
Plactic signatures

Daniel R. L. Brown∗

July 9, 2021

Abstract

Plactic signatures use the plactic monoid (Knuth multiplication of
semistandard tableaus) and full-domain hashing (SHAKE).

1 Introduction

Plactic signatures instantiate multiplicative signatures (see Table 1, §2, and
[RS93]), with the plactic monoid12 and full-domain hashing (§3).

Notation Name Typically:
a (Attested) Matter A message digest
b (Binding) Secret Key SECRET to one signer
c Checker System-wide
d (Digital) Signature Appendix of signed matter
e Endpoint Signer-specific value

[a, d] Signed Matter Thing to be verified
[c, e] Public Key Certified as signer’s

e = bc Key Generation Signer uses secret key b
d = ab Signing Signer uses secret key b
ae = dc Verifying Verifier uses public information

Table 1: Summary of plactic (and multiplicative) signatures

∗danibrown@blackberry.com
1For a brief tutorial about the plactic monoid, see [Bro21], or Wikipedia.
2The plactic monoid can also be used for key agreement [Bro21].

1

danibrown@blackberry.com

2 Multiplicative signatures

This section describes multiplicative signatures, which are summarized in
Table 1. Rabi and Sherman [RS93] mentioned the main idea behind multi-
plicative signatures in 1993.

Multiplicative signatures can be defined for any multiplicative semigroup.
Security and efficiency depend on the semigroup used.

Custom terminology for multiplicative signatures helps to discuss features
specific to multiplicative signatures.

2.1 Multiplicative semigroup, an overview

Recall the definition of a (multiplicative) semigroup. Firstly, it is a set
where any two elements can be multiplied with a result in the set. In other
words, multiplication is a well-defined binary operation, the set is closed
under multiplication. Multiplication of variables a and b is written as ab,
whenever clear from context. Secondly, multiplication must be associative,
which means that it obeys the associative law: a(bc) = (ab)c.

This report fixes the semigroup to be the plactic monoid. See [Bro21]
for a brief introduction to the plactic monoid.

Recall that elements of the plactic monoid are semistandard tableaus.
Elements can also be represented by their row readings, a concatenation of
the tableau’s rows. More generally, every sequence (with entries in same
finite ordered set as entries of the tableaus) represents a unique tableau, via
application of the Robinson–Schensted algorithm. Each tableau has multiple
sequence representations, but the standard representation is the row reading
of the tableau. The values d and e must be communicated in standard
representation.

Multiplication is Knuth multiplication of semistandard tableaus. This
amounts to first concatenating of the row reading of the two tableaus, and
then applying the Robinson–Schensted to put the concatenation back into
semistandard tableau form.

2.2 Public keys

A public key is a pair [c, e] of elements. Element c is the checker and
element e is the endpoint. The checker c can be shared between many
signers, but endpoint e is usually specific to a single signer.

2

Alternative names for the public key in a digital signature include the
following. A common term is verification key, because the public key is
the key that the verifier needs to verify a signature. A common graphical
symbol is a lock, although this symbol is often to indicated for several layers
of security, not just the public key of digital signature.

For simplicity, this report presumes that a signer’s public key is reliably
and correctly available to all verifiers. Occasionally, a signer is identified via
the public key.

In practice, a public key infrastructure (PKI) would be used to estab-
lish each signer’s public key [c, e], binding the cryptographic value [c, e] to a
more legible name of the signer. The signer’s public key [c, e] will be embed-
ded into a certificate, which certifies that the [c, e] belongs to the signer.
A typical PKI distributes some certificates manually as root certificates,
and then transfers trust to other certificates using digital signatures (which
could be plactic signatures).

2.3 Digital signatures

A signed matter is a pair [a, d] of elements. Element a is the (attested)
matter and element d is the (digital) signature. The matter is usually
derived as a digest of a meaningful message. A matter is sometimes common
to many signers (when short messages need to be signed). We often say that
d is a signature on matter a, or that d is a signature over a.

A signed matter [a, d] is verifiable for public key [c, e] if

ae = dc. (1)

We often also say that [a, d] is valid for [c, e], that signer [c, e] has signed
matter a, that matter a has been signed by [c, e], and that d is a signature
under [c, e].

