
Mithril: Stake-based
Threshold Multisignatures

Pyrros Chaidos1 and Aggelos Kiayias2

1 National & Kapodistrian University of Athens
pchaidos@di.uoa.gr

2 University of Edinburgh & IOHK
akiayias@inf.ed.ac.uk

Abstract. Stake-based multiparty cryptographic primitives operate in
a setting where participants are associated with their stake, security is
argued against an adversary that is bounded by the total stake it possesses

—as opposed to number of parties— and we are interested in scalability,
i.e., the complexity of critical operations depends only logarithmically in
the number of participants (who are assumed to be numerous).

In this work we put forth a new stake-based primitive, stake-based thresh-
old multisignatures (STM, or “Mithril” signatures), which allows the
aggregation of individual signatures into a compact multisignature pro-
vided the stake that supports a given message exceeds a stake threshold.
This is achieved by having for each message a pseudorandomly sampled
subset of participants eligible to issue an individual signature; this ensures
the scalability of signing, aggregation and verification.

We formalize the primitive in the universal composition setting and
propose efficient constructions for STMs. We also showcase that STMs
are eminently useful in the cryptocurrency setting by providing two
applications: (i) stakeholder decision-making for Proof of Work (PoW)
blockchains, specifically, Bitcoin, and (ii) fast bootstrapping for Proof of
Stake (PoS) blockchains.

Keywords: Digital Signatures; Blockchains; Universal Composability; Non-
Interactive Zero Knowledge

1 Introduction

A wide class of multiparty cryptographic protocols is currently considered in the
stake-based setting, where a public-key directory of n keys associates each key
mvki with a real number si, — the key’s stake. In the stake-based setting, the
adversary has a corruption bound expressed in terms of total stake controlled —
rather than number of keys or identities — and the complexity metrics of the
protocol aim to scale with logN rather than N .

While any standard “key-based” multiparty protocol can be trivially ported to
the stake-based setting by “flattening” out the stake distribution and associating



each unit of stake (aka coin) to a distinct cryptographic key, the resulting con-
structions are typically extremely inefficient. Motivated by advances in blockchain
technology, an array of recent protocol design efforts have focused on the topic
of native stake-based design, with prominent examples in the area of consensus
protocols, e.g., Algorand [16] and the Ouroboros protocols [35, 33, 18], and more
recently secure multiparty computation [6, 17].

Pushing the state of the art forward in this direction, this work puts forth
stake-based threshold multisignatures (STM).

– First, in an STM, as in a threshold signature, a quorum of signers is required
to engage, in order for a signature to be produced. However, in line with the
stake-based setting, that threshold is expressed in terms of stake rather than
a number of keys or identities.

– Second, in an STM, as in a multisignature, signers can act independently
and sign messages that can be individually verified. When they do sign the
same message, their individual signatures can be aggregated as long as they
exceed the agreed threshold. The aggregate can be verified with respect to a
global key that represents the whole stakeholder set.

– Third, in an STM, in line with the scalability objective of the stake-based
setting, we want the operations of issuing a signature, aggregation of individual
signatures and verification to depend logarithmically in n.

Beyond the theoretical interest in designing such a cryptographic scheme,
STMs constitute an eminently useful primitive in the setting of cryptocurrencies.
Specifically, by associating an STM key to their cryptocurrency account, it is
possible for the set of owners of a cryptocurrency to certify any specific message
in a collective manner. Observe that all three properties identified above are
essential in the cryptocurrency setting. First, by imposing a stake threshold,
e.g., 1/2 or 2/3, we ensure that the majority or supermajority of stakeholders
endorse the message. Second, by allowing stakeholders to sign in an individually
verifiable manner, we allow signed messages to be collected over a public peer-to-
peer network while preventing DoS attacks. Third, logarithmic dependency in n,
ensures the scalability of the operation even for billions of stakeholders.

STMs can have profound implications in the topic of blockchain governance,
(e.g., it is possible for all Bitcoin holders to ratify a particular software upgrade)
but also other applications such as fast blockchain bootstrapping of cryptocur-
rency wallets. Specifically, to articulate the latter application, in a proof-of-stake
blockchain like Cardano or Tezos, using an STM, it is possible to certify the state
of the ledger efficiently at regular intervals by creating certified checkpoints. This
can facilitate a fast bootstrapping process for a wallet application joining the
system: instead of the wallet acting as a “full node” and processing all ledger
transactions to sync up to the recent state, it can “hop” from checkpoint to
checkpoint starting from the genesis block (or the most recently known trusted
block) until the latest checkpoint is reached from which point it can process
transactions normally.

Our contributions. In more detail, our contributions are as follows.
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Formalization of the Stake-based Threshold Multisignature primitive. The fun-
damental concept in achieving a scalable STM is to pseudorandomly associate
with each message a sufficiently large committee drawn from the stakeholder
distribution. Thus, for any message msg, the STM functionality can be thought
of as initiating m lotteries and each prospective signer can check to see if it
wins it. Here m is a security parameter of the primitive. Each winning ticket
can be seen as an eligibility credential allowing the party to create a signature
for msg. The probability of winning a ticket is a function of the party’s stake
calculated in such a way that the party would have the same probability of
winning irrespectively of how her stake is organized (e.g., either aggregated in a
single public-key or dispersed to many). Eligible parties for a message msg are
subsequently capable to create a signature. Finally, once a sufficient number k of
signatures are produced, these can be aggregated in a public manner. We present
our modeling as an ideal functionality in the universal composition (UC) setting.

A scalable instantiation. At a bird’s eye view, our construction relies on two basic
primitives: a unique multisignature equipped with a regular “dense mapping” and
a non-interactive proof system. The mapping is used to issue a number of lottery
tickets per message per signer so that winning tickets are publicly verifiable,
while the proof system will collect a sufficient number of winning tickets to a
single signature. Assembling these primitives safely so we achieve our objective
requires special care. In more detail there are three main ingredients to the full
construction.

The first ingredient is a key registration functionality that organizes the
participants’ stake; to minimize the assumptions placed on the setup of the
primitive we assume that key registration functionality is aware of the stake
of participants and invites them to register their cryptographic keys. Upon
termination of this phase the parties can retrieve those keys and organize them
in a Merkle tree (note that this Merkle tree organization can take place as part
of a setup operation and hence need not encumber the parties computationally).

The second ingredient is an eligibility check per message, for which we rely on
the uniqueness and unforgeability of the signature scheme, i.e., it is infeasible for
an adversary to produce two distinct valid signatures. We apply the mapping on
the signature and the lottery index from {1, . . . ,m} and we compare the output in
a suitable manner with the party’s stake; this determines whether the stakeholder
wins the particular lottery. In case of a winning ticket, the party communicates
the individual signature, index, registration data (and corresponding Merkle tree
witness). This makes her winning ticket publicly verifiable.

The third ingredient is using a suitable proof system to facilitate aggregation of
the winning tickets into a succinct object. While the resulting aggregate signature
should ideally be of constant size, we do not want to rely on a structured reference
string that, in the blockchain setting, can be hard to generate and maintain. For
this reason, in our construction we resort to using a bulletproof [12] on a specially
crafted statement. While proofs are not constant size, they remain compact and
need only an unstructured reference string. The first challenge in applying this
strategy is to remove any dependency of the underlying security argument to
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idealizing any of the hash functions that go into the circuit that is fed to the
bulletproof compiler. The second challenge is to minimize the expensive operations
within the bulletproof circuit such as pairings. For that, we rely on multisignature
aggregation inside the circuit so that we only need to calculate the inputs to a
single pairing check which we can perform externally. We also give a simpler,
concatenation-based alternative that produces significantly larger proofs but has
lower verification and implementation complexity. We give a modular description
of our construction that covers both cases and we analyze the performance of
both of them; we distinguish the two variants by PSB ,PSC denoting the use of a
proof system with bulletproofs and concatenation respectively.

Efficiency Considerations and Applications. We show how our construction can
be concretely implemented using elligator squared [47] curves. To maintain the
efficiency of the circuit we rely on Poseidon hashes [29] for the Merkle tree. The
number of constraints that are needed for the circuit is approximately 221, and
aggregate proof sizes can be as small as 4KB using Bulleproofs. Concatenation
based proofs are ca. 100-350KB in size, but are faster to verify.

In terms of applications we observe that our construction can be readily
integrated into standard Bitcoin script to equip all accounts with STM func-
tionality. In particular, using pay-to-script-hash p2sh it is possible to entangle
an STM public-key to one’s address and then use the Bitcoin blockchain as the
key-registration service for our construction as described above. Subsequently all
enabled UTXOs can engage in STM generation.

We also examine the problem of bootstrapping light clients in Proof of
Stake (PoS) blockchains. The general challenge in this setting is that the client
needs to verify the ledger upon joining the network and that block verification
fundamentally depends on stake (so it cannot be conducted in the same way as
an SPV client in the bitcoin setting, that can just count the blocks’ aggregate
difficulty). As a result, a client bootstrapping in the PoS setting needs to follow the
stake as it moves between accounts to be in sync over time with the stakeholder
distribution and validate all the blocks. The amount of work to be performed scales
linearly with the number of transactions in the ledger which can be extremely
large. Using mithril, a different approach can be followed: instead of verifying
transactions, the stakeholders can issue checkpoints at regular intervals using an
STM signature. The client needs only to verify all checkpoints till the most recent
one after which individual blocks and transactions can be verified sequentially.
In this way the operation becomes linear in the number of checkpoints instead of
linear in the number of transactions. The frequency of the checkpoints can be set
to be at regular intervals.

Related Work. Multisignatures, introduced in [31] enable combining multiple
signatures of the same message into one. Note that the interesting case is the
setting where verification complexity would be sublinear in the number of signers,
otherwise one can simply string all signatures together in order to obtain a
multisignature.

In [44] Ristenpart and Yilek demonstrate how proofs of possession can enable
more efficient aggregation for BLS-based constructions while avoiding “rogue-key”
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attacks, in which an adversary may create a malicious key related to an honest
one with the goal that the malicious key can be used to sign a multisignature
over both keys.

The related but distinct primitive of threshold signatures was introduced in
[19]. In a threshold signature, there is a threshold t so that a signature only
can be produced with respect to the group key as long as t shareholders engage.
Many threshold signature schemes require a key generation protocol that requires
the coordination of the signers over a number of rounds, e.g.,[27], [46], [15].
Nevertheless it is desirable, especially in the blockchain setting, to have an ad-hoc
key generation where signers can post their keys in an asynchronous fashion and
that the subgroup which acts for a particular message is determined dynamically.

