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Necessary and Sufficient Conditions for Galois

NFSRs Equivalent to Fibonacci Ones and Their

Application to the Stream Cipher Trivium
Jianghua Zhong, Yingyin Pan, Wenhui Kong, and Dongdai Lin

Abstract

Many recent stream ciphers use Galois NFSRs as their main building blocks, such as the hardware-

oriented finalists Grain and Trivium in the eSTREAM project. Previous work has found some types of

Galois NFSRs equivalent to Fibonacci ones, including that used in Grain. Based on the observability of

an NFSR on [0, N − 1], which means any two initial states of an NFSR are distinguishable from their

corresponding output sequences of length N , the paper first presents two easily verifiable necessary and

sufficient conditions for Galois NFSRs equivalent to Fibonacci ones. It then validates both conditions

by the Galois NFSRs previously found (not) equivalent to Fibonacci ones. As an application, the paper

finally reveals that the 288-stage Galois NFSR used in Trivium is neither equivalent to a 288-stage

Fibonacci NFSR, nor observable on [0, 287], theoretically verifying Trivium’s good design criteria of

confusion and diffusion.

Index Terms
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I. INTRODUCTION

Nonlinear feedback shift registers (NFSRs) are generally implemented in Fibonacci or Galois config-

uration. The NFSRs in Fibonacci configuration are called Fibonacci NFSRs, in which the feedback is
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only applied to the last bit. The NFSRs in Galois configuration are called Galois NFSRs, in which the

feedback can be applied to every bit. Compared to Fibonacci NFSRs, Galois NFSRs may reduce the

depth of circuits implementing their feedback functions, and therefore may improve the throughput [1].

Many recently designed stream ciphers use Galois NFSRs as their main building blocks, such as the

hardware-oriented finalists Grain [2] and Trivium [3] in the European eSTREAM project. Grain uses

as its main building block a 160-stage Galois NFSR formed by a cascade connection of two Fibonacci

NFSRs, while Trivium uses as its main building block a 288-stage Galois NFSR formed by three pairwise

controlled Fibonacci NFSRs.

Two NFSRs are said to be equivalent if their sets of output sequences are equal [1]. Studying the

equivalence of NFSRs is helpful to select preferable NFSRs according to requirement criteria, such as

low cost of hardware implementation, good hardware performance, and high security level. Some work has

been done on the equivalence of NFSRs. First, for the equivalence between Galois NFSRs, a Galois NFSR

in which the i-th bit feedback function satisfies fi(X1, X2, . . . , Xn) = X(i+1) mod n ⊕ gi(X1, . . . , Xi,

Xi+2, . . . , Xn) was found equivalent to a class of Galois NFSRs [4]. Second, for the equivalence between

Galois and Fibonacci NFSRs, the Galois NFSRs in which the same feedback output can be added to every

bit were found equivalent to Fibonacci NFSRs [5]. Cascade connections of two Fibonacci NFSRs were

shown equivalent to Fibonacci ones as well [6]. Dubrova disclosed “uniform” Galois NFSRs equivalent

to Fibonacci ones [1], and matched their initial states [7]. Recently, “lower triangular” Galois NFSRs

[8], nonsingular triangulation-I and triangulation-II Galois NFSRs [9] were also found equivalent to

Fibonacci ones. Those are actually some sufficient conditions for Galois NFSRs equivalent to Fibonacci

ones. Third, some necessary conditions were provided for Galois NFSRs equivalent to Fibonacci ones

from the perspectives of their stage number and feedback functions [10]. It was disclosed therein that

if a Galois NFSR is equivalent to a Fibonacci NFSR, then its stage number is no less than that of the

Fibonacci NFSR. In addition, some properties of cascade connections of two Fibonacci NFSRs were

revealed from the viewpoint of feedback functions in [11].

An NFSR has the same mathematical model as a Boolean network that evolves as a finite automaton

through Boolean functions. As the literature [12]–[15], we apply some concepts and results (especially,

those of observability) on Boolean network in the community of systems and control [16] to analyze the

cryptographical properties of NFSRs. An NFSR is said to be observable on [0, N − 1] if any two initial

states of the NFSR can be distinguishable from their corresponding output sequences of length N . Based

on the observability of an NFSR on [0, N − 1], this paper first presents two easily verifiable necessary

and sufficient conditions for Galois NFSRs equivalent to Fibonacci ones. It then uses the Galois NFSRs
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found (not) equivalent to Fibonacci ones in previous work to validate those conditions. Finally, as an

application of those theoretical results, the paper reveals that the 288-stage Galois NFSRs used in the

stream cipher Trivium is neither equivalent to a 288-stage Fibonacci NFSR, nor observable on [0, 287],

theoretically verifying Trivium’s good design criteria of confusion and diffusion.

The remainder of this paper is organized as follows. Section II gives some preliminaries, followed by a

brief review of related work on equivalence between Galois and Fibonacci NFSR in Section III. Section

IV presents our main results. The paper concludes in Section V.

II. PRELIMINARIES

In this section, we first review some concepts on Boolean functions and matrix products, followed

by the representation and observability of Boolean networks. Finally, we recall some related concepts

and results on the Galois and Fibonacci NFSRs. Before that, we first introduce some notations used

throughout the paper.

Notations: F2 denotes the binary field, and Fn2 is an n-dimensional vector space over F2. N represents

the set of nonnegative integers. Let In be the identity matrix of dimension n, and δin be the i-th column

of the matrix In with i ∈ {1, 2, . . . , n}, and ∆n be the set of all columns of the matrix In. Denote by

Ln×m the set of n×m matrices, whose columns belong to ∆n. If L ∈ Ln×m, then L = [δi1n δi2n · · · δimn ].

For simplicity, we write L in a compact form, as L = δn[i1 i2 · · · im]. Colj(A) stands for the j-th

column of a matrix A. ⊗ and n are, respectively, the Kronecker product and semi-tensor product. +, −

and × are the ordinary addition, subtraction and multiplication in the real field, while ⊕ and � are the

addition and multiplication over F2, respectively.

A. Boolean Function

An n-variable Boolean function f is a mapping from Fn2 to F2. Let i be the decimal number corre-

sponding to the binary (i1, i2, . . . , in) via the mapping i = i12
n−1 + i22

n−2 + · · · + in. Then i ranges

from 0 to 2n − 1. For the simplicity, we denote f(i) = f(i1, i2, . . . , in). The matrix

F =

 f(2n − 1) f(2n − 2) · · · f(0)

1− f(2n − 1) 1− f(2n − 2) · · · 1− f(0)

 ,
is called the structure matrix of f [16], [17]. f = [f1 f2 . . . fn]T is a vectorial function if fis are

Boolean functions for all i = 1, 2, . . . , n.
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B. Matrix Product

In this subsection, we review the Kronecker product and semi-tensor product. Both matrix products

work for any two matrices.

