
CODBS: A cascading oblivious search protocol optimized for

real-world relational database indexes

Rogério Pontes1,3, Bernardo Portela1,4, Manuel Barbosa1,3, and Ricardo Vilaça2,3

1University of Porto
2University of Minho

3INESC TEC
4NOVA LINCS

July 6, 2021

Abstract

Encrypted databases systems and searchable encryption schemes still leak critical infor-
mation (e.g.: access patterns) and require a choice between privacy and efficiency. We show
that using ORAM schemes as a black-box is not a panacea and that optimizations are still
possible by improving the data structures.

We design an ORAM-based secure database that is built from the ground up: we replicate
the typical data structure of a database system using different optimized ORAM construc-
tions and derive a new solution for oblivious searches on databases. Our construction has a
lower bandwidth overhead than state-of-the-art ORAM constructions by moving client-side
computations to a proxy with an intermediate (rigorously defined) level of trust, instantiated
as a server-side isolated execution environment.

We formally prove the security of our construction and show that its access patterns
depend only on public information. We also provide an implementation compatible with
SQL databases (PostgresSQL). Our system is 1.2 times to 4 times faster than state-of-the-art
ORAM-based solutions.

Contents

1 Introduction 2

2 Problem Definition 3
2.1 Database System Model . 3
2.2 Leakage Sources . 4
2.3 Trust Model . 4
2.4 Optimization Approach . 5

3 Definitions 5
3.1 Oblivious Index Scan . 6
3.2 Oblivious RAM . 8

4 Oblivious Cascading Scans 9
4.1 Oblivious Query Stream . 12

5 Forest ORAM 13
5.1 Background Eviction . 15
5.2 Asymptotic Analysis . 16

6 Security Analysis 17
6.1 Security Model . 17
6.2 Game-Based Proof . 19

7 Experimental Evaluation 24
7.1 System Implementation . 24
7.2 Methodology . 24
7.3 Micro Benchmark . 25
7.4 Macro Benchmark . 26
7.5 Discussion . 27

8 Related Work 28

9 Conclusion 28

1

1 Introduction

Symmetric searchable encryption (SSE) schemes are used to address the problem of outsourcing
private databases to an untrusted third-party. These schemes enable a client to store encrypted
data in a third-party and evaluate queries remotely over ciphertexts. Conceptually, SSE schemes
create an encrypted index that maps keywords to a set of documents identifiers, with each identifier
pointing to an actual document. The index as well as the documents are encrypted by the client
and stored on the remote server. The client can query the index by generating cryptographic tokens
for a specific keyword. Given a token as an input, the server can search the index and find the
set of documents that contain the queried keyword without having to decrypt any data. However,
SSE schemes still disclose confidential information, for example the access patterns revealed by a
query, which can be exploited by statistical analysis attacks [8, 22].

One approach to address the leakage of SSE schemes is to store the server-side index and
document storage in an Oblivious Random Access Machine (ORAM) scheme [16]. An ORAM
scheme is protocol that enables a client to store and fetch a data block from an array structure
that can store at most N data blocks. For each operation, the protocol ensures that the remote
server does not learn neither the client operation nor the real location of the blocks. However,
ORAM schemes have a few drawbacks. First the client has to maintain a position map (pmap)
that tracks the location of blocks and a stash to hold temporary blocks. Secondly a remote access
has a high bandwidth blowup, i.e., for every real access to the remote server, multiple blocks are
transferred to the client [32, 33].

The overhead of ORAM schemes can be minimized by using an isolated execution environment
(IEE) [4] co-located with the encrypted index on the server-side. An IEE is a trusted hardware
technology that enables the execution of arbitrary (verifiable) computations in a clean slate. The
internal state of an IEE is assumed to be isolated from other co-located processes, including
operating systems and hypervisors. Intel’s Software Guard Extensions (SGX) [27] is a prominent
instance of an IEE that is widely used to develop novel solutions due to its ubiquity and accessibility
in commodity hardware.

Previous Work. Combining ORAM primitives with trusted hardware mitigates some overhead
of ORAM schemes but it’s still not sufficient to create efficient private databases. Existing work
proposes new search algorithms and oblivious primitives that lower even further query latency
and the bandwidth used in the client-server communication. Wang et al. [37] initially proposed an
oblivious data structure (ODS) to search data inside an ORAM scheme. This construction stored
a binary search tree in an ORAM scheme and was able to search for a value with O(N · log (N))
bandwidth blowup. Additionally, this construction minimizes the client side state of ORAM
schemes by storing the position map in the remote server alongside the search tree.

The idea of ODS has been further used and developed by different systems. More concretely,
Oblix [28] uses an oblivious search tree to index the keywords of a database and POSUP [21]
uses an oblivious linked list to store the keywords as well as the documents. In fact, both of these
systems improve on the early work of oblivious data structures (ODS) proposed by Wang et al. [37].
Besides these previous examples that focused only on SSE systems, there are also fully-fledged
oblivious database solutions such as Opaque [39] and ObliDB [14]. Nonetheless, existing systems
often use ORAM algorithms as black-boxes and do not optimize the internal data structures.

Motivation. Our goal is to create a novel oblivious search scheme tailored-fit for relational
databases that has minimal bandwidth usage and client-side state. To achieve this goal we dive
into ORAM schemes instead of using them as black-boxes and propose a new search scheme from
the ground up that is optimized for database indexes.

Contributions. We propose a novel oblivious search scheme inspired by Wang et al. tree-based
ODS [37]. The search scheme improves over existing work in several key aspects. In comparison
to POSUP it does not require auxiliary data structures to keep a relation between keywords and

2

Client

1 2

Client

1 2L

PMAP

CODBS

O
R

A
M

Tree-based ODS (ORAM)
T

re
e

le
v
el

Tree
Root

O
R

A
M Tree

Node
Tree
Node

O
R

A
M

T
re

e
le

v
el

Tree
Leaf

Tree
Leaf

T
re

e
le

v
el Tree

Root

Tree
Node

Tree
Node

Tree
Leaf

Tree
Leaf

2

11

L

L L

2

Figure 1: Search tree with L levels stored in two different ORAM constructions: a tree-based ODS
as proposed by Wang et al. [37] and the CODBS scheme presented in this paper.

ORAM addresses. Furthermore, our scheme searches over keywords and reduces the position
maps to a small constant. Our system is also closely related to Oblix [28] tree-based ODS but
our construction has a lower bandwidth blowup. The proposed scheme is only a subcomponent of
our new oblivious relational database system architecture. We designed this system to outsource
all processing load and storage from the client to a thin proxy, an Intel SGX IEE co-located with
the database engine. We prove the security of our solution with a classical game-based proof and
measure its performance. We make the following contributions:

• We propose CODBS, a novel tree-based oblivious search scheme to store database indexes.
This scheme originated from the observation that an oblivious search on a tree-based ODS
touches every tree level once in the same order. As such, it is clear that a balanced tree-based
ODS only needs to hide which node is accessed in a level and not the level accessed. From
this insight, we split the search tree into L smaller ORAM instances, rather than a large
ORAM, where L is the search tree height. This modification reduces the bandwidth blowup
of Wang et al. tree-based ODS from O(N · log (N)) to O(L2/2), here N is the number of
data blocks (depicted in Figure 1).

• We propose Forest ORAM, an optimized ORAM construction to store database tables. This
construction reduces the bandwidth blowup of OblivStore’s partition framework [35].

• We present an optimized oblivious database architecture and implemented a complete solu-
tion on top of PostgreSQL.

• We measure the average system throughput, latency and resource usage of our solution
with YCSB [10]. With the evaluation we validated the asymptotic improvements of our
construction and shown a ∼ 2× to ∼ 4× performance improvement over state-of-the-art
constructions that leverage Path ORAM and oblivious data structures [37, 28].

2 Problem Definition

2.1 Database System Model

Databases have multiple data structures and query operations to select, filter and join data. We
focus on minimizing the information disclosed by a fundamental operator of relational databases,
the index scan. By protecting index scans, other operators can inherit its security guarantees.
To understand an index scan operation, we present a high-level model of a database architecture
in Figure 2a; we consider three main components: a Database Client , a Query Engine and a

3

Database Client
S

to
ra

g
e

B
a

ck
e
n

d

TableSearch Index

1 4

2 3

Q
u

e
ry

E
n

g
in

e

Index

Access Methods

Table

Access Methods

(a) Plaintext Database

Database Client

S
to

ra
g

e

B
a

ck
e

n
d

TableSearch Index

1 4

2 3

Q
u

e
ry

 E
n

g
in

e

T
ru
st
ed
 P
ro
x
y

Stash

Position Map

Index ORAM

Position Map

Stash

Table ORAM

(b) Naive Oblivious Database

Database Client

S
to

ra
g

e

B
a

ck
e

n
d

Stash

Position Map

Search Index Table

Stash

Q
u

e
ry

E
n

g
in

e

In
te
l

S
G
X Index

ORAM

Table

ORAM

Protected

Memory

1 4

2 3

S

(c) Optimized Oblivious Database

Figure 2: System models of a plaintext database, a naive oblivious solution and an optimized
oblivious system.

Storage Backend . In this model, the Database Client is a remote application that connects users
to the Query Engine. The actual query processing is handled by the Query Engine, the most
computationally intensive component. This component is stateless and stores block-based data
structures on the Storage Backend . The Storage Backend abstracts the underlying storage and
contains two data structures, a Search Index and a database Table. We consider the index a
B+-tree [20] that maps keywords to table records. The database Table is a linked list of blocks
with each block holding a subset of records.

The execution of an index scan starts with the Database Client sending a query to the Query
Engine (Figure 2a-¶). The input query is intercepted by the Query Engine which generates a
query plan describing the database tables and indexes that must be accessed and the order of the
accesses. The Query Engine executes an index scan by searching a tree-based index (Figure 2a-
·). This index search results in a subset of table pointers that satisfy an input query. For each
pointer, the Query Engine retrieves its matching table record (Figure 2a-¸) and stores it in a result
set. The execution flow between Query Engine and the Storage Backend is repeated until every
relevant record is accessed and the complete result set is sent to the Database Client (Figure 2a-¹).

2.2 Leakage Sources

The execution of a database query has two sources of leakage. The first are the access patterns
of the query engine during its accesses the database storage (Figure 2a-·,¸). Every access from
the Query Engine to the Storage Backend consists of either reading or writing a data block in
one of the databases’ data structures. The sequence of blocks accessed during the tree transversal
define a unique path that identifies a small subset of data records. The set of possible results is
shortened even further by the identity of the blocks accessed on the table storage, as each table
block contains a limited number of database tuples. Besides the access patterns, an adversary can
also learn critical information just from the number of accesses from the table index to the table
storage. The information disclosed by these accesses is captured by the second leakage considered
in our model, the volume leakage. As demonstrated previously, volume leakage is sufficient to
compromise an encrypted database [18, 25].

Our approach to mitigate these leakage sources is to propose ORAM-based solution optimized
for relational databases that are capable of fully leveraging a Trusted Proxy deployed at an in-
termediate level of trust. As depicted in Figure 2b, in a naive solution the Trusted Proxy can be
thought of as an interactive oblivious protocol that manages two position-based ORAM construc-
tions and keeps all of the client side state inside the protected environment (stash and position
map). One of the ORAM constructions stores the database index, while the other stores the
indexed table. We detail the trust model considered in the paper and our optimizations to the
naive approach next.

2.3 Trust Model

We consider a semi-honest adversary that can observe all communications and computation ac-
tivity, with the exception of those occurring inside the Database Client and Trusted Proxy . Con-
cretely, this implies knowledge of: i.) messages exchanged between client and proxy (Figure 2c-

4

¶,¹); ii.) proxy interactions with external memory (Figure 2c-s); and iii.) proxy interactions
with the storage (Figure 2c-·,¸).

We assume that client-to-proxy interaction (Figure 2c-¶,¹) is preceded by a key exchange
protocol, to establish a secure channel. This allows our system to rely on standard cryptographic
techniques to protect the confidentiality of messages exchanged between client and proxy. In-
strumenting IEE-enabled code in this way is a common requirement, and has been shown to
be achievable securely with minimal performance overhead [30]. However, secure channels still
disclose the size, direction and number of messages.

An underlying issue of IEE-enabled systems is the information disclosed in proxy interactions
with external memory (Figure 2c-s). We assume the trusted hardware only protects the memory
contents [7, 38], but not the access patterns. Our protocol tackles this issue with constant-time
implementations [2, 28]. The leakage that remains are the access patterns (Figure 2c-·,¸) in
the proxy-to-storage interface. We assume the adversary has full knowledge of the data blocks
accessed in the external storage.