Threshold signatures and multisignatures were combined in [37] highlighting
the properties of traceability in the context of threshold signatures. The concept
of accountability, i.e., that the subgroup involved in a multisignature needs to be
reliably identified by the verifier was formalized in this context in the form of
accountable subgroup multisignatures (AMS) [39].

Ad-hoc threshold multisignatures (ATMS) were put forth in [26]. ATMS is
like a threshold signature, in the sense that a quorum of signers need to issue
“signature shares” that are subsequently combined. Signature shares however
are verifiable as signatures too and key generation is ad-hoc without requiring
coordination from participants. This allows a committee to be fixed ahead of
time whilst allowing for individual members to abstain or be unavailable for
some operations. In contrast, our notion of a “threshold” is predicated by the
stake held by each user and additionally involves random eligibility sampling to
keep participation requirements manageable. Essentially, whereas in an ATMS
scheme selecting a committee is an external operation, in STM it is (implicitly)
performed internally. This is beneficial to security (as there is no need to identify
committee members) as well as liveness: a (partly) inactive committee stops
progress in an ATMS scheme, but an STM scheme can recover by signing an
alternative message (as eligibility is pseudorandomly redistributed per message).

More recently, Micali et. al. [41] introduced compact certificate schemes which
can be seen as the stake-based version of ATMS. Compared to our primitive,
they also lack the concept of eligibility. As a result, depending on the stakeholder
distribution, a significant percentage of the user base needs to produce and
transmit their individual signatures in order for the protocol to succeed. They
do utilize sampling during aggregation however, something that enables them to
only reveal a small number of signatures as proof of a certificate’s validity. Inter-
estingly, in terms of efficiency, this adaptive sampling enables the use of a more
aggressive quorum parameter, producing certificates that are 2-3 times smaller
than ours when using simple concatenation proofs, with similar asymptotics. On
the other hand, as expected, our construction compares very favourably in terms
of scalability of the communication costs and aggregation effort as only a small
subset of users is involved in signature production. We also implement STMs
using bulletproofs for the proof system, something that squashes the proof length
(at the cost of higher computation). We note that the construction of [41] could
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possibly similarly be augmented with a more compact proof system but this is
not explored in [41].

We provide a comparison with concrete numbers between the schemes in
table 1 showcasing the scalability of STM against a naive base scheme that
concatenates signatures, the ATMS of [26] and the compact certificates of [41].

System
logN = 10 logN = 13 logN = 20 logN = 30

comms size comms size comms size comms size

Baseline - Participation 64 42 512 335 64 · 210 42 · 210 64 · 220 42 · 220

ATMS [26] 48 .05 384 .05 48 · 210 .05 48 · 220 .05
CCCK [41] 64 21 512 29 64 · 210 46 64 · 220 71
PSC [Sec 4.3] 31 101 31 140 31 230 31 359
PSC CH [Sec 4.3, 5.1] 78 68 78 91 78 146 78 224
PSB [Sec 4.2] 36 4 36 4 36 4 36 4
PSB CH [Sec 4.2, 5.1] 89 4 89 4 89 4 89 4

Baseline - Abstention 43 42 341 335 43 · 210 42 · 210 43 · 220 42 · 220

ATMS [26] 32 64 256 512 32 · 210 64 · 210 32 · 1020 64 · 220

CCCK [41] 43 30 341 42 43 · 210 70 43 · 220 110
PSC [Sec 4.3] 45 101 45 140 45 230 45 359
PSC CH [Sec 4.3, 5.1] 54 182 54 262 54 449 54 717
PSB [Sec 4.2] 52 4 52 4 52 4 52 4
PSB CH [Sec 4.2, 5.1] 62 4 62 4 62 4 62 4

Table 1. Comparison to previous work for N users with sizes in KiB. We assume a
flat stake distribution, 1

3
adversarial stake and full adversarial abstention (bottom) or

participation (top). This leads to numreveals = 128/80 for CCCK when the adversary
is abstaining/participating. We use k = 414 for PSB ,PSC . Elements and hash bit
lengths are 256/256, 384/256, 384/256 and 446/446 for CCCK, ATMS, PSC and PSB

respectively. In all cases aggregation must be performed by a full node, see Table 3. CH
indicates a concurrent hybrid of k = (250, 856),m = (1523, 7407), see Section 5.1. For
an abstaining adversary, we calculate the expected communication cost wrt retries. The
naive baseline system polls all users and produces a certificate by only fully revealing
enough signatures to overtake the presumed adversarial stake, as described in [41]. For
all systems, we optimize Merkle tree proofs as in section 5.2.

The importance of forward-security in the context of blockchain protocols
has already been highlighted in earlier work in consensus protocols including
[16], [18] and [21]. Forward-security is not essential for all STM applications
hence we do not incorporate it as a fundamental property of the primitive - we
examine the implications of active attacks and forward security type mitigations
in Section 4.5.

Blockchains and Proof of stake. In terms of client bootstrapping, proof of work
blockchains admit simple solutions like SPV, where bootstrapping can be per-
formed by verifying only the headers of the chain [42]. Further optimizations
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such as Non-interactive proofs of proof-of-work (NIPoPoWs) [34] and flyclient
[13] drastically reduce the number of headers required by attaching additional
significance to blocks with a specific, rare property. This critically hinges on the
ability to verify headers without the need to establish a stakeholder distribution.

Turning to PoS blockchains, the works of [2, 25] are orthogonal to our work:
they describe how a single user can prove eligibility while maintaining privacy,
whilst we describe how to efficiently demonstrate eligibility over multiple users.
However, the technical toolset is similar as is the main hurdle: efficiently proving
correct evaluation of a verifiable random function. A significant obstacle in that
is the use of random oracles in such functions: a proof system based on circuits
needs to instantiate the oracle to define the verification circuit, which implies
the complete construction no longer operates in the random oracle model.

A verifiable random function (VRF) [40, 20] allows one to evaluate a random
function f on a specific point x and prove the correctness of that evaluation,
without allowing others to evaluate the same function in other points. Security
requires that without knowledge of the private evaluation key, or a proof of
correctness, y = f(x) is indistinguishable from random. The weaker notion of
a unique signature, or equivalently a verifiable unpredictable function (VUF),
requires that adversaries are unable to guess y (but may be able to distinguish
it from random). We use a public mapping M to apply a regular distribution

to signatures i.e., given a signature σ on x, it holds that y = f(x)
def
= M(σ, x)

is pseudorandom without knowledge of the verification key. We then expand
M to accept an additional evaluation parameter t such that f(x, t′) may be
determined from f(x, t) but f(x′, t) remains unpredictable for all x′ 6= x, t. This
relation between evaluations over the same x is crucial for the efficiency of our
construction that relies on a batch verification step.

Similar to [18], we rely on Elligator to “convert” a random group element
on an elliptic curve to a random field element. Due to our setting [30], we are
unable to directly use the base version and rely on Elligator squared [47] with
the additional contributions of Wahby and Boneh [48].

Vault [36] uses a construction similar to ours as a component in an efficient
bootstrapping and storage solution for Algorand. Their construction does not
utilize multisignatures, as multisignatures alone do eliminate the linear size
dependency on committee size: the VRF and Merkle tree checks need to be
aggregated as well. We opt to use a dense mapping, a notion similar to a VUF to
make aggregation possible, which gives us greater flexibility by means of size-time
tradeoffs in choosing the appropriate proof system.

Plumo [23] uses a two layer solution tailored to blockchain bootstrapping,
where one layer proves epoch transitions and the other aggregates over multiple
epochs. Their system is highly efficient, but requires stronger setup assumption-
sthan ours.
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2 Preliminaries

2.1 Notation

We use λ as the security parameter. When S is a set, the assignment operator
x←S stands for x being sampled from the set S uniformly at random. We use
bold characters to denote vectors of variables i.e b := (b1, . . . , bn).

2.2 Group Setting

We require a pairing-friendly elliptic curve E on Fp, forming groups G1,G2 of
order q, with pairing function e : G1 × G2 → GT . We use g1, g2 to refer to
generators of G1,G2 respectively. We optionally require a group GH of order
p so that E can be embedded in GH , and additionally that the structure of
E is compatible with the Elligator [7] or Elligator squared [47] representation
functions.

We require E to be pairing-friendly due to our choice of multisignagure scheme.
Compatibility with Elligator depends on our choice of dense mapping.

Definition 1 (The Discrete log Problem). For a group G = 〈g〉 of order q,
and an adversary A we define AdvdlG as:

Pr [a← Zq;h← ga : a← A(h)]

Definition 2 (The Discrete log Assumption). We assume AdvdlG is negligi-
ble for all PPT A on GH , G1, G2.

Definition 3 (The co-Computational Diffie-Hellman Problem). For two
groups G1 = 〈g1〉,G2 = 〈g2〉 of order q, and an adversary A we define Advco−CDHG1,G2

as:
Pr
[
a, b← Zq2;h← ga1 ; t1 ← gb1; t2 ← gb2 : gab1 ← A(h, t1, t2)

]
Definition 4 (The co-CDH Assumption). We assume Advco−CDHG1,G2

is neg-
ligible for all PPT A on G1,G2.

We can further strengthen the above assumption, by allowingA to run in super-
polynomial, but still sub-exponential time. This can allow for higher efficiency in
our construction, through the use of a complexity leveraging argument, but is
not necessary to prove security.

Definition 5 (The leveraged co-CDH Assumption). We assume Advco−CDHG1,G2

is negligible on G1,G2 for all adversaries A running in time O(λlog λ).

Common setup. We use Setup(1λ) to refer to the group generator function
which generates a group setting with the above requirements.

Setup(1λ) generates groups G1 = 〈g1〉,G2 = 〈g2〉 of order q, as well as GH of
order p and returns system parameters Param = (G1,G2, g1, g2, q,GH , gh, p).
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2.3 Hash functions

We use the Poseidon hash [29] on Fp as the hash function Hp, used to produce
the Merkle tree as it satisfies collision resistance and is efficient to implement
inside proofs of knowledge.

We also need hash function HG1 : {0, 1}∗ → G1, Hq : {0, 1}∗ → Zq modeled
as random oracles, producing group elements in the corresponding groups for
use with our multisignature scheme and mapping. We note that HG1

, Hq are not
evaluated inside the proof of knowledge, allowing us to study the security of both
constructions under the random oracle model [4] with no hindrance to the proof.
This is relevant, as Baldimtsi et al. [2] point out: once the hash function has been
instantiated and concretely represented (e.g. as a circuit) in order to construct
the appropriate statement proof system, we can no longer invoke the random
oracle model in the security analysis.