It is sometimes useful to separately discuss each side of (1). The two
sides can be different in invalid signatures. The two sidew require different
computations. So, call ae the endmatter and dc the signcheck. Then, a
signature is valid if and only if the endmatter equals the signcheck.

2.4 Secret keys

A secret key b for public key [c, e] is an element b such that

e = bc. (2)

3

Alternative names for secret keys of digital signatures include the following.
The commonly used term private key can be useful to distinguish from
other secret keys used in symmetric-key cryptography. Another sensible term
is signature generation key, or signing key. A more mnemonic name for
b is binder, but this quite far from any existing traditions.

A public key [c, e] is viable if there exists at least one secret key b for
[c, e].

A signer can choose secret key b before choosing a public key [c, e], by
computing the endpoint e from the formula (2). This results in a viable
public key. In the plactic monoid, it seems difficult to generate a viable
public key [c, e] in any way other (so, other than computing e = bc for some
b).

A weak secret key b for public key [c, e] is an element b such that
abc = ae for all matters a (in the set of matters to be signed). In the plactic
monoid, allowing matters a to range over a large set, then it seems likely
that every weak secret key is a secret key. (For more general semigroups,
this might not be the case.

2.5 Signing

A signer with public key [c, e] can sign matter a using a secret key b by
computing signature

d = ab. (3)

The resulting signed matter [a, d] is verifiable for [c, e], because multiplication
is associative:

ae = a(bc) = (ab)c = dc. (4)

A signer with public key [c, e] should keep b secret, so that nobody else can
generate signatures under [c, e].

2.6 Key and hash spaces

For security reasons, the values a, b and c should be chosen from carefully
chosen subsets of the semigroup. So, to fully specify the multiplicative, these
subsets A, B, and C should be specified.

4

3 Hashed multiplicative signatures

Hashed multiplicative signatures are multiplicative signature system in which
the matter is a hash of a message. Hashed multiplication signatures are
summarized in Table 2. In hashed multiplicative signatures, both the signer

Notation Name Typically:
a Matter A message digest
b Secret key SECRET to one signer
c Checker System-wide
d Raw signature Appended to signed matter
e Endpoint Signer-specific value
f Hash function Fixed or signer-chosen
h Fixed hash function System-wide, fixed or keyed, f() = hk()
k Hash function key Fixed or signer chosen f() = hk()
m Message Reviewed (or chosen) by signer

[d, f] Signature Extension of multiplicative signature
[m, d, f] Signed message Thing to be verified

[c, e] Public key Certified as signer’s
a = f(m) Digesting Signer and verifier compute short a

e = bc Key generation Signer uses secret key b
d = ab Signing Signer uses secret key b
ae = dc Verifying Verifier uses public information

Table 2: Summary of hashed multiplicative signatures

and verifier compute the matter a from the message m by applying hash
function f :

a = f(m). (5)

A hashed signature is [d, f], and the signed message is [m, d, f].
To sign message m, the signer with secret key b selects f and compute

f = ab = f(m)b. To verify signed-message [m, d, f] under public key [c, e],
the verifier checks that f(m)e = dc.

3.1 Choice of hash function

The hash function f will typically take the form f(m) = hk(m), where h
is a keyed hash function, and k is the key. Because h is fixed across the

5

whole system, the key k suffices to specify f . This allows f to have a short
specification, so that the signature [d, f] is not too long.

Sometimes, the key k can be fixed for the whole system. In this case, it
will be unnecessary for the signer to transmit k to a verifier. In this case,
the signed message [a, d, f] reduces to [a, d].

Multiplicative signatures can be considered to be a special case of hashed
multiplication signatures if we fix the hash function f to be the identity
function, defined f(m) = m. To be clear, this only allows us to sign messages
that are already elements in the semigroup.

Sometimes, the signer will choose k randomly from a key space.
Sometimes, the signer will choose k as a deterministic, pseudorandom

function of the message, like this k = hb(m).
In this report and its reference implementation, a fixed, system-wide hash

function is suggested, based on the FIPS 202 hash function, SHAKE-128,
which is extendable output version of SHA-3.