2.4 Optimization Approach

We now refine the high-level model and detail the system architecture used in this paper, along
with an overview of our optimizations. Our system is a relational database outsourced to a third-
party infrastructure, as depicted in Figure 2c. The Trusted Proxy is hosted in an Intel SGX
enclave that supports the creation of genuine IEEs that can be successfully authenticated with an
attestation service. The Trusted Proxy and the Query Engine are co-located on the same third-
party server, effectively lowering the inter-component latency to a minimum. We are agnostic with
respect to the Storage Backend but we assume that it provides a standard I/O POSIX interface.
In our model the Query Engine manages client connections, reroutes input client requests to the
Trusted Proxy and provides an interface to read/write blocks from the database storage. The
Trusted Proxy executes the search queries and keeps an internal secret state with the secret keys
used to encrypt/decrypt blocks from the database storage.

Using an Intel SGX enclave as a Trusted Proxy is challenging as enclaves have a limited pool
of protected memory available. Current technology is restricted to 128 MiB but only 93 MiB
can actually be used to store and read application data. We address this limitation with two
optimizations. First, we keep the enclave as thin as possible by moving the stash and position
maps of ORAM schemes to the Storage Backend . Secondly, we do not simple use ORAM schemes
as black-boxes and instead use CODBS, our novel oblivious search scheme which has multiple
composable ORAMs that reduce the client (here proxy-side) storage to a constant factor and
enables the protected proxy to function with a small local memory, while guaranteeing leakage-
free storage access.

3 Definitions

In this section we present the notation and security definitions used throughout this work. The
security parameter is denoted by λ in unary (i.e., 1λ). A negligible function in the security
parameter is denoted as negl(λ). We consider an adversary A and a simulator S to be polynomial
time algorithms. Our constructions rely on notions of a variable-length-input pseudorandom
function (PRF) and a symmetric encryption schemes secure against chosen plaintext attacks (IND-
CPA) [5]. The secret keys are uniformly sampled from {0, 1}λ.

Databases. We denote a plaintext database as a set of data records indexed by a search key
DB = {(key1, data1) . . . (keyn, datan)}. We abstract the search keys as keywords from the set
of all finite strings W ⊆ {0, 1}∗ and the data records datai ∈ {0, 1}B as binary data blocks
of fixed length B. A database query τ : W → {0, 1} is a predicate that consists of keywords
in the domain W that satisfies a boolean formula. Given an input query τ a database search
DB(τ) = {datai : τ(keyi) = 1} returns all data records that satisfy the query.

5

The database keys and data records are stored in a pair of data structures where I denotes a
tree-based index that stores the database search keys and T denotes a Table Heap with the data
records. The Table Heap is defined as a collection ofN table blocks T = {(a1, data1), . . . , (an, datan)}
associated with a unique address ai ∈ Z. The tree-based index I abstracts the search tree indexes
of databases as a collection of L levels, each one storing multiple tree nodes. A tree node in a tree
level is defined by a list of tuples (key, a) where key is a search key and a is an address to either
another node in a tree level or to a table block in a Table Heap. We denote access to the data
structures with array notation where a Table Heap access returns a table block data ← T [a] and
a Table Index access at level l and address a returns the list of pointers (key, a)← I[l][a].

Ideal Storage. We capture the access patterns of a database execution using an idealized storage
M that abstracts an untrusted external storage. This storage is a sequence of K words indexed
by a logical address space [K] = {1, . . . ,K}. Each word is a data block of size B that can be
individually accessed with a block-based API defined as follows:

• Alloc(N)→ D: reserves a empty data structure D that consists of a subset of storage words
of size N ∈ [0, . . . ,K] from the storage address pace.

• Read(D, a)→ block: returns a block of D at address a.

• Write(D, a, block) → D: updates the data structure D with a new block on the storage
address a.

• Addrs() → X : Returns the access patterns trace X of every API invocation on the ideal
storage.

The ideal storage is available to any algorithm at any point of its execution and registers every
API request in a public access pattern X . More specifically, an access pattern X = {I1, . . . , IN}
is a sequence of instructions Ii = (op, addr, data) where each instruction has an operation defined
by the public interface op ∈ {Alloc,Read,Write}, a target address within the ideal storage range
addr ∈ [K] and a binary string that is either written to or read from the storage data ∈ {0, 1}B .
In case of a read instruction the data is initially empty and is filled with the content of the logical
address in the storage. In case of an allocation, the requested storage size is specified in the address
and the data field is left empty. We denote by out← AM(prms) the execution of an algorithm A
with access to the ideal storage M given parameters prms. The access pattern of the algorithm
execution can be obtained by X ←M.Addrs().

3.1 Oblivious Index Scan

Using the previous notation, the database operations are captured by the Oblivious Index Scan
(OIS) scheme, which is realized by our main construction. This primitive uses ORAM schemes as
building blocks to store the database data structure and hide the access patterns of search queries.
Intuitively, an OIS scheme starts with an empty data storage, which the Database Client fills by
outsourcing a plaintext database structure via the Trusted Proxy with an initialization algorithm.
After this initial step, the Database Client sends queries to the database engine to retrieve the
database records.

Definition 1. (Oblivious Index Scan) An oblivious index scan scheme OIS consists of the following
two algorithms:

• Init(1λ, I, T , prms)→(st, Ĩ, T̃): Initialization algorithm that takes as input a Table Index
I, a Table Heap T and the public database parameters prms: (number of blocks N , tree-
based index height L, and tree fanout d). The algorithm returns an internal state st, an
oblivious search tree Ĩ and an oblivious table T̃ . The oblivious data structures preserve
the indexing relation between the input data structures. The internal state is kept securely
within the Trusted Proxy and it contains the internal state of multiple ORAMs, a secret key

6

for a symmetric encryption scheme and a secret key of a PRF. The oblivious data structures
are stored in the Storage Backend .

• Search(st, Ĩ, T̃ , τ)→(st′, Ĩ ′, T̃ ′, data): Search algorithm that takes as input the current
state st, an oblivious Table Index Ĩ, a oblivious Table Heap T̃ and an input query τ . The
algorithm filters the records that satisfy the query with an Oblivious Index Scan and returns
an updated state st′, a shuffled oblivious Table Index Ĩ ′, a permuted oblivious Table Heap
T̃ ′ and the resulting data record.

Correctness. An oblivious index scan scheme is correct if for every security parameter λ, every
plaintext database DB, every pair of oblivious data structures initialized Ĩ and T̃ initialized by
the Init algorithm and every query τ , the set of the data records of a plaintext database search
DB(τ) with size N is equal to the set of records returned after a sequence of N query searches
Search with probability 1− negl(N).1 As such, correctness is defined by:

DB(τ) = {Search(st, Ĩ, T̃ , τ0), . . . ,Search(st, Ĩ, T̃ , τN)}

Security The security of an OIS construction is defined in the simulation-based real/ideal
paradigm. Our security game consists of an adversary that sends a plaintext database of it
choosing to the experiment and afterwards sends a sequence of queries. For each query, the
adversary receives the access patterns X of the database to an external storage and a pair of
encrypted data structures. In both games, the access pattern includes the addresses of blocks
accessed, the instructions (read or write) and the blocks encrypted with a symmetric encryption
scheme. We consider an adaptive adversary that can change its attack strategy during the game
depending on the access patterns returned by the experiment. Intuitively, an OIS construction
is secure if an adversary cannot distinguish if the access patterns were generated by a real-world
execution or a simulator that only does arbitrary accesses. In both worlds, the access patterns are
captured by an ideal storageM that is used internally by the ORAM constructions to read/write
data blocks. However, in the real-world the ORAM accesses depend on the input queries, while
in the ideal world the simulators are only given the databases public parameters, number of
blocks, the tree-based index height and fanout. As such, the simulators use the ORAMs as black-
boxes to access arbitrary storage addresses. This security definition follows a similar approach to
simulation-based definitions of ORAM constructions [29, 3].

Definition 2. Let OIS = (Init, Search) be an oblivious index scan scheme. For every stateful
algorithm A (the adversary) and S (the simulator), consider the following security game:

• RealOISA (1λ): The adversary A sends the experiment a pair of plaintext database structures
I and T as well as public parameters: number of Table Heap blocks N , Table Index height
L and fanout d. The experiment initializes a pair of oblivious data structures (T̃ , Ĩ) ←
Init(1λ, I, T) and returns them to the adversary alongside the initialization algorithm access
patterns XI . The adversary follows with a polynomial number of adaptive search queries
τ and the experiment outputs updated oblivious structures and the access patterns XS of
the Search(Ĩ, T̃ , τ) function. In the end, the adversary returns a bit b which becomes the
experiment result.

• IdealOISS,A (1λ): The adversary A sends to the experiment a pair of plaintext database struc-
tures I and T and public parameters. The game initializes a pair of dummy oblivious data
structures (T̃ , Ĩ) ← S(1λ, N, L, d) and returns them to the client alongside a simulated ac-
cess pattern XI . The adversary evaluates a polynomial number of adaptive search queries τ
and the experiment returns the updated oblivious structures and simulated access patterns
generated by S(N,L, d). Here the simulator is stateful and the crux is that it does not see the
raw data or queries. At the end, the adversary returns a bit b which becomes the experiment
result.

1This negligible chance of failure matches the probability of failure of a single underlying ORAM scheme. In
our proposed construction, the probability is 1− negl(N) · L, as L ORAMs are used.

7

OIS is secure if for all A there exists a simulator S such that:∣∣∣Pr
[
RealOISA (1λ) = 1

]
− Pr

[
IdealOISS,A (1λ) = 1

] ∣∣∣ < negl(λ)

The formal security definition is presented in Section 6.1.

3.2 Oblivious RAM

We follow the classical definition of position-based ORAMs [32, 37] where a client (e.g.: local
machine) remotely accesses data blocks in a server (e.g.: block storage) but modify it in two ways.
First, instead of providing a single Access method that reads data from the server, shuffles the
blocks and flushes them back, we divide these processes in two distinct functions. Secondly, we
explicitly require an external position map δ to be passed as input for every oblivious access.
Similar to internal position maps, the external position map keeps track of the current location
of blocks. However, the external position map also determines the next location where a block
must be stored after an oblivious access. As such, the responsibility of correctly book-keeping the
location of the blocks is shifted to the ORAM client.

Definition 3. (Oblivious RAM) An oblivious RAM scheme consists of the following three algo-
rithms:

• Build(N)→(st, D̃): Initialization algorithm that takes as input a maximum number of blocks
N and outputs an internal state st and an initialized data structure D̃.

• Read((st, δ), D̃, a)→(st′, data): Access operation that takes as input an internal ORAM
state st, an external position map δ, the external data structure D̃ and a block address a.
It returns an updated state st′ and the external block data. This operation does not evict
the ORAM internal state nor modifies the external data structure.

• Write((st, δ), D̃, a, data)→(st′, D̃′): Eviction operation that takes as input an internal
state st, an external pmap δ, a data structure D̃, a block address a and the new block data.
It evicts stashed blocks, writes data to offset a and returns an updated state st′ and data
structure D̃′.

Security. In the classical ORAM indistinguishably definition, an ORAM scheme is secure if it
generates access patterns independent of the client real accesses. Intuitively, an oblivious access
pattern cannot disclose which data the client is accessing, when a data block was last accessed, or
if a real access was a read or write operation.

Definition 4. (ORAM security) Let a data request sequence of a client to an external server be
denoted by:

→
y= ((opM , aM , dataM), . . . , (op1, a1, data1))

where M is the sequence size and each opi denotes a read(ai) or a write(ai, datai) operation
where 1 ≤ i ≤ M . More specifically, the block read/written is uniquely identified by address ai,
and datai denotes the data being read/written. Note that request sequences are only sent to the
server after the client initializes an ORAM with the Buld algorithm and a read or a write operation
corresponds to the evaluation of the Read algorithm followed by the Write algorithm. Furthermore,
the offset 1 corresponds to the most recent operation while the offset M corresponds to the
oldest operation. Additionally, Let X [Φ](

→
y) denote the access patterns (possibly randomized)

generated by an ORAM construction Φ when accessing a remote storage server. An ORAM
scheme Φ is secure if: 1) for any two data request sequences

→
y1 and

→
y2 have the same length,

their accesses patterns X [Φ](
→
y1) and X [Φ](

→
y2) also have the same length and are indistinguishable

(computational or statistically); 2) the data returned on input
→
y is correct with probability >=

1− negl(|
→
y |).

8

We present a security definition that captures ORAM construction with an external position
map. Intuitively, an ORAM construction is secure according to Definition 5 if the ORAM client
generates the position map independently of the input request sequence.