Merkle trees A Merkle tree is a well-used data structure based on hash functions
that allows one to represent N items3 of arbitrary size by one hash value. Beyond
that, it is efficient to verify that a value v exists within a Merkle Tree T , by
providing a path p which consists of the position i of N in the tree, as well as
the hashes of the siblings of i and the siblings of its parents.

MT.Create(v). Parse v as a vector vi of length N . Create an empty binary tree
with N leaves. Label each leaf li with the hash of the corresponding value
Hp(vi). For each level of the tree, label each node z with the hash Hp(x, y)
of the labels of its children x, y. Return the label T of the root.

MT.Check(T,N, v, i,p). Parse p as a vector pj of length log2(N). Let ik be the
k-th least significant digit of i in binary. Let h0 ← Hp(vi). for k = 1 to
log2(N), let hk ← Hp(hk−1, pk−1) if ik is 0 and hk ← Hp(pk−1, hk−1) if it is
1. Return 1 if hlog2(N) = T and 0 otherwise.

For simplicity, we write that v ∈ T , for a fixed value of N if there exists an
index i and path p such that MT.Check(T,N, v, i,p) is 1. In this work we will
rely on the fact that Merkle trees are binding in the following sense:

Lemma 1. If for a Merkle tree T,N there exist i, v 6= v′, and p, p′ such that
MT.Check(T,N, v, i,p) = MT.Check(T,N, v′, i,p′) = 1, we can extract a collision
for Hp.

Proof. Following the calculation of MT.Check, we have h0 6= h′0 unless v, v′ are
a collision. Furthermore, we know that hlog2(N) = h′log2(N). Thus, there must

exist a minimal k such that hk 6= h′k but hk+1 = h′k+1. Thus, we find that
(hk, pk), (h′k, p

′
k) is a collision when ik is 0, and (pk, hk), (p′k, h

′
k) when it is not.

3 For ease of exposition, we assume N to be a power of 2.
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2.4 Multisignature Scheme

Multisignature schemes [9] are a natural extension to the concept of a digital
signature, by introducing the concept of aggregation for keys as well as signatures.
In this work we will limit ourselves to aggregating signatures over the same
message. Given any digital signature scheme, we are able to aggregate keys and
signatures via concatenation, and naturally extend the verification algorithm to
account for this. Practical multisignature schemes aim to implement aggregation
efficiently whilst still maintaining security.

We use a variant of MSP-PoP, a multisignature based on BLS with proofs
of possession as described in [9, 44]. We further extend the proof of possession
with an additional element as our security context is slightly different: standard
security definitions of multisignature unforgeability require that the challenger
provides a signing oracle only for one designated honest user, and in addition, it
needs to be able to calculate signatures for every other user on a pre-selected
point. In the proof of lemma 8 we will additionally need to be able to calculate
arbitrary signatures on potentially malicious users on any message. This can be
solved by either requiring an isomorphism from G2 to G1 as in [44], or in our
case by adding the equivalent image to the proof of possession.

– MSP.Gen(Param): sk ← Zq;mvk ← gx2 ;
κ1 ← HG1(“PoP”‖mvk)x;κ2 ← gx1 . Return secret key sk, verification key
mvk and proof or possession κ = (κ1, κ2)

– MSP.Check(mvk,κ) If e(κ1, g2) = e(HG1
(“PoP”‖mvk),mvk) and e(g1,mvk) =

e(κ2, g2) are both true, return 1, otherwise return 0.

– MSP.Sig(sk,msg) Return σ ← HG1(“M”‖msg)x.

– MSP.Ver(msg,mvk, σ) Return 1 if e(σ, g2) = e(HG1
(“M”‖msg),mvk). Oth-

erwise return 0.

– MSP.AKey(mvk) Takes a vector mvk of (previously checked) verification
keys and returns an intermediate aggregate public key ivk =

∏
mvki.

– MSP.Aggr(msg,σ). Takes as input a vector of signatures σ and returns

µ←
∏d

1 σi.

– MSP.AVer(msg, ivk, µ) returns MSP.Ver(msg, ivk, µ).

The MSP scheme has been shown to be complete and unforgeable in [44]. The
signing and verification operations are deterministic, additionally, the signature
scheme is also unique in that is impossible for any msg,mvk to have σ 6= σ′ so
that MSP.Ver(msg,mvk, σ) = MSP.Ver(msg,mvk, σ′) = 1.

2.5 Dense Mappings for Unique Signatures

The works of [47, 7] show how one can map a point on an elliptic curve to a string
indistinguishable from uniformly random. Given such a mapping we would be
able to use a signature scheme with unique signatures as a regularly distributed
verifiable unpredictable function (VUF).
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Definition 6. A deterministic function M : G1 → Zp ∪ {⊥} is a dense mapping
if, for some negligible ε, it holds that for any y ∈ Zp, |Pr[M(x) = y|M(x) 6=
⊥]−1/p| ≤ ε and Pr[M(x) 6= ⊥] is non-negligible, where x is uniformly distributed
over G1.

Given a family Mmsg,index of dense mappings indexed by index, we can add a
new operation to a multisignature scheme as follows.

– MSP.Eval(msg, index, σ) Return ev ←Mmsg,index(σ).

Being able to deterministically attach a regularly-sampled value to signatures
enables us to flag a small subset of signatures as eligible by requiring their values
under the mapping for a sequence of indexes to be under a given threshold.

In Section 6 we show how to construct a dense mapping ME
msg,index(σ) based on

Elligator Squared, which avoids oracle calls on user-specific data i.e. we explicitly
avoid hashing σ to sidestep soundness issues in circuit-based proofs.

For the concatenation proof system PSC in section 2.7 we are able to use a
random oracle H : {0, 1}∗ → Zp to implement the mapping as: MR

msg,index(σ) :=
H(“map”‖msg‖index‖σ).

2.6 Weighting Function

Looking forward, we will use the concept of weights to randomly assign eligibility
to participants. In this way, a small number of participants can be considered to
be a random (and therefore somewhat representative) sample of a large group.
A straightforward approach would be to use weights directly, potentially with a
scaling factor to the required level of participation.

However, this introduces pitfalls in the resulting distribution: basic probability
indicates that winning a coin toss (pc = 1

2 ) is not equivalent to guessing a die roll
in 3 tries (each with pd = 1

6 , for a success probability of 1− (5/6)3 ). The same
problem was faced in [18], and we will opt to follow their solution in this work:

We will use the function φ(w) = 1− (1− f)w to assign success probabilities
to weights w ∈ [0, 1]. The value f = φ(1) is a tuning parameter, representing the
success probability assigned to the maximum weight.

The end result is to make the probability of success for a given party irrespec-
tive of the exact distribution in virtual identities: i.e. an adversary controlling
weight w has the same chance of success if she keeps the weight under a single
identity or splits it in various ways. The same property is also useful in regards
to honest parties, where behaviour may be more unpredictable.

2.7 Noninteractive Proof Systems

In our construction, we will use a proof system to allow a prover to prove
statement x is true by demonstrating she knows a witness w such that R(x,w)
is true.
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Bulletproofs Bulletproofs are [12] an efficient proof system with transparent
setup where a relation is represented as an arithmetic circuit. For a fixed relation
R, and system parameters Param, we refer to the reference string setup, prover
and verifier algorithms as PSB .S← PSB .S(Param) πC ← PSB .P(PSB .RS, x, w),
0/1 ← PSB .V(PSB .RS, x, πC), where x,w refer to the statement and witness
respectively. Bulletproofs are complete and knowledge sound via witness-extended
emulation [12].

A concatenation based proof system The concatenation-based proof system
PSC consists of releasing the witness w and letting the verifier check if R(x,w) = 1.
Looking forward, w will be a concatenation of individual signatures, hence the
name. Concretely, we have:

PSC .S(1λ): Return PSC .RS := ⊥
PSC .P(PSC .RS, x, w): Return w
PSC .V(PSC .RS, x, π): Return R(x,w)

3 Ideal Functionality for Stake Based Threshold
Multisignatures

We will now describe a stake based threshold multisignatures functionality similar
to the PoS Anonymous Selection of [2].

The functionality maintains a list L of signatures produced by itself, and a
list E storing the eligibility of the various parties. The functionality operates on a
fixed player list P = (Pi, stakei), where |P| = n, a scaling function φ(w), security
parameter m ≥ log2λ and quorum parameter k = m · φ( 12 + a). The functionality
operates on a static corruption model where the adversary is allowed to corrupt
up to 1

2 − a of the total stake.
The functionality operates by sampling eligibility over m indices. Users are

made eligible in proportion to their stake and independently of each other.
Producing an aggregate signature requires individual signatures over k different
indices. The functionality operates in two phases. It starts in the initialisation
phase which we present in Figure 1. The decision to move to the operation phase,
presented in Figure 2 is left to the adversary.

A trivial realization using concatenation. It is simple to see that if we assume
uniform stake distribution, we can realise the above using only signature schemes.
We set k = N = m, and fix the eligibility function to assign E(msg, Pi, index) = 1
iff i == index and 0 otherwise. CreateSig is implemented by signing, whereas
verification only accepts signatures for index i from user Pi.

Aggregate is implemented by concatenating signatures and signer identities.
VerifyAggregatethen consists of parsing, and counting the number of valid signa-
tures.

While simple, the above protocol produces aggregate signature with size linear
in the number of users which is cost-prohibitive in practice. Assuming uniform
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stake is also problematic in general. One could argue that a user holding s units of
stake could be simulated by s users each holding 1 unit, but this only exacerbates
the size issue. In the next section we will expand our treatment to cover the more
general case, and use dense mappings as a form of lottery so that only a limited
number of stakeholders need to participate at any one time.

The STM functionality FφSTM(P,m, k) . Initialisation phase

FψKr(P) initializes the variable Allow to 1 and proceeds as follows:

• Upon receiving (Register, sid) on behalf of party Pi:
1. If Allow is 0, Pi /∈ P, or K(Pi) is already defined, ignore the request.
2. Otherwise, set K(Pi) = 1 send (Registered, sid, Pi) to A and output

(Registered, sid) to Pi.
• Upon receiving (Start, sid) from the adversary A:

1. Set Allow to 0.

Fig. 1. The Stake Based Threshold Multisignatures functionality FφSTM(P,m, k) in the
Initialisation phase interacting with the adversary A.

