over availability (or liveness). For
more details, interested readers can refer to the works [237] [238].

40) RSCoin - (blockchain): RSCoin is a cryptocurrency frame-
work in which central banks maintain complete control over the
monetary supply, proposed by Danezis and Meiklejohn in 2016 [239].
Although there exist centralized entities to control, it indeed relies on
a distributed set of authorities, or mintettes (following the terminology
of Laurie [240]), to reach a consensus and prevent double-spending
in cryptocurrencies. The mintettes process the lower-level blocks,
which form a potentially cross-referenced chain. The communication
between committee members takes place indirectly through clients,
and it also relies on the clients to ensure the completion of trans-
actions. RSCoin follow the following processes. A client first gets
signed “clearance" from the majority of the mintettes that manage
the transaction inputs. Next, the client sends the transaction and the
signed clearance to mintettes corresponding to transaction outputs.
The mintettes check the validity of the transaction and verify signed
evidence from input mintettes that the transaction is not double-
spending any inputs. If all checks pass, the mintettes append the
transaction to be included in the next block. The system operates
in epochs: at the end of each epoch, mintettes send all cleared
transactions to a central bank, which collates transactions into blocks
that are then appended to the blockchain.

In more details, despite the centralization of monetary control,
RSCoin framework still provides strong transparency, auditability, and
scalability guarantees via the underlying verification and consensus
processes. The key part to maintain the consistency is a distributed set
of mintettes that are responsible for the maintenance of a transaction
ledger. The mintettes collect transactions from users and collate them
into blocks, much as is done with traditional cryptocurrencies. In
traditional scenarios, the set of miners are neither known nor trusted

mining ones. They have no choice but to broadcast a transaction to
the entire network and rely on a proof-of-work to defend against
Sybil attacks. While the mintettes in RSCoin are authorized by
the central bank, and thus both known and trusted to some ex-
tend (providing accountability), thus, the underlying consensus can
avoid a heavyweight consensus, and adopt a simplified version, e.g.,
Two-phase commit (2PC). Fig. 44 shows the processes on how
a RSCoin’s protocol validates transactions. By following the strict
transaction verification processes and with the help of a central entity,
RSCoin can prevent double-spending. To increase the performance
(i.e., throughput), RSCoin adopts a sharding technology, randomly
dividing transactions into different shards, so that each mintette is
responsible for a subset of all transactions. This potentially increases
the scalability. Interested readers can refer to Section V of [239].

However, client/user-driven atomic commit protocols are vulner-
able to the DoS attack if the client stops participating and the inputs
are locked forever. These systems assume that clients are incentivized
to proceed to the unlock phase. Such incentives may exist in a
cryptocurrency application where an unresponsive client will lose its
own coins if the inputs are permanently locked, but do not hold for a
general-purpose platform where inputs may have shared ownership.
Besides, RSCoin relies on a two-phase commit protocol executed
within each shard which, unfortunately, is not Byzantine fault-tolerant
and can result in double-spending attacks by a colluding adversary.

41) ByzCoin - (blockchain): ByzCoin is a Byzantine consensus
protocol that leverages scalable collective signing to achieve strong
consistency, proposed by Kokoris-Kogias in 2016 [241]. ByzCoin
provides strong consistency on Bitcoin while preserving the Bitcoin
features on the open membership, scalability, and transaction rate. It
employs proof-of-membership by dynamically forming hash power-
proportionate consensus groups that represent recently successfully
block miners, by a sliding window share over the proof-of-work. For
consensus among the members, ByzCoin uses a PBFT with collective
signing (CoSi [242]) to reduce both the costs of PBFT rounds and
the costs for “light" clients to verify transaction commitment. CoSi is
a collective signing protocol that efficiently aggregates hundreds or
thousands of signatures. Even CoSi is not a consensus protocol, in
ByzCoin, it makes PBFT’s prepare and commits phases scalable, re-
ducing the communication complexity from O(n2) to O(n). ByzCoin
replaces the direct MAC-authenticated communication among nodes
with digital signatures, which allows for the indirect communication.
This allows ByzCoin to scale with sparser tree-based communication
patterns to optimize transaction commitment and verification under
the normal operation while guaranteeing safety and liveness under
Byzantine faults. Also, CoSi protocol can create an efficient compact
multi-signature that can be verified with an aggregate public key as
efficiently as an individual key [243].

In more details, Bitcoin’s consensus algorithm provides only a
probabilistic consistency guarantee, while practically, a strong con-
sistency could offer more benefits. For example, all miners instantly
agree on the validity of blocks, without wasting resources to resolve
the potential forks; clients do not need to wait for an extended
period to confirm that a transaction is committed; and it can provide
the forward security (i.e., once a block has been appended to the
blockchain, it is forever at the chain). ByzCoin uses the PBFT as its
consensus protocol. To provide a strong consistency, ByzCoin needs
to address several key challenges: open membership, scalability to
hundreds of replicas, proof-of-work block conflicts, and transaction
commitment rate. To address both the open membership and proof-of-

48



Fig. 45. CoSi protocol architecture [241].

work block conflicts, ByzCoin forms consensus groups dynamically
from windows of recently mined blocks, giving recent miners shares
or the voting power proportional to their recent commitment of hash
power. To reduce transaction processing latency, ByzCoin adopts
the idea from Bitcoin-NG [244] to decouple transaction verification
from block mining. To achieve scalability, ByzCoin leverages CoSi
to reduce the broadcast communication complexity of PBFT. Also,
BzyCoin can achieve up to a near-optimal tolerance of f faulty group
members among 3f + 2 members in total. CoSi is one of the key
contributions of ByzCoin.

CoSi is a protocol that performs an efficient signing by multiple
entities. Fig. 45 shows a CoSi protocol architecture. CoSi utilizes
a Schnorr signature [245] scheme to output a compact collective
signature that is easily verifiable by clients. CoSi protocol in ByzCoin
follows a tree-based communication structure to scale both computa-
tion and communication. For each message to be collectively signed,
the leader then initiates a CoSi four-phase protocol round that requires
two round-trips over the communication tree. This four-phase protocol
consists of 1) Announcement, 2) Commitment, 3) Challenge, and 4)
Response. For Announcement, the root of the communication tree
initiates the protocol by multicasting the message to be signed. For
Commitment, each node commits to a random secret and generates
a public commit which it sends up the tree. Once receiving all
commitments, non-leaf nodes aggregate the commit before sending
it up the tree. For Challenge, the leader multicasts a collective
challenge down the tree. For Response, the nodes compute their
responses using their committed secret keys, which further aggregate
the responses received from their children and send them further up
the tree. In general, aggregation at every level allows nodes to check
for the dishonest descendants, and the final collective signature can
be verified by a Schnorr signature [243]. For more details on the
optimization, interested readers can refer to the work [241].

42)ReBFT - (feature): Resource-efficient Byzantine Fault Toler-
ant (ReBFT) protocol is a scheme to minimizes the resource usage of
a BFT system during a normal-case operation by keeping f replicas in
a passive mode, proposed by Distler in 2016 [246]. In ReBFT, passive
replicas neither participate in the agreement protocol nor execute
client requests; instead, they are brought up to speed by the verified
state updates provided by active replicas. However, when suspected
or detected faults occur, passive replicas are activated in a consistent
manner. In general, ReBFT reduces the resource footprint in the
absence of faults, without losing its ability to ensure liveness in the
presence of faults, which relies on two different modes of operation:
normal case mode and fault handling mode. During a normal case
operation mode, only a subset of the replicas are active, and the
system can make progress as long as all replicas behave according to
the specification. However, when faults are detected, it switches to a
fault-handling mode by activating the remaining replicas, to tolerate

Fig. 46. Message patterns of consensus process in RePBFT [246].

the fault. Also, applying ReBFT does not require a BFT system to
be completely redesigned from scratch.

In more details, ReBFT ensures that non-faulty replicas always
maintain a consistent view on active and passive replicas. The active
replicas keep passive replicas informed, by providing passive replicas
with state updates. An update contains all state modifications that an
active replica has performed as a result of the corresponding request.
This means, although the f replicas are on standby, they must keep
the same configuration as the 2f+1 active replicas anytime. By doing
so, the system can bring passive replicas up to speed, and when mode
switching, the passive replicas can quickly be activated to switch a
more resilient default BFT protocol to handle faults. More specifically,
ReBFT uses 3f +1 replicas for tolerating f faults. The authors show
two use cases by adopting the ReBFT scheme to PBFT and MinBFT
to achieve resource efficiency. Fig. 46 shows a message pattern of
applying ReBFT to PBFT. One limitation is that, PBFT, MinBFT,
and ReBFT do not support the faulty members rejoin the group, as
when the number of faulty replicas is over f , the whole system stops
functioning. Interested readers can refer to the work [246] for more
details on both ReBFT-based PBFT and ReBFT-based MinBFT.

43) Solida - (blockchain): Solida is a decentralized blockchain
protocol based on a reconfigurable Byzantine consensus augmented
by the proof-of-work, proposed by Abraham et al. in 2017 [247]. It
improves on Bitcoin in confirmation time, and provides the safety
and liveness assuming the adversary controls less than one-third
of the total mining power. By the improved confirmation time, it
follows the concept of responsiveness in [248] on permissionless
protocols. Specially, a protocol is responsive if it commits transactions
(possibly in probabilistically) at a speed of the actual network
delay, without being bottlenecked by hard-coded system parameters.
Although Solida does no rely on the Nakamoto consensus for any
part of the protocol, PoW still plays an important role to establish an
imperfect Sybil-proof leader election oracle. However, the committee
election and transaction processing are both done by a Byzantine
consensus protocol in Solida. It uses a BFT protocol to resolve leader
contention with certainty, rather than probabilistically in PoW of
Nakamoto consensus. Besides the committee election and transaction
processing, Solida provides a detailed principle to handle the recon-
figuration process, since the protocol between two reconfiguration
events is just a conventional Byzantine consensus. From a high-level
perspective, Solida runs a Byzantine consensus protocol among a
set of participants, called a committee, that dynamically change over
time. At any time, only one committee member serves as the leader.

In more details, Solida considers a permissionless setting, in
which participants use their public keys as pseudonyms and can
join or leave the system at any time. The message transmission
between honest participants should be within ∆ time, and the ratio of
Byzantine participants in the total of participants should be less than

49



1/3. Also, it assumes a delayed adaptive adversary, who takes time
for the adversary to corrupt an honest participant. Besides, Solida
has a rolling committee running a BFT to commit transactions and
reconfiguration events into a ledger. For the reconfiguration process,
Solida uses PoW to prevent Sybil attacks, as well as defense against
selfish mining. Essentially, Solida has a big change compared with
PBFT at an algorithmic level, from around-robin leader schedule to
a potential interleaving between internal and external leaders. And
Solida still has a total order among leaders to ensure its safety and
liveness.

44) Guru - (middleware): Guru is a reputation model, which
can be laid on top of various consensus protocols (e.g., PBFT or
HoneyBadger BFT), proposed by Biryukov in 2017 [249]. In general,
it ranks nodes based on the outcomes of the consensus rounds by a
small committee, and adaptively selects the committee based on its
current reputation. Also, it takes, as an input, the external reputation
ranking. Guru can tolerate a threshold of malicious nodes, which can
be up to slightly above 1/2 since replication is a calculated criterion
and it takes time and effort to earn reputation. Guru as a reputation
module can be plugged into any round-based Byzantine agreement
protocols. However, Guru does not care about if each round may
reach a consensus or not, but the outcomes should be visible to all
nodes. More specifically, Guru instructs the protocol to select the
committee according to the reputation and maintains the reputation
ranks, so that the nodes with a high reputation have a lower posterior
probability of being malicious. And the prior probability of being
malicious is given to the module, called external reputation. This
external reputation typically is assigned once, e.g., nodes with trusted
computing platforms may assign a higher external reputation than
the one that does not have. The committee decision is made by a
committee, which runs a round of a BFT protocol on the current
set of transactions, and decides to either apply each of them or not.
Typically, the committee is selected based on the current reputation
that a node inherited or earned during the previous rounds. Also,
assigning nodes to a committee requires some randomness, and the
common randomness regularly comes from an external trusted source.
The reputation module continuously observes whether the committee
has reached a consensus to provide either rewards to honest nodes or
penalties to malicious nodes. Besides, the authors also implemented
a simulator for Guru from a high level.

45) RapidChain - (blockchain): RapidChain is a sharding-based
public blockchain protocol that is resilient to Byzantine faults up
to a 1/3 fraction of its participants, proposed by Zamani et al. in
2018 [42]. It can achieve complete sharding of the communication,
computation, and storage overhead of processing transactions without
assuming any trusted setup. From a high-level perspective, Rapid-
Chain employs an optimal intra-committee consensus algorithm that
can achieve high throughput via blockchain pipelining, a gossiping
protocol for large blocks, and a provably secure reconfiguration
mechanism to ensure robustness. RapidChain operates for public
blockchain under Byzantine adversary. Traditional Byzantine consen-
sus protocols can only work in a closed environment, where the set
of participants is fixed and their identities are known to everyone via
a trusted third party. If applied to an open setting, these Byzantine
protocols may be easily compromised by Sybil attacks, e.g., the
adversary can repeatedly rejoin malicious parties with fresh identities
to gain significant influence on the protocol outcome. And most of
these schemes assumed a static adversary who can select the set to
corrupt only at the start of the protocol. In general, the PoW scheme
allows the consensus protocol to impeded Sybil attacks by limiting

the rate of malicious participants and provides a lottery mechanism to
initiate the consensus process. It can help RapidChain to manage the
membership of participants. At a high level, RapidChain partitions the
set of nodes into multiple smaller groups of nodes, called committees,
that operate in parallel on disjoint blocks of transactions and maintain
disjoint ledgers. This partitioning process is also referred to as the
sharding. By enabling parallelization of the consensus, sharding-
based consensus can scale the throughput of the system proportional
to the number of committees.

In more details, RapidChain assumes up to f replicas out of 3f+1
replicas are controlled by a slowly-adaptive Byzantine adversary, the
committee-election protocol samples a committee from the set of all
nodes in a way that the fraction of corrupt nodes in the sampled
committee is bounded by 1/2 with a high probability. This is achieved
by the Cuckoo rule [250] [251] for reconfiguration. And, there exists
a reference committee responsible for driving periodic reconfiguration
events between epochs. The intra-committee consensus requires that
the members in a shard choose a local leader using the current epoch
randomness, and then the leader sends the block to all members using
a fast gossiping protocol that is based on an information dispersal
algorithm (IDA) for large blocks. The members of a shard participate
in a synchronous Byzantine consensus protocol [252], which allows
RapidChain to obtain an intra-committee consensus with the optimal
resiliency of 1/2. This helps to achieve a total resiliency of 1/3 with
small committees. Another important aspect to guarantee RapidChain
performing correctly is inter-committee communication.

For a inter-committee communication, the user in RapidChain
does not attach any proof to a transaction. It lets the user communicate
with any committee that routes the transaction to its output committee
via the inter-committee routing protocol. RapaidChain considers a
simple UTXO transaction tx =< (I1, I2), O > that spends coins I1,
I2 in shard S1 and S2, respectively, to create a new coin O belonging
to shard S3. The RapidChain engine executes tx by splitting it into
three sub-transactions: txa =< I1, I

′
1 >, txb =< I2, I

′
2 >, and

txc =< (I ′1, I
′
2), O >, where I ′1 and I ′2 belong to S3. txa and

txb essentially transfer I1 and I2 to the output shard, which are
spent by txc to create the final output O. All three sub-transactions
are single-shard. In case of failures, when, for example, txb fails
while txa succeeds, RapidChain sidesteps atomicity by informing
the owner of I1 to use I ′1 for future transactions, which has the same
effect as rolling back the failed tx. The cross-shard transaction in
RapidChain has largely relied on the inter-committee routing scheme
which enables the users and committee leaders to quickly locate
to which committees they should send their transaction. To achieve
this, RapidChain builds a routing overlay network, at the committee
level, which is based on a routing algorithm of Kademlia [253].
Specifically, each RapidChain committee maintains a routing table
of log(n) records which point to log(n) different committees which
are distance 2i for 0 ≤ i ≤ logn− 1 away.

For cross-shard (or inter-committee) transactions in RapidChain,
one drawback is that, for each transaction, it creates three different
transactions to exchange information among shards. This inherently
increases the number of transactions to proceed, and the communica-
tion by sending the extra transactions back to its input committees also
increases. It uses the committee’s leader to produce these transactions
without considering the status of a leader (e.g., malicious leader).
Also, the input committees include the created new transactions into
its leader. This behavior to some extent modifies the originality of
transactions. Besides, the cross-shard transaction largely depends on

50



Fig. 47. Architecture of a Troxy-backed BFT system [254].

Fig. 48. Overview of Troxy components and their interactions [254].

the routing algorithm, which is a potential bottleneck.

46) Troxy - (middleware): Troxy is a trusted-proxy system that
relocates the BFT-specific client-side functionality to the server side
to make BFT transparent to legacy clients, proposed by Li et al. in
2018 [254]. To achieve this transparency, Troxy relies on a trusted
subsystem built upon hardware protection enabled by Intel SGX.
Also, Troxy reduces the replication cost of BFT for read-heavy
workloads by offering an actively maintained cache that supports
trustworthy read operations while preserving a consistency guarantees
offered by the underlying BFT protocol. That means, with the help
of trusted hardware, Troxy can guarantee the trustworthiness even
the presence of Byzantine failures in surrounding replicas, and offer
a trusted proxy to clients. Messages exchanged between Troxies
and replicas are authenticated using common message certificates.
Even with the immutability to arbitrary behaviors of replicas, the
Troxy instance still has a chance to be crashed or is disconnected
from its clients, which leads it unavailable. Typically, this scenario
can be handled by a DNS round-robin or load-balancing appliances
that enable a fail-over to another Troxy instance. The authors also
proposed a solution that implements Troxy on top of Hybster, a
hybrid BFT system that already features a trusted subsystem to
reduce the number of replicas to 2f + 1. Nevertheless, Troxy can
build an independent extension that can be applied to other hybrid
systems featuring a trusted subsystem and traditional BFT agreement
protocols.

In more details, Troxy acts as a representative of the client at the
server-side and allows legacy client implementations to benefit from
Byzantine fault-tolerate without requiring modifications. Due to the
transparency to clients, Troxy does not incur additional network or
processor usage at the client side. Fig. 47 shows an architecture of
a Troxy-backed BFT system. A client is only required to establish a
connection to a single Troxy instance, which then handles the commu-
nication with the replicas in the system for all of its clients. If a Troxy
instance fails, the affected clients can re-establish their connections to

the service as they would do in a traditional system, e.g., switching
to different Troxies. Different from the replica components in the
underlying replicated system, Troxies are trusted and assumed to only
fail by crashing. To achieve this purpose, each Troxy runs inside a
trusted subsystem, e.g., Intel SGX, which guarantees the integrity of
the executed program codes. To protect the communication of a client
with the server, a Troxy supports the establishment of secure channels
using Transport Layer Security (TLS).

Fig. 48 shows an overview of the interactions among different
Troxy components and with other system components outside the
Troxy. When a client issues a request to the server via a secure
channel, the Troxy first decrypts the message ((1)). It distinguishes
two requests: read and write. For a read request, the Troxy executes
the fast path ((2)), and in case of success, immediately returns the
cached reply. For a write request or in case of a read-cache miss,
the Troxy forwards the client request to its local replication logic to
invoke a BFT agreement protocol ((3)). Once received the request, the
BFT protocol distributes the request to other replicas in the system
and ensures that all correct replicas execute all client requests in
the same order. Once processing is finished in the BFT system, the
replies from replicas will connect to the Troxy’s voting component to
determine the correct results by comparing the replies from different
replicas ((4)). Once got an agreement, e.g., receiving f +1 matching
replies from distinct replicas, the reply will be returned to the client
((5)) as this guarantees that at least one of the replies stems from
a non-faulty replica and is therefore correct. Interested readers can
refer to the work [254] for more details.

47)Thunderella - (theory): Thunderella is a paradigm for achiev-
ing state machine replication by combining a fast, asynchronous path
with a (slow) synchronous “fall-back" path to provide an optimistic
responsiveness, proposed by Pass and Shi in 2018 [255]. Thunderella
is as robust as the best synchronous protocol, yet “optimistically" if
a majority of its players are honest, the protocol “instantly" confirms
transactions. This work is much theoretical, and the authors pro-
vide instantiations in both permissionless and permissioned settings.
The key observation under Thunderella is to combine a centralized
approach with a decentralized approach to achieve the scalability
and speed of centralized approaches and the decentralized nature
of the blockchain. In practice, Thunderella protocol can combine
any “standard" blockchain, referred to as the slow chain, with
the optimistic “fast-path". The fast path protocol is executed by a
committee of stake-holders and coordinated by a central authority
called the Accelerator (functioning as a “leader" in traditional leader-
based BFT protocols), whose main job is to linearize transactions and
data [256].

In more details, Thunderella follows the notion of responsiveness
as proposed in prior work [257] to introduce the notion of optimistic
responsiveness in synchronous settings. A consensus protocol is said
to be a responsiveness protocol iff any transaction input to an honest
node is confirmed in time that depends only on the actual network
delay, but not on any a-priori known upper bound on the network
delay. In Thunderella, the authors provide two kinds of delays: δ
and ∆. The δ denotes the actual network delay and the ∆ denotes
an a-priori known upper bound of the network’s delay where ∆ is
possible provided as input to the protocol. The Thunderella protocol
allows synchronous protocols to commit responsively when some
optimistic conditions are met. Thunderella is safe against up to one-
half Byzantine faults. Moreover, if an accelerator and more than 3/4
replicas are honest, and if they are on a “fast-path", then replicas can

51



commit responsively in O(δ) time, otherwise, the protocol falls back
to a “slow-path", which has a commit latency that depends on the
delay ∆.

Practically, the optimistic responsiveness of Thunderella requires
replicas to know which of the two paths they are in, and explicitly
switch between them [258]. If, at some points, the optimistic condi-
tions cease to be met, the replicas switch to a slow-path. However,
when the optimistic conditions start to hold again, the players switch
back to the fast-path. Besides, Thunderella uses Nakamoto’s protocol
or the Dolev-Strong protocol [13] as its slow-path. This result that
the slow-path, as well as the switch between two paths, is extremely,
requiring O(k∆) and O(n∆) latency respectively (where k is a
security parameter).

A follow-up on the optimistic responsiveness is presented in
Hybrid-BFT by Momose et al. in 2020 [259]. Under the work of
Thunderella, the authors state that a protocol makes a decision with
latency on the order of an actual network delay δ if the number of
actual faults is significantly smaller than f , which is the worst-case
allowed. However, in the presence of f faults, the protocol incurs
O(k∆) (k is a security parameter) or O(f∆) latency, which is far
from the optimal case. To provide a strong availability, the latency
should also be as short as possible in the presence of f faults. Without
optimistic responsiveness, some protocols incur latency that is close to
optimal ∆+O(δ) [260] or nearly optimal 2∆+O(δ) [261]. One ques-
tion raised in Hybrid-BFT is: “ Can a Byzantine consensus protocol
simultaneously achieve optimistic responsiveness as well as optimal
∆ + O(δ) latency in the presence of f faults?" The Hybrid-BFT
can achieve both properties simultaneously. To show its findings on
optimistic responsiveness and optimal latency, Hybrid-BFT presents
a simple leader-based BFT protocol as a practical application. Even
while being able to rotate leaders after every decision, the proposed
protocol can simultaneously achieve an average latency of 1) 3δ under
the optimistic condition and 2) 1.5∆ +O(δ) (or 3∆ +O(δ)) in the
presence of faults, which is more than a factor of two better than
existing rotating-leader BFT protocols. Interested readers can refer to
the work [259] for detailed proofs.

48)Chainspace - (blockchain): Chainspace is a recently proposed,
sharded smart contract platform with privacy built-in by design,
proposed by Al-Bassam in 2018 [262]. To enable scalability on
Chainspace, nodes are organized into shards that manage the state of
objects, keep track of their validity, and record transactions committed
or aborted. These nodes ensure that only valid transactions, consisting
of encrypted or committed data, along with the zero-knowledge proofs
that assert their correctness, end up on their shards of the blockchain.
The nodes are typically required to communicate with the other shards
to decide whether to accept or reject a transaction via an inter-shard
consensus. Instead of a client-driven approach, Chainspace runs an
atomic commit protocol collaboratively between all the concerned
committees. This is achieved by making all committees act as resource
managers for the transactions they manage. To do so, Chainspace
proposes a protocol called Sharded Byzantine Atomic Commit or S-
BAC, which basically combines the existing Byzantine agreement
and atomic commit protocols in a novel way. Byzantine agreement
securely keeps a consensus on a shard of 3f + 1 nodes in total,
containing up to f malicious nodes. Atomic commit runs across
all shards that contain objects on which the transaction relies. The
transaction is rejected unless all of the shards accept to commit the
processed transaction.

In more details, the intra-shard consensus algorithm assumes an

Fig. 49. S-BAC for a transaction T with two inputs (o1, o2) and one
output object (o3). The user sends the transaction to all nodes in shards
managing o1 and o2. The BFT-Initiator takes as a leader in sequencing T ,
and emits ‘prepared(accept, T )’ or ‘prepared(abort, T )’ to all nodes within
the shard. Next, the BFT-Initiator of each shard assesses whether overall
‘All proposed(accept, T )’ or ‘Some proposed(abort, T )’ holds across shards,
sequences the accept (T , *), and sends the decision to the user. All cross-
shard arrows represent a multicast of all nodes in one shard to all nodes in
another [262].

asynchronous setting and relies on the S-BAC protocol to handle
transactions. Essentially, S-BAC protocol consists of two primitive
protocols: Byzantine agreement and atomic commit. The Byzantine
agreement ensures that all honest members of a shard of size 3f + 1
agree on a special common sequence of actions. Chainspace utilizes
MOD-SMART [23] implementation of PBFT to provide an optimal
number of communication steps. Specially, this is achieved by replac-
ing broadcast with a special leader-driven Validated and Provable
Consensus (VP-Consensus). Atomic commit runs across all shards
managing objects relied upon by a transaction to ensure consistency
among shards. For example, if a single shard rejects a transaction, then
all agree that the transaction is rejected. Chainspace utilizes a two-
phase commit protocol [263], composed with an agreement protocol
to achieve consistency. S-BAC composes the above primitives to
ensure that shards process safely and consistently all transactions.
Fig. 49 shows an example of the S-BAC protocol to commit a
single transaction with two inputs and one output. It consists of
four phases: initial broadcast (prepare), process prepare, process
prepared (accept or abort), and process accept. In each shard, there
exists a designated node, called BFT-Initiator, to assist the whole
process. Specially, the BFT-Initiator derives the composed S-BAC
protocol by sending “prepare" and then “accept" messages to reach
a BFT consensus within and across shards. Also, it is responsible
for broadcasting consensus decisions to relevant parties. Besides,
Chainspace supports a two-phase process to recover from a malicious
BFT-Initiator that suppresses transactions. Interested readers can refer
to Chainspace [262] for more details.

49) OmniLedger - (blockchain): OmniLedger is a scale-out dis-
tributed ledger that preserves a long-term security under permission-
less operations, proposed by Kokoris-Kogias et al. in 2018 [264].
It ensures security and correctness by using a bias-resistant public-
randomness protocol for choosing large, statistically representative
shards to process transactions. Essentially, OmniLedger uses a Byzan-
tine shard atomic commit (Atomix) protocol to atomically process
transactions across multiple committees, such that each transaction is
either committed or aborted. Since both deploying an atomic commit
protocol and running a BFT consensus are unnecessarily complex,
Atomix uses a lock-then-unlock process to achieve consistency.
OmniLedger intentionally keeps the shards’ logic simple and makes
any direct shard-to-shard communication unnecessary by tasking the
client with the responsibility of driving the unlock process while
permitting any other party (e.g., validators or even other clients) to fill

52



in for the client if a specific transaction stalls after being submitted for
processing. Atomix takes a three-step (initialize/lock/unlock) protocol
to deal with cross-shard UTXO transactions. More specifically, the
client first gossips the cross-shard transaction to all their input shards.
Then, OmniLedger takes a two-phase approach to achieve the atomic
commit, in which each input shard first locks the corresponding input
UTXO(s) and issues a proof-of-acceptance, if the UTXO is valid.
The client collects responses from all input committees and issues an
“unlock to commit" to the output shard.

In more details, OmniLedger assumes a slow-adaptive adver-
sary that can corrupt up to a 1/4 fraction of the nodes at the
beginning of each epoch. To allow new participants to join in the
protocol, OmniLedger runs a global reconfiguration protocol at every
epoch. Under the assumption of synchronous channels, the protocol
generates identities and assigns participants to committees using a
slow identity blockchain protocol. In each epoch, OmniLedger re-
quires fresh randomness, by using a bias-resistant random generation
protocol, for an unpredictable leader election process. The random
generation protocol used in OmniLedger is based on a verifiable
random function (VRF) which is similar to the lottery algorithm
in Algorand. The intra-committee consensus protocol assumes the
existence of partially synchronous channels to achieve a ByzCoin-like
fast consensus, where the committee is further divided into smaller
groups using epoch randomness. However, the design of ByzCoin
has several security/performance issues, e.g., falling back to all-to-all
communication in the Byzantine setting. The detailed processes and
discussions can refer to OmniLedger [264].

As RapidChain [42] pointed out, there are several challenges
that OmniLedger leaves unsolved. OmniLedger can only tolerate 1/4
of total corruptions; and from the simulation results, the protocol
can only achieve low latency when 1/8 of total replicas corrupted.
OmniLedger requires O(n) pre-node communication as each com-
mittee has to gossip multiple messages to all n nodes for each block
of the transaction, also it requires a trusted setup to generate an
initial unpredictable configuration to seed the VRF in the first epoch.
Besides, OmniLedger requires the client to participate actively in
cross-shard transactions, and this may be a strong assumption for
lightweight clients.