Definition 5. (External position map ORAM security.) Let
→
δ= (δM , . . . , δ1) denote a sequence

of position map states such that δi determines the access pattern for request opi. Additionally,
we denote by X [Φ;

→
δ](
→
y) the access patterns (possibly randomized) generated by an ORAM

construction Φ when accessing a remote storage server given a sequence of position maps
→
δy.

Given a data request sequence
→
y , we say that an ORAM construction with an external pmap

X [Φ;
→
δ](
→
y) is secure if it satisfies Definition 4 and there exists an algorithm O that upon activation

outputs a pmap with an identical distribution to that produced by the construction. Algorithm
O has access to the database size as a public parameter. Note that O is not restricted to random
algorithms, as an ORAM scheme can be deterministic and simply access the same sequence of
addresses (e.g.: full scan of the storage blocks).

4 Oblivious Cascading Scans

Overview. In this section we present our Cascading Oblivious Database Search (CODBS) con-
struction. Intuitively, the scheme captures the interaction between the Trusted Proxy and the
Storage Backend . The client starts by issuing an initialization query to the Trusted Proxy in order
to outsource a local plaintext Table Heap and a plaintext Table Index to a sequence of L + 1
levels of independent ORAMs. Our construction stores the database blocks across each level by
following the pattern that emerges naturally from the tree-based indexes in databases such as
B+-trees. As such, every node of a Table Index at level l is stored on the ORAM level l. The last
ORAM level is reserved for the table blocks. The underlying ORAMs are devoid of an internal
pmap and instead we explicitly provide a pmap for every ORAM access. In fact, the locations of
the blocks B in an ORAM at level l + 1 are stored in its parent node A at level l. As defined in
Section 3, each plaintext tree node has a list of tree points (key, a) which is enhanced during the
initialization process with an additional counter (key, a, ctr). These counters keep the access to
the ORAM levels correct and secure.

After the initialization, the client proceeds to issue search queries to the Trusted Proxy . With
the multiple ORAM levels, a query search consists of cascading from level to level and choosing
the next node to access at each step. In the last level the Trusted Proxy returns to the client a
single Table Heap block that satisfies the input query. To gain an intuition on how search moves
from level to level, consider the following example of an access to a block A at level l. Before
moving to a level l+ 1, the scheme seeks in the block A a pointer (key, a, ctr) to a child node that
satisfies its query. If a match is found, the location of the next block to access is calculated with
a PRF by providing as input the ORAM level l + 1, the address a and the counter ctr. However,
before moving to the next level l + 1, the counter of the matching pointer is updated and block
A is shuffled back in level l to a new position. This combination of independent ORAM levels
with PRFs is a significant improvement over state-of-the-art tree-based ODS [37] that can only
flush the tree nodes after iterating over the entire search tree. With CODBS, a tree search only
needs to do a single pass over the entire tree and the tree nodes can be flushed to the ORAM
immediately after being fetched.

CODBS in detail. Given a PRF F : {0, 1}λ × {0, 1}∗ → {0, 1}λ, an IND-CPA symmetric
encryption scheme Θ = (KGen,Enc,Dec) and a position-based ORAM scheme Φ with an external
pmap, CODBS is defined by the initialization Algorithm 1 and the search Algorithm 2. In this
section we abstract the ORAM implementation, but we later present an optimized construction
in Section 5. In CODBS the location of a block is provided by location tokens, i.e.: two outputs
sampled from a PRF. The block location is defined by a tuple (F (m), F (m′)) containing a token
for its current location and a token for its eviction location. These tokens are used by the ORAM
scheme to move a block from its original address to a new address after an oblivious access. For

9

instance, assuming the underlying ORAM scheme is a construction similar to Path ORAM [32]
the tokens are used to compute uniformly random leaves in the server’s binary tree.

Algorithm 1: CODBS Init protocol

1 Function Init(1λ, I, T , N , L, d)
2 skF ← F.KGen(1λ);skE ← Θ.KGen(1λ)

3 (stĨ , Ĩ) ← InitSearchTree(I, L, d, skF , skE)

4 (stT̃ , T̃) ← Φ.Build(N)
5 for a ∈ {0, . . . , N} do
6 δ ← (F (skF , L+ 1||a||0), F (skF , L+ 1||a||1))
7 c← Θ.Enc(skE , T [a])

8 (stT̃ ,) ← Φ.Read((stT̃ , δ), T̃ , a)

9 (stT̃ , T̃) ← Φ.Write((stT̃ , δ), T̃ , a, c)

10 return ((skF , skE, 1, stT̃ , stĨ), (Ĩ, T̃))

11 Function InitSearchTree(I, L, d, skF , skE)
12 Ĩ ← []; stĨ ← []
13 for l ∈ {0, 1, . . . , L} do

14 (stĨl , Ĩl) ← Φ.Build(dl)

15 for a ∈ {0, 1, . . . , dl} do
16 data ← I[l][a]
17 data’ ← []
18 for i ∈ {0,1, . . . , |data| } do
19 (key, a′) ← data[i]
20 data′[i] ← (key, a′, 1)

21 δ ← (F (skF , l||a||0), F (skF , l||a||1))
22 c← Θ.Enc(skE , data

′)

23 (stĨl ,) ← Φ.Read((stĨl , δ), Ĩl, a)

24 (stĨl , Ĩl) ← Φ.Write((stĨl ,δ), Ĩl, a, c)

25 Ĩ[l] ← Ĩl; stĨ [l] ← stĨl
26 return (Ĩ, stĨ)

Initialization algorithm. The Init algorithm outsources a plaintext database to a pair of obliv-
ious data structures stored in an untrusted server. The goal of this algorithm is to initialize the
Trusted Proxy internal state and ensure the database is ready to process client queries. The algo-
rithm starts with the generation of secret keys (line 2) and then proceeds to create two additional
oblivious structures, an oblivious search tree Ĩ (line 3) and an oblivious table T̃ (line 4-9). The
oblivious search tree Ĩ is the result of the algorithm InitSearchTree. This tree initialization algo-
rithm traverses the plaintext database tree level by level, creates an ORAM for each level l with
capacity for dl blocks and stores the blocks of a tree level in the respective ORAM. The resulting
data structure consists of L ORAMS that keeps an identical structure to an input tree-based
index. Each tree level is assigned to a single ORAM that stores all the of the levels nodes. Before
a tree node is written to an ORAM, its internal structure is updated and a unique access counter
is added for every pair of (key, ptr). It’s important to note that the pointer ptr in a node at level
i matches a node offset a at level i+ 1. As blocks are written to an ORAM for the first time, the
cryptographic token used by the Φ.Read function starts with a counter set to 0 and the eviction
token increments the counter by a single unit. At the end of the algorithm every parent node can
compute the location of its children.

After the index initialization, the Init function creates an additional level to store the Table

10

Heap blocks. The initialization process starts with the allocation of an oblivious table T̃ (line
4) filled with N dummy blocks. Afterwards, the algorithm scans the Table Heap block by block
(line 5) and generates two cryptographic tokens for each block (line 6). The initial location of a
block is computed by providing F with a unique message composed by the total number of levels
L+ 1, the block address a and an initial counter set to 0 (line 6). The eviction token is computed
with a similar message, but the counter is incremented by 1. The syntax of the message ensures
that each block’s location i is independent from previous locations and every other block. During
the table scan, every block a is encrypted and stored in the oblivious data structure at a uniform
random location defined by its location tokens δ (line 7-9).

Search algorithm. We now describe CODBS’ oblivious search algorithm. During this first look
at the algorithm we are not concerned with volume leakage and assume that for every input query
τ the protocol returns a single Table Heap block. This assumption implies that every indexed
record is unique and there are no range queries. We address this limitation in Section 4.1. With
this simplification the algorithm cascades from the first ORAM level to the last, selecting a single
node at each level. In detail, a query consists of the following steps:

Algorithm 2: CODBS Search protocol

1 Function Search(st, Ĩ, T̃ , τ)
2 (skF , skE , ctrr, stT̃ , stĨ) ← st; a ← 0; ctr ← ctrr

3 for l ∈ {0, 1, . . . , L} do

4 stĨl ← stĨ [l]; Ĩl ← Ĩ[l]

5 δ ← (F(skF , l||a||ctr), F(skF , l||a||ctr + 1))

6 (st′Ĩl
, c) ← Φ.Read((stĨl , δ), Ĩl, a)

7 data← Θ.Dec(skE , c)
8 (data′, a′, ctr′) ← Next(data, τ)
9 c′ ← Θ.Enc(skE , data

′)

10 (st′′Ĩl
, Ĩ ′l) ← Φ.Write((st′Ĩl

, δ), Ĩl, a, c’)

11 a ← a′; ctr ← ctr′; stĨ [l] ← st′′Ĩl
; Ĩ[l] ← Ĩ ′l

12 δ ← (F(skF , L+ 1||a||ctr), F(skF , L+ 1||a||ctr + 1))

13 (st′T̃ , c) ← Φ.Read((stT̃ , δ), T̃ , a)

14 data← Θ.Dec(skE , c)
15 c′ ← Θ.Enc(skE , data)

16 (st′′T̃ , T̃ ′) ← Φ.Write((st′T̃ , δ), T̃ , a, c’)

17 st′ ← (skF , skE , ctrr+1, st′′T̃ , stĨ)

18 return (st′, Ĩ, T̃ ′, data)
1 Function Next(data, τ)
2 for i ∈ {0, 1, . . . , |data|} do
3 (key, a, c) ← data[i]
4 if SelectChild(key, τ) then
5 data[i] ← (key, a, c+ 1)
6 return (data, a, c)

1.) Oblivious tree search. (line 4-13): In this step, the algorithm traverses the L levels of the
tree-based index (line 3), fetching a node from each level until it reaches a tree leaf. At every level
of the tree scan, the algorithm accesses the tree node at address a stored on an oblivious location
defined by the counter ctr. These variables are initially set to the tree root (line 2) and similarly
to the initialization algorithm, the current block location tokens are calculated with a PRF (line

11

5). The accessed tree node (line 8) is processed by the Next function which selects a new child
node address a′ and a counter ctr′ to be accessed in the next tree level.

2.) Node selection. (Function Next): This operation selects a single tree child node address
from an input parent node. A tree node is a set of tuples (key, a′, c′) where each tuple consists
of a node address a′, a location counter c′ and a predicate key. We scan over every tuple (line
3) and check if a tuple key matches an input query τ (line 4). As the choice of which child
nodes satisfies an input query depends on the underlying index we abstract this process with the
function SelectChild that takes as input a query τ and the current child key. This function returns
a boolean result bit b that is set to true if the key satisfies the query. When a child node is
found the function increments the counter of the target child node (line 6). This update is made
ahead of time, before the child node is accessed, to ensure that the parent node keeps a consistent
pointer before it’s shuffled back to the ORAM external storage. The function ends by returning
the updated accessed node as well as the current location of the next node, defined by the address
a and the old counter value c.

3.) Table heap access. (Line 14-19): Finally, after scanning the search tree and reaching a
leaf node, the algorithm obtains a single Table Heap block pointer. With this information, the
current location of the block is calculated with a PRF function (line 6) and the block is accessed
and evicted (line 13-14). At the end of the algorithm, the Trusted Proxy internal state is updated
(line 15) and the resulting block returned to the client.

Multi-User setting. Our protocol mainly considers the single-user setting, but can also be
extended to the multi-user setting. We can follow an approach similar to POSUP [21] and store
an access control list (ACL) on the Trusted Proxy , as well as a list of user credentials. This
meta-data is created by the data owner and outsourced to the remote server during the database
initialization process. Given an input query, the Trusted Proxy authenticates the request using
the user credentials and validates the user’s permissions. If the authentication is successful, then
the Trusted Proxy searches the database obliviously, as defined in Algorithm 2.

4.1 Oblivious Query Stream

Until this point, the Search algorithm was a 1-to-1 function that returned a single table block
for every input query. However, the database must support range queries and equality queries
that return multiple results. We address this limitation with the insight that any query with
multiple resulting records can be unfolded into a sequence of multiple queries with a single result.
Additionally, queries can be composed one after the other to obtain an oblivious stream of client
requests and database results. Next, we provide a concise description of our solution assuming
that the search keys are defined in a continuous domain fully known to the client. This assumption
matches existing work in state-of-the-art oblivious data structures [37] and can easily be dropped
at the cost of additional server-side bookkeeping, as is standard in relational databases.