Definition 2.1 ( [18]): Let A = (aij) and B be matrices of dimensions n×m and p×q, respectively.

The Kronecker product of A and B, is defined as an np×mq matrix, given by

A⊗B =


a11B a12B · · · a1mB

a21B a22B · · · a2mB
...

...
...

an1B an2B · · · anmB

 .

Definition 2.2 ( [19]): For an n × m matrix A and a p × q matrix B, let α be the least common

multiple of m and p. The (left) semi-tensor product of A and B is defined as an nα
m ×

qα
p matrix, given

by

AnB = (A⊗ I α
m

)(B ⊗ Iα
p
).

Clearly, in Definition 2.2 if m = p, then the semi-tensor product AnB is reduced to the conventional

matrix product AB. In fact, the semi-tensor product is a generalization of the conventional matrix product,

but it preserves all major properties of the conventional matrix product, such as the associative law and

the distributive law [19].

C. Representation of Boolean Networks

A Boolean network can be mathematically modeled by a set of difference equations, called a system,

via a vectorial function, revealing the relation of its states at time instants t and t+ 1. If each component

of the vectorial function is a linear Boolean function, then such a system is called a linear system.

Otherwise, it is called a nonlinear system. In general, a Boolean network with n nodes can be described

by the following nonlinear system:

X(t+ 1) = f(X(t)),

Y(t) = h(X(t)), t ∈ N,
(1)

where X = [X1 X2 . . . Xn]T ∈ Fn2 is the state, and Y = [Y1 Y2 . . . Ym]T ∈ Fm2 is the output, the

vectorial functions f and h are state transition function and output function, respectively.

Lemma 2.3 ( [16]): Let x = [X1 X1 ⊕ 1]T n [X2 X2 ⊕ 1]T n · · ·n [Xn Xn ⊕ 1]T with Xi ∈ F2,

i = 1, 2, . . . , n. Then x ∈ ∆2n . Moreover, the state X = [X1 X2 · · · Xn]T ∈ Fn2 and the state

x = δj2n ∈ ∆2n with j = 2n − (2n−1X1 + 2n−2X2 + · · ·+Xn) are one-to-one correspondent.
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Boolean network (1) can be equivalently expressed as the linear system [16]:

x(t+ 1) = Lx(t),

y(t) = Hx(t), t ∈ N,
(2)

where the state x ∈ ∆2n and the output y ∈ ∆2m , the state transition matrix L ∈ L2n×2n , and the output

coefficient matrix H ∈ L2m×2n . The j-th column of L satisfies

Colj(L) = Colj(F1)⊗ Colj(F2)⊗ · · · ⊗ Colj(Fn), j = 1, 2, . . . , 2n+m, (3)

with the structure matrix Fi of the i-th component fi of the vectorial function f in (1) for any i ∈

{1, 2, . . . , n}. The j-th column of H can be computed in a similar way.

D. Observability of Boolean Networks

Definition 2.4 ( [20]): Two initial states X1 and X2 of Boolean network (1) are said to be indistin-

guishable, if the outputs of the Boolean network starting from the two initial states coincide at every

time instant. Otherwise, the two initial states X1 and X2 are said to be distinguishable. Boolean network

(1) is said to be observable if every two distinct initial states are distinguishable.

The observability of a Boolean network means any two distinct initial states are distinguishable from

their corresponding output sequences, or equivalently, the initial state of the Boolean network can be

uniquely determined by its output sequence. An NFSR has the same mathematical model as a Boolean

network and therefore, it can be viewed as a Boolean network. Reference [21] gave the definition of

observability of a feedback shift register from the viewpoint of systems theory, which is in essence the

same as the observability definition for a Boolean network. To emphasis the length of an output sequence

required to uniquely determine the initial state of a Boolean network, a further definition was given below.

Definition 2.5 ( [22]): Two initial states X1 and X2 of Boolean network (1) are said to be distinguish-

able on [0, N − 1] if the outputs starting from the two initial states do not coincide at the time instant

t = N − 1. Boolean network (1) is said to be observable on [0, N − 1] if any two distinct initial states

are distinguishable on [0, N − 1]

Definition 2.6 ( [20], [22]): The observability matrix of Boolean network (1) on [0, N − 1] is defined

as

ON = [HT (HL)T · · · (HLN−1)T ]T . (4)

Lemma 2.7 ( [22], [23]): Boolean network (1) is observable on [0, N − 1] if and only if the observ-

ability matrix ON has 2n distinct columns.
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Notably, a Boolean network observable on [0, N −1] means that the initial state of a Boolean network

can be uniquely determined by an output sequence of length N .

E. Galois and Fibonacci NFSRs

Fig. 1(a) gives the diagram of an n-stage Galois NFSR, in which each small square represents a binary

storage device, also called bit. Each i-th bit has a feedback function fi. All these feedback functions

f1, f2, . . . , fn form the feedback f = [f1 f2 . . . fn]T of the Galois NFSR. At each periodic interval

determined by a master clock, the content of each bit is updated by the value of its feedback function

taking at the previous contents of all bits. The n-stage Galois NFSR can be described as the following

nonlinear system:



X1(t+ 1) = f1(X1, X2, . . . , Xn),

X2(t+ 1) = f2(X1, X2, . . . , Xn),

...

Xn(t+ 1) = fn(X1, X2, . . . , Xn),

(5)

where t ∈ N represents time instant.
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(a) An n-stage Galois NFSR.
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(b) An n-stage Fibonacci NFSR.

Fig. 1: Galois and Fibonacci NFSRs.

In particular, if there are only shifts between neighbouring bits for the first n−1 bits, i.e., fi(X1, X2, . . . , Xn) =

Xi+1 for all i = 1, 2, . . . , n−1, then the n-stage Galois NFSR is reduced to an n-stage Fibonacci NFSR.

Fig. 1(b) shows the diagram of an n-stage Fibonacci NFSR, in which the Boolean function f is called the

feedback function of the Fibonacci NFSR. A Fibonacci NFSR is nonsingular if and only if its feedback
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function f is nonsingular, that is, f(X1, X2, . . . , Xn) = X1 ⊕ f̃(X1, X2, . . . , Xn) [24]. In the sequel, if

there is no special clarification, then an NFSR means it can be a Galois or Fibonacci NFSR.

The state diagram of an n-stage NFSR is a directed graph consisting of 2n nodes and 2n edges, in

which each node represents a state of the NFSR, and each edge represents a transition between states.