50) Dynamic Byzantine Protocol Adaption - (feature): Dynamic
adaption for Byzantine consensus protocols explores the mechanism
that allows the algorithms to be adapted or changed at runtime to
optimize the system to the current conditions, proposed by Carvalho
et al. in 2018 [265]. The authors conducted studies on how different
dynamic adaption techniques proposed for crash failure models can
be applied to in the presence of Byzantine faults. Also, the authors
presented a comparative study of the performance of these switching
algorithms in practice. Most existing fault-tolerant solutions are
customized, and no one-size-fits-all solution for a range of extended
operating conditions. It is critical to develop some mechanisms to
envelop the underlying consensus processes and provide a uniform
interface to end users. Dynamic adoption of consensus algorithms
would help to resolve this kind of situation. Typically, adaptive
protocols can be classified into two categories: those using a single
reconfiguration consensus protocol and those using multiple con-
sensus protocols. Using a reconfigurable consensus algorithm is to
develop an adaptation-aware monolithic protocol, which incorporates
all behaviors that can be activated at runtime. For example, the
work [227] presented a reconfigurable variant of PBFT that allows for
online changes in the batching size and timeouts to adapt to changes

Fig. 50. System architecture of dynamic BFT adaption [265].

in the workload characterization. This approach typically requires
coordinating the reconfiguration of different replicas to ensure they
always operate in compatible environments. While using multiple
consensus algorithms as black-boxes is a more modular solution,
consisting of implementing different behaviors using independent pro-
tocols. Typically, this approach requires some mechanisms to switch
between independent protocols, e.g., a switcher enabling switching
processes among two or more protocols. One of the advantages of
this approach is that it allows any protocol to be integrated without
involving major efforts, as it requires no adaptive features from the
consensus protocols. And the switching process can be facilitated if
the protocols export an interface that allows a switcher to deactivate
the protocol placing it in a quiescent state [266].

Based on the above state-of-the-art literature, the authors proposed
a BFT-SMART based instantiation for dynamic adaptation. It assumes
a partially synchronous network, and there exists a component, called
the switcher, that is responsible for forwarding the requests to one
or more of these protocols in multiple consensus scenarios. There is
an external component, called an adaptation manager, that decides
which protocol or configuration is going to be used at any moment.
The adaptation manager can send a command to all switchers to start
the adaptation, and these adaptation commands are ordered and identi-
fied with a monotonically increasing id. Typically, the implementation
of the adaptation manager is orthogonal to the deployed consensus
protocols, and the manager itself is also replicated and each switcher
only initiates switching when it receives an identical command from a
quorum of adaptation manager replicas. Fig. 50 shows an abstract of
the system architecture for BFT-SMART instantiation. It makes a set
of extensions to BFT-SMART, e.g., integrated a switcher to mediate
between clients and the supported consensus algorithms, integrated
a Fast-SMART [134], and developed a stoppable version of MoD-
SMART [23] and Fast-SMART. Interested readers can refer to Section
4 in [265].

51)Policy-based BFT Adaptation - (feature): Policy-based adap-
tation for BFT protocols explores a different alternative to support
the system changes by using a policy language, proposed by Bravo
et al. in 2018 [267]. This alternative consists of specifying not
only the system configuration, but also the fault-handling behavior,
and how the system adopts to these changes in a workload, in a
policy language, that is processed externally to the managed systems.
Typically, different configurations have different performances in face
of variable workloads. For example, even the basic functionality of
the system may vary depending on the type and scope of faults
that one is considering. A policy-based adaptation offers a strong
separation of these concerns between the basic mechanisms offered
by a system and the policies defined by the system administrator to

53



Fig. 51. Overview architecture of Policy-based adaption [267].

meet target performance and dependability requirements. The authors
presented an approach by applying it to configure and dynamically
adopt Fireplug [268], a flexible architecture to build robust geo-
replicated graph databases. From a high-level perspective, Fireplug
is a Byzantine fault-tolerant distributed transactional graph database
management system. It is designed to run in one or more datacenters,
in which each datacenter runs multiple data nodes or servers with each
node running an instance of the graph database. Typically, Fireplug
can support two types of transactions: read-only transactions and
update transactions.

More specifically, the original Fireplug prototype did not support
any policy-based configuration or adaptation, with all configurations
performed at the building time using compilation options. To support
policy-based schemes, Fireplug is required to implement some new
components, e.g., adaptation manager, actuators, and replica factory.
Fig. 51 shows an overall architecture of the policy-based Fireplug.
The adaptation manager is in charge of executing a configuration and
an adaptation policy that is provided by the operator in a high-level
form. Multiple policies can be installed in the adaptation manager
to handle different aspects of the system operations. It requires
that all policies should be consistent, e.g., no two installed policies
conflicting, and requires the extensibility to allow the manager to
select among alternative policies. Typically, the adaptation manager
is fed by a number of sensors that provide information about the
current state of the system. Each data node and each client proxy are
augmented with an actuator, a component that receives commands
from the adaptation manager and mutates the behavior of the Fireplug
components. Also, it requires a special replica factory deployed
in each datacenter. The factory is in charge of launching a new
replica in its local datacenter, upon the requests from the adaptation
manager. The sensors provide inputs to the adaptation manager, e.g.,
information of operational conditions of Fireplug. While, actuators
provide the adaptation manager module with multiple actions that can
be called. These actions include the operations to activate/deactivate
a replica, switch the read-only/update transactional protocol, and
join/leave a local or global group. Interested readers can refer to
Sections IV and V of [267] on detailed adaptation and policies.

52) Subquadratic Byzantine Agreement - (theory): Subquadratic
Byzantine agreement (BA) protocols are a group of consensus proto-
cols which can achieve agreements in less quadratic communication
complexity (e.g., whose complexity growth mush slower than O(n2)),
proposed by Abraham et al. in 2019 [269]. The presented work
focuses on the theoretical results, specifically, two impossibilities.
Although many Byzantine agreement protocols have improved com-
munication complexity, most of them are based on some strong
assumptions, e.g., the assumptions on a static adversary. And a few
existing works have shown how to achieve subquadratic BA under

an adaptive adversary. Even under the assumption of an adaptive
adversary, they commonly limit the ability of adaptivity. For example,
if an honest node sends a message and then gets corrupted in some
rounds, the adversary cannot erase the message that was already
sent, and this assumption commonly refers to that an adversary
cannot perform “after-the-fact-removal". This means the adversary
is unable to erase the honest messages sent even the honest nodes
(who sent this message) compromised. The proposed work first proves
that disallowing after-the-fact removal is necessary for achieving
subquadratic-communication BA, and then presents a subquadratic
binary BA construction, under the after-the-fact removal assumption,
that achieves near-optimal resilience and expected constant rounds
under standard cryptographic assumptions and PKI. Many natural
Ω(n2)-communication BA protocols [270] [13] [271] can be proven
secure even if the adversary is capable of after-the-fact removal. And
this kind of adversary are commonly referred as a strongly adaptive
adversary. However, they did not show if it can achieve this with a
subquadratic communication.

In more details, the authors show the main theorems on three
aspects: the necessity of disallowing “after-the-fact" removal, the
near-optimal subquadratic BA minimal assumption, and the necessity
of setup assumption. The proofs of these theorems are a little bit
lengthiness. We excerpt these results only. Theorem 1 is about the
impossibility of BA with subquadratic communication, w.r.t. a strong
adaptive adversary. It states: any (possibly randomized) BA protocol
must in expectation incur at least O(f2) communication in the
presence of a strongly adaptive adversary capable of performing after-
the-fact removal, where f denotes the number of corrupted nodes.
Theorem 2 is about near-optimal subquadratic BA. It states: assuming
standard cryptographic assumptions and a public-key infrastructure
(PKI), for any constant 0 < ε < 1/2, there exists a synchronous BA
protocol with expected O(k) multicast complexity, expected O(1)
round complexity, and exp(−ω(k)) error probability that tolerates
f < (1 − ε)n/2 adaptively corrupted players out of n players in
total. Theorem 3 is about the impossibility of sublinear multicast BA
without setup assumptions. It states: in a plain authenticated channel
model without setup assumptions, no protocol can solve BA using
C multicast complexity with probability p > 5/6 under C adaptive
corruptions. Interested readers can refer to the work [269] for more
details.

53)Probabilistic Byzantine Reliable Broadcast - (theory): Proba-
bilistic Byzantine broadcast is a kind of analysis in Byzantine setting,
and a scalable probabilistic Byzantine reliable broadcast protocol was
proposed by Guerraoui et al. in 2019 [272]. Existing broadcast proto-
cols for Byzantine agreement protocols scale poorly, as they typically
build on some quorum systems with strong intersection guarantees,
which results in linear per-process communication and computation
complexity. The authors in [272] generalized the Byzantine reliable
broadcast abstraction to a probabilistic setting, allowing each of its
properties to be violated with a fixed arbitrarily small probability.
Then, it leverages these relaxed guarantees in a protocol to replace
the quorums with stochastic samples. In general, samples can be
significantly smaller in size, which leads to a more scalable design.
The authors designed a Byzantine reliable broadcast protocol with
logarithmic per-process communication and computation complexity.
Also, the authors introduced a general technique called adversary
decorators, which allows them to make claims about the optimal
strategy of the Byzantine adversary without imposing any additional
assumptions. Besides, the authors introduced Threshold Contagion,
a model of message propagation through a system with Byzantine

54



processes.

In more details, the authors presented a probabilistic gossip-
based Byzantine reliable broadcast algorithm having O(logN) per-
process communication and computation complexity at the expense of
O(logN/loglogN) latency. The probabilistic algorithm, Contagion,
allows each property of Byzantine reliable broadcast to be violated
with an arbitrarily small probability ε. And ε scales sub-quadratically
with N , and decays exponentially in the size of the samples.
The Contagion algorithm incrementally relies on two sub-protocols:
Murmur and Sieve. Essentially, Murmur is a probabilistic broadcast
algorithm that uses simple message dissemination to establish validity
and totality, and each correct process relays the sender’s message
to a randomly picked gossip sample of other processes. Sieve is
a probabilistic consistent broadcast algorithm (built upon Murmur)
that guarantees consistency, e.g., no two correct processes deliver
different messages, and each correct process uses a randomly selected
echo sample. While Contagion is a probabilistic Byzantine reliable
broadcast algorithm that guarantees validity, consistency, and totality,
whose sender uses Sieve to disseminate a consistent message to a
subset of the correct processes. Interested readers can refer to the
details on [272].

A similar analysis work on the round complexity of random-
ized Byzantine agreement (BA) was proposed by Cohen et al. in
2019 [273]. In the work, the authors proved lower bounds on the
round complexity of randomized Byzantine agreement protocols,
bounding the halting probability of such protocols after one and two
rounds. The authors proved three important bounds, as excerpted from
the work [273]. 1) Randomized BA protocols resilient against n/3
[resp., n/4] corruptions terminate (under attack) at the end of the
first round with probability at most O(1) [resp., 1/2 + o(1)]. 2)
Randomized BA protocols resilient against n/4 corruptions terminate
at the end of the second round with probability at most 1 − Θ(1).
And, 3) For a large class of protocols, including all BA protocols
used in practice) and under a plausible combinatorial conjecture, BA
protocols resilient against n/3 [resp., n/4] corruptions terminate at
the end of the second round with probability at most o(1) [resp.,
1/2+O(1)]. The above three bounds hold even when the parties use
a trusted setup phase, e.g., a public-key infrastructure (PKI).

54)SBFT - (feature): SBFT is a Byzantine replicated system that
addresses the challenges of scalability, decentralization, and global
geo-replication, proposed by Gueta et al. in 2019 [65]. Essentially,
SBFT uses a combination of four components: using collectors and
threshold signatures to reduce communication to linear, using an
optimistic fast path, reducing client communication, and utilizing
redundant servers for the fast path. Also, SBFT implements a correct
dual-mode view change protocol that allows to efficiently run either
an optimistic fast-path or a fallback slow path without incurring
a view change to switch between nodes. In general, scaling BFT
replication to tolerate tens of malicious nodes requires to re-think
BFT algorithms and re-engineer them for a high scale. SBFT is a
BFT system optimized to work over a group of hundreds of replicas
in a world-scale deployment. The authors of SBFT provide detailed
evaluations in a world-scale geo-replicated deployment with 209 repli-
cas withstanding f = 64 Byzantine failures. It shows how different
algorithmic components that SBFT used increase its performance and
scalability. Also, the authors show that SBFT simultaneously provides
almost 2X better throughput and about 1.5X better latency relative
to a highly optimized system that implements the PBFT protocol.

In more details, SBFT assumes a standard asynchronous BFT

Fig. 52. Message patterns of SBFT [65].

system model, and it distinguishes two modes: a synchronous mode
when the adversary can control up to f Byzantine nodes but with
a known bounded delay between non-faulty nodes, and a common
mode when the adversary only controls c ≤ f nodes that can only
crash or act slow and a known bounded delay between non-faulty
nodes. Under n = 3f + 2c + 1 replicas and the common mode,
SBFT obtains safety, liveness, and linearity. Fig. 52 shows a schematic
message patterns for n = 4, f = 1, c = 0. To achieve this, SBFT
adds some components/optimization. Optimization 1): from PBFT to
linear PBFT. SBFT reduces all-to-all communication patterns to a
linear communication pattern by using a collector, whose function
is to collect requests from each replica and broadcast the collected
requests to everyone. Also, by using threshold signatures, one can
reduce the outgoing collector message size from linear to constant.
Also, SBFT pushes the collector duty to replicas in a round-robin
manner. Optimization 2): adding a fast path. SBFT, as in Zyzzyva,
allows for a faster agreement path in optimistic executions, where
all replicas are non-faulty and the network is synchronous. SBFT
implements a practical dual-mode view change protocol, which can
seamlessly switch between paths and adjust to network/adversary
conditions (without an actual view change). Optimization 3): reducing
client communication from f + 1 to 1. Threshold signature schemes
can be used to reduce the number of messages a client need to receive
and verify. In SBFT, each client needs only one message, containing
a single public-key signature for request acknowledgments. SBFT
reduces the per-client linear cost to just one message by adding a
phase that uses an execution collector to aggregate the execution
threshold signatures and sends each client a single message carrying
one signature. Optimization 4): adding redundant servers to improve
resilience and performance. SBFT allows a fast path to tolerate up to
a small number c of crashed or straggler nodes out of n = 3f+2c+1
replicas, to make the fast path more prevalent. SBFT only falls back
to the slower path if there are more than c faulty replicas.

Besides, SBFT uses a short Boneh-Lynn-Shacham (BLS) signa-
tures [274] scheme which has security that is comparable to 2048-
bit RSA signatures but are just 33 bytes long. It can improve
communication and computation efficiency.

55) Flexible BFT - (feature): Flexible BFT is an approach for
BFT consensus protocols solution to provide stronger resilience and
diversity, proposed by Malkhi et al. in 2019 [275]. The stronger
resilience involves a new fault model, alive-but-corrupt (aka. a-b-
c) faults, in which replicas may arbitrarily deviate from the protocol
in an attempt to break the safety of the protocol. However, if they
cannot break the safety, they will not try to prevent the liveness of
the protocol. By considering alive-but-corrupt faults into a Byzantine
setting, Flexible BFT is resilient to higher corruption levels than
that in a pure Byzantine fault model. The diversity of Flexible BFT
provides a solution whose protocol transcript is used to draw different

55



commit decisions under diverse beliefs. With that separation, the
same Flexible BFT solution supports synchronous and asynchronous
beliefs, and varying resilience threshold combinations of Byzantine
and alive-but-corrupt faults. To achieve these goals, from a technical
level, Flexible BFT achieves the above results using two mechanisms:
a synchronous BFT protocol and Flexible Byzantine Quorums. For the
synchronous BFT protocol, only the commit step requires knowing
the network delay bound and thus replicas execute the protocol with-
out any synchrony assumption; for the Flexible Byzantine Quorums, it
dissects the roles of different quorums in existing consensus protocols.

In more details, most existing protocols are challenged if these
underlying settings differ from the ones they are designed for. For
example, optimal-resilience partially synchronous solutions break
(i.e., lose safety and liveness) if the fraction of Byzantine faults
exceeds 1/3. And many robust protocols are based on crashed faults.
The Flexible BFT makes a more rational fault model, called alive-but-
corrupt faults. The rationale is based on the observation that violating
safety may provide some attacker gains (e.g., a double-spending
attack), but preventing liveness usually does not. Also, the Flexible
BFT provides a certain separation between the fault model and the
protocol. Its design approach builds a protocol whose transcript can
be interpreted by learners with diverse beliefs, who draw different
consensus commit decisions based on their beliefs. The Flexible
BFT guarantees safety and liveness for all learners that have correct
beliefs. Each learner can specify (i) the fault threshold it needs to
tolerate, and (ii) the message delay bound, if any, it believes in. This
separation design philosophy provides several advantages. One thing
is that different learners may naturally hold different assumptions
about the system. For example, some learners may be more cautious
and require a higher resilience than others, some learners may believe
in synchrony while others do not. Also, a leaner may update its
assumptions based on certain events it observes. For example, if
a learner receives votes for conflicting values, it may indicate an
attempt at attacking safety, and the learner can start requiring more
votes than usual. The learners typically have different assumptions
and hence different commit rules. And the Flexible BFT provides
some mechanisms to handle these conflicts on different learners, e.g.,
via a “recovery" mechanism.

Besides, the Flexible BFT utilizes a synchronous BFT protocol
and quorum-based mechanism. The adopted synchronous BFT pro-
tocol on replicas execution is at network speed (e.g., even in an
asynchrony setting). This allows learners in the same protocol to
assume different message delay bounds and commit at their own
pace, which separates the timing assumption of replicas from timing
assumptions of learners. This separation process is only available
under some conditions: the action of committing is only carried
out by learners, not by replicas. The other technique involves a
breakdown of the different roles that quorums play in different steps of
partially synchronous BFT protocols. Overall, by separation process,
the Flexible BFT tolerates a fraction of combined (Byzantine and a-
b-c) faults beyond existing resilience bounds. Interested readers can
refer to the work [275] for more details.

56) VSSR BFT - (feature): VSSR is an acronym of Verifiable
Secret Sharing with Share Recovery, which can provide efficient
services for BFT protocols, proposed by Basu et al. in 2019 [276].
Typically, BFT SMR protocols fail to provide the privacy guarantee,
and a natural way to add privacy guarantees is via the secret-
share state instead of fully replicating it. However, incorporating
a secret shared state into traditional BFT SMR protocols presents

unique challenges. For example, the network model of asynchrony
in BFT protocols makes verifiable secret sharing (VSS) unsuitable.
Meanwhile, fully asynchronous VSS (AVSS) is unnecessary as well
since the BFT algorithm provides a broadcast channel. The authors
present to use VSS with share recovery scheme to incorporate secret
shared state into a BFT engine. The authors also present a VSS
with a share recovery solution, KZG-VSSR, in which a failure-free
sharing incurs only a constant number of cryptographic operations per
replica. Also, the authors present a way to efficiently integrate any
instantiation of VSSR into a BFT replication protocol while incurring
only constant overhead.

In more details, VSRR is a framework that, given a VSS scheme
with certain properties, adds share recovery with only a constant factor
overhead from the original VSS scheme. The authors present two
ways to instantiate VSSR: 1) KZG-VSSR, which uses Kate et al.’s
secret sharing scheme [277] to instantiate a VSS that has constant
time share verification, and 2) Ped-VSSR, which uses Pedersen’s
secret sharing scheme [278]. The secret sharing scheme in Pedersen
only provides linear time share verification and recovery, uses some
cheaper cryptographic operations, and is faster for smaller clusters.
The proposed framework is based on the recovery polynomial, which
is a single polynomial that encodes recovery information for f
shares. Thus, by only sharing a small, constant number of additional
polynomials, the client can enable all 3f + 1 shares to be recovered.
A generic VSSR BFT scheme works in constant per sharing in a
failure-free case. However, in the worst case, e.g., when there are
f participant failures or the leader is Byzantine, the overhead is still
quadratic, which incurs a linear overhead when incorporated into BFT
replicas. While, the optimized VSSR schemes, e.g., KZG-VSSR and
Ped-VSSR, incur only constant overhead. Interested readers can refer
to the work [276] for more details.

57) Stellar - (blockchain): Stellar is a global payment network
that can directly transfer digital money in the world in seconds by a
quorum-based Byzantine agreement protocol, proposed by Lokhava
et al. in 2019 [279]. To achieve this, Stellar uses a secure transaction
mechanism across untrusted intermediaries, using a Stellar Byzantine
agreement protocol (SCP). With SCP, each institution specifies other
institutions with which to remain in the agreement, through a global
interconnectedness of the financial system, the whole network then
agrees on atomic transaction spanning arbitrary institutions, and this is
with no solvency or exchange-rate risk from intermediary asset issuers
or market makers. Essentially, Stellar is a blockchain-based payment
network specifically designed to facilitate innovation and competition
in international payments. It want to achieve three goals: 1) open
membership, 2) issuer-enforced finality, and 3) cross-issuer atomicity.
For the open membership, anyone can issue currency-backed digital
tokens that can be exchanged among users; for the issuer-enforced
finality, a token’s issuer can prevent transactions in the token from
being reversed or undone; and for the cross-issuer atomicity, users can
atomically exchange and trade tokens from multiple issuers. There are
different ways to achieve a separated or two combined goals, but not
all. For example, financial companies such as Paypal and Venmo can
easily achieve the first two goals; using a closed system can achieve
the goals 2 and 3; while a mined blockchain can achieve the goals 1
and 3. Stellar network can achieve these three goals at once.

In more details, to achieve these goals, Stellar relies on two
aspects: supporting efficient markets between tokens from different
issuers and a Byzantine agreement protocol SCP. Anyone can issue a
token, the blockchain provides a built-in orderbook for trade between

56



Fig. 53. Storage of federated voting [279].

any pair of tokens. And, users can issue path payments that atomically
trade across several currency pairs while guaranteeing an end-to-
end limit price. Via SCP, the token issuers designate some specific
validator servers to enforce transaction finality. The issuer knows
exactly which transactions have occurred and avoids the risk of losses
from blockchain history reorganization. The key aspect under SCP is
that most asset issuers benefit from liquid markets and want to facil-
itate atomic transactions with other assets. In general, the validator
administrators configure their servers to agree with other validators
on the exact history of all transactions on all assets. By using a trusted
chain (e.g., one validator trusts another validator), agreement relation-
ships can be transitively connected to the whole network, and SCP
guarantees global agreement, making it a global Byzantine agreement
protocol with open membership. We can consider the construction of a
trusted relationship as a federated voting process. Fig. 53 shows some
key stages of a federated voting. By voting on transactions, it can
establish an agreement among untrusted validators. Thus, essentially,
SCP is a quorum-based Byzantine agreement protocol, and quorums
emerge from the combined local configuration decisions of individual
nodes. The nodes only recognize quorums to which they belong
themselves, and only after learning the local configurations of all other
quorum members. By using this way, SCP can inherently tolerate
heterogeneous views of what nodes exist, and nodes can join and leave
unilaterally without the need for a view change protocol to coordinate
the memberships. Interested readers can refer to the work [279] for
more details.

58) DISPEL - (feature): DISPEL is an acronym of Distributed
Pipeline Byzantine SMR that allows any node to distributedly start
new consensus instances whenever they detect sufficient resources
locally, proposed by Voron and Gramoli in 2019 [280]. This work is
mostly based on the observation of important causes of performance
limitation, like head-of-line (HOL) blocking [281], that delays the
subsequent packet delivery due to a TCP packet loss. And DISPEL
tries to design a distributed technology to mitigate this situation.
Essentially, DISPEL balances its quadratic member of messages (e.g.,
in PBFT) onto as many routers between distributed replicas to offer
high throughput with reasonably low latency. One key innovation
of DISPEL is its distributed pipeline, a technique adapted from
the centralized pipelining of micro-architectures to the context of
SMR to leverage unused resources. Different from the centralized
pipelining, the distributed pipelining maximizes the resource usage
of distributed replicas by allowing them to decide locally when
to spawn new consensus epochs. Each replica in DISPEL detects
idle network resources at its network interface (NIC) and sufficient
available memory spawns a new consensus instance in a dedicated
pipeline epoch. Also, the distributed detection can leverage links
of heterogeneous capacity like inter-datacenters vs. intra-datacenters
communication links. Two main contributions are: 1) by removing
the limitation of HOL blocking, 2) by enabling distributed pipelining.
For the HOL blocking, DISPEL identified the HOL blockchain as the

Fig. 54. Architecture of DISPEL. Transactions are collected in the pool and
batched (1). Replicas exchange bathes (2A, 2B), store and associate them with
their hash digest in the manager (3). Replicas execute consensus protocol over
hashes (2C, 3) and transmit the decisions to the manager (4). The manager
transmits the batches associated with the decided hashes to the application
(5) [280].

Fig. 55. Principle of a consensus pipeline. A pipeline epoch consists of four
phases: network reception (Rx), network transmission (Tx), CPU intensive
hash (H) and latency bound consensus (C). As soon as an epoch finishes its
first phase (Rx), the replica spawns a new epoch. When the replica executes
four epochs concurrently, it leverages all its resources [280].

bottleneck. For the distributed pipelining, it enables the robustness of
the distributed system.

In more details, DISPEL works under a partially synchronous
model tolerating f < n/3 Byzantine replicas, and each replica in
DISPEL spawns a new consensus instance based on its available local
resources. Fig. 54 shows a high-level architecture and the main steps
of one pipeline epoch that runs one consensus instance. It mainly
consists of creating a batch of commands, exchanging batches with
other replicas, and selecting an ordered subset of the batches created
by replicas. More specifically, a DISPEL replica continuously listens
for client transactions and stores them in its transaction pool. When
a replica decides to spawn a new pipeline epoch, it concatenates all
transactions in the pool to create a batch, and then broadcasts the
batch. In parallel, a dedicated hashing thread computes a checksum
of the batch. All DISPET replicas decide independently to spawn a
new pipeline epoch. The consensus component exchanges hash to
complete the reliable broadcast and execute the subsequent steps.
When the replicas decide on a set of hashes, the consensus component
transmits its decision to the manager, which gives the decided batches
to the pipeline epoch orderer. Based on the above parallel execution,
in general, the distributed pipeline contains four distinct phases, as
shown in Fig. 55: a network reception phase (Rx), a CPU intensive
hash phase (H), a network transmission phase (Tx), and a wait-mostly
consensus phase (C). DISPEL executes these phases at the same time
from different pipeline epochs, leveraging most resources. Thus, a
DISPEL replica spawns a new pipeline epoch before its previous

57



Fig. 56. Normal-case algorithm of PoE: Client c sends its request containing
transaction T to the primary P, which proposes this request to all replicas.
Although replica B is Byzantine, it fails to affect PoE [282].

epoch terminates. DISPEL starts a new epoch once its resources
permit, and each row stands for pipeline epoch and has four phases:
Rx, H, Tx, and C. Interested readers can refer to the work [280] for
more details.

59)PoE BFT - (architecture): Proof-of-Execution is a BFT con-
sensus protocol that uses speculative execution to reach an agreement
among replicas, proposed by Gupta et al. in 2019 [282]. At the
core of PoE are out-of-order processing and speculative execution,
which allows PoE to execute transactions before a consensus is
reached. In general, PoE can achieve resilient agreement in just three
linear phases. Compared with PBFT, to make a protocol scalable
and resilient, PoE BFT adds four key design elements: non-divergent
speculative execution, safe rollbacks and robustness under failures,
agnostic signatures and linear communication, and avoid response
aggregation. For the non-divergent speculative execution, instead of
an all-to-all communication then the execution in PBFT, PoE replicas
execute requests after they get prepared (the second phases of PBFT),
that is, they do not broadcast Commit messages. The speculative
execution is non-divergent as each replica has a partial guarantee,
it has prepared prior to execution. In PBFT, a client may or may
not receive a sufficient number of matching responses. For the safe
rollbacks and robustness under failures, PoE ensures that if a client
receives a full proof-of-execution, consisting of responses from a
majority of the non-faulty replicas, then such a request persists
in time. Otherwise, PoE permits replicas to rollback their state if
necessary, which provides a cornerstone for the correctness of PoE.
For the agnostic signatures and linear communication, PoE applies a
twin-path execution, which allows replicas to either employ message
authentication codes (MACs) or threshold signatures (TSs) for signing
based on the size of the network. For example, when few replicas are
participating in consensus (up to 16), then a single phase of all-to-
all communication is inexpensive, and using MACs for such setups
can make computations cheap. While for large setups, PoE employs
TSs to achieve a linear communication complexity. To avoid response
aggregation, different from aggregation schemes (i.e., in SBFT), PoE
avoids additional communication between replicas by allowing each
replica to respond directly to the client. Fig. 56 shows a normal-case
algorithm of PoE.

60) DiemBFT - (feature): DiemBFT (also known as LibraBFT)
is a production version of HotStuff to achieve the strong scalability
and security properties required by Internet settings, proposed by the
LibraBFT teams in 2019 [283]. LibraBFT maintains safety against
network asynchrony and even if at any particular configuration epoch,
a threshold of participants are Byzantine. It incorporates a round
synchronization mechanism that provides to commit despite having

Fig. 57. Proposals (blocks) pending in the block-tree before and after a
commit [283].

faulty leaders. It also encapsulates the correct behavior by participants
in a “tcb"-able module, allowing it to run within a secure hardware
enclave that reduces the attack surface on participants. In addition,
LibraBFT can reconfigure itself, by embedding configuration-change
commands in a sequence. A new configuration epoch may change
everything from the validator set to the protocol itself.

In more details, LibraBFT operates in a pipeline of rounds, in
which a leader proposes a new block in each round. Validators send
their votes to the leader of the next round, and when a quorum of votes
is reached, the leader of the next round forms a quorum certificate
(QC) and embeds it in the next proposal. This process continues
until three uninterrupted leaders/rounds complete and the tail of a
chain has three blocks with consecutive round numbers. Then, the
head of the “3-chain" consisting of three consecutive rounds that
have formed becomes committed. The entire branch ending with the
newly committed block extends the sequence of commits. Fig. 57
shows proposals/blocks pending in the block-tree before and after
a commit. It provides a way to chain the blocks. Essentially, there
two main components in LibraBFT consensus protocol: a steady state
protocol and a PaceMaker (view-change) protocol. The stable state
protocol aims to make progress when the round leader is honest,
while the PaceMaker advances the round number either due to the
lack of progress or the current round being completed. In general, the
LibraBFT consensus protocol has a linear communication complexity
per round under synchrony and honest leaders due to the leader-to-
all communication pattern and the use of threshold signature scheme,
and quadratic communication complexity for synchronization caused
by asynchrony or bad leaders due to the all-to-all multicast of timeout
messages. However, during the periods of asynchrony, the protocol
has no liveness guarantees, e.g., the leaders may always suffer from
network delays, replicas keep multicasting timeout messages and
advancing round numbers, and no block can be certified or committed.
Interested readers can refer to the work [283] for more details.

