
ECLIPSE: Enhanced Compiling method for Pedersen-committed
zkSNARK Engines?

Diego F. Aranha1, Emil Madsen Bennedsen2, Matteo Campanelli1,
Chaya Ganesh3, Claudio Orlandi1, and Akira Takahashi1

1 Aarhus University, Aarhus, Denmark
{dfaranha, matteo, orlandi, takahashi}@cs.au.dk

2 Concordium, Denmark
masik7@gmail.com

3 Indian Institute of Science, India
chaya@iisc.ac.in

July 8, 2021

Abstract. We provide new constructions for zero-knowledge commit-and-prove SNARKs (CP-
SNARKs) with a universal updatable SRS. Informally, a commit-and-prove argument system is one
that can efficiently prove relations over committed inputs. They have many applications, including
allowing for efficient composition of proof systems with different strength points.
We first show a general technique to compile Algebraic Holographic Proofs (AHP) with special
“decomposition” properties into an efficient CP-SNARK with universal and updatable SRS. We
require that the polynomials in an AHP can be easily decomposed into components that refer to
the committed part of the witness and the rest of the witness respectively.
We then show that some of the most efficient AHP constructions—Marlin, PLONK, and Sonic—
satisfy our compilation requirements. To obtain succinct instantiations of our protocols we rely
on recent advancements in compressed Σ-protocol theory (Attema and Cramer, Crypto ’20). Our
constructions retain the succinct proof size of the underlying AHP and only impose an additional
proof size that grows logarithmically with the size of the committed component of the witness.

? Research supported by: the Concordium Blockchain Research Center, Aarhus University, Denmark; the Carls-
berg Foundation under the Semper Ardens Research Project CF18-112 (BCM); the European Research Council
(ERC) under the European Unions’s Horizon 2020 research and innovation programme under grant agreement
No 803096 (SPEC);

Table of Contents

1 Introduction 3
1.1 Our Contributions . 4
1.2 Applications . 4
1.3 Technical Overview . 5
1.4 Related Work . 6

2 Preliminaries 7
2.1 Indexed relations . 7
2.2 Zero-knowledge Arguments of Knowledge with preprocessing . 7
2.3 Σ-Protocols and Pedersen Vector Commitment . 8
2.4 Algebraic Holographic Proofs . 8
2.5 Polynomial Commitment . 9

3 AHP-to-CP-SNARK compiler 10
3.1 Additional Preliminaries for Compiler . 10
3.2 Additional properties for AHP . 11
3.3 Our compiler . 12

4 Compressed Σ-protocol for Equality 15
4.1 AmComEq: Amortization of ` commitment equality proofs . 15
4.2 CompAmComEq: Recursive compression . 18

5 Instantiation with PLONK 19
5.1 PLONK AHP . 19
5.2 CP-PLONK . 19

6 Instantiation with Marlin 21
6.1 Marlin AHP. 22
6.2 CP-Marlin . 24

7 Instantiation with Sonic 25
7.1 Sonic AHP . 25
7.2 CP-Sonic . 27

A Additional Materials on Compressed Σ-protocol Theory 32
A.1 ComEq: Proving equality of two Pedersen vector commitments . 32
A.2 AmComEq′: as a result of [ACF20] . 33

B PLONK Preliminaries 33
B.1 PLONK constraint systems. 33
B.2 Lagrange basis. 34
B.3 Checking gate-by-gate constraints. 34
B.4 Checking copy constraints. 34
B.5 Putting together. 35
B.6 Extended Permutation Argument . 36
B.7 PLONK AHP . 36
B.8 Adding zero-knowledge . 37

1 Introduction

Zero-knowledge proof systems [GMR85] have a rich history in cryptography and theory of computa-
tion [GMW86, For87, BGG+90] supporting numerous cryptographic constructions. Examples of early
applications of zero-knowledge proofs include identification schemes [FFS87], CCA-secure public-key en-
cryption [NY90], signature schemes [CS97], anonymous credentials [CL01], secure multi-party compu-
tation [GMW87], and many others. More recently, cryptocurrencies such as Zcash [BCG+14] use zero-
knowledge proofs to provide integrity while maintaining privacy. In applications like cryptocurrencies and
anonymous credentials, practical deployment demands small proof sizes and fast verification.

Succinct Zero-knowlege proofs. There has been a series of works on constructing zero-knowledge
Succinct Non-interactive ARguments of Knowledge (zk-SNARKs). Many recent applications of zero-
knowledge (such as cryptocurrencies [BCG+14]), demand small proof sizes and fast verification, as pro-
vided by zero-knowledge Succinct Non-interactive ARguments of Knowledge (zk-SNARKs). The seminal
paper of [GGPR13] proposed a pairing-based zk-SNARK for general NP statements based on the NP
complete langauge of Quadratic Span Programs (QSP) for Boolean circuits and Quadratic Arithmetic
Programs (QAP) for arithmetic circuits. This built on previous works of [IKO07, Gro10, Lip12] and led
to several works [BCI+13, PHGR13, BCG+13, Lip13, BCTV14, Gro16] which have proofs that are very
short and have fast verification time. This line of work on (pre-processing) zkSNARKs has seen rapid
progress with many works proposing significant improvements in efficiency of different parameters of
interest like proof size, verifier efficiency, complexity of setup, prover efficiency, among others.

Preprocessing zk-SNARKs, which are the most attractive proof system when applications demand
verification efficiency, typically rely on a trusted setup to produce a structured reference string (SRS). If
the trusted setup is compromised, it becomes possible to break the soundness property of the proof system.
One solution is to use a secure multi-party computation protocol (MPC) to conduct the setup [BGM17],
and as long as at least one party is honest, the setup remains secure. However, pre-processing SNARKs
have setup that depends on the relation, and it becomes infeasible to perform an MPC for every new
relation an application needs to prove. Recently, in [GKM+18] a zk-SNARK with an updatable SRS
that allows participants to dynamically update the SRS was proposed. Even though this does not avoid
the problem of trusted setup, the security now depends on one contributor deleting the contributed
randomness. Moreover, the scheme only requires a universal SRS that allows to prove statements about all
circuits of some bounded size. However, the size of this universal updatable SRS is quadratic in the number
of multiplication gates of the circuit representing the statement. In [MBKM19], the authors construct
Sonic, a zkSNARK that is universal and updatable with a linear-sized SRS. Many recent constructions of
updatable SRS zkSNARKs [BFS20, CHM+20, GWC19] follow a modular approach where an information-
theoretic protocol is constructed in an abstract model like Probabilistically Checkable Proof (PCP), linear
PCP, Interactive Oracle Proof (IOP) etc., and then the information-theoretic protocol is compiled via
a cryptographic compiler to obtain an argument system. Marlin [CHM+20] uses an IOP abstraction
called algebraic holographic proofs (AHP), and the DARK compiler [BFS20] uses an abstraction called
polynomial IOPs (PIOPs). In these abstractions, the prover provides oracle access to a set of polynomials,
and the verifier sends random challenges. Then, the verifier asks for evaluations of these polynomials and
decides to accept or not based on the answers. PLONK [GWC19] uses an abstraction called idealized
low degree protocols (ILDPs) that proceeds in a similar way except that at the end of the protocol, the
verifier checks a set of polynomial identities over the oracles sent by the prover.

Σ-protocols. Σ-protocols are proof systems that are efficient for proving algebraic statements about
discrete logarithms, roots, or polynomial relationships among values [Sch90, GQ88, CDS94, CS97]. Proofs
based on Σ-protocols are extremely efficient for statements that come up in cryptographic constructions:
statements that are efficiently representable as algebraic functions over some group G where the discrete-
logarithm problem is hard. For example, a prover may want to convince the verifier that she knows an
x such that gx = y for publicly known values g, y ∈ G. They yield short proof sizes, require a constant
number of public-key operations, and do not impose trusted setup requirements. Moreover, they can be
made non-interactive using the efficient Fiat-Shamir transformation [FS87].

While Σ-protocols are efficient in practice, they only apply to a restricted set of languages. Proving
statements about a cryptographic hash function or a block cipher represented by a Boolean or arithmetic
circuit using a straightforward Σ-protocol results in the proof size and the proving/verification time
scaling linearly with the size of circuit.

Recent work on compressed Σ-protocol theory [AC20] is a strengthening of Σ-protocols that compress
the communication complexity from linear to logarithmic. The underlying pivot of the compressed proto-

3

col is a standard Σ-protocol for opening linear forms on Pedersen vector commitments, i.e., a Σ-protocol
for proving that a committed vector x satisfies L(x) = y for a public scalar y and public linear form L.

1.1 Our Contributions

Consider a composite computation that naturally presents different components, like a Boolean circuit for
a hash function, and algebraic representation for group exponentiation. A general-purpose zero-knowledge
proof system for such a computation requires a single homogeneous representation, thus incurring a high
cost in performance. Ideally, one would like to take advantage of the nuances of a computation and
choose the best proof system for each component of the computation. Motivated by applications where
it is desirable to use SNARKs and Σ-protocols for proving a single composite statement, we show how
to combine state-of-the-art updatable SRS SNARK with state-of-the-art compressed Σ-protocol proofs
by presenting a general compiler from AHP to commit-and-prove zkSNARKs (CP-SNARKs).
– Compiler from AHP to CP-SNARK. We present a compiler that takes an AHP which is the information-

theoretic protocol underlying many existing zkSNARKs and compiles it into a CP-SNARK. Our com-
piler is similar in spirit to compilers of [BFS20, CHM+20, CFF+20] that convert information-theoretic
protocols to succinct arguments. We first abstract out a set of properties that AHP should satisfy to
apply our “split–and–link” paradigm, leading to efficient CP-SNARKs (outlined below in Sect. 1.3).

– Concrete instantiations. We then apply our compiler to the AHPs of Marlin, PLONK and Sonic to
obtain concrete CP-SNARKs.4 This immediately allows us to prove that the inputs (and/or outputs)
used in the zk-SNARK for an arithmetic circuit/Rank 1 constraint system statement are the same as
the values inside an algebraic commitment. This helps to hide intermediate outputs of a composite
statement by committing to it, thus allowing switching between the algebraic (Σ-protocols) and
arithmetic world (zk-SNARK). One instance of an application is proving knowledge of input x such
that Com(x) = y and Com(H(x)) = z for public values y and z where H is a hash function and
Com is the Pedersen commitment scheme. One can use standard Σ-protocols to prove statements
about committed values y, z. Thus, using the commitment as an anchor, this immediately yields
a NIZK for a composite statement that combines SNARK with updatable SRS with compressed
Σ-protocols. In order to make the argument for the composite statement succinct, we use recent
advances in compressed Σ-protocol theory. We cast the statement about consistency with Pedersen
commitments as statements about knowledge of pre-image of group homomorphisms. This allows
us to apply the compression technique of [AC20] that achieves logarithmic communication for the
canonical Σ-protocol and the amortization technique that proves many statements efficiently. Thus,
our linking protocol that needs to prove ` statements, where each statement is about equality of
vectors of size d, achieves communication complexity O(log(`d)), so the overall proof (the size of the
SNARK together with the size of the linking proof) is still succinct.
Our constructions improve on the efficiency of existing CP-SNARKs (see Table 1). In particular they

improve on the proof size of Lunar for small values of d and large values of `. This scenario occurs, for
example, in the delegated credentials setting that we outline below in Section 1.2. Moreover, compared
to [AGM18] which tackled a similar problem relying on nav̈e Σ-protocols and a specific QAP-based
SNARK construction with non-updatable SRS, our approach achieves better asymptotic efficiency as
well as further generality.

1.2 Applications

Anonymous and Delegated Credentials. Consider the application of making digital certificates anonymous:
one would like to prove knowledge of a message m and a signature σ, where σ is a valid signature on
messagem with respect to some public verification key. While there is a large body of work on anonymous
credentials, very few of the techniques can turn the commonly used X.509 certificates into anonymous
credentials. The main challenge is that the statement being considered is a composite statement containing
both Boolean (hash function) and algebraic (group operations) components, since the message is hashed
before being signed. Efficient NIZK for composite statements that use a zk-SNARK for the circuit part
and Σ-protocols for the algebraic would yield a more efficient proof system.
4 The reason why we apply our compiler to all three proof systems is that Marlin, PLONK and Sonic are a sort
of rock-paper-scissor for AHPs. Since they use different models of computations it might be possible to prove
some statements more efficient with one rather than the others. We believe that our techniques are general
enough to extend to future AHPs.

4

|π| Prove (time) Verify (time)

This work O (log(` · d)) O (n+ ` · d) O (` · d)
Lunar [CFF+20] O (`) O (n+ ` · d) O (`)
LegoUAC [CFQ19] O

(
` log2(n)

)
O(n) + ` · Õ (d) O

(
` log2(n)

)
Table 1. Efficiency comparison among CP-SNARK constructions with universal and updatable SRS. Proving time
expresses group operations. The first line refers to our compiler applied to AHPs with suitable decomposition
properties (See Section 3). In the above we denote by n the number of constraints in an R1CS system, by ` the
number of input commitments and by d the size of each committed vectors. (The same asymptotics apply also
to other constraints systems with slight variations though. For example, they apply to the AHPs in PLONK if n
above refers to the total number of gates).

Our amortization techniques can be useful in a setting of “delegated credentials”. Each citizen or
member of an organization can have associated a bundle of properties (credentials), e.g., credit and
employment history or digital certificates issued by governments. We assume these properties are of size
d and are fingerprinted through a (compressing) commitment and that each of these users delegates the
storage of these properties to a service. Every time the user needs to prove a statement on these credentials
with respect to the public commitment, it can issue an order to the service. Instead of providing a single
proof per user, a service can wait to accumulate ` orders and provide a single proof for all of them. Our
construction allows to prove each of the ` orders for credentials of size d with communication complexity
only O(log(`d)).

Blockchains. Credential systems are used for balancing privacy and accountability on the blockchain [DGK+21],
and the flexibility of choosing a suitable proof system for each statement component allows for flexibility
of using suitable cryptographic primitives (like signature schemes) in the design without compromising on
efficiency of the proof system. Many cryptocurrencies also implement confidential transactions [Max15]
where the amounts are hidden inside commitments. To enable verification of such a transaction, they
include a zero-knowledge proof that the sum of values in committed inputs is greater than the sum of
committed outputs and that all values are positive. Most implementations of confidential transactions
use range proofs over committed values. A state-of-the-art zkSNARK on committed values provides an
efficient candidate for such applications.

Stitching proofs. Consider having to prove a large statement represented by a circuit whose size
exceeds the upper bound of the universal SRS size. We can view the large circuit as containing many
different smaller subcircuits, prove each sub-circuit, and stitch proofs using committed input and output
at each layer (by proving equality of input of a sub-circuit and the output of the previous sub-circuit).
For instance, at a high level, one of the statements in ZCash is of the form: knowledge of xi’s such that
H(x1||H(x2|| · · ·H(xk))) = y. The value of k is large and therefore the SRS generated for proving this
statement is large as well. If a universal updatable SRS does not support this k, a better alternative
to generating (and updating) a new SRS is instead to use the SRS to prove sub-circuits and compose
them. Each sub-circuit proves knowledge of x, y such that H(x||H(y)) = z, and many such proofs are
composed by proving equality of the output and input of successive sub-circuits using the commitments.
This can be extended to a general system using SRSs for small size circuits C1, . . . , Ck allowing NIZKs
for arbitrary composition of these circuits for proof of a larger statement without having to generate a
new larger SRS.

1.3 Technical Overview

We follow the blueprint of the modular approach for designing efficient arguments that consists of an
information theoretic protocol in an abstract model (PCP, linear PCP, IOP etc.), and then compiling the
information-theoretic protocol via a cryptographic compiler to obtain an argument system. Many recent
constructions of zkSNARKs [BFS20, CHM+20, GWC19] follow this approach where the information
theoretic object is an algebraic variant of IOP, and the cryptographic primitive in the compiler is a
polynomial commitment scheme. This is then transformed into a non-interactive argument by applying
Fiat-Shamir. We consider KZG-like polynomial commitment schemes [KZG10] that essentially consists
of an “evaluation of the polynomial at a secret point given in the exponent” as the commitment.

The high-level idea of our compiler to obtain a CP-SNARK is as follows: We look at the polynomial
oracles sent by the AHP prover that “encode” the witness; we call these witness-carrying polynomials.

5

Our transformation requires the AHP to have decomposable witness-carrying polynomials; at a high level,
this allows the prover to commit to different parts of the witness independently. This property is already
satisfied by AHPs underlying Marlin, Sonic and PLONK. The prover in the compiled argument will “split”
the witness into a committed part and non-committed part, and encode them separately. The argument
prover commits to the polynomial oracles sent by the AHP prover and sends this commitment to the
argument verifier. We now exploit the homomorphic property of the polynomial commitment scheme
so that the verifier can locally put together an encoding of the combined witness polynomial given the
encodings of the split witness. We then use a linking protocol to prove consistency of the split witness in
this separate commitment of the AHP with values inside external commitments. When the polynomial
commitment scheme is instantiated with KZG-like commitment, the linking protocol is essentially an
efficient Σ-protocol that shows equality of exponents in Pedersen commitments with the values of the
split witness encoded in the polynomial commitment.

Finally, to instantiate our compiler with the AHP underlying PLONK, Marlin and Sonic to obtain
concrete CP-SNARKs, we design suitable linking protocols for the specific witness encoding used in that
particular AHP. We need additional techniques to ensure that the prover cannot exploit the split witness
to break soundness. Marlin and PLONK use the Lagrange interpolation basis to encode the witness vector,
and our linking protocol ensures that only the allowed Lagrange basis are used in each of the split witness
polynomials; that is, there is no “overlap” of the witness vector across the split. Sonic uses a constraint
system with respect to bivariate polynomial equations similar to the one used in [BCC+16, BBB+18] to
capture satisfiability of a circuit, where the values on the circuit wires are encoded as the coefficients of
a polynomial. Our linking protocol for Sonic ensures that the coefficients are only used in the allowed
degree bounds; that is, there is no “overlap” of the coefficients across the split polynomials.