4 A Stake Based Threshold Multisignature scheme

We present a protocol Π.STM realizing FφSTM(P,m, k) in the FRS(P),Fψ0

Kr (P)-
hybrid model. As with the functionality, the protocol operates in two phases.
The initialisation phase is presented in Fig. 5 and the operation phase in Fig. 6.
The functionality operates on a fixed player list P = (Pi, stakei), where |P| = n,
a scaling function φ(w), security parameter m ≥ log2 λ and quorum parameter
k = m · φ( 1

2 + a), where ψ0(mvk,κ) := MSP.Check(mvk,κ).
Our scheme requires two main components: a multisignature scheme equipped

with a dense mapping, and a proof system to produce proofs of multiple signatures
with specific mapping constraints, i.e each signature must map to a value smaller
than the target value implied by the signer’s stake. The simplest option would be
to construct aggregate proofs by simply concatenating individual signatures. This
allows for simple and efficient choices in the other parameters but produces a
large aggregate proof. On the other hand, we can use a circuit-based proof system
such as Bulletproofs, which will produce much smaller proofs. However, this
choice requires careful selection of the other primitives, as we need to e.g avoid
evaluating random oracles in the circuit. We will further explore the instantiation
options in sections 4.2 and 4.3, and compare their efficiency in section 5.

We note that both of the hybrid functionalities we use are practical to realise
in common applications. For FRS, the group choice can be realistically hardcoded,
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The STM functionality FφSTM(P,m, k), operation phase.

• Upon receiving (EligibilityCheck, sid,msg, index) from a party Pi:
1. if K(Pi) is undefined, or Pi /∈ P ignore the request.
2. If flag(msg) is undefined, send (EligibilityCheck, sid,msg,P) to A.
3. On receiving (Eligible, sid,msg,B, t) parse B as a n × m bit matrix and let
E(msg, Pi, index)← B(i, index), and let flag(msg)← 1.

4. If, B assigns eligibility to corrupted users on k or more indices, abort.
5. Output (EligibilityCheck, sid, E(msg, Pi, index)) to Pi.

• Upon receiving (CreateSig, sid,msg, index) from a party Pi:
1. if K(Pi) is undefined, ignore the request.
2. If φ(tag) is empty, send (Declined, sid,msg) to Pi. Otherwise, check
E(msg, Pi, index). If it is 0, send (Declined, sid,msg) to Pi. Otherwise if it
is 1, send (Prove, sid, Pi,msg, index) to A.

3. When receiving (Done, sid, Pi, ψ,msg, index) from A, let π = ψ, store
(Pi, π,msg, index) in L. Send (Proof, sid, π,msg, index) to Pi.

• Upon receiving (Verify, sid, Pi, π,msg, index) from a party P ′:

1. If K(Pi) is undefined, ignore the request.
2. If (Pi, π,msg, index) ∈ L, output (Verified, sid, (Pi, π,msg, index), 1) to P ′.
3. Else, if E(msg, Pi, index) is 0 or Pi is honest, send

(Verified, sid, (Pi, π,msg, index), 0) to P ′.
4. Else, send (Verify, sid, (Pi, π,msg)) to A, and wait for (Verified, sid, (π,msg), v)

from A. If v is 1 store (Pi, π,msg, index) in L and reply
(Verified, sid, (Pi, π,msg, index), 1) to P ′.

5. Else, send (Verified, sid, (Pi, π,msg, index), 0) to P ′.

• Upon receiving (Aggregate, sid,P ,π, index,msg) from a party P ′ :

1. Parse P ,π, index as vectors of length k containing Pi, πi, indexi.
2. If K(Pi) is undefined for any i, ignore the request.

Run (Verify, sid, Pi, πi,msg, indexi) for each i.
3. If any produce 0, or if indexi = indexj for i 6= j, reply

(Aggregation, sid, (P ,π,msg), 0).
4. Otherwise, send (Aggr, sid,P ,π, index,msg) to A.
5. When (AggrDone, sid,P ,π, index, ρ,msg) is received from A, let τ = ρ, store

(m, τ,msg) in L.
6. Send (Aggr, τ,P ,π,msg) to P ′.

• Upon receiving (VerifyAggregate, sid, τ ,msg) from a party P ′ :

1. If (τ,msg) exists in L, then send (Verified, sid,m, τ,msg), 1) to P ′.
2. Else, send (AVerify, sid, (τ,msg)) to A, and wait for (Verified, sid, (τ,msg), v)

from A.
3. If v = 1, count the number of indexes with either (1) a previously produced

signature for msg in L or (2) a corrupted player eligible to sign. If the total is
k or more, store (τ,msg) in L and output (Verified, sid, (m, τ,msg), 1) to P ′.

4. Else, send (Verified, sid, (m, τ,msg), 0) to P ′.

Fig. 2. The Stake Based Threshold Multisignatures functionality on the operation
phase FφSTM(P,m, k) interacting with the adversary A.
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leaving only the proof system reference string. In the options we explore in this
section, the reference string is either empty or unstructured. For an unstructured
reference string, we can use HG1 , and a random seed, as we only require random
elements in G1. The key registration functionality, FRS can be realized by means
of a broadcast channel which can be implemented via a blockchain.

4.1 The relation Ravk

Our proof systems operate on language Lavk, i.e we prove knowledge of a witness
w such that statement x holds, i.e. Ravk(x,w) = 1. Concretely, our statement
is of the form x = (AVK, ivk, µ,msg) and our witness is of the form w =
(mvki, stakei,pi, evi, σi, indexi) for i = 1 . . . k. The relation Ravk is parametrized
on N,m, k, φ(), which are public information. Ravk(x,w) = 1 if and only if the
following hold:

– ivk =
∏k

1 mvki.

– µ =
∏d

1 σi.
– ∀i : indexi ≤ m.
– ∀i 6= j : indexi 6= indexj .
– For i = 1..k: (mvki, stakei) lies in Merkle tree AVK, N following path pi.
– For i = 1..k: MSP.Eval(msg, indexi, σi) = evi
– For i = 1..k: evi ≤ φ(stakei)

We will propose two constructions: one based on bulletproofs which may also
be used as a template for other circuit-based systems, and a simpler system based
on releasing the witness. In the first case we let PS = PSB and M = ME , and in
the second, PS = PSC and M = MR.

The Key Registration functionality functionality FψKr(P).

FψKr(P) initializes the variable Allow to 1 and proceeds as follows:

• Upon receiving (Register, sid, vk) on behalf of party Pi:
1. If Allow is 0, Pi /∈ P, K(Pi) is already defined, or vk ∈ K, ignore the request.
2. If ψ(vk) = 1, let K(Pi)← vk, and output (RegKey, sid, 1) to Pi.

• Upon receiving (Retrieve, sid, Pi) on behalf of party Pj :
1. Pj /∈ P, or K(Pi) is not defined, output (Retrieve, sid, Pi,⊥) to Pj .
2. Otherwise, output (Retrieve, sid, P1,K(Pi)) to Pj

• Upon receiving (CloseRegistration, sid) on behalf of the adversary A:
1. Set Allow to 0.
2. For each Pi ∈ P, send (RetrieveAll, sid,K) to Pi.

Fig. 3. The Key Registration functionality FψKr(P) interacting with the adversary A.
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The Reference String functionality functionality FRS(P).

• Upon Initialization, let Param ← Setup(1λ); PS.RS ← PS.S(Param) RS :=
(Param,PS.RS), and send (GetRS, sid,RS) to A.
• Upon receiving (GetRS, sid) on behalf of party Pi:

1. If P1 ∈ P Output (GetRS, sid,RS) to Pi.

Fig. 4. The Reference String functionality FRS(P) interacting with the adversary A.

4.2 An instantiation based on Bulletproofs

This construction performs most of the checks in the circuit, leaving only the final
pairing check, as well as random oracle calls to be performed in the open. This
requires a “parent” group with order p so that we can design circuits performing
arithmetic modulo p in order to efficiently perform group operations in G1,G2.
At the same time, we need to use a mapping that only calls the random oracle
on pre-determined points while achieving a near-uniform distribution. For this,
we use M = ME , described in section 6.

Avoiding random oracle calls. We need to represent the relation we will be
proving, Ravk as a circuit, which can be problematic as we model Hq, HG1 as
random oracles. Fortunately, this is simple to overcome. As msg is part of the
statement, and the maximum index m is a public parameter, it is simple to
precalculate the Hq values used inside the mapping ME as well as those used
in the representation function. This enables relation Ravk to be compiled as a
circuit without preventing HG1 or Hq from being modelled as a random oracle:
HG1 and Hq are never evaluated inside the circuit.

Addressing rewinding. Bulletproofs are complete, zero knowledge and have
the witness-extended emulation property, a generalization of knowledge soundness.
Recent works [28, 1] demonstrate how to leverage the extractability provided by
witness-extended emulation in the non-interactive setting. In the case of [28],
a single rewinding suffices in the Algebraic group model. However, Universal
Composability does not allow rewinding the environment at all, so the simulator
is unable to invoke witness extraction in the UC security proofs.

At the same time, invoking standard soundness is potentially vacuous as the
possibility of collisions in the Merkle tree implies that it is hard to determine if
any particular statement x is false (i.e there exists no witness w for it). Consider
a trivial tree AVK, containing the public keys and stake (mvk0, stake0) of only a
single user P0, who is not eligible to sign message m. It is likely, that there exists
a different set of public keys (mvk0, stake

′) so that (1) they hash to the same
value and (2) the second keyset is eligible for m –with multiple users there also
exists a degree of freedom in mvk.

To overcome this, we will instead rely on an intermediate security notion,
where we will “disallow” proofs of a particular set of statements. Informally, we say
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that a statement is contradictory, if a witness for it would contradict our existing
knowledge. Proving this property does invoke rewinding to perform extraction,
but said rewinding is performed on the entire ensemble of UC simulator and
environment. I.e, if there exists an environment such that proofs of contradictory
statements are produced with non-negligible probability, we are able to produce
collisions for Hp. This extrernal leveraging of rewinding is similar to that of
Canetti et. al. [14] who perform rewinding outside the UC proof to assert an
indistinguishability property inside it.

Consider a predicate Q(y, w) and a function G(·).
We are interested in the language L = {x|∃y, w : x = G(y) and Q(y, w) = 1}

The reason we are interested in this language for instance is because G(y) can be
much shorter in length than y.

In general, a statement x is contradictory with respect to information y in
G−1(x), if for all w : Q(y, w) = 0. We can then easily show the following lemma:

Lemma 2. . Suppose we have a proof π for a statement x, and y is in G−1(x)
Then either the statement x is not contradictory w.r.t. y or there exists some
y′ 6= y, such that G(y′) = G(y).