61) Byzantine View Synchronization - (feature): Cogsworth is a
Byzantine view synchronization algorithm, that has an optimistically
linear communication complexity and constant latency, proposed by
Naor et al. in 2019 [96]. The view-based consensus protocols typically
have some advantages, e.g., each view has a designated leader that
can drive a decision efficiently. A view change occurs as an interplay
between a synchronizer, which implements a view synchronization
algorithm, and the outer consensus solution. A view synchronization

58



requires to eventually bring all honest nodes to execute the same
view for a sufficient long time, for the outer consensus protocol to be
able to drive progress. However, existing approaches for Byzantine
view synchronization incur quadratic communication (e.g., in n, the
number of replicas). And a cascade of O(n) view changes may thus
result in an O(n3) communication complexity. Cogsworth is a leader-
based view synchronization algorithm to reduce this communication
complexity. Essentially, Cogsworth utilizes views that have an honest
leader to relay messages, instead of broadcasting them. When a node
wishes to advance a view, it sends the message to the leader of the
view, instead of to all nodes. If the leader is honest, it will gather
messages from nodes and multicast them using a threshold signature
to other nodes, incurring only a linear communication cost. Cogsworth
implements additional mechanisms to advance views despite faulty
leaders. More preciously, if a leader of a view (e.g., v) is Byzantine,
it might not help as a relay. In this case, the nodes time out and then
try to enlist the leaders of subsequent views, one by one, up to view
v + f + 1, to help with relaying. At least one of f + 1 leaders is
honest, thus one of them will successfully relay the aggregate.

In general, the latency and communication complexity of
Cogsworth depend on the number of actual failures and their types.
For example, in the best case, the latency is constant and the
communication is linear. When there exist t benign failures, the
communication is linear and, in the worst case O(t · n), the latency
also is expected to be constant (e.g., O(t · δ) in the worst-case). And
Byzantine failures do not change the latency, but they can drive the
communication to an expected O(n2) complexity, and in the worst-
case up to O(t · n2).

Another work on view-change protocol, which targets an asyn-
chrony setting, is proposed by Gelashvili in 2021 [113]. The proposed
work is a BFT SMR protocol with the feature of “prepared" when
the network goes bad. Essentially, when the network behaves well
and the consensus makes progress, it runs DiemBFT [283] (an
implementation of HotStuff [284]) taking its linear communication
complexity. However, when there is a problem and the majority of
nodes cannot reach the leader, it proactively runs an asynchronous
view-change protocol that makes progress even under a strongest
network adversary. The proposed asynchronous view-change protocol,
also called asynchronous fallback [285], has quadratic communication
complexity and always makes progress even under asynchrony. The
asynchronous fallback protocol can replace the Pacemaker protocol
in DiemBFT to obtain a BFT protocol that has linear communication
cost for synchronous paths, quadratic cost for asynchronous paths,
and is always live.

62) HotStuff - (feature): HotStuff is a leader-based Byzantine
fault-tolerant replication protocol for a partially synchronous model
to achieve responsiveness, proposed by Yin et al. in 2019 [284]. It
ensures that once the network communication becomes synchronous,
HotStuff enables a correct leader to drive the protocol to consensus
at the pace of the actual network delay, a property of responsiveness.
And this network delay is with a communication complexity that is
linear in the number of replicas. The simplicity design of HotStuff
enables it to be further pipelined and simplified into a practical
and concise protocol for building large-scale replication services. In
general, a stable leader can drive a consensus decision in just two
rounds of message exchanges: the first phase guarantees proposal
uniqueness through the formation of a quorum certificate (QC)
consisting of (n−f) votes, and the second phase guarantees that the
next leader can convince replicas to vote for a safe proposal. However,

for a new leader-based protocol, with the view-change, it is far from
simple than the one based on the two-phase paradigm, and is bug
prone [80], and incurs a significant communication penalty for even
moderate system sizes. It requires the new leader to relay information
from (n−f) replicas, each reporting its own highest known QC. The
total number of authenticators (e.g., digital signatures or message
authentication codes) transmitted is pretty high, e.g., (n4) in PBFT,
and (n3) in threshold signature variants, where n is the number of
participating replicas. HotStuff revolves this around a three-phase
core, allowing a new leader to simply pick the highest QC it knows
of. It introduces a second phase that allows replicas to “change their
mind" after voting in the phase, without requiring a leader proof at
all. This can alleviate the above complexity, and at the same time
considerably simplify the leader replacement protocol. Besides, by
having almost containerized all the phases, it is very easy to pipeline
HotStuff and to frequently rotate leaders.

In more details, responsiveness requires that a non-faulty leader in
a leader-based BFT protocol, once designated, can drive the protocol
to consensus in a time depending only on the actual network delay,
independent of any known upper bound assumption on message
transmission delays [257] [255]. In HotStuff, optimistic responsive-
ness requires responsiveness only in beneficial (e.g., common case)
circumstances, e.g., after Global Stabilization Time (GST) is reached.
The crux of the difficulty is that there may exist an honest replica
that has a highest QC, but the leader does not know about it. It can
build scenarios where this prevents progress of the whole system.
The HotStuff can achieve two main properties: linear view change,
and optimistic responsiveness. For the linear view change, after GST,
any correct designed leader sends only O(n) authenticators to drive
a consensus decision, including the case where a leader is replaced.
Thus, in the worst case of cascading leader failures, its communication
costs to reach a consensus after GST is O(n2). For the optimistic
responsiveness, after GST, any correct designed leader needs to wait
just for the first (n − f) responses to guarantee that it can create a
proposal that will make progress, including the case where a leader
is replaced. It is noticeable that the cost for a new leader to drive the
protocol to consensus is no greater than that for the current leader.
And, HotStuff supports frequent succession of leaders, which has
been argued being useful in a blockchain context to ensure the chain
quality [286]. In general, HotStuff is via adding another phase to each
view, a small price to latency in return for considerably simplifying
the leader replacement protocol. And this exchange incurs only the
actual network delay, which is typically far smaller than ∆ in practice.
Also, the throughput is not affected due to some efficient pipeline
schemes. Besides, in HotStuff, safety is specified via voting and
commit rules over graphs of nodes, and liveness are encapsulated
within a Placemaker, clearly separated from the mechanisms needed
for safety.

Regarding the response latency, in HotStuff, a leader of each
view proposes a block, and a block is decided after three blocks of
consecutive views are certified. Each view consists of two rounds of
communication. Thus, the latency is [6δ, 8δ], and the average latency
is 7δ. Interested readers can refer to the work [284].

63)Sync HotStuff - (feature): Sync HotStuff is a simple and intu-
itive leader-based synchronous BFT solution, proposed by Abraham
et al. in 2020 [261]. It can achieve consensus within a latency of 2∆ in
a steady-state, where ∆ is a synchronous message delay upper bound.
Sync HotStuff can ensure safety in a weaker synchronous model in
which the synchrony assumption does not have to be held for all

59



replicas all the time. Even that, it has optimistic responsiveness, e.g., it
advances at network speed when less than one-quarter of replicas are
not responding. By combining solutions from some practical partially
synchronous BFT protocols, Sync HotStuff has a two-phase leader-
based structure, and has been full prototypes under the standard
synchrony assumption. In general, synchronous BFT protocol has
the advantage of tolerating up to one-half Byzantine faults, while
asynchronous or partially synchronous protocols tolerate only one-
third. However, most synchronous protocols have an issue of lock-
step execution, where replicas must start and end each round at the
same time, and the issues of impracticalness and unsafeness (e.g., sub-
jecting to network attacks on timing assumption). In Sync HotStuff,
each replica can commit after waiting for the maximum round-trip
delay unless it hears by that time an equivocating proposal signed
by the leader. Sync HotStuff achieves several desirable features: 1)
it tolerates up to one-half Byzantine replicas; 2) it does not require
lock-step execution in a steady-state; 3) it can handle a weaker and
more realistic synchrony model; 4) it is prototyped and shown to offer
practical performance. And there indeed have some use cases, e.g.,
in the single-datacenter replicated services and consortium blockchain
applications.

In more details, Sync HotStuff provides several advantages com-
pared with other synchronous BFT. The first one is its near-optimal
latency. Sync HotStuff is with a simple steady-state protocol, in
which replicas are just to wait for a single maximum round-trip
delay sufficing to commit, and it does not have to be executed in
a lock-step fashion, As long as replicas receive enough messages of
the previous step, they can move to the next step without waiting
for the conservative synchrony delay bound. This gives a latency of
2∆ + O(δ) in a steady-state, where ∆ denotes the known bound
assumed on the maximal network transmission delay and δ denotes
the actual network delay, which is much smaller than ∆. The intuition
of 2∆ is that replicas can be out-of-sync by ∆, so one ∆ is needed for
lagging replicas to catch up, and another ∆ is needed for messages
to be delivered. Even though O(δ) latency is impossible to guarantee
under more than one-third of faults, it can be achieved optimistically.
The second one is a practical throughput. This is achieved by moving
the synchronous waiting steps off the critical path, and the only step
in a steady state that requires waiting for a conservative O(∆) time
is to check for a leader equivocation before committing, and it can be
performed concurrently with the main logic. So replicas start working
on the next block without waiting for the previous blocks to be
committed. Even though there are other synchronous waiting steps
in a view-change protocol, it occurs infrequently. The third one is the
safety despite some sluggish honest replicas. The sluggish means it
allows a set of honest replicas to violate the message delay bound ∆
at any point in time. Message sent by or sent to a sluggish replica
may take an arbitrarily long time until replicas are prompt (aka.
behave honestly) again. The authors prove that Sync HotStuff ensures
safety as long as the combined number of sluggish plus Byzantine
faults is less than one-half, which means at any time, a majority of
replicas must be honest and prompt. The evaluation on the proposed
prototype shows that Sync HotStuff can achieve a throughput of over
280 Kops/sec under typical network performance.

One consideration on Sync HotStuff is that, in each view, at least
one block must be decided with a synchronous latency to switch
to the responsive path, which is not responsive in essence. And,
Sync HotStuff cannot decide a block synchronously in each view
once it switches to the responsive mode. Thus, Sync HotStuff cannot
decide blocks in a view if the number of actual faults is f but the

faulty parties first behave honestly until the protocol switches to the
responsive mode and crash after that.

64) Fast-HotStuff - (feature): Fast-HotStuff is a two-round BFT
protocol, based on the HotStuff protocol, to achieve responsiveness
and an efficient view-change process that is comparable to linear
view-change in terms of performance, proposed by Jalalzai et al. in
2020 [287]. Compared to the three-round HotStuff, Fast-HotStuff,
by re-establishing a two-round consensus, claims lower latency and
robustness against performance attacks that HotStuff is susceptible to.
In general, classic BFT protocols do not allow fork formation, while
forking in HotStuff may occur, and results in lower throughput and
higher latency. For example, a malicious primary can use an old QC
(Quorum Certificate: containing the parent block hash and (n − f )
votes from replicas for the parent block) instead of the latest one to
construct a new protocol. This forking attack in a pipelined HotStuff
is possible, and this is valid if the QC is no more than two views
older than the latest one according to the HotStuff’s voting rule. And
thus, the previous not committed block will be forked. To circumvent
these issues, Fast-HotStuff re-shapes HotStuff to reserve and achieve
some innovative properties: low latency, responsiveness, scalability,
and robustness against fork attacks. The first three properties are
almost similar to the properties of HotStuff. By reducing a three-round
communication latency to two rounds, the block in Fast-HotStuff can
be committed with around 30% less delay. For robustness against fork
attacks, a primary in Fast-HotStuff has to provide a proof that it has
included the latest QC (a pointer to its parent block) in the proposed
block, which is unlike the scenario of HotStuff. By providing the
proof of the latest/highest QC, a Byzantine primary cannot perform
a forking attack. This is because the Byzantine primary cannot use
an older QC due to the requirement of the proof of the latest QC
included in the block. Also, this proof helps a replica to achieve
consensus within two rounds. It provides the guarantee that if a replica
committed a block at the end of the second round, eventually all
other replicas will commit the same block at the same height. Thus,
a replica does not need to wait for a maximum network delay to make
sure that other replicas have also committed the same block.

More specifically, Fast-HotStuff operates in a series of views with
monotonically increasing view numbers, and each view number is
mapped to a unique dedicated primary known to all replicas. The
optimistic commit/execution to achieve low latency is valid when
either one of the two conditions is met: 1) the block proposed by
the primary is built by using QC that is the highQC (a kind of QC)
held by the majority of honest replicas, or 2) by a higher than the
highQC being held by a majority of replicas. Thus, the primary has
to incorporate the proof of the highQC in every block it proposes,
which can be verified by every replica. Interested readers can read
the work [287] for more details.

65) Pompe - (middleware): Pompe is a BFT SMR protocol that
is guaranteed to order commands in a way that respects a natural
extension of linearizability, proposed by Zhang et al. in 2020 [288].
The authors introduce a Byzantine ordered consensus, as a primitive,
to augment the correctness specification of BFT SMR to include a
specific guarantee on the total orders, and an architecture for BFT
SMR that, by factoring out ordering from the consensus, can enforce
these guarantees and prevent Byzantine nodes from controlling or-
dering decisions (a Byzantine oligarchy). According to the authors’
observation, the traditional specification of correctness for SMR is
intrinsically incapable of characterizing what makes a total order
“right" or “wrong". The authors intended to provide a primitive to

60



Fig. 58. Steps in a round of the GEOBFT protocol [289].

Fig. 59. Representation of the normal-case algorithm of GeoBFT running
on two clusters. Client ci, i ∈ {1, 2}, requests transactions Ti from their
local cluster Ci. The primary Pci ∈ Ci replicates this transaction to all local
replicas using PBFT. At the end of local replication, the primary can produce a
cluster certificate for Ti. These are shared with other clusters via inter-cluster
communication, after which all replicas in all clusters can execute Ti and Ci

can inform ci [289].

augment the correctness specification of the BFT SMR, which allows
the nodes that implement a replicated state machine to associate
an ordering indicator to the commands they ultimately agree upon.
Through these indicators, nodes can express how they would like
these commands to be ordered with respect to another. The correctness
conditions for the Byzantine ordered consensus specify, given a set
of input <ordering indicator, command> pairs, the set of allowable
total orders for these commands. Besides, the authors also introduce
a general architecture for BFT protocols that factors ordering out of
consensus, which cleanly separates the process of establishing the
relative order of commands from the consensus steps necessary to
add those ordered commands to the ledger.

66) GeoBFT - (middleware): GeoBFT is a geo-scale Byzantine
fault-tolerant consensus protocol to achieve scalability by using a
topological-aware grouping for replicas in local clusters, proposed
by Gupta et al. in 2020 [289]. In general, it is desirable that
the underlying consensus protocol must distinguish between local
and global communication. However, existing Byzantine consensus
protocols are not designed to handle geo-scale deployments in which
many replicas spread across a geographically large area. GeoBFT
can solve this issue by introducing the parallelization of consensus
at a local level, and by minimizing the communication between
clusters. To get a geo-scale aware consensus protocol, it needs to be
aware of the network topology, which can be achieved by clustering
replicas in a region together and favoring communication within such
clusters over a global inter-cluster communication. Also, a geo-scale
consensus needs to be decentralized, which means no single replica or
cluster should be responsible for coordinating all consensus decisions.
This is because a centralized design limits the throughput to outgoing
bandwidth and the latency of this single replica or cluster.

In more details, GeoBFT group replicas in a region into clusters,
and each cluster makes consensus decisions independently. These
consensus decisions are then shared via an optimistic low-cost com-
munication protocol with the other clusters. By doing so, it assures
that all replicas in all clusters are able to learn the same sequence
of consensus decisions. For example, for two clusters C1 and C2

and each with n replicas, the optimistic communication protocol
requires only n/3 messages to be sent from C1 to C2 when C1

needs to share its local consensus decision with C2. By doing so, it
can help the throughput and scalability in a geo-scale deployment.
In general, GeoBFT operates in rounds, and in each round, every
cluster will be able to propose a single client request for execution.
From a high level perspective, each round consists of three steps,
as shown in Fig. 58, local replication, global sharing, and ordering
and execution. Fig. 59 shows a representation of the normal-case
algorithm of GeoBFT running on two clusters, following these three
steps. For the local replication step, each cluster chooses a single
transaction of its local client, and each cluster locally replicates its
chosen transaction in a BFT manner, e.g, using PBFT. At the end
of local replication, the adopted BFT protocol guarantees that each
non-faulty replica can prove successful local replication via a commit
certificate. For the global sharing step, each cluster shares locally
replicated transaction along with its commit certificate with all other
clusters. This step utilizes an optimistic global sharing protocol to
minimize inter-cluster communication, in which has a global phase to
exchange locally replicated transactions, followed by a local phase in
which clusters distribute any received transactions locally among all
local replicas. In case of failures, the global sharing protocol utilizes
a remote view-change protocol. For the ordering and execution step,
after global sharing, each replica in each cluster can deterministically
order all these transactions and proceed with its execution. Once
executed, the replicas in each cluster inform only local clients of
the outcome of the execution of their transactions.

The authors provide proofs on safety and liveness of GeoBFT.
For the safety, it achieves a unique sequence of consensus decisions
among all replicas and ensures that clients can reliably detect when
their transactions are executed. For the liveness, whenever the net-
work provides reliable communication, GeoBFT continues successful
operation. Also, the authors deployed GeoBFT on their ResilientBD
fabric [290] to evaluate the performance.

Besides the GeoBFT, there exist several other literatures for geo-
replicated state machines for wide area networks, e.g., Steward pro-
posed by Amir et. al in 2008 [291], WHEAT proposed by Sousa et al.
in 2015 [292], and AWARE proposed by Berger et al. in 2020 [293].
Steward is a hierarchical BFT protocol for geographically dispersed
multi-side systems, which employs a hybrid algorithm that runs a
BFT agreement within each site, and a lightweight, crash fault-tolerant
protocol across sites. WHEAT is a variant of BFT-SMART protocol
that is optimized for geo-replicated environments, which employs a
voting assignment scheme that, by using few additional spare replicas,
enables the system to make progress without needing to access a
majority of replicas. Its main innovation is the ability to decrease
the client latency by, counter-intuitively, adding more replicas to the
system. AWARE is an adaptive wide-area replication system for a
fast and resilient Byzantine consensus, which employs an automated
and dynamic voting-weight tuning and leader positioning scheme to
support the emergence of fast quorums in the system. It utilizes
a reliable self-monitoring process and provides a prediction model
seeking to minimize the system’s consensus latency. Interested readers
on geo-replicated state machines can refer to these corresponding
papers.

67) FNF-BFT - (architecture): FNF-BFT (Fast‘N’Fair-BFT) is
a parallel-leader BFT protocol for a partially synchronous model
with theoretical performance bounds during synchrony, proposed
by Avarikioti et al. in 2020 [294]. By allowing all replicas to
act as leaders and propose requests independently, it parallelizes
the execution of requests, which circumvents the common single-

61



leader bottleneck and achieves a significant performance increase
over the sequential-leader systems. In general, the communication
complexity of FNF-BFT is linear in the number of replicas during
the synchrony, and it provides guarantees in stable network conditions
under truly Byzantine attacks. FNF-BFT uses a better Byzantine-
resilient performance metric, which encapsulates the ratio between the
best-case and worst-case throughput of a BFT protocol, to evaluate
a BFT’s performance. And FNT-BFT can achieve Byzantine-resilient
performance with a ratio of 16/27 while maintaining both safety
and liveness. More specifically, FNF-BFT, as a multiple-leader BFT
protocol, achieves the following three properties under a stable net-
work condition: optimistic performance, Byzantine-resilient perfor-
mance, and efficiency. The optimistic performance means, after GST,
the best-case throughput is Ω(n) times higher than the throughput
of sequential-leader protocols; the Byzantine-resilient performance
means that, after GST, the worst-case throughput of the system is at
least a constant fraction of its best-case throughput; and the efficiency
means that, after GST, the amortized authenticator complexity of
reaching consensus is Θ(n). To achieve these three properties, FNF-
BFT utilizes two key mechanisms. The first mechanism is to enable
all replicas to continuously act as leaders in parallel to share the
load of client’s requests; the other one is that FNF-BFT does not
replace leaders upon failure but configure each leader’s load based on
the leader’s past performance. By combining these two mechanisms,
FNF-BFT can guarantee a fair distribution of requests according to
each replica’s capacity, which in turn results in fast processing of
requests. Besides, the authors also implement an FNF-BFT prototype
and compare it with HotStuff’s throughput, it shows that, as replicas
increase, the FNF-BFT protocol achieves a significant improvement
on scalability and exhibits faster average performance.

68)Twins - (architecture): Twins is an approach for testing BFT
systems, which requires only a thin network wrapper that delivers
messages to/from both twins, proposed by Bano et al. in 2020 [295].
The key idea of Twins is that it emulates Byzantine behavior by
running two (or generally up to k) instances of a node with the
same identity. Each of the two instances or twins runs unmodified,
correct code. To the tested system, the twins appear indistinguishable
from a single node behaving in a ‘questionable’ manner. The current
version of Twins can generate several (not all) Byzantine behaviors,
including equivocation, double voting, and losing internal state, while
forgoing some other behaviors that are trivially rejected by honest
nodes, such as producing semantically invalid messages. By this
design, Twins can systematically generate Byzantine attack scenarios
at scale, execute them in a controlled manner, and check for desired
protocol properties. In Twins, instead of coding incorrect behaviors,
it runs faulty nodes in two parallel universally, and both instances
have the same credentials/signing-keys and run autonomously. For
instance, both instances can send messages in a same protocol round,
however, these messages carry conflicting information. And to the
rest of the system, this twins behavior will appear indistinguishable
from an equivocating behavior by a single node. Also, the authors
performed some tests on existing protocols, which are broken within
fewer than a dozen protocol steps, and it is realistic for the Twin
approach to expose problems.

More specifically, Twins is a “white glove" approach. It is neither
a “black-box", since it does modify the internal behavior of the tested
system, nor is it a “white-box", as it does not open internal code
modules. In general, Twins minutely interacts with existing codes
to control message delivery and schedule various coarse-steps such
as protocol rounds. It can be deployed in a real system as it uses

Fig. 60. Twins high-level design [295].

the existing correct node code. Also, Twins can be implemented
by thinly wrapping twin nodes with a network-scheduler acting as
an adversary, easily keeping up with an evolving software project.
Implementing Twins typically consists of two principal parts: test
executor and test generator. Fig. 60 shows a high-level design. The
test executor deploys a network configuration where some nodes have
twins, and it hides twins behind a thin multiplexing wrapper; while
the test generator enumerates scenarios by varying the number of
nodes and the message delivery schedule, then feeding the scenarios
to the test executor. For more details, interested readers can refer to
the work [295].

An almost similar work is presented at [296], called Gemini, by
the same authors of Twins. It follows almost all descriptions and
scenarios of Twins. However, it might have different terminologies
on some functional parts. For example, Twins has two principle parts
named test executor and test generator, while, in Gemini, these two
principle parts are named scenario executor and scenario generator
only with different names.

69)GRANDPA - (feature): GRANDPA is a protocol to solve the
Byzantine finality gadget problem, proposed by Stewart and Kokoris-
Kogia in 2020 [297]. In general, classic BFT protocols forfeit liveness
under an asynchronous assumption to preserve safety, while most
deployed blockchain protocols forfeit safety in order to remain live.
To achieve the best of both, an abstraction would be required in
the form of finality gadget, which allows for transactions to always
optimistically commit but informs the clients that these transactions
might be unsafe. For example, a blockchain can execute transactions
optimistically and only commit them after they have been sufficient
and provably audited. The authors propose a formal model on the
finality gadget abstraction, and proved that it is impossible to solve
it deterministically in a full asynchrony environment. The authors
also present a partially synchronous protocol that is currently used
to secure some major blockchains, so that the protocol designer can
decouple safety and liveness to speed up recovery from failures. For a
blockchain protocol, it has several advantages to separate the liveness
of the consensus protocol from the finality of blocks. 1) Consensus
is not tied to the liveness of the chain, which can have optimistic
execution, so that the chain can grow before it is certain that blocks
are valid. Later on, the chain can finalize blocks when it sures they are
correct, e.g., all verification information is available. 2) The protocol
can make some (even unsafe) progress when the network is unstable,
which enables fast recovery progress when the network heals. And
similarly, the chain can also make some progresses even when the
finalization is slow. 3) A finality gadget can be deployed gradually

62



and light clients can choose to consult it or follow the longest chain
rule and ignore it, enabling the heterogeneity of light clients.

More specifically, the authors show it is impossible to satisfy
some features of finality gadget with a deterministic asynchronous
protocol, and introduce the GRANDPA finality gadget that works in
a partially synchronous network model. GRANDPA works in rounds,
each round has a set of 3f + 1 eligible voters to tolerate up to f
faulty voters. Each round consists of a double-echo protocol after
which every party waits to detect whether it can finalize a block in
this round. In this case, the block does not need to be an immediate
ancestor of the last finalized block, it might be far ahead from the
last finalized block. If the round is unsuccessful, the parties simply
move on to the next round with a new primary. When a good primary
is selected, the oracle is consistent (e.g., returning the same value to
all honest parties), and the network is synchrony (after GST), a new
block will be finalized and it will transitively finalize all its ancestors.
For more details on the implementations and proofs, interested readers
can refer to the work [297].

70)SFT - (feature): Strengthened Fault Tolerance (SFT) is a BFT
SMR under a partial synchrony that provides gradually increased re-
silience guarantees during an optimistic period (e.g., with a synchrony
network and a small size of Byzantine faults), proposed by Xiang et
al. in 2021 [298]. The committed blocks can tolerate more than one-
third (up to two-thirds) corruptions even after the optimistic period.
This means the safety assurance of a decision can be made to improve
over time, like Nakamoto consensus, and the blockchain can obtain
resilience against a higher number of Byzantine failures as it gathers
additional confirmations (e.g., votes for the block). Compared with a
similar solution of Flexible BFT (FBFT) [275] (requiring a quadratic
message complexity), SBFT maintains a linear message complexity
over BFT SMR protocols and requires only a marginal bookkeeping
overhead. The term strengthened in SFT reflects the fact that stronger
resilience guarantees can be obtained given that the conditions are
optimistic, e.g., when the network is synchronous and the number
of Byzantine faults is small during the optimistic period. Blocks
committed with a higher resilience mean much safer even if the
number of Byzantine faults later exceeds the one-third threshold. As
the rule of k-deep in Nakamoto consensus, with SFT, the clients can
choose to wait longer for valuable blocks to obtain higher resilience,
trading off safety with latency. Also, SFT induces only a marginal
bookkeeping overhead and retains a linear message complexity, while
the adaptability of FBFT incurs a quadratic message complexity
overhead. Besides, the authors implement SFT over DiemBFT (or
called LibraBFT) [283], called SFT-DiemBFT, whose implementation
adds only moderate latency increase to obtain higher assurance
guarantees (up to two-thirds) under various conditions. Interested
readers can refer to the work [298] for more details.

V. ESSENTIAL COMPONENTS OF BFT

BFT replication protocols make it possible to design systems
that are resilient against arbitrary faults, which can be potentially
applied to many crucial use cases, such as blockchain, datacenters,
and various decentralized applications. In general, the guarantees
on fault-tolerance come at some cost of the complexity (in both
communication and computation), which inherently makes them hard
to incorporate in practice BFT replication systems. We discuss the
state-of-the-art BFT protocols in Section IV, and each protocol was its
advantages and disadvantages. Most of these solutions are designed to
improve performance, robustness, availability, and resource efficiency

under various assumptions. It is necessary to demystify the basic
building blocks of BFT protocols from a high-level perspective.
There are several literatures discussing this kind of demystification.
For example, Correia et al. [16] analyze different BFT consensus
algorithm from the theoretical level; Berger and Reiser [17] present
work on improving scalability when applying Byzantine consensus
to blockchains and distributed ledgers; Platania et al. [299] compare
BFT protocols based on the role of clients; Dister [6] presents a
generic BFT state-machine replication from a systems perspective.
Based on these works, we present some essential components to
the construction of BFT replication protocols, which can help sys-
tem designers design their own application-specific BFT consensus
protocols. Roughly speaking, these components include clients, an
agreement protocol, an execution stage, a checkpointing scheme, and
a replica recovery scheme. Note that it is not necessary for a BFT
consensus protocol to include all components, and some protocols
may combine two or more components together. Also, they may relate
to other techniques, such as a checkpointing scheme that relates to
garbage collection in SBFT or replica recovery scheme that relates
to the view change in PBFT.

Most existing BFT protocols consist of three clear tasks, espe-
cially for the cases of blockchain applications, namely client handling,
agreement, and execution. According to the classification of Platania
et al. [299], these three procedures are the “server"-side tasks, in
which clients only have the right to access the replicated system
(e.g., submitting requests) without actively participating in consensus
procedures. Roughly speaking, in a client handling process, replicas
need to receive and disseminate requests from clients and, once the
request is processed and a decision is made, return the responses to
clients. This task typically involves a significant amount of commu-
nication and computational overhead (e.g., processing authenticated
messages) between clients and replicas. And the overhead of this task
generally relies on the number of active clients and the workload of
requests. Thus, preventing Sybil attacks and DoS attacks are important
in this task. In the agreement process, replicas are required to reach
a consensus on the decisions of requests, and typically, this task
involves only the communication among replicas. The communication
complexity of this process depends on the size of replicas in the
system. And, due to the existence of Byzantine replicas, it may require
some period of synchronization to successfully transmit messages
among non-faulty replicas. In the execution process, replicas, once
agreed on the requests, are required to process these requests based
on their current state. This process involves updating the local state
information of replicas. The complexity and overhead of this process
typically depend on the specific applications, e.g., appending blocks
to the blockchain. The organization and dependency of these three
tasks [6] result in different system architectures, e.g., a one-tier
architecture (each replica performing client handling, agreement, and
execution all together), a two-tier architecture (each replica perform-
ing client handling and agreement together, and performing execution
separately), and a three-tier architecture (each replica performing
three tasks separately).

Most existing classic BFT protocols include the above three tasks
in order to reach an agreement. Besides that, there are some new
architectures, which follow different procedures, such as the execute-
verify principle proposed by Kapritsos et al. [300]. The execute-verify
principle makes it possible that the agreement process and execution
process are handled in a different order (e.g., out-of-order execution).
Compared with “agreement - execution" in traditional BFT protocols,
the execute-verify principle allows the replicated system to perform

63



the applications outputs and replicated state updates separately, which
helps them to establish an order on the requests later by utilizing
consensus protocols. By doing so, responsiveness to clients’ requests
can be improved. Also, this principle typically targets permissioned
blockchains, which require access control on replicas to participate
in the consensus process. In the following sections, we discuss some
generic components according to the classification of Dister [6].

A. Client

The component of the client provides an interface to access the
replicated systems. Though we can literally consider them as users,
they are not actual users who issue requests to the replicated systems.
Besides simply relaying requests and replies, the clients typically take
several roles to connect the user processes and the replicated systems:
communication with replicas, result verification, handling of replica
inconsistencies, and provision of optimization hints.