We believe that this modularity of split witness encoding in the AHP combined with a linking protocol
will lead to CP-SNARK constructions from other SNARKs that rely on AHPs and KZG-type or other
suitable homomorphic polynomial commitment schemes.

1.4 Related Work

There are few examples in the literature of efficient zero-knowledge proof systems for composite statements
like those we consider in this paper.

The first paper in this important line of work [CGM16] presents a zero-knowledge proof that can be
used to prove that F (x) = 1 given a Pedersen commitment to x, where F is represented as a Boolean
circuit. They provide an efficient way of combining the garbled-circuit based proof of [JKO13] for circuit-
based statements with Σ-protocols for algebraic parts. However, this is inherently interactive which is
inherited from the interactivity of [JKO13] where the verifier uses private coins.

In [BHH+19], the authors show how to extend the MPC-in-the-head techniques of ZKBoo [GMO16]
and ZKB++ [CDG+17] to allow algebraic statements on Pedersen commitments. While allowing for non-
interactive proofs via the Fiat-Shamir transform, this approach results in larger proof sizes. In [AGM18],
protocols combining zk-SNARKs with Σ-protocols are presented. This overcomes the disadvantage of
interactivity, and also gives a system suitable for applications that require short proofs. The techniques
used however, work for zk-SNARKs that are based on Quadratic Arithmetic Programs (QAP). While this
encompasses efficient systems like [GGPR13, PHGR13, Gro16], they all fall into the class of SNARKs
that require a trusted setup.

Bulletproofs [BBB+18] can be used to prove statements on algebraically committed inputs, and be
made non-interactive using Fiat-Shamir. Unfortunately, proof sizes scale logarithmically and the verifi-
cation time scales linearly with the size of the circuit.

LegoSNARK [CFQ19] is a framework for commit-and-prove zkSNARKs (CP-SNARKs) that gives
general composition tools to build new CP-SNARKs from proof gadgets in a modular way. The commit-
and-prove can be leveraged by using a variety of existing schemes and making them interoperable. The
construction LegoUAC in [CFQ19] is a CP-SNARK with a universal and updatable SRS, but it produces
proofs of size log2(N) for a size bound N on the relation.

Lunar [CFF+20] obtains CP-SNARKs with a universal and updatable SRS with proofs of constant
size. It also presents proof systems for “linking” committed inputs to the polynomial commitments used
in AHP-based arguments. Our work and that in Lunar achieve better efficiency in different settings.
Consider a circuit with ` committed inputs where each input is a vector of (maximum) size d. The proof
size of constructions in Lunar grows linearly in `, and independently of d, while CP-PLONK and CP-Marlin
derived from our compiler incur overhead of O(log(`d)) (see Table 1). Hence our work achieves better
asymptotic proof size when d is small and ` > 1. On the other hand, for larger d, the proofs in Lunar are
shorter.

6

2 Preliminaries

Notation. For positive integers a and b such that a < b we use the integer interval notation [a, b] to
denote {a, a+ 1, . . . , b}; we use [b] as shorthand for [1, b]. A finite field is denoted by F. We denote by κ
a security parameter. When we explicitly specify the random tape ρ for a randomized algorithm A, then
we write a ← A(srs; ρ) to indicate that A outputs a given input srs and random tape ρ. For a pair of
randomized algorithms A and EA, we often use the handy notation (a;x)← (A||EA)(srs) which denotes
that A outputs a on input srs, and EA outputs x given the same input srs, and A’s random tape. We
denote by Pr

[
A : B

]
the conditional probability of an event A under the condition B.

2.1 Indexed relations

Definition 1 (Indexed relation [CHM+20]). An indexed relation R is a set of triples (i, x,w) where
i is the index, x is the instance, and w is the witness; the corresponding indexed language L(R) is the
set of pairs (i, x) for which there exists a witness w such that (i, x,w) ∈ R. Given a size bound N ∈ N, we
denote by RN the restriction of R to triples (i, x,w) ∈ R with |i| ≤ N.

2.2 Zero-knowledge Arguments of Knowledge with preprocessing

A zero-knowledge proof (or argument)5 for L allows a prover P to convince a verifier V that x ∈ L for a
common input x without revealing w. A proof of knowledge captures not only the truth of a statement
x ∈ L, but also that the prover is in “possession” of a witness w.

Definition 2 (Preprocessing Argument with Universal SRS [CHM+20]). A Preprocessing Argu-
ment with Universal SRS is a tuple ARG = (S, I,P,V) of four algorithms. S is a probabilistic polynomial-
time setup algorithm that given a bound N ∈ N samples a structured reference string srs supporting indices
of size up to N. The indexer algorithm I is deterministic and, given oracle access to srs produces a prov-
ing index key and a verifier index key, used respectively by P and V. The latter two are probabilistic
polynomial-time interactive algorithms.
Completeness For all size bounds N ∈ N and efficient A,

Pr

(i, x,w) 6∈ RN ∨
〈P (ipk, x,w) ,V (ivk, x)〉 = 1

:
srs← S(1κ,N)

(i, x,w)← A(srs)
(ipk, ivk)← Isrs(i)

 = 1

Knowledge Soundness For every N ∈ N and efficient adversary P̃ =
(
P̃1, P̃2

)
there exists an efficient

extractor E such that

Pr

(i, x,w) 6∈ RN ∧〈
P̃2 (st) ,V (ivk, x)

〉
= 1

:

srs← S(1κ,N)
(i, x, st)← P̃1(srs)

w← E(srs)
(ipk, ivk)← Isrs(i)

 = negl(λ)

Above we assumed the extractor takes in input the same random tape as the malicious prover.
Perfect Zero-Knowledge There exists an efficient simulator Sim = (Setup,Prove) such that for every
efficient adversary Ṽ = (Ṽ1, Ṽ2) it holds that

Pr

(i, x,w) ∈ RN ∧〈
P (ipk, x,w) , Ṽ2 (st)

〉
= 1

:
srs← S(1κ,N)

(i, x,w, st)← Ṽ1(srs)
(ipk, ivk)← Isrs(i)

 =

Pr
(

(i, x,w) ∈ RN ∧〈
Sim.Prove (trap, i, x) , Ṽ2 (st)

〉
= 1

:
(srs, trap)← Sim.Setup(1κ,N)

(i, x,w, st)← Ṽ1(srs)

)
Succinctness We call the argument succinct if the communication complexity between prover and verifier
is bounded by poly(κ) · polylog(|x|+ |w|).
5 We use proof and argument as synonymous in this paper, as we are only interested in computational soundness.

7

We have the following two optional requirements on the arguments defined above. We say that an
argument is public-coin if all the messages from the verifier are uniformly random strings of a bounded
length. We say it is updatable if there exists an update algorithm that can be run by anyone at any time
and to update the SRS. this algorithm guarantees security as long as at least one of the (sequential)
updates have been carried out honestly.

2.3 Σ-Protocols and Pedersen Vector Commitment

Σ-protocols are interactive proof systems consisting of three rounds. In a Σ-protocol, the prover sends a
message a, the verifier replies with a random bit string c, and the prover responds with z. The verifier
decides to accept or reject based on the transcript (a, c, z). A Σ-protocol can be efficiently compiled
into a non-interactive zero-knowledge proof of knowledge (in the random oracle model) through the
Fiat-Shamir transform [FS87]. Throughout the paper, we use the Pedersen commitment scheme [Ped92]
as the algebraic commitment, which gives unconditional hiding and computational binding properties
based on the hardness of computing the discrete logarithm in a group G of prime order q. Given two
random generators G,H ∈ G such that logGH is unknown, a value x ∈ Zq is committed to by choosing
r randomly from Zq, and computing GxHr. We write Comq(x; r) to denote a Pedersen commitment
to x with randomness r in a group of order q, and omit the subscript when the group is clear. A
Pedersen commitment to a vector x ∈ Zdq is computed as Com(x; r) = GxHr = (

∏d
i=1 G

xi
i)Hr where

G = (G1, . . . , Gd) are randomly chosen generators with unknown relative discrete logarithms.

2.4 Algebraic Holographic Proofs

Below we recall the definition of AHP from Marlin.

Definition 3 (AHP [CHM+20]). An Algebraic Holographic Proofs (AHP) over a field family F for
an indexed relation R is specified by a tuple

AHP = (k, s, d, I,P,V)

where k, s, d : {0, 1}∗ → N are polynomial-time computable functions and I,P,V are three algorithms
known as the indexer, prover, and verifier. The parameter k specifies the number of interaction rounds,
s specifies the number of polynomials in each round, and d specifies degree bounds on these polynomials.
The protocol proceeds as follows:
– Offline phase The indexer I receives as input a field F ∈ F and index i for R, and outputs s(0)

polynomials p0,1, . . . , p0,s(0) ∈ F[X] of degrees at most d(|i|, 0, 1), . . . , d(|i|, 0, s(0)) respectively. Note
that the offline phase does not depend on any particular instance or witness, and merely considers
the task of encoding the given index i.

– Online phase Given an instance x and witness w such that (i, x,w) ∈ R, the prover P receives
(F, i, x,w) and the verifier V receives (F, x) and oracle access to the polynomials output by I(F, i).
The prover P and the verifier V interact over k = k(|i|) rounds. For i ∈ [k], in the i-th round of
interaction, the verifier V sends a message ρi ∈ F∗ to the prover P; then the prover P replies with
s(i) oracle polynomials pi,1, . . . , pi,s(i) ∈ F[X]. After k interactions, the verifer outpus additional
randomness ρk+1 ∈ F∗ which serves as auxiliary input to V in subsequent phases. We note that
ρ1, . . . , ρk, ρk+1 ∈ F∗ are public and uniformly random strings.

– Query phase Let p = (pi,j)i∈[k],j∈[s(i)] be a vector consisting of all polynomials sent by the prover
P. The verifier may query any of the polynomials it has received any number of times. Concretely,
V executes a subroutine QV that receives (F, x; ρ1, . . . , ρk+1) and outputs a query set Q consisting of
tuples ((i, j), z) to be interpreted as “query pi,j at z ∈ F”. We denote a vector consisting of query
answers p(Q).

– Decision phase The verifier outputs “accept” or “reject” based on the answers to the queries (and the
verifier’s randomness). Concretely, V executes a subroutine DV that receives (F, x,p(Q); ρ1, . . . , ρk+1)
as input, and outputs the decision bit.
The function d determines which provers to consider for the completeness and soundness properties
of the proof system. In more detail, we say that a (possibly malicious) prover P̃ is admissible for
AHP if, on every interaction with the verifier V, it holds that for every round i ∈ [k] and oracle index
j ∈ [s(i)] we have deg(pi,j) ≤ d(|i|, i, j). The honest prover P is required to be admissible under this
definition.

8

We require an AHP to satisfy completeness, (knowledge) soundness and zero-knowledge as defined
below.

Completeness. An AHP is complete if for all F ∈ F and any (i, x,w) ∈ R, the checks returned by
VI(F,i)(F, x) after interacting with (honest) P(F, i, x,w) are always satisfied.
Soundness. An AHP is ε-sound if for every field F ∈ F , relation-instance tuple (i, x) 6∈ LR and prover
P∗ we have Pr[〈P∗,VI(F,i)(F, x)〉 = 1] ≤ ε.
Knowledge Soundness. An AHP is ε-knowledge-sound if there exists a polynomial-time knowledge
extractor E such that for any prover P∗, field F ∈ F , relation i, instance x and auxiliary input z:

Pr
[
(i, x,w)∈ R : w← EP∗(F, i, x, z)

]
≥ Pr[〈P∗(F, i, x, z),VI(F,i)(F, x)〉=1]− ε

where E has oracle access to P∗, i.e., it can query the next message function of P∗ (and rewind it) and
obtain all the messages and polynomials returned by it.
Zero-Knowledge. The property of (b,C)−Zero-Knowledge for AHPs models the existence of a simulator
that can interact with a malicious verifier and can effectively simulate under two conditions: there is a
bound b on the number of evaluation queries asked by the verifier; these queries need to satisfy an
admissible test modelled a a circuit C. We say an AHP is zero-knowledge for some bound b = poly(λ)
and some efficient checker circuit C. We refer the reader to Section 4 in [CHM+20] for formal details.

Public coins and non-adaptive queries. In the remainder of this work, we only consider AHPs that
are public coin and non-adaptive: the messages of the verifier are random elements and its checks are
independent of the prover’s messages.

2.5 Polynomial Commitment

Below we recall the definition of standard polynomial commitment scheme. The definition is taken ver-
batim from Section 6.1 of [CHM+20].

Definition 4 (Polynomial Commitment Scheme). A polynomial commitment scheme over a field
family F is a tuple PC = (Setup,Trim,Com,Open,Check) such that
– Setup(1κ, D) → pp. On input a security parameter κ, and a maximum degree bound D ∈ N, Setup

samples public parameters pp. The parameters contain the description of a finite field F ∈ F .
– Trimpp(1κ,d)→ (ck, rk). Given oracle access to public parameters pp, and on input a security param-

eter κ, and degree bounds d, Trim deterministically computes a key pair (ck, rk) that is specialized to
d.

– Comck(p,d;ω)→ c. On input ck, univariate polynomials p = (pi)ni=1 over the field F with deg(pi) ≤
di ≤ D, Com outputs commitments c = (ci)ni=1 to the polynomials p. The randomness ω is used if
the commitments c are hiding.

– Openck(p,d, Q, ξ;ω) → π. On input ck, univariate polynomials p, degree bounds d, a query set Q
consisting of (i, z) ∈ [n] × F, and opening challenge ξ, Open outputs an evaluation proof π. The
randomness must equal the one previously used in Com.

– Checkrk(c,d, Q,v, π, ξ) ∈ {0, 1}. On input rk, commitments c, degree bounds d, query set Q, alleged
evaluations v = (v(i,z))(i,z)∈Q, evaluation proof π, and opening challenge ξ, Check outputs 1 iff π
attests that, for every (i, z) ∈ Q, the polynomial pi evaluates to v(i,z) at z.

We recall a set of basic properties that the KZG scheme [KZG10] and its variant described in Marlin
already satisfy.
Completeness. For every maximum degree bound D ∈ N and efficient adversary A,

Pr

deg(p) ≤ d ≤ D

=⇒ Checkrk(c,d, Q,v, π, ξ)
:

pp← Setup(1κ, D)
(p,d, Q, ξ,ω)← A(pp)
(ck, rk)← Trimpp(1κ,d)

c← Com(ck,p,d;ω)
v← p(Q)

π ← Open(ck,p,d, Q, ξ;ω)

= 1

9

Succinctness. We require the commitments and the evaluation proofs to be of size independent of the
degree of the polynomials, that is |c| = n · poly(λ), |π| = |Q| · poly(λ), |rk| = n · poly(λ). We also require
the verifier Check to run in time (n+ |Q|)n · poly(λ).
Extractability. From any adversary that can satisfactorily prove evaluations v and degree bounds d over
polynomial commitments c we should be able to extract: (i) polynomials p consistent with the proofs,
(ii) randomness ω through which c opens to p. The complete formal definition is quite involved; we refer
the reader to [CHM+20, Definition 6.2] for details.
Polynomial Binding. We require that it is infeasible for any adversary to open the same commitment
to two different polynomials. Formally, for every maximum degree bound D ∈ N, security parameter κ
and efficient adversary A,

Pr

 p1 6= p2

∧ c = Com(ck,p1,d;ω1)
∧ c = Com(ck,p2,d;ω2)

:
pp← Setup(1κ, D)

(c,p1,p2,d,ω1,ω2)← A(pp)
(ck, rk)← Trimpp(1κ,d)

 ≤ negl(κ)

Hiding. We require the existence of a stateful simulator Sim =
(Sim.Setup,Sim.Commit,Sim.Open) such that an adversary cannot distinguish whether it is interacting
with an honest execution or a simulated one. We refer the reader to [CHM+20] for the full definition.
Homomorphism. A PC is additively homomorphic if for every D ∈ N, every d such that di ≤ D, every
query set Q, every opening challenge ξ, every p1,p2,ω1,ω2 that are consistent with the degree bound
d,6

Pr

c1 + c2 = Comck(p1 + p2,d;ω1 + ω2) :

pp← Setup(1κ, D);
(ck, rk) = Trimpp(1κ,d)
c1 = Comck(p1,d;ω1)
c2 = Comck(p2,d;ω2)

 = 1

2.5.1 The KZG scheme. Below we recall the polynomial commitment scheme due to Kate–Zaverucha–
Goldberg [KZG10], denoted by PCKZG. The scheme is proven extractable under the strong Diffie–Hellman
(SDH) assumption in the algebraic group model (AGM) [FKL18], polynomial binding under the discrete-
log assumption, and perfectly hiding [CHM+20, KZG10]. For simplicity we omit challenge ξ used for
batch opening as well as the Trim function, and set ck = rk = pp. See Appendix B of [CHM+20] for
details of such optimization techniques.
– Setup(1κ, D) → (g, gχ, . . . , gχD , g, gγχ, . . . , gγχD , hχ) where it determines a bilinear group public pa-

rameters (q,G1,G2,GT , e, g, h), with g ∈ G1 and χ, γ ∈ F are randomly chosen. We denote exponen-
tiation in Gi by [·]i.

– Comck(p,D;ω)→ [p(χ) + γω(χ)]1, where ω ∈ F<D[X] is a random masking polynomial.

– Openck(p,D, z;ω) computes W (X) = p(X)−p(z)
X−z , W̄ (X) = ω(X)−ω(z)

X−z , Π := [W (χ) + γW̄ (χ)]1, v̄ :=
W̄ (z) and outputs π := (Π, v̄).

– Checkrk(c,D, z, v, π) checks e(Π, [χ]2/[z]2) ?= e(C/([v]1 · [γv̄]1), h).

3 AHP-to-CP-SNARK compiler

In this section, we present our general compiler from AHPs to commit-and-prove SNARKs.