With this observation, the CODBS client is implemented as an algorithm that maintains a
constant rate r of requests/responses with the Trusted Proxy . The algorithm starts by opening
an authenticated channel with the Trusted Proxy and proceeds to send queries on a loop at a
rate r. The first query starts by searching for the first element in a subrange of the search key
domain. The request is processed by Trusted Proxy which scans every ORAM level with the Search
algorithm. The resulting database block is stashed by the client which keeps sending queries with
the consecutive elements in the key domain. A search query ends when the Trusted Proxy returns
a dummy element that does not satisfy the client query. This query stream is crucial to hide one
of the main sources of leakage of search queries over ORAMs, the volume leakage. To address
this leakage the query stream remains active by the client, even if there are no new queries to
search. In this case, a dummy query is sent to the Trusted Proxy and its result is ignored by the
client. With this approach, the volume leakage of the system no longer depends on the size of

12

the result set of a query but rather on the rate of requests made to the proxy. This rate is public
information that can be adjusted depending on the workload. Regardless of the request rate, the
access patterns no longer depend on private data.

5 Forest ORAM

We now instantiate the underlying ORAM construction used for each level. A major concern that
arises from storing the Table Heap in an ORAM is the bandwidth blowup — number of blocks
transferred per access — of an oblivious access. Even though Table Index size is proportional to
the number of blocks in a Table Heap, the cost of a database search is dominated by the access to
the last level. In our experimental evaluation we verified that there are 50 times more blocks in
a Table Heap than in a Table Index for a small dataset and this difference only increases as the
dataset grows. To address this issue, we propose Forest ORAM an extension to Path ORAM that
scales with the number of blocks.

Forest ORAM is based on OblivStore [35], a ORAM partition framework that divides a single
ORAM construction in multiple, independent P partitions. Each partition is protected with
an ORAM scheme and the cost of accessing a single block depends on the number of blocks in a
partition and not on the total number of blocks stored on the external storage. However, the initial
OblivStore’s constructions was proposed before tree-based constructions became standard and thus
uses a hierarchical ORAM scheme for each partition, resulting in a worst-case bandwidth blowup
of O
√
N . In Forest ORAM we replace the hierarchical framework with Path ORAM and optimize

the number of partitions to lower the bandwidth overhead of accessing a single Path ORAM and
prevent a partition from overflowing. Forest ORAM has O(log(N)− log (P)) bandwidth blowup
and a O(log (P)) upper bounded stash.

The security of OblivStore, as with most tree-based ORAM algorithms, is based on the as-
sumption that the stash is stored securely by the client. However, if the stash is stored inside
an IEE’s secure memory, every access to the stash is disclosed to the adversary. Specifically, an
adversary can learn the stash offset accessed and track the movement of blocks within the stash.
This leakage can result in linkability attacks [35]. This problem also affects OblivStore as it keeps
an individual stash for each partition. The issue becomes clear with the following example; after
an oblivious access, OblivStore moves an accessed block from a partition A to a partition B. With-
out any modification to the original construction, the movement between partitions is simply a
matter of removing a block stored in partition A and writing it to the partition B stash. However,
if the adversary can trace this exchange of blocks, it learns the exact location where the block was
stored. This information would have never been disclosed on a classical client-server deployment,
which compromises OblivStore’s security.

We addresses this issue with a single oblivious stash shared between all of the partitions. This
oblivious stash stores blocks from every partition and has a fixed size equal to the upper bound
of excepted blocks, i.e., O(log (P)) blocks. We denote the oblivious stash as OS and we use the
standard set notation to denote any access to the stash. To ensure a uniform access pattern,
all operations to the stash implicitly touch every element and any conditional logic, such as if
conditions, or assignments are executed with constant time operators. We also considered that the
Forest ORAM algorithms executed inside an IEE are implemented with constant time guarantees
to prevent any access patterns from being disclosed trough side-channel attacks. However, we
refrain from explicitly presenting low-level detailed algorithms with constant time operators as
there are several standard approaches that can be applied [28, 21, 2].

The Forest ORAM construction is defined by the algorithms presented in Algorithm 3. Whereas
state-of-the-art position based ORAM algorithms provide a single Access method, we split this
method in two main functions Read and Write. Furthermore, we also explicitly define the initial-
ization algorithm Build that allocates an external memory structure and setups the construction
parameters. Our algorithms are mostly similar to Path ORAM definition [32] and we explicitly
highlight our modifications in blue, which mostly include the division of blocks in multiple partions
as done by OblivStore.

13

Intuition. We first start with an intuitive overview of the protocol. Following OblivStore’s
partition framework, the untrusted server storage is divided into P individual partitions. The N
outsourced blocks are uniformly distributed between the partitions, with each partition storing
about N/P blocks each. A partition stores the data in a binary tree, similar to Path ORAM. The
nodes in the binary tree are known as buckets and each one stores up to Z data blocks.

Main Invariant. Forest ORAM has one main invariant. Every block is mapped to a uniformly
random partition p and a uniformly random leaf l in a partition tree. If a block a is mapped to a
partition p and a leaf l, the block can either be found on a client cache or on a bucket at partition
p in the path from the root to the leaf l.

To access (read or write request) a block from the server, Forest ORAM uses the external
position map to obtain the location of the block. Given a partition p and a leaf l, the entire path
from the tree root in partition p to the tree leaf l is transferred to the client stash. The client
shuffles the blocks and flushes a new set of blocks to the path accessed. To prevent any number of
subsequent accesses to the same block from being disclosed to an adversary, blocks are re-assigned
to new locations after each access.

When a block is re-assigned, its partition as well as its tree leaf are sampled from a uniform
random distribution. The blocks stay on the client-side stash until a client request can flush it
back to the external storage. Similar to OblivStore, we prevent the stash from overflowing with
a periodic eviction process that flushes blocks from the stash to the partitions. This process is
independent of the client requests and the client cache size.

External position map. The external position keeps track of the blocks locations and is man-
aged by an application using Forest ORAM. Intuitively, this position map could be as simple as
an inverted index that maps a block address a to a tuple with the block location (x, y) where
x denotes a tree leaf and y a partition. Additionally, the position map is updated after every
access to move blocks to new uniform random position. In Forest ORAM we abstract the details
of the implementation of the external position map and define it as a tuple of location tokens
δ = (δt, δt+1). Each location token is a bitstring {0, 1}D with size D. Every Forest ORAM request
(Read/Write) on address a receives a location token where δt is the current location of a and δt1
is a new location of a after an access. We denote by τ : δ → (x, y) a function that takes as input
a location token and returns its associated coordinates, leaf x and partition y.

Server Storage. The server storage is divided into P partitions of Path ORAMs such that
P = log (N). Each partition contains 2log (N/P)+1 − 1 blocks of fixed size B. The partitions are
independent Path ORAM constructions with a binary tree of height L = {0, 1, . . . , 2log (N/P)} and
each tree node is a bucket containing Z data blocks. The blocks are structured as a tuple (δ,
a, isDummy, data) such that each block contains its data, a bit isDummy that defines if the
data is real or free with dummy data, the real block offset a and its current location token δ. It’s
important to note that we assume that blocks are implicitly encrypted before being stored on the
external storage to hide its information from an adversary.

Path. Consider x ∈ {0, 1, . . . , 2L−1} a leaf node in a tree on partition y ∈ {0, 1, . . . , P}. Each
leaf node x in y defines a unique tree path that starts on the tree root and ends on the leaf. We
denote by P(x, y) the set of buckets in partition y on the unique path defined by x. We further
denote by P(x, y, l) a bucket at level l in P(x, y). Finally, we denote by L(y, l) the set of all the
buckets in partition y at tree level l.

Client Storage. The client’s storage consists single oblivious stash OS shared between every
partition. The stash is a temporary holding place for blocks accessed on a partition that have not
been evicted to the server. A subset of the stashed blocks is flushed after a partition access, while
the remaining blocks are evicted by a background eviction process. As proven in OblivStore [34]
the size of the stash is upper-bounded by the number of partitions O(logN).

14

Initialization. Forest ORAM is initialized by the Build function defined in Algorithm 3. This
function allocates an external memory structure D̃ for P partitions, each with a Path ORAM tree
with height L and Z blocks. The allocated blocks are overwritten by dummy data blocks. The
algorithm returns the client state with the internal parameters and an empty stash OS.

Algorithm 3: Forest ORAM

1 Function Build(N)

2 P ← log (N) L ← log (N/P)

3 D̃ ← M.Alloc(P · 2L · Z)
4 Bucket ← []
5 for b ∈ {0, 1, . . . , Z} do
6 Bucket[b] ← ({0}∗, {0}∗, 1, {0}∗)
7 for i ∈ {0, 1, . . . P · 2L} do
8 M.Write(D̃, i, Bucket)
9 return (([], P, L), D̃)

1 Function Read(st, D̃, a)
2 ((OS, P, L), δ) ← st; (δt,) ← δ
3 (x, y) ← τ(δt)

4 for l ∈ {0, 1, . . . , L} do
5 OS← S ∪M.Read(D̃,P(x, y, l))
6 data← Read block a from S

7 return ((OS,P,L), data)

1 Function Write(st, D̃, a, data∗)
2 ((OS, P, L), δ) ← st; (δt, δt+1) ← δ
3 (x, y) ← τ(δt)
4 (xt+1, yt+1) ← τ(δt+1)

5 OS← (OS− {(δ, a, 0, data)}) ∪ {(δt+1, a, 0, data∗)}
6 for l ∈ {L,L− 1, . . . , 0} do
7 S′ ← {(δ′, a′, 0, data) ∈ OS :

P(x, y, l) = P((τ(δ′), l)}
8 S′ ← Select min(|S′|, Z) blocks from S’.
9 OS← OS− S′

10 D̃′ ← M.Write(D̃, P(x,y,l), S’)

11 return ((OS,P,L), D̃′)

In Forest ORAM, a block access to an address a is done with a Read request followed by a
Write request. First, the client downloads a block from the server with the function Read, updates
the block in case of a write operation and flushes the updated block back to the server with the
Write function. The functions are described by the following two steps:

1.) Block Access (Function Read): The function generates the location of offset a from the
location token (line 3), reads from the remote server the blocks in path P(x, y, l) defined by
the leaf x, partition y and tree level l (line 4-6). The blocks are stored on the stash and the
requested block is returned to the client (line 7-8).

2.) Block Flush (Function Write): The function generates the current location of offset a as
well as its new position from the location’s tokens (line 3-4). The stash is updated with new
block data∗ and the new location of address δt+1 (line 5). The block eviction process (line 6-
11) scans a tree path level by level, from the leaf to the root. At each level, the function selects
blocks from the stash with a path P(τ(δ′), l) that intercepts the path P(x, y, l) accessed on
the Read function. The selected blocks are trimmed to limit the tree node’s capacity to Z
(line 8). Finally, the resulting blocks are removed from the stash (line 9) and evicted to the
external storage (line 9).

5.1 Background Eviction

A core component of OblivStore’s construction is the background eviction process that prevents the
client-side cache from overflowing. However, the algorithm used by OblivStore’s is not applicable
to Forest ORAM as it is bounded to hierarchical ORAMs. Furthermore, simply evicting blocks
from the stash after an oblivious access can disclose the new location of block. We present a new
eviction algorithm that addresses the two main challenges of a background eviction:

Minimizing stash size. The background process runs at an eviction rate c · v, such that c > 0
is the eviction rate and v is the clients request rate, meaning that for every oblivious access
there are c background evictions executed. The eviction process maximizes the number of
real blocks in a partition and attempts to replace every dummy block with a real stashed
block.

15

Algorithm 4: Background eviction

1 Function Evict(st, D̃, a)
2 (OS, P, L) ← st
3 y ← Random(1, . . . , P)
4 for l ∈ {0, 1, . . . , L} do
5 OS← S ∪M.Read(L(y, l))

6 for x ∈ {0, . . . , 2(l+1) − 1} do
7 S′ ← {(δ, a, 0, data) ∈ OS : P(x, y, l) = P(τ(δ), l)}
8 S′ ← Select min(|S′|, Z ∗ 2(l) − 1) blocks from S’.
9 OS← OS− S′

10 M.WriteBucket(L(y, l), S′)

Oblivious access pattern. The access patterns of the partitions selected for eviction have to
be independent of the data access patterns of client requests and from the stashed blocks.
Furthermore, a partition must always be evicted if chosen, even when there are no stashed
blocks to evict.

The eviction background process is presented in Algorithm 4. The protocol resembles the
Path ORAM eviction function but has a few differences to ensure that blocks are written to
partitions independently of the data access patterns. The algorithm transverses the binary tree
level by level, from the root to the leaf, reading every block and flushing stashed blocks to the
server. Conceptually, Forest ORAM Write eviction is a vertical operation on a tree branch while
the background eviction is an horizontal process. We slightly abuse the notation of M.Read and
M.Write to denote that every node in tree level is read/write from/to the server.