3.2 Full-domain (embedded) hashing

The hash function is not necessarily a standard hash function, because it
must map messages into semigroup elements. Rather some form of full-
domain (embedded) hashing is needed. Embedding refers to the the step
of mapping the natural output of the hash function, usually a byte string,
into the semigroup. Full-domain hashing refers to the idea that the hashed
matters a = f(m) should appear indistinguishable from random matters a.

In the case of plactic signatures, we will assume that all entries in the
semistandard have values that can be represented as a single byte. In this
case, every byte string represents a semistandard tableau, via the Robinson–
Schensted algorithm. Therefore, a simple embedding function is to take the
byte string output of the hash function, and consider it to be a representation
of a semistandard tableau.

To make this a full-domain hash function, an extendable output hash
function can be used, meaning that the hash function can output as many
bytes as needed for the chosen byte size of the matter a.

3.3 Usability benefits of hashing

A usability benefit of hashing is that a long message m can have short hash
a = f(m). A short a usually means that the signature d = ab is short.

6

In other words, f(m)b is shorter than mb. A second benefit is hashing al-
gorithms are often faster than semigroup multiplication. In other words,
computing f(m)b is faster than computing mb.

Security benefits of hashing are discussed in §5.

4 Suggested parameters

For concreteness, this report suggests the specific parameters.

4.1 Recommended parameters: ps12288

The recommended set of parameters is ps12288, as described below.

• Tableau entries are bytes, numbers ranging from 0 to 255.

• Tableaus are represented by byte strings. A byte string s represents the
tableau P (s), where P is the Robinson–Schensted function (mapping
strings to semistandard tableaus).

• Values a, b, c are 512 bytes (message digest matters, secret keys, and
checkers).

• Values d, e are 1024 bytes (signatures and endpoints). Standard repre-
sentation is used to communicate d and e (and to hide the dependence
on b).

• Public key [c, e] is represented as 1536 bytes, which is 12288 bits, as
the concatenation of byte string representation c and e.

• The hash function is fixed to be SHAKE-128, without output length
fixed at 512 bytes.

• The embedding function is the identity function, sending byte strings
(512 bytes from SHAKE-128) to byte strings (representing semistan-
dard tableaus).

The hope is that, with the parameters ps12288, the best attacks against
plactic signatures take computation of at least 2128 steps (bit operations), or
are otherwise infeasible.

7

5 Plactic signature security

This section discusses forgery attack strategies against plactic signatures.
Some types of forgery attacks translate into various computational prob-

lems, such as division, cross-multiplication and parallel division.

5.1 Divide to find a secret key from public key

A secret key b for public key [c, e] can be found using a division operator
/ (known as a divider for short), by computing

b = e/c. (6)

If signatures are to be secure, then division must be difficult. More precisely,
the division problem to compute e/c must be difficult for each public key
[c, e].

Recall (from [Bro21]) that / is a divider if ((bc)/c)c = bc for all b, c. This
means that e/c will be a secret key for public key [c, e]. Conversely, the
ability to find a secret key from a public key, implies a divider (that works
when the inputs are from a public keys [c, e]).

For some semigroups, but not the plactic monoid, a weaker kind of divi-
sion suffices: a((bc)/c)c = abc for all a, b, c. In other words, it suffices to find
a weak secret key. In the plactic monoid, it seems that a weak secret key is
a secret key, so that any weak divider is a divider.

5.2 Left division to find a secret key from a signature

Suppose that binary operator \ is a left divider (meaning a(a\(ab)) = ab
for all a, b, as in [Bro21]). Suppose that d is signature of matter a. Use left
division to compute a value

b′ = a\d. (7)

By definition of left division, we have ab′ = d.
Consider a second matter a′. We could try to generate a signature d′ =

a′b′. This is valid if a′e = d′c, meaning a′bc = a′(a\d)c. The latter equation
is not guaranteed by the given definition of left division. In fact, in the
plactic monoid, there are many different possible values for a\d, because
multiplication is not cancellative. It seems unlikely that a′bc = a′b′c for
b 6= b′, without somehow using a′ and c to compute b′.

8

The plactic monoid is anti-isomorphic, so left and right division are
equally difficult.

In cancellative semigroups, which does not include the plactic monoid,
there is a post-divider such that (ab)/b = a for all a, b. Similarly, a left
post-divider has a\(ab) = b for all a, b. In that case, b′ = b, so the secret
key could be recovered from a signature using left division.