An edge from a state X to a state Y means that X is updated to Y.

Let G = (V,A) and Ḡ = (V̄ , Ā) be the state diagrams of two n-stage NFSRs, where V and V̄ are

their sets of states, while A and Ā are their sets of edges. G and Ḡ are said to be isomorphic if there

exists a bijection mapping ϕ : V → V̄ such that for any edge E ∈ A from state X to state Y, there

exists an edge Ē ∈ Ā from ϕ(X) to ϕ(Y).

Lemma 2.8 ( [25]): If an n-stage Fibonacci NFSR and an n-stage Galois NFSR are equivalent, then

their state diagrams are isomorphic.

Lemma 2.9 ( [10]): An n-stage Galois NFSR represented by System X(t + 1) = f(X(t)) with state

X ∈ Fn2 is equivalent to an n-stage Fibonacci NFSR represented by System Y(t + 1) = h(Y(t)) with

state Y ∈ Fn2 , if and only if there exists a bijective mapping ϕ : X 7→ Y such that ϕ(f(X)) = h(ϕ(X))

and [1 0 · · · 0]ϕ(X) = [1 0 · · · 0]X for all X ∈ Fn2 .

III. RELATED WORK

In this section, we review all types of Galois NFSRs previously found equivalent to Fibonacci ones.

Lemma 3.1 ( [5]): If an n-stage Galois NFSR with feedback f = [f1 f2 . . . fn]T satisfiesfi = Xi+1 ⊕ cig(X1, X2, . . . , Xn), i = 1, 2, . . . , n− 1,

fn = g(X1, X2, . . . , Xn),

(6)

where ci ∈ {0, 1} and g is a Boolean function, then there exists a linear transformation Q : X =

[X1 X2 . . . Xn]T → Y = [Y1 Y2 . . . Yn]T such that the Galois NFSR is transformed to an n-stage

Fibonacci NFSR, where X and Y are the states of the Galois NFSR and its equivalent Fibonacci NFSR,

respectively, and Q satisfies

Q =


1 q1 q2 · · · qn−1

0 1 q1 · · · qn−2

. . .

0 0 0 · · · 1

 . (7)
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Notably, a Galois NFSR is uniquely determined by its feedback, which updates the state of the Galois

NFSR. Then, we can easily see that Equation (6) impliesXi(t+ 1) = Xi+1(t)⊕ cig(X1(t), X2(t), . . . , Xn(t)), i = 1, 2, . . . , n− 1,

Xn(t+ 1) = g(X1(t), X2(t), . . . , Xn(t)), t ∈ N,
(8)

which is actually a nonlinear system representation of the Galois NFSR. Moreover, without special

clarification, we always regard an NFSR using the content of the first bit as its output. However, from

Equation (7), we can easily see that the Galois NFSR in Lemma 3.1, which uses the content of the last

bit as its output, is equivalent to a Fibonacci NFSR that also uses the content of the last bit as its output.

Lemma 3.2: If an n-stage Galois NFSR with feedback f = [f1 f2 . . . fn]T satisfies one of the

following conditions:

1) Cascade connection [6]: 
fi = Xi+1, i 6= m,n with m < n,

fm = Xm+1 ⊕ gm(X1, X2, . . . , Xm),

fn = gn(Xm+1, Xm+2, . . . , Xn),

(9)

2) Uniform Galois NFSR [1]:fi = Xi+1, i = 1, 2, . . . , τ,

fi = Xi+1 mod n ⊕ gi(X1, X2, . . . , Xτ+1), i = τ + 1, τ + 2, . . . , n,

3) Lower triangular Galois NFSR [8]:fi = Xi+1 ⊕ gi(X1, X2, . . . , Xi), i = 1, 2, . . . , n− 1,

fn = gn(X1, X2, . . . , Xτ+1),

4) Nonsingular triangulation-I Galois NFSR [9]:f1 = Xn ⊕ g1(X1, X2, . . . , Xn−1),

fi = Xi−1 ⊕ gi(X1, X2, . . . , Xi−1, f1), i = 2, 3, . . . , n,

5) Nonsingular triangulation-II Galois NFSR [9]:fi = Xi+1 ⊕ gi(X1, X2, . . . , Xi), i = 1, 2, . . . , n− 1,

fn = X1 ⊕ gn(f1, f2, . . . , fn−1),

where gis are Boolean functions, then the n-stage Galois NFSR is equivalent to an n-stage Fibonacci

NFSR.
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Among the six types of Galois NFSRs equivalent to Fibonacci ones, listed in Lemmas 3.1 and 3.2,

we can easily see that the types of cascade connection and uniform Galois NFSRs are two particular

types of lower triangular Galois NFSRs. Reference [9] showed a nonsingular triangulation-I Galois

NFSR π-equivalent to the Galois with feedback in Equation (6) if it is nonsingular, while a nonsingular

triangulation-II Galois NFSR π-equivalent to a nonsingular uniform Galois NFSR.

IV. MAIN RESULTS

In this section, we give some necessary and sufficient conditions for Galois NFSRs equivalent to

Fibonacci ones, followed by their validations via the Galois NFSRs found equivalent or not equivalent to

Fibonacci ones in previous work. Finally, we apply those theoretical results to the stream cipher Trivium.

A. Necessary and Sufficient Conditions

If the initial state of a Fibonacci NFSR is given, then the output sequence is uniquely determined.

Notably, whether a Galois NFSR is equivalent to a Fibonacci NFSR depends on their sets of output

sequences are equal. Among the previous work on Galois NFSRs found equivalent to Fibonacci ones [1],

[5], [6], [8], [9], each equivalent Fibonacci NFSR used the content of the first bit as its output, except

that in [5] using the content of the last bit as its output. Actually, if a Fibonacci NFSR uses different

bit’s content as its output, then its set of output sequences may be different, which can be shown by the

following result.

Proposition 4.1: Let Ωi(f) be the set of output sequences of the i-th bit of an n-stage Fibonacci NFSR

with i ∈ {1, 2, . . . , n}. Then Ω1(f) ⊇ Ω2(f) ⊇ · · · ⊇ Ωn(f); moreover, the equality holds if and only if

the Fibonacci NFSR is nonsingular.