To apply the above in our setting: consider y is a stakeholder distribution
and G is any function that creates a merkle tree root out of it and aggregates a
subset of those keys that satisfy the lottery winning property for a given message.

Then, the witness w contains Merkle tree witnesses, signatures and evaluations
that establish that there is a set of lottery winning keys. The predicate Q verifies
those properties, w.r.t. y.

Now if we get a bulletproof for x, this means that either x is not contradictory
w.r.t. y, or that there is another stakeholder distribution y′ with G(y′) = G(y). In
this latter case, we should get a collision against the MT.Create(v) construction.

Contradictions for Ravk For Ravk, given N,m, k, φ(), we say that statement
x = (AVK, ivk, µ,msg) is contradictory w.r.t. information (mvki, stakei) for
i = 1 . . . N and (evi,k, σi), if (1) AVK = MT.Create(mvki, stakei) for i = 1 . . . N ,
(2) evi,t = MSP.Eval(msg, t, σi) for i = 1 . . . N , t = 1 . . .m , and (3) there exist
no indexes pj , tj for j = 0 . . . k − 1 such that:

– ivk =
∏k

1 mvkpj .

– ∀i 6= j : si 6= sj .

– For i = 1..k: evpj ,tj ≤ φ(stakepj )

Using the witness extractors from [28, 1], we can prove that:

Lemma 3 (Contradiction Soundness for PSB). For any N,m, k, φ(), any
polynomial time P∗, and given information (mvki, stakei) for i = 1 . . . N and
(evi,k, σi) such that evi,t = MSP.Eval(msg, t, σi) for i = 1 . . . N , t = 1 . . .m, we

17



have that for any contradictory statement x, the following probability is negligible.

Pr[σ ← BP.Setup(1λ),AVK← MT.Create(mvki, stakei),

(ivk∗, µ∗,msg∗, π∗)← P∗(σ,AVK) :

BP.V(σ, x, π∗) = 1 where x = (AVK, ivk∗, µ∗,msg∗)]

Proof (Sketch). If P∗ succeeds with non-negligible probability, we can use the
witness extractor to obtain a witness w with good probability in expected
polynomial time. Given our information (mvki, stakei), (evi,k, σi) and witness w,
we obtain a collision for Hp.

4.3 An instantiation via Concatenation proofs

As an alternative, we can opt to directly transmit the witness. While less space
efficient, this approach allows for a simpler group setting, a random-oracle
based mapping and minimizes computational costs for the prover and verifier.
Contradiction soundness is trivial for PSC , as a witness can always be extracted
without rewinding.

At the same time, we only require that our group structure is pairing friendly,
as that is required by the BLS based (multi-)signature scheme. Multisignature
aggregation is somewhat underutilized as we require individual signatures to
verify the mapping. However, we are able to batch verify faster than we would
normally be able to: aggregating uses simple multiplication (compared to random
exponents for batching)due to the security properties of the multisignature
scheme.

Lemma 4 (Contradiction Soundness for PSC). For any N,m, k, φ(), any
polynomial time P∗, and given information (mvki, stakei) for i = 1 . . . N and
(evi,k, σi) such that evi,t = MSP.Eval(msg, t, σi) for i = 1 . . . N , t = 1 . . .m, we
have that for any contradictory statement x, the following probability is negligible:

Pr[AVK← MT.Create(mvki, stakei), (ivk
∗, µ∗,msg∗, π)∗ ← P∗(σ,AVK) :

PSC .V(⊥, x, π∗) = 1 where x = (AVK, ivk∗, µ∗,msg∗), ]

Utilizing Oracle calls As PSB relies on partly representing Ravk inside a circuit,
care must be taken to avoid oracle calls inside the circuit itself. In the PSC

instantiation however, there is no such restriction. As such, we are free to use
MR as the dense mapping in MSP.Eval.
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Protocol Π.STM. Initialisation phase

• Setup: Users start in the initialisation phase. Each user locally sets Reg← ∅, and
sends (GetRS, sid) to FRS(P). Upon receiving (GetRS, sid,RS), store RS.

• Register: Each user Pi gets their keys by running (mski,mvki,κi) ←
MSP.Gen(Param). They set (vki, ski) := ((mvki,κi),mski, ). A user then sends
(Register, sid, vki) to Fψ0

Kr (P).

• Startup: When a user receives (RetrieveAll, sid,K), from Fψ0
Kr (P) it sets Reg :=

(K(Pi), stakei) for Pi ∈ P, and Reg is padded to length N , using null entries of stake
0. Let AVK← MT.Create(Reg). The user moves to the operation phase.

Fig. 5. The Stake Based Threshold Multisignature Protocol Π.STM in the Initialisation
Phase.

Protocol Π.STM. Operation Phase

• EligibilityCheck: On input (msg, index), user Pi runs: Let msg ← AVK||msg, σ ←
MSP.Sig(msk,msg); ev ← MSP.Eval(msg, index, σ). Return 1 if ev < φ(stake), else
return 0.

• CreateSig: On input (msg, index): If EligibilityCheck(msg, index) is 1, then let
msg ← AVK||msg;σ ← MSP.Sig(msk,msg) and produce an individual signature
π = (σ, regi, i,pi), where pi is the user’s path inside the Merkle tree AVK and regi
is (mvki, stakei).

• Verify: On input a party Pi, a signature π, index index, and message msg, parse
π = (σ, regi, i,pi). Parse regi as (mvki, stakei). Check that regi corresponds to party
Pi, let msg ← AVK||msg; ev ← MSP.Eval(msg, index, σ) check that ev < φ(stakei)
and check MT.Check(AVK, N, (vki, stakei), i,pi) = 1. If parsing or checking fails,
return 0. Otherwise, return MSP.Ver(msg,mvki, σ).

• Aggregate: On input vectors P ,π, index and message msg, parse P ,π and index as a
vectors Pj , πj , indexj of size k, let msg ← AVK||msg and run Verify(Pj , indexj ,m, πj).
If parsing or checking fails, return ⊥. If any indexj = indexi for j 6= i return 0.
Otherwise, parse πj = (σj , regj , ij ,pj) and regj as (mvkj , stakej).
Let ivk ← MSP.AKey(mvk), µ ← MSP.Aggr(msg,σ), set x = (AVK, ivk, µ,msg)
and w = (mvkj , stakej ,pj , evj , σj , indexj) for j = 1 . . . k. Then, πavk ←
PS.P(PS.RS, x,w). Return τ = (ivk, µ, πavk).

• VerifyAggregate: On input (τ,msg), parse τ = (ivk, µ, πavk), check that
PS.V(PS.RS, (AVK, ivk, µ,msg), πavk) is true. If parsing and checking is success-
ful, let msg ← AVK||msg and return MSP.AVer(msg, ivk, µ).

Fig. 6. The Stake Based Threshold Multisignature Protocol Π.STM in the Operation
Phase.
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4.4 Security

Theorem 1. The protocol Π.STM of Sect. 4 realizes FφSTM(P,m, k) in the

FRS(P),Fψ0

Kr (P)-hybrid model, under the leveraged co-CDH assumption, if Hp is
collision resistant and HG1{0,1}∗→G1

, Hq : {0, 1}∗ → Zq are modeled as random
oracles.

Proof. We first describe the operation of the simulator:

– Oracle Calls: The Simulator will always program the random oracle HG1

with uniformly sampled group elements gr1 with a known discrete logarithm
r ← Zq and stores their discrete log. This enables the simulator to produce a
signature on behalf of any user-message pair by utilizing κ1 = gxr1 for a known
r from the proof of possession of the user and the log r′ of the messages hash

hG1
(“M”‖msg) = gr

′
, by setting σ = k

(1/r)r′

1 .
– Register: The simulator runs the key generator MSP.Gen(Param) normally,

returns the verification key vki and stores the private key ski.
– RegKey: The simulator runs the key verification algorithm MSP.Check and

returns the output.
– EligibilityCheck: The simulator can evaluate eligibility for all participants,

by signing on behalf of each user and then sets ideal functionality accord-
ingly. This distribution is the same as in real world, apart from potentially
causing the functionality to abort, but that only occurs with only negligible
probability.

– CreateSig: For honest users the simulator creates signatures normally. For
malicious ones, it uses random oracle programmability and the submitted
proof of possession to create signatures that areindistinguishable from stan-
dard ones. In both cases, the simulator keeps an internal list L of produced
signatures.

– Aggregate: Aggregation uses no private information, so the simulator can
simply evaluate it using only public information. Any signatures produced
this way are added to L

– Verify: The simulator checks if the submitted signature exists in L, and accepts
if it is. Else, it verifies the signature and adds it to L. If a signature belonging
to an honest user is valid but was not in L, the simulator aborts with output
“MSP forgery failure”. If a signature verifies but the corresponding user is
not eligible, the simulator fails with output “individual signature verification
failure” (this happens with negligible probability due to collision resistance).

– VerifyAggregate: On VerifyAggregate queries, the simulator checks if the sub-
mitted aggregate signature exists in L, and accepts if it is. Else, it runs the
verification algorithm on the aggregate signature. If verification succeeds, it
counts the number of slots with either (1) previously produced single proofs
for (msg in L or (2) a corrupted player eligible to sign. If the total is k or
more, it accepts, otherwise it outputs “aggregate proof verification failure”.

Next, we will give a series of hybrid games between the interaction of the en-
vironment with the real protocol and between the environment and the simulator
interacting with the ideal functionality.
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The first game, H0 represents the real protocol. We define H1 to be identical
to H0, but with calls to the random oracle HG1

being answered with elements
with known discrete logs. I.e on query x, the simulator checks if there exists an
entry (x, a, r) in table R. If so, it returns a. If not, it sets r ← Zq; a ← gr1. It
then stores (x, a, r) in table R. Game H1 is perfectly indistinguishable to H0, as
g1 is a generator.

We define H2 similar to H1, but with Eligibility requests answered by the
simulator. This is performed by the simulator evaluating the eligibility predicate
across all users in P and indexes index. This is possible for all users, because the
simulator can derive signatures via the proofs of possession. It is clear that H1

and H2 are also perfectly indistinguishable.
In H3, whenever Eligibility is queried for a message, the simulator calculates

eligibility for each user and index to produce B with which it initializes the
ideal functionality. If the Ideal Functionality aborts, the simulator also aborts.
Clearly, H3 only differs from H2 if the ideal functionality aborts. However, that
only happens with negligible probability (lemma 5). Thus, H2 and H3 are also
statistically indistinguishable.