3.1 Additional Preliminaries for Compiler

Auxiliary Commitment Scheme AC We will assume a commitment scheme AC for Auxiliary Commit-
ments. They are “auxiliary” in the sense that they are used as auxiliary inputs to parts of the witness. We
assume AC to satisfy the standard properties of (computational) binding and (computational or other-
wise) hiding. As we explicitly support a vector x ∈ Fd as committed message, the definition is specialized
for a vector commitment scheme. Specifically we assume AC = (Gen,Com) such that AC.Gen(1λ, d)→ ack
is a randomized algorithm returning a commitment key ack for messages of dimension d ∈ N, and
AC.Comack(x; r) is a committing algorithm returning a commitment ĉ on input x ∈ Fd for d = poly(λ)
and some randomness r.
6 Note that we are implicitly assuming that commitment randomness is given in the form of polynomials, while
the definition of PC in [CHM+20] considers it as a random seed to derive such masking polynomials.

10

Remark 1. In our concrete instantiations, we use the Pedersen vector commitment scheme (Sect. 2.3) as
AC.

Commit-and-Prove Relation Our goal is to construct a general compiler that turns AHP for R into
ARG for the relation over commitments Rcom. Throughout we assume an indexed relation where the
witness can be represented as a vector in Fn.

Definition 5 (Commit-and-prove relation). Let R be an indexed relation, AC a commitment scheme
as defined above and ack an auxiliary commitment key in the range of AC.Gen. We define the corresponding
commit-and-prove relation

Rcom =

 ((i,m, `, d, Icom, (Ik)k∈[`], ack),
(x, (ĉk)k∈[`]), ((wi)i∈[n], (rk)k∈[`]))

:

(i, x, (wi)i∈[n]) ∈ R ∧
Icom ⊂ [n] ∧ |Icom| = `d ∧

Icom =
⋃
k∈[`] Ik ∧ |Ik| = d ∧

ĉk = AC.Comack((wi)i∈Ik ; rk)

3.2 Additional properties for AHP

We present basic properties that the underlying AHPs of PLONK, Marlin and Sonic already satisfy.
First we describe our variant of Definition 3.3 from [CFF+20]: straight-line extractability for algebraic
holographic proofs. We note that our definition is in the AHP model, while that in [CFF+20] is for
Polynomially Holographic Proofs. The reason why we explicitly define witness-carrying polynomials is
that our compiler needs to identify a minimum set of polynomials containing enough information about
the whole witness, with which auxiliary commitments are shown to be consistent. Note that we also
restrict WitExt to be deterministic so that it can be essentially seen as a witness decoding algorithm that
works for both honest and malicious provers once and for all.

Definition 6 (AHP with S-straight-line extractor). Fix AHP for indexed relation R and index
set S ⊆

{
(i, j) : i ∈ [k], j ∈ [s(i)]

}
. An AHP is ε-knowledge sound with S-straight-line extractor if there

exists an efficient deterministic extractor WitExt such that for any P∗, every field F ∈ F , every index i
and instance x,

Pr[(i, x,WitExt({pi,j(X)}(i,j)∈S)) ∈ R] ≥ Pr[〈P∗,VI(F,i)〉(F, x) = 1]− ε

where {pi,j(X)}(i,j)∈S is a subset of the polynomials output by P∗ in an execution of 〈P∗,VI(F,i)〉(F, x).
Let W be a smallest set such that there exists an efficient extractor satisfying the condition above. Then
we say that {pi,j(X)}(i,j)∈W are witness-carrying polynomials of AHP. If all witness-carrying polynomials
are sent during the same round kw ≤ k, we call kw a witness-committing round.

Definition 7 (Disjoint witness-carrying polynomials). We say that witness-carrying polynomials
are disjoint if there exists some disjoint index sets Ii,j such that [n] =

⋃
(i,j)∈W Ii,j and the corresponding

WitExt independently invokes WitExti,j on pi,j to obtain (wι)ι∈Ii,j .

Remark 2. Let nw = |W |. For Marlin and Sonic we have nw = 1 and kw = 1; for PLONK we have nw = 3
and kw = 1 and disjoint witness-carrying polynomials. In our compiler formalization, we always assume
that W is such that kw is minimum, and that AHP has a witness-committing round.

The following two definitions are needed to guarantee completeness of our compiler.

Definition 8 (Unique extraction). We say that an S-straight-line extractor WitExt performs unique
extraction, if for any honest prover P, every (i, x,w) ∈ R, WitExt({pi,j(X)}(i,j)∈S) = w, where {pi,j(X)}(i,j)∈S
is a subset of the polynomials output by P in an execution of 〈P(w),VI(F,i)〉(F, x).

Definition 9 (Decomposable witness-carrying polynomials). Let W be an index set of witness-
carrying polynomials of AHP. We say that polynomials (pi,j(X))(i,j)∈W of AHP are decomposable if there
exists an efficient function Decomp((pi,j(X))(i,j)∈W , I) → (p(1)

i,j (X), p(2)
i,j (X))(i,j)∈W such that it satisfies

the following properties for any I ⊂ [n].

– Additive decomposition: pi,j(X) = p
(1)
i,j (X) + p

(2)
i,j (X) for (i, j) ∈W .

– Degree preserving: deg(p(1)
i,j (X)) and deg(p(2)

i,j (X)) are at most deg(pi,j(X)) for (i, j) ∈W .

11

– Non-overlapping: Let w = WitExt((pi,j(X))(i,j)∈W), w(1) = WitExt((p(1)
i,j (X))(i,j)∈W), and w(2) =

WitExt((p(2)
i,j (X))(i,j)∈W). Then

(wi)i∈I = (w(1)
i)i∈I (wi)i/∈I = (w(2)

i)i/∈I (w(1)
i)i/∈I = 0 (w(2)

i)i∈I = 0

3.3 Our compiler

In order to prove the relation above, our compiler will use a commit-and-prove NIZKAoK subprotocol
CPlnk for following relation.

Definition 10 (Commitment-linking relation). Suppose AHP with W -straight-line extractor and
witness carrying polynomials, a polynomial commitment scheme PC, and an auxiliary commitment scheme
AC are fixed. We define the linking relation

Rlnk =

((n, `, d, Icom, (Ik)k∈[`], ck, ack),
((ĉk)k∈[`],v, Q,

(ccom
i,j (X), cmid

i,j (X))(i,j)∈W),
((pcom

i,j (X), pmid
i,j (X))(i,j)∈W ,

(ωcom
i,j (X), ωmid

i,j (X))(i,j)∈W ,
(rk)k∈[`]))

:

Icom ⊂ [n] ∧ |Icom| = `d ∧
Icom =

⋃
k∈[`] Ik ∧ |Ik| = d ∧

ccom
i,j = PC.Comck(pcom

i,j (X), d(|i|, i, j);ωcom
i,j) ∧

cmid
i,j = PC.Comck(pmid

i,j (X), d(|i|, i, j);ωmid
i,j) ∧

ĉk = AC.Comack((wi)i∈Ik ; rk) where
w = WitExt((pcom

i,j (X) + pmid
i,j (X))(i,j)∈W) ∧

v((i,j),z) = pcom
i,j (z) + pcom

i,j (z) for all ((i, j), z) ∈ Q such that (i, j) ∈W

Remark 3. Although the correctness of polynomial evaluation (i.e., the condition “v((i,j),z) = pcom

i,j (z) +
pcom
i,j (z)”) is part of Rlnk, we remark that this is redundant since it is to be proven by the opening

algorithm of PC outside CPlnk anyway. Looking ahead, security proof of our compiler indeed holds even
without showing such a condition within CPlnk. We rather include this for the ease of proving knowledge
soundness of CPlnk; in concrete instantiations, an extractor of CPlnk typically needs to extract what is
committed to cmid

i,j by internally invoking an extractor of PC, which however is only guaranteed to succeed
if the evaluation proof is valid. Hence, by letting CPlnk take care of evaluation proof by default we can
easily make such an argument go through. In later sections our CPlnk for Sonic takes advantage of this
generalization, while the ones for PLONK and Marlin don’t since they create a special evaluation proof
independent of the AHP query phase.

Intuition about the compiler. The compiler in Figure 1 is close to those in Marlin [CHM+20], Lu-
nar [CFF+20] and DARK [BFS20]. One important difference is the use of polynomial decomposition
where the prover will commit separately to each of the “parts” of the witness-carrying polynomials. This
separate commitment will allow efficiently proving the commitment-linking relation.

Theorem 1. Let F be a field family and R be an indexed relation. Consider the following components:
– AHP = (k, s, d, I,P,V) is a knowledge sound AHP for R with W -straight-line unique extractor, and

with a decomposition function Decomp for witness-carrying polynomials (pi,j(X))(i,j)∈W ;
– PC = (Setup,Com,Open,Check) is a homomorphic polynomial commitment over F with binding and

extractability;
– CPlnk = (Slnk,Plnk,Vlnk) is non-interactive argument of knowledge for Rlnk (Definition 10)

Then the construction of ARG = (S, I,P,V) in Fig. 1 is a preprocessing argument system for the relation
Rcom. If CPlnk is zero-knowledge and AHP is zero-knowledge as defined in Definition 3, then ARG is also
zero-knowledge.

Moreover, if witness-carrying polynomials are disjoint and Icom ⊂ Ii∗,j∗ for some (i∗, j∗) ∈ W , then
the above claim holds even if CPlnk shows a variant of Rlnk such that all “(i, j) ∈ W” are replaced by
(i∗, j∗) and WitExt is replaced by WitExti∗,j∗ .

Remark 4. While in the description of our compiler we generically commit all polynomials with the
same type of polynomial commitments, our instantiations use some ad-hoc tweaks. In particular, we
need to commit to the witness carrying polynomials using a special version of KZG (see for example
the input format of commitments in Figure 5) different than the one we use for the rest of the ora-
cle polynomials. Note that this is a standard optimization trick already used in previous works, e.g.,
[CHM+20],[GWC19],[MBKM19], and we are still able to satisfy the security requirements of the general
compiler this way.

12

Proof. Completeness. It follows from properties of the Decomp function, uniqueness of extraction, and
homomorphism of PC. Concretely, since PC is homomorphic and decomposition of polynomials is additive
and degree-preserving, it holds that

ccom
i,j + cmid

i,j = PC.Comck(pcom
i,j (X) + pmid

i,j (X), d(|i|, i, j);ωcom
i,j + ωmid

i,j)
= PC.Comck(pi,j(X), d(|i|, i, j);ωi,j).

Hence V always accepts evaluation of pi,j(X) during PC.Checkrk. Moreover, due to uniqueness of extraction
and properties of Decomp, if the instance-witness pair is in Rcom then we have that the inputs to CPlnk
prover satisfy relation Rlnk. In particular,

WitExt((pcom
i,j (X) + pmid

i,j (X))(i,j)∈W) = WitExt((pi,j(X))(i,j)∈W) = w.

Knowledge soundness. It follows from homomorphism and binding of PC, knowledge soundness of
CPlnk andW -straight-line extractability of AHP. Our goal is to extract a pair of witness ((wi)i∈[n], (rk)k∈[`])
that satisfies relation Rcom, given index (i,m, `, d, Icom, (Ik)k∈[`], ack) and statement (x, (ĉk)k∈[`]). Namely,
(wi)i∈[n] such that (i, x, (wi)i∈[n]) ∈ R and randomness rk for commitment ĉk such that its opening is
consistent with (wi)i∈Ik . At the high-level the extractor EARG works as follows:
1. Extract the polynomials from the polynomial commitments sent at each round through the extractor

for the polynomial commitments;
2. From these, for each (i, j) ∈W reconstruct the witness-carrying polynomials as p̃i,j(X);
3. On the other hand, extract auxiliary commitment randomness (r̃k)k∈[`] as well as decomposed witness-

carrying polynomials (pcom
i,j (X), pmid

i,j (X))(i,j)∈W such that pi,j(X) = pcom
i,j (X) + pmid

i,j (X), by invoking
the linking extractor.

4. Extract witness (w̃i)i∈[n] from the W -straight-line extractor as WitExt(p̃i,j(X))(i,j)∈W ;
5. Return ((w̃i)i∈[n], (r̃k)k∈[`]).
A more detailed version of the proof follows.
Suppose that P̃ convinces V of ARG with non-negligible probability. Assuming the existence of extractors
EPC for PC and Elnk for CPlnk, we show the existence of another extractor EARG that outputs a valid
witness w̃ for Rcom with non-negligible probability, given access to P̃.
– First we construct an adversary APC against the extractability game for PC. The APC receives ck

and random coins as input, and internally invokes P̃ to obtain a set of commitments (c̃i,j)i∈[k],j∈[s(i)],
where for (i, j) ∈W it holds that c̃i,j = c̃com

i,j + c̃mid
i,j .

– We then invoke an extractor EPC who, given the same input as that ofAPC, outputs a set of polynomials
p̃ := (p̃i,j)i∈[k],j∈[s(i)]. If the cheating prover P̃ convinces the ARG verifier V, then the evaluation
proof π̃Eval is valid w.r.t. the alleged evaluations ṽ := (ṽi,j)i∈[k],j∈[s(i)]. Hence if EPC fails to extract
polynomials (i.e., p̃(Q) 6= ṽ), then APC wins the extractability game, which, however, happens with
negligible probability under our assumption. So below we assume that with overwhelming probability
p̃(Q) = ṽ.

– Second we construct another adversary Alnk against the knowledge soundness game for CPlnk. The
Alnk receives a statement for Rlnk and random coins as input, and internally invokes P̃ to obtain a
linking proof π̃lnk.

– We then invoke another extractor Elnk who, given the same input as that of Alnk, outputs the cor-
responding witness ((p̃com

i,j (X), p̃mid
i,j (X))(i,j)∈W , (ω̃com

i,j (X), ω̃mid
i,j (X))(i,j)∈W , (r̃k)k∈[`]). If the cheating

prover P̃ convinces the ARG verifier V, then linking proof π̃lnk is valid w.r.t. the commitments (ĉk)k∈[`]
and (c̃com

i,j (X), c̃mid
i,j (X))(i,j)∈W . Hence if Elnk fails to extract the witness, then Alnk wins the knowledge

soundness game, which, however, happens with negligible probability under our assumption.
– Now we construct a cheating prover P̃ for AHP. The P̃ internally invokes EPC and Elnk to obtain

p̃ and ((p̃com
i,j (X), p̃mid

i,j (X))(i,j)∈W , (ω̃com
i,j (X), ω̃mid

i,j (X))(i,j)∈W , (r̃k)k∈[`]). The polynomials of the latter
satisfy relation Rlnk, i.e.,

c̃com
i,j = PC.Comck(p̃com

i,j (X), d(|i|, i, j); ω̃com
i,j)

c̃mid
i,j = PC.Comck(p̃mid

i,j (X), d(|i|, i, j); ω̃mid
i,j)

13

Due to the homomorphic property of PC, we have

c̃com
i,j + c̃mid

i,j = PC.Comck(p̃com
i,j (X) + p̃mid

i,j (X), d(|i|, i, j); ω̃com
i,j + ω̃mid

i,j)

If p̃com
i,j (X) + p̃mid

i,j (X) 6= p̃i,j(X) for some (i, j) ∈ W (recall that the latter was extracted by EPC),
then P̃ aborts, which only happens with negligible probability as the ability to find such polynomials
breaks binding of PC w.r.t. c̃com

i,j + c̃mid
i,j . Hence we may assume that p̃com

i,j (X) + p̃mid
i,j (X) = p̃i,j(X). In

that case, note that Rlnk relation also guarantees for every k ∈ [`]

ĉk = AC.Comack((w̃i)i∈Ik ; r̃k)

where w̃ = WitExt((p̃com
i,j (X) + p̃mid

i,j (X))(i,j)∈W) = WitExt((p̃i,j(X))(i,j)∈W).

To sum up, as long as (1) EPC is successful, i.e., P̃ outputs polynomials p̃ which form correct opening
to c̃, (2) Elnk is successful, i.e., P̃ internally obtains polynomials satisfying Rlnk, and (3) witness-carrying
polynomials extracted by EPC and Elnk are identical, it holds that V accepts whenever V accepts. This
indicates that P̃ convinces V with non-negligible probability if P̃ convinces V.

We finally let EARG invoke the W -straight-line extractor WitExt of AHP on witness-carrying polyno-
mials (p̃i,j(X))(i,j)∈W outputted by P̃. By definition of the extractor (w̃i)i∈[n] = WitExt((p̃i,j(X))(i,j)∈W)
satisfies (i, x, (w̃i)i∈[n]) ∈ R. Moreover, the committed part of witness (w̃i)i∈Ik is guaranteed to form
correct opening to ĉk with extracted randomness r̃k, thanks to the linking relation Rlnk. This implies
that a pair of extracted witness ((w̃i)i∈[n], (r̃k)k∈[`]) satisfies Rcom.

We argue a special case where witness carrying-polynomials are disjoint. In that case, we assume
CPlnk only guarantees that (w̃ι)ι∈Ii∗,j∗ = WitExti∗,j∗(p̃i∗,j∗) are consistent with auxiliary commitments.
This still retains knowledge soundness, since when WitExt is invoked on all extracted witness-carrying
polynomials at the end of EARG, we know that WitExt invokes WitExti,j independently on each p̃i,j to
obtain (w̃ι)ι∈Ii,j and index sets Ii,j are disjoint.

Zero knowledge. Our proof closely follows that of the compiler in [CHM+20] (Theorem 8.4). We provide
an overview and we stress when our proof diverges from theirs.

We construct a simulator SimARG by using the simulators SimPC from the polynomial commitment
(hiding property), the zero-knowledge simulator Simlnk of CPlnk and the zero-knowledge simulator SimAHP
of AHP.

Below we require that CPlnk is zero-knowledge with simulator Simlnk. Zero-knowledge for non-interactive
proof systems is standard and is a straightforward extension of the one we define for interactive-arguments
(see for example [Gro16]).

Consider a (stateful) malicious verifier Ṽ . After receiving the srs it outputs a tuple (indexer, statement,
witness):

((i,m, `, d, Icom, (Ik)k∈[`], ack), (x, (ĉk)k∈[`]), ((wi)i∈[n], (rk)k∈[`])).
During the online (proving) stage the input of SimARG consists of the statement ((i,m, `, d, Icom, (Ik)k∈[`], ack), (x, (ĉk)k∈[`]))
as well as the following elements computed by the setup simulator:
– the integer D computed as in the protocol setup for size bound N ;
– the output of SimPC.Setup (to obtain simulated parameters for polynomial commitment)
– the output of Simlnk.Setup (to obtain simulated parameters for CPlnk)).