Proof: Let Xi(t) be the content of the i-th bit at time instant t with i ∈ {1, 2, . . . , n} and t ∈

N. Thus, (Xi(t))t≥0 be an output sequence of the i-th bit of the Fibonacci NFSR, and Ωi(f) =

{(Xi(t))t≥0|[Xi(0) Xi(1) · · · Xi(n−1)]T ∈ Fn2}. Notably, for the Fibonacci NFSR, we have Xi(t+1) =

Xi+1(t) for all i = 1, 2, . . . , n− 1 and for all t ∈ N. Hence, we can easily observe that

Ωi(f) = Ωi+1(f)
⋃
{Si}, i = 1, 2, . . . , n− 1, (10)

where Si is the output sequence resulted from the initial state [Xi(0) Xi(1) · · · Xi(n−1)]T . Therefore,

we have Ω1(f) ⊇ Ω2(f) ⊇ · · · ⊇ Ωn(f). The left is to prove that, the equality holds if and only if the

Fibonacci NFSR is nonsingular.

If the Fibonacci is nonsingular, then according to the definition of Si, we can infer that the output

sequences Sis are periodic for all i = 1, 2, . . . , n − 1; moreover, they have the same period P . Thus,
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Xi(t) = Xi(t + P ) = Xi+1(t + P − 1) for all i = 1, 2, . . . , n − 1 and for all t ∈ N. Thereby, for

any i ∈ {1, 2, . . . , n− 1}, the output sequence Si can also be resulted from the initial state [Xi+1(P −

1) Xi+1(P ) · · · Xi+1(P +n−2)]T , which implies Si ∈ Ωi+1(f). Taking into consideration Equation

(10), we have Ωi(f) = Ωi+1(f) for all i = 1, 2, . . . , n− 1.

Conversely, assume Ωi(f) = Ωi+1(f) for all i = 1, 2, . . . , n−1. Then from Equation (10), we have Si ∈

Gi+1(f). According to the foregoing definition of Si for any ∈ {1, 2, . . . , n−1}, we know Si ∈ Gi(f). On

one hand, Si ∈ Gi(f) implies that Si is resulted from the initial state [Xi(0) Xi(1) · · · Xi(n− 1)]T .

On the other hand, Si ∈ Gi+1(f) implies that there exists an initial state [Xi+1(t1 − 1) Xi+1(t1)

· · · Xi+1(t1 +n− 2)]T with some positive integer t1, such that the resulting sequence is Si. Note that

Xi(t+ 1) = Xi+1(t) for all i = 1, 2, . . . , n− 1 and for all t ∈ N. Then, the initial state

[Xi+1(t1 − 1) Xi+1(t1) · · · Xi+1(t1 + n− 2)]T = [Xi(t1) Xi(t1) · · · Xi(t1 + n− 1)]T

for all i = 1, 2, . . . , n−1. Thereby, we can deduce that the initial states [Xi(t1) Xi(t1+1) · · · Xi(t1+

n − 1)]T and [Xi(0) Xi(1) · · · Xi(n − 1]T result in the same output sequence Si for any i ∈

{1, 2, . . . , n−1}. Hence, the output sequences Si is periodic, and has period t1. Note that the initial state

[Xi(0) Xi(1) · · · Xi(n − 1)]T can be arbitrarily selected over Fn2 . Then the output sequence Si is

arbitrary. Thus, we can deduce that all output sequences of the Fibonacci NFSR are periodic. Therefore,

the Fibonacci NFSR is nonsingular. 2

Corollary 4.2: Let Ωi(f) be the set of output sequences of the i-th bit of an n-stage Fibonacci NFSR

with i ∈ {1, 2, . . . , n}. Then the cardinality of Ωi(f)s satisfies 2n = |Ω1(f)| ≥ |Ω2(f)| ≥ · · · ≥

|Ωn(f)| ≥ 1; moreover, if the feedback of the Fibonacci NFSR is nonsingular, then |Ω1(f)| = |Ω2(f)| =

· · · = |Ωn(f)| = 2n.

In the sequel, for an n-stage Fibonacci NFSR, we always assume that the (i+1)-th bit shifts its content

to the i-th bit for all i = 1, 2, . . . , n− 1. Moreover, if there is no special clarification,we always assume

an NFSR uses the content of the lowest bit as its output.

Let (si)i≥1 be an output sequences of an n-stage NFSR. Then (si+1, si+2, ..., si+n) for any i ∈ N is

said to be an n-tuple of the sequence (si)i≥1. The output sequences of an n-stage Galois NFSR may not

contain all n-tuples. We take a simple example below to illustrate.
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Example 4.3: Consider a 3-stage Galois NFSR with feedback f = [f1 f2 f3]
T satisfying

f1 = X1X3 ⊕X2 ⊕X3,

f2 = X1X2 ⊕X2X3 ⊕X2 ⊕X3,

f3 = X2X3 ⊕X1 ⊕X2.

Fig. 2 describes its state diagram. We can easily observe that the Galois NFSR can produce an output se-

quence 1001 of period 4, an output sequence 110 of period 3, and an output sequence 0 of period 1. Clear-

ly, the output sequences of the Galois NFSR contain seven 3-tuples: (1, 0, 0), (0, 0, 1), (0, 1, 1), (1, 1, 0),

(1, 0, 1), (0, 1, 1), (0, 0, 0), but do not contain the 3-tuple (1, 1, 1).

101 011 100 000110

001

111 010

1

Fig. 2: The state diagram of a 3-stage Galois NFSR.

Proposition 4.4: An n-stage Galois NFSR is equivalent to an m-stage Fibonacci NFSR if and only if

the output sequences of the Galois NFSR contain all m-tuples with m ≤ n, and every m-tuple appears

once.

Proof: Sufficiency. Let (si)i≥1 be an output sequence of the n-stage Galois NFSR. Thus, (si)i≥1 is an

ultimately periodic sequence. Let k and T , respectively, be preperiod and period of the (si)i≥1, that is,

si+T = si for any positive integer i ≥ k.

The Galois NFSR is equivalent to a Fibonacci NFSR if and only if their sets of output sequences are

equal. Let f be the feedback function of an m-stage Fibonacci NFSR. By the output sequence (si)i≥1 of

the Galois NFSR, we can determine the value of the feedback function f at the state [si+1 si+2 · · · si+n]T

for all i = 0, 1, . . . , k + T − 1, precisely, f(si+1, si+2, . . . , si+m) = si+m+1. The output sequences of

the n-stage Galois NFSR contain all m-tuples with m ≤ n is equivalent to that, those output sequences

totally contain 2m possible state over Fm2 . Note that every m-tuples appears once. Thus, keeping the

above reasoning, we can determine the values of f at 2m possible states over Fm2 , and simultaneously

preserve all these output sequences. Therefore, the feedback function f is determined and thus, the m-

stage Fibonacci is determined; moreover, the Fibonacci NFSR and the Galois NFSR have the same set

of output sequences.
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Necessity. If an n-stage Galois NFSR can be equivalent to an m-stage Fibonacci NFSR, then the Galois

NFSR and the Fibonacci NFSR has the same set of output sequences, and therefore they have the same

number of output sequences. Since an m-stage Fibonacci NFSR has 2m output sequences, so has the

n-stage Galois NFSR. Different initial states of a Galois NFSR may result in the same output sequence.