One of the primary tasks of clients is to communicate with
replicas, and this communication is typically based on the “client-
server model", e.g., following the requests and replies messages
over the network. Also, the client may take some responsibility to
handle exceptions. For example, if the network is not reliable, it may
involve the tasks of re-transmission of messages, or re-establishment
of broken connections. By taking these responsibilities, clients can
ensure that the requests of clients will eventually be executed even
they may connect to faulty replicas (e.g., as agents of users). There
are two major approaches for clients relaying the requests. One
approach is the request broadcast, in which clients directly submit the
corresponding request to all replicas of the replicated system. This
approach can ensure that non-faulty replicas can learn the requests
and thus detect the situations in which the leader tries to suppress a
client’s requests. Another approach is the use of a contact replica,
e.g., the leader in leader-based BFT protocols, in which a client
only submits the requests to a single contract replica. In general, this
approach is optimistic and can work well in fault-free cases. However,
this approach typically requires an additional setup on timeout to
handle the case of contact replica failure. When timeout is reached,
the client can choose to multicast these requests. For the task of
communication with replicas, there exist some respective works to
describe its functionality, e.g., Troxy [254] and SBFT [65].

Due to the existence of Byzantine replicas, clients must have
some ability to handle the abnormal replies; thus the client can verify
replies and handle the inconsistencies from replicas. In a Byzantine
setting, a client typically is required to wait for replies from different
replicas and then compare those results before handling them to users.
The number of matching replies depends on the consensus protocol
running on a replicated systems. Typically, it will require at least
f+1 matching replies from different replicas, where f is the maximal
number of faulty replicas a consensus protocol can tolerate. In case of
the equivocation of replicas, e.g., if a faulty leader makes conflicting
proposals to correct follower replicas that diverge, clients must have
the ability to detect them. For example, Zyzzyva includes the order
information into the executed requests then replies to the clients
with that information, which allows the clients to have the ability
to detect inconsistency of running results. Also, on the detection
of replica inconsistencies, clients must provide some solutions to
resolve. For example, in Abstract protocol [82], it relies on an active
switching protocol, which allows the system to make a transition
from one state (e.g., view) to another by relying on the execution
history information. Clients are responsible to collect and distribute

this history information to help the replicas make decisions. And
in general, a single active correct client is sufficient to complete this
switching process. Besides, there are some protocols relying on clients
to provide the optimization. For example, the Archer [301] exploits
clients to assist in dynamically configured geo-replicated systems to
improve the responsiveness and reduce the end-to-end response time.
In Archer, clients exploit the location of the leader to offer the best
performance for the current workload conditions.

B. Agreement

The primary goal of the agreement stage is to establish a total
order on client requests globally and stably, which further can be
used for the execution stage to execute these ordered requests among
replicas of the replicated systems. Simply, this stage is used to get
agreement on the final executed requests. Assuming the requests
submitted from clients are correct, then this stage is about establishing
a “timeline" (e.g., timestamp) on different requests from the same
client or different clients. According to the definition on an unstable
timeline (originating from a single source, maybe Byzantine replicas)
and stable timeline (originating from a group of nodes, guaranteed
correctness) in the work [6], the agreement typically adopts three
building blocks: a nondeterministic merge, an agreed merge, and a
deterministic merge.

Simply, a nondeterministic merge takes a set of unstable timelines
and merges them into a combined unstable timeline; an agreed merge
transforms s set of unstable timelines into a stable timeline, and
a deterministic merge combines a set of stable timelines as input
and outputs a single stable timeline. In general, the nondeterministic
merge happens locally, so that there is no global agreement on this
merge and each replica may still have different timelines on requests.
The agreed merge is used to guarantee that all correct replicas can
have a consistent view of the interleaving and unstable local inputs
or requests from clients, and this building block typically requires
multiple phases of network communication. The deterministic merge
is guaranteed by the existence of a deterministic algorithm that should
be known to all correct replicas. Thus, the agreement stage can be
considered as a chain of merge operations, and different protocols
may take different merge steps to get an agreement. For example,
PBFT [4] takes only one step via agreed merge over all requests by
primary; Prime [188] takes a two-step process: first performs non-
deterministic merges globally then performs agreed merge globally;
and COP [229] also takes a two-step process: first, perform agreed-to
merge locally, then perform the deterministic merge globally. Here
the terms “locally" and “globally" mean that replicas consider a local
set of requests and all requests as global, respectively.

When clients submit requests to the replicated systems, it does
not mean that the consensus must perform the agreement stage on
client requests. In general, the inputs to an agreement stage can be
in three forms: full requests, request hashes, and progress vectors.
Full requests as inputs are the straightforward way, in which each
replica operates on the client requests directly. By doing so, multiple
requests may be batched into one consensus instance to the replicated
systems [302]. When replicas directly exchange full requests during
agreement, it may significantly increase message sizes, which causes
some performance overhead. Most BFT systems perform agreement
on request hashes proposed by Castro et al. in 2002 [15], which is
more efficient. However, this approach requires additional processing
to make a decision on client requests. For example, replicas typically
do not approve a leader’s request proposal solely based on some

64



request hashes, and they must wait until all requests have been
gathered from different sources before actually processing these
requests. A faulty client may send a different version of the requests to
the leader and other replicas separately, which causes an inconsistency
on client requests. If applying request hashes only, the correct replicas
may not have the ability to validate the proposal from a correct
leader. Although replicas can retroactively fetch the full version of
the proposed requests from the leader, it involves a more complex
fault-handling mechanism and takes valuable time to make agreement
progress. This will make it worse for batch processing. For instance,
a missed or diverged request from a faulty client may prevent an
entire batch of requests from being confirmed, which definitely affects
the responsiveness of correct requests from correct clients. In the
approach of progress vectors as an input, consensus protocol does not
operate directly on actual requests or their hashes, instead, they insert
the requests into replica-local timelines, and the consensus protocol
operates directly on these timelines. Since these replicas timelines are
reliably distributed, they can be considered as a progress vector which
contains basic information on the sequence of requests. Replicas can
easily compute the progress vectors in a deterministic way, and the
agreement stage can later deterministically translate back to the client
requests. In this approach, there is no relation between the size of
consensus messages and the number of requests from a client in
one round of consensus. Prime [188] utilizes this approach. Besides,
Dister [6] gives the use of application outputs as the input to the
agreement stage. This mainly has the advantage of the execute-verify
principle [300], in which the consensus protocol is performed on the
executed application outputs.

C. Execution

The execution stage is used to process client requests and produce
the corresponding replies to clients, which is application-specific.
By separating the execution stage from (application-independent)
agreement stage, the overall BFT protocol can not only be more
modularized in design (e.g., taking advantage of the pipeline), but also
can prevent it from becoming a performance bottleneck. In general,
by doing so, it provides two advantages: separating execution replicas
and relaxing execution order.

Separating execution replicas can provide some benefits. For
example, as stated by Yin et al. [176], this would separate respon-
sibilities for different operations and perform these operations on
dedicated processes, which can help to speed up the whole BFT
consensus. Their work is achieved by performing the agreement
stage and execution stage separately, which literally offers a privacy
firewall and isolation entity to prevent the actual execution (e.g.,
modifying internal states) from faulty replicas. There are some
other works adopting this methodology, e.g., UpRight [198], VM-
FIT [303], Spare [304] and ZZ [215]. Also, separating execution
replicas can significantly simplify the parallelization of the agreement
process, such as performance optimization works of COP [229] and
Omada [305]. Another key benefit is that it can reduce the number of
application instances required for fault tolerance. As Yin et al. [176]
pointed out, it only requires 2f + 1 replicas for the execution of
requests to tolerate up to f faulty replicas, instead of at least 3f + 1
replicas for the agreement of requests. If the replicated systems are
application targeted, in which the application is the most complex
part, the lower number of execution replicas can significantly reduce
the system overheads.

However, separating execution replicas is not a one-shot solution,

and it leads to some special requirements and obstacles, e.g., state-
transfer requirements, result availability limitations, and performance
implications. Being separating from the agreement stage, some repli-
cas may advance at different speeds and this phenomenon can cause
up to f execution replicas to be far behind on the process of
execution. Also, the execution stage typically requires that at least
f + 1 replicas in order to reach a consistent checkpoint. Thus, the
state-transfer protocol between agreement and execution stages must
provide information which enables replicas to verify the correctness
of a checkpoint. This requires some special mechanisms to guarantee
the stability of checkpoints. For example, a proof of a checkpoint
should not only contain the information of the checkpoint itself, but
also enable correct replicas to resort to the checkpoint if the proof
is valid, so that all other replicas can get the consistent state. In
general, this can be done by assembling a checkpoint certificate and
constructing a hash of the checkpointed state with the help of a digital
signature [176]. Also, the resulting availability must be guaranteed,
so that all correct clients have the ability to access these checkpoints
and restore their internal state to a consistent state. To guarantee the
resulting availability, one possible and simple solution is to extend
checkpoints to attach the latest reply to each client, as illustrated
in solutions [216] [305]. In these solutions, the checkpoint plays a
key role in proceeding to consensus, in which it must contain all
information to help a correct replica go back to a correct state. This
would definitely increase the complexity of the checkpoint. Besides,
separating execution replicas eliminates the shared information with
the agreement stage, and the replicas in the execution stage would
require extra efforts to prepare additional information. This would
increase some overhead, and thus lower the performance.

Another advantage of separating the execution stage is to enable
the relaxed execution order. In a classic BFT replicated system (e.g.,
performing agreement and execution stages on the same replica),
replicas need to sequentially process requests, which may significantly
limit performance. To address this issue, many efforts have been
developed to relax the order in which the replicas execute requests.
Roughly speaking, these efforts can be classified into two categories:
non-speculative execution and speculative execution. In general, non-
speculative execution can guarantee a consistent state when applied
by some correct replica, while speculative execution may result in
inconsistencies which further require a correct replica to rollback its
state.

In general, non-speculative executions focus on the order of state-
object accesses. One way to achieve this is that all accesses to
a state object is protected by some locking scheme. For example,
OptSCORE [306] relies on a customized scheduler to carry out a
deterministic order-execution on requests, with the help of sequen-
tializing the execution process only on some critical sections of the
operations and enabling the paralleling execution on the rest of the
operations. However, this scheme needs some kind of modifications
on the application code to fit the non-speculative execution, e.g., in-
troducing the lock/unlock primitives during the access to state objects.
Another example of non-speculative execution is the CBASE [307], in
which a parallelizer component is introduced between the agreement
stage and the execution stage on each replica. It only works in the case
that both the agreement stage and execution stage are performed on
the same replica. The parallelizer is used to perform analysis on the
sequence of requests agreed from the agreement stage and to decide
which requests can be executed safely and parallelly without involving
conflicts on these parallel executions. In general, the parallelizer must
be equipped with some application-specific knowledge, e.g., structure,

65



characteristics, and possible dependencies of requests [6]. On the
other hand, the speculative execution can simplify the reasoning
procedure on the correctness of these executions and be targeted
to improve execution efficiency and performance. In general, this
approach may introduce somewhat temporary inconsistencies in repli-
cas’ internal execution states even among correct replicas. However,
these inconsistent states will be finally resolved before replying to the
client, and the system never releases these internal states to clients
or other external processes. Also, this kind of execution would rely
on some rollback scheme to ensure replica has the ability to reset its
state to a consistent state. Thus, the request execution should not rely
on any irreversible actions, e.g., remote function calls to a process
outside of the system or sending any control signals/internal states
to critical infrastructure (as this may involve some wrong actions
before obtaining a correct final result). As long as these internal states
are erasable and kept within the replicated system, an application
can adopt this speculative execution to speed up the process and
improve responsiveness. The well-known example in this approach
is the Zyzzyva [59].

D. Checkpointing

With the increase of the requests submitted by clients, the size of
the confirmed sequence of requests on each replica will exceed the
amount of memory to proceed with further requests at some point.
Thus, replicas must resort to some form of garbage collection scheme
to remove the state information on already processed entries [6].
This will assist replicas to make progress on request processing.
However, the lack of additional mechanisms on this cleaning would
pose a problem for asynchronous BFT systems. For instance, some
correct replicas may fall a lot behind other replicas, even with a full-
functioning garbage collection scheme; also, some correct replicas
may not be restored back to a correct state as the synchronization
messages may fail to get the right point to restore. This will create an
indefinite stuck in the progress. To resolve this issue, correct replicas
can periodically generate checkpoints of all its internal states and
only garbage-collect data that are already in a stable state (e.g., with
a threshold number of replicas agreements or endorsements). This also
enables some slow replicas (e.g., fallen behind others) to catch up and
update their states according to some well-established checkpoints.
A checkpointing scheme not only helps replicas recover from faults,
but also can allow new replicas to join a running system with little
effort. In general, the checkpointing scheme may involve what kinds
of contents should be checkpointed, how to represent checkpoints, as
well as the corresponding creation process.

In general, a checkpoint must contain all information that reflects
the replica state at a specific time (e.g., the proof on the execution of a
specific request). In general, the information contained in a checkpoint
should be indistinguishable in order for correct replicas to recover to
a state. The checkpointed information typicaly consists of three parts:
application state, protocol state, and replies. The application state in a
checkpoint provides information on the objects representing the state
of the replica’s application instance, which helps replicas to execute
the application-specific requests during the execution stage. This kind
of state information is typically application-specific with its internal
structure being independent of its consensus protocol. The protocol
state in a checkpoint consists of the application-independent state
and the state required by the BFT replication protocol, in order to
offer certain consistency guarantees. This kind of state information
is protocol-specific. The replies in a checkpoint should contain the
information replied on processed client requests, which allows a

correct replica to reply to the client request in a case that its previous
tries failed (e.g., due to unreliable links). All the above three states
are useful to construct a checkpoint on a replica’s state. However,
according to different BFT replicated systems, the checkpoint of a
replica does not necessarily contain all these three parts. Instead, a
practical checkpoint protocol often aims to create a “good enough"
state without endangering the guarantees provided by the overall
system.

The representation of checkpoints typically can be presented
in two different forms: state checkpoints [15] [172] [308] [305]
and hybrid checkpoints [198]. State checkpoints highly rely on
the sequence number when the checkpoints are created to reflect
the corresponding version. Hybrid checkpoints allow a replica to
generate some temporary checkpoints frequently with reference to
infrequent replica snapshots (e.g., stable state), in which a replica
only needs to keep the latest infrequent snapshot and apply the
requests that have been executed between these two checkpoints.
In general, the creation of checkpoints would definitely involve
substantial overhead. Based on these checkpoints representation, there
are several checkpoint creation approaches to trade off the complexity
and efficiency, namely, stop and copy, copy on write, checkpoint
rotations, and deterministic fuzzy checkpoints [6]. The first two
approaches are straightforward approaches from their names. The
stop and copy approach suspends the execution of the request, creates
the checkpoint, and then resume the request execution [198], while
the copy-on-write approach does not require a stop to minimize the
downtime overhead and only process to the actually changed parts
since the last checkpoint [15] [172]. The checkpoint rotation approach
simply rotates the responsibility for generating the checkpoint among
replicas to mitigate the overall server disruption. It does not require
a replica to produce a snapshot for every checkpoint interval and
for every sequence number; instead, each replica only performs the
snapshot for some sequence numbers. However, this approach may
introduce some vulnerability, e.g., a manipulated state transfer by
malicious replicas [308]. The fuzzy checkpoint approach is more
flexible, which allows correct replicas to independently choose the
time point to start capturing the data for the next checkpoint with
a guarantee to generate identical checkpoints [308]. A replica in
this approach can start earlier to proceed with the state object even
before obtaining an agreed sequence number on requests. It offers
slow replicas the chance to start early in an effort to complete the
checkpoint so that they can catch up to a similar point as the fast
replicas.

E. Recovery

Byzantine replicas can behave arbitrarily. For BFT systems,
without proper measurements, the effects of faults can be accumulated
over time (especially under a strong adversary), which may eventually
lead to a violation of the predefined tolerance threshold and break
the system. And, a replica recovery mechanism is required to recover
replicas from faults. In general, a good recovery scheme allows a
replicated system to successfully recover solely based on its own
available information, so that it can guarantee that the number of
faulty replicas does not exceed the pre-designed threshold. From
the literature, there are two major approaches to perform recovery,
namely, reactive recovery and proactive recovery. Reactive recovery
happens when some faults are detected, while proactive recovery
happens at some pre-established points in time (e.g., periodical
time). Also, a practical replicated system can combine both ap-
proaches [309].

66



In general, a reactive recovery requires a BFT system to have
mechanisms for detecting faulty replica behaviors, e.g., by analyzing
the outputs of a replica and comparing them with the outputs of
other replicas. In this case, it may involve the participation of clients
to show some evidence to replicas that faults happen. However,
involving clients in a faulty detection process may introduce some
level of inaccuracies, as clients typically do not know what happened
in a replicated system, e.g., clients cannot distinguish a faulty replica
or a correct slow replica in case not enough replies are received.
In general, the reactive recovery approach can be applied for two
scenarios by observing the system status [190] [309]: that the faulty
behavior has been provably detected (e.g., providing incorrect re-
sult) or that it only has been suspected (e.g., timeout happening).
A proactive recovery scheme can effectively mask faults without
affecting the interaction with clients, as this approach is performed on
a regular basis, instead of relying on some evidence of fault defection
scheme [15]. Proactive recovery is performed on a regular basis
which may incur some unnecessary overhead on recovering correct
replicas. A recovery approach typically is application-specific, and
there is no universal recovery scheme [310]. Both approaches have
their advantages and shortcomings. Interested readers can refer to the
corresponding papers.

Practically, a recovery scheme should have the ability to transmit
from a faulty state to a fault-free state. A typical recovery process
consists of three steps: system reboot, replica rejoin the group,
and state update [15]. After a faulty replica is detected, restarting
the replica’s machine can erase existing faulty processes and some
potential effects of instruction. In general, after rebooting, a replica’s
logic can be considered correct, while its state still may be corrupted,
missing, or out of data, which requires some configuration. When
rejoining a replica group, a replica is required to re-establish the
connections with both clients and other replicas in the system. The
state update step is used to update its state with other replicas once
again being able to communicate. The goal of this step is to enable a
replica to once again actively participate in the replication protocol as
a correct replica. Besides these steps for a recovery scheme, according
to practical application scenarios, consideration of other aspects may
be needed, e.g., replica group reconfiguration [266].

This section discusses some basic components to build a BFT pro-
tocol in the form of modulization. The system designers can combine
different approaches in each module to construct a customized BFT
protocol. There are many similar literature works on modulization
design, and detailed information can be found in the corresponding
works, e.g., [16] [17] [299] [6].

VI. BLOCKCHAIN CONSENSUS ALGORITHMS

Blockchain as a distributed and decentralized database is a
chain of blocks in which each block contains a list of well-ordered
transactions. The process to reach an agreement among participants of
a blockchain network is complex and thus important. Consensus plays
a key role in most distributed systems, including blockchain. Most
existing protocols are designed to solve consensus problems under
various assumptions. With recent advances in blockchains, various
consensus protocols have been proposed and studied to reach an
agreement among participating nodes so that they can be applied to
different application scenarios. Byzantine fault tolerance protocol is
one of such protocols which can be used to resolve consensus issues
in the blockchain. BFT consensus protocols can be considered as the
classic consensus to establish an agreement even under Byzantine

replicas. Instead of discussing these classic Byzantine-based consen-
sus protocols (as shown in Section IV), this section discusses some
important consensus algorithms which specifically target blockchain
networks. We can collectively call them “PoX" (Proof-of-X), where
“X" is some measurable criteria and can be used as a proof in
blockchain networks.

A. PoX

Many existing PoX protocols are proposed for various applica-
tions. We will briefly discuss these general design principles.

1) Proof-of-Work (PoW): The most well-known consensus pro-
tocol for blockchain is the proof-of-work (PoW) protocol, which is
widely adopted in Bitcoin [5] and many other crypto-currencies. Due
to the popularity of Bitcoin, we also commonly call the PoW protocol
Nakamoto consensus, however, PoW itself has been proposed much
earlier than Bitcoin. The key idea of PoW was first proposed by
Dwork and Naor in 1992 as a mechanism to handle spam mails [311],
in which the email senders must first work on a mathematical
puzzle to show that they performed some computational work before
sending an email. And later, another system for fighting spam [312]
was independently proposed for Hashcash by Back in 1997. In
the Hashcash scheme, the email sender was required to compute a
computational puzzle by applying an SHA-hash on the content email
(including its recipient’s address and email itself) with some special
requirements, e.g., the hash must contain at least a certain number of
leading zeros. Due to the property of pre-image resistance of hashing
algorithms, the task can only be done by repeated tries to find out
some qualified random nonces to meet the leading zero requirements.
The key idea of Nakamoto consensus literally comes from Hashcash,
by replacing the SHA-1 hash with two successive SHA-2 hashes,
and demands that a qualified hash should below some target integer
value t. And this makes the difficulty of the puzzle adjustable, e.g.,
decreasing the target value t would increase the amount of “work"
to compute a qualified hash. Thus, by changing these pre-defined
conditions, the network can be very scalable and flexible to any
condition. In PoW of Bitcoin, the computing nodes typically are
called miners and the process to compute a valid hash is referred
to as mining. In Bitcoin, miners calculate hashes of candidate blocks
of transactions as a kind of proof, when one node finds the target
value, it would broadcast the block to the whole network and all
other nodes must confirm the correctness of the hash value. Once the
block is validated and gets confirmed, the mining node gets rewarded
with new coins, and all nodes append this new block to their own
chain [18].

Although the PoW algorithm provides high security and decen-
tralization, the function of mining and validating blocks wastes a lot
of energy, and its speed and success rate highly depend on the com-
putational abilities of the hardware performing the hash operations.
Solving the puzzle typically takes some time, which is not suitable for
large and fast-growing networks that require high throughput. Besides,
it is also subject to various attacks, e.g., chain forks, double-spending
attacks, 51% attacks, and mining centralization.

2) Proof-of-Stake (PoS): Compared to PoW, PoS protocols re-
place wasteful computations with useful “work" derived from alterna-
tive commonly accessible resources. The key idea of a PoS algorithm
is that the creator of a block is chosen by various combination
features, such as the amount of stakes and the ages of these stakes.
In general, PoS algorithms can provide some level of scalability. This
method does not require high computational resources for validating

67



any proof, which strongly depends on nodes that have the most
stake and the blockchain will somehow become centralized. More
specifically, the PoS algorithm randomly elects “leaders" from the
qualified stakeholders (such as the ones with minimal stakes in the
qualified group), then the elected leaders can have a chance to append
their generated blocks to the blockchain. In general, PoS has a
candidate pool which contains all qualified stakeholders (e.g., the
amount of stakes is larger than a threshold value) [1]. The leader
election process is a critical part of PoS, and the leader election
process can be either public or private. In a public leader election,
the result of the election process is visible to all the participating
nodes [313] [314], so that in a private leader election process, its final
result can be verified by all other participants simply by resorting to
publicly available information [315]. In general, the private leader
election process can resist DoS attacks since it requires candidates to
privately check if they were elected to propose the next block before
actually sending out their blocks, and this makes it too late to launch
DoS attacks. There are several recent PoS-based systems which have
proved secure, e.g., Ouroboros [314], Ouroboros Praos [315], and
Snow-White [313]. Ouroboros belongs to the class of publicly leader
elections, in which a random cluster of qualified stakeholders together
engage into a multiparty coin-tossing protocol to generate a random
seed. This random seed is then used as a pseudo-random function
to elect the leader among the qualified stakeholders. To guarantee
fairness, Ouroboros distributes rewards (e.g., from transaction fees)
among all participants no matter whether they were elected as a
leader or not. The participants in Ouroboros Praos independently
determine if they have been elected, so their system belongs to the
class of the private leader election. This is with the help of a verifiable
random function (VRF) to generate a random value. If the generated
random value is below some predefined value, it implies that the
corresponding participant is selected as a leader who has a chance to
broadcast its block (with proof of qualification) to the network. Snow-
White uses a Bitcoin-like mechanism to elect a leader, in which the
participants are required to compute a pre-image hash below some
pre-defined target. Each participant is only allowed to compute one
hash per time step with the help of a random oracle. Also, it considers
the amount of stake of the participants. One of the challenges in PoS
is that it is hard to trace and keep up to date the actual stake changes
on each stakeholder.

Although PoS provides some benefits compared with PoW, it is
subject to some new types of attacks, e.g., nothing-at-stake attack,
grinding attack, and long-range attack [316]. The nothing-at-stake
attack means a node has nothing at its stake while misbehaving, and
the node is not afraid of losing anything. As stated in [18], it does
not require too much effort to extend a chain, when forking happens,
some rational miners may engage to mine on each qualified forking
chain so that they increase the chance to get their blocks into the final
chain. One straightforward way to mitigate this kind of attack is to
introduce some penalty schemes to penalize the attempts to fork. The
grinding attack means a miner re-creates a block multiple times until
it is likely that the miner can create a second block shortly afterward.
In general, this kind of attack can be limited by utilizing an unbiasable
and unpredictable random number generator to generate randomness
so that a miner cannot influence the selection of the next leader. The
long-range attack means that an attack may actively bribe miners
to exchange their old private keys, and typically there is no cost or
little cost for bribed miners to sell their old keys to an attacker. Even
though these keys are old keys, they indeed had some value in the
past, and the attacker may use these keys to re-mine previous blocks,

which has some potential to re-write the whole block history of the
blockchain. In general, this kind of attack can be limited by using
some central checkpointing scheme, for instance, some entities can
actively declare old blocks are in the final state if sufficient time has
passed.

We should mention that PoS is not just one but instead a collection
of protocols. There exist many PoS alternatives, which require miners
to hold or prove the ownership of assets.

Delegated-Proof-of-Stake (DPoS): DPoS is based on PoS, in
which the nodes select representatives through voting to validate
blocks [317]. The number of representatives is limited and this
makes it possible to organize the network more effectively and each
representative can determine the adequate time to publish each block.
In general, it provides some important features, such as scalability,
energy efficiency, and low-cost transactions. However, this method
introduces a level of centralization, thus DPoS is more suitable for
private blockchains.

Proof-of-Burn (PoB): In PoB, miners have to burn some of their
already owned cryptocurrencies to get rewards, in which burning
means that a user is required to send some cryptocurrencies to
an “eater address" to receive rewards, e.g., by sending them to a
verifiably unspendable address [318]. The cryptocurrency sent to that
address is unrecoverable and no one can spend it again, so it is called
burnt and is out of circulation. Slimcode [318] implemented this
approach in 2014, which burns Bitcoin as a mining method. The
more coins a user burns, the more chances to find the next block.

Proof-of-Deposit (PoD): In PoD, miners are required to ‘lock’
a certain amount of assets, and these locked assets cannot be spent
during their mining process. In general, the locked assets in PoD are
a kind of proof that coins have been deposited into an account, which
typically is used for finance sectors. For example, Tendermint [238]
utilizes a similar mechanism, in which miners’ voting power propor-
tionately relates to the number of assets being locked.

Proof-of-Importance (PoI): In PoI, each node is assigned an
importance score which influences the node’s chance of getting a
small financial reward in exchange for adding users’ transactions to
the network. The NEM project [319] utilizes this scheme to solve the
incentive issues in PoS.

3) Proof-of-Elapsed-Time (PoET): PoET is based on trusted hard-
ware (e.g., the enclave in Intel SGX) to provide proof of these
“efforts" [320]. PoET consensus was developed in 2016 by Intel.
It provides an advanced tool for solving the computational problem,
namely “random leader election". In general, it requires the partici-
pants to wait some time in their enclaves, and the one with the shortest
time wins and elects as a leader. The proof typically is provided
by the enclave which has a tamper-resistant proof, called attestation.
This attestation, along with a new block, can be used to attest two
things: (1) it indeed has the shortest wait time, and (2) it indeed
waits the designated waiting time before broadcasting its block. Thus,
the PoET algorithm is a lottery-like system. Although, like PoW, in
PoET the participants must be equipped with some types of hardware
processors, it does not require processors to perform cryptographic
hash operations, an uses less power. Also, PoET allows the miner’s
processor to take a snooze or sleep and switch to another task for a
particular period, which increases its efficiency.

4) Proof-of-Capacity: In PoC, miners use the free spaces on their
hard disk to mine free coins. The success of voting new blocks

68



is mainly based on their own capacity and the actual amount of
disk space that they assign to the mining process. There are two
main application scenarios currently based on the PoC scheme:
PermaCoin [321] and SpaceMint [322]. In PermaCoin, participants
must store pieces of a large file, and the more a participant stores,
the more chance it has to add a new block. In general, there exists
one authoritative entity to sign and distribute this large file. Typically,
the file can be recovered by the participating node in case that the
owner of the file is shut down or fails. SpaceMint utilizes a consensus
scheme that is based on a non-interactive variant of PoC (namely
proof-of-space) to show the available space. One of the key problems
in PoC protocols is that it is subject to centralization. This is because
the participants are required to outsource some file storage provided
by an external authority.

B. Discussion on PoX

In PoX-based blockchain, forks may happen when two individual
participants successfully issue distinct blocks (on different transaction
lists) based on the same previous block. They need extra schemes or
rules to resolve this equivocation and get an agreement among all
participants. For example, in Bitcoin, forks (e.g., double-spending
attack) are settled by accepting the “longest chain" rule, in which a
longer chain represents the greater PoW effort that has been invested
into that chain. Based on the longest chain rule, with the time increase,
a final chain will be selected from forks, and thus the case of
double-spending can be settled. Also, most PoX schemes require that
more than 51% of ‘X’ is occupied by honest participants, otherwise,
the security of the whole network would be compromised. Another
common problem in PoX is that it is easy to form a mining pool
to aggregate resources and share rewards. However, this subverts the
feature of decentralization and introduces some level of censorship
if the pool manager behaves maliciously. This also requires some
extra techniques to mitigate it. For example, SmartPool [323] tries to
achieve a decentralized mining pool manage scheme with the help of
Ethereum smart contracts, in which the smart contract actively takes
the role of pool manager in a traditional scheme.