For each round i ∈ [k], the simulator:
– receives challenge ρi from the verifier and forwards it to the AHP simulator SimAHP(x).
– samples commitment randomness and use SimPC to simulate all the commitments to oracle polyno-

mials in that round. This step is the same for both branches of Step 3 in the Online Phase of Figure 1
(both witness-carrying polynomials and not).

– sends commitments to verifier.
After the online phase the simulator runs Simlnk and sends the output to the verifier. Then:
– after receiving ρk+1 from the verifier, it runs the (honest) query algorithm to obtain a list of polyno-

mials queries Q from the transcript;
– checks that they are admissible using the checker circuit C (see definition of AHP zero-knowledge in

Definition 3)
– obtains simulated evaluations. In order to do this, it can run the indexer on input i to actually

obtain polynomials p0,j-s.For the evaluation points of the online phase, it forwards the query list Q
to SimAHP.

14

Finally SimARG simulates the evaluation proofs as follows:
– It receives an opening challenge ξ
– it simulates the evaluation proofs for polynomials through SimPC

We now argue this simulated view is indistinguishable from that of a malicious verifier. Recall from
definition of zero-knowledge for AHPs that the SimAHP can produce an indistinguishable transcript when-
ever the protocol carries out at most b queries that are admissible (i.e., they satisfy checker circuit C).
Since this is the case for our protocol we can invoke this property. It is then straightforward to argue
that SimPC leaks nothing more about these evaluations because of the hiding property of the polynomial
commitments. Invoking the zero-knowledge property of CPlnk completes the proof. ut

4 Compressed Σ-protocol for Equality

We describe how to construct an efficient protocol proving equality of committed vectors, following the
framework due to Attema, Cramer and Fehr [AC20, ACF20]. This allows us to instantiate CPlnk with
proof size of only O(log(`d)) when ` Pedersen commitments are received as inputs.

4.1 AmComEq: Amortization of ` commitment equality proofs

In our application, we would like to show equality of vectors within a single commitment containing
vector of size `d (corresponding to a polynomial commitment) and ` chunks of vector of size d in multiple
Pedersen commitments. Concretely, our goal is to give an efficient protocol for relation

RAmComEq =

((g,h,G,H, d, d′, d′′, `),

(C, Ĉ1, . . . , Ĉ`),
(w,α,β1, . . . ,β`))

:
C = gwhα, Ĉi = GwiHβi ,

g ∈ G`d,G ∈ Gd,h ∈ Gd′ ,H ∈ Gd′′ ,
wi ∈ Zdq ,α ∈ Zd′q ,βi ∈ Zd′′q ,w = [w1, . . . ,w`]

 (1)

where we assume d′ and d′′ are small constants (for concrete instantiations in later sections, we only need
d′ ≤ 4 and d′′ = 1). Our starting point is a naïve ComEq Σ-protocol proving equality of vectors committed
in two Pedersen commitments, with proof size of O(d) (see Appendix A). To avoid invoking ComEq
individually for many commitments we first amortize the statements. The main idea of amortization
is to introduce additional challenge x ∈ Zq and use it to take a random linear combination in the
exponent. A similar idea has appeared in many contexts, e.g., amortization of many range proofs in
Bulletproofs [BBB+18] and batch verification of EdDSA signatures. Note that the protocol below can be
seen as a slight variant of direct instantiation of the technique described by Attema–Cramer–Fehr [ACF20,
§3.4]. For completeness, in Fig. 11 we include a version derived by invoking their amortization of multiple
group homomorphisms in a black-box way. The advantage of our AmComEq over Fig. 11 is that it allows to
save ` group exponentiations on verifier’s side (i.e., computation of H̃), by letting the prover precompute
amortization of commitment randomness βi. However, the proof sizes are identical.

Note also that the protocol is 4-round where the first message is a challenge, which does not really fit
into the format of standard Fiat–Shamir transform [FS87]. However, one can easily make it applicable by
either introducing additional round where the prover first sends a dummy randomness, or let them send
A before receiving challenge x.

Theorem 2. AmComEq is a four-move protocol for the relation RAmComEq. It is perfectly complete, com-
putationally (`, 2)-special sound if finding non-trivial discrete-log relation for the generators [g,h] is hard,
and special HVZK. Moreover, the communication costs are:
– P → V: 2 elements of G and `d+ d′ + d′′ elements of Zq.
– V → P: 2 elements of Zq.

Proof. Completeness. It follows by inspection.
(`, 2)-special soundness. For every execution j ∈ [`], we fix the first challenge xj . Given two accepting
transcripts (xj , Aj , Âj , ej , zj ,ωj ,Ωj) and (xj , Aj , Âj , e′j , z′j ,ω′j ,Ω

′
j) for the same xj but with distinct

ej and e′j , we extract valid witness w.r.t C from the first verification condition gzjhωj = AjC
ej and

gz′jhω
′
j = AjC

e′j :

w̃j = (zj − z′j)/(ej − e′j), α̃j = (ωj − ω′j)/(ej − e′j)

15

Protocol ECLIPSE compiler

Setup S(1κ,N, d). The setup S on input a security parameter κ ∈ N and size bound N ∈ N, uses N to compute a maximum
degree bound D, samples pp← PC.Setup(1κ, D), samples ack← AC.Setup(1κ, d), and then outputs srs := (pp, ack). The integer
D is computed to be the maximum degree bound in AHP for indices of size N. In other words,

D := max{d(N, i, j)|i ∈ {0, 1, . . . , k(N)}, j ∈ {1, . . . , s(i)}}

Indexer Isrs(i, Icom, (Ik)k∈[`]). The indexer I upon input i, commitment index sets Icom, (Ik)k∈[`] and given oracle access to srs,
deduces the field F ∈ F contained in srs = (pp, ack), runs the AHP indexer I on (F, i) to obtain s(0) polynomials (p0,j)s(0)

j=1 ∈ F[X]
of degrees at most (d(|i|, 0, j))s(0)

j=1. Then it proceeds by computing (ck, rk) := PC.Trimpp(d), where d = (d(|i|, i, j))i∈[k],j∈[s(i)],
and generating (de-randomized) commitments to index polynomials (c0,j)s(0)

j=1 = PC.Comck((p0,j)s(0)
j=1). The indexer outputs

ipk := (ck, i, (p0,j)s(0)
j=1, (c0,j)s(0)

j=1, ack, Icom, (Ik)k∈[`]) and ivk := (rk, (c0,j)s(0)
j=1, ack, Icom, (Ik)k∈[`]).

Input. The ARG prover P receives (ipk, (x, (ĉk)k∈[`]), ((wi)i∈[n], (rk)k∈[`])) and the verifier V receives (ivk, (x, (ĉk)k∈[`])). If for any
k ∈ [`], ĉk 6= AC.Comack((wi)i∈Icom ; rk), then P aborts.

Online phase. For every round i ∈ [k], P and V run the i-th round of interaction between the AHP prover P(F, i, x,w) and
verifier V(F, x).
1. V receives random challenge ρi ∈ F from V, and forwards it to P.
2. P forwards ρi to P, which replies with polynomials pi,1, . . . , pi,s(i) ∈ F[X] with deg(pi,j) ≤ d(|i|, i, j).
3. P computes and outputs commitments as follows.

– If i = kw (i.e. witness-committing round), then P first decomposes witness-carrying polynomials as

(pcom
i,j (X), pmid

i,j (X))(i,j)∈W := Decomp((pi,j(X))(i,j)∈W , Icom)

such that pi,j(X) = pcom
i,j (X) + pmid

i,j (X).
– For every (i, j) ∈W , P sends

ccom
i,j := PC.Comck(pcom

i,j (X), d(|i|, i, j);ωcom
i,j)

cmid
i,j := PC.Comck(pmid

i,j (X), d(|i|, i, j);ωmid
i,j)

to V, where ωcom
i,j and ωmid

i,j are uniformly sampled masking polynomials according the polynomial commitment scheme.
P lets ωi,j := ωcom

i,j + ωmid
i,j . V computes ci,j := ccom

i,j + cmid
i,j .

– For every (i, j) /∈W , P sends

ci,j := PC.Comck(pi,j(X), d(|i|, i, j);ωi,j)

to V.
After k rounds of interaction, V obtains an additional challenge ρk+1 ∈ F∗ from the AHP verifier V, used in the next phase.
Let c := (ci,j)i∈[k],j∈[s(i)], p := (pi,j)i∈[k],j∈[s(i)], ω := (ωi,j)i∈[k],j∈[s(i)] and d := (d(|i|, i, j))i∈[k],j∈[s(i)].

Query phase.
1. V sends ρk+1 ∈ F∗ that represents randomness for the query phase of V(F, x) to P.
2. P uses the query algorithm of V to compute the query set Q := QV(F, x; ρ1, . . . , ρk, ρk+1).
3. P replies with answers v := p(Q).
4. V samples and sends an opening challenge ξ ∈ F to P.
5. P replies with an evaluation proof to demonstrate correctness of all claimed evaluations.

πEval := PC.Openck(p,d, Q, ξ;ω)

Linking phase. P invokes

CPlnk.P(((ĉk)k∈[`],v, Q, (ccom
i,j (X), cmid

i,j (X))(i,j)∈W), ((pcom
i,j (X), pmid

i,j (X))(i,j)∈W , (ωcom
i,j (X), ωmid

i,j (X))(i,j)∈W , (rk)k∈[`]))

to obtain and send linking proof πlnk.
Decision phase. V accepts if and only if the following conditions hold:

– the decision algorithm of V accepts the answers, i.e., DV(F, x,v, ρ1, . . . , ρk, ρk+1) = 1;
– the alleged answers pass the test, i.e., PC.Checkrk(c,d, Q,v, πEval, ξ) = 1;
– the alleged linking proof is verified, i.e.,

CPlnk.V(((ĉk)k∈[`],v, Q, (ccom
i,j (X), cmid

i,j (X))(i,j)∈W), πlnk) = 1;

Fig. 1. Compiler from AHP to Interactive AoK for Rcom. The differences with the Marlin compiler are marked in red.

16

Protocol AmComEq

1. V sends random challenge x ∈ Zq. Both parties compute

G̃ = [G,Gx, . . . ,Gx`−1
] ∈ G`d.

2. P samples random r ∈ Z`dq , δ ∈ Zd
′
q , γ ∈ Zd

′′
q , and sends

A = grhδ Â = G̃rHγ

3. V sends random challenge e ∈ Zq.
4. P sends

z = r + ew, ω = δ + eα, Ω = γ + e
∑̀
i=1

βix
i−1

5. V checks

gzhω ?= ACe, G̃zHΩ ?= Â

`∏
i=1

(Ĉx
i−1
i)e

Fig. 2. Four-move protocol for amortized equality of many vector Pedersen commitments.

such that C = gw̃jhα̃j . For some distinct execution paths, one may extract different witnesses. However, if
there’s any pair of such witnesses, one is able to find a non-trivial discrete-log relation for the vector [g,h].
Hence under the assumption stated in the theorem it is guaranteed that for every execution path j ∈ [`]
the same witness is extracted with overwhelming probability, i.e., (w̃, α̃) = (w̃1, α̃1) = . . . = (w̃`, α̃`).

Now we show that each i-th slot of w̃ = [w̃1, . . . , w̃`] corresponds to what is committed in Ĉi. First, we
get a value in the form of (Ωj −Ω′j)/(ej − e′j) from j-th execution path for j ∈ [`]. Thus we can extract
(β̃i)i∈[`] such that (Ωj − Ω′j)/(ej − e′j) =

∑`
i=1 β̃ix

i−1
j as these equations uniquely define a degree-`

polynomial β(X) =
∑`
i=1 β̃iX

i−1. From the second verification condition, we get in total ` equations of
the form ∏̀

i=1
Ĉ
xi−1
j

i = G̃(zj−z′j)/(ej−e′j)H(Ωj−Ω′j)/(ej−e′j) = G
∑`

i=1
w̃ix

i−1
j H

∑`

i=1
β̃ix

i−1
j . (2)

for every j ∈ [`]. Let us rewrite G = Gs1 . . . Gsd , H = Gt1 . . . Gtd′′ and Ĉi = Gui using some arbitrary
generator G ∈ G. Then Eq. (2) can be rewritten as follows.

G
∑`

i=1
uix

i−1
j = G

∑`

i=1
(s1w̃i,1+...+sdw̃i,d+t1β̃i,1+...+td′′ β̃i,d′′)x

i−1
j . (3)

As xj for j ∈ [`] are distinct with each other, we have ` evaluations for the polynomial u(X) =∑`
i=1 uiX

i−1. Hence u(X) can be uniquely determined as

u(X) =
∑̀
i=1

(s1w̃i,1 + . . .+ sdw̃i,d + t1β̃i,1 + . . .+ td′′ β̃i,d′′)Xi−1 mod q. (4)

Recalling that Ĉi = Gui , we get

Ĉi = G(s1w̃i,1+...+sdw̃i,d+t1β̃i,1+...+td′′ β̃i,d′′) = Gw̃iHβ̃i . (5)

Hence we conclude that every Ĉi indeed contains the witness (w̃i, β̃i).
Special HVZK. Given challenge x and e, the simulator samples random z ∈ Z`dq , ω ∈ Zd′q , Ω ∈ Zd′′q ,
and then the other messages can be perfectly simulated as follows.

A := gzhωC−e, Â := G̃zHΩ
∏̀
i=1

(Ĉx
i−1

i)−e

17

Protocol CompDLEq

Let g = [gL, gR], G = [GL,GR], z = [zL, zR] where each sub-vector is of dimension d/2.
1. P sends shifted commitments

L = gzL
R , R = gzR

L ,

L̂ = GzL
R , R̂ = GzR

L

2. V sends random challenge c ∈ Zq.
3. P computes

z′ = zL + czR

and both parties compute

Y ′ = LY cRc
2
, Ŷ ′ = L̂Ŷ cR̂c

2

g′ = gcL � gR, G′ = Gc
L �GR.

If d > 2 then they invoke CompDLEq for the next instance

((g′,G′, d/2), (Y ′, Ŷ ′), z′).

Otherwise, P sends z′ and V checks that

g′z
′ ?= Y ′, G′z

′ ?= Ŷ ′.

Fig. 3. Compressed Σ-protocol for equality of vector discrete logs

4.2 CompAmComEq: Recursive compression

The major drawback of AmComEq is that its proof size is still linear in the vector dimension `d, due to the
response vector z ∈ Z`dq . Notice however that once the rest of transcript x,A, Â, e,ω,Ω is fixed, it should
be sufficient to prove knowledge of z such that gz = Y := ACeh−ω and G̃z = Ŷ := Â

∏`
i=1(Ĉxi−1

i)eH−Ω,
instead of sending z. This is where the compressed Σ-protocol theory [AC20, ACF20, ACR20, ACK21]
comes into play. That is, the last move of AmComEq can invoke another protocol CompDLEq of proof size
O(log(`d)), for the relation

RDLEq =
{

((g, G̃, `d), (Y, Ŷ), z) : Y = gz, Ŷ = G̃z
}
. (6)

The protocol CompDLEq for RDLEq is described in Fig. 3. From [AC20, Theorem 2] we immediately
get the following result.

Theorem 3. CompDLEq is a (2µ + 1)-move protocol for the relation RDLEq, where µ = dlog2(`d)e − 1.
It is perfectly complete and unconditionally (k1, . . . , kµ)-special sound, where ki = 3 for all i ∈ [1, µ].
Moreover, the communication costs are:
– P → V: 4 dlog2(`d)e − 4 elements of G and 2 elements of Zq.
– V → P: dlog2(`d)e − 1 elements of Zq.

Let CompAmComEq be a protocol identical to AmComEq, except that its last move is replaced by
CompDLEq. Then we obtain the following.

Corollary 1. CompAmComEq is a (2µ+4)-move protocol for the relation RAmComEq, where µ = dlog2(`d)e−
1. It is perfectly complete and computationally (`, 2, k1, . . . , kµ)-special sound if finding non-trivial discrete-
log relation for the generators [g,h] is hard, where ki = 3 for all i ∈ [1, µ]. Moreover, the communication
costs are:
– P → V: 4 dlog2(`d)e − 2 elements of G and 2 + d′ + d′′ elements of Zq.
– V → P: dlog2(`d)e+ 1 elements of Zq.

18

Protocol AHPPLONK

Offline phase. The indexer I receives as input F ∈ F and i = (F, n,m, l,qL,qR,qO,qM ,qC , σ, TC), and computes the following
polynomial oracles as described in the text: selector polynomials (qL, qR, qO, qM , qC); preprocessed polynomials for permutation
argument (SL,ID, SR,ID, SO,ID, SL,σ, SR,σ, SO,σ); vanishing polynomial of H, vH(X) = Xn − 1.

Input. P receives (F, i, (wi)i∈[l], (wi)i∈[l+1,3n]) and V receives (F, (wi)i∈[l]) and oracle access to the polynomials output by I(F, i).
Online phase: first round. P computes fpub(X), fL(X), fR(X), fO(X) as described in Eq. (7) and sends (fL(X), fR(X), fO(X))

to V.
Online phase: second round. Upon receiving challenges β, γ ∈ F from the V, P computes hID(X), hσ(X) and a permutation

polynomial s(X) as described in Eqs. (26) and (27). Then P sends an oracle polynomial s(X) to V.
Online phase: third round. Upon receiving challenge α ∈ F from the V, P computes

FC(X) = qL(X)fL(X) + qR(X)fR(X) + qO(X)fO(X)
+ qM (X)fL(X)fR(X) + qC(X) + fpub(X)

F1(X) = hID(X)s(X)− hσ(X)s(ζX)
F2(X) = L1(X)(s(X)− 1)

T (X) = FC(X) + F1(X) · α+ F2(X) · α2

vH(X)

and sends an oracle polynomial T (X) to V.
Query phase. V queries online oracles (fL(X), fR(X), fO(X), s(X), T (X)) and all offline oracles with a random query point
z ∈ F. Moreover, it makes an additional query to the permutation polynomial s(X) with ζz.