Thereby, the number of the output sequences of an n-stage Galois NFSR is no greater than 2n, which

implies 2m ≤ 2n. Thus, we have m ≤ n. The m-stage Fibonacci NFSR has 2m possible states, contained

in its output sequences, and each state appears once. As the Galois NFSR and the Fibonacci NFSR have

the same set of output sequences, the output sequences of the Galois NFSR contain 2m possible states

over Fm2 as well, i.e., contain all m-tuples, and every m-tuple appears once. 2

Corollary 4.5: An n-stage Galois NFSR can be equivalent to an n-stage Fibonacci NFSR if and only

if the output sequences of the Galois NFSR contain all n-tuples.

Proof: Necessity. The result directly follows from the necessity of Proposition 4.4.

Sufficiency. An n-stage Galois NFSR has totally 2n possible states and thereby, its output sequences

at most contain 2n possible n-tuples. If the output sequences of an n-stage Galois NFSR contain all

n-tuples, then every n-tuple must appear once. Thus, according to the sufficiency of Proposition 4.4, the

result holds. 2.

Lemma 4.6: The output sequences of an n-stage Galois NFSR contain all n-tuples if and only if the

n-stage Galois NFSR is observable on [0, n− 1].

Proof: Sufficiency. View the Galois NFSR as a Boolean network. Thus, the Galois NFSR can be repre-

sented by a linear system: x(t+ 1) = Lx(t),

y(t) = Hx(t), t ∈ N,

where x(t) ∈ ∆2n is the state, y ∈ ∆2 is the output, L ∈ L2n×2n is the state transition matrix, and

H ∈ L2×2n is the output coefficient matrix. Hence, we have
y(t)

y(t+ 1)
...

y(t+ n− 1)

 = Onx(t), t ∈ N, (11)
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where On = [HT (HL)T . . . (HLn−1)T ]T is the observability matrix. We arbitrarily take x(t) = δi2n

for some initial instant time instant t ∈ N and any i ∈ {1, 2, . . . , 2n}, then Equation (11) becomes
y(t)

y(t+ 1)
...

y(t+ n− 1)

 = Coli(On). (12)

If the Boolean network is observable on [0, n − 1], then the observability matrix On has 2n distinct

columns, which implies Coli(On)s in (12) are pairwise distinct for all i = 1, 2, . . . , 2n. Therefore, from

Equation (12), we can infer that the output sequences of the Galois NFSR contain all n-tuples.

Necessity. If the output sequences of the n-stage Galois NFSR contain all n-tuples, then according to

Corollary 4.5, the n-stage Galois NFSR is equivalent to an n-stage Fibonacci NFSR. Hence, according

to Lemma 2.9, there exists a bijective mapping ϕ from the states of the Fibonacci NFSR to the states

of the Galois NFSR, such that their edges in their state diagrams are one-to-one correspondent. It is

known that for any initial state X0 of the Fibonacci NFSR, there is an output sequence of length n such

that it can uniquely determine the initial state X0 and therefore, can uniquely determine the initial state

Y0 = ϕ(X0) of the Galois NFSR. Since X0 is arbitrary, so is Y0. Hence, the n-stage Galois NFSR is

observable on [0, n− 1]. 2

Theorem 4.7: The following conditions are equivalent.

1) An n-stage Galois NFSR can be equivalent to an n-stage Fibonacci NFSR.

2) The output sequences of the n-stage Galois NFSR contain all n-tuples.

3) The n-stage Galois NFSR is observable on [0, n− 1].

Proof: The results follow from Corollary 4.5 and Lemma 4.6. 2

Example 4.8: Consider a 3-stage Galois NFSR with feedback f = [f1 f2 f3]
T satisfying

f1 = X1 ⊕X3 ⊕ 1,

f2 = X3,

f3 = X1X3 ⊕X1 ⊕X2 ⊕X3 ⊕ 1.

and a 3-stage Fibonacci NFSR with feedback function f = X2X3 ⊕X1 ⊕X1 ⊕ 1. Their state diagrams

are shown in Fig. 3, from which we can see that each NFSR contains only one cycle in its state diagram,

and both NFSRs can generate the same sequence s = 11101000 of period 8. Thereby, they have the same

set of output sequences. Hence, the Galois NFSR and the Fibonacci NFSR are equivalent.
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111 101 100 010

000 001 011 110

(a) State diagram of the 3-stage Galois NFSR.

111 110 101 010

011 001 000 100

(b) State diagram of the 3-stage Fiboacci NFSR.

Fig. 3: State diagrams of the Galois and Fibonacci NFSRs in Example 4.8

Clearly, the sequence s contains all 3-tuples: (1, 1, 1), (1, 1, 0), (1, 0, 1), (0, 1, 0), (1, 0, 0), (0, 0, 0), (0, 0, 1),

(0, 1, 1). According to Item 2 of Theorem 4.7, the 3-stage Galois NFSR is equivalent to a 3-stage Fibonacci

NFSR, consistent with the above equivalent fact. On the other hand, from Lemma 2.3 and the state diagram

of the Galois NFSR, we know the successor of the state δ18 (or equivalently, [1 1 1]T ) is the state δ38 (or

equivalently, [1 0 1]T ), which implies δ38 = Lδ18 = Col1(L), yielding Col1(L) = δ38 . Keeping the same

reasoning, we can obtain the state transition matrix of the Galois NFSR is L = δ8[3 5 4 6 7 2 8 1].

As usual, we use the content of the lowest bit of the Galois NFSR as its output, namely, the output

y(t) = x1(t), t ∈ N. Then, the output coefficient matrix H of the Galois NFSR is just the structure

matrix of the Boolean function h(X1, X2, X3) = X1, that is, H = δ2[1 1 1 1 0 0 0 0]. By direct

computation, we can easily get

O3 =


H

HL

HL2

 =


1 1 1 1 0 0 0 0

1 0 1 0 0 1 0 1

1 0 0 1 0 0 1 1

 ,
which clearly has 8 distinct columns. According to Lemma 2.7, the Galois NFSR is observable on [0, 2].

Thus, from Item 3 of Theorem 4.7, the 3-stage Galois NFSR is equivalent to a 3-stage Fibonacci NFSR,

consistent with the above fact of equivalence.