Althouth the plactic monoid is not cancellative, there might be a similar
attack. Perhaps, a parallel left post-division algorithm can find a weak secret
key b. Given matters a1, . . . , an with signatures d1, . . . , dn related by di =
aib, then a parallel left division algorithm finds b, which we write as b =
[a1, . . . , an]\[d1, . . . , dn].

5.3 Cross-multiply to forge unhashed signatures

A cross-multiplier is an operator, which we write as ∗/, such that

(y ∗/ x)x = (x ∗/ y)y, (8)

whenever there exists u and v such that ux = vy. (So, if x and y are such
that no such u and v, exist, then (8) is not required to hold.)

The notion of cross multiplication is familiar. Cross-multiplciation is
often used to cancel terms between linear equations. The notation ∗/ is
not familiar. The non-familiar notation is convenient for comparison to the
notation for dividers.

Some semigroups have fast cross-multipliers.
In a commutative semigroup, x ∗/ y = x defines a cross-multiplier. In

a semigroup with a zero element 0 (such that 0z = 0 for all z), x ∗/ y = 0
defines a cross-multiplier. In a group with efficient inversion, x ∗/ y = y−1

defines a cross-multiplier. In the last example, division would be also be fast
with x/y = xy−1, but in the other two examples, division could potentially
be much slower than cross-multiplication.

The plactic monoid is non-commutative, has no zero element, and has no
inverses, so the three cross-multiplication methods above fail in the plactic
monoid.

A cross-multiplier can be used for forgery of unhashed multiplicative sig-
natures, by putting

[a, d] = [c ∗/ e, e ∗/ c]. (9)

Because this forger uses the cross-multiplier ∗/ as an oracle, the forger has
no control over the matter a (it is whatever the ∗/ algorithm outputs). This

9

is therefore an exisential forger (which could also be called junk message
forger).

For hashed multiplicative signatures, the attacker would also need to find
m (and f) such that f(m) = c ∗/ e. For a secure hash function f such as
SHAKE-128, finding such a message m should be difficult. In other words,
fogery by cross-multiplication is not effective against hashed multiplicative
signatures.

5.4 Factor to forge unhashed signatures

To forge a matter a in an unhashed multiplicative, try to factor a as

a = a2a1 (10)

Then ask the signer to sign matter a1. The signer returns signature d1. Then
compute d = a2d1, which will a valid signature on matter a.

This would be a chosen message forgey (which could also be called a
signer-aided forgery), because the forger chooses what message the signer
honestly signs before getting to the forgery.

Factoring is easy in the plactic monoid. Therefore, unhashed multiplica-
tive signatures would be vulnerable to this type of attack. For hashed multi-
plicative signatures, the factorization does not seem to be enough for forgery.
Plactic signatures are hashed multiplication, so this attack seems to fail.

In particular, in plactic signatures, the matter length is fixed, so that
any actual matter that a signer or a verifier uses cannot be factor into other
matters.

If the verifier can be tricked into using longer matters, but the matters
are still hashed, then factoring tableaus is not enough, because the atttacker
would also need to invert the hash on the factor a2. If the signer can also be
tricked into signing a matter without using a hash, then the factoring attack
could work.

5.5 Attacking the hash function

An attacker can try to attack the hash function. The attacker can try to
find collisions, for example. Plactic signatures use SHAKE-128, which has
an internal state of 256 bits, and with an output length much higher, 4096
bits. Finding a collision by known methods, of byte string outputs of the
hash, should therefore take at least 2128 steps.

10

But, the effective hash is the semistandard tableaus represented by the
byte strings. Each tableaus is represented by many different byte strings.
Nevertheless, the space of tableaus is still large, so the output range of the
hash still seems larger than 2256, meaning generic collision attacks should
still take at least 2128 steps.

6 A reference implementation

A reference implementation for plactic signatures is provided for additional
clarity.

The reference implementation follows the NIST PQC3 the requirements
for digital signature implementations in C. This includes an interface that is
generic across many different possible digital signature algorithms.

6.1 Implementing plactic monoid multiplication

File plactic.c in Table 3 implements plactic monoid multiplication (for any
given size of tableaus). The obvious header file plactic.h is omitted.