Decision phase. V first computes fpub(X) as described in the text. Then V constructs FC(z) (see (18)), F1(z) and F2(z) based
on the outputs of polynomial oracles. It then checks that (FC(z) + F1(z) · α+ F2(z) · α2) = T (z) · vH(z).

Fig. 4. AHP for R′PLONK

5 Instantiation with PLONK

In this section we apply our ECLIPSE compiler to PLONK. We first go over the essential part of the
PLONK protocol, using the language of AHP. More detailed preliminaries are provided in Appendix B.

5.1 PLONK AHP

We consider a arithmetic circuit with fan-in two over F, consisting of n gates. The PLONK AHP essentially
proves knowledge of left, right and output wire values for every gate i ∈ [n] in the circuit, such that they
are also consistent with the constraints determined by the circuit topology. The per-gate constraints are
specified by selector vectors qL,qR,qO,qM ,qC ∈ Fn. We call C = (n,m,L,R,O,qL,qR,qO,qM ,qC)
constraint systems.

AHPPLONK relies on a multiplicative subgroup H =
{
ζ, ζ2, . . . , ζn

}
⊂ F∗ generated by an nth primitive

root of unity ζ ∈ F∗. It follows that an associated vanishing polynomial vH(X) = Xn−1 splits completely
in F[X], i.e., Xn − 1 =

∏n
i=1(X − ζi). Then we have the corresponding Lagrange basis Li(X) ∈ F<n[X]

for i ∈ [n] such that Li(ζi) = 1 and Li(ζj) = 1 for j 6= i.
During the first round of AHPPLONK (Fig. 4), the prover sends the following polynomials encoding

both statement and witness ((wi)i∈[l], (wi)i∈[l+1,3n]):

fL(X) =
∑
i∈[n]

wiLi(X) fR(X) =
∑
i∈[n]

wn+iLi(X) fO(X) =
∑
i∈[n]

w2n+iLi(X) (7)

To achieve zero-knowledge these polynomials are masked by blinding terms (bL,1X + bL,2)vH(X),
(bR,1X + bR,2)vH(X) and (bO,1X + bO,2)vH(X) where each coefficient is randomly sampled by the AHP
prover.

5.2 CP-PLONK

Our goal is to turn AHPPLONK into CP-PLONK with our compiler. We first describe a commit-and-
prove variant of relation R′PLONK. We assume without loss of generality that every committed witness
(wi)i∈Icom is left input to gate i. Then we use the following disjoint witness index sets: Ipub = [l], Icom =

19

[l+1, l+`d], Imid = [l+`d+1, n], assuming that wl+1, . . . ,wl+`d are `d witness values committed in advance.
Moreover, suppose every vector compound of d values (wi)i∈Ik , where Ik = [l + 1 + d(k − 1), l + dk], is
committed into kth auxiliary commitment Ĉk for k ∈ [`]. Then we have Icom =

⋃
k∈[`] Ik.

Definition 11 (CP-PLONK indexed relation). The indexed relation RCP-PLONK is the set of all triples

((F, n,m, l,qL,qR,qO,qM ,qC , σ, TC , Icom, (Ik)k∈[`], ack), ((wi)i∈[l], (Ĉk)k∈[`]), ((wi)i∈[l+1,3n], (rk)k∈[`]))

such that

∀i ∈ [n] : wi = wσ(i)

∀i ∈ [l] : (qL)i · wi + (qR)i · wn+i + (qO)i · w2n+i + (qM)iwiwn+i + (qC)i − wi = 0
∀i ∈ [l + 1, n] : (qL)i · wi + (qR)i · wn+i + (qO)i · w2n+i + (qM)iwiwn+i + (qC)i = 0

∀k ∈ [`] : ĉk = AC.Comack((wi)i∈Ik ; rk)

5.2.1 Applying our compiler We show that AHPPLONK as well as the polynomial commitment scheme
meets the requirements of Theorem 1.
– Decomp takes nw = 3 (blinded) witness-carrying polynomials (fL, fR, fO) and Icom ⊂ [n], parses fL

as
∑
i∈[n] wiLi(X) + (b1X + b2)vH(X), and decompose them as follows.

fL,com(X) :=
∑
i∈Icom

wiLi(X) + (ρ1X + ρ2)vH(X) fR,com(X) := 0 fO,com(X) := 0

fL,mid(X) :=
∑

i∈[n]\Icom

wiLi(X) + (λ1X + λ2)vH(X) fR,mid(X) := fR(X) fO,mid(X) := fO(X)

where ρi’s are randomly chosen and λi := bi − ρi. Clearly, the decomposition is additive and degree-
preserving.

– WitExt takes witness-carrying polynomials (fL, fR, fO) and uniquely extracts witness vectors for every
i ∈ [n]

wi = fL(ζi) wn+i = fR(ζi) w2n+i = fO(ζi)

As it’s independently extracting witness values within disjoint index sets IL = [n], IR = [n + 1, 2n],
and IO = [2n+ 1, 3n], respectively, we have that fL, fR and fO are disjoint (see Definition 7).

– As PLONK retains zero-knowledge by blinding witness-carrying polynomials, but without hiding
commitment, we use de-randomized version of PCKZG.Comck (see Sect. 2.5.1) that takes polynomial
f ∈ F<D[X] and outputs [f(χ)]1. Clearly, this is an additively homomorphic commitment scheme.
Its binding and extractability were formally shown in Appendix B-D of [CHM+20]. As mentioned in
[GWC19] and from how WitExt works, the knowledge soundness of PLONK holds only by enforcing
degree bound to the maximum degree D for committed polynomials so the plain KZG construction
should suffice for compiling AHPPLONK.
We now define a suitable commitment-linking protocol CPlnk in Fig. 5. Since witness-carrying poly-

nomials are disjoint it is enough to provide linking w.r.t a polynomial fL. The main idea is to (1) prove
consistency between fL,com and auxiliary commitments Ĉk with the AmComEq protocol from previous
section, and (2) force the prover to show fmid vanishes at all points in Hcom =

{
ζi
}
i∈Icom

. The latter is
in particular crucial for WitExt to successfully output a witness vector consistent with auxiliary commit-
ments, even after taking the sum of fL,com and fL,mid. This step only incurs constant overhead in the
evaluation proof thanks to the batch evaluation technique proposed in [BDFG20]. On the other hand, the
consistency between fcom and ` vector Pedersen commitments Ĉk = G(wi)i∈IkHrk for k ∈ [`] are handled
by CompAmComEq protocol (see Sect. 4).

Lemma 1. Assuming extractability of PCKZG and argument of knowledge of CompAmComEq, the protocol
CPlnk (Fig. 5) is an argument of knowledge.

Proof. First, the extractor Elnk obtains fL,mid(X) ∈ F<D[X] such that [fL,mid(χ)]1 = CL,mid and fL,mid(ζi) =
0 for i ∈ Icom, by internally invoking an extractor EKZG, which succeeds with overwhelming probability
as long as a malicous prover Plnk convinces the verifier.

20

Second, Elnk invokes an extractor EComEq for the CompAmComEq protocol, which outputs (wi)i∈Icom

and (rk)k∈[`] such that Ĉk = AC.Comack((wi)i∈Ik ; rk) for k ∈ [`], and CL,com = [
∑
i∈Icom

wiLi(χ) + (ρ1χ+
ρ2)vH(χ)]1. So we obtain fL,com(X) =

∑
i∈Icom

wiLi(X) + (ρ1X + ρ2)vH(X).
Let fL(X) := fL,com(X) + fL,mid(X). Due to the 0-evaluation proof output by Plnk, it holds that

fL(X) and fL,com(X) agree on Hcom, i.e., fL(ζi) = fL,com(ζi) + fL,mid(ζi) = fL,com(ζi) = wi for each
i ∈ Icom (recall that the term (ρ1X + ρ2)vH(X) vanishes anyway). Hence if WitExt is invoked on fL it
does extract witness (wi)i∈Icom consistent with (Ĉk)k∈[`], which is guaranteed by EComEq.

Lemma 2. Assuming zero knowledge of Fiat–Shamir-transformed CompAmComEq, the protocol CPlnk is
zero-knowledge in the SRS model.

Proof. To simulate πComEq we simply invoke the zero-knowledge simulator for CompAmComEq made non-
interactive with Fiat–Shamir [FS87]. To simulate the evaluation proof Π the simulator uses the trapdoor
χ used for generating the commitment key to compute Π := C

1/vHcom (χ)
L,mid .

Protocol CPlnk for PLONK

Preprocessing. Both parties receive srs, Icom and precompute [vHcom (χ)]2 such that

vHcom (X) =
∏

a∈Hcom

(X − a), Hcom =
{
ζi : i ∈ Icom

}
⊂ H

Input. Both Plnk and Vlnk receives (ck, ack, (Ĉk)k∈[`], (CL,com, CL,mid)) as statements. The Plnk has as input witness
(fL,com(X), fL,mid(X), (rk)k∈[`]) such that

fL,com(X) =
∑
i∈Icom

wiLi(X) + (ρ1X + ρ2)vH(X) fL,mid(X) =
∑

i∈[n]\Icom

wiLi(X) + (λ1X + λ2)vH(X)

Ĉk = G(wi)i∈IkHrk CL,com = [fL,com(χ)]1 CL,mid = [fL,mid(χ)]1

Prove.
– Compute a proof πCompAmComEq of the following statement where gi := [Li(χ)]1 for i ∈ Icom, g := (gi)i∈Icom , h1 = [χvH(χ)]1,
h2 = [vH(χ)]1.

CompAmComEq :PK
{

((wi)i∈Icom , (rk)k∈[`], ρ1, ρ2) : Ĉk = G(wi)i∈IkHrk ∧ CL,com = g(wi)i∈Icomhρ1
1 hρ2

2

}
– Compute evaluation proof W (X) = fL,mid(X)

vHcom (X) and Π := [W (χ)]1. Output πlnk = (Π,πCompAmComEq).

Verify. Given πlnk, verify πCompAmComEq and check that fL,mid vanishes on Hcom:

e(CL,mid, h) = e(Π, [vHcom (χ)]2)

Fig. 5. Commitment-linking protocol for PLONK

6 Instantiation with Marlin

Preliminaries. For a finite field F and a subset S ⊆ F, we denote by vS(X) the vanishing polynomial of
S that is the unique non-zero monic polynomial of degree at most |S| that is zero everywhere on S. For
a matrix M ∈ Fn×n we denote the number of its nonzero entries by ‖M‖. For two vectors u and v, we
denote by u ◦ v their Hadamard (component-wise) product. For a function f : S → F, we denote by f̂ ,
the univariate polynomial over F with degree less than |S| that agrees with f , that is, f̂(k) = f(k) for all
k ∈ S. For an n× n matrix M with rows/columns indexed by elements of S, we denote by M̂(X,Y), the
polynomial of individual degree less than n such that M̂(s, t) is the (s, t)th entry of M for all s, t ∈ S.

Define the bivariate polynomial uS(X,Y)

uS(X,Y) := vS(X)− vS(Y)
X − Y

such that uS(X,X) = |S|X |S|−1 is the formal derivative of the vanishing polynomial vS(X). We have that
uS(X,Y) vanishes on the square S× S, except on the diagonal. It takes uS(a, a)a∈S on the diagonal.

21

Univariate sumcheck [BCR+19]. Given a multiplicative subgroup S of F, a polynomial f(X) sums
to σ over S if and only if f(X) can be written as h(X)vS(X) +Xg(X) + σ/|S| for some h(X) and g(X)
where the degree of deg(g) < |S| − 1.

Definition 12 (R1CS indexed relation). R1CS (Rank-1 constraint satisfiability) indexed relation is
the set of tuples (i, x,w) =

(
(F, l, n,m,A,B,C), x, w

)
for l, n,m ∈ N, l ≤ n,A,B,C ∈ Fn×n, x ∈ Fl, w ∈

Fn−l, m ≥ max{‖A‖ , ‖B‖ , ‖C‖} z := (x,w) is a vector in Fn such that Az ◦Bz = Cz.

We assume efficiently computable bijections φH : H → [|H|] and φK : K → [|K|], and denote the
first k elements in H and the remaining elements, via sets H[≤ k] := {h ∈ H : 1 ≤ φH(h) ≤ k} and
H[> k] := {h ∈ H : k < φH(h) ≤ |H|} respectively. We then denote the first part of the vector z ∈ Fn as
the public component x ∈ Fl and the second part as witness component w ∈ Fn−l.

6.1 Marlin AHP

We now describe the Marlin AHP. In the preprocessing phase, the indexer I is given as input a field F,
subsets H,K of F, and matrices A,B,C ∈ Fn×n representing the R1CS instance. The output of the
preprocessing phase is three univariate polynomials { ˆrowM , ĉolM , v̂alM} of degree less than |K| for each
matrix M ∈ A,B,C, such that the following polynomial is a low-degree extension of M .

M̂(X,Y) :=
∑
k∈K

uH(X, ˆrowM (k))uH(Y, ĉolM (k))v̂alM (k)

The three polynomials ˆrowM , ĉolM , v̂alM are the unique low-degree extensions of the functions rowM , colM , valM :
K → F that denote the row index, column index and value of the non-zero entries of the matrixM respec-
tively. Let M̂(X,Y) be the unique low-degree extension of M that agrees with the matrix M everywhere
on the domain H × H. The prover P receives as input the instance x ∈ Fl, a witness w ∈ Fn−l. The
verifier V receives as input x, and obtains oracle access to the nine polynomials output at the end of the
preprocessing phase.

Let x̂(X) and and ŵ(X) be polynomials of degree at most l and n− l that agree with the instance x
on H[≤ l], and with the shifted witness on H[> l] respectively, where the shifted witness w̄ is such that
w̄ : H[> l]→ F,

∀γ, w̄(γ) := w(γ)− x̂(γ)
vH[≤l](γ)

Let z := (x,w) denote the full assignment. The prover computes the linear combinations zA :=
Az, zB := Bz, zC := Cz, and sets polynomials ẑA(X), ẑB(X), ẑC(X) ∈ F|H|(X).

P needs to prove that zA, zB , zC are obtained as the specified linear combinations of z, and that
zA ◦ zB = zC . Note that the polynomial ẑ(X) := ŵ(X)vH[≤l](X) + x̂(X) agrees with z on H. P sends the
polynomial h0(X) such that ẑA(X)ẑB(X)− ẑC(X) = h0(X)vH(X), a random s(X) ∈ F together with its
sum over H, σ1 :=

∑
k∈H

s(k). V samples α, ηA, ηB , ηC randomly from F and send them to the prover. P

and V engage in a univariate sumcheck protocol to prove that the polynomial q1(X) defined below sums
to σ1 on H.

q1(X) := s(X) + uH(α,X)
(∑
M∈{A,B,C}

ηM ẑM (X)
)
−
(∑
M∈{A,B,C}

ηMrM (α,X)
)
ẑ(X)

where rM (X,Y) :=
∑
k∈H

uH(X, k)M̂(k, Y). This is done via three sequential sumchecks. The AHP is given

in Fig. 6.

22

Protocol Protocol AHPMarlin

Offline phase. The indexer I is given as input a field F ∈ F , subsets H,K of F, and matrices A,B,C ∈ Fn×n representing the
R1CS instance, and outputs three univariate polynomial oracles { ˆrowM , ĉolM , v̂alM} of degree less than |K| for each matrix
M ∈ A,B,C, such that the following polynomial is a low-degree extension of M .

M̂(X,Y) :=
∑
k∈K

uH(X, ˆrowM (k))uH(Y, ĉolM (k))v̂alM (k)

Input. P receives (F,H,K, A,B,C, i, (zi)i∈[l], (zi)i∈[l+1,n]), and V receives (F,H,K, (zi)i∈[l]) and oracle access to the nine polyno-
mials output by I(F, i).

Online phase: first round. P sends the oracle polynomials ŵ(X) ∈ F<n−l(X), h0(X), ẑA(X), ẑB(X), ẑC(X) ∈ Fn(X). It
samples a random s(X) ∈ F2n(X) and sends polynomial oracle s(X) together with σ1 ∈ F where σ1 :=

∑
k∈H

s(k), and

ẑA(X)ẑB(X)− ẑC(X) = h0(X)vH(X).
Online phase: second round. Upon receiving challenges α, ηA, ηB , ηC ∈ F from V, P sends oracle polynomials g1(X), h1(X) ∈

Fn(X) to V, where

s(X) + uH(α,X)
(∑
M∈{A,B,C}

ηM ẑM (X)
)
−
(∑
M∈{A,B,C}

ηMrM (α,X)
)
ẑ(X) = h1(X)vH(X) +Xg1(X) + σ1/|H|

Online phase: third round. Upon receiving challenge β1 ∈ F from the V, P sends oracle polynomials g2(X), h2(X) ∈ Fn(X)
and σ2 ∈ F to V, where σ2 :=

∑
k∈H

uH(α, k)
∑

M∈{A,B,C}

ηMM̂(k, β1),

uH(α,X)
∑

M∈{A,B,C}

ηMM̂(X,β1) = h2(X)vH(X) +Xg2(X) + σ2/|H|

Online phase: fourth round. Upon receiving challenge β2 ∈ F from the V, P sends oracle polynomials g3(X), h3(X) ∈ Fn(X)

and σ3 ∈ F to V, where where σ3 :=
∑
k∈K

∑
M∈{A,B,C}

ηM
vH(β2)vH(β1)v̂alM (k)

(β2 − ˆrowM (k))(β1 − ĉolM (k))
,

h3(X)vK(X) = a(X)− b(X)(Xg3(X) + σ3/|K|)

a(X) =
∑

M∈{A,B,C}

ηMvH(β2)vH(β1)v̂alM (X)
∏

L∈{A,B,C}\{M}

(β2 − ˆrowL(X))(β1 − ĉolL(X))

b(X) =
∏

M∈{A,B,C}

(β2 − ˆrowM (X))(β1 − ĉolM (X))

Query phase. V queries the oracles ŵ(X), ẑA(X), ẑB(X), ẑC(X), h0(X), s(X), h1(X), g1(X) at β1; h2(X), g2(X) at β2;
h3(X), g3(X) and all offline oracles { ˆrowM , ĉolM , v̂alM} for each M ∈ A,B,C at a random query point β3 ∈ F.