In H4 the ideal functionality and simulator are used for CreateSig and Verify.
The simulator is able to produce signatures for any user by programming the
random oracle calls used for proofs of possession. Games H3 and H4 are indis-
tinguishable unless the simulator outputs “MSP forgery failure” or “individual
signature verification failure”. In lemma 7 we show that “MSP forgery failure”
reduces to the co-CDH problem and in lemma 6 we show that “individual signa-
ture verification failure” reduces to unique provability and collision resistance.
Thus, either event only happens with negligible probability.

In H5 the simulator now answers calls to both Aggregate and VerifyAggregate.
The simulation fails when the simulator outputs “aggregate proof verification
failure” but is otherwise identical to the previous execution. The output “aggregate
proof verification failure” happens with negligible probability due to lemma 8.
At this point, it suffices to point out that H5 is identical to the environment
interacting with the simulator and the ideal functionality.

Lemma 5. [Sampling Property] When f ≤ 1
4 and a ≤

√
1− f , the eligibility

matrix sampled by the simulator causes the functionality to abort with only
negligible probability.

Proof. Let φ( 1
2 ) = p. Then k = mp

First, we point out that for f ≤ 1
4 and a ≤

√
1− f , it holds that for p′ =

φ( 1
2 − a) we have p

p′ = φ(1/2)
φ(1/2−a) ≥ 1 + a.

Each of the m columns of the matrix represents an independent trial in which
with the adversary has a probability p′ of being eligible via at least one corrupted
user. Thus, the expected number of successes is the mean, i.e. p′m ≤ k

1+a . The
functionality will thus abort only if the actual number of successes, X is greater
than 1 + a times the mean.

By Chernoff bounds, the probability of aborting is: Pr[X > k] ≤ Pr[X >

p′m · (1 +a)] ≤ e
−a2·p′m

2+a . As p′ 6= 0 by the definition of the φ function, the chance
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of aborting is negligible in m. For m ≥ log2 λ we obtain that the above is also
negligible in λ.

Lemma 6. The simulator outputs “individual signature verification failure” with
negligible probability.

Proof. The simulator only outputs the above message if an adversarial signature
π = (σ∗, reg∗i , i,pi) where reg∗i as (mvk∗i , stake

∗
i ) is valid but belongs to a user

who is not eligible. The user being non-eligible implies that an honest signature
over the user’s registered keyset regi = (mvki, stakei) evaluates to a non-eligible
value. As both signing and evaluating is deterministic, it must be that reg∗i 6= regi
This directly produces a collision for MT.Create and thus for Hp.

Lemma 7. The simulator outputs “MSP forgery failure” with negligible proba-
bility.

Proof. We will show that we can adapt the simulation so that if “MSP forgery
failure” occurs with non-negligible probability, the simulator is able to solve a
co-CDH instance.

We carry out the reduction as follows. We assume the environment issues a
maximum of qmsg non-PoP queries to the oracle HG1

. We select q∗ randomly
between 1 and qmsg. The simulator receives a co-CDH instance ga1 , g

b
1, g

b
2. We

select one honest user P ∗ to “trap” at random. We set the verification key of
that user to vk∗ = (gb2, π

∗), where π∗ = (gb1, g
br
1 ), and program the random oracle

so that HG1(“PoP”‖gb2) = gr1. For all queries “PoP”‖vk to the random oracle, we
reply with gas1 for s← Zq and save (vk, gas1 , s) to a list Lpop. For other queries
“M”‖msg to HG1

, if this is not the q∗-th query, we reply with gt1 for t← Zq and
save “M”‖msg, (gt1, t) to a list Lmsg. For the q∗-th query, we reply with ga1 , and
store (ga1 ,⊥) to Lmsg.

This configuration enables the simulator to sign most messages on behalf
on any user, with the exception that P ∗ cannot sign the q∗-th message quer-
ried. To produce a signature on msg, under key vk = gx2 , (g

x
1 , g

sx
1 ) we lookup

“M”‖msg, (gt1, t) on Lmsg. The signature is then σ = π1
t = gtx1 .

In the special case where t is ⊥ we retrieve s from (vk, gas1 , s) in Lpop, and

output σ = π2
(1/s) = g

(asx)/s
1 = gax1 . This is possible for all users apart from P ∗.

If the simulator is about to output “MSP forgery failure”, then the signature
σ∗ must be such that e(σ, g2) = e(ga1 , g

b
2) i.e. a solution to the coCDH problem.

Lemma 8. The simulator outputs “aggregate proof verification failure” with only
negligible probability.

Proof. We distinguish between two cases:

– The statement x = (AVK, ivk, µ,msg) is contradictory w.r.t the information
the simulator holds. I.e ivk is not a product of eligible users’ verification keys.
This only happens with negligible probability due to lemma 3.
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– The ivk contained in the statement is ivk =
∏k
i=1 vki where each vki belongs

to a user eligible for index indexi, and indexi 6= indexj when i 6= j. In this
case, the environment has produced a signature forgery, so we can reduce to
co-CDH, similar to “MSP forgery failure”.

In the latter case, we carry out the reduction as follows.
First, the simulator determines the user keys used to construct ivk. This

can be done by performing an exhaustive search on the set of eligible users at
a cost of

(
m·φ(1)
k

)
≈
(
m
m/2

)
= O(2m). For m ≈ log2 λ, 2m is O(λlog λ) which is

super-polynomial, but not exponential in λ.
We assume the environment issues a maximum of qmsg non-PoP queries

to the oracle HG1
. We select q∗ randomly between 1 and qmsg. The simulator

receives a co-CDH instance ga1 , g
b
1, g

b
2. We select one honest user P ∗ to “trap”

at random, in proportion to their stake. We set the verification key of that
user to vk∗ = (gb2, π

∗), where π∗ = (gb1, g
br
1 ), and program the random oracle so

that HG1
(“PoP”‖gb2) = gr1. For all queries “PoP”‖vk to the random oracle, we

reply with gas1 for s← Zq and save (vk, gas1 , s) to a list Lpop. For other queries
“M”‖msg to HG1

, if this is not the q∗-th query, we reply with gt1 for t← Zq and
save “M”‖msg, (gt1, t) to a list Lmsg. For the q∗-th query, we reply with ga1 , and
store (ga1 ,⊥) to Lmsg.

This configuration enables the simulator to sign most messages on behalf
on any user, with the exception that P ∗ cannot sign the q∗-th message quer-
ried. To produce a signature on msg, under key vk = gx2 , (g

x
1 , g

s
1x) we lookup

“M”‖(msg, (gt1, t) on Lmsg. The signature is then σ = π1
t = gtx1 .

In the special case where t is ⊥ we retrieve s from (vk, gas1 , s) in Lpop, and

output σ = π2
1/s = g

(asx)/s
1 = gax1 . This is possible for all users apart from P ∗.

Before the simulator outputs “aggregate proof verification failure”, on a
correctly formed ivk, it checks to see if P ∗ is included in it. If it is, it is able to
isolate σ∗ from the aggregate signature by calculating the signature of every other
user included in the key. The signature σ∗ must be such that e(σ, g2) = e(ga1 , g

b
2)

i.e. a solution to the co-CDH problem.
This contradicts assumption 5 which states that there is no O(λlog λ) time

solver for co-CDH.

Avoiding Complexity Leveraging. It is also possible to obtain the above result
without using complexity leveraging. We can simply modify the proof system
so that the user identities i are part of the statement instead of the witness.
As such, they are immediately available to the simulator without an exhaustive
search. This comes at a cost of k · logN extra bits in τ .

4.5 Active Adversaries and Forward Security

We have modeled our functionality and scheme in a model with passive corruptions.
In most proof of stake applications the possibility for active corruption greatly
enhances the power of the adversary: the adversary waits to see which users
are eligible to perform a particular action (e.g. the ability to produce the next
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block) and then selectively corrupts them. This allows the adversary to have a
disproportionate amount of influence in comparison to the stake they hold. In
our functionality, this is made weaker: eligibility is predicated on the message,
and is independently distributed across different messages. That is, user P1 being
eligible for message msg1 is independent of user P1 being eligible for message
msg2. Nevertheless, in the ideal world, the adversary is able to set eligibility
before performing corruptions, and would thus be able to assign eligibility to
users before corrupting them.

In the real world, it is hard for the adversary to determine a user’s ev values
for any message the user has not signed due to the unforgeability of the signature
scheme and regularity of the mapping. If a user signs a particular message for a
single index index0, then the adversary can determine that user’s evaluation for
every other index, but it is reasonable to assume that in most applications honest
users will elect to either sign over as many indices they are able to, or not at all.

What a real-world adversary might do however is calculate the eligibility
predicate over some indices without calculating ev (or equivalently,the CDH
term σ). A line of research [10, 8, 22, 45] on the bit-security of CDH supports the
assumption that guessing even partial information about the CDH term is hard.
With this assumption in place, active corruptions only allow the adversary to
take hold of a user who is known to be able to sign message msg, after she has
already signed it.

A different issue, that exists beyond our modeling is that the stake distribution
used by the functionality might lose relevance with time: that may be due to
inflation or users selling their stake after the functionality has started. This implies
that after a long period of time, the adversary might be able to acquire more
than 1

2 − a of the stake. This of course directly violates our model’s assumptions,
but it is an important real-world issue. As such, honest users should be assumed
to delete their keys after a set of conditions has taken place (e.g an aggregate
message has successfully been produced, containing an updated stake distribution
or X amount of time has passed). Alternatively, multisignatures allowing for key
evolution [21] can be used to avoid rekeying with every stake distribution update.

5 Efficiency

5.1 Quorum parameters

In the proof of lemma 5 we saw that the probability of an adversarial minority
achieving a quorum is negligible. In Table 2, we determine concrete values required
for settings where the adversarial stake is 2/5 or 1/3, and the quorum percentage
k
m is set to approximately φ(.55), φ(.60), φ( 23 ), φ(.75), φ(.80). Increased values for
the quorum percentage decrease the probability of an adversarial quorum, but
also decrease the probability of an honest one.

However, this can be mitigated in two ways: First, if the probability of an
honest quorum remains significant it can be boosted by allowing retries (e.g by
attaching a short counter to the message). Second, if an incentive structure is in
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place, rational adversaries who cannot directly subvert the protocol will choose to
participate in signing honest messages. This could allow one to choose e.g. φ(.65)
as the bound, with a 40% adversarial stake at the cost of requiring a rational
adversary for liveness (since in the Byzantine setting only safety will follow but
not liveness).