The algorithm is described by the following 4 steps: 1.) (line 3) choose a random partition y
to evict; 2.) (line 4-5) Start to iterate the tree level by level L(y, l), and at every level read the
nodes from the server on to the stash; 3.) (line 6-10) Choose from the stash the set of blocks
that can be stored on the current level. This selection filters from the stash the blocks with a path
that belong to the selected partition and can be written to the current level; 4.) (line 1) Evict
the batch of selected blocks S′ to the current tree level. At each tree level l, blocks are written
with a deterministic access pattern from the first node to the last {0, 1, . . . , 2l}.

5.2 Asymptotic Analysis

The Forest ORAM bandwidth blowup per access is similar to Path ORAM, requiring 2 ·Z log (N)
blocks to be transferred from the server to the client. The major difference is the partition of the
tree in multiple subtrees, each with only log (N/P) blocks leading to a total bandwidth blowup of
2 · Z(logN − logP).

In a CODBS search, we can further decrease the online bandwidth by pushing some I/O to
a background process. The CODBS search algorithm, as defined in algorithm 2, accesses the
levels of a Table Index with a sequence of Read and Write functions, in this same order. However,
note that each level is an independent ORAM and that the levels grow by a factor of 2 from the
roots to the leaf. As such, an oblivious access to level i has a lower bandwidth blowup than an
access to level i+ 1. Furthermore, consider an execution model where a main thread processes the
CODBS search and an additional background thread can evaluate any function. If we evaluate the
function Write (Algorithm 4) in the background thread, the main thread can fetch a block from
level i and move on to access the next level i+1. The eviciton of the block in level i is done by the
background thread which flushes the blocks before the main thread fetches all blocks from level
i+1. By induction, we can apply this process to every level and the CODBS search only processes
Read functions, effectively decreasing the only bandwidth blowup to Z log (logN − logP).

16

RealOISA (1λ)

(I, T , N, L, d, stA)← A1(1λ)

(st, Ĩ, T̃)← InitM(1λ, I, T , N, L, d)

X ←M.Addrs()

(τ, stA)← A2(stA, Ĩ, T̃ ,X)

while τ 6= ⊥

(st, Ĩ, T̃ , d)← SearchM (st, Ĩ, T̃ , τ)

X ←M.Addrs()

(τ, stA)← A3(stA, Ĩ, T̃ ,X)

IdealOISS,A (1λ)

(I, T , N, L, d, stA)← A1(1λ)

(Ĩ, T̃)← SimMInit(1
λ, N, L, d)

X ←M.Addrs()

(τ, stA)← A2(stA, Ĩ, T̃ ,X)

while τ 6= ⊥

(Ĩ, T̃ , d)← SimMSearch(Ĩ, T̃)

X ←M.Addrs()

(τ, stA)← A3(stA, Ĩ, T̃ ,X)

Figure 3: OIS Real and Ideal game definition

6 Security Analysis

Theorem 1. The CODBS construction defined in Algorithm 1 and Algorithm 2 is a secure
Oblivious Index Scan according to Definition 1 if Φ is an Oblivious RAM scheme, Θ is an IND-
CPA symmetric encryption scheme and F is a PRF.

Proof sketch. The security analysis of CODBS hinges on the composition of multiple black-
box ORAMs. Intuitively, every query processed by the Trusted Proxy consists of a sequence of L
requests to independent ORAMs. From the adversary perspective, the accesses to each ORAM
generates an arbitrary sequence of storage accesses to encrypted data blocks. Furthermore, the
sequence of requests to each ORAM is deterministic and independent from the input query. As
such, the adversary observes a sequence of arbitrary accesses to the external storage and does not
learn any additional information.

We prove our security intuition with four indistinguishably games, from a real world to an ideal
world. The first two hops consist of syntactic changes to the real-world, adding ideal structures that
simplify the next hops in the proof. In the third hop we require position-based ORAMs accesses
to be indistinguishable from random accesses, by replacing the PRFs used to generate location
tokens by a true random function. The fourth hop captures the intuition that our scheme is secure
as long as blocks are encrypted with IND-CPA schemes. Finally, the last game shows that the
ORAM accesses to every level are independent of the input query by replacing the input address
of an ORAM level with a dummy address. Overall, the security games prove that an adversary
cannot distinguish between the real world and ideal world by using the security definition of PRFs,
IND-CPA and ORAM.

6.1 Security Model

We now present our game-based security model and the security proof of the CODBS protocol.
We present in Figure 3 the game-based security definition of an oblivious index (Definition 2).
During the execution of the game, an ideal storage M is available to ORAM primitives in both
worlds. In the real game RealOISA (1λ) the adversary A starts by interacting with the CODBS
protocol by providing a plaintext database to be encrypted and stored on oblivious data struc-
tures. The adversary is given the complete sequence of accesses to the external storage M after
the initialization algorithm and the pair of resulting data structures. The adversary follows by
adaptively requesting new search queries and for each one receives the respective access patterns.
In the ideal game IdealOISS,A (1λ), the interaction between the adversary and the simulator S fol-
lows the same flow of interactions. However, the sequence of access patterns and oblivious data
structures generated by the simulator does not take into account the adversary plaintext database

17

Init(I, T , N , L, d)

skF ← F.Gen(1λ); skE ← Θ.Gen(1λ)

Ĩ ← []; stĨ ← []

for l ∈ {0, 1, . . . , L} do

(stĨl , Ĩl)← Φ.Build(dl)

for a ∈ {0, 1, . . . , dl} do
δ ← (F(skF , l||a||0),F(skF , l||a||1))

d′ ← InitNode(I[l][a])

cd ← Θ.Enc(skE , d
′)

(stĨl ,)← Φ.Read((stĨl , δ), Ĩl, a)

o← Φ.Write((stĨl , δ), Ĩl, a, cd)

(stĨl , Ĩl)← o

Ĩ[l]← Ĩl; stĨ [l]← stĨl

(stT̃ , T̃)← Φ.Build(N)

for a ∈ {0, . . . , N} do
δc ← F(skF , L+ 1||a||0)

δn ← F(skF , L+ 1||a||1)

δ ← (δc, δn); cd ← Θ.Enc(skE , T [a])

(stT̃ ,)← Φ.Read((stT̃ , δ), T̃ , a)

(stT̃ , T̃)← Φ.Write((stT̃ , δ), T̃ , a, cd)

return ((skF , skE , 1, stT̃ , stĨ), Ĩ, T̃)

Search(st, Ĩ, T̃ , τ)

(skF , skE , ctrr, stT̃ , stĨ)← st

a← 0; c← ctrr

for l ∈ {0, 1, . . . , L} do

stĨl ← stĨ [l]; Ĩl ← Ĩ[l]

δ ← (F(skF , l||a||c),F(skF , l||a||c+ 1))

(st′Ĩl , datac)← Φ.Read((stĨl , δ), Ĩl, a)

data← Θ.Dec(skE , datac)

oR ← Next(data, τ); (data′, a′, c′)← oR

data′c ← Θ.Enc(skE , data
′)

oW ← Φ.Write((st′Ĩl , δ), Ĩl, a, data
′
c)

(st′′Ĩl , Ĩ
′
l)← oW ; a← a′; c← c′

stĨ [l]← st′′Ĩl ; Ĩ[l]← Ĩ′l
δc ← F(skF , L+ 1||a||c)
δn ← F(skF , L+ 1||a||c+ 1)

δ ← (δc, δn)

(st′T̃ , datac)← Φ.Read((stT̃ , δ), T̃ , a)

data← Θ.Dec(skE , datac)

data′c ← Θ.Enc(skE , data)

(st′′T̃ , T̃
′)← Φ.Write((st′T̃ , δ), T̃ , a, data

′
c)

return ((skF , skE , c+ 1, st′′T̃ , stĨ), Ĩ, T̃ ′, data)

Figure 4: Extended Real Game

18

SimInit(N,L, d)

skE ← Θ.Gen(1λ) : g←$Func(D,R); c← 0

Ĩ ← []; stĨ ← []; T̃ (stT̃ , T̃)← Φ.Build(N)

for l ∈ {0, 1, . . . L}
(stĨ′ , Ĩ′)← Φ.Build(dl)

for a ∈ {0, 1, . . . dl}
δ ← (g(c), g(c+ 1))

(stĨ′ ,)← Φ.Read((stĨ′ , δ), Ĩ′, {0}
∗)

data← Θ.Enc(skE , {0}
B)

o← Φ.Write((stĨ′ , δ), Ĩ′, {0}
∗, data)

(stĨ′ , Ĩ′)← o; c← c+ 2

Ĩ[l]← Ĩ′; stĨ [l]← Ĩ′

for a ∈ {0, 1, . . . , N}
δ ← (g(c), g(c+ 1))

(stT̃ ,)← Φ.Read((stT̃ , δ), T̃ , {0}
∗)

data← Θ.Enc(skE , {0}
B)

(stT̃ , T̃)← Φ.Write((stT̃ , δ), T̃ , {0}
∗, data)

return (Ĩ, T̃)

SimSearch(Ĩ, T̃)

(N,L, d, skE , stĨ , stT̃ , g, c)← stSim

for l ∈ {0, 1, . . . L}

stĨl ← stĨ [l]; Ĩl ← Ĩ[l]

δ ← (g(c), g(c+ 1))

(st′Ĩl ,)← Φ.Read((stĨl , δ), Ĩl, {0}
∗)

data← Θ.Enc(skE , {0}
B)

o← Φ.Write((st′Ĩl , δ), Ĩl, {0}
∗, data)

(st′Ĩl , Ĩ
′
l)← o; c← c+ 2

stĨ [l]← st′Ĩl ; Ĩ[l]← Ĩ′l
δ ← (g(c), g(c+ 1))

(stT̃ ,)← Φ.Read((stT̃ , δ), T̃ , {0}
∗)

data← Θ.Enc(skE , {0}
B)

o← Φ.Write((stT̃ , δ), T̃ , {0}
∗, data)

(stT̃ , T̃)← o

stSim ← (N,L, d, skE , stĨ , stT̃ , g, c+ 2)

return (Ĩ, T̃)

Figure 5: OIS Ideal Simulators

or its queries. Instead, the access patterns are generated from public parameters.
Our security model focuses on a passive adversary that can observe every interaction between

the Trusted Proxy and the external database storage. However, the adversary cannot create
arbitrary instances of the protocol, or forge requests and data blocks. In fact, our proof can
be extended to an active adversary in the IEE model [4] albeit at the cost of a more extensive
proof that would detract from the main concern of our construction: the external database access
patterns. Furthermore, note that an ORAM algorithm can be made trivially secure against an
active adversary by using standard techniques such as message authentication codes (MAC) or
authenticated data structures [31]. Nonetheless, we provide a brief description on the existing
mechanisms that can be used to make CODBS secure against active attackers. Intuitively, our
construction can be loaded in an IEE with an attested key exchange protocol that ensures that
only a single instance of the protocol can establish a secret key between the database client and the
Trusted Proxy . Furthermore, a secure communication channel between the client and the database
prevents the adversary from providing valid inputs to either party. Finally, an authenticated
encryption scheme and a sequence of numbers can be used to ensure that the database blocks in
the external storage cannot be forged.

6.2 Game-Based Proof

The security proof of CODBS is described through a sequence of four games presented from
Figure 6 to Figure 9. We denote by Gi the i-th game and by Pr[Gi = 1] the probability that
Game i outputs 1. Each game is a transition from the real game defined in Figure 4 with a slight
modifications until the last game that is identical to the ideal game with the simulators defined in
Figure 5.

