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Abstract

Digital signature is one of the most important public key cryptographic primitive for
message authentication. In a digital signature scheme, receiver of a message-signature
pair gets assurance about the fact that the message belongs to the sender and neither
receiver nor any third party can manipulate the message. In the current state of art,
most of the existing digital signatures’ security relies on classical cryptographic assumption
based hard problems, such as discrete log, integer factorization, etc. However, rapid
development of quantum computing creates a security threat to these classical digital
signature schemes. It indicates the recruitment of an alternative solution which can
prevent quantum attacks. We focus on this concern by implementing a post-quantum
secure isogeny based digital signature scheme without making use of SIDH and CSIDH.
Our scheme achieves uf-cma security under a hard problem in isogeny. The proposed
signature scheme incurs 256 byte public key size and 128 byte signature size to achieve
128-bit security level (NIST-1 level of security). In particular, the size of signature of
our design is smaller than all other IBC based signature schemes at the 128-bit security level.

Keywords: isogeny based cryptography; post-quantum cryptography; elliptic curve cryp-
tography; digital signature; Weil pairing.

1 Introduction

Digital Signature is widely used important cryptographic mechanism which is applied to au-
thenticate a message. It typically consists of three algorithms. First one is for generating public
key-secret key pair of the user. While, the second one is the signing algorithm and the third
one is the verification algorithm. The following properties should be required to design a valid
digital signature:

(i) Authentication - It certifies that message has been formed by a valid sender.

(ii) Integrity - This property makes sure that the message has not been altered during
transition.
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(iii) Non-repudiation - It ensures that the signer or source cannot deny the generation of
the signature on a message.

In most cryptographic protocol suites, there is a standard element like Digital signatures.
It is applicable in several practical real life scenarios, such as electronic mail, digital contracts,
electronic cash, electronic voting, sharing medical record, transmission of government/public
sectors’ secure data, etc. Some of them are discussed below.

Secure communication: Digital signature enables secure communication via email, sms,
etc.

Healthcare: Administrative body uses digital signature in treatment to share patients medical
record, digital prescription, hospital’s private data, etc., in an efficient and secure way.

Cryptocurrencies: In order to authenticate the holder of a bitcoin and manage transaction
data, digital signature is employed.

The notion of digital signature was first introduced by Diffie and Hellman [13] in 1976.
Later, Rivest et al. [25] established well known RSA digital signature which is used in
many software marketing packages. In the following, several classical digital signatures were
developed, such as ElGamal signature [16], Merkle Signature [22], etc. Security of these
classical signatures depends on hard problems of number-theory, such as “discrete logarithm
problem”, “integer factorization problem”. However, the continuous growth of quantum
technology makes a security threat to these problems. This is because, one may solve these
problems in polynomial time by running Shor’s algorithm [27] with the help of efficient
quantum computers. Thereby, classical digital signatures’ security is will be at risk, once
there will be availability of quantum computers at large scale. As a consequence, it becomes
essential to find some alternative that can prevent future quantum attacks. Post-quantum
digital signature is an ideal choice to resolve this issue. In the current state of art, there
exists several post-quantum digital signature schemes [4, 11, 12, 14, 15, 17, 19, 29, 30].
Among these, the isogeny based constructions attained tremendous attention in the recent
research community due to the following salient features of isogeny based cryptography (IBC):
smaller public key sizes and low communication cost. Security of IBC relies on some hard
problems related to the isogeny between two elliptic curves which are either ordinary ellip-
tic curves or supersingular elliptic curves. The concept of IBC was introduced by Couveignes [9].

In the last few decades, several works [2, 12, 23, 26] have been done in the context of
IBC. However, there are only few constructions of IBC based digital signatures. Galbraith et
al. [18] came up a signature scheme based on quaternios of l-isogeny problem. In the following,
the signature SeaSign was proposed by Feo et al. [11]. They employed CSIDH [8] as the
cryptographic building block. Beullens et al. [5] developed CSI-FIsh with the help of CSIDH
[8]. Recently, Feo et al. [12] presented a digital signature scheme SQISign by using quaternions
and isogeny.

1.1 Our contribution

The well known classical digital signatures, like RSA, ElGamal and elliptic curve digital sig-
nature algorithm (ECDSA) would suffer security flaws if sufficiently large quantum computers
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are invented. This is due to the existence of Shor’s algorithm. As a consequence, there would
be a security threat in the technologies which employ these classical digital signatures as the
underlying fundamental blocks. It indicates the necessity of quantum computer immune dig-
ital signatures, which belongs to post-quantum cryptography (PQC). IBC is one of the main
contestant of PQC. It is very attractive due to smaller public key sizes and low communication
cost.