Concurrent Hybrids Furthermore, the design of our protocol is amenable to
running with multiple (k,m) parametrizations concurrently with minimal impact
to the adversary‘s chance of success. All other protocol parameters and data
are shared. In this way, individual signatures are produced according to the
maximal pair of (k,m) values, while aggregation opportunistically chooses a
lower one if possible. Such an approach will increase communication costs by
transmitting potentially unneeded individual signatures, but at the same time
reduce or eliminate retries, while choosing the smallest feasible quorum size.

For ease of presentation, we present our findings for φ(1) = 1
5 . Decreasing

this value slightly reduces k while increasing m.

Adversarial Stake

40% 33%
k
m

k m L-Abs L-Par k m L-Abs L-Par

φ(.55) 2422 20973 99.999 % ≈ 1 856 7407 1− 2−30 ≈ 1

φ(.60) 1445 11531 49.24 % ≈ 1 605 4824 99.667 % ≈ 1

φ(.67) 857 6172 LL ≈ 1 414 2980 48.31 % 1− 2 ·
10−18

φ(.75) 554 3597 LL 1− 7 ·
10−13

296 1921 LL 1− 2 ·
10−7

φ(.80) 445 2728 LL 1− 5 ·
10−7

250 1523 LL 99.98%

Table 2. Required values of k, n so that an adversarial quorum is formed with P ≤
2−128. L-Abs and L-Par represent probability to form quorum (before retries) when
the adversarial stake abstains or participates respectively. LL describes probabilities
< 1%. The respective parameters can be meaningfully used in conjunction with an
incentive scheme or as an auxiliary opportunistic parametrization where a less aggressive
parametrization is used as a fallback. Values of ≈ 1 indicate a chance of failure < 10−30.

5.2 Proof Efficiency

Here, we investigate the costs of producing, transmitting and verifying individual
as well as aggregate signatures.
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Proof Assymptotic k=414 k=604 k=855

Single PSB G1 +G2 + logN ·H +M 3.3KB 3.3KB 3.3KB

Single PSB (FN) G1 +M 78 B 78 B 78 B

Single PSC G1 +G2 + logN + 1 ·H +M 1.1KB 1.1KB 1.1KB

Single PSC (FN) G1 +M 70 B 70 B 70 B

Aggregate PSB G1 +G2 +O(log (k log q)) ·GH 4KB 4.5 KB 4.5 KB

Aggregate PSC k(G1 +G2 +M + S) + (logN −
log k + 3) ·H

359 KB 510 KB 716 KB

Table 3. Proof sizes for the PSB and PSC proof systems. Gi represent Gi elements,
H are hash outputs and S represents stake and M path & index metadata. Concrete
values are based on the parameters on the text: N = 30, 446 bit base elements and
hashes for the PSB setting, 384 and 256 bits for elements and hashes in the PSC setting,
128 bit stake and 48 bit metadata. Single PSB are over an arity-8 tree. The k values
were derived from Table 2. The indication (FN) is the setting where the verifier is a full
node and hence certain metadata can be eliminated from the signature.

Proof Operations

Single PSB log8NHp+2Hs+400F +2P

Single PSC (logN + 1)Hs + 2P

Aggregate PSB O(k log q)E + 2P

Aggregate PSC k · (M1 +M2) + 2P

Table 4. Verification complexity comparison for the dominant operations and terms.
Mx represent Gx multiplications, F field operations, P represent pairings and E
represent GH multi exponentiations. Hs and Hp represent symmetric and Poseidon
hashes respectively.

Individual signatures For producing an individual signatures, a user needs
to produce: (σ, regi, i,pi). Producing pi, requires logN evaluations of Hp which
can be amortised over multiple signatures on the same AVK. The signature
itself, consists of one evaluation of HG1 and one exponentiation. The cost of
the mapping evaluation is the dominant factor, as a user needs to evaluate
the representation function over all m possible indexes. The total cost is thus
one exponentiation plus m representation evaluations. The length of individual
signatures consists of is 2 group elements (one in G2), 3 bitstings for the stake,
path, & index , and logN hashes, and is thus dominated by the hashes in pi. For
concreteness, we assume that the 3 bit strings can be packed in 176 bits: path
needs log k bits, index needs logm and stake can be limited to 128 bit precision.
When communicating between users who have the contents of AVK in memory,
signatures can be reduced to 1 element for σ plus logN bits for i and logm for
index, as ev can be computed from σ, index,msg.
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The costs of the verifier are logN evaluations of Hp, a pairing check and
one verification of the mapping function. We note that a verifier who holds the
(public) contents of AVK in memory can replace the hash evaluations with a
lookup.

The final step is checking the mapping evaluation. In the vase of MR this
consists of a single hash evaluation. Verifying the elligator-based mapping ME

is more involved.: The function selects one of many possible pre-images based
on the index, which implies that the entire set f−1(Q) of pre-images needs
to be made verified. Fortunately, in the analysis of Section 6, the pre-image
set has a size4 of either 4 or 2, depending on the quadratic character of an
intermediate value. A square can be verified by providing its “root” as a witness,
while a non-square can be verified by multiplying with a fixed, pre-determined
non-square and providing a root for the product. This way, we can allow for
exactly 4 pre-images r1, r2, r3, r4 where r2 < r3, with the additional condition
that either r1 < r2, r3 < r4 or r1 = r2, r3 = r4 depending on the characteristic.
The checking of characteristics, verification of roots and isogeny evaluation can
be performed very efficient as verifying the value of a characteristic is much
cheaper than calculating it: i.e for any y and a known non-square d, it is enough
to produce a “root” r and a bit χ such that: r · r = y ·χ+ y ·d · (1−χ). Enforcing
uniqueness and correct ordering of the roots is the most expensive operation,
requiring 3 range checks as we verify that ri+1 − ri is positive in the integers.

Given that, the cost of verifying a ME evaluation is dominated by one
evaluation of the isogeny map in the encoding function, and 4 evaluations of the
SWU encoding.

PSB aggregate signatures. For aggregate signatures in this settingthe domi-
nating factor is the bulletproof. The circuit needs to verify the following opera-
tions:

– k(logN + 3) Hp evaluations for Merkle Tree lookups.
– k − 1 multiplications in G2 to produce ivk.
– k − 1 multiplications in G1 to produce µ.
– 2k range checks with bound m (for index bounds, and index uniqueness).
– k Comparisons between ev and φ(stake).
– k Mapping evaluations for ev.
– k φ evaluations.

We note that most of the above checks can be performed efficiently as they
involve group operations in G1,G2 or field operations in GH for which our proof
system is more efficient. The main outlier is the evaluation of φ. Fortunately,
we don’t actually need to evaluate φ in the proof: we can replace stake in the
tree with φ(stake) and proceed with the comparison directly. This gives us a

circuit size of O(k log q), and verifier complexity of O
(

k log4 q
log (k log q)

)
as verification

is dominated by a multiexponentiation based on the circuit size.

4 The case of size 0 is also possible, but we will never be called to verify it.
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Estimate for constraints We now give an estimation on the number of constraints
required for our scheme, with a k value of 414, m = 2980, and log p = log q = 446
and N = 230. We assume G1 operations to require 12 constraints, G2 operations
4 times as much, range checks from 0 to 2b − 1: b constraints, Merkle tree
lookups approximately cost 7290 constraints, but can be brought down to 4050
by changing the arity of the tree to 8:1. This estimates the cost of performing the
lookups individually. Given that we are doing multiple lookups, we can perform
an additional optimization. The top layers of the tree are evaluated once for
each user which is redundant: the root hash is checked k = 414 times whereas it
should be checked only once. The lower levels are more dense, but still provide
benefits: the second level can be exhaustively checked with only 8 evaluations
and the third with 64. This implies that the amortized cost per lookup is ca
3009 constraints. Hp evaluations for the leave contents can be performed at 4 : 1
compression at a cost of 300 constraints. Comparisons between values cost 2b, 3b
constraints, amortized to 2b when values are used twice. Mapping representations
involve 60 constraints plus 3 range checks.

In total we have:

– k · (3009 + 300) constraints for Merkle Tree lookups.
– k · 48 constraints for multiplications in G2 for ivk.
– k · 12 constraints for multiplications in G1 for ivk.
– 4k · logm for range checks and comparisons with bound m.
– 3k log q + 60k for representation function evaluations.

In total, we obtain 3k log q+4k logm+3429k ≈ 221 constraints. Extrapolating
from [12, 29, 30], for k=414 this gives us a proof size of under 4KB with a batched
verification time of ca. 50sec. Due to the incremental nature of signature and
public key aggregation it is simple to split it into a constant number of steps and
use a recursive proof system like Halo [11] to obtain a constant-time improvement
in verification speed as well as a (small) improvement to proof size. As we only
perform a constant number of recursion steps we are able to sidestep potential
soundness issues with regard to extraction efficiency.

PSC aggregate signatures. Concatenation based aggregate signatures are
simpler to check: The verifier can simply check every index separately at a cost
of k single verifications. This can be further optimized by checking the signatures
themselves in aggregate. This replaces k pairing checks with k− 1 multiplications
in G1 and G2 and a single pairing check for the products. We point out that this
is significantly faster than randomized checking with small exponents.

The size of the proofs is 2k group elements (k in G2), ca 176k bits for the
stake, path & index , and k logN hashes. For k = 414, logN = 30, 446 bits per
element and 256 bits per hash, this produces a proof size of ca. 454 KB.

It is however possible to do better. We can reuse the previous observation
about Merkle tree proofs over multiple leaves: for k = 414 leaves, revealing the
entirety of the 8th level of the tree can be accomplished by publishing 256 hashes.
In turn, this reduces the length for each individual inclusion proof by 7 “steps”:
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rather than giving a path to the root, inclusion proofs can terminate 7 levels early.
This brings down the cost to the equivalent of 3k G1 elements and k(logN−6.38)
hashes.Furthermore, as we don’t need an embedded curve setting, we can opt for
a 384 bit curve following [3], and use a symmetric 256 bit hash functions for the
Merkle tree and the mapping. This produces a proof size of ca. 359 KB.

5.3 Further PS Options

There exists a number of alternative circuit-based proof systems. SNARKs, such
as Plonk [24] and Sonic [38] offer constant prover complexity with the main
drawback of a trusted setup string.

Our approximation of the circuit complexity should be representative of
performance with such systems, though further optimizations may be possible,
e.g with custom Plonk gates for Poseidon. STARKs, such as Redshift [32] and
Aurora [5] offer similar verifier performance at the cost of large proofs. In our
application, zero knowledge is not a requirement, so the size required makes them
less competitive compared to PSC . Finally, recursive proof systems such as Halo
[11] or Plonky2 [43] can also be explored: using constant depth recursion can
reduce proof sizes and verifier load, with little soundness impact. For Plonky2,
using an embedded curve for the multisignature would not be feasible, so its use
would be limited to the Merkle tree.Unbounded recursion may also be possible
depending on the application, though technical complexities with oracle calls and
extraction depth make such an adaption less than straightforward.