Decision phase. V accepts if the following tests pass:
– h3(β3)vK(β3) = a(β3)− b(β3)(β3g3(β3) + σ3/|K|)
– h2(β2)vH(β2) + β2g2(β2) + σ2/|H| = uH(α, β2)σ3

– s(β1) + uH(α, β1)(
∑

M
ηM ẑM (β1))− σ2ẑ(β1) = h1(β1)vH(β1) + β1g1(β1) + σ1/|H|

– ẑA(β1)ẑB(β1)− ẑC(β1) = h0(β1)vH(β1)

Fig. 6. AHP for RR1CS

23

6.2 CP-Marlin

Protocol CPlnk for Marlin

The common inputs are srs.
Preprocessing. Both parties receive srs, Icom and precompute [vH[≤l+d`](χ)]2 such that

vH[≤l+d`](X) =
∏

a∈Hcom

(X − a), Hcom = {H[i] : i ∈ Icom ∪ Ipub} ⊂ H

Input. Both Plnk and Vlnk receive (x, ck, (Ĉk)k∈[`], (Ik)k∈[`][wcom(χ)]1, [wmid(χ)]1) as common inputs. Plnk

has as input witness vector w and commitment randomness rk such that for shifted witness w̄ : H[>
l] → F defined as in the AHP, wcom(X) ∈ Fd`[X] is the polynomial of degree less than d` that agrees
with w̄ on H[> l,≤ l + d`], and wmid(X) ∈ Fn−l−d`[X] is the polynomial of degree less than m− l − d`
that agrees with w̄ on H[> l + d`], and Ĉk = G(wi)i∈IkHrk .

Prove.
– Compute a proof πCompAmComEq of the following statement,

PK
{

((w)i∈Icom , (rk)k∈[`]) : Ĉk = G(wi)i∈IkHrk for k ∈ [`] ∧ [wcom(χ)]1 =
∏
i∈Icom

gwii
}

where gi = [Li]1, Li are the Lagrange polynomials {LH[≤l+d`],α(X)}α∈H[≤l+d`]

– Compute a proof to show that wmid(X) vanishes at H[≤ l + d`]. Set

Π := [W (χ)]1

where W (X) = wmid(X)
vH[≤l+d`]

. Output πlink = (Π,πCompAmComEq).

Verify. Given srs, common inputs, and πlnk, parse πlnk as (Π,πCompAmComEq).
– Check that wmid vanishes at Hcom:

e(cmid, h) = e(Π, [vH[≤l+d`](X)]2)

– Verify πCompAmComEq.

Fig. 7. Commitment-linking protocol for Marlin

We now turn AHPMarlin into CP-Marlin by applying our compiler. We begin by giving a commit-and-prove
relation for R1CS.
Relation for CP-Marlin. We define an extended relation to accommodate consistency of partial witness
wire values and commitment. We use the index sets: Ipub = [l], Icom = [l+ 1, l+ d`], Imid = [l+ d`+ 1, n],
assuming that zl+1, . . . , zl+d` are d` values committed to in advance. Moreover, every d values are batched
into a single commitment, that is, every vector compound of d wires (zi)i∈Ik , for Ik = [l+1+d(k−1), l+dk],
is committed to in the kth auxiliary commitment Ĉk = G(zi)i∈IkHrk for k ∈ [`]. Then we have Icom =⋃
k∈[`] Ik. For values z ∈ Fn, we call (wi)i∈[l] := (zi)i∈[l] public input and (wi)i∈[l+1,n] := (zi)i∈[l+1,n]

witness, respectively.

Definition 13 (CP-Marlin indexed relation). The indexed relation RCP-Marlin is the set of all triples

(i, x,w) = ((F,H,K, n,m, l, `, d, A,B,C), ((wi)i∈[l], (Ĉk)k∈[`]), ((wi)i∈[l+1,n], (rk)k∈[`]))

such that, for w := (wi)i∈[n] ∈ Fn

Aw ◦Bw = Cw, and ∀k ∈ [`], Ĉk = AC.Commitack((wi)i∈Ik ; rk).

Applying our compiler.We now show that AHPMarlin and the polynomial commitment scheme PCKZG [KZG10]
meet the requirements of Theorem 1.

24

– Unique witness extraction: WitExt takes ŵ(X), evaluates ŵ(X) on every k ∈ H[> l] and constructs a
vector of values w ∈ Fn−l. It is easy to see that WitExt satisfies unique extraction (Definition 8).

– Decomposable witness-carrying polynomials: Decomp takes ŵ(X) and Icom ⊂ [n], and outputs wcom ∈
F`d[X], wmid ∈ Fn−l−`d[X] computed as follows: Let w = (wi)i ∈ Fn−l be the vector such that ŵ(X)
agrees with w on H[> l]. Let wcom and wmid be polynomials that agree with w on H[> l ≤ l+ d`] and
H[> l + d`] respectively.
Then for Icom, Imid such that Icom ∪ Imid = [n] and Icom ∩ Imid = ∅, Decomp clearly has the degree
preserving property, and the non-overlapping property. For the additive decomposition, note that
wcom(X) + wmid(X) = ŵ(X).

– PCKZG.Comck with maximum degree bound D takes a polynomial f ∈ F<D[X] and outputs [f(χ)]1.
Clearly, this is an additively homomorphic commitment scheme. As mentioned in §9.2 of [CHM+20]
and as it’s clear from how WitExt works, the knowledge soundness of Marlin holds only by enforcing
degree bound to the maximum degree D for committed polynomials so the plain KZG construction
should suffice for compiling AHPMarlin.
We now present a suitable commitment-linking protocol CPlnk in Fig. 7. The key idea is to have the

prover commit to an encoding of the assignment in index sets Icom and Imid into separate polynomials,
and then show that wmid(X) vanishes at H[≤ l + d`], together with the consistency of wcom with vector
Pedersen commitments Ĉk = G(wi)i∈IkHrk for k ∈ [`] via CompAmComEq protocol (see Sect. 4). We
assume that Icom =

⋃
k∈[`] Ik, Ik’s are disjoint with each other and of same cardinality d = |Ik|.

Knowledge soundness of the commitment-linking protocol follows from the same argument as the
knowledge soundness for the protocol in Fig 5. Instantiating our compiler from Fig. 1 with the CPlnk
from Fig. 7 immediately yields an argument system for RCP-Marlin.

7 Instantiation with Sonic

While the proving time of Marlin is an entire order of magnitude better than Sonic, and Marlin’s verifier
requires fewer pairings and fewer exponentiations, for applications that use batched verifications, Sonic
remains the state-of-the-art. Applications like cryptocurrency transactions take advantage of batching
where each verifier is not just given a single proof but many proofs of the same statement. This optimiza-
tion works in the helped scenario, where an untrusted third party can aggregate such proofs in a single
batch for faster verification.

Sonic is a zk-SNARK system in the universal SRS setting that can be used to prove any statement
represented as an arithmetic circuit. While Sonic was orginally not presented in the language of AHPs,
it was later recharacterized as an IOP by Bünz, Fisch and Szepieniec, which is essentially equivalent to
the AHP framework [BFS20, §1.2].

The construction in Sonic relies on a special construction of polynomial commitments (a modifiation
of KZG) that forces the prover to commit to a Laurent polynomial with no constant term.

7.1 Sonic AHP

We first describe the system of constraints used by Sonic. The vectors a,b, c of length n, represent left
inputs, right inputs and outputs respectively of the multiplication gates.

a � b = c

Let uq,vq,wq ∈ Fn be fixed vectors for the qth linear constraint with instance values kq ∈ F. There
are Q linear constraints of the form,

a · uq + b · vq + c ·wq = kq

The n multiplication constraints are compressed into one equation by introducing the formal indeter-
minate Y .

n∑
i=1

(aibi − ci)Y i = 0
n∑
i=1

(aibi − ci)Y −i = 0

The Q linear constraints are compressed,

25

Q∑
q=1

(a · uq + b · vq + c ·wq − kq)Y q+n = 0

Define polynomials

ui(Y) =
Q∑
q=1

Y q+nuq,i vi(Y) =
Q∑
q=1

Y q+nvq,i

wi(Y) = −Y i − Y −i +
Q∑
q=1

Y q+nwq,i k(Y) =
Q∑
q=1

Y q+nkq

Combining the multiplicative and linear constraints,

a · u(Y) + b · v(Y) + c ·w(Y) +
n∑
i=1

aibi(Y i + Y −i)− k(Y) = 0 (8)

The above holds at all points if the constraint system is satisfied. If the constraint system is not
satisfied, the above will fail to hold with high probability for a large enough field. Now, the left hand side
of the above is embedded into the constant term of a polynomial t(X,Y) in another indeterminate X. A
polynomial r(X,Y) is designed such that r(X,Y) = r(XY, 1)

r(X,Y) =
n∑
i=1

(aiXiY i + biX
−iY −i + ciX

−n−iY −n−i) (9)

s(X,Y) =
n∑
i=1

(
ui(Y)X−i + vi(Y)Xi + wi(Y)Xi+n) (10)

t(X,Y) = r(X, 1)(r(X,Y) + s(X,Y))− k(Y) (11)

Note that the coefficient of X0 in t(X,Y) coincides with the left hand side of Eq. (8). We are now set
out to define the Sonic indexed relation.

Definition 14 (Sonic indexed relation). The indexed relation RSonic is the set of all triples

((F, n,Q, (uq)q∈[Q], (vq)q∈[Q], (wq)q∈[Q]), (kq)q∈[Q], (a,b, c))

such that

∀q ∈ [Q] : a · uq + b · vq + c ·wq = kq

a � b = c

As mentioned above checking Eq. (8) is equivalent to checking whether an instance is in RSonic. To
verify Eq. (8) Sonic implicitly relies on Lemma 3. In Fig. 8 we also present the underlying AHP of Sonic
for RSonic, where the verifier V essentially checks the second point of the following lemma.

Lemma 3. The following two properties hold.
1. Let r(X,Y), s(X,Y) and t(X,Y) be given as above. If Eq. (8) holds, then the constant term of t(X,Y)

w.r.t. X is zero.
2. Let s(X,Y) be given as above and suppose that r(X,Y) is a Laurent polynomial of the form r(X,Y) =∑n

−D riX
iY i. If the constant term w.r.t X of

r(X, 1)(r(X,Y) + s(X,Y))− k(Y)

is zero, then Eq. (8) holds for a = (ri)ni=1, b = (r−i)ni=1 and c = (r−i−n)ni=1.

Proof. For the first statement, we notice that it follows directly from the fact the constant term w.r.t. X
of t(X,Y) is exactly the left hand side of Eq. (8). For the second statement, let r(X,Y) =

∑n
−D riX

iY i

26

Protocol AHPSonic

Offline phase. The indexer I receives as input F ∈ F and i = (F, n,Q, (uq)q∈[Q], (vq)q∈[Q], (wq)q∈[Q]), and computes the polyno-
mial oracle s(X,Y) as described in the text.

Input. P receives (F, i, (kq)q∈[Q], (a,b, c)) and V receives (F, (kq)q∈[Q]) and oracle access to the polynomials output by I(F, i).
Online phase: first round. P computes r(X,Y) and t(X,Y) as described in Eq. (11). Blind r(X,Y) as r(X,Y) := r(X,Y) +∑4

i=1 cn+iX
−2n−iY −2n−i with random cn+i ∈ F and send an oracle polynomial r(X, 1) to V.

Online phase: second round. Upon receiving challenges y ∈ F from the V, P sends an oracle polynomial t(X, y) to V.
Query phase. V queries online oracles r(X, 1) and t(X, y) with a random query point z ∈ F. Moreover, it makes additional

queries to r(X, 1) with yz and to s(X,Y) with (z, y).
Decision phase. V first computes an instance polynomial k(Y) as described in the text. Then V checks that

t(z, y) ?= r(z, 1)(r(yz, 1) + s(z, y))− k(y).

Fig. 8. AHP for RSonic

with ri ∈ F. Now, we notice that

r(X, 1)(r(X,Y) + s(X,Y))− k(Y) =
(
r0 +

n∑
i=1

(riXi + r−iX
−i + r−i−nX

−i−n) +
D∑

i=2n+1
r−iX

−i
)

·
(
r0 +

n∑
i=1

(
ri(XY)i + r−i(XY)−i + r−i−n(XY)−i−n

)
+

D∑
i=2n+1

r−i(XY)−i

+
n∑
i=1

(
ui(Y)X−i + vi(Y)Xi + wi(Y)Xi+n))− k(Y).

From the above we see that the constant term w.r.t. X is

r2
0 +

n∑
i=1

rir−i(Y i + Y −i) +
n∑
i=1

riui(Y) +
n∑
i=1

r−ivi(Y) +
n∑
i=1

r−i−nwi(Y)− k(Y),

which can only be zero if r0 = 0. It therefore follows as wanted that if the constant term w.r.t. X
of r(X, 1)(r(X,Y) + s(X,Y)) − k(Y) is zero, then Eq. (8) holds for a = (ri)ni=1, b = (r−i)ni=1 and
c = (r−i−n)ni=1.

7.2 CP-Sonic

Our goal is to turn AHPSonic into CP-Sonic with our compiler. We first describe a commit-and-prove
variant of relation RSonic. We assume without loss of generality that every committed witness is left input
to gate i, i.e., (ai)i∈Icom is the committed witness whereas ((ai)i/∈Icom ,b, c) is the non-committed part. Then
we use the following disjoint witness index sets: Icom = [n − `d + 1, n], Imid = [1, n − `d], assuming that
an−`d+1, . . . , an are `d witness values committed in advance. Moreover, suppose every vector compound
of d values (ai)i∈Ik , where Ik = [n − dk + 1, n − d(k − 1)], is committed into kth auxiliary commitment
Ĉk for k ∈ [`]. Then we have Icom =

⋃
k∈[`] Ik.

Definition 15 (CP-Sonic indexed relation). The indexed relation RCP-Sonic is the set of all triples

((F, n,Q, (uq)q∈[Q], (vq)q∈[Q], (wq)q∈[Q], Icom, (Ik)k∈[`], ack), ((kq)q∈[Q], (Ck)k∈[`]), (a,b, c, (rk)k∈[`]))

such that

∀q ∈ [Q] : a · uq + b · vq + c ·wq = kq

a � b = c
∀k ∈ [`] : Ĉk = AC.Comack((ai)i∈Ik ; rk)

27

7.2.1 Applying our compiler We show that AHPSonic as well as the polynomial commitment scheme
meets the requirements of Theorem 1.
– Decomp takes nw = 1 (blinded) witness-carrying polynomial r(X) := r(X, 1) and Icom ⊂ [n], parses
r(X) as

∑n
i=1(aiXi + biX

−i + ciX
−n−i) +

∑4
i=1 cn+iX

−2n−i, and decompose them as follows.

rcom(X) :=
∑
i∈Icom

aiX
i +

4∑
i=1

ρn+iX
−2n−i

rmid(X) :=
∑
i∈Imid

aiX
i +

n∑
i=1

(biX−i + ciX
−n−i) +

4∑
i=1

λn+iX
−2n−i

where ρn+i was randomly chosen and λn+i := cn+i−ρn+i for i = 1, 2, 3, 4. Clearly, the decomposition
is additive, degree-preserving (in the sense that separate Laurent polynomials do not exceed the
prescribed degree range), and non-overlapping.

– WitExt takes a witness-carrying polynomial r(X) =
∑n
−D riX

i and uniquely extracts witness vectors
(a,b, c) such that ai := ri, bi := r−i and ci := r−n−i for every i ∈ [n].

– Sonic uses a variant of the KZG scheme optimized for Laurent polynomials with a 0 constant term.
Concretely, PCSonic.Com takes as input

ck = ([χ−D]1, . . . , [χD]1, [αχ−D]1, . . . , [αχ−1]1, [αχ]1, . . . , [αχD]1, [χ−D]2, . . . , [χD]2, [αχ−D]2, . . . , [αχD]2),

a polynomial f(X) ∈ F[X,X−1], and the degree bound d ≤ D, and then outputs [αχD−df(χ)]1.
Clearly, this is an additively homomorphic commitment scheme. In the AGM its evaluation bind-
ing and extractability were formally proved under the 2D-DLOG assumption (see Theorem 6.3 of
[MBKM19]). The plain binding for a fixed degree bound can be also shown just as in the KZG
scheme. Unlike PLONK, Sonic must enforce a precise degree bound n on the witness-carrying poly-
nomial r(X) to achieve knowledge soundness. Our commit-and-prove variant should thus enforce the
same bound on both rcom(X) and rmid(X). Finally, Sonic retains zero-knowledge by blinding witness-
carrying polynomial, instead of hiding commitment. Hence commitment randomness is empty for all
commitments. To sum up, the compiled protocol involves the following commitments to decomposed
witness-carrying polynomials.

Ccom = [αχD−nrcom(χ)]1
Cmid = [αχD−nrmid(χ)]1

We now present a suitable commitment-linking protocol CPlnk in Fig. 9. The high-level idea is to (1)
prove consistency between rcom(X) and auxiliary commitments Ĉk with the AmComEq protocol, and (2)
force the prover to show rmid(X) has degree bounded by n − `d. The latter is in particular crucial for
WitExt to successfully output a witness vector consistent with auxiliary commitments, even after taking
the sum of rcom(X) and rmid(X).

Lemma 4. Assuming hardness of the 2D-DLOG problem, extractability of PCSonic and argument of
knowledge of CompAmComEq, the protocol CPlnk (Fig. 9) is an argument of knowledge in the algebraic
group model [FKL18].

Proof. First, the extractor Elnk obtains r(X) ∈ F[X,X−1] of degree at most n such that [αχD−nr(χ)]1 =
Ccom ·Cmid and r(z) = v, by internally invoking an extractor for PCSonic, which succeeds with overwhelming
probability as long as a malicous prover P∗lnk convinces the verifier.