In the literature, there are only a few isogeny based digital signatures [5, 11, 12, 18]. Thus
developing secure and more efficient isogeny based digital signature is an interesting direction
of research. In our work, we focus to design and analysis of a new signature scheme using IBC.
We are motivated by techniques of [3, 6] for the construction of our scheme. The proposed
signature does not make use of SIDH [20] and CSIDH [8]. We prove that our scheme attains
uf-cma security under the hardness expectation that computation of the image of a given point
under an unrevealed isogeny is a hard problem. In order to reach 128-bit security level (NIST-1
level of security), sizes of the public key and signature of our scheme turn out be 256 byte and
128 byte respectively. Particularly, signature size of our construction is smaller than that of
all other IBC based signature schemes at the 128-bit security level. It is practically feasible to
apply the proposed signature in several real life scenarios as mentioned above since it produces
a short signature with feasible size public key.

2 Preliminaries

2.1 Notations

Fq denotes a finite field of characteristic p for some prime p and Fq represnts the extension filed
of the filed Fq. #X stands for the cardinality of X.

Definition 2.1. Bilinear pairing [1, 21]: Let G1 and G2 be two additive groups of exponent
n with identity 0 and G3 be a cyclic group of order n with identity 1. A bilinear map e :
G1 ×G2 −→ G3 should attains the following properties:
a) For all X,X ′ ∈ G1 and Y, Y ′ ∈ G2, e(X + X ′, Y ) = e(X,Y )e(X ′, Y ) and e(X,Y + Y ′) =
e(X,Y )e(X,Y ′).
b) For all X ∈ G1 with X 6= 0, there exist Y ∈ G2 such that e(X,Y ) 6= 1.
c) e can be efficiently computed.

Definition 2.2. Divisor of a rational function [1, 21]: Let f be a rational function. Then
divisor of f is denoted by div(f) and defined as div(f) =< f >=

∑
P∈C ordP (f)(P ), where

ordP (f) is the number of zeroes or poles at P .

2.2 Elliptic curve and isogeny [10]

An elliptic curve over Fp is a sooth projective curve of genus 1 with atleast one Fp- rational
point. The short Weierstrass form of an elliptic curve E/Fp is defined as y2 = x3 + cx + d
with c, d ∈ Fp, 4c3 + 27d2 6= 0 and p 6= 2, 3, where θ = (0 : 1 : 0) is the point at infinity. The
collection of all Fp-rational points on an elliptic curve forms a group which is known as elliptic
curve group and it is denoted by E(Fp). Hasse’s theorem ensures that #E(Fp) = p+ 1−a with
|a| ≤ 2

√
p. The n-th torsion group for an elliptic curve E/Fp is denoted by E[n] and defined as

the collection of all points P in E(Fp) such that order of P divides n.
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Theorem 2.3. [28] For an elliptic curve E/Fq with char(Fq)=p,

E[ie] '

{
Z/ieZ⊕ Z/ieZ, if i 6= p

Z/ieZ or 0, if i = p

for each prime i and e ∈ Z.

One may conclude that E[p] is either isomorphic to Z/pZ or 0. If E[p] ' Z/pZ, E is called
an ordinary elliptic curve and otherwise, E is called supersingular.

A morphism is a rational map which is defined everywhere. It is either surjective or
constant on projective curves. Isogeny φ : E → E′ is a surjective morphism inducing a group
homomorphism from E(Fp) to E′(Fp) for two elliptic curves E and E′. In particular, an isogeny

φ : E → E′ can be written as φ(x, y) =
(
α(x)
β(x) ,

r(x)
s(x)y

)
, where α(x), β(x), r(x), s(x) ∈ Fp[x],

α(x) is perpendicular to β(x) and r(x) is perpendicular to s(x) in Fp[x]. Degree of φ is the

maximum of deg(p(x)) and deg(q(x)). If
(
α(x)
β(x)

)′
6= 0, φ is called a separable isogeny; otherwise,

φ is inseparable. Two elliptic curves E and E′ are called isomorphic if there exists isogenies
φ1 : E → E′ and φ2 : E′ → E such that their compositions are identity.