Theorem 4.7 converts the equivalence problem of Galois NFSRs into their observability problem,

which requires high computational complexity if their stage numbers are large. Nevertheless, based on

this conversion, we can obtain two easily verifiable necessary and sufficient conditions for Galois NFSRs

equivalent to Fibonacci ones, shown in the sequel.

Theorem 4.9: An n-stage Galois NFSR with state X = [X1 X2 · · · Xn]T ∈ Fn2 is equivalent to an

n-stage Fibonacci NFSR if and only if there exists a unique bijection h = [h1 h2 . . . hn]T over Fn2
such that

Xi(t) = hi(X1(t), X1(t+ 1), . . . , X1(t+ n− 1)) (13)
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for all i = 1, 2, . . . , n and for all t ∈ N.

Proof: Note that we usually use the content of the first bit of an NFSR as its output. Then, for any

initial instant t0 ∈ N, we can easily see that X(t0) = [X1(t0) X2(t0) · · · Xn(t0)]
T is an initial state,

and X1(t0), X1(t0 + 1), . . . , X1(t0 + n− 1) is an output sequence of length n of the Galois NFSR.

Sufficiency: If Equation (13) holds for any initial time instant t0 ∈ N, then all Xi(t0)s with i =

1, 2, . . . , n can be uniquely determined by the output sequence X1(t0), X1(t0 + 1), . . . , X1(t0 + n− 1)

of length n and therefore, the initial state X(t0) is determined. As h is a bijection, h is surjective. So

we can deduce that any initial state X(t0) ∈ Fn2 can be uniquely determined by an output sequence

X1(t0), X1(t0 + 1), . . . , X1(t0 + n − 1) of length n, which means the Galois NFSR is observable on

[0, n − 1]. According to Theorem 4.7, the n-stage Galois NFSR is equivalent to an n-stage Fibonacci

NFSR.

Necessity: If the n-stage Galois NFSR is equivalent to an n-stage Fibonacci NFSR, then the Galois

NFSR has the same set of output sequences as the n-stage Fibonacci NFSR, which implies that the

Galois NFSR has 2n output sequences. Moreover, from Theorem 4.7, we know that if the n-stage Galois

NFSR is equivalent to an n-stage Fibonacci NFSR, then the Galois NFSR is observable on [0, n − 1],

which means an output sequence of length n of the Galois NFSR can be uniquely determine its initial

state. Thereby, the 2n initial states of the Galois NFSR and its 2n output sequences of length n are

one-to-one correspondence, and such a correspondence is unique. Hence, there exists a unique bijection

h = [h1 h2 · · · hn]T mapping from the 2n output sequences of length n to the 2n initial states, that is,

Xi(t0) = hi(X1(t0), X1(t0 + 1), . . . , X1(t0 + n − 1)) for all i = 1, 2, . . . , n and for any t0 ∈ N. Thus,

the result follows. 2

Remark 4.10: Theorem 4.9 shows that, an n-stage Galois NFSR is equivalent to an n-stage Fibonacci

NFSR if and only if there exists a unique bijection h = [h1 h2 . . . hn]T over Fn2 such that the state at

time instant t of the Galois NFSR can be expressed by an n-tuples of successive outputs starting from

the time instant t via the bijection h. Moreover, from the proof of Theorem 4.9, we can easily see that

Boolean function h1 satisfies h1(X1(t), X1(t + 1), . . . , X1(t + n − 1)) = X1(t) for any t ∈ N, where

(X1(t), X1(t+ 1), . . . , X1(t+ n− 1)) is the n-tuples of successive outputs staring from time instant t.

Hence, to find this unique bijection h = [h1 h2 . . . hn]T , we are only required to find the remaining
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n− 1 Boolean functions h2, h3, . . . , hn, which can be derived from the nonlinear system representation

X1(t+ 1) = f1(X1(t), X2(t), . . . , Xn(t))

X2(t+ 1) = f2(X1(t), X2(t), . . . , Xn(t))

...

Xn(t+ 1) = fn(X1(t), X2(t), . . . , Xn(t))

of the Galois NFSR by equivalent transformations. In other word, we need to solve n − 1 variables

X2(t), X3(t), . . . , Xn(t) from the above n equations by equivalent transformations. Notably, it implies

that one equation among the n equations is naturally not used.

Remark 4.11: 1) If the Galois NFSR uses the content of the last bit as its output, then Equation

(13) changes to

Xi(t) = hi(Xn(t), Xn(t+ 1), . . . , Xn(t+ n− 1)) (14)

for all i = 1, 2, . . . , n and for all t ∈ N.

2) Note that a mapping h = [h1 h2 . . . hn]T from Fn2 to Fn2 is bijective, if and and if it is

surjective. Hence, to verify h is bijective, it is enough to prove it is surjective. Precisely, for any

b = [b1 b2 . . . bn]T ∈ Fn2 , we are only required to prove the equation

h1(X1, X2, . . . , Xn) = b1

h2(X1, X2, . . . , Xn) = b2

...

hn(X1, X2, . . . , Xn) = bn

has a solution X = [X1 X2 . . . Xn]T over Fn2 .

Two types of nonsingular Galois NFSRs were found equivalent to Fibonacci ones in [9]. The following

result further gives a necessary and sufficient condition for nonsingular Galois NFSRs equivalent to

Fibonacci ones.

Theorem 4.12: An n-stage nonsingular Galois NFSR with state X = [X1 X2 · · · Xn]T ∈ Fn2 is equiv-

alent to an n-stage Fibonacci NFSR if and only if there exists a unique bijection ϕ = [ϕ1 ϕ2 . . . ϕn]T

over Fn2 such that

Xi(t) = ϕi(X1(t− n+ 1), X1(t− n+ 2), . . . , X1(t)) (15)

for all i = 1, 2, . . . , n and for all positive integer t ≥ n− 1.
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Proof: Let the Galois NFSR be represented by a nonlinear system X(t + 1) = f(X(t)) with t ∈ N

and the feedback f = [f1 f2 . . . fn]T . The Galois NFSR is nonsingular if and only if its feedback f is

invertible. Let f−1 be the inverse of f . Then, we have X(t) = f−1(X(t+ 1)).

Sufficiency: If Equation (15) holds, then the output sequence X1(t−n+1), X1(t−n+2), . . . , X1(t) of

length n over the time interval [t−n+1, t] can uniquely determine the final state X(t) = [X1(t) X2(t)

. . . Xn(t)]T and therefore, can uniquely determine the initial state X(t0) = [X1(t0) X2(t0) . . . Xn(t0)]
T

with any initial time instant t0 satisfying 0 ≤ t0 < t by the inverse of f , precisely, X(t0) = (f−1)t−t0X(t).