Technically speaking, PoX is not a decent consensus protocol,
whose mechanism is often used for determining the membership of
participants in a Sybil-attack-resistant fashion. Due to some historical
reasons, e.g., Bitcoins used PoW as a “consensus" protocol to build
a Bitcoin blockchain, we literally categorize them into consensus
protocols. For example, in a hybrid consensus (e.g., ByzCoin [241]
and Hybrid Consensus [248]), the decent consensus protocol (the
algorithm for agreement on shared history) is separable from and
orthogonal to the membership Sybil-resistance scheme (e.g., PoW).
Another example is the sharding scheme for blockchain [1]. Typi-
cally, a sharding scheme uses a Byzantine replicated protocol as its
consensus, with the help of PoX. Roughly speaking, both protocols
have different tasks in an overall sharding scheme. PoX is typically
used for committee formation to establish the committee members
and their corresponding identities, while BFT is used for the intra-
committee consensus, which is used within a committee to form the
blocks.

C. PoW vs. BFT Blockchain

Both PoX and BFT can be used as the components of a
consensus to achieve replication consistency in distributed systems.
BFT algorithms as a generic scheme to handle consistency provides
two main principles [324]: a) Non-equivocation (e.g., preventing

equivocating behavior of leaders so that each time only one proposal
comes out) and 2) Proposal-safety (e.g., replicas should achieve a
consistent state among all honest replicas). PoX and BFT achieve
these two replication principles in a different way, which results in
BFT having instant finality and PoX not having it. In general, BFT-
based blockchain offers good performance for a small number of
replicas, while when that number extends to large scale, e.g., hundreds
of replicas, BFT protocols are often subject to scalability issues. In
contrast, PoX-based blockchains offer good nodes scalability, but with
poor performance. In this part, we use PoW as a representative of
PoX, and make a comparison with BFT consensus. Following the
basic comparison of PoW and BFT consensus [19], we extend some
new features. Table II provides a high-level comparison for both
PoW and BFT when applying them as blockchain protocols. These
properties are not completely exhaustive, but it is enough to represent
both BFT-based and PoW-based blockchain families. In general, given
the inherent features of both BFT and PoW, it is not clear which
techniques are optimal for blockchain for many use cases when the
number of participating nodes ranges from a few tens to the level of
a few thousands [19].

Both PoX and BFT have their advantages and disadvantages, and
we can combine PoX with BFT as a hybrid solution. One target of
such hybrid solutions is to combine their advantages and overcome
their deficiencies. For example, PoX-based blockchain replication of-
ten suffers from a long-term deficiency in which there exists a risk that
a block will not be committed. This can typically raise many concerns
and risks, i.e., if an adversary may later obtain enough resources
(e.g., computational power) and redo all previous transactions. BFT
protocols can help to resolve these issues. Actually, one of the most
important advantages of BFT protocol to the blockchain is that it can
provide “instant finality", a property that a PoX protocol does not
achieve. That means, once a block is successfully committed, that
block is finalized and cannot be revoked. However, one big issue is
that the BFT replicated system works well only for a small number of
replicas. When scaling to a large scale (e.g., thousands of replicas),
it may come with some critical challenges [324].

Abraham and Malkhi [324] present several approaches to combine
both PoX and BFT techniques to overcome each other’s challenges.
The first approach works like Ethereum Casper [325] by setting
up a group of trusted validators. The validators then validate PoX
blocks later (e.g., after a certain amount of time or a certain amount
of block depth) by performing a BFT protocol, and only validated
blocks can be viewed as formally committed. The second approach
is to select a rotating committee by using PoX, and the selected
committee makes the final decision to append the block to the chain.
Several literature utilize this approach, such as Bitcoin-NG [244],
ByzCoin [241], and Hybrid Consensus [248]. A third approach, as
shown in Solidus [326], constructs a blockchain directly by using the
customized consensus and without involving any longest chain rule.
That means, the new block is generated solely via the underlying
consensus to append blocks to the chain. Also, there exist some
randomized sample schemes to select a sub-committee (e.g., the work
on scalable leader election [327]). However, such schemes require
hiding the committee selection process against a targeted attack (e.g.,
on the committee members). Algorand [121] utilizes both PoS and
VRF to secure the committee selection process, which can mitigate
the targeted vulnerability of committee members.

69



TABLE II. HIGH-LEVEL COMPARISION BETWEEN POW AND BFT PROTOCOLS AS BLOCKCHAIN CONSENSUS [19].

Pow Consensus BFT Consensus
Node Identity Management Open, fully decentralized Permissioned, knowing neighbors’ IDs

Consensus Finality Longest chain rule Yes
Scalability

(# of Nodes)
Excellent

(Thousands of nodes)
Limited

(Variarty from tens to hundreds)
Scalability

(# of Clients)
Excellent

(Thousands of clients)
Excellent

(Thousands of clients)
Performance
(Throughput)

Limited
(Chain forks)

Excellent
(Tens of thousands tx/sec)

Performance
(Latency)

High latency
(Multi-block confirmations)

Excellent
(Match network latency)

Tolerated Power of
an Adversary

≤25% computing power ≤ 33% voting power

Network Synchrony
Assumptions

Physical clock timestamps
(for block validity)

None for consensus safety
(Synchrony needed for liveness)

Correctness Proofs No Yes
Parallel Execution No Yes

Colluding Possibility Easily form centralized pool Hard

Common Attacks
Chain fork

(Double-spending, Sybil attacks)
Byzantine nodes

(Abitrary behavior)
Privacy-preserving Anonymous identity Hard to achieve

Common Application Scenarios Crypto-curriencies Industrial use cases

VII. CHALLENGES ON APPLYING BFT TO BLOCKCHAIN

Blockchain as a distributed and decentralized ledger technology
provides several key properties, such as decentralization, immutabil-
ity, transparency, and trustworthiness. However, this technology is still
in its infancy stage, in which blockchain technology faces multiple
challenges and problems to overcome.

A. Blockchain Challenges

Typically, the robustness and strength of blockchain highly de-
pend on the consensus algorithm that is used to get an agreement
among participants. This section lists some critical blockchain chal-
lenges in general, which in turn may affect the design of its consensus
protocol.

1) Vulnerability: In general, cybersecurity attacks theoretically
can threaten almost all types of consensus algorithms. And there are
also other special types of attacks and vulnerabilities for blockchain
protocols, e.g., double-spending attack, 51% attack, and Sybil attack.
These kinds of attacks can specifically be designed for both PoX and
BFT protocols.

a) Double-spending attack: A double-spending attack occurs
when a user tries to spend the same assets or resources twice or
more, which should be spent only once in practice. This could
happen when an attacker attempts to create a transaction and include
that transaction into a block, however, after some time, the attacker
constructs a conflicting transaction (using the same assets of its first
transaction) and pushes this conflicting transaction into a new forked
block. This attempt will try to revert to the transaction previously
made. That means, the attacker already obtains the result of the first
transaction before the majority declare that the second transaction is
invalid. The attacker tries to extend the forked branch of blockchain
until the forked chain accepts the conflicting transaction as a correct
one [328] [329]. Various research efforts have been attempted to

mitigate the double-spending attack, however, this attack cannot be
completely prevented and it can occur at any time [330].

b) 51% attack: In a blockchain network, a minimum of 51%
of the nodes is required to approve and validate any transaction.
This type of attack was first exploited by Bitcoin’s PoW blockchain
network. Theoretically, the 51% attack is not avoidable [331], which
means it may not be able to be completely prevented. When an
attacker has the ability to control and manage more than 50% of
resources in the blockchain system, it has the ability to perform
some malicious activities, such as double-spending or preventing
other nodes’ progress. In general, the attacker does not require that
it always have more than 50% of the resources of the network, and
the attacker can temporarily use these resources (e.g., via renting
or bribing other nodes) to launch an attack. Practically, when we say
51% attack, it may specifically target a PoX consensus protocol. BFT
consensus protocols are also subject to this kind of attack, e.g., in the
case that more than 1/2 of replicas are Byzantine.

c) Sybil attack: In a Sybil attack, the attacker tries to create
a number of fraudulent or fake identities, which are used to affect the
correct functioning of a network. These identities appear to be unique
nodes that are in fact in control by the attacker, and are used to gain
some voting power (if behaving benignly) or broadcast some fake
message (if behaving maliciously). For example, in a generic BFT
protocol, we typically assume all replicas are the same and only put
some constraints on the ratio of faulty replicas in the total number of
replicas. Thus, it is easy to launch a Sybil attack. A successful Sybil
attack can grant the attacker disproportionate control over the network
or surround an honest node and try to influence the information
reaching it, which further influences the blockchain. Sybil attacks
are typically hard to identify and prevent. For blockchain, there are
some counter approaches to prevent them, e.g., 1) increasing the cost
of creating a node, 2) requiring some type of trust, and 3) giving
unequal power to the identities. Each approach has its own advantages
and disadvantages, and there is no “one-fit-all" solution. For example,

70



for increasing the cost of creating a node, it is a challenge to find the
ideal cost for the identity creation without restricting normal nodes
from joining the network. The approach of requiring some type of
trust may involve a centralized scheme, which obeys the decentralized
design principle of blockchain. And the approach of giving unequal
power to the identities may make the system a meritocracy instead
of a pure democracy and may not be interesting for new users [332].

2) Scalability: The key features of the blockchain (e.g., decentral-
ization and immutability) require that every full node store a full copy
of the blockchain; however, this comes at a cost of scalability. The
scalability issue in blockchain limits its wide usage in large-scale
networks. Typically, scalability can be evaluated by the throughput
(e.g., measured by transactions per second) against the number of
nodes and the number of concurrent workloads [333] [334]. In the
current design, many blockchain systems are still suffering from
poor throughput. Scaling blockchain has become an active research
area, for example, via increased block size [335] and sharding
techniques [1]. Blockchain scalability issues are still an open research
area, and many different initiatives and efforts in recent research
are aimed at improving blockchain scalability, from side chains to
sharding techniques.

In general, these efforts to address the scalability problems can
be roughly categorized into two categories: storage optimization of
blockchain and redesigning blockchain structure [336]. In storage
optimization, old transactions are deleted from the network, as it is
not necessary for network nodes to store all transactions to validate
a transaction and the recent ones have more value [337]. The work
on Chainsplitter [338] belongs to this category. Also, a lightweight
client can also benefit from this scheme, without involving large
communication to transmit these old transactions. For redesigning
blockchain, the blockchain can adopt different structures, such as side
chains and sharding, to parallel the process of transactions. In general,
parallelism can handle the scalability issues in blockchain, but, its
security may be weakened. Thus, it is often necessary to evaluate the
trade-off between scalability and security.

3) Privacy Leakage: In general, it is hard to guarantee transac-
tional privacy in public blockchain as all transactions must be publicly
accessible and visible. Similar to security, blockchain technologies
have some mechanisms for preserving a certain degree of privacy
for transactions recorded in blockchain (e.g., via anonymous identity
technology). However, these adopted privacy-preserving technologies
in current blockchain systems are not robust enough. For example,
attackers can track the user’s IP address [339], and a privacy breach
can occur by drawing interference based on a graph analysis of
network nodes with which a user transacts [340] [341]. A better
solution for preserving privacy in blockchain would be in a form
of decentralized record-keeping that is completely obfuscated and
anonymous by design. Several techniques can be used to mitigate pri-
vacy issues in blockchain, such as a ring signature [342] and address
mixing [343] [344]; however, when applying these techniques directly
to different domains, they are also subject to other critical issues
(e.g., resource constraint issues in performing complex computations
in IIoT devices).

B. Integrating BFT to Blockchain

State-machine replication with BFT bring many advantages for
both distributed and decentralized systems. BFT protocols can nat-
urally be integrated into blockchain as its consensus protocol, tak-
ing the advantage of instant finality. Compared with PoX-based

consensus, once a block under BFT consensus is committed, it
can never be revoked, which is different from probabilistic finality
(e.g., the inverse resistance relying on the deep on the chain). And
modern BFT SMR variants already have achieved very low latency
and high throughput, especially in the common and failure-free
cases. Although BFT protocols have been more mature and efficient,
there still exist some challenges when applying them to blockchain
scenarios [18] [345] [324]. For example, the permissionless model of
PoX allows them to naturally fit a much larger set of replicas, while
scaling BFT-based solutions (e.g., to hundreds or even thousands of
replicas) raises some new challenges. Instead of providing detailed
and quantified analysis on BFT protocols, this section provides some
discussion on integrating BFT into the blockchain, from high-level
perspectives.

1) Permission Management: BFT protocols in nature are subject
to scalability issues, and many recent scalable BFT-based blockchain
protocols have been proposed under different assumptions, such
as RSCoin, Omniledger, RapidChain, and Chainspace. Essentially,
these protocols employ traditional Byzantine consensus protocols
for scalability with the help of sharding technologies [1]. Although
these protocols achieve high throughput and low latency, they are
inherently in ‘closed’ settings, in which replicas typically have stable
and authenticated channels for communication, and only authorized
members can participate in the construction of the blockchain. The
consensus protocol in their prototypes cannot accommodate open
participation of replicas and are more vulnerable to Sybil attacks.
Also, some scalable protocols have synchrony assumptions on mes-
sage transmission to achieve the features of safety and liveness.
Some newer BFT protocols, e.g., HoneyBadgerBFT, try to include
a randomized consensus algorithm to achieve these features in an
asynchronous scenario. They still do not resolve the issue of the
need for a ‘closed’ group with strict permission management. And
this prevents them from being used in a permissionless blockchain
(like the case of PoW consensus). Also, the communication and
computational overheads in these randomized BFT protocols are
much higher than that of deterministic ones. It is still an open research
problem for Byzantine consensus protocols under the open group
participationship.

2) Identity Management: For some BFT protocols (e.g., without
a digital signature), it is possible that malicious members create some
spoofed messages to fake these messages generated from correct
members and try to bias the consensus process. In general, BFT
protocols apply permission and identity management to prevent this
from happening. For example, a typical BFT replication system as-
sumes point-to-point and authenticated channels between all replicas,
with some mechanisms to track committee members and their keys
(i.e., public key). However, tracking membership and key distribution
in dynamic permissionless committees is a challenging task, which
makes it difficult to adopt in an open blockchain. Although there
exist some naive solutions, e.g., all replicas periodically broadcast
their identities to the entire network, this typically results in O(n2)
communication complexity. Some approaches [230] provide a special
committee to offer directory services to new committee members,
however, this static committee will undermine decentralization, and a
decentralized discovery committee will suffer heavy communication
complexity. Thus, adopting the BFT consensus protocol into the
blockchain requires resolving the issues in identity management.

3) Primitive Management: Most existing mature blockchain
projects are still based on traditional BFT protocols, e.g., BFTSmart

71



library, with message complexity O(n2) (where n is the number
of participating nodes). Practically, using some hardware or crypto-
graphic primitives can effectively reduce this message complexity. For
example, ByzCoin leverages a scalable collective signing scheme and
communication trees to reduce its common case consensus to O(n).
Some consensus protocols are leveraging trusted platform modules,
e.g., the enclave of Intel SGX, to create secure hardware execu-
tion environments. This essentially can provide a secure execution
environment on ordering transactions, which can further reduce the
number of communicated messages, without compromising safety and
liveness. Although these primitives can effectively improve commu-
nication efficiency, they put some extra burdens and costs on replicas.
For example, some replicas are lightweight, and not all replicas can
afford these novel and expensive primitives.

VIII. DISCUSSION AND FUTURE DIRECTIONS

This section presents some discussion on applying BFT protocols
to blockchains, and provides some future directions.

A. Choices on Paxos vs. BFT

Paxos is a well-known consensus protocol, which can achieve
an agreement under crash failures [52]. Originally, it was proposed
to circumvent the FLP impossibility. In general, Paxos can forgo
progress under temporary asynchrony, while when the system goes
back to synchrony, it continues to work and keep the system con-
sistent. By forgoing the process, Paxos keeps the system consistent
during asynchronous periods. Also, it can tolerate c crash faults out
of 2c + 1 replicas. There are three types of replicas in a classic
Paxos protocol, namely, proposers, acceptors, and learners. And they
run in a sequence of ballots, which is different from the rounds in
BFT protocols. Compared with BFT, Paxos is much simpler. The
replicas do not have to go through rounds, and piggybacking more
than one round and role at once, efficiently eliminates most of the
communication overhead. The key idea behind Paxos is that the
replicas do not perform operations arbitrarily, which means they are
either honest or crashed. Also, there exist several derivatives of Paxos,
including multi-Paxos [346] and fast-Paxos [136]. Even though these
derivatives can achieve the same fault tolerance rate (i.e., c out of
2c+ 1), they in general are more complex. For example, multi-Paxos
protocols require a repeated application to run Paxos, and this would
increase the complexity of the design. Besides, there are many Paxos-
based projects for blockchain applications, e.g., Raft and Tendermint.
Raft consensus is based on Paxos, whose basic idea is that nodes
collectively select a leader and the rest of the nodes become followers.
The leader is used to maintain the consistent state, e.g., via state
transition logs, across its followers.

Crash faults typically are easy to detect and tolerate, while
Byzantine faults may behave arbitrarily which is indistinguishable
from correct replicas. For blockchain applications, Byzantine replicas
have more power to bias the consensus protocol, and maintaining con-
sensus is vital to a blockchain network [347]. From this perspective,
it is better to apply BFT consensus to the blockchain. However, for
some specific replicated systems, such as datacenters, it may be good
to apply Paxos-based consensus protocols, due to their simplicity.

In general, classic Paxos (or more general CFT) and BFT
explicitly model machine faults only, and they can be combined
with an orthogonal network fault model (i.e., synchronous model
and asynchronous model). Thus, the scope can be roughly classified

into four categories [10]: synchronous CFT [11] [25], asynchronous
CFT [25] [52] [12], synchronous BFT [20] [13] [30], and asyn-
chronous BFT [15] [14]. According to different blockchain applica-
tions, the system designers can choose its right consensus protocols.
Besides, there exists some hybrid fault models, e.g., XFT [10],
Byzantine Paxos [210], and heterogeneous Paxos [348], to handle
both CFT and BFT.

B. Hybrid Fault Models

Byzantine fault model makes consensus protocol inherently dif-
ficult to develop. Typically, a BFT system may assume a powerful
adversary or harsh network conditions, or even combine both, which
comes with a cost on complexity and overhead to design a well-
replicated system [6]. However, some designers have observed that
it is not worth designing such Byzantine replicated systems for
some secure and reliable systems, e.g., the use cases of datacen-
ters [310] [234]. And some recent works have moved to hybrid fault
models [349] with weaker guarantees, e.g., Byzantine replicas only
accounting for a very small portion in all faulty replicas, to achieve a
practical implementation. There are several literature works on these
hybrid fault models, e.g., UpRight [198], VFT [234], and XFT [10].
Upright separates crash faults from incorrect behaviors, and each
faulty type has an upper boundary. Its replicated system has fewer
replicas as not all faulty replicas would perform incorrect behavior.
VFT further weakens this hybrid model aiming to minimize the
number of replicas in the system, with the assumption that there exists
a well-organized communication graph among replicas. However, if
this assumption does not hold, the system may develop unsafe or
unavailable conditions. Similarly, XFT also relies on a hybrid fault
model, whose faults include crashed faults, incorrect behaviors, and
partitioned replicas. In general, these protocols can work well under
some relatively secure and predictable environments.

Under hybrid fault models, trust plays an important role to get
replicated systems to work well. In general, a trusted system equips
a small trusted computing base [350] which makes it possible to
identify incorrectness. A malicious replica may have the ability to
operate on untrusted components, but does not have the ability to
control trusted components. With the advances of modern processors,
it is better to implement the trust parts in dedicated hardware
modules, such as trusted platform module (TPM) [351] [81], Intel’s
SGX [352], and ARM’s TrustZone [353], to provide trusted execution
environments. Also, there are some solutions to establish trusted
parts in software, e.g., via the proxy [354], a multicast ordering
service [355] [16], or a virtualization layer [304] [356] [303]. In
general, trusted components can ensure replicas are recovered even
if they are compromised [15]; also they can be used to prevent a
faulty leader from successfully performing equivocation. Thus, trusted
components, either in the form of hardware or software, offer some
level of trustworthiness under the hybrid fault models, which can help
replicated systems to reach a consensus with fewer required replicas.
Also, this hybrid fault module is more practical in some application
scenarios, such as datacenters and permissioned blockchain systems.

C. Liveness in Consensus

A BFT consensus protocol typically makes progress in a sequence
of views, each with a designed leader to drive the whole consensus
process. Liveness is one of the two key properties (w.r.t. safety
and liveness) that consensus wants to achieve, which is used to
ensure that a transaction sent to all honest validators will eventually

72



be executed. Historical reasons have made researchers pay more
attention to safety and less attention to liveness, e.g., PBFT provides
an explicit safety proof and its liveness is treated via a non-trivial
scheme. However, achieving the liveness of BFT consensus is no
less challenging than its safety [357]. The result of FLP impossibility
makes it impossible to ensure both safety and liveness when there
exist faulty replicas under asynchronous network settings. And most
existing BFT consensus schemes target guaranteeing safety in all
scenarios (e.g., both synchronous and asynchronous settings), and its
liveness can only be ensured during some synchronous periods. One
key observation to achieve liveness is to make all correct replicas
stay on a view with a correct leader, so that the leader can have
enough time to make a decision. In this process, the view leader
plays a key role to make the decision. However, if a decision is
not eventually reached, e.g., due to timeout or a malicious leader, the
correct followers together switch to the next view leader and continue
the consensus process.

Theoretically, these consensus protocols can achieve liveness,
with the assumption of some unknown Global Stabilization Time
(GST). For example, after some GST period, the network may go to
a period of synchrony, e.g., with a bounded but unknown constant
message delay. However, most existing work claiming a liveness
guarantee fails to provide a concrete value (e.g., latency) on this
bound to make a decision. Thus, in practice, as the communication is
asynchronous, the participants cannot return at the exact same time in
all processes. This makes the system subject to attacks. For example,
if some correct processes are still at the beginning of their round while
an adversary observes the result of other participants for the same
round, then the adversary can prevent progress among the correct
processes by controlling messages between correct processes and by
sending specific values to them. Even if a correct process invokes
some correct results before the Byzantine process, the Byzantine still
can prevent a correct process from progressing [358].

In the literature, there exist some works which suggest relaxing
the liveness issues under various network conditions. For exam-
ple, Abraham et al. [270] use the concept of clock synchroniza-
tion [359] [360] to achieve a “view synchronization", in which each
correct replica can access hardware clocks with reliable and bounded
drift on time. The HotStuff protocol [284] utilizes a component
called PaceMaker to achieve view synchronization and advance
progress, but it fails to provide a detailed specification on how to
achieve this functionality. Bravo et al. [357] presents a similar view
synchronization scheme to provide a wrapper for the functionality
of BFT consensus procedures, and it provides formal specification
only under partial synchrony. Although they made much progress on
releasing the liveness of BFT protocols, from a high-level perspective,
there is still no practical live Byzantine consensus working under fully
asynchronous environments like the Internet. Thus, there is a long way
to go getting a safe and live BFT consensus protocol.

D. Privacy in Consensus

When mentioning the term “privacy", we typically refer to its
meanings at the application level instead of in an abstract system
level. For instance, we can enhance privacy in blockchains, while it
is hard to enhance privacy on consensus protocols. As we discussed
in Section V, BFT consensus protocols have stages of agreement
and execution. In the agreement stages, they can utilize some level
of obfuscation without revealing the information of requests, e.g.,

using agreement on sequence numbers. However, during the ex-
ecution stage, accessing the requested information for verification
purposes cannot be avoided. This presents huge challenges to privacy-
preserving different aspects, e.g., clients, clients’ requests, and their
meta-data. Practically, it is hard to achieve privacy-preserving in
BFT consensus protocols. However, privacy can be achieved at the
application level, e.g., via the property of “anonymity". And, we
should note that some low level pseudonymity for privacy-preserving
can be easily circumvented by tracking attacks [361].

In general, a permissioned system provides some level of
protection of privacy by restricting its participants. For instance,
BigchainDB [362] restricts the set of core participants in the con-
sensus to a small vested set, which are assumed to be trusted on
both integrity and liveness of systems, and also can be trusted for
keeping secrets (privacy) [18]. However, this scheme itself cannot
prevent information leakage. For example, since the information is
replicated, any participants may violate the property (i.e., semi-honest
or malicious participants), and there is no practical scheme to detect
this kind of violation as it just leaks secrets without performing
malicious behaviors. Also, relying on a permissioned ledger for pri-
vacy forces the whole system to rely on closed groups, which makes
the design choice hard to change. There are indeed some protocol-
level techniques to provide privacy-preserving, e.g., non-interactive
zero-knowledge proof (zk-SNARK) [363] or smart contracts [364].
However, protocol-level techniques for privacy-preserving are only
used for the specific context of applications.

Ideally, privacy-preserving systems wish to disclose little informa-
tion to others for verification purposes. For example, for blockchain,
each replica may want to agree only on the order of transactions
for execution, and the creation and execution of these transactions
take place off-chain, with each party having full access to its own
information [18]. In general, to achieve privacy-preserving in a
complex blockchain system with desired properties, there are some
remarks to follow, which also suit blockchain security [365]. 1)
No single technique fits all for the privacy of blockchain, and
the appropriate privacy techniques should be chosen based on the
privacy requirements and the context of applications. In general, the
combination of multiple technologies exhibits more efficiency than
solely relying on a single technology. 2) No technique has no defects
or is perfect in all aspects, and new techniques may cause or involve
some new forms of attacks. 3) Privacy is not cost free, and there
typically exist some level of trade-offs between privacy and system
efficiency. The system designers must achieve a balance between
privacy and other system properties.

E. Gossip Protocols

Gossip protocols are typically used to distribute and share infor-
mation between different parties within a network, and their main pur-
pose is for information dissemination and aggregation among many
nodes. Compared with broadcast or multicast protocols, one major
advantage of gossip protocol is its logarithmic mixing time, in which
it can propagate a well-organized information to all peer nodes only
in O(logn) time, where n is the number of peers [366]. Also, gossip
protocols are very simple and straightforward, where all peers have
the same piece of code to run. All these features are ideally suitable
for BFT protocols to lower the communication complexity. A simple
gossip protocol typically consists of three processes in series, namely,
peers selection process, data exchange process, and data processing
process [367]. In general, each node in a gossip protocol simply

73



forwards all its received messages to a set of randomly selected peers.
Under this simple design, it can be adapted to large-scale networks
with guarantees of fast and reliable information dissemination [368].
In general, gossip communication protocols can be used to manage
inconsistencies that arise in distributed systems, which are simple
to implement and highly resistant to failure. A replicated system
can converge to a consistent state using a gossip protocol, despite
temporary partitions and process failures [369].

Most existing BFT consensus protocols in blockchains assume a
peer-to-peer communication channel, and their analysis on communi-
cation complexity is based on this assumption. However, in a practical
distributed network, pure peer-to-peer communication is rare. Besides,
when applying BFT to a blockchain system, a major problem is
that membership is closed. Gossip protocols can be easily adopted
to open and dynamic networks, and membership information also
can be gossiped along with other messages [370]. An ideal gossip
protocol would send fewer messages per second and the messages
sent over the network can be quite large, depending on the number of
nodes. However, due to its intrinsic randomness on peer selection and
variety on message transmission latency, it is hard to estimate an upper
boundary for the duration of the protocol. A practical design often
requires membership to be closed for the duration of the protocol,
which limits its application scenarios [371]. In the literature there
exist several recent blockchain works utilizing gossip protocols for
message dissemination (with the underlying BFT protocols), e.g.,
Algorand, OmniLedger, and RapidChain. However, these gossip-
based protocols are highly redundant and random, as each node may
receive the same message from distinct peers multiple times. This
would definitely involve more transmitted messages and degrade the
network performance. Thus, efficient gossip protocols are required in
dissemination networks.

Many existing blockchain protocols rely on some customized
gossip protocols to share and exchange information (e.g., transac-
tions, blocks, and memberships) among participating parties [372].
In general, gossip protocols can ensure that each party receives all
messages with a high probability (instead of in a deterministic way).
There exist several critical questions on utilizing gossip protocol to
reduce communication complexity. Gossip protocols are inherently
susceptible to data corruption, which means the gossip process is
subject to Byzantine attack. For example, it is necessary to address the
issue of when and how participating nodes choose to end up agreeing
on a block. Also, involving incentive mechanisms for message passing
in the construction of blockchain makes it impossible to prove which
participants (and in what level of efforts) have actively contributed to
the gossip protocol. Even some trusted hardware platforms (such as
Intel SGX) can help, but this will in turn increase the deployment cost.
Currently, a gossip-based blockchain is just a preliminary protocol,
and many design spaces for blockchains need to be explored. Also,
when adopting gossip protocols to permissionless scenarios, extra
efforts (e.g., security analysis and refinement) will be required to
ensure that gossip-based blockchain solutions are safe and trusted for
special-purpose applications (e.g., healthcare systems with privacy-
preserving and industrial infrastructure with cyber-security) [373].

F. Scalability

Most BFT protocols are limited in their scalability, either in terms
of network size (e.g., number of nodes) or the overall throughput. The
design space for improving them is vast. We will use Practical BFT
(PBFT) [4] as an example to explain BFT scalability. The original

PBFT protocol requires at least n = 3f + 1 nodes to tolerate up
to f Byzantine faults. It has been shown not to scale beyond a
dozen nodes due to its quadratic communication complexity [333].
Typically, scaling protocols for BFT focus on either reducing the
number of nodes required to tolerate f Byzantine faults [144], [154],
or reducing the protocol’s communication complexity to allow larger
network sizes [241].

a) Reducing the number of nodes: To tolerate f Byzantine
nodes that can equivocate in a quorum system like PBFT, quorums
must be intersected by at least f + 1 nodes [72]. Consequently,
if a BFT protocol requires n = 3f + 1, its quorum size is at
least 2f + 1. The smaller n means the lower communication cost
incurred in tolerating the same number of faults; it also means that
for the same number of nodes n, the network can tolerate more
faulty nodes. One way to reduce the number of nodes is to randomly
select a small set of consensus nodes, as a committee, to run a
consensus process. A smaller consensus committee can lead to better
throughput, as a smaller committee attains higher throughput due
to lower communication overhead. Sharding technology reduces the
consensus process within one shard. However, in this scenario, the
security of each shard, e.g., the ratio of the number of faulty nodes
to the size of a shard, will be a top concern. It can be mitigated by
utilizing some mechanisms, e.g., the epoch randomness, to guarantee
a “good majority” for each shard with a high probability [230].