An endomorphism is a morphism on E that fixes a distinguished point. The collection of
all endomorphisms of E, along with the zero map, forms a ring, namely endomorphism ring of
E (End(E)) under the binary compositions “pointwise addition” and “mapping composition”.
The endomorphism defined over Fp is called Fp- rational endomorphsm and the set of such
endomorphisms is denoted by Endp(E). For any natural number m, multiplication by m map
of an elliptic curve E is denoted by [m] : E −→ E. It is an example of isogeny with kernel
E[m]. Given an n-degree isogeny φ : E → E′ over Fp there must exists an isogeny φ̂ : E′ → E

with φφ̂ = φ̂φ = [n]. φ̂ is known as the dual isogeny [24] of φ and it is unique.

2.3 Hardness assumption

We prove that our proposed signature scheme is secure under the following hardness assumption
which we call hidden isogeny (HI) problem in this literature.

Definition 2.4. (Hidden Isogeny (HI) Problem [23]) Given elliptic curves E,E′ and a
point P on E, it is hard to find the image of P under an unrevealed isogeny φ : E → E′.

2.4 Weil pairing [1, 6, 7]

Let E be an elliptic curve over some finite field Fq and n be an integer such that gcd(n, q) = 1
and n|#E(Fq). The smallest k ∈ Z+ with n|qk − 1 is called the embedding degree. Consider a
set µn = {y ∈ F∗p : yn = 1}. The field Fq(µn) represents finite extension Fqk of Fq and E(Fqk)[n]
is the set of points in E(Fqk) whose orders divide n. Let, X,Y ∈ E(Fqk)[n] and fX , fY be
rational functions on E such that div(fX) = n(X) − n(θ), div(fY ) = n(Y ) − n(θ). Then Weil

pairing en : E(Fqk)[n] × E(Fqk)[n] 7−→ µn is defined as en(X,Y ) = fX(Y+Z)
fX(Z) /fY (X−Z)

fY (−Z) , where

Z 6∈ {θ,X,−Y,X − Y } is a point in E(Fqk)[n].

Theorem 2.5. Weil pairing satisfies the following properties:
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(i) en(X,Y )n = 1.

(ii) For all X,Y, Z ∈ E(Fqk)[n], en(X + Y,Z) = en(X,Z)en(Y, Z) and en(Z,X + Y ) =
en(Z,X)en(Z, Y ).

(iii) en(X,X) = 1, for all X ∈ E(Fqk)[n].

(iv) en(X,Y ) = en(Y,X)−1, X,Y ∈ E(Fqk)[n].

(v) en(X,Y ) = 1 for all Y if and only if X = θ.

(vi) en(X,Y ) = 1 for all X if and only if Y = θ.

Let φ : E → E′ be an isogeny and φ̂ : E′ → E be its dual isogeny. Then following [3], one may
write en(φ(X), Y ) = en(X, φ̂(Y )), for all X ∈ E(Fqk)[n] and Y ∈ E′(Fqk)[n].

2.5 Digital signature scheme

A digital signature scheme involves three algorithms – Setup, Signature and Verification which
are given below.

(pk, sk) ← Setup(1λ) : On input security parameter λ, a signer generates public key-signing
key pair (pk, sk).

(σ) ← Signature(m, sk) : Given a message m and the signing key sk, the signer runs this
algorithm to generate a signature σ on m.

(1 or 0) ← Verification(m,σ, pk) : Given (m,σ) and pk, a verifier exicutes this algorithm and
check the validity of the pair (m,σ). He then outputs 1 if the pair is a valid one, otherwise
outputs 0.

2.6 Unforgeability under chosen-message attack (uf-cma) [11]

It is a game between a probabilistic polynomial time (PPT) adversary (A) and a challenger
(C) for a signature scheme sig = (Setup, Signature,Verification) follows from Section 2.5. The

experiment Exuf-cma
sig(1λ)

is structured as follows:

Setup: Utilizing this algorithm C generates public key-signing key pair (pk, sk) and forwards
pk to A.

Sign-query: In this phase, A makes query to C for signature of a message m. In the following,
C runs the algorithm Signature and returns a valid signature σ to A.

Forgery: In this phase, A outputs a forge signature σ′ for a message m′ which has not been
queried before in Sign-query phase. If The message-signature pair (m′, σ′) passes the
Verification algorithm then A wins the game.