The inputs a and b to the multiply function are byte strings of lengths
given by input alen and blen. Note that it is not required for the input byte
strings to be row readings of semistandard tableaus, but the output byte
string will be the row reading of a semistandard tableau (so the output will
be a standard representation).

The output d byte string is computed by concatenating the bytes strings
a and b, and then applying the Robinson–Schensted algorithm to obtain a
semistandard tableau, with d being the row reading of this semistandard
tableau. Knuth relations are applied iteratively to achieve the insertions
of entries the semistandard tableau, with tableau at each iteration being
represented by a byte string.

The reference implementation of multiplication assumes that input a and
b and d point to memory locations such that correct multiplication is possible.
They must not overlap, they must have available memory. The caller of the
multiply must ensure this.

The reference implementation does not have optimized side channel re-
sistance or speed.

3The NIST post-quantum cryptography (PQC) project takes its requirements from the
SUPERCOP system of timing cryptography.

11

#define SWAP(a,b) (aˆ=b, bˆ=a, aˆ=b, 1)

#define KNUTH(k,xyz) (\

(xyz[2] < xyz[k-1]) & (xyz[0] <= xyz[k]) && \

SWAP(xyz[1], xyz[(k+1)%3]))

void multiply (

unsigned char *d,

const unsigned char *a, unsigned long long alen,

const unsigned char *b, unsigned long long blen)

/* WARNINGS: not constant time, not safe for memory overlap */

{ int i,j,k;

for(i=0; i<alen+blen; i++)

d[i] = (i<alen)? a[i]: b[i-alen];

for(i=0; i<alen+blen; i++)

for(j=i; j>=2 && d[j] < d[j-1]; j--)

for(k=1; k<=2; k++)

for(; j>=2 && KNUTH(k, (d+j-2)) ; j--) ;}

Table 3: File plactic.c (multiplication in the plactic monoid)

6.2 Application programming interface

File api.h in Table 4 specifies the byte sizes, the specific algorithm name,
and also the C function prototypes for key generation, signing and verifying.
The reference implementation uses public key of size 12288 bits (1536 bytes).
This leaves a large margin of error over the current predictions for the best
known attacks [Bro21].

This reference implementation interprets the input parameters pk and
sk to the the function crypto_sign_keypair as memory locations with po-
tentially uninitialized data, which therefore should not be used as input (to
recover a public key from a pre-existing secret key, for example).

6.3 Signing implementation

File sign.c in Table 5 implements key generation, signing and verifying.
The reference implementation fixes the checker to be system-wide, as the

output of the hash function SHAKE-128, applied to the official algorithm
name Plactic_Signature_12288.

12

#define CRYPTO_SECRETKEYBYTES 512

#define CRYPTO_PUBLICKEYBYTES 1536

#define CRYPTO_BYTES 1024

#define CRYPTO_ALGNAME "Plactic_Signature_12288"

int crypto_sign_keypair(unsigned char *pk, unsigned char *sk);

int crypto_sign(unsigned char *sm, unsigned long long *smlen,

const unsigned char *m, unsigned long long mlen,

const unsigned char *sk);

int crypto_sign_open(unsigned char *m, unsigned long long *mlen,

const unsigned char *sm, unsigned long long smlen,

const unsigned char *pk);

Table 4: File api.h (bytes sizes and name)

Optionally, a user of reference implemenation sign.c can change the
value of this checker. The user can re-assign the global variable name, point-
ing to a string of the user’s choice. The reference implementation will hash
this string instead of the official algorithm name.

7 Towards an optimized implementation

The reference implementation of plactic signatures is not ideal, and has sev-
eral rooms for improvement.

Critically, the reference implementation for multiplication is not constant-
time. The runtime depends on the values of the factors. Signing and key
generation should be constant because, otherwise, the secret b might get
leaked through a timing side channel. Two modifications might help achieve
constant time multiplication.

• The Knuth relations on three array elements should be re-implemented
as a function that outputs a Knuth state. The Knuth state determines
the next Knuth action, which might be two leave unmodified the three
array entries under consideration. The main loop of multiplication
would simply pass along the state, and would not stop early.