Another way to reduce the number of nodes is to utilize tech-
niques to get down the n from 3f + 1 to 2f + 1. Those tech-
niques are mainly based on leveraging external components (e.g.,
the trusted hardware) or lessening the system models. For example,
BFT-TO [374], a hardware-assisted Byzantine replicated protocol,
demonstrates that it is possible to use only 2f + 1 replicas to
tolerate f Byzantines with the help of trusted distributed com-
ponents. Similarly, there exist a few other algorithms to achieve
the consensus with less replicas, such as A2M-BFT-EA [144],
MinBFT [81], MinZyzzyva [81], EBAWA [351], CheapBFT [161],
and FastBFT [155]. Besides, there also exist some other work to
achieve the same purpose by lessening the system models. For
example, the work in [375] improves the BFT threshold to 2f + 1
by utilizing a relaxed synchrony assumption.

b) Reducing communication complexity: PBFT protocol has
been perceived to be a communication-heavy protocol. There is a
long-standing myth that BFT is not scalable to the number of partici-
pants n, since most existing solutions incur the message transmission
of O(n2), even under favorable network conditions. As a result, exist-
ing BFT chains involve very few nodes (e.g., 21 in [376]). Even with
reduced network size, PBFT still has a communication complexity of
O(n2). Byzcoin [241] proposed an optimization wherein the leader
uses a collective signing protocol (CoSi) [242] to aggregate other
node’s messages into a single authenticated message. By doing so,
each node only needs to forward its messages to the leader and verify
the aggregate message from the latter. In this way, by avoiding broad-
casting, the communication complexity is reduced to O(n). Besides,
there is some work [377] on utilizing trusted execution environments
(TEEs) (e.g., Intel SGX [378]) to scale distributed consensus. TEEs
provide a protected memory and isolated execution so that the regular
operating systems or applications can neither control nor observe the
data being stored or processed inside them [379]. Generally, trusted
hardware can only crash but not be Byzantine. However, introducing
trusted hardware into consensus nodes is expensive, and specific
knowledge is needed to implement the protocol. Similarly, the security

74



in this category can be mitigated by using cryptographic primitives,
such as threshold signatures [274] [380].

G. Performance Optimization

With the recent growth of blockchain technology and its ap-
plications, a variety of complex BFT consensus algorithms have
been developed with diverse properties. Surprisingly, even after a
decade of development, the main use cases for blockchain still lie
in financial sectors, especially for crypto-currencies. Currently, there
has been a pretty slow adoption for both blockchains and BFT in
practical applications [381]. One obvious reason is its slow throughput
compared with prior works [382] [383] [384] achieving a throughput
of the order 100K transactions per second. The low throughput of
the blockchain (or BFT) limits its development and wide adoption.
Thus, it is critical to find out some important criteria that affect the
performance of these algorithms. Instead of discussing the properties
from a high-level perspective, e.g., scalability, safety, and liveness,
we here identify some important performance criteria from a user
perspective, e.g., throughput and responsiveness. These performance
criteria highly affect the user experience, and thus the market cap
of usage. To be consistent with blockchain, we interchangeably use
the terms transactions in blockchain to represent the requests in the
consensus protocol.

In general, the throughput of a consensus algorithm is measured
by the maximum rate of agreement on values done. It means, the
maximum throughput is the maximum rate at which the blockchain
can confirm requests, which can be roughly measured by transaction
per second (TPS). However, if using batch processing, it also relates to
the maximum batch size. TPS is defined as the number of transactions
executed per second, which is the number of transactions that occur
in one second through an information system. And, TPS measurement
can be further used to calculate the performance of systems that
handle routine transactions and record-keeping jobs, as well as to
determine the speed of the platform in the execution of transactions.
Typically, the higher the number of TPS, the faster the transac-
tions will be executed, validated, and confirmed on the platform.
Besides TPS, throughout also depends on other parameters, such
as agreement latency, verification latency, and patch size. According
to the modulated consensus protocol, consisting of agreement and
execution phases (See Section V), agreement latency and execution
latency include the time spent in the agreement and execution stages,
respectively.

We consider a consensus protocol as responsive protocol if it
commits and responds to clients’ requests at the level of the actual
network latency, without being thwarted by pre-defined system param-
eters [247]. From a user perspective, responsiveness can be literally
understood as the time taken to confirm their transactions without
caring about the underlying processes. For example, original Bitcoin
may take 10 mins to get confirmed, and takes more than one hour to
get the final confirmation. Also, without considering responsiveness,
it may cause serious worries of performance degradation. As seen in
the findings of Dolev-Strong [13], almost all deterministic protocols
definitely involve some delay on confirmation time even under the
synchronous network. In general, asynchronous consensus protocols
can take some advantages of responsiveness without any form of
timing assumptions [112]. This is because asynchronous protocols are
responsive by design, whereas synchronous protocols are not [258].
Some modern asynchronous consensus protocols can achieve their
responsiveness in seconds under normal cases (e.g., without faulty

nodes or faulty leader [284]); however, when there exist faulty
nodes or when applying to large-scale geo-scale distributed systems,
their responsiveness greatly degrades. Practically, geo-scale consensus
typically distinguishes local and global communication and, using
topological information, all replicas in a single region can be grouped
into a single cluster [385]. By doing so, some level of optimistic
responsiveness can be achieved. Thus, there is still a long way to go
to improve consensus performance.

Besides, there exist other promising techniques to optimize per-
formance, e.g., via parallelization. The main idea of parallelization is
to allow non-conflicting transactions to execute in parallel, and resort
to a fork resolution scheme to get a final consistent block. Many
BFT researches have been extensively exploring the idea of parallel
replication, leveraging parallelization of execution of independent
requests [300] [386].

H. Practical Implementation

Due to the low performance of BFT consensus processes in the
aspects of throughput and responsiveness, currently, it does not catch
public perception and BFT-based blockchain applications show a slow
adoption. Even with several decades of developments, few of them
have been applied to practical projects, and the popularly deployed
BFT consensus protocols in blockchain are still PBFT and BFTSmart.
For example, Hyperledger Fabric utilizes PBFT variant (Apache
Kafka) [86] as its consensus, and Hyperledger Indy utilizes Redundant
BFT (RBFT) [165] as its consensus. The industry-grade permissioned
blockchain systems only select a group of users (some of which may
not be trusted) to participate, e.g., Hyperledger Fabric [387]. However,
the throughput of current permissioned blockchain applications is still
of the order of 10K transactions per second [387] [388] [389], and
the case for permissionless is much less than permissioned cases.
Several works [333] [59] [389] [284] blame the lower throughput and
scalability of blockchain on its underlying BFT consensus protocols.

As pointed out by Gupta [381], there exist several factors to affect
BFT large-scale adoption, namely, single-threaded monolithic design,
successive phases of consensus, decoupling ordering, and execution,
strict ordering, off-memory chain management, and expensive crypto-
graphic practices. All those factors can highly affect the performance
of a BFT-based blockchain system, further affecting its wide adoption.
Currently, besides blockchain applications in finance (i.e., crypto-
currencies), there still lack applications in other application areas,
especially in industrial use cases, e.g., Internet of Things (IoT) and
industrial IoT, public and social services. IoT typically connects
physical things to the Internet and provides services to the end-
users. Its killer applications include RFID technology, smart homes, e-
health, etc. Industrial IoT typically targets industrial sectors, including
smart manufacturing, supply chain, smart grid, food industry, etc. The
public and social services are more targeted to life-related matters,
including land registration, energy-saving, education, etc. All those
application domains can benefit from blockchain, and it is promising
to apply blockchain into these domains. In general, when considering
applying blockchain to these applications, BFT protocols provide
more benefits than PoX protocols, such as instant finality. Thus, the
first priority is to design and implement some customized and efficient
BFT protocols. There is still a long way to go to achieve that.

I. Other Topics

Blockchain has shown great potentials in both industry and
academia, and BFT-based consensus protocols play a very important

75



role in successfully building a blockchain ecosystem. To successfully
adopt BFT replicated systems into the blockchain, it also needs to
incorporate other technologies, e.g., smart contract, big data analytics,
AI, to facilitate more promising features. Most of these technologies
can be considered as a wrapper to pre-process the raw data before
submitting requests to BFT replication systems. In general, these
kinds of technologies do not affect the progress of the BFT consensus
process, however, they indeed can provide some optimization. For
example, big data analytics and AI can help the load-balancing on
requests when multiple consensus groups exist at the same time.

In general, a smart contract is a digitized transaction protocol that
can execute the terms of contracts automatically once the specified
clauses are met [390]. When applied to the blockchain era, a smart
contract is a code fragment that can be executed by participating par-
ties automatically, which can significantly reduce the involvement and
intervention of human beings. With more and more smart contracts
emerging, it helps to extend blockchain from current financial cases
into many new areas, e.g., commercial IoT and industrial IoT [36].
Meanwhile, a smart contract can be modeled as a state machine,
whose consistent execution across multiple nodes in a distributed
environment can be achieved using SMR [19]. However, one critical
thing needed to carefully take care of is safety and security, as smart
contracts (as a piece of code) are subject to various attacks, e.g., DAO
attack in 2016 [391].

Blockchain can also benefit from big data, e.g., data management
and data analytics. For the use cases in data management, blockchain
can be used as a medium to record important data with guarantees on
the immutability of these data. However, less important data can be
stored off-chain and provide an index to the main blockchain. Also,
blockchain can be used for data analysis by exploring the transactions
on the blockchain. For instance, by analyzing blockchain transactions,
some common patterns might be extracted to predict users’ behavior.
Using these patterns, a blockchain system may eventually work more
efficiently. Further, game theory is a powerful tool for strategic
decision-making, which also can be useful for blockchain. It can
be used to optimize the utility of each participating party while
considering the interactions among parties [392]. However, the game
theory model often assumes the deviating coalitions are rational to
optimize their utility, which is different from a malicious model which
can deviate parties arbitrarily [324].

AI technologies also could help blockchain to solve many chal-
lenges. When applying smart contracts into the blockchain, there
always must be an oracle to respond for determining whether the
specified conditions are met. And, in general, this oracle is controlled
by a third party [336]. For instance, some chaincodes provided in
HyperLedger Fabric can be only operated by a trusted entity. We can
apply AI technology to create an intelligent oracle, which is in a
decentralized version and no single party has the power to control it.
This oracle can learn from historical data and train itself, which makes
the smart contract smarter. AI techniques, such as machine learning
algorithms, are powerful for analyzing and optimizing blockchain
operations. Combining these two technologies can be a game-changer
for the next generation decentralized Internet.

Besides, there are some other interesting research topics, e.g.,
testing technology to evaluate the efficiency of both BFT protocols
and blockchain, schemes to prevent malicious replicas collaboration
or centralization. There is still a long way to go for both BFT
consensus protocols and blockchains.

IX. CONCLUSION

Within recent years, the researches on BFT consensus have a
dramatic surge partially due to the emergence of blockchain. This
paper presents a Systematization of Knowledge for the existing efforts
on BFT consensus protocols. We carefully studied the selected BFT
protocols and tried our best to provide a comprehensive review with
detailed analysis. This paper can serve as a starting point for exploring
consensus in the areas of both BFT and blockchain. Based on what
we observed and learned, we discussed opportunities and challenges
when applying BFT protocols into the current blockchain design.
Finally, we provide several potential research directions that can help
to advance reliable and robust BFT consensus for the blockchain
ecosystem.

REFERENCES

[1] G. Wang, Z. J. Shi, M. Nixon, and S. Han, “Sok: Sharding on
blockchain,” in Proceedings of the 1st ACM Conference on Advances
in Financial Technologies, 2019, pp. 41–61.

[2] D. Malkhi and M. Reiter, “Byzantine quorum systems,” in STOC,
vol. 97. Citeseer, 1997, pp. 569–578.

[3] C. Cachin and M. Vukolić, “Blockchains consensus protocols in the
wild,” arXiv preprint arXiv:1707.01873, 2017.

[4] M. Castro, B. Liskov et al., “Practical byzantine fault tolerance,” in
OSDI, vol. 99, no. 1999, 1999, pp. 173–186.

[5] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,”
Manubot, Tech. Rep., 2008.

[6] T. Distler, “Byzantine fault-tolerant state-machine replication from a
systems perspective,” ACM Computing Surveys (CSUR), vol. 54, no. 1,
pp. 1–38, 2021.

[7] O. Maric, C. Sprenger, and D. Basin, “Consensus refined,” in 2015
45th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks. IEEE, 2015, pp. 391–402.

[8] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of
distributed consensus with one fault process.” YALE UNIV NEW
HAVEN CT DEPT OF COMPUTER SCIENCE, Tech. Rep., 1982.

[9] J. Aspnes, “Randomized protocols for asynchronous consensus,” Dis-
tributed Computing, vol. 16, no. 2-3, pp. 165–175, 2003.

[10] S. Liu, P. Viotti, C. Cachin, V. Quéma, and M. Vukolić, “{XFT}:
Practical fault tolerance beyond crashes,” in 12th {USENIX} Sympo-
sium on Operating Systems Design and Implementation ({OSDI} 16),
2016, pp. 485–500.

[11] F. Cristian, H. Aghili, R. Strong, and D. Dolev, “Atomic broadcast:
From simple message diffusion to byzantine agreement,” Information
and Computation, vol. 118, no. 1, pp. 158–179, 1995.

[12] B. M. Oki and B. H. Liskov, “Viewstamped replication: A new
primary copy method to support highly-available distributed systems,”
in Proceedings of the seventh annual ACM Symposium on Principles
of distributed computing, 1988, pp. 8–17.

[13] D. Dolev and H. R. Strong, “Authenticated algorithms for byzantine
agreement,” SIAM Journal on Computing, vol. 12, no. 4, pp. 656–666,
1983.

[14] R. Guerraoui, N. Knežević, V. Quéma, and M. Vukolić, “The next
700 bft protocols,” in Proceedings of the 5th European conference on
Computer systems, 2010, pp. 363–376.

[15] M. Castro and B. Liskov, “Practical byzantine fault tolerance and
proactive recovery,” ACM Transactions on Computer Systems (TOCS),
vol. 20, no. 4, pp. 398–461, 2002.

[16] M. Correia, G. S. Veronese, N. F. Neves, and P. Verissimo, “Byzantine
consensus in asynchronous message-passing systems: a survey,” Inter-
national Journal of Critical Computer-Based Systems, vol. 2, no. 2,
pp. 141–161, 2011.

[17] C. Berger and H. P. Reiser, “Scaling byzantine consensus: A broad
analysis,” in Proceedings of the 2nd Workshop on Scalable and
Resilient Infrastructures for Distributed Ledgers, 2018, pp. 13–18.

76



[18] S. Bano, A. Sonnino, M. Al-Bassam, S. Azouvi, P. McCorry, S. Meik-
lejohn, and G. Danezis, “Sok: Consensus in the age of blockchains,”
in Proceedings of the 1st ACM Conference on Advances in Financial
Technologies, 2019, pp. 183–198.

[19] M. Vukolić, “The quest for scalable blockchain fabric: Proof-of-work
vs. bft replication,” in International workshop on open problems in
network security. Springer, 2015, pp. 112–125.

[20] L. LAMPORT, R. SHOSTAK, and M. PEASE, “The byzantine gen-
erals problem,” ACM Transactions on Programming Languages and
Systems, vol. 4, no. 3, pp. 382–401, 1982.

[21] M. Pease, R. Shostak, and L. Lamport, “Reaching agreement in the
presence of faults,” Journal of the ACM (JACM), vol. 27, no. 2, pp.
228–234, 1980.

[22] L. Lamport, “The weak byzantine generals problem,” Journal of the
ACM (JACM), vol. 30, no. 3, pp. 668–676, 1983.

[23] J. Sousa and A. Bessani, “From byzantine consensus to bft state
machine replication: A latency-optimal transformation,” in 2012 Ninth
European Dependable Computing Conference. IEEE, 2012, pp. 37–
48.

[24] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Communications, 1978.

[25] F. B. Schneider, “Implementing fault-tolerant services using the state
machine approach: A tutorial,” ACM Computing Surveys (CSUR),
vol. 22, no. 4, pp. 299–319, 1990.

[26] Q. Zhang, Z. Qi, X. Liu, T. Sun, and K. Lei, “Research and application
of bft algorithms based on the hybrid fault model,” in 2018 1st
IEEE International Conference on Hot Information-Centric Network-
ing (HotICN). IEEE, 2018, pp. 114–120.

[27] V. Gramoli, “From blockchain consensus back to byzantine consen-
sus,” Future Generation Computer Systems, vol. 107, pp. 760–769,
2020.

[28] L. Lamport, “The part-time parliament,” in Concurrency: the Works
of Leslie Lamport, 2019, pp. 277–317.

[29] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of
distributed consensus with one faulty process,” Journal of the ACM
(JACM), vol. 32, no. 2, pp. 374–382, 1985.

[30] P. Berman, J. A. Garay, K. J. Perry et al., “Towards optimal distributed
consensus,” in FOCS, vol. 89. Citeseer, 1989, pp. 410–415.

[31] Y. Xiao, N. Zhang, J. Li, W. Lou, and Y. T. Hou, “Distributed con-
sensus protocols and algorithms,” Blockchain for Distributed Systems
Security, vol. 25, 2019.

[32] D. Dolev, C. Dwork, and L. Stockmeyer, “On the minimal synchronism
needed for distributed consensus,” Journal of the ACM (JACM),
vol. 34, no. 1, pp. 77–97, 1987.

[33] A. Sunyaev, “Distributed ledger technology,” in Internet Computing.
Springer, 2020, pp. 265–299.

[34] M. S. Ali, M. Vecchio, M. Pincheira, K. Dolui, F. Antonelli, and M. H.
Rehmani, “Applications of blockchains in the internet of things: A
comprehensive survey,” IEEE Communications Surveys & Tutorials,
vol. 21, no. 2, pp. 1676–1717, 2018.

[35] R. Lai and D. L. K. Chuen, “Blockchain–from public to private,” in
Handbook of Blockchain, Digital Finance, and Inclusion, Volume 2.
Elsevier, 2018, pp. 145–177.

[36] G. Wang, “Sok: Applying blockchain technology in industrial internet
of things.”

[37] ——, “Sok: Exploring blockchains interoperability.” IACR Cryptol.
ePrint Arch., vol. 2021, p. 776, 2021.

[38] M. S. Ferdous, M. J. M. Chowdhury, M. A. Hoque, and A. Col-
man, “Blockchain consensuses algorithms: A survey,” arXiv preprint
arXiv:2001.07091, 2020.

[39] J. Garay and A. Kiayias, “Sok: A consensus taxonomy in the
blockchain era,” in Cryptographers’ Track at the RSA Conference.
Springer, 2020, pp. 284–318.

[40] W. Simpson, RFC1661: the point-to-point protocol (PPP). RFC
Editor, 1994.

[41] E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim, “A survey
and comparison of peer-to-peer overlay network schemes,” IEEE
Communications Surveys & Tutorials, vol. 7, no. 2, pp. 72–93, 2005.

[42] M. Zamani, M. Movahedi, and M. Raykova, “Rapidchain: Scaling
blockchain via full sharding,” in Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security,
2018, pp. 931–948.

[43] M. Okun, “Agreement among unacquainted byzantine generals,” in
International Symposium on Distributed Computing. Springer, 2005,
pp. 499–500.

[44] E. A. Alchieri, A. N. Bessani, J. da Silva Fraga, and F. Greve,
“Byzantine consensus with unknown participants,” in International
Conference On Principles Of Distributed Systems. Springer, 2008,
pp. 22–40.

[45] A. Beimel and M. Franklin, “Reliable communication over partially
authenticated networks,” Theoretical computer science, vol. 220, no. 1,
pp. 185–210, 1999.

[46] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the presence
of partial synchrony,” Journal of the ACM (JACM), vol. 35, no. 2, pp.
288–323, 1988.

[47] Y. Xiao, N. Zhang, W. Lou, and Y. T. Hou, “A survey of distributed
consensus protocols for blockchain networks,” IEEE Communications
Surveys & Tutorials, vol. 22, no. 2, pp. 1432–1465, 2020.

[48] R. Canetti, “Universally composable security: A new paradigm for
cryptographic protocols,” in Proceedings 42nd IEEE Symposium on
Foundations of Computer Science. IEEE, 2001, pp. 136–145.

[49] R. Pass and E. Shi, “The sleepy model of consensus,” in International
Conference on the Theory and Application of Cryptology and Infor-
mation Security. Springer, 2017, pp. 380–409.

[50] C. Dwork and Y. Moses, “Knowledge and common knowledge in a
byzantine environment: crash failures,” Information and Computation,
vol. 88, no. 2, pp. 156–186, 1990.

[51] C. Cachin and M. Vukolić, “Blockchain consensus protocols in the
wild,” arXiv preprint arXiv:1707.01873, 2017.

[52] L. LAMPORT, “The part-time parliament,” ACM Transactions on
Computer Systems, vol. 16, no. 2, pp. 133–169, 1998.

[53] L. Lamport et al., “Paxos made simple,” ACM Sigact News, vol. 32,
no. 4, pp. 18–25, 2001.

[54] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “Zookeeper: Wait-free
coordination for internet-scale systems.” in USENIX annual technical
conference, vol. 8, no. 9, 2010.

[55] D. Ongaro and J. Ousterhout, “In search of an understandable con-
sensus algorithm,” in 2014 {USENIX} Annual Technical Conference
({USENIX}{ATC} 14), 2014, pp. 305–319.

[56] K. P. Kihlstrom, L. E. Moser, and P. M. Melliar-Smith, “Byzantine
fault detectors for solving consensus,” The Computer Journal, vol. 46,
no. 1, pp. 16–35, 2003.

[57] A. Haeberlen, P. Kouznetsov, and P. Druschel, “The case for byzantine
fault detection.” in HotDep, 2006.

[58] M. Abd-El-Malek, G. R. Ganger, G. R. Goodson, M. K. Reiter, and
J. J. Wylie, “Fault-scalable byzantine fault-tolerant services,” ACM
SIGOPS Operating Systems Review, vol. 39, no. 5, pp. 59–74, 2005.

[59] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong, “Zyzzyva:
speculative byzantine fault tolerance,” in Proceedings of twenty-first
ACM SIGOPS symposium on Operating systems principles, 2007, pp.
45–58.

[60] A. Bessani, J. Sousa, and E. E. Alchieri, “State machine replication
for the masses with bft-smart,” in 2014 44th Annual IEEE/IFIP Inter-
national Conference on Dependable Systems and Networks. IEEE,
2014, pp. 355–362.

[61] J. Cowling, D. Myers, B. Liskov, R. Rodrigues, and L. Shrira, “Hq
replication: A hybrid quorum protocol for byzantine fault tolerance,”
in Proceedings of the 7th symposium on Operating systems design and
implementation, 2006, pp. 177–190.

[62] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong, “Zyzzyva:
Speculative byzantine fault tolerance,” ACM Transactions on Com-
puter Systems (TOCS), vol. 27, no. 4, pp. 1–39, 2010.

[63] A. Singh, T. Das, P. Maniatis, P. Druschel, and T. Roscoe, “Bft
protocols under fire.” in NSDI, vol. 8, 2008, pp. 189–204.

[64] B. Liskov and J. Cowling, “Viewstamped replication revisited,” 2012.

77



[65] G. G. Gueta, I. Abraham, S. Grossman, D. Malkhi, B. Pinkas, M. Re-
iter, D.-A. Seredinschi, O. Tamir, and A. Tomescu, “Sbft: a scalable
and decentralized trust infrastructure,” in 2019 49th Annual IEEE/IFIP
international conference on dependable systems and networks (DSN).
IEEE, 2019, pp. 568–580.

[66] A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song, “The honey badger
of bft protocols,” in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, 2016, pp. 31–42.

[67] G. Bracha and S. Toueg, “Asynchronous consensus and broadcast
protocols,” Journal of the ACM (JACM), vol. 32, no. 4, pp. 824–840,
1985.

[68] M. K. Reiter, “The rampart toolkit for building high-integrity services,”
in Theory and practice in distributed systems. Springer, 1995, pp.
99–110.

[69] K. P. Kihlstrom, L. E. Moser, and P. M. Melliar-Smith, “The securering
group communication system,” ACM Transactions on Information and
System Security (TISSEC), vol. 4, no. 4, pp. 371–406, 2001.

[70] C. Cachin and J. A. Poritz, “Secure intrusion-tolerant replication on
the internet,” in Proceedings International Conference on Dependable
Systems and Networks. IEEE, 2002, pp. 167–176.

[71] K. Kursawe, “Optimistic byzantine agreement,” in 21st IEEE Sym-
posium on Reliable Distributed Systems, 2002. Proceedings. IEEE,
2002, pp. 262–267.

[72] D. Malkhi and M. Reiter, “Byzantine quorum systems,” Distributed
computing, vol. 11, no. 4, pp. 203–213, 1998.

[73] D. Malkhi and M. K. Reiter, “An architecture for survivable coordi-
nation in large distributed systems,” IEEE Transactions on Knowledge
and Data Engineering, vol. 12, no. 2, pp. 187–202, 2000.

[74] G. Chockler, D. Malkhi, and M. K. Reiter, “Backoff protocols for
distributed mutual exclusion and ordering,” in Proceedings 21st Inter-
national Conference on Distributed Computing Systems. IEEE, 2001,
pp. 11–20.

[75] J.-P. Martin, L. Alvisi, and M. Dahlin, “Minimal byzantine storage,” in
International Symposium on Distributed Computing. Springer, 2002,
pp. 311–325.

[76] L. Zhou, F. B. Schneider, and R. Van Renesse, “Coca: A secure dis-
tributed online certification authority,” ACM Transactions on Computer
Systems (TOCS), vol. 20, no. 4, pp. 329–368, 2002.

[77] C. P. Fry and M. K. Reiter, “Nested objects in a byzantine quorum-
replicated system,” in Proceedings of the 23rd IEEE International
Symposium on Reliable Distributed Systems, 2004. IEEE, 2004, pp.
79–89.

[78] F. Muratov, A. Lebedev, N. Iushkevich, B. Nasrulin, and M. Takemiya,
“Yac: Bft consensus algorithm for blockchain,” arXiv preprint
arXiv:1809.00554, 2018.

[79] L. J. Gunn, J. Liu, B. Vavala, and N. Asokan, “Making speculative bft
resilient with trusted monotonic counters,” in 2019 38th Symposium on
Reliable Distributed Systems (SRDS). IEEE, 2019, pp. 133–13 309.

[80] I. Abraham, G. Gueta, D. Malkhi, L. Alvisi, R. Kotla, and J.-P. Martin,
“Revisiting fast practical byzantine fault tolerance,” arXiv preprint
arXiv:1712.01367, 2017.

[81] G. S. Veronese, M. Correia, A. N. Bessani, L. C. Lung, and P. Veris-
simo, “Efficient byzantine fault-tolerance,” IEEE Transactions on
Computers, vol. 62, no. 1, pp. 16–30, 2011.

[82] P.-L. Aublin, R. Guerraoui, N. Knežević, V. Quéma, and M. Vukolić,
“The next 700 bft protocols,” ACM Transactions on Computer Systems
(TOCS), vol. 32, no. 4, pp. 1–45, 2015.

[83] C. Y. da Silva Costa and E. A. P. Alchieri, “Diversity on state
machine replication,” in 2018 IEEE 32nd International Conference on
Advanced Information Networking and Applications (AINA). IEEE,
2018, pp. 429–436.

[84] A. Bessani, M. Santos, J. Felix, N. Neves, and M. Correia, “On the
efficiency of durable state machine replication,” in 2013 {USENIX}
Annual Technical Conference ({USENIX}{ATC} 13), 2013, pp. 169–
180.

[85] G. Mack Diouf, H. Elbiaze, and W. Jaafar, “On byzantine fault
tolerance in multi-master kubernertes clusters,” arXiv e-prints, pp.
arXiv–1904, 2019.

[86] J. Sousa, A. Bessani, and M. Vukolic, “A byzantine fault-tolerant
ordering service for the hyperledger fabric blockchain platform,” in
2018 48th annual IEEE/IFIP international conference on dependable
systems and networks (DSN). IEEE, 2018, pp. 51–58.

[87] A. Bessani, E. Alchieri, J. Sousa, A. Oliveira, and F. Pedone, “From
byzantine replication to blockchain: Consensus is only the beginning,”
in 2020 50th Annual IEEE/IFIP International Conference on Depend-
able Systems and Networks (DSN). IEEE, 2020, pp. 424–436.

[88] T. Swanson, “Consensus-as-a-service: a brief report on the emergence
of permissioned, distributed ledger systems,” Report, available online,
2015.

[89] E. Androulaki, C. Cachin, K. Christidis, C. Murthy, B. Nguyen, and
M. Vukolic, “Next consensus architecture proposal. hyperledger wiki,
fabric design documents,” 2016.

[90] Symbiont, “Symbiont assembly platform,” URL
https://www.symbiont.io/technology/assembly, 2016.

[91] D. Mohanty, “Corda architecture,” in R3 Corda for Architects and
Developers. Springer, 2019, pp. 49–60.

[92] N. Rakotondravony and H. P. Reiser, “Visualizing bft smr distributed
systems-example of bft-smart,” in 2018 48th Annual IEEE/IFIP Inter-
national Conference on Dependable Systems and Networks Workshops
(DSN-W). IEEE, 2018, pp. 152–157.

[93] J. Niu and C. Feng, “Leaderless byzantine fault tolerant consensus,”
arXiv preprint arXiv:2012.01636, 2020.

[94] M. Baudet, A. Ching, A. Chursin, G. Danezis, F. Garillot, Z. Li,
D. Malkhi, O. Naor, D. Perelman, and A. Sonnino, “State machine
replication in the libra blockchain,” The Libra Assn., Tech. Rep, 2019.

[95] L. Lamport, “Brief announcement: Leaderless byzantine paxos,” in
International Symposium on Distributed Computing. Springer, 2011,
pp. 141–142.

[96] O. Naor, M. Baudet, D. Malkhi, and A. Spiegelman, “Cogsworth:
Byzantine view synchronization,” arXiv preprint arXiv:1909.05204,
2019.

[97] T. Rocket, M. Yin, K. Sekniqi, R. van Renesse, and E. G. Sirer, “Scal-
able and probabilistic leaderless bft consensus through metastability,”
arXiv preprint arXiv:1906.08936, 2019.

[98] T. Crain, V. Gramoli, M. Larrea, and M. Raynal, “Dbft: Efficient
leaderless byzantine consensus and its application to blockchains,” in
2018 IEEE 17th International Symposium on Network Computing and
Applications (NCA). IEEE, 2018, pp. 1–8.

[99] A. Mostéfaoui, H. Moumen, and M. Raynal, “Signature-free asyn-
chronous binary byzantine consensus with t< n/3, o (n2) messages,
and o (1) expected time,” Journal of the ACM (JACM), vol. 62, no. 4,
pp. 1–21, 2015.

[100] B. Arun, S. Peluso, and B. Ravindran, “ezbft: Decentralizing byzantine
fault-tolerant state machine replication,” in 2019 IEEE 39th Interna-
tional Conference on Distributed Computing Systems (ICDCS). IEEE,
2019, pp. 565–577.