The probability of success of A is denoted by Adv
Exuf-cma

sig(1λ)

A and defined by Adv
Exuf-cma

sig(1λ)

A =

Pr[Exuf-cma
sig(1λ)

= 1] = Pr[A wins the game].
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Definition 2.6. A signature scheme is said to have uf-cma security if Adv
Exuf-cma

sig(1λ)

A is negligible
for any probabilistic polynomial time adversary A who is allowed to make at most t (polynomial
time) Sign-query.

3 Proposed signature scheme

Parameters: Consider two primes p, q with p = 12q − 1 and a supersingular elliptic curve
E over Fp. Then #E(Fp) = p + 1 = 12q. Note that Char(Fp2) = p with q - p and k = 2
is the smallest positive integer such that q | pk − 1. As a consequence, 2 is the embedding
degree. Indeed, Fp(µq) = Fp2 , where µq = {y ∈ F∗p2 : yq = 1} is a cyclic group of order q. Here

gcd(p, q) = 1 and q | #E(Fp). Thereby, the Weil pairing eq : E(Fp2)[q] × E(Fp2)[q] 7−→ µq, as
discussed in Section 2.4, is well defined. Note that E(Fp)[q] ⊂ E(Fp2)[q].

A high level overview: The proposed signature scheme is designed based on the concept of .
It uses IBC in its construction to achieve post-quantum security. Our signature scheme involves
three algorithm: Setup, Signature and Verification. During Setup, a signer generates his public
key-signing key pair (pk, sk). In the following, the signer runs Signature to generate a signature
σ on a message m. The algorithm Verification is run by a verifier to verify the validity of the
pair (m,σ). Detail description of our scheme is provided below.

Protocol 1. Proposed signature

(pk, sk) ← Setup(1λ). The signer randomly chooses a secret isogeny φ from Endp(E). To generate
public key, he performs the following operations:

1. selects a random element x ∈ E(Fp2)[q] \ E(Fp)[q],

2. computes the dual isogeny φ̂,

3. determines φ̂(x),

4. if φ̂(x) ∈ E(Fp2)[q]\E(Fp)[q] then sets the signing key sk as φ and public key pk as (x, φ̂(x));
otherwise, starts from step 1.

(σ) ← Signature(m, sk). Given a message m ∈ 0, 1∗, the signer executes the following operations to
generate a valid signature on m using sk = φ:

1. randomly chooses k ∈ Z?q and y ∈ E(Fp)[q] and determines eq(y, x)k = r ∈ µ∗
q ,

2. evaluates H(m, r) = v ∈ E(Fp)[q], where H : {0, 1}∗×µq 7−→ E(Fp)[q] is a cryptographically
secure collision resistant hash function,

3. Computes u = φ(v) + [k]y ∈ E(Fp)[q],
4. outputs the signature as σ = (u, v).

(1 or 0)← Verification(m,σ, pk). The verifier checks the correctness of the message-signature pair (m,σ)
as follows:

1. evaluates r = eq(u, x)eq(v,−φ̂(x)).

2. if H(m, r) = v then the signature is valid and outputs 1, otherwise the signature is invalid
and outputs 0.
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Correctness: In order to show the correctness of our scheme, it is sufficient to prove that
r = r.

r = eq(u, x)eq(v,−φ̂(x))

= eq(φ(v) + [k]y, x)eq(v,−φ̂(x))

= eq(φ(v), x)eq([k]y, x)eq(v,−φ̂(x))

= eq([k]y, x)eq(φ(v), x)eq(φ(v),−x)

= eq([k]y, x)eq(φ(v), θ)

= eq([k]y, x)

= eq(y, x)k

= r

Remark 3.1. We know that γ, δ ∈ E(Fp2)[q], eq(γ, δ) = 1 if and only if one of γ and δ is a

multiple of other. In our scheme, the points v, u lie in E(Fp)[q] and x, φ̂(x) lie in E(Fp2)[q] \
E(Fp)[q]. As a consequence, neither one of x, u can be written as a multiple of other nor one

of φ̂(x), v can be written as a multiple of other. Thus we can conclude that eq(u, x) 6= 1 and

eq(v,−φ̂(x)) 6= 1.

4 Security

This section discusses the security of our proposed scheme.

Theorem 4.1. If finding the image of a given point under an unrevealed isogeny is hard i.e.,
if HI problem is hard then the proposed signature scheme is uf-cma secure.