Let Φ = (Build,Read,Write) be a constant-time position based ORAM with the security
guarantees in Definition 3.2. Furthermore, let F be a PRF with domain D and output Range R

19

Init(I, T , N , L, d)

skF ← F.Gen(1λ); skE ← Θ.Gen(1λ)

Ĩ ← []; stĨ ← []; cS ← 0; IA ← [][]

for l ∈ {0, 1, . . . , L} do

(stĨl , Ĩl)← Φ.Build(dl)

for a ∈ {0, 1, . . . , dl} do
δ ← (F(skF , l||a||0),F(skF , l||a||1))

d′ ← InitNode(I[l][a])

IA[l][a]← d′; cd ← Θ.Enc(skE , d
′)

(stĨl ,)← Φ.Read((stĨl , δ), Ĩl, a)

o← Φ.Write((stĨl , δ), Ĩl, a, cd)

(stĨl , Ĩl)← o; cS ← cS + 2

Ĩ[l]← Ĩl; stĨ [l]← stĨl

(stT̃ , T̃)← Φ.Build(N)

for a ∈ {0, . . . , N} do
δc ← F(skF , L+ 1||a||0)

δn ← F(skF , L+ 1||a||1)

δ ← (δc, δn)

cd ← Θ.Enc(skE , T [a])

(stT̃ ,)← Φ.Read((stT̃ , δ), T̃ , a)

(stT̃ , T̃)← Φ.Write((stT̃ , δ), T̃ , a, cd)
cS ← cS + 2

return ((skF , skE , cS , stT̃ , stĨ , IA), Ĩ, T̃)

Search(st, Ĩ, T̃ , τ)

(skF , skE , ctrr, stT̃ , stĨ , cS , IA)← st

a← 0; c← ctrr

for l ∈ {0, 1, . . . , L} do

stĨl ← stĨ [l]; Ĩl ← Ĩ[l]

δ ← (Fsk(l||a||c),Fsk(l||a||c+ 1))

(st′Ĩl , datac)← Φ.Read((stĨl , δ), Ĩl, a)

data← Θ.Dec(skE , datac)

oR ← Next(IA[l][a], τ)

(data′, a′, c′)← oR

data′c ← Θ.Enc(skE , data
′)

oW ← Φ.Write((st′Ĩl , δ), Ĩl, a, data
′
c)

(st′′Ĩl , Ĩ
′
l)← oW ; a← a′; c← c′

cS ← cS + 2; stĨ [l]← st′′Ĩl ; Ĩ[l]← Ĩ′l
δc ← Fsk(L+ 1||a||c)
δn ← Fsk(L+ 1||a||c+ 1)

δ ← (δc, δn)

(st′T̃ , datac)← Φ.Read((stT̃ , δ), T̃ , a)

data← Θ.Dec(skE , datac)

data′c ← Θ.Enc(skE , data)

(st′′T̃ , T̃
′)← Φ.Write((st′T̃ , δ), T̃ , a, data

′
c)

st′ ← (skF , skE , ctrr + 1, st′′T̃ , stĨ , cS + 2, IA)

return (st′, Ĩ, T̃ ′, data)

Figure 6: Game 1 hop

with prf-security as defined by Bellare and Rogway [5]. Furthermore. let Θ = (Gen,Enc,Dec) be
an IND-CPA encryption scheme according to Shoup and Boneh [6]. CODBS is secure according
to Definition 3.1 as proven by the following games:

Game G0. G0 is defined by the real security game RealOISA (1λ) (Figure 3) instantiated with
the CODBS construction which results in the extended real game presented in Figure 4. This
extension inlines the InitSearchTree function and encapsulates the addition of a child counter to
the tree nodes in the function InitNode.

Pr[RealOISA (1λ) = 1] = Pr[G0 = 1]

Game G1. The following game G1 makes two modifications on the real world game, which
simplify the next steps. First, it adds a global counter to the protocols internal state. The
counter does not modify the protocol but provides a unique, non-repeatable value. The counter is
incremented twice after every pair of Φ.Read/Φ.Write function, i.e., when the initialization protocol
stores a database block in on the external data structures and after a block is accessed during
a query search. The second modification is the addition of an ideal structure IA that stores the
tree-based nodes generated by InitNode. The data stored on this structure is identical to the data
blocks stored on the L ORAM levels and does not modify it in any way. As this modification does

20

Init(I, T , N , L, d)

skF ← F.Gen(1λ); g←$Func(D,R)

Ĩ ← []; stĨ ← []; cS ← 0; IA ← [][]

for l ∈ {0, 1, . . . , L} do
(stĨl , Ĩl)← Φ.Build(dl)

for a ∈ {0, 1, . . . , dl} do
δ ← (g(cS), g(cS + 1))

d′ ← InitNode(I[l][a])

IA[l][a]← d′; cd ← Θ.Enc(skE , d
′)

(stĨl ,)← Φ.Read((stĨl , δ), Ĩl, a)

o← Φ.Write((stĨl , δ), Ĩl, a, cd)

(stĨl , Ĩl)← o; cS ← cS + 2

Ĩ[l]← Ĩl; stĨ [l]← stĨl

(stT̃ , T̃)← Φ.Build(N)

for a ∈ {0, . . . , N} do
δ ← (g(cS), g(cS + 1)); cS ← cS + 2

cd ← Θ.Enc(skE , T [i])

(stT̃ ,)← Φ.Read((stT̃ , δ), T̃ , a)

(stT̃ , T̃)← Φ.Write((stT̃ , δ), T̃ , a, cd)
return ((g, skE , cS , stT̃ , stĨ , IA), Ĩ, T̃)

Search(st, Ĩ, T̃ , τ)

(g, skE , stT̃ , stĨ , cS , IA)← st

a← 0;

for l ∈ {0, 1, . . . , L} do

stĨl ← stĨ [l]; Ĩl ← Ĩ[l]

δ ← (g(cS), g(cS + 1))

(st′Ĩl , datac)← Φ.Read((stĨl , δ), Ĩl, a)

data← Θ.Dec(skE , datac)

(data′, a′, c′)← Next(IA[l][a], τ)

data′c ← Θ.Enc(skE , data
′)

oW ← Φ.Write((st′Ĩl , δ), Ĩl, a, data
′
c)

(st′′Ĩl , Ĩ
′
l)← oW ; a← a′; cS ← cS + 2

stĨ [l]← st′′Ĩl ; Ĩ[l]← Ĩ′l
δ ← (g(cS), g(cS + 1))

(st′T̃ , datac)← Φ.Read((stT̃ , δ), T̃ , a)

data← Θ.Dec(skE , datac)

data′c ← Θ.Enc(skE , data)

(st′′T̃ , T̃
′)← Φ.Write((st′T̃ , δ), T̃ , a, data

′
c)

return ((g, skE , st
′′
T̃ , stĨ , cS + 2, IA), Ĩ, T̃ ′, data)

Figure 7: Game 2 hop

not change the game execution it is clear that the adversary gains no additional advantage in this
hop.

Pr[G0 = 1] = Pr[G1 = 1]

Game G2. This game is a two-step hop that alters the process of generating location tokens for
every ORAM access. First, every function F is replaced with a real randomly sampled function
g. Secondly, the input messages to the functions are replaced by the current value on the global
counters. Since these input messages are unique by construction, we are exchanging unique values
by unique values, enabling us to use the global counter in the PRF. For every ORAM access either
a tree level l, a node offset a or access counter c is different. As the secret key skF is outside of
the adversary control, an adversary that can distinguish between G1 and G2 can also be used to
distinguish F from a truly random function. As such, we upper bound the distance between these
two games by building an adversary B1 against the prf-security experiment such that

Pr[G1 = 1]− Pr[G2 = 1] = Advprf
F,B1

(λ)

Adversary B1 simulates the game G2 as follows. For every requested location token the ad-
versary issues a new call to the prfF,B1

oracle. Furthermore, the output bit of G2 is forwarded
as the resulting bit of the prf-security experiment. As the difference between both games is the
location token generated either by a F(l||a||c) or g(cS), and both input messages are unique, then
the probability of distinguishing between game G2 and G1 is the same as prf-security.

Game G3. With game G3 the encrypted data blocks are replaced by dummy message with a
constant length B. As the contents of the table blocks are never disclosed to the adversary accord-

21

Init(I, T , N , L, d)

skF ← F.Gen(1λ); g←$Func(D,R)

Ĩ ← []; stĨ ← []; cS ← 0; IA ← [][]

for l ∈ {0, 1, . . . , L} do
(stĨl , Ĩl)← Φ.Build(dl)

for a ∈ {0, 1, . . . , dl} do
δ ← (g(cS), g(cS + 1))

IA[l][a]← InitNode(I[l][a])

cd ← Θ.Enc(skE , {0}
B)

(stĨl ,)← Φ.Read((stĨl , δ), Ĩl, a)

o← Φ.Write((stĨl , δ), Ĩl, a, cd)

(stĨl , Ĩl)← o; cS ← cS + 2

Ĩ[l]← Ĩl; stĨ [l]← stĨl

(stT̃ , T̃)← Φ.Build(N)

for a ∈ {0, . . . , N} do
δ ← (g(cS), g(cS + 1)); cS ← cS + 2

cd ← Θ.Enc(skE , {0}
B)

(stT̃ ,)← Φ.Read((stT̃ , δ), T̃ , a)

(stT̃ , T̃)← Φ.Write((stT̃ , δ), T̃ , a, cd)
return ((g, skE , cS , stT̃ , stĨ , IA), (Ĩ, T̃))

Search(st, Ĩ, T̃ , τ)

(g, skE , stT̃ , stĨ , cS , IA)← st

a← 0;

for l ∈ {0, 1, . . . , L} do

stĨl ← stĨ [l]; Ĩl ← Ĩ[l]

δ ← (g(cS), g(cS + 1))

(st′Ĩl ,)← Φ.Read((stĨl , δ), Ĩl, a)

oR ← Next(IA[l][a], τ)

(data′, a′, c′)← oR

data′c ← Θ.Enc(skE , {0}
B)

oW ← Φ.Write((st′Ĩl , δ), Ĩl, a, data
′
c)

(st′′Ĩl , Ĩ
′
l)← oW

a← a′; cS ← cS + 2

stĨ [l]← st′′Ĩl ; Ĩ[l]← Ĩ′l
δ ← (g(cS), g(cS + 1))

(st′T̃ , datac)← Φ.Read((stT̃ , δ), T̃ , a)

data′c ← Θ.Enc(skE , {0}
B)

(st′′T̃ , T̃
′)← Φ.Write((st′T̃ , δ), T̃ , a, data

′
c)

st′ ← (g, skE , st
′′
T̃ , stĨ , cS + 2, IA)

return (st′, Ĩ, T̃ ′, {0}B)

Figure 8: Game 3 hop

ing to the security model and the access counters stored within the tree nodes have been replaced
by the global counter, the blocks contents are no longer relevant for the protocol execution. Fur-
thermore, as the adversary A does not have access to the secret key skE the upper bound between
game G4 and game G3 is defined by an adversary B2 in an IND-CPA experiment AdvIND−CPA

Θ,B2
(λ).

Adversary B2 simulates the game G3 by forwarding for every encryption request a pair of input
message (data, {0}B) to the IND-CPAθ,B2 experiment. After the requests, the protocol continues
to be executed with the ciphertext returned from the experiment. Once G3 terminates its resulting
bit is returned as the guessing bit of the experiment. Since the difference between both games is
the same as presenting the encryption of one of the input messages, then the probability that A
distinguish between G2 and G3 is the same as the IND-CPA security.

Pr[G2 = 1]− Pr[G3 = 1] = AdvIND−CPA
Θ,B2

(λ)

Game G4. In this game we replace every block address a in an ORAM read and write re-
quests by the fixed address 0. With this modification, game G3 has a data request sequence

→
y3

that depends on the input query and database contents while G4 has a data request sequence
→
y4= ((·, 0, ·), . . . , (·, 0, ·)) that always accesses the same address. Since both requests have the
exact same length then according to the security definition of an ORAM construction the access
pattern generated by both requests are indistinguishable X [Φ](

→
y3) ≈ X [Φ](

→
y4). In fact, our con-

structions leverage an ORAM scheme with an external pmap which determines the access patterns
generated. Since in both games the pmap sequence

→
δ is generated by an oracle O instantiated as

a random function g that outputs a unique message independent of the accessed addressed then

22

Init(I, T , N , L, d)

skF ← F.Gen(1λ); g←$Func(D,R)

Ĩ ← []; stĨ ← []; cS ← 0; (stT̃ , T̃)← Φ.Build(N)

for l ∈ {0, 1, . . . , L} do
(stĨl , Ĩl)← Φ.Build(dl)

for a ∈ {0, 1, . . . , dl} do
δ ← (g(c), g(c+ 1))

cd ← Θ.Enc(skE , {0}
B)

(stĨl ,)← Φ.Read((stĨl , δ), Ĩl, {0}
∗)

o← Φ.Write((stĨl , δ), Ĩl, {0}
∗, cd)

(stĨl , Ĩl)← o; cS ← cS + 2

Ĩ[l]← Ĩl; stĨ [l]← stĨl
for a ∈ {0, . . . , N} do
δ ← (g(c), g(c+ 1))

cd ← Θ.Enc(skE , {0}
B)

(stT̃ ,)← Φ.Read((stT̃ , δ), T̃ , {0}
∗)

(stT̃ , T̃)← Φ.Write((stT̃ , δ), T̃ , {0}
∗, cd)

return ((N,L, d, g, skE , cS + 2, stT̃ , stĨ), Ĩ, T̃)

Search(st, Ĩ, T̃ , τ)

(N,L, d, g, skE , stT̃ , stĨ , cS)← st

for l ∈ {0, 1, . . . , L} do

stĨl ← stĨ [l]; Ĩl ← Ĩ[l]

δ ← (g(c), g(c+ 1))

(st′Ĩl ,)← Φ.Read((stĨl , δ), Ĩl, {0}
∗)

data′c ← Θ.Enc(skE , {0}
B)

oW ← Φ.Write((st′Ĩl , δ), Ĩl, {0}
∗, data′c)

(st′′Ĩl , Ĩ
′
l)← oW ; cS ← cS + 2

stĨ [l]← st′′Ĩl ; Ĩ[l]← Ĩ′l
δ ← (g(c), g(c+ 1))

(st′T̃ , datac)← Φ.Read((stT̃ , δ), T̃ , {0}
∗)

data′c ← Θ.Enc(skE , {0}
B)

o← Φ.Write((st′T̃ , δ), T̃ , {0}
∗, data′c)

(st′′T̃ , T̃
′)← o

st′ ← (N,L, d, g, skE , st
′′
T̃ , stĨ , cS + 2)

return (st′, Ĩ, T̃ ′, {0}B)

Figure 9: Game 4 hop

the access patterns generated are indistinguishable from an access pattern generated by an ORAM
construction with an internal pmap. We upper bound the distance between both games with an
hybrid argument [6] of an adversary B3 that plays against an ORAM experiment AdvORAM

Φ,B3
(λ).