[101] N. Shrestha and M. Kumar, “Revisiting ezbft: A decentralized
byzantine fault tolerant protocol with speculation,” arXiv preprint
arXiv:1909.03990, 2019.

[102] A. Gągol, D. Leśniak, D. Straszak, and M. Świętek, “Aleph: Efficient
atomic broadcast in asynchronous networks with byzantine nodes,” in
Proceedings of the 1st ACM Conference on Advances in Financial
Technologies, 2019, pp. 214–228.

[103] A. Gągol and M. Świętek, “Aleph: A leaderless, asynchronous,
byzantine fault tolerant consensus protocol,” arXiv preprint
arXiv:1810.05256, 2018.

[104] L. Bonniot, C. Neumann, and F. Taïani, “Pnyxdb: a lightweight
leaderless democratic byzantine fault tolerant replicated datastore,”
in 2020 International Symposium on Reliable Distributed Systems
(SRDS). IEEE, 2020, pp. 155–164.

[105] P. Raykov, N. Schiper, and F. Pedone, “Byzantine fault-tolerance with
commutative commands,” in International Conference On Principles
Of Distributed Systems. Springer, 2011, pp. 329–342.

[106] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski, “Conflict-
free replicated data types,” in Symposium on Self-Stabilizing Systems.
Springer, 2011, pp. 386–400.

78



[107] C. Li, D. Porto, A. Clement, J. Gehrke, N. Preguiça, and R. Rodrigues,
“Making geo-replicated systems fast as possible, consistent when
necessary,” in 10th {USENIX} Symposium on Operating Systems
Design and Implementation ({OSDI} 12), 2012, pp. 265–278.

[108] K. Antoniadis, A. Desjardins, V. Gramoli, R. Guerraoui, and M. I.
Zablotchi, “Leaderless consensus,” EPFL, Tech. Rep., 2021.

[109] E. Gafni, “Round-by-round fault detectors, unifying synchrony and
asynchrony (extendeda abstract),” in Proc. 17th Annual ACM Sympo-
sium on Principles of Distributed Computing (PODC), Puerto Vallarta,
Mexico, June, 1998, pp. 143–152.

[110] M. O. Rabin, “Randomized byzantine generals,” in 24th Annual
Symposium on Foundations of Computer Science (sfcs 1983). IEEE,
1983, pp. 403–409.

[111] M. Ben-Or, “Another advantage of free choice (extended abstract)
completely asynchronous agreement protocols,” in Proceedings of
the second annual ACM symposium on Principles of distributed
computing, 1983, pp. 27–30.

[112] Y. Lu, Z. Lu, and Q. Tang, “Bolt-dumbo transformer: Asynchronous
consensus as fast as pipelined bft,” arXiv preprint arXiv:2103.09425,
2021.

[113] R. Gelashvili, L. Kokoris-Kogias, A. Spiegelman, and Z. Xiang, “Be
prepared when network goes bad: An asynchronous view-change
protocol,” arXiv preprint arXiv:2103.03181, 2021.

[114] C. Cachin and S. Tessaro, “Asynchronous verifiable information dis-
persal,” in 24th IEEE Symposium on Reliable Distributed Systems
(SRDS’05). IEEE, 2005, pp. 191–201.

[115] M. Ben-Or, B. Kelmer, and T. Rabin, “Asynchronous secure computa-
tions with optimal resilience,” in Proceedings of the thirteenth annual
ACM symposium on Principles of distributed computing, 1994, pp.
183–192.

[116] F. Shen, Y. Long, Z. Liu, Z. Liu, H. Liu, D. Gu, and N. Liu, “A
practical dynamic enhanced bft protocol,” in International Conference
on Network and System Security. Springer, 2019, pp. 288–304.

[117] J. Baek and Y. Zheng, “Simple and efficient threshold cryptosystem
from the gap diffie-hellman group,” in GLOBECOM’03. IEEE Global
Telecommunications Conference (IEEE Cat. No. 03CH37489), vol. 3.
IEEE, 2003, pp. 1491–1495.

[118] C. Delerablée and D. Pointcheval, “Dynamic threshold public-key en-
cryption,” in Annual International Cryptology Conference. Springer,
2008, pp. 317–334.

[119] G. Bracha, “Asynchronous byzantine agreement protocols,” Informa-
tion and Computation, vol. 75, no. 2, pp. 130–143, 1987.

[120] A. Mostefaoui, H. Moumen, and M. Raynal, “Signature-free asyn-
chronous byzantine consensus with t< n/3 and o (n2) messages,” in
Proceedings of the 2014 ACM symposium on Principles of distributed
computing, 2014, pp. 2–9.

[121] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich,
“Algorand: Scaling byzantine agreements for cryptocurrencies,” in
Proceedings of the 26th Symposium on Operating Systems Principles,
2017, pp. 51–68.

[122] J. Chen and S. Micali, “Algorand,” arXiv preprint arXiv:1607.01341,
2016.

[123] ——, “Algorand: A secure and efficient distributed ledger,” Theoretical
Computer Science, vol. 777, pp. 155–183, 2019.

[124] A. Spiegelman and A. Rinberg, “Ace: Abstract consensus encapsula-
tion for liveness boosting of state machine replication,” arXiv preprint
arXiv:1911.10486, 2019.

[125] I. Abraham, D. Malkhi, and A. Spiegelman, “Asymptotically optimal
validated asynchronous byzantine agreement,” in Proceedings of the
2019 ACM Symposium on Principles of Distributed Computing, 2019,
pp. 337–346.

[126] C. Cachin, K. Kursawe, F. Petzold, and V. Shoup, “Secure and
efficient asynchronous broadcast protocols,” in Annual International
Cryptology Conference. Springer, 2001, pp. 524–541.

[127] P. Li, G. Wang, X. Chen, F. Long, and W. Xu, “Gosig: a scalable and
high-performance byzantine consensus for consortium blockchains,” in
Proceedings of the 11th ACM Symposium on Cloud Computing, 2020,
pp. 223–237.

[128] B. Guo, Z. Lu, Q. Tang, J. Xu, and Z. Zhang, “Dumbo: Faster
asynchronous bft protocols,” in Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security, 2020, pp.
803–818.

[129] Y. Lu, Z. Lu, Q. Tang, and G. Wang, “Dumbo-mvba: Optimal multi-
valued validated asynchronous byzantine agreement, revisited,” in
Proceedings of the 39th Symposium on Principles of Distributed
Computing, 2020, pp. 129–138.

[130] C. Cachin, K. Kursawe, and V. Shoup, “Random oracles in con-
stantinople: Practical asynchronous byzantine agreement using cryp-
tography,” Journal of Cryptology, vol. 18, no. 3, pp. 219–246, 2005.

[131] J. Hendricks, G. R. Ganger, and M. K. Reiter, “Verifying distributed
erasure-coded data,” in Proceedings of the twenty-sixth annual ACM
symposium on Principles of distributed computing, 2007, pp. 139–146.

[132] M. Castro and B. Liskov, “Proactive recovery in a byzantine-fault-
tolerant system,” in Proceedings of the 4th conference on Symposium
on Operating System Design & Implementation-Volume 4, 2000.

[133] ——, “Byzantine fault tolerance can be fast,” in 2001 International
Conference on Dependable Systems and Networks. IEEE, 2001, pp.
513–518.

[134] J.-P. Martin and L. Alvisi, “Fast byzantine consensus,” IEEE Transac-
tions on Dependable and Secure Computing, vol. 3, no. 3, pp. 202–215,
2006.

[135] ——, “Fast byzantine paxos,” in Proceedings of the International
Conference on Dependable Systems and Networks, 2004, pp. 402–411.

[136] R. Boichat, P. Dutta, S. Frølund, and R. Guerraoui, “Deconstructing
paxos,” ACM Sigact News, vol. 34, no. 1, pp. 47–67, 2003.

[137] L. Lamport, “Fast paxos,” Distributed Computing, vol. 19, no. 2, pp.
79–103, 2006.

[138] R. Van Renesse, C. Ho, and N. Schiper, “Byzantine chain replication,”
in International Conference On Principles Of Distributed Systems.
Springer, 2012, pp. 345–359.

[139] R. Van Renesse and F. B. Schneider, “Chain replication for supporting
high throughput and availability.” in OSDI, vol. 4, no. 91–104, 2004.

[140] H. Mendes and M. Herlihy, “Multidimensional approximate agreement
in byzantine asynchronous systems,” in Proceedings of the forty-fifth
annual ACM symposium on Theory of computing, 2013, pp. 391–400.

[141] D. Dolev, N. A. Lynch, S. S. Pinter, E. W. Stark, and W. E. Weihl,
“Reaching approximate agreement in the presence of faults,” Journal
of the ACM (JACM), vol. 33, no. 3, pp. 499–516, 1986.

[142] I. Abraham and D. Malkhi, “Bvp: Byzantine vertical paxos,” Pro-
ceedings of the Distributed Cryptocurrencies and Consensus Ledger
(DCCL), Chicago, IL, USA, vol. 25, 2016.

[143] L. Lamport, D. Malkhi, and L. Zhou, “Vertical paxos and primary-
backup replication,” in Proceedings of the 28th ACM symposium on
Principles of distributed computing, 2009, pp. 312–313.

[144] B.-G. Chun, P. Maniatis, S. Shenker, and J. Kubiatowicz, “Attested
append-only memory: Making adversaries stick to their word,” ACM
SIGOPS Operating Systems Review, vol. 41, no. 6, pp. 189–204, 2007.

[145] I. Abraham, M. K. Aguilera, and D. Malkhi, “Fast asynchronous
consensus with optimal resilience,” in International Symposium on
Distributed Computing. Springer, 2010, pp. 4–19.

[146] M. Garg, S. Peluso, B. Arun, and B. Ravindran, “Generalized con-
sensus for practical fault tolerance,” in Proceedings of the 20th
International Middleware Conference, 2019, pp. 55–67.

[147] S. Duan, M. K. Reiter, and H. Zhang, “Beat: Asynchronous bft made
practical,” in Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, 2018, pp. 2028–2041.

[148] V. Shoup and R. Gennaro, “Securing threshold cryptosystems against
chosen ciphertext attack,” in International Conference on the Theory
and Applications of Cryptographic Techniques. Springer, 1998, pp.
1–16.

[149] C. Stathakopoulou, T. David, and M. Vukolić, “Mir-bft: High-
throughput bft for blockchains,” arXiv preprint arXiv:1906.05552,
2019.

[150] T. Crain, C. Natoli, and V. Gramoli, “Evaluating the red belly
blockchain,” arXiv preprint arXiv:1812.11747, 2018.

79



[151] Z. Milosevic, M. Biely, and A. Schiper, “Bounded delay in byzantine-
tolerant state machine replication,” in 2013 IEEE 32nd International
Symposium on Reliable Distributed Systems. IEEE, 2013, pp. 61–70.

[152] L. Baird, “The swirlds hashgraph consensus algorithm: Fair, fast,
byzantine fault tolerance,” Swirlds Tech Reports SWIRLDS-TR-2016-
01, Tech. Rep, 2016.

[153] A. Clement, E. L. Wong, L. Alvisi, M. Dahlin, and M. Marchetti,
“Making byzantine fault tolerant systems tolerate byzantine faults.” in
NSDI, vol. 9, 2009, pp. 153–168.

[154] J. Behl, T. Distler, and R. Kapitza, “Hybrids on steroids: Sgx-
based high performance bft,” in Proceedings of the Twelfth European
Conference on Computer Systems, 2017, pp. 222–237.

[155] J. Liu, W. Li, G. O. Karame, and N. Asokan, “Scalable byzantine
consensus via hardware-assisted secret sharing,” IEEE Transactions
on Computers, vol. 68, no. 1, pp. 139–151, 2018.

[156] J. Li, M. N. Krohn, D. Mazieres, and D. E. Shasha, “Secure untrusted
data repository (sundr).” in Osdi, vol. 4, 2004, pp. 9–9.

[157] D. Levin, J. R. Douceur, J. R. Lorch, and T. Moscibroda, “Trinc: Small
trusted hardware for large distributed systems.” in NSDI, vol. 9, 2009,
pp. 1–14.

[158] S. L. Kinney, Trusted platform module basics: using TPM in embedded
systems. Elsevier, 2006.

[159] B. Cohen, “Incentives build robustness in bittorrent,” in Workshop on
Economics of Peer-to-Peer systems, vol. 6. Berkeley, CA, USA, 2003,
pp. 68–72.

[160] M. Ryan, “Introduction to the tpm 1.2,” DRAFT of March, vol. 24,
2009.

[161] R. Kapitza, J. Behl, C. Cachin, T. Distler, S. Kuhnle, S. V. Moham-
madi, W. Schröder-Preikschat, and K. Stengel, “Cheapbft: Resource-
efficient byzantine fault tolerance,” in Proceedings of the 7th ACM
european conference on Computer Systems, 2012, pp. 295–308.

[162] M. Eischer and T. Distler, “Scalable byzantine fault tolerance on het-
erogeneous servers,” in 2017 13th European Dependable Computing
Conference (EDCC). IEEE, 2017, pp. 34–41.

[163] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi,
V. Shanbhogue, and U. R. Savagaonkar, “Innovative instructions and
software model for isolated execution.” Hasp@ isca, vol. 10, no. 1,
2013.

[164] J. Zhang, J. Gao, K. Wang, Z. Wu, Y. Lan, Z. Guan, and Z. Chen,
“Tbft: Understandable and efficient byzantine fault tolerance using
trusted execution environment,” arXiv preprint arXiv:2102.01970,
2021.

[165] P.-L. Aublin, S. B. Mokhtar, and V. Quéma, “Rbft: Redundant byzan-
tine fault tolerance,” in 2013 IEEE 33rd International Conference on
Distributed Computing Systems. IEEE, 2013, pp. 297–306.

[166] R. Rodrigues, M. Castro, and B. Liskov, “Base: Using abstraction to
improve fault tolerance,” ACM SIGOPS Operating Systems Review,
vol. 35, no. 5, pp. 15–28, 2001.

[167] M. Castro, R. Rodrigues, and B. Liskov, “Using abstraction to improve
fault tolerance,” in Proceedings Eighth Workshop on Hot Topics in
Operating Systems. IEEE, 2001, pp. 27–32.

[168] B. Liskov and J. Guttag, Program development in JAVA: abstraction,
specification, and object-oriented design. Pearson Education, 2000.

[169] Y. Huang, C. Kintala, N. Kolettis, and N. D. Fulton, “Software
rejuvenation: Analysis, module and applications,” in Twenty-fifth in-
ternational symposium on fault-tolerant computing. Digest of papers.
IEEE, 1995, pp. 381–390.

[170] L. Chen and A. Avizienis, “N-version programming: A fault-tolerance
approach to reliability of software operation,” in Proc. 8th IEEE Int.
Symp. on Fault-Tolerant Computing (FTCS-8), vol. 1, 1978, pp. 3–9.

[171] J. Gray and D. P. Siewiorek, “High-availability computer systems,”
Computer, vol. 24, no. 9, pp. 39–48, 1991.

[172] M. Castro, R. Rodrigues, and B. Liskov, “Base: Using abstraction
to improve fault tolerance,” ACM Transactions on Computer Systems
(TOCS), vol. 21, no. 3, pp. 236–269, 2003.

[173] R. Baldoni, J.-M. Helary, and M. Raynal, “From crash fault-tolerance
to arbitrary-fault tolerance: Towards a modular approach,” in Proceed-

ing International Conference on Dependable Systems and Networks.
DSN 2000. IEEE, 2000, pp. 273–282.

[174] A. Doudou, B. Garbinato, and R. Guerraoui, “Encapsulating failure
detection: From crash to byzantine failures,” in International Confer-
ence on Reliable Software Technologies. Springer, 2002, pp. 24–50.

[175] T. D. Chandra and S. Toueg, “Unreliable failure detectors for reliable
distributed systems,” Journal of the ACM (JACM), vol. 43, no. 2, pp.
225–267, 1996.

[176] J. Yin, J.-P. Martin, A. Venkataramani, L. Alvisi, and M. Dahlin,
“Separating agreement from execution for byzantine fault tolerant ser-
vices,” in Proceedings of the nineteenth ACM symposium on Operating
systems principles, 2003, pp. 253–267.

[177] A. S. Aiyer, L. Alvisi, A. Clement, M. Dahlin, J.-P. Martin, and
C. Porth, “Bar fault tolerance for cooperative services,” in Proceedings
of the twentieth ACM symposium on Operating systems principles,
2005, pp. 45–58.

[178] N. Ntarmos and P. Triantafillou, “Aesop: Altruism-endowed self-
organizing peers,” in International Workshop on Databases, Informa-
tion Systems, and Peer-to-Peer Computing. Springer, 2004, pp. 151–
165.

[179] J. Shneidman and D. C. Parkes, “Specification faithfulness in networks
with rational nodes,” in Proceedings of the twenty-third annual ACM
symposium on Principles of distributed computing, 2004, pp. 88–97.

[180] A. Clement, H. Li, J. Napper, J.-P. Martin, L. Alvisi, and M. Dahlin,
“Bar primer,” in 2008 IEEE International Conference on Dependable
Systems and Networks With FTCS and DCC (DSN). IEEE, 2008, pp.
287–296.

[181] H. C. Li, A. Clement, E. L. Wong, J. Napper, I. Roy, L. Alvisi, and
M. Dahlin, “Bar gossip,” in Proceedings of the 7th symposium on
Operating systems design and implementation, 2006, pp. 191–204.

[182] D. C. Oppen and Y. K. Dalal, “The clearinghouse: A decentralized
agent for locating named objects in a distributed environment,” ACM
Transactions on Information Systems (TOIS), vol. 1, no. 3, pp. 230–
253, 1983.

[183] J. Li and D. Mazieres, “Beyond one-third faulty replicas in byzantine
fault tolerant systems.” in NSDI, 2007.

[184] B. Vandiver, H. Balakrishnan, B. Liskov, and S. Madden, “Tolerating
byzantine faults in transaction processing systems using commit barrier
scheduling,” in Proceedings of twenty-first ACM SIGOPS symposium
on Operating Systems Principles, 2007, pp. 59–72.

[185] J. Hendricks, G. R. Ganger, and M. K. Reiter, “Low-overhead byzan-
tine fault-tolerant storage,” ACM SIGOPS Operating Systems Review,
vol. 41, no. 6, pp. 73–86, 2007.

[186] G. R. Goodson, J. J. Wylie, G. R. Ganger, and M. K. Reiter, “Efficient
byzantine-tolerant erasure-coded storage,” in International Conference
on Dependable Systems and Networks, 2004. IEEE, 2004, pp. 135–
144.

[187] Y. Amir, B. Coan, J. Kirsch, and J. Lane, “Byzantine replication
under attack,” in 2008 IEEE International Conference on Dependable
Systems and Networks With FTCS and DCC (DSN). IEEE, 2008, pp.
197–206.

[188] ——, “Prime: Byzantine replication under attack,” IEEE transactions
on dependable and secure computing, vol. 8, no. 4, pp. 564–577, 2010.

[189] C. Ho, R. Van Renesse, M. Bickford, and D. Dolev, “Nysiad: Practical
protocol transformation to tolerate byzantine failures.” in NSDI, vol. 8,
2008, pp. 175–188.

[190] A. Haeberlen, P. Kouznetsov, and P. Druschel, “Peerreview: Practi-
cal accountability for distributed systems,” ACM SIGOPS operating
systems review, vol. 41, no. 6, pp. 175–188, 2007.

[191] A. R. Yumerefendi and J. S. Chase, “The role of accountability in
dependable distributed systems,” in Proceedings of HotDep, vol. 5.
Citeseer, 2005, pp. 3–3.

[192] I. T. Downard, “Simulating sensor networks in ns-2,” NAVAL RE-
SEARCH LAB WASHINGTON DC, Tech. Rep., 2004.

[193] N. M. Preguiça, R. Rodrigues, C. Honorato, J. Lourenço et al.,
“Byzantium: Byzantine-fault-tolerant database replication providing
snapshot isolation.” in HotDep, 2008.

80



[194] A. Singh, P. Fonseca, P. Kuznetsov, R. Rodrigues, P. Maniatis et al.,
“Zeno: Eventually consistent byzantine-fault tolerance.” in NSDI,
vol. 9, 2009, pp. 169–184.

[195] M. P. Herlihy and J. M. Wing, “Linearizability: A correctness con-
dition for concurrent objects,” ACM Transactions on Programming
Languages and Systems (TOPLAS), vol. 12, no. 3, pp. 463–492, 1990.

[196] A. Fekete, D. Gupta, V. Luchangco, N. Lynch, and A. Shvartsman,
“Eventually-serializable data services,” Theoretical Computer Science,
vol. 220, no. 1, pp. 113–156, 1999.

[197] B. Wester, J. A. Cowling, E. B. Nightingale, P. M. Chen, J. Flinn, and
B. Liskov, “Tolerating latency in replicated state machines through
client speculation.” in NSDI, 2009, pp. 245–260.

[198] A. Clement, M. Kapritsos, S. Lee, Y. Wang, L. Alvisi, M. Dahlin,
and T. Riche, “Upright cluster services,” in Proceedings of the ACM
SIGOPS 22nd symposium on Operating systems principles, 2009, pp.
277–290.

[199] D. Borthakur, “The hadoop distributed file system: Architecture and
design,” Hadoop Project Website, vol. 11, no. 2007, p. 21, 2007.

[200] G. S. Veronese, M. Correia, A. N. Bessani, and L. C. Lung, “Spin one’s
wheels? byzantine fault tolerance with a spinning primary,” in 2009
28th IEEE International Symposium on Reliable Distributed Systems.
IEEE, 2009, pp. 135–144.

[201] C.-S. Barcelona, “Mencius: building efficient replicated state machines
for wans,” in 8th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 08), 2008.

[202] J. Hendricks, S. Sinnamohideen, G. R. Ganger, and M. K. Reiter,
“Zzyzx: Scalable fault tolerance through byzantine locking,” in 2010
IEEE/IFIP International Conference on Dependable Systems & Net-
works (DSN). IEEE, 2010, pp. 363–372.

[203] M. G. Baker, J. H. Hartman, M. D. Kupfer, K. W. Shirriff, and
J. K. Ousterhout, “Measurements of a distributed file system,” in
Proceedings of the thirteenth ACM symposium on Operating systems
principles, 1991, pp. 198–212.

[204] A. W. Leung, S. Pasupathy, G. R. Goodson, and E. L. Miller, “Mea-
surement and analysis of large-scale network file system workloads.”
in USENIX annual technical conference, vol. 1, no. 2, 2008, pp. 5–2.

[205] O. Rütti, Z. Milosevic, and A. Schiper, “Generic construction of con-
sensus algorithms for benign and byzantine faults,” in 2010 IEEE/IFIP
International Conference on Dependable Systems & Networks (DSN).
IEEE, 2010, pp. 343–352.

[206] A. Mostéfaoui, S. Rajsbaum, and M. Raynal, A versatile and modular
consensus protocol. IRISA, 2001.

[207] R. Guerraoui and M. Raynal, “The information structure of indulgent
consensus,” IEEE Transactions on Computers, vol. 53, no. 4, pp. 453–
466, 2004.

[208] Y. J. Song, R. Van Renesse, F. B. Schneider, and D. Dolev, “The build-
ing blocks of consensus,” in International Conference on Distributed
Computing and Networking. Springer, 2008, pp. 54–72.

[209] V. King and J. Saia, “Breaking the o (n 2) bit barrier: scalable
byzantine agreement with an adaptive adversary,” Journal of the ACM
(JACM), vol. 58, no. 4, pp. 1–24, 2011.

[210] L. Lamport, “Byzantizing paxos by refinement,” in International
Symposium on Distributed Computing. Springer, 2011, pp. 211–224.

[211] B. Lampson, “The abcd’s of paxos,” in PODC, vol. 1. Citeseer, 2001,
p. 13.

[212] L. Lamport, Specifying systems. Addison-Wesley Boston, 2002, vol.
388.

[213] M. Abadi and L. Lamport, “The existence of refinement mappings,”
Theoretical Computer Science, vol. 82, no. 2, pp. 253–284, 1991.

[214] A. Shoker, M. Yabandeh, R. Guerraoui, and J.-P. Bahsoun, “Obfus-
cated bft,” 2012.

[215] T. Wood, R. Singh, A. Venkataramani, P. Shenoy, and E. Cecchet,
“Zz and the art of practical bft execution,” in Proceedings of the sixth
conference on Computer systems, 2011, pp. 123–138.

[216] T. Distler and R. Kapitza, “Increasing performance in byzantine fault-
tolerant systems with on-demand replica consistency,” in Proceedings
of the sixth conference on Computer systems, 2011, pp. 91–106.

[217] A. N. Bessani and M. Santos, “Bft-smart-high-performance byzantine-
faulttolerant state machine replication,” 2011.

[218] J. J. Stephen and P. Eugster, “Assured cloud-based data analysis
with clusterbft,” in ACM/IFIP/USENIX International Conference on
Distributed Systems Platforms and Open Distributed Processing.
Springer, 2013, pp. 82–102.

[219] A. Shoker and J.-P. Bahsoun, “Bft selection,” in International Confer-
ence on Networked Systems. Springer, 2013, pp. 258–262.

[220] C. Copeland and H. Zhong, “Tangaroa: a byzantine fault tolerant raft,”
2016.

[221] S. Duan, H. Meling, S. Peisert, and H. Zhang, “Bchain: Byzan-
tine replication with high throughput and embedded reconfiguration,”
in International Conference on Principles of Distributed Systems.
Springer, 2014, pp. 91–106.

[222] S. Duan, K. Levitt, H. Meling, S. Peisert, and H. Zhang, “Byzid:
Byzantine fault tolerance from intrusion detection,” in 2014 IEEE 33rd
International Symposium on Reliable Distributed Systems. IEEE,
2014, pp. 253–264.

[223] D. E. Denning, “An intrusion-detection model,” IEEE Transactions on
software engineering, no. 2, pp. 222–232, 1987.

[224] T. F. Lunt and R. Jagannathan, “A prototype real-time intrusion-
detection expert system.” in IEEE Symposium on Security and Privacy,
vol. 59. Oakland, CA, USA, 1988.

[225] C. Ko, M. Ruschitzka, and K. Levitt, “Execution monitoring of
security-critical programs in distributed systems: A specification-based
approach,” in Proceedings. 1997 IEEE Symposium on Security and
Privacy (Cat. No. 97CB36097). IEEE, 1997, pp. 175–187.

[226] V. Paxson, “Bro: A system for detecting network intruders in real-
time,” Computer networks, vol. 31, no. 23-24, pp. 2435–2463, 1999.

[227] A. S. de Sá, A. E. Silva Freitas, and R. J. de Araújo Macêdo, “Adaptive
request batching for byzantine replication,” ACM SIGOPS Operating
Systems Review, vol. 47, no. 1, pp. 35–42, 2013.

[228] S. Duan, S. Peisert, and K. N. Levitt, “hbft: speculative byzantine fault
tolerance with minimum cost,” IEEE Transactions on Dependable and
Secure Computing, vol. 12, no. 1, pp. 58–70, 2014.

[229] J. Behl, T. Distler, and R. Kapitza, “Consensus-oriented parallelization:
How to earn your first million,” in Proceedings of the 16th Annual
Middleware Conference, 2015, pp. 173–184.

[230] L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, and P. Saxena,
“A secure sharding protocol for open blockchains,” in Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications
Security, 2016, pp. 17–30.

[231] J. R. Douceur, “The sybil attack,” in International workshop on peer-
to-peer systems. Springer, 2002, pp. 251–260.

[232] A. J. Ganesh, A.-M. Kermarrec, and L. Massoulié, “Peer-to-peer mem-
bership management for gossip-based protocols,” IEEE transactions on
computers, vol. 52, no. 2, pp. 139–149, 2003.

[233] G. Wang and M. Nixon, “Randchain: Practical scalable decentralized
randomness attested by blockchain,” in 2020 IEEE International
Conference on Blockchain (Blockchain). IEEE, 2020, pp. 442–449.

[234] D. Porto, J. Leitão, C. Li, A. Clement, A. Kate, F. Junqueira, and
R. Rodrigues, “Visigoth fault tolerance,” in Proceedings of the Tenth
European Conference on Computer Systems, 2015, pp. 1–14.

[235] M. E. B. Pires, “Generalized paxos made byzantine, visigoth and less
complex,” 2017.

[236] B. Li, W. Xu, M. Z. Abid, T. Distler, and R. Kapitza, “Sarek:
Optimistic parallel ordering in byzantine fault tolerance,” in 2016 12th
European Dependable Computing Conference (EDCC). IEEE, 2016,
pp. 77–88.

[237] E. Buchman, “Tendermint: Byzantine fault tolerance in the age of
blockchains,” Ph.D. dissertation, University of Guelph, 2016.

[238] J. Kwon, “Tendermint: Consensus without mining,” Draft v. 0.6, fall,
vol. 1, no. 11, 2014.

[239] G. Danezis and S. Meiklejohn, “Centrally banked cryptocurrencies,”
arXiv preprint arXiv:1505.06895, 2015.

[240] B. Laurie, “An efficient distributed currency,” Practice, vol. 100, 2011.

81



[241] E. K. Kogias, P. Jovanovic, N. Gailly, I. Khoffi, L. Gasser, and B. Ford,
“Enhancing bitcoin security and performance with strong consistency
via collective signing,” in 25th {usenix} security symposium ({usenix}
security 16), 2016, pp. 279–296.

[242] E. Syta, I. Tamas, D. Visher, D. I. Wolinsky, P. Jovanovic, L. Gasser,
N. Gailly, I. Khoffi, and B. Ford, “Keeping authorities" honest or bust"
with decentralized witness cosigning,” in 2016 IEEE Symposium on
Security and Privacy (SP). Ieee, 2016, pp. 526–545.

[243] S. Karkhanis, “Evaluation of using pairing-based cryptography in
byzcoin,” 2019.

[244] I. Eyal, A. E. Gencer, E. G. Sirer, and R. Van Renesse, “Bitcoin-
ng: A scalable blockchain protocol,” in 13th {USENIX} symposium
on networked systems design and implementation ({NSDI} 16), 2016,
pp. 45–59.

[245] C.-P. Schnorr, “Efficient signature generation by smart cards,” Journal
of cryptology, vol. 4, no. 3, pp. 161–174, 1991.

[246] T. Distler, C. Cachin, and R. Kapitza, “Resource-efficient byzantine
fault tolerance,” IEEE transactions on computers, vol. 65, no. 9, pp.
2807–2819, 2015.