Proof. Let there be a adversary A with non-negligible success probability in the uf-cma game.
Then we show that an oracle machine OMA can be designed in sauch a way that it will break
the computational problem of isogeny. Here we consider the hash function H as random oracle.
We present a series of games Ga0, Ga1, Ga2, where Gai slightly modifies Gai−1 for i = 1, 2. Let
the success probability of A in Gai is Pr[Gai].

Ga0: It is exactly same as uf-cma game for signature scheme. Here, Adv
Exuf-cma

sig(1λ)

A =

Pr[Exuf-cma
sig(1λ)

= 1] = Pr[Ga0].

Ga1: This game is analogues to Ga0 except that during the Sign-query, OMA replaces the
signature by randomly chosen u, v from E(Fp)[q] and restores v in the place of the hash (H)

query on (m, r) , where r = eq(u, x)eq(v,−φ̂(x)). If |Pr[Ga1] − Pr[Ga0]| is non-negligible,
then A will be able to distinguish the output distributions of random oracle H, which is
impossible. Hence, |Pr[Ga1]− Pr[Ga0]| is negligible, say ε1(λ).

Ga2: It is identical to Ga1 excepting OMA replaces a random element from E(Fp)[q] in the
place of the hash (H) query on (m∗, r∗). Using the similar concept as mentioned in Ga1,
we may write |Pr[Ga2]− Pr[Ga1]| is negligible, say ε2(λ).
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Now we have, |Pr[Ga2]−Adv
Exuf-cma

sig(1λ)

A |=|Pr[Ga2]−Pr[Ga0]| ≤ |Pr[Ga2]−Pr[Ga1]|+|Pr[Ga1]−
Pr[Ga0]|=ε1(λ) + ε2(λ)=ε(λ)(say).

Hence, A’s success probability Pr[Ga2] in Ga2 is same as Adv
Exuf-cma

sig(1λ)

A , which is assumed to be
non-negligible. Therefore, the oracle machineOMA can generate two valid transcripts (r, v1, u1),
(r, v2, u2) with the help of where A and controlling the outputs of the random oracle H, where
u1 = φ(v1) + [k]y, u2 = φ(v2) + [k]y, v1 = ρ ∈ E(Fp)[q] and v2 = θ. Then we have the following:

u1 − u2 = φ(v1 − v2) = φ(ρ− θ) = φ(ρ).

Hence, OMA extracts the value of φ(ρ) without knowing the isogeny φ, which is a contradiction

since the HI problem is hard. As a consequence, Pr[Ga2] is negligible which implies Adv
Exuf-cma

sig(1λ)

A
is negligible. Thus, our scheme has achived uf-cma security.

5 Efficiency

We talk about the computation and communication cost of our scheme in this segment. To
archive λ bit of security, we take p ≈ 22λ.

Computation cost: In Setup, after choosing secret isogeny φ from Endp(E), we compute its
dual isogeny and find image of a random element x ∈ E(Fp2)[q]\E(Fp)[q] under φ. To sign
a message, we need to compute one Weil pairing, one exponentiation, one hash evaluation
and image of a point on E(Fp) under an isogeny φ. During Verification, two Weil pairing
and one hash function evaluation are required.

Communication cost: The public key consists of two points in E(Fp2) and the signature
consists of two points in E(Fp). Thus the public key size and the signature size are
8dlog2(p)e and 4dlog2(p)e respectively. A comparative summary of our proposed signature
with the existing IBC based signature schemes is presented in table 1 for 128-bit security
level, where B stands for byte. Note that the signature size of our scheme is optimal.

Table 1 Comparison of communication costs to archive 128-bits security level.

Schemes Public key size Signature size

Sea Sign(Rejection sampling) 64B 20144B

Sea Sign(Shorter signature) 4096KiB 978B

Sea Sign(Smaller public key) 32B 3136B

Chi-Fish 512B 956B

SQISign 64B 204B

Signature based on Endomorphism ring 96B 11264B

Our scheme 256B 128B
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6 Conclusion

In this paper, we utilized the concepts of [3, 6] to design an isogeny based signature scheme
that belongs to PQC. Our scheme depends on the fact that the computation of the image of a
given point under an isogeny is believed to be a hard problem if the isogeny is kept secret. The
proposed scheme attains uf-cma security in random oracle model. Our scheme incur optimal
signature size in the context of post-quantum signatures. The public key size of our construction
is comparable with the existing IBC based signatures. It would be an interesting direction of
future work to reduce the public key size of our scheme.

7 Declarations
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