6 A Dense Mapping from Elligator Squared

In this section we propose a dense mappings based on Elligator Squared with a
representation function compatible with the Pluto/Eris [30] BN curves. While
constructions based on Elligator squared can be used with a very broad family
of elliptic curves, efficiency can be lacking if the mapping used inside the rep-
resentation function cannot be evaluated and inverted efficiently. Tailoring the
representation function to a specific curve or curve family is thus necessary to
arrive at meaningful efficiency estimates. The Ouroboros Crypsinous MUPRF [33]
uses a similar technique, but the additional requirements on group structure do
not provide us with curves compatible with the original Elligator [7] construction.
Elligator squared [47] uses a general technique that is compatible with a greater
range of curves, but provides an efficient encoding function only for a subset of
curves.

Boneh and Wahby [48] show how one can bridge this gap by using isogenies
to tranfer points to a curve that is more efficient to represent. Their work
focuses on the task of hashing into a curve as opposed to representing points as
random-looking bitstrings, but the isogeny can be evaluated in reverse at a similar
computational cost. A final obstacle is that Elligator squared uses randomness in
the calculation of the representation which can be problematic to reason about
inside a zero knowledge proof. We overcome this by pre-setting this randomness
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via a random oracle, and accepting a significant probability of evaluation failure.
This is not a problem for our application, as we can account for the probability
of failure by adjusting the weighting function.

The representation function R : G1 × {0, 1}l → {0, 1}l is specified below,
adjusted from [47]. We modify it so that it always terminates after a single
iterration with the caveat that it can fail (i.e produce ⊥ as output) with significant
probability. R is parametrised by the curve modulus p, and a a d-well bounded
encoding f for d = 4.

Algorithm 1 Elligator Squared Representation

procedure Function R(y,x,t)
Q← y − hG1(x||t)
n← #f−1(Q)
j ← Hq(x||t) mod 4
if n < j then return ⊥
end if
{z0, . . . , zn} ← f−1(Q)
return Return zx, where zj = (zx, zy)

end procedure

The encoding f , is adapted from [48]. It is parametrized by a curve EI ,
isogenous to E, where G1 ∈ E, with an isogeny µ : E → EI of degree 3 [30].To
evaluate f(Q), we let Q2 ← µ(Q), and then evaluate the simplified SWU encoding
on Q2 ∈ EI . To calculate the inverse, we raise to the inverse of 3 mod q, apply the
dual of µ, and calculate the inverse encoding in EI as in [47]. A key observation
from the investigation of [47, 48] into this calculation is that f−1(Q) consists of
the roots of a bicubic equation and is thus efficient to both calculate as well as
prove.

To calculate the success probability of Algorithm 1 we invoke Lemma 5 of
[47], which we restate for the reader’s convenience. Let P (y) = Pr[R(y, x, t) 6= ⊥]
and N(y) = 1

P (y) .

Lemma 9 (Lemma 5,[47]). For all y, let εT (y) = N(y)/d− 1, where d is the
bound of the encoding function f . Then, for all points y except possibly a fraction
of ≤ p−1/2 of them, we have:

εT (y) ≤ O(p−1/4)

Corollary 1. Algorithm 1 terminates with an output other than ⊥ with proba-
bility at least 1

5 .

Proof. From lemma 9, and for d = 4 we know that for all but a fraction of
≤ p−1/2 y, N(y) ≤ 4 + O(p−1/4), thus P (y) ≥ 1

4+O(p−1/4)
. Thus, for all y, we

have P (y) ≥ 1
5 .
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The regularity of the output is a direct consequence of applying Elligator
Squared to a uniformly random point Q. The only difference is that we choose
to abort early, and allow for a significant probability of returning ⊥.

Theorem 2 ([47]). The non-⊥ outputs of Algorithm 1 are ε-close to uniform
for ε = O(p−1/2).

We are now ready to show the main result of this section. Let R(·) be the
representation function described in Algorithm 1. We can prove the following
lemma as an immediate outcome of Corollary 1 and Theorem 2.

Lemma 10. For all msg ∈ {0, 1}∗, and all index ∈ Z, the function ME
msg,index(y) =

R(msg, yHq(msg,index), index) is a dense mapping with Pr[M(y) 6= ⊥] < 1
5 .

7 Applications

In this section we delve with some more detail to some applications of mithril
(STM) signatures in the blockchain setting. In general, STMs could be applied in
any setting where we can associate an amount of stake to a set of public-keys.
Given such arrangement, stakeholders can produce certificates for any given
message msg of interest. Before we proceed, we remark that some care needs
to be applied to ensure the integrity of STM sampling based on our security
model, namely that user public-keys are fixed prior to messages being proposed
for signing. Even though grinding attacks have a negligible probability to produce
a forgery, cf. Lemma 5, an attacker who knows msg prior to the keys being
finalized, can attempt to grind the probability of signing msg by trying multiple
keys. In this way the attacker will boost somewhat the number of lottery tickets
it wins, something undesirable in practice (since e.g., we would need to take
this opportunity into account when selecting the number of lotteries m). In
practice, it will be sufficient to verify that any msg considered for certification is
unpredictable during the pubic-key generation stage (in the blockchain setting,
this can be done by e.g., including an unpredictable fresh nonce drawn from the
blockchain itself as part of the message).In the use cases below, for simplicity of
exposition, we assume this is implemented by default.

Bitcoin Referendums. We first consider using mithril in the context of a
proof-of-work cryptocurrency such as Bitcoin as a decision-making tool. Using
STM it is possible to probe the population of Bitcoin holders (as opposed to,
say, the miners) regarding a particular topic or action. The idea is to express the
action in a message msg, agree on a stake threshold, (e.g., over 1/2 of all Bitcoin
supply) and then have them use STM to sign msg. If the threshold is exceeded
then it is possible to aggregate all individual signatures into a final signature
certification that assures the topic has been accepted by over 1/2 of the Bitcoin
supply. Below we provide an overview of how STM can be incorporated without
requiring any hard or soft fork of the Bitcoin codebase.

In Bitcoin, balances are sent to a ScriptPubKey and are spendable by reveal-
ing a corresponding ScriptSig. The ScriptPubKey value can be either of the
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form pay to public-key (p2pk) or pay-to-script-hash (p2sh). Payments of the lat-
ter form are made to ScriptPubKey = OP HASH160 <scripthash> OP EQUAL

where <scripthash> is the hash of a “redeem script” that needs to be provided
when the UTXO is spent. Using p2sh it is possible to receive payments and asso-
ciate the resulting UTXO with an STM public-key. Specifically we can use the fol-
lowing redeem script: OP HASH160 <STMpkhash> OP EQUALVERIFY OP HASH160

<pkhash> OP EQUALVERIFY OP CHECKSIG which contains the hashes of the STM
public-key and of an additional ECDSA key that controls the script balance;
spending it requires opening both keys and the signature for the ECDSA key.

Such a p2sh can be spent with the following ScriptSig <Sig> <pk> <STMpk>

<RedeemScript>. Evaluating this script by itself, will verify <STMpkhash>, <pk>
and the ECDSA signature. Subsequently it is also verified that the <RedeemScript>
verifies correctly to <scripthash>.

We observe that the above mechanism achieves the following objectives:
the STMpk value is hashed into ScriptPubKey as well as <RedeemScript> .
Revealing the latter, enables anyone offchain to verify, but not spend, the stake of
STMpk –spending would also require the ECDSA signature <Sig>. Thus, individual
STM signatures can be verified and matched to the stake they correspond to.

Based on the above it is straightforward to use our STM construction as
a decision-making tool for Bitcoin holders. A proposal msg will be announced
together with a threshold. Interested bitcoin owners reveal their <RedeemScript>
values and can issue an individual signature on msg. We note that the entirety of
the above process is happening off-chain as a layer 2 type of coordination. When
a sufficient number of those individual signatures are collected on msg, they
can be aggregated to issue an aggregate signature on behalf of Bitcoin holders
collectively.

Fast bootstrapping in PoS Blockchains. In this scenario we want to facilitate
the expedient synchronization of a client for a proof of stake blockchain. The
problem is similar to the problem of simplified payment verification (SPV)
as in [42], with the challenge that in a PoS blockchain, e.g., [35], there is no
way to verify blocks just by looking at the headers (as in the case of a PoW-
based blockchain); some transactional information is essential to establish the
stakeholder distribution that is eligible to issue blocks.

In order to facilitate the use of mithril in this setting first we have to expand
the blockchain accounting model so that each account is also associated with an
STM key — in addition to any other cryptographic keys necessary for spending
the balance or other operations such as delegating stake to other accounts. We
assume a synchronous system operation and divide time into periods; the length
of each period is sufficient to allow ledger settlement. Let SDi be a stakeholder
distribution that has become settled in the ledger (and hence all honest parties are
in agreement of) during period i. Note that SD0 is the stakeholder distribution
embedded in the genesis block; we assume that all parties are in agreement
regarding SD0.

When the distribution SDi is derived from the blockchain, the message msgi =
(i, Ci) is formed where Ci is a Merkle tree commitment to SDi. Subsequently the
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stakeholders in SDi−1 attempt to issue an STM on msgi. Whenever a stakeholder
is eligible, they release the individual signature over the peer-2-peer network.
If sufficient individual signatures are collected with respect to the given stake
threshold (e.g., 1/2 or 2/3 as desired), the resulting signature, denoted by chpi
can be computed and disseminated. The triple (i, Ci, chpi) is considered the i-th
checkpoint of the blockchain.

In this way, the system continuously issues checkpoints. When a new client
joins for the first time with only knowledge of the genesis block, it queries and
verifies the sequence of checkpoints starting from the genesis block and arriving
up to the most recent one SDn. Subsequently individual blocks can be verified
with respect to SDn.

We observe that the above mechanism can be made to be, asymptotically, of
the same complexity as the SPV verification mechanism in PoW blockchains. In
particular, for a blockchain of length N , SPV requires clients to perform work
O(N log q) work (this is because of the linear in log q cryptographic operations
that need to be performed per block to verify the headers). To match this,
in our application of STM, we can set the period frequency to be every δ =
k log3 q/ log(k log q) blocks, so that the verifier complexity will be proportional
to N/δ ·O(k log4 q/ log(k log q)) = O(N log q).
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