Second, Elnk invokes an extractor EComEq for the CompAmComEq protocol, which outputs (ai)i∈Icom

and (rk)k∈[`] such that Ĉk = AC.Comack((ai)i∈Ik ; rk) for k ∈ [`], and Ccom = [α(
∑
i∈Icom

aiχ
D−n+i +∑

i∈[1,4] ρn+iχ
D−3n−i)]1. So we have extracted rcom(X) =

∑
i∈Icom

aiX
i +
∑
i∈[1,4] ρn+iX

−2n−i such that
Ccom = PCSonic.Comck(rcom(X), n).

Let rmid(X) := r(X) − rcom(X). Due to the homomorphism of committing function it holds that
Cmid = C ·C−1

com = PCSonic.Comck(rmid(X), n) = [αχD−nrmid(χ)]1. Due to the second pairing check we also
have that C ′mid = (Cmid)χ`d = [αχD−n+`drmid(χ)]1.

On the other hand, when an algebraic adversary P∗lnk outputs C ′mid it is accompanied by the represen-
tation fχ(X) +Xαfα(X) such that C ′mid = [fχ(χ) + αfα(χ)]1, fχ(X) has non-zero terms between degree
−D and D, and fα(X) has non-zero terms between degree −D and D except for the constant term. If

28

fχ(X) + Xαfα(X) 6= XαX
D−n+`drmid(X) we have two distinct representations of C ′mid, from which one

can find χ solving the 2D-DLOG problem, as in a proof of Theorem 6.3 of [MBKM19]. Hence we may
assume that fχ(X) = 0 and fα(X) = XD−n+`drmid(X), implying that rmid(X) has degree bounded by
n− `d.

Now the committed part of coefficients of r(X) corresponds to extracted rcom(X). Hence if WitExt
is invoked on r(X) it does extract witness (ai)i∈Icom consistent with (Ĉk)k∈[`], which is guaranteed by
EComEq.

Lemma 5. Assuming zero knowledge of Fiat–Shamir-transformed CompAmComEq, the protocol CPlnk is
zero-knowledge in the SRS model.

Proof. To simulate πComEq we simply invoke the zero-knowledge simulator for CompAmComEq made non-
interactive with Fiat–Shamir [FS87]. To simulate the evaluation proof Π the simulator uses the trapdoor

α and χ used for generating the commitment key to compute Π :=
(

(Ccom · Cmid)
1

αχ−D+n · [−v]1
) 1
χ−z .

To simulate C ′mid we compute C ′mid := Cχ
`d

mid .

Protocol CPlnk for Sonic

Input. Both Plnk and Vlnk receives (ck, ack, (Ĉk)k∈[`], (Ccom, Cmid), z, v) as statements. The Plnk has as input witness
(rcom(X), rmid(X), (rk)k∈[`]) such that

rcom(X) =
∑
i∈Icom

aiX
i +

4∑
i=1

ρn+iX
−2n−i rmid(X) =

∑
i∈Icom

aiX
i +

n∑
i=1

(biX−i + ciX
−n−i) +

4∑
i=1

λn+iX
−2n−i

Ĉk = G(ai)i∈IkHrk Ccom = [αχD−nrcom(χ)]1 Cmid = [αχD−nrmid(χ)]1 v = rcom(z) + rmid(z)

Prove.
– Compute a proof πCompAmComEq of the following statement where gi := [αχD−n+i] for i ∈ Icom, g := (gi)i∈Icom , hi :=

[αχD−3n−i] for i ∈ [1, 4], and h := (hi)i∈[1,4].

CompAmComEq :PK
{

((ai)i∈Icom , (rk)k∈[`], (ρn+i)i∈[1,4]) : Ĉk = G(ai)i∈IkHrk ∧ Ccom = g(ai)i∈Icom h(ρn+i)i∈[1,4]
}

– Let r(X) := rcom(X) + rmid(X). Compute evaluation proof as follows.

W (X) = r(X)− v
X − z Π = [W (χ)]1

– Compute a shifted commitment as follows.

C′mid := [αχD−n+`drmid(χ)]1 = PCSonic.Comck(rmid(X), n− `d)

– Output πlnk := (πCompAmComEq, Π,C
′
mid).

Verify. Given πlnk, verify πCompAmComEq, check evaluation proof:

e(Π, [αχ]2) · e([v]1 ·Π−z, [α]2) ?= e(Ccom · Cmid, [χ−D+n−`d]2)

and check rmid(X) has degree at most n− `d:

e(Cmid, [χ`d]2) ?= e(C′mid, h)

Fig. 9. Commitment-linking protocol for Sonic

References

AC20. T. Attema and R. Cramer. Compressed Σ-protocol theory and practical application to plug & play se-
cure algorithmics. In CRYPTO 2020, Part III, vol. 12172 of LNCS, pp. 513–543. Springer, Heidelberg,
2020.

ACF20. T. Attema, R. Cramer, and S. Fehr. Compressing proofs of k-out-of-n partial knowledge. Cryptology
ePrint Archive, Report 2020/753, 2020. https://eprint.iacr.org/2020/753.

ACK21. T. Attema, R. Cramer, and L. Kohl. A compressed σ-protocol theory for lattices. Cryptology ePrint
Archive, Report 2021/307, 2021. https://eprint.iacr.org/2021/307.

29

https://eprint.iacr.org/2020/753
https://eprint.iacr.org/2021/307

ACR20. T. Attema, R. Cramer, and M. Rambaud. Compressed σ-protocols for bilinear group arithmetic
circuits and applications. Cryptology ePrint Archive, Report 2020/1447, 2020. https://eprint.
iacr.org/2020/1447.

AGM18. S. Agrawal, C. Ganesh, and P. Mohassel. Non-interactive zero-knowledge proofs for composite state-
ments. In CRYPTO 2018, Part III, vol. 10993 of LNCS, pp. 643–673. Springer, Heidelberg, 2018.

BBB+18. B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell. Bulletproofs: Short proofs for
confidential transactions and more. In 2018 IEEE Symposium on Security and Privacy, pp. 315–334.
IEEE Computer Society Press, 2018.

BCC+16. J. Bootle, A. Cerulli, P. Chaidos, J. Groth, and C. Petit. Efficient zero-knowledge arguments for
arithmetic circuits in the discrete log setting. In EUROCRYPT 2016, Part II, vol. 9666 of LNCS, pp.
327–357. Springer, Heidelberg, 2016.

BCG+13. E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and M. Virza. SNARKs for C: Verifying program
executions succinctly and in zero knowledge. In CRYPTO 2013, Part II, vol. 8043 of LNCS, pp.
90–108. Springer, Heidelberg, 2013.

BCG+14. E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and M. Virza. Zerocash:
Decentralized anonymous payments from bitcoin. In 2014 IEEE Symposium on Security and Privacy,
pp. 459–474. IEEE Computer Society Press, 2014.

BCI+13. N. Bitansky, A. Chiesa, Y. Ishai, R. Ostrovsky, and O. Paneth. Succinct non-interactive arguments
via linear interactive proofs. In TCC 2013, vol. 7785 of LNCS, pp. 315–333. Springer, Heidelberg,
2013.

BCR+19. E. Ben-Sasson, A. Chiesa, M. Riabzev, N. Spooner, M. Virza, and N. P. Ward. Aurora: Transparent
succinct arguments for R1CS. In EUROCRYPT 2019, Part I, vol. 11476 of LNCS, pp. 103–128.
Springer, Heidelberg, 2019.

BCTV14. E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza. Succinct non-interactive zero knowledge for a
von neumann architecture. In USENIX Security 2014, pp. 781–796. USENIX Association, 2014.

BDFG20. D. Boneh, J. Drake, B. Fisch, and A. Gabizon. Efficient polynomial commitment schemes for multiple
points and polynomials. Cryptology ePrint Archive, Report 2020/081, 2020. https://eprint.iacr.
org/2020/081.

BFS20. B. Bünz, B. Fisch, and A. Szepieniec. Transparent SNARKs from DARK compilers. In EURO-
CRYPT 2020, Part I, vol. 12105 of LNCS, pp. 677–706. Springer, Heidelberg, 2020.

BGG+90. M. Ben-Or, O. Goldreich, S. Goldwasser, J. Håstad, J. Kilian, S. Micali, and P. Rogaway. Everything
provable is provable in zero-knowledge. In CRYPTO’88, vol. 403 of LNCS, pp. 37–56. Springer,
Heidelberg, 1990.

BGM17. S. Bowe, A. Gabizon, and I. Miers. Scalable multi-party computation for zk-SNARK parameters in
the random beacon model. Cryptology ePrint Archive, Report 2017/1050, 2017. https://eprint.
iacr.org/2017/1050.

BHH+19. M. Backes, L. Hanzlik, A. Herzberg, A. Kate, and I. Pryvalov. Efficient non-interactive zero-knowledge
proofs in cross-domains without trusted setup. In PKC 2019, Part I, vol. 11442 of LNCS, pp. 286–313.
Springer, Heidelberg, 2019.

CDG+17. M. Chase, D. Derler, S. Goldfeder, C. Orlandi, S. Ramacher, C. Rechberger, D. Slamanig, and G. Za-
verucha. Post-quantum zero-knowledge and signatures from symmetric-key primitives. In ACM CCS
2017, pp. 1825–1842. ACM Press, 2017.

CDS94. R. Cramer, I. Damgård, and B. Schoenmakers. Proofs of partial knowledge and simplified design of
witness hiding protocols. In CRYPTO’94, vol. 839 of LNCS, pp. 174–187. Springer, Heidelberg, 1994.

CFF+20. M. Campanelli, A. Faonio, D. Fiore, A. Querol, and H. Rodríguez. Lunar: a toolbox for more effi-
cient universal and updatable zksnarks and commit-and-prove extensions. Cryptology ePrint Archive,
Report 2020/1069, 2020. https://eprint.iacr.org/2020/1069.

CFQ19. M. Campanelli, D. Fiore, and A. Querol. LegoSNARK: Modular design and composition of succinct
zero-knowledge proofs. In ACM CCS 2019, pp. 2075–2092. ACM Press, 2019.

CGM16. M. Chase, C. Ganesh, and P. Mohassel. Efficient zero-knowledge proof of algebraic and non-algebraic
statements with applications to privacy preserving credentials. In CRYPTO 2016, Part III, vol. 9816
of LNCS, pp. 499–530. Springer, Heidelberg, 2016.

CHM+20. A. Chiesa, Y. Hu, M. Maller, P. Mishra, N. Vesely, and N. P. Ward. Marlin: Preprocessing zkSNARKs
with universal and updatable SRS. In EUROCRYPT 2020, Part I, vol. 12105 of LNCS, pp. 738–768.
Springer, Heidelberg, 2020.

CL01. J. Camenisch and A. Lysyanskaya. An efficient system for non-transferable anonymous credentials
with optional anonymity revocation. In EUROCRYPT 2001, vol. 2045 of LNCS, pp. 93–118. Springer,
Heidelberg, 2001.

CS97. J. Camenisch and M. Stadler. Efficient group signature schemes for large groups (extended abstract).
In CRYPTO’97, vol. 1294 of LNCS, pp. 410–424. Springer, Heidelberg, 1997.

DGK+21. I. Damgård, C. Ganesh, H. Khoshakhlagh, C. Orlandi, and L. Siniscalchi. Balancing privacy and
accountability in blockchain identity management. In CT-RSA 2021, vol. 12704, pp. 552–576. Springer,
2021.

FFS87. U. Feige, A. Fiat, and A. Shamir. Zero knowledge proofs of identity. In 19th ACM STOC, pp. 210–217.
ACM Press, 1987.

30

https://eprint.iacr.org/2020/1447
https://eprint.iacr.org/2020/1447
https://eprint.iacr.org/2020/081
https://eprint.iacr.org/2020/081
https://eprint.iacr.org/2017/1050
https://eprint.iacr.org/2017/1050
https://eprint.iacr.org/2020/1069

FKL18. G. Fuchsbauer, E. Kiltz, and J. Loss. The algebraic group model and its applications. In
CRYPTO 2018, Part II, vol. 10992 of LNCS, pp. 33–62. Springer, Heidelberg, 2018.

For87. L. Fortnow. The complexity of perfect zero-knowledge (extended abstract). In 19th ACM STOC, pp.
204–209. ACM Press, 1987.

FS87. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and signature
problems. In CRYPTO’86, vol. 263 of LNCS, pp. 186–194. Springer, Heidelberg, 1987.

GGPR13. R. Gennaro, C. Gentry, B. Parno, and M. Raykova. Quadratic span programs and succinct NIZKs
without PCPs. In EUROCRYPT 2013, vol. 7881 of LNCS, pp. 626–645. Springer, Heidelberg, 2013.

GKM+18. J. Groth, M. Kohlweiss, M. Maller, S. Meiklejohn, and I. Miers. Updatable and universal common
reference strings with applications to zk-SNARKs. In CRYPTO 2018, Part III, vol. 10993 of LNCS,
pp. 698–728. Springer, Heidelberg, 2018.

GMO16. I. Giacomelli, J. Madsen, and C. Orlandi. ZKBoo: Faster zero-knowledge for Boolean circuits. In
USENIX Security 2016, pp. 1069–1083. USENIX Association, 2016.

GMR85. S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof-systems
(extended abstract). In 17th ACM STOC, pp. 291–304. ACM Press, 1985.

GMW86. O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but their validity and a methodol-
ogy of cryptographic protocol design (extended abstract). In 27th FOCS, pp. 174–187. IEEE Computer
Society Press, 1986.

GMW87. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or A completeness theorem
for protocols with honest majority. In 19th ACM STOC, pp. 218–229. ACM Press, 1987.

GQ88. L. C. Guillou and J.-J. Quisquater. A practical zero-knowledge protocol fitted to security micropro-
cessor minimizing both trasmission and memory. In EUROCRYPT’88, vol. 330 of LNCS, pp. 123–128.
Springer, Heidelberg, 1988.

Gro10. J. Groth. Short pairing-based non-interactive zero-knowledge arguments. In ASIACRYPT 2010, vol.
6477 of LNCS, pp. 321–340. Springer, Heidelberg, 2010.

Gro16. J. Groth. On the size of pairing-based non-interactive arguments. In EUROCRYPT 2016, Part II,
vol. 9666 of LNCS, pp. 305–326. Springer, Heidelberg, 2016.

GWC19. A. Gabizon, Z. J. Williamson, and O. Ciobotaru. Plonk: Permutations over lagrange-bases for oecu-
menical noninteractive arguments of knowledge. Cryptology ePrint Archive, Report 2019/953, 2019.
https://eprint.iacr.org/2019/953.

IKO07. Y. Ishai, E. Kushilevitz, and R. Ostrovsky. Efficient arguments without short pcps. In Twenty-Second
Annual IEEE Conference on Computational Complexity (CCC’07), pp. 278–291. IEEE, 2007.

JKO13. M. Jawurek, F. Kerschbaum, and C. Orlandi. Zero-knowledge using garbled circuits: how to prove
non-algebraic statements efficiently. In ACM CCS 2013, pp. 955–966. ACM Press, 2013.

KPV19. A. Kattis, K. Panarin, and A. Vlasov. Redshift: Transparent snarks from list polynomial commitment
iops. Cryptology ePrint Archive, Report 2019/1400, 2019. https://eprint.iacr.org/2019/1400.

KZG10. A. Kate, G. M. Zaverucha, and I. Goldberg. Constant-size commitments to polynomials and their
applications. In ASIACRYPT 2010, vol. 6477 of LNCS, pp. 177–194. Springer, Heidelberg, 2010.

Lip12. H. Lipmaa. Progression-free sets and sublinear pairing-based non-interactive zero-knowledge argu-
ments. In TCC 2012, vol. 7194 of LNCS, pp. 169–189. Springer, Heidelberg, 2012.

Lip13. H. Lipmaa. Succinct non-interactive zero knowledge arguments from span programs and linear error-
correcting codes. In ASIACRYPT 2013, Part I, vol. 8269 of LNCS, pp. 41–60. Springer, Heidelberg,
2013.

Max15. G. Maxwell. Confidential transactions. URL: https://people. xiph. org/greg/confidential values. txt,
2015.

MBKM19. M. Maller, S. Bowe, M. Kohlweiss, and S. Meiklejohn. Sonic: Zero-knowledge SNARKs from linear-size
universal and updatable structured reference strings. In ACM CCS 2019, pp. 2111–2128. ACM Press,
2019.

NY90. M. Naor and M. Yung. Public-key cryptosystems provably secure against chosen ciphertext attacks.
In 22nd ACM STOC, pp. 427–437. ACM Press, 1990.

Ped92. T. P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. In
CRYPTO’91, vol. 576 of LNCS, pp. 129–140. Springer, Heidelberg, 1992.

PHGR13. B. Parno, J. Howell, C. Gentry, and M. Raykova. Pinocchio: Nearly practical verifiable computation.
In 2013 IEEE Symposium on Security and Privacy, pp. 238–252. IEEE Computer Society Press, 2013.

Sch90. C.-P. Schnorr. Efficient identification and signatures for smart cards. In CRYPTO’89, vol. 435 of
LNCS, pp. 239–252. Springer, Heidelberg, 1990.

31

https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2019/1400

A Additional Materials on Compressed Σ-protocol Theory

A.1 ComEq: Proving equality of two Pedersen vector commitments

In this section, we first define a naïve ComEq protocol proving equality of vectors committed in two
Pedersen commitments, with proof size of O(d). Our goal is to give a protocol for the relation

RComEq =
{

((g,h,G,H, d, d′, d′′), (C, Ĉ), (w,α,β)) : C = gwhα, Ĉ = GwHβ, g,G ∈ Gd,w ∈ Zdq
h ∈ Gd′ ,H ∈ Gd′′ ,α ∈ Zd′q ,β ∈ Zd′′q

}
(12)

where we assume that d′ and d′′ are small constants. Fig. 10 shows a bare-bone protocol for RComEq.