As ϕ is bijective, ϕ is surjective. So, any X(t) ∈ Fn2 can be uniquely determined by an output sequence

X1(t − n + 1), X1(t − n + 2), . . . , X1(t) of length n and thereby, any initial state X(t0) ∈ Fn2 can

be uniquely determined by an output sequence of length n as well. It means that the Galois NFSR

is observable on [0, n − 1]. According to Theorem 4.7, the Galois NFSR is equivalent to an n-stage

Fibonacci NFSR.

Necessity: If the n-stage Galois NFSR is equivalent to an n-stage Fibonacci NFSR, then from the

necessity of Theorem 4.9, we know that there exists a unique bijection h = [h1 h2 . . . hn]T such that

Xi(t− n+ 1) = hi(X1(t− n+ 1), X1(t− n+ 2), . . . , X1(t)) (16)

for all i = 1, 2, . . . , n and for all positive integer t ≥ n − 1. Let X(t − n + 1) = [X1(t − n +

1) X2(t − n + 1) . . . Xn(t − n + 1)]T and X1(t) = [X1(t − n + 1) X1(t − n + 2) . . . X1(t)]
T .

Then from Equation (16), we have X(t − n + 1) = h(X1(t)) for all positive integer t ≥ n − 1. Thus,

X1(t) = h−1(X(t − n + 1)) = h−1((f−1)n−1X(t)) = (h−1(f−1)n−1)(X(t)) for all positive integer

t ≥ n− 1. It yields X(t) = (fn−1h)(X1(t)) = (fn−1h)(X1(t−n+ 1), X1(t−n+ 2), . . . , X1(t)) for all

positive integer t ≥ n−1. Let ϕ = fn−1h. As f is invertible, f is bijective. Thus, ϕ = fn−1h is bijective

as well. Therefore, the result follows. 2

B. Validating Necessary and Sufficient Conditions

We use the Galois NFSRs previously found equivalent or not equivalent to Fibonacci ones, to validate

our necessary and sufficient conditions for Galois NFSRs presented in Theorems 4.9 and 4.12.

In fact, the Galois NFSRs found equivalent to Fibonacci ones in [1], [6], [8], [9] satisfy Equation (13)

in Theorem 4.9 or Equation (15) in Theorem 4.12, which can be easily observed by the substitution and

elimination of state’s components. Precisely speaking, the Galois NFSRs found equivalent to Fibonacci

ones in [1], [6], [8] satisfy Equation (13). We simply take the Galois NFSR in [6] as an example. That

Galois NFSR is actually a cascade connection of two NFSRs, and the stream cipher Grain just uses such
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a Galois NFSR as its main building block. From Equation 9 in Lemma 3.2, we can easily see that the

Galois NFSR therein can be described by the following nonlinear system:
Xi(t+ 1) = Xi+1(t), i 6= m,n with m < n

Xm(t+ 1) = Xm+1(t)⊕ gm(X1(t), X2(t), . . . , Xm(t)),

Xn(t+ 1) = gn(Xm+1(t), Xm+2(t), . . . , Xn(t)), t ∈ N.

By the substitution and elimination on the above equations, we have

X1(t) = X1(t) := h1(X1(t)), t ∈ N,

Xi(t) = X1(t+ i− 1) := hi(X1(t+ i− 1)), 2 ≤ i ≤ m,

Xm+1(t) = X1(t+m)⊕ gm(X1(t), X1(t+ 2), . . . , X1(t+m− 1)

:= hm+1(X1(t), X1(t+ 1), . . . X1(t+m)),

Xi(t) = Xm+1(t+ i−m− 1)

:= hi(X1(t+ i−m− 1), X1(t+ i−m), . . . X1(t+ i− 1)), m+ 2 ≤ i ≤ n,

which satisfies Equation (13). Let h = [h1 h2 . . . hn]T . Then, for any b = [b1 b2 . . . bn]T ∈ Fn2 , it is

easily seen that the equation h(X1(t), X1(t+ 1), . . . , X1(t+ n− 1)) = b has a solution with resect to

the unknown vector [X1(t) X1(t + 1) . . . X1(t + n − 1)]T over Fn2 . All these are consistent with the

results in Theorem 4.9.

The Galois NFSR considered in [9] has some feedback function fis appearing in some other feedback

function fis. Actually, if we observe that fi(X(t)) = Xi(t + 1) for all i = 1, 2, . . . , n, then we can

easily see that the nonsingular “Triangular-I” Galois NFSRs found equivalent to Fibonacci ones satisfy

Equation (15), while the nonsingular “Triangular-II” Galois NFSRs found equivalent to Fibonacci ones

satisfy Equation (13). All these verify Theorems 4.9 and 4.12.

The Galois NFSR considered in [5] uses the content of the last bit as its output, resulting the same set

of output sequences as a Fibonacci NFSR with the same stage number, which uses the content of the last

bit as its output as well. This can be easily seen from Lemma 3.1 that the linear transformation Q from

the Galois NFSR to its equivalent Fibonacci NFSR preserves the last components of their corresponding

states. According to Lemma 2.8 and Proposition 4.1, the n-stage Galois NFSR therein is equivalent to

an n-stage Fibonacci NFSR that uses the content of the lowest bit as its output if and only if the Galois

NFSR is nonsingular. From [9], by a permutation (n, n − 1, . . . , 1), the Galois NFSR therein can be

transformed to a new Galois NFSR whose lowest bit is just the last bit of the original one; moreover, if
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the new Galois NFSR is nonsingular, then it is a particular case of the nonsingular “Triangular-I” Galois

NFSR, which satisfies Equation (15) as foregoing mentioned. It validates Theorem 4.12 as well.

Example 4.13: Consider a 4-stage Galois NFSR with feedback f = [f1 f2 f3 f4]
T satisfying [1]

f1 = X2 ⊕X1X2,

f2 = X3 ⊕X1 ⊕X1X3 ⊕X1X2X3,

f3 = X4 ⊕X1 ⊕X2 ⊕X3 ⊕X1X3 ⊕X2X3,

f4 = X1 ⊕X2X4.

(17)

It was found not equivalent to Fibonacci NFSRs [1].

According to Equation (17), we know the Galois NFSR can be represented by a nonlinear system:

X1(t+ 1) = X2(t)⊕X1(t)X2(t),

X2(t+ 1) = X3(t)⊕X1(t)⊕X1(t)X3(t)⊕X1(t)X2(t)X3(t),

X3(t+ 1) = X4(t)⊕X1(t)⊕X2(t)⊕X3(t)⊕X1(t)X3(t)⊕X2(t)X3(t),

X4(t+ 1) = X1(t)⊕X2(t)X4(t).