In this game we apply a standard hybrid argument where and adversary B3 has to distinguish
between a sequence of L+ 1 hops such that each hop is denoted as G(3,i) where 0 ≤ i ≤ L+ 1. In
the first hop G(3,0) everything in the game is identical to G3, but in the hop G(3,1) the access to the
first ORAM level is made to a fixed address 0. As everything remains equal, distinguishing between
these two hops is the same as distinguishing between two access patterns generated by an ORAM
construction. This argument can be applied recursively in the subsequent levels by changing one
level at each step, from G(3,i) to G(3,(i+1)) where i ∈ [0..L]. In the last game, G(3,(L+1)) is exactly
equal to G4. As such, the advantage of an adversary A distinguishing between G4 and G3 is the
same as B3 distinguishing the access patterns generated of just one of the L+ 1 ORAM levels in
the sequence of from G(3,0) to G(3,(L+1)). The upper bound is given by:

Pr[G3 = 1]− Pr[G4 = 1] = (L+ 1) · AdvORAM
Φ,B3

(λ)

Let,

AdvOBLIVS
OIS,S,A(λ) =

∣∣∣Pr
[
RealOISA (1λ) = 1

]
− Pr

[
IdealOISS,A (1λ) =

] ∣∣∣
then Theorem 1 follows from

AdvOBLIVS
OIS,S,A(λ) =

4∑
i=0

|Pr[Gi = 1]− Pr[Gi+1 = 1]| ≤

Advprf
F,B1

(λ) + AdvIND−CPA
Θ,B2

(λ) + L+ 1 · AdvORAM
Φ,B3

(λ) ≤ negl(λ)

�

23

7 Experimental Evaluation

We implemented CODBS as a PostgreSQL server-side extension that supports equality and range
queries. We build upon on a widely used open-source database management systems to ensure
that our system design choices are based on realistic assumptions and the evaluation results are
comparable to industry standard databases. The complete solution has roughly 12K lines of C
code and is composed by an ORAM library, a Trusted Proxy engine and a database wrapper.

7.1 System Implementation

Our system currently supports two ORAM constructions: Path ORAM and Forest ORAM. We im-
plemented both constructions in a general-purpose ORAM library, open-source for any application
that needs to hide its access patterns2.

We implemented CODBS as the database component that replaces the Trusted Proxy and
provides an input API similar to the definition in Section 3.1. Additionally, this component has
an output API to access the external database storage. The component is deployed within an
Intel SGX enclave collocated with the database. Currently, the extension supports a B+-tree
as the index data structure. We leverage the LibSodium [12] library v1.0.5 to instantiate the
cryptographic primitives as it provides constant-time implementations. Concretely, we instantiate
the PRF F as a SHA256-HMAC and Θ encryption scheme as an AES block cipher with CBC
mode. The Trusted Proxy is connected to the database with a wrapper component implemented
as Foreign Data Wrapper (FDW), a PostgreSQL module that enables developers to extend the
database server without modifying the core source code.

7.2 Methodology

We measure the performance of our system to answer the following questions: 1) How does CODBS
scale with increasingly larger datasets; 2) What is the overhead in comparison to a plaintext
database for different types of queries; 3) How does size of the result set of a range query impact
the overall system the database performance. In the evaluation we compare our construction to
a system Baseline which consists of database that stores the Table Index and Table Heap in a
single Path ORAM construction. For a fair comparison, the Baseline also uses an oblivious query
stream.

Micro & Macro Settings. We divided our system evaluation in two distinct settings, a micro
setting and a macro setting. Both settings use a synthetic dataset and workload. The micro
setting measures the performance of Forest ORAM construction and Path ORAM constructions
isolated from the CODBS scheme and the PostgreSQL engine. In this setting each construction
read/writes blocks of B = 8 KiB from/to the main memory at randomly sampled positions. The
data blocks written to memory are also sampled from a uniform distribution {0, 1}B . In the macro
setting we use the YCSB benchmark v0.18 [10]. In the benchmark the database has a single table
with two columns. The first column Key is indexed and stores unique keywords. The second
column stores JSON objects containing randomly sampled data. Each table record has the same
size as a database block 8 KiB. We configured the benchmark to generate two workloads over the
indexed column: Workload A) Equality queries that search for keywords sampled from a uniform
random distribution; Workload B) Range queries that start on a randomly sampled keyword
and search for at most k values where k is uniformly sampled from [1..X]. The first benchmark is
designed with a one-to-one match between a database record and database table block to enable
a linear analysis of the expected database performance as the table size increases.

For both benchmarks we performed 5 runs for each combination of deployment, configuration,
workload and database size. The number of runs is the maximum necessary to calculate an
accurate confidence intervals (CI) [23] with the measured standard deviation. Each run lasted

2https://github.com/rogerioacp/oram

24

https://github.com/rogerioacp/oram

0

50

100

150

200

10 12 14 16 10 12 14 16A
ve

ra
ge

L
at

en
cy

(µ
s)

Number of blocks (base 2)

ForestORAM PathORAM

UnboundedStashOblivious Stash

Figure 10: Forest ORAM and Path ORAM comparison. X-axis measures number of blocks and
errors bars the 95% CI.

for 40 minutes with a 10-minute warm up period and a 2-minute cool down period between each
run. Furthermore, we ensure that each run is an independent observation by clearing the systems
caches and deleting any persistent data.

Collected Metrics. In the micro benchmark we measure the mean and the percentile latencies
of a read and write operations for every run. With the YCSB benchmark we collect the mean
and percentile latencies as well as the system throughput for every run. The samples mean are
calculated within an 95% CI with the Student’s t-distribution [23]. We collected CPU, memory
and disk usage of each system and ORAM construction using Dstat v0.7.3.

Experimental Setup. The system was deployed in a private infrastructure. Each computa-
tional node had an Intel Core i3-7100 CPU with a clock rate of 3.90 GHz and 2 physical cores in
hyper-threading. The main memory was a 16 GiB DDR3 RAM and the solid-state storage a Sam-
sung PM981 NVME with 250 GB. The machines had Intel SGX SDK v2.0 installed. Additionally,
the nodes were interconnected by a 10 GiB network switch.

7.3 Micro Benchmark

Figure 10 depicts the results of the micro benchmark. The workload in this benchmark with an
initially empty oblivious data structure and measures the latency of an oblivious access request,
either a read or a write. With this workload we measure the average latency of a request for the
Forest ORAM and Path ORAM constructions. We also measure the latency of both constructions
with two distinct stashes, an unbounded stash where a stash access stops as soon as it finds an
element and a double-oblivious stash with fixed size upper bounded at log (N). The number of
blocks stored on the ORAMs increases from 210(65 MiB) to 216 (2 GiB).

As can be observed, the performance difference between both stashes is almost non-existent.
This is expected as position-based ORAM constructions are designed to utilize as much as possible
the stash. In more detail, on an oblivious stash a Forest ORAM request takes on average 27 µs
for the smallest data set while in the largest takes 59 µs. The Path ORAM has a higher latency,
with 99 µs for an oblivious request in the smallest data set and 190 µs for the largest data set.
This difference represents at least a ∼ 2.6× speedup. In the unbounded stash, the most significant
difference is noticed on Forest ORAM in the 214 dataset where there is a an average performance
decrease of 2.5%. As the dataset increases, the performance of both systems degrades at a similar
rate with Forest ORAM latency increasing by ∼ 15% and Path ORAM by ∼ 17%. At the 90th
percentile, both systems performances degrade considerably, with Forest ORAM latency increasing
at most by ∼ 17% and Path ORAM by 7%. Even with these outliers Forest ORAM latency is at
least ∼ 1.6× lower than Path ORAM.

This benchmark shows that the asymptotic difference between Forest ORAM and Path ORAM
has a practical impact. The average latency as well as the 90th and 99.9th percentiles are smaller

25

0

10

20

30

4 6 8 10 12 14 16

0

100

200

300

400

10 15 20 25 30 35 40

A
ve

ra
ge

L
at

en
cy

(m
s)

Number of table blocks (base 2)

Workload A

A
ve

ra
g
e

L
a
te

n
cy

(m
s)

Number of results

Workload B

CODBS Baseline

Figure 11: Avg. latency of YCSB workloads. Workload A X-axis measures the numbers of blocks.
Workload B X-axis measures a query resulting records.

than Path ORAM. This difference is attributed to the partition framework which scales the number
of partitions and the tree height of each individual partition as the data set increases. In fact,
the number of partitions depends on parameter that can be adjusted to increase even further the
performance of Forest ORAM at the cost of additional client-side storage. The only unexpected
result is the 99.9th percentile maximum performance degradation of ∼ 120% when compared to
Path ORAM. However, this difference only occurs in the smallest data sizes and stabilizes in both
protocols at ∼ 40%.

7.4 Macro Benchmark

We now present the performance of a complete CODBS deployment and compare it to Baseline.
The Baseline solution uses a Path ORAM construction to store the database data and does not
divide the Table Index in multiple ORAM levels. Instead, the Table Index is stored in a single
ORAM and accessed as an oblivious data structure similar to the one used in Oblix and proposed
by Wang et. al [28, 37]. However, it still calculates the block addresses using a PRF to keep
both systems comparable. With this approach, the Baseline provides clear understanding on
the practical performance improvements of our cascade solution. Additionally, we also contrast
both solutions to a plaintext PostgreSQL database. The evaluation consists on measuring the
throughput and latency of increasingly larger database databases until a saturation point is reached
and the systems cannot provide a practical throughput (> 1 op/s).

Figure 11 presents the macro results. In workload A, the database size starts with 24 Table
Heap records and a Table Index with a single tree level (a total of 47 MiB) and is increased until
216 Table Heap blocks with a Table Index of two levels (a total 2.1 GiB). Across this range, CODBS
maintains an average latency below 10 ms which corresponds to 886 ops/s for the smallest data
set and 158 ops/s for the largest. The average maximum throughput of every run in Baseline

is 264 ops/s (smallest dataset) and the average latency surpasses CODBS at just 28 Table Heap
records. Its highest average latency is 25 ms, corresponding to a throughput of 40 ops/s, meaning
that CODBS has approximately a 4× speedup. There is a slight performance degradation of both
systems on the 99th percentile in the largest dataset. CODBS has a 30% latency increase with

26

0

0.2

0.4

0.6

0.8

1

CODBS Baseline

E
x
ec

u
ti

o
n

T
im

e
(%

)

T-File

T-Stash

I-File L1

I-Stash L1

I-File L2

I-Stash L2

PRF

Figure 12: Breakdown of time spent during query execution.

an average latency of 13.34 ± 1.74 ms and the Baseline has an increase of 17% with an average
latency of 29.33 ± 12.95 ms. In contrast to both solutions, a plaintext PostgreSQL has on average
∼ 7663 ops/s.

Workload B uses the dataset with 216 Table Heap records to measure the latency of range
scans, more specifically where clauses with a greater than operator. The number of resulting
records ranges from 10 to 40, with larger ranges becoming impractical. Similar to workload A, the
Baseline system has the highest average latency of 324 ms and a throughput of 3 ops/s. CODBS
has a ∼ 3× speedup with the lowest throughput of 10 ops/s and an average latency of 96 ms. The
plaintext PostgreSQL has the highest performance decrease of ∼ 26% on the largest dataset.