Protocol ComEq

1. P samples random r ∈ Zdq , δ ∈ Zd
′
q , γ ∈ Zd

′′
q and sends

A = grhδ, Â = GrHγ

2. V sends random challenge e ∈ Zq.
3. P sends

z = r + ew, ω = δ + eα, Ω = γ + eβ

4. V checks

gzhω ?= ACe, GzHΩ ?= ÂĈe

Fig. 10. Σ-protocol for equality of vector Pedersen commitments.

Theorem 4. ComEq is a Σ-protocol for the relation RComEq. Moreover, the communication costs are:
– P → V: 2 elements of G and d+ d′ + d′′ + 2 elements of Zq.
– V → P: 1 elements of Zq.

Proof. Special soundness. Given two accepting transcripts (A, Â, e, z,Ω,ω) and (A, Â, e′, z′,Ω′,ω′) we
extract valid witness as follows.

w = (z− z′)/(e− e′), α = (ω − ω′)/(e− e′), β = (Ω−Ω′)/(e− e′) (13)

Special HVZK. Given e, the simulator samples random z ∈ Zdq as well as ω ∈ Zd′q and Ω ∈ Zd′′q . Then
the first messages are determined such that A = gzhωC−e and Â = GzHΩĈ−e.

Let CompComEq be a protocol identical to ComEq, except that its last move is replaced by the
compression mechanisim CompDLEq (Fig. 3). Then we obtain the following.

Corollary 2. CompComEq is a (2µ+ 3)-move protocol for the relation RComEq, where µ = dlog2(d)e− 1.
It is perfectly complete and unconditionally (2, k1, . . . , kµ)-special sound, where ki = 3 for all i ∈ [1, µ].
Moreover, the communication costs are:
– P → V: 4 dlog2(d)e − 2 elements of G and 2 + d′ + d′′ elements of Zq.
– V → P: dlog2(d)e elements of Zq.

32

A.2 AmComEq′: as a result of [ACF20]

Protocol AmComEq′

1. V sends random challenge x ∈ Zq. Both parties compute

G̃ = [G,Gx, . . . ,Gx`−1
] ∈ G`d

H̃ = [H,Hx, . . . ,Hx`−1
] ∈ G`d

′′
.

2. P samples random r ∈ Z`dq , δ ∈ Zd
′
q , γ ∈ Z`d

′′
q , and sends

A = grhδ

Â = G̃rH̃γ

3. V sends random challenge e ∈ Zq.
4. P sends

z = r + ew, ω = δ + eα, Ω = γ + eβ

5. V checks

gzhω ?= ACe, G̃zH̃Ω ?= Â

`∏
i=1

(Ĉx
i−1
i)e

Fig. 11. Four-move protocol for amortized equality of many vector Pedersen commitments

B PLONK Preliminaries

Conventions. We use i as an index for gate and j for wire.

B.1 PLONK constraint systems.

We consider a fan-in two arithmetic circuit over F, consisting of n gates and m wires. The vector w ∈ Fm
consists of assigned wire values. The index vector v = L||R||O ∈ [m]3n represents the indices of wires
for each gate: concretely, for each i ∈ [n], Li represents left, Ri represents right, and Oi represents
output wire of gate j, respectively. For example, the left input wire value of i-th gate is obtained
by wLi . The per-gate constraints are specified by selector vectors qL,qR,qO,qM ,qC ∈ Fn. We call
C = (n,m,L,R,O,qL,qR,qO,qM ,qC) constraint systems. We say that w ∈ Fm satisfies the constraint
systems C if for each gate i ∈ [n]

(qL)i · wLi + (qR)i · wRi
+ (qO)i · wOi

+ (qM)i · wLiwRi
+ (qC)i = 0. (14)

For the wire values w ∈ Fm, we call (wj)j∈[l] public input and (wj)j∈[l+1,m] private input, respectively.
We say C is prepared for l public inputs if for each i ∈ [l] we define Li = i, (qL)i = 1, (qR)i = (qM)i =
(qR)i = (qC)i = 0, i.e., each gate i ∈ [l] is dedicated for the input wire j = i ∈ [l] of w. Then the constraint
for an input gate i ∈ [l] can be satisfied by subtracting wj from the above equation. Accordingly, we can
define relation wrt C.

Definition 16 (PLONK indexed relation). The indexed relation RPLONK is the set of all triples

((F, n,m, l,L,R,O,qL,qR,qO,qM ,qC), (wj)j∈[l], (wj)j∈[l+1,m])

such that

∀i ∈ [l],(qL)i · wLi + (qR)i · wRi
+ (qO)i · wOi

+ (qM)i · wLiwRi
+ (qC)i − wi = 0

∀i ∈ [l + 1, n],(qL)i · wLi + (qR)i · wRi
+ (qO)i · wOi

+ (qM)i · wLiwRi
+ (qC)i = 0

33

B.2 Lagrange basis.

Let q be a characteristic of F and n be such that q = 1 mod n. Then F∗ contains a multiplicative
subgroup H =

{
ζ, ζ2, . . . , ζn

}
generated by an nth primitive root of unity ζ ∈ F∗. It follows that an

associated vanishing polynomial vH(X) = Xn− 1 splits completely in F[X], i.e., Xn− 1 =
∏n
i=1(X − ζi).

In PLONK the Lagrange basis Lx(X) for x ∈ H is defined as follows.

Lx(X) := cx(Xn − 1)
X − x

By definition it is easy to check that Lx(y) = 0 for all y ∈ H \{x}. We show Lx(x) = 1 so that Lx(X) is
indeed a Lagrange basis. First, due to the Euclidean division of polynomials Xn − 1 can be rewritten as

Xn − 1 = (X − x) ·
(
n−1∑
i=0

xiXn−1−i

)
+ (xn − 1).

As x has order n the remainder xn − 1 vanishes. Therefore, we get

Lx(X) = cx ·

(
n−1∑
i=0

xiXn−1−i

)
.

Defining cx = (nxn−1)−1 we have Lx(x) = 1. In what follows we write Li(X) := Lx(X) for x = ζi.

B.3 Checking gate-by-gate constraints.

When working over a multiplicative subgroup H ⊂ F∗, the selector vectors define polynomials in F<n[X]
via interpolation:

qL(X) =
∑
i∈[n]

(qL)i · Li(X) qR(X) =
∑
i∈[n]

(qR)i · Li(X) qO(X) =
∑
i∈[n]

(qO)i · Li(X) (15)

qM (X) =
∑
i∈[n]

(qM)i · Li(X) qC(X) =
∑
i∈[n]

(qC)i · Li(X) (16)

So qL(ζi) = (qL)i, qR(ζi) = (qR)i and so on. Let us define the following polynomials.

fpub(X) =
∑
i∈[l]

−wiLi(X) fL(X) =
∑
i∈[n]

wLiLi(X) fR(X) =
∑
i∈[n]

wRiLi(X) fO(X) =
∑
i∈[n]

wOiLi(X)

(17)

Then the gate-by-gate constraint of Eq. (14) can be checked if the polynomial

FC(X) := qL(X)fL(X) + qRfR(X) + qO(X)fO(X) + qM (X)fL(X)fR(X) + qC(X) + fpub(X) (18)

vanishes at ζi for all i ∈ [n].

B.4 Checking copy constraints.

Notice that the above ranged polynomial evaluations are only individually checking constraint for each
gate, but do not care about how different gates are associated with each other. To define a relation
equivalent to RPLONK, we need to enforce the copy constraints on evaluations of witness polynomials
fL, fR, fO. Let us first define two useful notions.

Definition 17 (Extended permutation across multiple polynomials). Let f1, . . . , fc, h1, . . . , hc ∈
F[X] and σ : [cn]→ [cn] be a permutation. Define the sequences of polynomial evaluations f(1), . . . , f(cn), h(1), . . . h(cn)
over H = {ζ, . . . , ζn} as follows:

f((j−1)n+i) := fj(ζi) and h((j−1)n+i) := hj(ζi)

for each i ∈ [n] and j ∈ [c]. Then we write (h1, . . . , hc) = σ(f1, . . . , fc) if h(i) = f(σ(i)) for all i ∈ [cn].

34

Definition 18 (Copy-satisfy). Let T = {T1, . . . , Tm} be a partition of [cn]. We say that f1, . . . , fc ∈
F[X] copy-satisfy T if f(i) = f(i′) for all distinct pairs i, i′ ∈ Tj and for all j ∈ [m].

Lemma 6 ([KPV19][GWC19]). Let T = {T1, . . . , Tm} be a partition of [cn]. Suppose a permutation
σ : [cn]→ [cn] is defined such that its restriction σ|Tj contains a cycle going over all elements in Tj for
all j ∈ [m]. Then f1, . . . , fc ∈ F[X] copy-satisfy T if and only if (f1, . . . , fc) = σ(f1, . . . , fc)

In a concrete instantiation of PLONK, we set c = 3 and consider an extended permutation across f1 =
fL, f2 = fR, and f3 = fO. Let TC = {T1, . . . , Tm} be a partition of [3n] such that Tj =

{
i ∈ [3n] : vi = j

}
,

i.e., a set Tj contains positions in v := L||R||O ∈ [m]3n that point to wj . Then, by defining a permutation
σ : [3n] → [3n] such that it satisfies a condition for Lemma 6, it suffices to provide some permutation
argument that proves (fL, fR, fO) = σ(fL, fR, fO), in order to show (fL, fR, fO) copy-satisfy TC .

B.5 Putting together.

We are now set out to define an alternative formulation of the indexed relation RPLONK, which is in fact
the one used by the resulting protocol of [GWC19]. Let fL, fR, fO be polynomials as defined above and let
us define a slightly redundant form of statement and witness. Namely, we define ((wi)i∈[l], (wi)i∈[l+1,3n])
such that

fpub(X) =
∑
i∈[l]

−wiLi(X) (19)

fL(X) =
∑
i∈[n]

wiLi(X) (20)

fR(X) =
∑
i∈[n]

wn+iLi(X) (21)

fO(X) =
∑
i∈[n]

w2n+iLi(X) (22)

so wi = fL(ζi), wn+i = fR(ζi), and w2n+i = fO(ζi).

Definition 19 (PLONK indexed relation (alternative formulation)). The indexed relation R′PLONK
is the set of all triples

((F, n,m, l,qL,qR,qO,qM ,qC , σ, TC), (wi)i∈[l], (wi)i∈[l+1,3n])

such that

∀i ∈ [n] : wi = wσ(i)

∀i ∈ [l] : (qL)i · wi + (qR)i · wn+i + (qO)i · w2n+i + (qM)iwiwn+i + (qC)i − wi = 0
∀i ∈ [l + 1, n] : (qL)i · wi + (qR)i · wn+i + (qO)i · w2n+i + (qM)iwiwn+i + (qC)i = 0

By construction, given an instance of RPLONK one can clearly define constraint systems C as well as
(i′, x′,w′) ∈ R′PLONK. It turns out that the converse is also true. We sketch how to efficiently construct a
tuple (i, x,w) ∈ RPLONK, given (i′, x′,w′) ∈ R′PLONK.

From i′ we can clearly determine the constraint systems C = (n,m,L,R,O,qL,qR,qO,qM ,qC) as
well as i = (F, l, C). Since wi = wσ(i) holds and due to the way σ : [3n] → [3n] is defined (i.e., such that
its restriction σ|Tj contains a cycle going over all elements in Tj for all j ∈ [m]), we have that wi = wi′
for all distinct pairs i, i′ ∈ Tj and for each j ∈ [m]. Now for each j ∈ [m] we define wj = wi for some
i ∈ Tj . Recall that, by construction of TC , for each j ∈ [m] we also have j = vi = vi′ for each i, i′ ∈ Tj ,
where v = L||R||O ∈ [m]3n. So overall wj = wvi = wi = wvi′ = wi′ . This indicates that

(qL)i · wvi + (qR)i · wvn+i + (qO)i · wv2n+i + (qM)iwviwvn+i + (qC)i − wi = 0 for i ∈ [l]
(qL)i · wvi + (qR)i · wvn+i + (qO)i · wv2n+i + (qM)iwviwvn+i + (qC)i = 0 for i ∈ [l + 1, n]

or in other words,

(qL)i · wLi + (qR)i · wRi
+ (qO)i · wOi

+ (qM)iwLiwRi
+ (qC)i − wi = 0 for i ∈ [l]

(qL)i · wLi + (qR)i · wRi
+ (qO)i · wOi

+ (qM)iwLiwRi
+ (qC)i = 0 for i ∈ [l + 1, n]

implying (i, (wj)j∈[l], (wj)j∈[l+1,m]) ∈ RPLONK.

35

B.6 Extended Permutation Argument

To prove (fL, fR, fO) = σ(fL, fR, fO), PLONK invokes an extended permutation argument subprotocol,
which we recall in Fig. 12 in the form of AHP. Due to Lemma 5.3 of [GWC19], for any fL, fR, fO ∈ F<D
and any permutation σ : [3n] → [3n] such that D ≥ n, if (fL, fR, fO) 6= σ(fL, fR, fO) then for any
unbounded prover P, the probability that V accepts in the above protocol is negligible in the security
parameter.

Protocol AHPPermArg

Offline phase. The indexer I receives as input F ∈ F and i = (F, n,m, l,L,R,O,qL,qR,qO,qM ,qC), and
computes the permutation σ : [3n]→ [3n]. Then I generates the preprocessed polynomial oracles.

SL,ID =
∑
i∈[n]

i · Li(X) SL,σ =
∑
i∈[n]

σ(i) · Li(X)

SR,ID =
∑
i∈[n]

(n+ i) · Li(X) SR,σ =
∑
i∈[n]

σ(n+ i) · Li(X)

SO,ID =
∑
i∈[n]

(2n+ i) · Li(X) SO,σ =
∑
i∈[n]

σ(2n+ i) · Li(X)

Input. Polynomial oracles fL, fR, fO ∈ F<n[X].
Online phase. Upon receiving random challenges β, γ ∈ F from V, P computes

hL,ID = fL + β · SL,ID + γ hL,σ = fL + β · SL,σ + γ (23)
hR,ID = fR + β · SR,ID + γ hR,σ = fR + β · SR,σ + γ (24)
hO,ID = fO + β · SO,ID + γ hO,σ = fO + β · SO,σ + γ (25)
hID = hL,ID · hR,ID · hO,ID hσ = hL,σ · hR,σ · hO,σ (26)

Then P sends a permutation polynomial oracle:

s(X) = L1(X) +
∑
i∈[2,n]

(
Li(X) ·

∏
1≤j<i

hID(ζj)
hσ(ζj)

)
. (27)

Query phase. V queries all offline and online oracles with all points in a ∈ H.
Online phase. V checks that the following polynomials vanish on H.

F1(X) = hID(X)s(X)− hσ(X)s(ζX)
F2(X) = L1(X)(s(X)− 1)

Fig. 12. Permutation argument subprotocol for (fL, fR, fO) = σ(fL, fR, fO)

B.7 PLONK AHP

Fig. 4 describes the underlying AHPPLONK implicit in the final AoK protocol of PLONK. Recall that the
goal of PLONK is to verify (1) gate-by-gate constraints by checking FC(X) vanishes on H, and (2) copy
constraints by checking (fL, fR, fO) = σ(fL, fR, fO), as described in R′PLONK of Appendix B.5. Due to the
permutation argument from Fig. 12 the second part amounts to checking that polynomials F1(X) and
F2(X) vanish on H. A naïve way to achieve these would be to let the verifier query polynomial oracles with
every point in H, which of course incurs O(n) query complexity on verfier’s side. This can be circumvented
by replacing queries with divisibility check by vanishing polynomial vH(X) = Xn − 1 =

∏
i∈[n](X − ζi),

and by taking random challenge α to batch polynomials FC , F1, and F2 to be divided. From Lemma 4.5
and 4.7 of [GWC19] the AHPPLONK has knowledge soundness.7

7 We remark that [GWC19] presents their protocol in a slightly different form called a polynomial protocol.
The main difference with AHP is that it performs identity checks of polynomials, instead of evaluations of

36

B.8 Adding zero-knowledge

To achieve ZK the polynomials fL, fR, fO, s carrying witness in Fig. 4 have to be slightly adjusted; since
these are evaluated at a single point the prover adds random extra terms that lie outside of the degree
bounds of the original polynomials. Concretely, now P commits to

f ′L(X) = fL(X) + (b1X + b2)vH(X)
f ′R(X) = fR(X) + (b3X + b4)vH(X)
f ′O(X) = fO(X) + (b5X + b6)vH(X)
s′(X) = s(X) + (b7X

2 + b8X + b9)vH(X)

where the so-called blinding terms bi are randomly chosen from F. The reason why three blinding terms
are required for s(X) is that it gets evaluated at two points z and ζz. Note that this change doesn’t affect
the correctness, since the additional terms are guaranteed to be divisible by vH(X). In a similar fashion,
the Marlin AHP in the next section can be also made zero-knowledge.

polynomials at random query points as in AHP. Deriving knowledge soundness of the latter formulation is
straightforward due to the Schwartz–Zippel lemma.

37

	Introduction
	Our Contributions
	Applications
	Technical Overview
	Related Work

	Preliminaries
	Indexed relations
	Zero-knowledge Arguments of Knowledge with preprocessing
	-Protocols and Pedersen Vector Commitment
	Algebraic Holographic Proofs
	Polynomial Commitment

	AHP-to-CP-SNARK compiler
	Additional Preliminaries for Compiler
	Additional properties for AHP
	Our compiler

	Compressed -protocol for Equality
	AmComEq: Amortization of commitment equality proofs
	CompAmComEq: Recursive compression

	Instantiation with PLONK
	PLONK AHP
	CP-PLONK

	Instantiation with Marlin
	Marlin AHP
	CP-Marlin

	Instantiation with Sonic
	Sonic AHP
	CP-Sonic

	Additional Materials on Compressed -protocol Theory
	ComEq: Proving equality of two Pedersen vector commitments
	AmComEq': as a result of ACF20

	PLONK Preliminaries
	PLONK constraint systems.
	Lagrange basis.
	Checking gate-by-gate constraints.
	Checking copy constraints.
	Putting together.
	Extended Permutation Argument
	PLONK AHP
	Adding zero-knowledge