(18)

We can easily observe that Xi(t) with i = 1, 2, 3, 4, can neither be expressed by X1(t), X1(t+1), X1(t+

2), X1(t + 3) for all t ∈ N, nor be expressed by X1(t − 3), X1(t − 2), X1(t − 1), X1(t) for all t ≥ 3,

by the computations of substitution and elimination on Equation (18). According to Theorems 4.9 and

4.12, the 3-stage Galois NFSR cannot be equivalent to a 3-stage Fibonacci NFSR, consistent with the

fact found in [1].

Remark 4.14: The point of using Theorems 4.9 (or Theorem 4.12) to determine whether an n-stage

Galois NFSR (or nonsingular Galois NFSR) is equivalent to an n-stage Fibonacci NFSR, is how to

determine whether the bijective mapping in Theorems 4.9 (or Theorem 4.12) exists, and how to find it

if it exists. By the above validations, we see that both questions can be answered via the computations

of substitute and elimination on the nonlinear system representation of the Galois NFSR.

C. Application to Stream Cipher Trivium

Trivium [3] is the first stream cipher based on confusion and diffusion principles that block cipher

designs always use. Trivium uses three pairwise controlled Fibonacci NFSRs. The stage numbers of the

three NFSRs are 93, 84, 111. The feedback f = [f1 f2 . . . f288]
T of the Galois NFSR formed by the
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three pairwise controlled Fibonacci NFSRs, satisfies the following relation:

f1 = X243 ⊕X286X287 ⊕X288 ⊕X69,

f94 = X66 ⊕X91X92 ⊕X93 ⊕X171,

f178 = X162 ⊕X175X176 ⊕X177 ⊕X264,

fi+1 = Xi, i 6= 1, 94, 178,

where X = [X1 X2 . . . X288]
T is the state of the Galois NFSR. Thus, we can easily observe that the

Galois NFSR used in Trivium can be described by the nonlinear system:

X1(t+ 1) = X243(t)⊕X286(t)X287(t)⊕X288(t)⊕X69(t),

X94(t+ 1) = X66(t)⊕X91(t)X92(t)⊕X93(t)⊕X171(t),

X178(t+ 1) = X162(t)⊕X175(t)X176(t)⊕X177(t)⊕X264(t),

Xi+1(t+ 1) = Xi(t), i 6= 1, 94, 178, t ∈ N.

(19)

Notably, different to the usual shift occurring from the (i + 1)-th bit to the i-th bit, the shift in

Trivium occurs from the i-th bit to the (i+ 1)-bit, due to its different order of bits. Precisely, in Trivium

Xi+1(t) = Xi(t) for all i 6= 1, 94, 178 and all t ∈ N. Hence, for the computation ease of substitute and

elimination, here we use the content of the 288-th bit as the output of the Galois NFSR to validate. By

direct computations of substitution and elimination on Equation (19), we have

Xi(t) = X93(t+ 93− i), 1 ≤ i ≤ 92,

X93(t) = X177(t+ 84)⊕X93(t+ 2)X93(t+ 1)⊕X177(t+ 6),

Xi(t) = X177(t+ 177− i), 94 ≤ i ≤ 176,

X177(t) = X288(t+ 111)⊕X177(t+ 15)⊕X177(t+ 2)X177(t+ 1)⊕X288(t+ 24),

Xi(t) = X288(t+ 288− i), 178 ≤ i ≤ 287, t ∈ N.

(20)

Clearly, Xi(t) = X288(t+288−i) for all i = 178, 179, . . . , 287 and for all t ∈ N. However, the variables

Xi(t) are relative to the variables X177(t + 177 − i) for all i = 94, 95, . . . , 176 and for all t ∈ N. In

the following, we mainly concern the variable X177. Note that each variable Xi with i ∈ {1, 2, . . . , 288}

appears in some feedback function fj only once. Then, we can easily see that X177(t) only appears at

the right-hand side of the third equation of (19), and X177(t + 1) only appears at the left-hand side of

the fourth equation of (19). Hence, X177(t) can be derived only from either of the above two equations

by equivalent transformations.
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For the former case, from the fourth equation of (20), we can see that X177(t) cannot expressed by

X288(t), X288(t+1), . . . , X288(t+287). For the latter case, we have X177(t) = X176(t−1). However, in

this case, we discard the third equation of X178(t+ 1) in (19) and use the other 177 equations to derive

the 177 variables Xi(t) with i = 1, 2, . . . , 177. Again, we note each variable Xi with i ∈ {1, 2, . . . , 288}

appearing in some feedback function fj only once. Then, from Equation(19), we have Xi+1(t) = Xi(t−1)

for all i satisfying 94 ≤ i ≤ 176 and 1 ≤ i ≤ 92, while X94(t) = X66(t− 1)⊕X91(t− 1)X92(t− 1)⊕

X93(t− 1)⊕X171(t− 1). Hence, summarizing the above equations for the latter case, we can conclude

that X177(t) is relative to the variables X1, X2, . . . , X176, for which X1(t), X2(t), . . . , X176(t) cannot

be expressed by X288(t), X288(t+ 1), . . . , X288(t+ 287) and therefore, X177(t) cannot be expressed by

X288(t), X288(t+ 1), . . . , X288(t+ 287) either for the latter case.

Summarizing the above cases, we know that X177(t) cannot be expressed by X288(t), X288(t +

1), . . . , X288(t+ 287). According to Item 1 of Remark 4.11, the Galois NFSR used in the stream cipher

Trivium cannot be equivalent to a 288-stage Fibonacci NFSR. Thus, from Theorem 4.7, Trivium is not

observable on [0, 287], which means the initial state of Trivium cannot be uniquely determined by an

output sequence of length 288, theoretically verifying its good design criteria of confusion and diffusion.

V. CONCLUSION

Based on the observability of an NFSR, the paper gave two easily verifiable necessary and sufficient

conditions for Galois NFSRs equivalent to Fibonacci ones, covering and improving the previous results

on this research. As an application of those theoretical results, the paper revealed that the 288-stage

Galois NFSR used in the stream cipher Trivium is neither equivalent to a 288-stage Fibonacci NFSR, nor

observable on [0, 287], theoretically verifying Trivium’s good design criterion of confusion and diffusion.

In the future, it is interesting to use our necessary and sufficient conditions to find more types of Galois

NFSRs equivalent to Fibonacci ones, and to find more types of Galois NFSRs not equivalent to Fibonacci

ones but having other good cryptographical properties.
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