[247] I. Abraham, D. Malkhi, K. Nayak, L. Ren, and A. Spiegelman, “Solida:
A blockchain protocol based on reconfigurable byzantine consensus,”
arXiv preprint arXiv:1612.02916, 2016.

[248] R. Pass and E. Shi, “Hybrid consensus: Efficient consensus in the
permissionless model,” in 31st International Symposium on Distributed
Computing (DISC 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2017.

[249] A. Biryukov, D. Feher, and D. Khovratovich, “Guru: Universal rep-
utation module for distributed consensus protocols,” University of
Luxembourg, Tech. Rep., 2017.

[250] B. Awerbuch and C. Scheideler, “Towards a scalable and robust dht,”
Theory of Computing Systems, vol. 45, no. 2, pp. 234–260, 2009.

[251] S. Sen and M. J. Freedman, “Commensal cuckoo: Secure group
partitioning for large-scale services,” ACM SIGOPS Operating Systems
Review, vol. 46, no. 1, pp. 33–39, 2012.

[252] L. Ren, K. Nayak, I. Abraham, and S. Devadas, “Practical synchronous
byzantine consensus,” arXiv preprint arXiv:1704.02397, 2017.

[253] P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-peer infor-
mation system based on the xor metric,” in International Workshop on
Peer-to-Peer Systems. Springer, 2002, pp. 53–65.

[254] B. Li, N. Weichbrodt, J. Behl, P.-L. Aublin, T. Distler, and R. Kapitza,
“Troxy: Transparent access to byzantine fault-tolerant systems,” in
2018 48th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN). IEEE, 2018, pp. 59–70.

[255] R. Pass and E. Shi, “Thunderella: Blockchains with optimistic instant
confirmation,” in Annual International Conference on the Theory and
Applications of Cryptographic Techniques. Springer, 2018, pp. 3–33.

[256] ——, “Thunder research rafael pass and elaine shi august 29, 2018,”
2018.

[257] H. Attiya, C. Dwork, N. Lynch, and L. Stockmeyer, “Bounds on the
time to reach agreement in the presence of timing uncertainty,” Journal
of the ACM (JACM), vol. 41, no. 1, pp. 122–152, 1994.

[258] N. Shrestha, I. Abraham, L. Ren, and K. Nayak, “On the optimality of
optimistic responsiveness,” in Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security, 2020, pp.
839–857.

[259] A. Momose, J. P. Cruz, and Y. Kaji, “Hybrid-bft: Optimistically
responsive synchronous consensus with optimal latency or resilience.”
IACR Cryptol. ePrint Arch., vol. 2020, p. 406, 2020.

[260] I. Abraham, K. Nayak, L. Ren, and Z. Xiang, “Optimal good-case
latency for byzantine broadcast and state machine replication,” arXiv
preprint arXiv:2003.13155, 2020.

[261] I. Abraham, D. Malkhi, K. Nayak, L. Ren, and M. Yin, “Sync hotstuff:
Simple and practical synchronous state machine replication,” in 2020
IEEE Symposium on Security and Privacy (SP). IEEE, 2020, pp.
106–118.

[262] M. Al-Bassam, A. Sonnino, S. Bano, D. Hrycyszyn, and G. Danezis,
“Chainspace: A sharded smart contracts platform,” arXiv preprint
arXiv:1708.03778, 2017.

[263] P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency control
and recovery in database systems. Addison-wesley Reading, 1987,
vol. 370.

[264] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, and
B. Ford, “Omniledger: A secure, scale-out, decentralized ledger via
sharding,” in 2018 IEEE Symposium on Security and Privacy (SP).
IEEE, 2018, pp. 583–598.

[265] C. Carvalho, D. Porto, L. Rodrigues, M. Bravo, and A. Bessani, “Dy-
namic adaptation of byzantine consensus protocols,” in Proceedings of
the 33rd Annual ACM Symposium on Applied Computing, 2018, pp.
411–418.

[266] L. Lamport, D. Malkhi, and L. Zhou, “Reconfiguring a state machine,”
ACM SIGACT News, vol. 41, no. 1, pp. 63–73, 2010.

[267] M. Bravo, L. Rodrigues, R. Neiheiser, and L. Rech, “Policy-based
adaptation of a byzantine fault tolerant distributed graph database,” in
2018 IEEE 37th Symposium on Reliable Distributed Systems (SRDS).
IEEE, 2018, pp. 61–71.

[268] R. Neiheiser, D. Presser, L. Rech, M. Bravo, L. Rodrigues, and
M. Correia, “Fireplug: Flexible and robust n-version geo-replication
of graph databases,” in 2018 International Conference on Information
Networking (ICOIN). IEEE, 2018, pp. 110–115.

[269] I. Abraham, T. H. Chan, D. Dolev, K. Nayak, R. Pass, L. Ren,
and E. Shi, “Communication complexity of byzantine agreement,
revisited,” in Proceedings of the 2019 ACM Symposium on Principles
of Distributed Computing, 2019, pp. 317–326.

[270] I. Abraham, S. Devadas, D. Dolev, K. Nayak, and L. Ren, “Syn-
chronous byzantine agreement with expected o (1) rounds, expected

o(nΘ2)

communication, and optimal resilience,” in International Conference
on Financial Cryptography and Data Security. Springer, 2019, pp.
320–334.

[271] J. Katz and C.-Y. Koo, “On expected constant-round protocols for
byzantine agreement,” in Annual International Cryptology Conference.
Springer, 2006, pp. 445–462.

[272] R. Guerraoui, P. Kuznetsov, M. Monti, M. Pavlovic, D.-A. Seredinschi,
and Y. Vonlanthen, “Scalable byzantine reliable broadcast (extended
version),” arXiv preprint arXiv:1908.01738, 2019.

[273] R. Cohen, I. Haitner, N. Makriyannis, M. Orland, and A. Samorodnit-
sky, “On the round complexity of randomized byzantine agreement,”
arXiv preprint arXiv:1907.11329, 2019.

[274] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the weil
pairing,” in International conference on the theory and application of
cryptology and information security. Springer, 2001, pp. 514–532.

[275] D. Malkhi, K. Nayak, and L. Ren, “Flexible byzantine fault tolerance,”
in Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, 2019, pp. 1041–1053.

[276] S. Basu, A. Tomescu, I. Abraham, D. Malkhi, M. K. Reiter, and E. G.
Sirer, “Efficient verifiable secret sharing with share recovery in bft
protocols,” in Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, 2019, pp. 2387–2402.

[277] A. Kate, G. M. Zaverucha, and I. Goldberg, “Constant-size commit-
ments to polynomials and their applications,” in International con-
ference on the theory and application of cryptology and information
security. Springer, 2010, pp. 177–194.

[278] T. P. Pedersen, “Non-interactive and information-theoretic secure ver-
ifiable secret sharing,” in Annual international cryptology conference.
Springer, 1991, pp. 129–140.

[279] M. Lokhava, G. Losa, D. Mazières, G. Hoare, N. Barry, E. Gafni,
J. Jove, R. Malinowsky, and J. McCaleb, “Fast and secure global
payments with stellar,” in Proceedings of the 27th ACM Symposium
on Operating Systems Principles, 2019, pp. 80–96.

[280] G. Voron and V. Gramoli, “Dispel: byzantine smr with distributed
pipelining,” arXiv preprint arXiv:1912.10367, 2019.

[281] M. Scharf and S. Kiesel, “Nxg03-5: Head-of-line blocking in tcp and
sctp: Analysis and measurements,” in IEEE Globecom 2006. IEEE,
2006, pp. 1–5.

[282] S. Gupta, J. Hellings, S. Rahnama, and M. Sadoghi, “Proof-of-

82



execution: Reaching consensus through fault-tolerant speculation,”
arXiv preprint arXiv:1911.00838, 2019.

[283] S. Bano, M. Baudet, A. Ching, A. Chursin, G. Danezis, F. Garillot,
Z. Li, D. Malkhi, O. Naor, D. Perelman et al., “State machine repli-
cation in the libra blockchain,” Avalaible at: https://developers. libra.
org/docs/state-machine-replication-paper (Consulted on December 19,
2020), 2020.

[284] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham, “Hot-
stuff: Bft consensus with linearity and responsiveness,” in Proceedings
of the 2019 ACM Symposium on Principles of Distributed Computing,
2019, pp. 347–356.

[285] A. Spiegelman, “In search for a linear byzantine agreement,” arXiv
preprint arXiv:2002.06993, 2020.

[286] J. Mickens, “The saddest moment,” Login Usenix Mag, vol. 39, no. 3,
pp. 52–54, 2014.

[287] M. M. Jalalzai, J. Niu, and C. Feng, “Fast-hotstuff: A fast and resilient
hotstuff protocol,” arXiv preprint arXiv:2010.11454, 2020.

[288] Y. Zhang, S. Setty, Q. Chen, L. Zhou, and L. Alvisi, “Byzantine or-
dered consensus without byzantine oligarchy,” in 14th {USENIX} Sym-
posium on Operating Systems Design and Implementation ({OSDI}
20), 2020, pp. 633–649.

[289] S. Gupta, S. Rahnama, J. Hellings, and M. Sadoghi, “Resilientdb:
global scale resilient blockchain fabric,” Proceedings of the VLDB
Endowment, vol. 13, no. 6, pp. 868–883, 2020.

[290] G. Association et al., “Blockchain for development: Emerging oppor-
tunities for mobile, identity and aid,” 2017.

[291] Y. Amir, C. Danilov, D. Dolev, J. Kirsch, J. Lane, C. Nita-Rotaru,
J. Olsen, and D. Zage, “Steward: Scaling byzantine fault-tolerant
replication to wide area networks,” IEEE Transactions on Dependable
and Secure Computing, vol. 7, no. 1, pp. 80–93, 2008.

[292] J. Sousa and A. Bessani, “Separating the wheat from the chaff: An
empirical design for geo-replicated state machines,” in 2015 IEEE 34th
Symposium on Reliable Distributed Systems (SRDS). IEEE, 2015, pp.
146–155.

[293] C. Berger, H. P. Reiser, J. Sousa, and A. N. Bessani, “Aware: Adaptive
wide-area replication for fast and resilient byzantine consensus,” IEEE
Transactions on Dependable and Secure Computing, 2020.

[294] Z. Avarikioti, L. Heimbach, R. Schmid, and R. Wattenhofer, “Fnf-
bft: Exploring performance limits of bft protocols,” arXiv preprint
arXiv:2009.02235, 2020.

[295] S. Bano, A. Sonnino, A. Chursin, D. Perelman, and D. Malkhi,
“Twins: White-glove approach for bft testing,” arXiv preprint
arXiv:2004.10617, 2020.

[296] S. Bano, A. Sonnino, A. Chursin, D. Perelman, Z. Li, A. Ching, and
D. Malkhi, “Gemini: Bft systems made robust.”

[297] A. Stewart and E. Kokoris-Kogia, “Grandpa: a byzantine finality
gadget,” arXiv preprint arXiv:2007.01560, 2020.

[298] Z. Xiang, D. Malkhi, K. Nayak, and L. Ren, “Strengthened fault
tolerance in byzantine fault tolerant replication,” arXiv preprint
arXiv:2101.03715, 2021.

[299] M. Platania, D. Obenshain, T. Tantillo, Y. Amir, and N. Suri, “On
choosing server-or client-side solutions for bft,” ACM Computing
Surveys (CSUR), vol. 48, no. 4, pp. 1–30, 2016.

[300] M. Kapritsos, Y. Wang, V. Quema, A. Clement, L. Alvisi, and
M. Dahlin, “All about eve: Execute-verify replication for multi-core
servers,” in 10th {USENIX} Symposium on Operating Systems Design
and Implementation ({OSDI} 12), 2012, pp. 237–250.

[301] M. Eischer and T. Distler, “Latency-aware leader selection for geo-
replicated byzantine fault-tolerant systems,” in 2018 48th Annual
IEEE/IFIP International Conference on Dependable Systems and
Networks Workshops (DSN-W). IEEE, 2018, pp. 140–145.

[302] R. Friedman and R. Van Renesse, “Packing messages as a tool for
boosting the performance of total ordering protocols,” in Proceedings.
The Sixth IEEE International Symposium on High Performance Dis-
tributed Computing (Cat. No. 97TB100183). IEEE, 1997, pp. 233–
242.

[303] H. P. Reiser and R. Kapitza, “Hypervisor-based efficient proactive

recovery,” in 2007 26th IEEE International Symposium on Reliable
Distributed Systems (SRDS 2007). IEEE, 2007, pp. 83–92.

[304] T. Distler, I. Popov, W. Schröder-Preikschat, H. P. Reiser, and
R. Kapitza, “Spare: Replicas on hold.” in NDSS, 2011.

[305] M. Eischer and T. Distler, “Scalable byzantine fault-tolerant state-
machine replication on heterogeneous servers,” Computing, vol. 101,
no. 2, pp. 97–118, 2019.

[306] G. Habiger, F. J. Hauck, J. Köstler, and H. P. Reiser, “Resource-
efficient¨ state-machine replication with multithreading and vertical
scaling,” in 2018 14th European Dependable Computing Conference
(EDCC). IEEE, 2018, pp. 87–94.

[307] R. Kotla and M. Dahlin, “High throughput byzantine fault tolerance,”
in International Conference on Dependable Systems and Networks,
2004. IEEE, 2004, pp. 575–584.

[308] M. Eischer, M. Büttner, and T. Distler, “Deterministic fuzzy check-
points,” in 2019 38th Symposium on Reliable Distributed Systems
(SRDS). IEEE, 2019, pp. 153–15 309.

[309] P. Sousa, A. N. Bessani, M. Correia, N. F. Neves, and P. Verissimo,
“Highly available intrusion-tolerant services with proactive-reactive
recovery,” IEEE Transactions on Parallel and Distributed Systems,
vol. 21, no. 4, pp. 452–465, 2009.

[310] P. Kuznetsov and R. Rodrigues, “Bftw3: Why? when? where? work-
shop on the theory and practice of byzantine fault tolerance,” ACM
SIGACT News, vol. 40, no. 4, pp. 82–86, 2010.

[311] C. Dwork and M. Naor, “Pricing via processing or combatting junk
mail,” in Annual international cryptology conference. Springer, 1992,
pp. 139–147.

[312] A. Back, “A partial hash collision based postage scheme,” Retrieved
December, vol. 29, p. 2018, 1997.

[313] I. Bentov, R. Pass, and E. Shi, “Snow white: Provably secure proofs
of stake.” IACR Cryptol. ePrint Arch., vol. 2016, p. 919, 2016.

[314] A. Kiayias, A. Russell, B. David, and R. Oliynykov, “Ouroboros:
A provably secure proof-of-stake blockchain protocol,” in Annual
International Cryptology Conference. Springer, 2017, pp. 357–388.

[315] B. David, P. Gaži, A. Kiayias, and A. Russell, “Ouroboros praos:
An adaptively-secure, semi-synchronous proof-of-stake blockchain,”
in Annual International Conference on the Theory and Applications
of Cryptographic Techniques. Springer, 2018, pp. 66–98.

[316] A. Chepurnoy, “Interactive proof-of-stake,” arXiv preprint
arXiv:1601.00275, 2016.

[317] D. Larimer, “Delegated proof-of-stake (dpos). bitshare whitepaper
(2014),” 2014.

[318] K. Karantias, A. Kiayias, and D. Zindros, “Proof-of-burn,” in Inter-
national Conference on Financial Cryptography and Data Security.
Springer, 2020, pp. 523–540.

[319] T. NEM, “Nem technical reference,” URL https://nem.
io/wpcontent/themes/nem/files/NEM_techRef. pdf, 2018.

[320] V. Dhillon, D. Metcalf, and M. Hooper, “The hyperledger project,” in
Blockchain enabled applications. Springer, 2017, pp. 139–149.

[321] A. Miller, A. Juels, E. Shi, B. Parno, and J. Katz, “Permacoin: Repur-
posing bitcoin work for data preservation,” in 2014 IEEE Symposium
on Security and Privacy. IEEE, 2014, pp. 475–490.

[322] S. Park, A. Kwon, G. Fuchsbauer, P. Gaži, J. Alwen, and K. Pietrzak,
“Spacemint: A cryptocurrency based on proofs of space,” in Inter-
national Conference on Financial Cryptography and Data Security.
Springer, 2018, pp. 480–499.

[323] L. Luu, Y. Velner, J. Teutsch, and P. Saxena, “Smartpool: Practical
decentralized pooled mining,” in 26th {USENIX} Security Symposium
({USENIX} Security 17), 2017, pp. 1409–1426.

[324] I. Abraham, D. Malkhi et al., “The blockchain consensus layer and
bft,” Bulletin of EATCS, vol. 3, no. 123, 2017.

[325] V. Buterin, “Casper version 1 implementation guide,” Ethereum Github
repository, 2017.

[326] I. Abraham, D. Malkhi, K. Nayak, L. Ren, and A. Spiegelman,
“Solidus: An incentive-compatible cryptocurrency based on permis-
sionless byzantine consensus,” CoRR, abs/1612.02916, 2016.

83



[327] V. King, J. Saia, V. Sanwalani, and E. Vee, “Scalable leader election,”
in Proceedings of the seventeenth annual ACM-SIAM symposium on
Discrete algorithm, 2006, pp. 990–999.

[328] D. Dasgupta, J. M. Shrein, and K. D. Gupta, “A survey of blockchain
from security perspective,” Journal of Banking and Financial Tech-
nology, vol. 3, no. 1, pp. 1–17, 2019.

[329] S. M. H. Bamakan, A. Motavali, and A. B. Bondarti, “A survey
of blockchain consensus algorithms performance evaluation criteria,”
Expert Systems with Applications, p. 113385, 2020.

[330] H. Hasanova, U.-j. Baek, M.-g. Shin, K. Cho, and M.-S. Kim, “A
survey on blockchain cybersecurity vulnerabilities and possible coun-
termeasures,” International Journal of Network Management, vol. 29,
no. 2, p. e2060, 2019.

[331] G. Bissias, B. N. Levine, A. P. Ozisik, and G. Andresen, “An analysis
of attacks on blockchain consensus,” arXiv preprint arXiv:1610.07985,
2016.

[332] S. Sayeed and H. Marco-Gisbert, “Assessing blockchain consensus and
security mechanisms against the 51% attack,” Applied Sciences, vol. 9,
no. 9, p. 1788, 2019.

[333] T. T. A. Dinh, J. Wang, G. Chen, R. Liu, B. C. Ooi, and K.-L. Tan,
“Blockbench: A framework for analyzing private blockchains,” in Pro-
ceedings of the 2017 ACM International Conference on Management
of Data. ACM, 2017, pp. 1085–1100.

[334] T. T. A. Dinh, R. Liu, M. Zhang, G. Chen, B. C. Ooi, and J. Wang,
“Untangling blockchain: A data processing view of blockchain sys-
tems,” IEEE Transactions on Knowledge and Data Engineering,
vol. 30, no. 7, pp. 1366–1385, 2018.

[335] A. Gervais, G. O. Karame, K. Wüst, V. Glykantzis, H. Ritzdorf,
and S. Capkun, “On the security and performance of proof of work
blockchains,” in Proceedings of the 2016 ACM SIGSAC conference on
computer and communications security. ACM, 2016, pp. 3–16.

[336] Z. Zheng, S. Xie, H.-N. Dai, X. Chen, and H. Wang, “Blockchain
challenges and opportunities: A survey,” International Journal of Web
and Grid Services, vol. 14, no. 4, pp. 352–375, 2018.

[337] J. Bruce, “The mini-blockchain scheme,” White paper, 2014.

[338] G. Wang, Z. Shi, M. Nixon, and S. Han, “Chainsplitter: Towards
blockchain-based industrial iot architecture for supporting hierarchi-
cal storage,” in 2019 IEEE International Conference on Blockchain
(Blockchain). IEEE, 2019, pp. 166–175.

[339] A. Biryukov, D. Khovratovich, and I. Pustogarov, “Deanonymisation
of clients in bitcoin p2p network,” in Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security.
ACM, 2014, pp. 15–29.

[340] S. Feld, M. Schönfeld, and M. Werner, “Analyzing the deployment
of bitcoin’s p2p network under an as-level perspective,” Procedia
Computer Science, vol. 32, pp. 1121–1126, 2014.

[341] P. Koshy, D. Koshy, and P. McDaniel, “An analysis of anonymity
in bitcoin using p2p network traffic,” in International Conference on
Financial Cryptography and Data Security. Springer, 2014, pp. 469–
485.

[342] A. Kumar, C. Fischer, S. Tople, and P. Saxena, “A traceability analysis
of monero’s blockchain,” in European Symposium on Research in
Computer Security. Springer, 2017, pp. 153–173.

[343] G. Maxwell, “Coinjoin: Bitcoin privacy for the real world,” in Post on
Bitcoin forum, 2013.

[344] T. Ruffing, P. Moreno-Sanchez, and A. Kate, “Coinshuffle: Practical
decentralized coin mixing for bitcoin,” in European Symposium on
Research in Computer Security. Springer, 2014, pp. 345–364.

[345] S. Gupta, J. Hellings, S. Rahnama, and M. Sadoghi, “An in-depth
look of bft consensus in blockchain: Challenges and opportunities,”
in Proceedings of the 20th International Middleware Conference
Tutorials, 2019, pp. 6–10.

[346] H. Du and D. J. S. Hilaire, “Multi-paxos: An implementation and eval-
uation,” Department of Computer Science and Engineering, University
of Washington, Tech. Rep. UW-CSE-09-09-02, 2009.

[347] J. Nijsse and A. Litchfield, “A taxonomy of blockchain consensus
methods,” Cryptography, vol. 4, no. 4, p. 32, 2020.

[348] I. Sheff, X. Wang, R. van Renesse, and A. C. Myers, “Heterogeneous
paxos,” in 24th International Conference on Principles of Distributed
Systems (OPODIS 2020). Schloss Dagstuhl-Leibniz-Zentrum für
Informatik, 2021.

[349] P. Thambidurai and Y.-K. Park, “Interactive consistency with multi-
ple failure modes,” in Proceedings Seventh Symposium on Reliable
Distributed Systems. IEEE Computer Society, 1988, pp. 93–94.

[350] J. M. Rushby, “Design and verification of secure systems,” ACM
SIGOPS Operating Systems Review, vol. 15, no. 5, pp. 12–21, 1981.

[351] G. S. Veronese, M. Correia, A. N. Bessani, and L. C. Lung, “Ebawa:
Efficient byzantine agreement for wide-area networks,” in 2010 IEEE
12th International Symposium on High Assurance Systems Engineer-
ing. IEEE, 2010, pp. 10–19.

[352] I. Anati, S. Gueron, S. Johnson, and V. Scarlata, “Innovative tech-
nology for cpu based attestation and sealing,” in Proceedings of the
2nd international workshop on hardware and architectural support for
security and privacy, vol. 13. ACM New York, NY, USA, 2013, p. 7.

[353] A. ARM, “Security technology-building a secure system using trust-
zone technology,” ARM Technical White Paper, 2009.

[354] S. Rüsch, K. Bleeke, and R. Kapitza, “Bloxy: Providing transparent
and generic bft-based ordering services for blockchains,” in 2019 38th
Symposium on Reliable Distributed Systems (SRDS). IEEE, 2019, pp.
305–30 509.

[355] M. Correia, N. F. Neves, L. C. Lung, and P. Veríssimo, “Worm-it–
a wormhole-based intrusion-tolerant group communication system,”
Journal of Systems and Software, vol. 80, no. 2, pp. 178–197, 2007.

[356] M. Garcia, A. Bessani, and N. Neves, “Lazarus: Automatic man-
agement of diversity in bft systems,” in Proceedings of the 20th
International Middleware Conference, 2019, pp. 241–254.

[357] M. Bravo, G. Chockler, and A. Gotsman, “Making byzantine consen-
sus live,” in 34th International Symposium on Distributed Computing
(DISC 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik,
2020.

[358] P. Tholoniat and V. Gramoli, “Formal verification of blockchain
byzantine fault tolerance,” arXiv preprint arXiv:1909.07453, 2019.

[359] D. Dolev, J. Y. Halpern, B. Simons, and R. Strong, “Dynamic fault-
tolerant clock synchronization,” Journal of the ACM (JACM), vol. 42,
no. 1, pp. 143–185, 1995.

[360] B. Simons, “An overview of clock synchronization,” Fault-Tolerant
Distributed Computing, pp. 84–96, 1990.

[361] S. Meiklejohn, M. Pomarole, G. Jordan, K. Levchenko, D. McCoy,
G. M. Voelker, and S. Savage, “A fistful of bitcoins: characterizing
payments among men with no names,” in Proceedings of the 2013
conference on Internet measurement conference, 2013, pp. 127–140.

[362] T. McConaghy, R. Marques, A. Müller, D. De Jonghe, T. McConaghy,
G. McMullen, R. Henderson, S. Bellemare, and A. Granzotto,
“Bigchaindb: a scalable blockchain database,” white paper,
BigChainDB, 2016.

[363] J. Groth, “Short pairing-based non-interactive zero-knowledge argu-
ments,” in International Conference on the Theory and Application of
Cryptology and Information Security. Springer, 2010, pp. 321–340.

[364] S. Wang, L. Ouyang, Y. Yuan, X. Ni, X. Han, and F.-Y. Wang,
“Blockchain-enabled smart contracts: architecture, applications, and
future trends,” IEEE Transactions on Systems, Man, and Cybernetics:
Systems, vol. 49, no. 11, pp. 2266–2277, 2019.

[365] R. Zhang, R. Xue, and L. Liu, “Security and privacy on blockchain,”
ACM Computing Surveys (CSUR), vol. 52, no. 3, pp. 1–34, 2019.

[366] K. Birman, “The promise, and limitations, of gossip protocols,” ACM
SIGOPS Operating Systems Review, vol. 41, no. 5, pp. 8–13, 2007.

[367] A.-M. Kermarrec and M. Van Steen, “Gossiping in distributed sys-
tems,” ACM SIGOPS operating systems review, vol. 41, no. 5, pp.
2–7, 2007.

[368] S. B. Mokhtar, A. Pace, and V. Quéma, “Firespam: Spam resilient
gossiping in the bar model,” in 2010 29th IEEE Symposium on Reliable
Distributed Systems. IEEE, 2010, pp. 225–234.

[369] L. Alvisi, J. Doumen, R. Guerraoui, B. Koldehofe, H. Li, R. Van Re-
nesse, and G. Tredan, “How robust are gossip-based communication

84



protocols?” ACM SIGOPS Operating Systems Review, vol. 41, no. 5,
pp. 14–18, 2007.

[370] R. Van Renesse, Y. Minsky, and M. Hayden, “A gossip-style failure
detection service,” in Middleware’98. Springer, 1998, pp. 55–70.

[371] L. Gelbmann and G. Bosson, “Bls cosigning via a gossip protocol,”
2019.

[372] J. F. Mikalsen, “Firechain: An efficient blockchain protocol using
secure gossip,” Master’s thesis, UiT Norges arktiske universitet, 2018.

[373] R. van Renesse, “A blockchain based on gossip?-a position paper,”
Cornell University, 2016.

[374] M. Correia, N. F. Neves, and P. Verissimo, “Bft-to: Intrusion tolerance
with less replicas,” The Computer Journal, vol. 56, no. 6, pp. 693–715,
2012.

[375] I. Abraham, S. Devadas, D. Dolev, K. Nayak, and L. Ren, “Efficient
synchronous byzantine consensus,” arXiv preprint arXiv:1704.02397,
2017.

[376] I. Grigg, “Eos-an introduction,” White paper.
https://whitepaperdatabase. com/eos-whitepaper, 2017.

[377] H. Dang, A. Dinh, E.-C. Chang, and B. C. Ooi, “Chain of trust:
Can trusted hardware help scaling blockchains?” arXiv preprint
arXiv:1804.00399, 2018.

[378] V. Costan and S. Devadas, “Intel sgx explained.” IACR Cryptology
ePrint Archive, vol. 2016, no. 086, pp. 1–118, 2016.

[379] J.-E. Ekberg, K. Kostiainen, and N. Asokan, “The untapped potential
of trusted execution environments on mobile devices,” IEEE Security
& Privacy, vol. 12, no. 4, pp. 29–37, 2014.

[380] C. Stathakopoulous and C. Cachin, “Threshold signatures for
blockchain systems,” Swiss Federal Institute of Technology, 2017.

[381] S. Gupta, S. Rahnama, and M. Sadoghi, “Permissioned blockchain
through the looking glass: Architectural and implementation lessons
learned,” arXiv preprint arXiv:1911.09208, 2019.

[382] S. Gupta and M. Sadoghi, “Easycommit: A non-blocking two-phase
commit protocol.” in EDBT, 2018, pp. 157–168.

[383] T. M. Qadah and M. Sadoghi, “Quecc: A queue-oriented, control-free
concurrency architecture,” in Proceedings of the 19th International
Middleware Conference, 2018, pp. 13–25.

[384] T. Qadah, S. Gupta, and M. Sadoghi, “Q-store: Distributed, multi-
partition transactions via queue-oriented execution and communica-
tion.” in EDBT, 2020, pp. 73–84.

[385] S. Gupta, “Resilient and scalable architecture for permissioned
blockchain fabrics,” Proceedings of the VLDB Endowment, 2020.

[386] P. J. Marandi, C. E. Bezerra, and F. Pedone, “Rethinking state-
machine replication for parallelism,” in 2014 IEEE 34th International
Conference on Distributed Computing Systems. IEEE, 2014, pp. 368–
377.

[387] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis,
A. De Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich et al.,
“Hyperledger fabric: a distributed operating system for permissioned
blockchains,” in Proceedings of the thirteenth EuroSys conference,
2018, pp. 1–15.

[388] M. J. Amiri, D. Agrawal, and A. E. Abbadi, “Caper: a cross-application
permissioned blockchain,” Proceedings of the VLDB Endowment,
vol. 12, no. 11, pp. 1385–1398, 2019.

[389] H. Dang, T. T. A. Dinh, D. Loghin, E.-C. Chang, Q. Lin, and B. C. Ooi,
“Towards scaling blockchain systems via sharding,” in Proceedings of
the 2019 international conference on management of data, 2019, pp.
123–140.

[390] N. Szabo, “The idea of smart contracts,” Nick Szabo’s papers and
concise tutorials, vol. 6, no. 1, 1997.

[391] C. Jentzsch, “The history of the dao and lessons learned,” Slock. it
Blog, vol. 24, 2016.

[392] H. Wan, K. Li, and Y. Huang, “Blockchain: A review from the
perspective of operations researchers,” in 2020 Winter Simulation
Conference (WSC). IEEE, 2020, pp. 75–89.

85