Figure 12 provides an analysis of the multiple query processing stages in both systems. It
breakdowns the execution between the database data structures, Table Index (I-File, I-Stash) and
the Table Heap (T-File, T-Stash) and PRF computation. Each structure is divided even further
by the time spent in the ORAM stash and external access to store (I-File, T-File). The CODBS
breakdown also accounts for the time spend at each index level (L2 and L1). The overhead of
block encryption is measured within the accesses to the external files. As depicted, CODBS spends
most of the time (60%) accessing the Table Heap, 8% accessing the first Table Index level and
28% accessing the second Table Index level and the remaining time calculating the PRFs. In
contrast, the Baseline spends more time accessing the external file and the system throughput is
dominated by the disk IO. This claim is further supported by Figure 13 which presents the average
write requests to the external storage grouped in intervals of 10 seconds. As can be observed, the
Baseline has a sustained rate 10 to 40 MiB writes per second while CODBS is constantly below
2 MiB/s.

7.5 Discussion

Across every benchmark and workload, CODBS displays an overall performance that exceeds that
of the baseline system. These speedups are the result of combining the cascade approach with the
Forest ORAM construction. This combination results in an asymptotic decrease of log (log (N))
bandwidth blowup compared to state-of-the-art oblivious data structures as shown in Section 7.3.
This seemingly small difference has a significant impact.

In the YCSB benchmark on workload A with a tree height of just two levels there is a 4×
speedup instead of just a 2.6× speedup as might otherwise be expected from the micro benchmarks.
This difference is the result of spending less time accessing the storage and a 95% lower number
of disk writes on average than the baseline. Regarding workload B the performance gains of
CODBS in comparison to the baseline are less significant. With just a 2× speedup, the main
bottleneck in this workload seems to be the size of the data exchanged in the oblivious query
stream. Across the different result set size, CODBS has on average a write rate of ∼ 1.3 MiB/s
and the baseline writes at most ∼ 347 KiB/s.

27

0.4
0.8
1.2
1.6

2
2.4

0

20

40

60

10 15 20 25 30 35 40

C
O

D
B

S

A
ve

ra
ge

D
is

k
W

ri
te

s
(M

iB
/
s)

B
as

el
in

e

Time (minutes)

Figure 13: Avg. disk writes over time on workload A on data set with 216 records. The light gray
represents the 95% CI.

8 Related Work

Position-based ORAMs. Position-based ORAMs were first proposed by Shi et al. [31] to
improve the lower bounds of classic constructions [16, 17]. The first solutions consisted of a
framework that stores data blocks in a binary tree. However, the framework requires an eviction
process that flushes the nodes down to their corresponding tree paths and has a bandwidth blowup
of O(log3N). Newer constructions based on this framework have mostly improved the eviction
process [15, 9, 36] to lower the bandwidth blowup. Currently, Path ORAM is the most efficient
tree-based solution with a blowup of O(2 · logN). A new class of algorithms surpass the ORAM
lower bound in the ”balls and bins” model by assuming computation on the server side. The
computation can be homomorphic encryption schemes that have a significant overhead [13, 26, 1]
or, as proposed in Burst ORAM [11] and Circuit ORAM [36], be a simple compression with an
XOR operator.

Oblivious Data Structures. Wang et al. [37] proposed the first work with general-purpose
oblivious data structures. One of the main contributions is a pointer-based technique that removes
the need for a recursive position map on Path ORAM. With this optimization, a search on an
oblivious search tree went from O(log2N) blowup to a O(logN) blowup. Our work lowers even
further the blowup of an oblivious search tree. Furthermore, our approach to store the position
map in the oblivious search tree is non-interactive which enables accessed node to be shuffled after
every accessed.

Volume leakage As stated by Grubbs et al. [18] and shown by novel research [24, 25, 19], hiding
the access patterns of a database is not enough. The volume leakage of database queries must
also be addressed. Kallaris et al. [24] was the first to create a formal model of encrypted database
that focus on volume leakage. New attacks have been proposed [18].

9 Conclusion

Our construction provides an efficient solution for secure database searches on tree-based indexes
and heap table accesses with minimal bandwidth blowup, with a detailed theoretical analysis on
the system security and experimental results pointing towards practical feasibility. We imple-
mented the proposed construction as well as a novel construction Forest ORAM and measured its
performance with industry-standard benchmarks. Comparatively to the state-of-the-art construc-
tions, our solution is 1.2× to 4× faster and only requires a small constant size storage that can be
deployed within an Intel SGX enclave.

28

Acknowledgements

This work is financed by National Funds through the FCT - Fundação para a Ciência e a Tec-
nologia (Portuguese Foundation for Science and Technology) within the project PTDC/CCI-
INF/31698/2017.

References

[1] Abraham, I., Fletcher, C. W., Nayak, K., Pinkas, B., and Ren, L. Asymptotically
Tight Bounds for Composing ORAM with PIR. In Public-Key Cryptography – PKC 2017,
S. Fehr, Ed.

[2] Almeida, J. B., Barbosa, M., Barthe, G., Dupressoir, F., and Emmi, M. Verifying
constant-time implementations. In 25th USENIX Security Symposium.

[3] Asharov, G., Komargodski, I., Lin, W., Nayak, K., and Shi, E. Optorama: Optimal
oblivious RAM. IACR Cryptology ePrint Archive 2018 (2018), 892.

[4] Barbosa, M., Portela, B., Scerri, G., and Warinschi, B. Foundations of hardware-
based attested computation and application to SGX. In IEEE European Symposium on
Security and Privacy, EuroS&P 2016, Saarbrücken, Germany, March 21-24, 2016 (2016),
IEEE, pp. 245–260.

[5] Bellare, M., and Rogaway, P. Introduction to modern cryptography. In UCSD CSE
207 Course Notes (2005), p. 207.

[6] Boneh, D., and Shoup, V. A graduate course in applied cryptography. p. 818.

[7] Bulck, J. V., Weichbrodt, N., Kapitza, R., Piessens, F., and Strackx, R. Telling
your secrets without page faults: Stealthy page table-based attacks on enclaved execution. In
26th USENIX Security Symposium.

[8] Cash, D., Grubbs, P., Perry, J., and Ristenpart, T. Leakage-abuse attacks against
searchable encryption. In Proceedings of the 22Nd ACM SIGSAC Conference on Computer
and Communications Security, CCS ’15.

[9] Chung, K., Liu, Z., and Pass, R. Statistically-secure ORAM with õ(log2 n) overhead. In
ASIACRYPT (2).

[10] Cooper, B. F., Silberstein, A., Tam, E., Ramakrishnan, R., and Sears, R. Bench-
marking cloud serving systems with ycsb. In Proceedings of the 1st ACM Symposium on
Cloud Computing.

[11] Dautrich, J., Stefanov, E., and Shi, E. Burst ORAM: Minimizing ORAM response
times for bursty access patterns. In 23rd USENIX Security Symposium (USENIX Security
14).

[12] Denis, F. The sodium cryptography library, Fev 2020.

[13] Devadas, S., van Dijk, M., Fletcher, C. W., Ren, L., Shi, E., and Wichs, D. Onion
oram: A constant bandwidth blowup oblivious ram. In Theory of Cryptography, E. Kushilevitz
and T. Malkin, Eds.

[14] Eskandarian, S., and Zaharia, M. Oblidb: Oblivious query processing for secure
databases. Proc. VLDB Endow. (2019).

[15] Gentry, C., Goldman, K. A., Halevi, S., Julta, C., Raykova, M., and Wichs,
D. Optimizing oram and using it efficiently for secure computation. In Privacy Enhancing
Technologies, Springer Berlin Heidelberg.

29

[16] Goldreich, O. Towards a theory of software protection and simulation by oblivious rams.
In Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing.

[17] Goldreich, O., and Ostrovsky, R. Software protection and simulation on oblivious
rams. J. ACM 43, 3 (May 1996), 431–473.

[18] Grubbs, P., Lacharite, M.-S., Minaud, B., and Paterson, K. G. Pump up the volume:
Practical database reconstruction from volume leakage on range queries. In Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications Security (2018), CCS
’18.

[19] Gui, Z., Johnson, O., and Warinschi, B. Encrypted databases: New volume attacks
against range queries. In Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security.

[20] Hellerstein, J. M., Naughton, J. F., and Pfeffer, A. Generalized search trees for
database systems. In Proceedings of the 21th International Conference on Very Large Data
Bases, VLDB ’95.

[21] Hoang, T., Ozmen, M. O., Jang, Y., and Yavuz, A. A. Hardware-supported ORAM in
effect: Practical oblivious search and update on very large dataset. PoPETs 2019, 1 (2019),
172–191.

[22] Islam, M. S., Kuzu, M., and Kantarcioglu, M. Access pattern disclosure on searchable
encryption: Ramification, attack and mitigation. In 19th Annual Network and Distributed
System Security Symposium, NDSS.

[23] Jain, R. The art of computer systems performance analysis - techniques for experimental
design, measurement, simulation, and modeling. Wiley professional computing. Wiley, 1991.

[24] Kellaris, G., Kollios, G., Nissim, K., and O’Neill, A. Generic attacks on secure
outsourced databases. In Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security (2016), ACM.

[25] Lacharité, M., Minaud, B., and Paterson, K. G. Improved reconstruction attacks on
encrypted data using range query leakage. In 2018 IEEE Symposium on Security and Privacy
(SP) (May 2018), pp. 297–314.

[26] Mayberry, T., Blass, E., and Chan, A. H. Efficient private file retrieval by combining
ORAM and PIR. In NDSS (2014), The Internet Society.

[27] McKeen, F., Alexandrovich, I., Anati, I., Caspi, D., Johnson, S., Leslie-Hurd,
R., and Rozas, C. Intel Software Guard Extensions (Intel SGX) Support for Dynamic
Memory Management Inside an Enclave. In Proceedings of the Hardware and Architectural
Support for Security and Privacy 2016.

[28] Mishra, P., Poddar, R., Chen, J., Chiesa, A., and Popa, R. A. Oblix: An efficient
oblivious search index. In 2018 IEEE Symposium on Security and Privacy (SP).

[29] Patel, S., Persiano, G., Raykova, M., and Yeo, K. Panorama: Oblivious ram with
logarithmic overhead. In 2018 IEEE 59th Annual Symposium on Foundations of Computer
Science (FOCS) (Oct 2018), pp. 871–882.

[30] Schuster, F., Costa, M., Fournet, C., Gkantsidis, C., Peinado, M., Mainar-Ruiz,
G., and Russinovich, M. Vc3: Trustworthy data analytics in the cloud using sgx. In 2015
IEEE Symposium on Security and Privacy.

[31] Shi, E., Chan, T. H. H., Stefanov, E., and Li, M. Oblivious RAM with O((logN)3)
Worst-Case Cost. In Advances in Cryptology – ASIACRYPT 2011.

30

[32] Stefanov, E., Dijk, M. V., Shi, E., Chan, T.-H. H., Fletcher, C., Ren, L., Yu, X.,
and Devadas, S. Path oram: An extremely simple oblivious ram protocol. J. ACM 65, 4
(Apr. 2018), 18:1–18:26.

[33] Stefanov, E., Papamanthou, C., and Shi, E. Practical dynamic searchable encryption
with small leakage. In 21st Annual Network and Distributed System Security Symposium,
NDSS 2014, California, USA (2014).

[34] Stefanov, E., and Shi, E. Oblivistore: High performance oblivious cloud storage. In 2013
IEEE Symposium on Security and Privacy.

[35] Stefanov, E., Shi, E., and Song, D. X. Towards practical oblivious ram. In NDSS
(2012), The Internet Society.

[36] Wang, X., Chan, H., and Shi, E. Circuit oram: On tightness of the goldreich-ostrovsky
lower bound. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Com-
munications Security.

[37] Wang, X. S., Nayak, K., Liu, C., Chan, T.-H. H., Shi, E., Stefanov, E., and
Huang, Y. Oblivious data structures. In Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security (NY, USA), CCS ’14, ACM.

[38] Xu, Y., Cui, W., and Peinado, M. Controlled-channel attacks: Deterministic side chan-
nels for untrusted operating systems. In 2015 IEEE Symposium on Security and Privacy
(May 2015), pp. 640–656.

[39] Zheng, W., Dave, A., Beekman, J. G., Popa, R. A., Gonzalez, J. E., and Stoica,
I. Opaque: An oblivious and encrypted distributed analytics platform. In 14th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 17).

31

	Introduction
	Problem Definition
	Database System Model
	Leakage Sources
	Trust Model
	Optimization Approach

	Definitions
	Oblivious Index Scan
	Oblivious RAM

	Oblivious Cascading Scans
	Oblivious Query Stream

	Forest ORAM
	Background Eviction
	Asymptotic Analysis

	Security Analysis
	Security Model
	Game-Based Proof

	Experimental Evaluation
	System Implementation
	Methodology
	Micro Benchmark
	Macro Benchmark
	Discussion

	Related Work
	Conclusion