• The swaps of pairs of elements should be implemented as a constant-
time conditional swap.

13

#include <string.h> /* memcpy, memcmp, strlen */

#include "keccak.h" /* FIPS202_SHAKE128 */

#include "rng.h" /* randombytes */

#include "api.h" /* CRYPTO_SECRETKEYBYTES */

#include "plactic.h" /* multiply */

#define L CRYPTO_SECRETKEYBYTES

unsigned char *name=CRYPTO_ALGNAME;

int crypto_sign_keypair (unsigned char *pk, unsigned char *sk)

{ unsigned char *b=sk, *c=pk, *e=pk+L;

if (sk == pk) return -2; /* TO DO: check for other overlaps */

if (sk != pk) randombytes(b,L);

FIPS202_SHAKE128(name,strlen(name), c,L);

multiply(e, b,L, c,L); return 0; }

int crypto_sign (unsigned char *sm, unsigned long long *smlen,

const unsigned char *m, unsigned long long mlen, const unsigned char *sk)

{ unsigned char a[L], *d=sm+mlen;

unsigned char const *b=sk;

if (sk==sm) return -3; /* TO DO: check for other overlaps */

*smlen = mlen + 2*L; memcpy(sm,m,mlen);

FIPS202_SHAKE128(m,mlen, a,L);

multiply(d, a,L, b,L); return 0;}

int crypto_sign_open (unsigned char *m, unsigned long long *mlen,

const unsigned char *sm, unsigned long long smlen, const unsigned char *pk)

{ unsigned char const *c=pk, *d=sm+smlen-2*L, *e=pk+L;

unsigned char a[L], ae[3*L], dc[3*L];

*mlen=smlen-2*L;

FIPS202_SHAKE128(sm,*mlen, a,L);

multiply(ae, a,L, e,2*L);

multiply(dc, d,2*L, c,L);

if (0 == memcmp(ae,dc,3*L)) {

memcpy(m,sm,*mlen); return 0;

} else {

randombytes(m,*mlen); *mlen=0; return -1;}}

Table 5: File sign.c (key generation, signing, verifying)

14

Perhaps the byte sizes chosen are too small, and perhaps a larger range
of entries for the tableaus is not needed, not just a single byte. On the other
hand, perhaps the byte sizes are too large, and smaller tableaus could be
used, for a faster implementation.

Verification perhaps does not need constant-time multiplication. For ex-
ample, in applications where the verified message is public, then all inputs
to verification will usually be public, so there is no need to hide them. In
this case, it may make sense to optimize the speed of multiplication. Some
possible modification might help speed up multiplication:

• Store the tableaus being multiplied as two-dimensional arrays. (The
division algorithm in [Bro21] does this, for example.)

• When scanning where to insert entries into rows of tableaus, use a
binary search from the beginning of the row to the entry just above the
entry below being bumped.

Optimizations should be tested for their effectiveness, because costly over-
head of optimization complications might outweigh the intended benefits.

The brevity of the reference implementation for multiplication in file
plactic.c, suggests that the most suitable hash function would one that
whose reference implementation is similarly brief. Perhaps one of the recent
lightweight cryptographic hash functions has a briefer specification than the
SHAKE128.

Compression of public keys and signatures might be possible. The NIST
API suugests fixed length public keys and signatures, so compression is not
easily compatible. The portion c in a public key is usually fixed system-wide
(or derived as a hash of the signer’s name). This suggests that it can be
omitted from the public key, as a compression operation. Other possible
compression methods may be possible. For example, a semistandard tableau
contains some redundant information.

A Experimental utilities

This section provides experimental utilities: executable programs for plactic
signatures, that can generate keys, sign messages, and verify signatures.

The intended messages to sign are hand-typed text, not artbitrary data
(large or binary files such as images, videos, executable programs, or entire
books).

15

The utilities can run on a Linux system. One utility is written in C, with
a simplified user interface. A second is writtn as a shell script (bash), with
a more flexible (perhaps more friendly) user interface.

File ps-util.c in Table 6 combines standard I/O libraries with the sig-
nature library. The utility has the property that the message to be signed is
to be supplied as a command-line argument. This interface can be very lim-
iting. It is best for signing (short) texts. It would very difficult to sign large
files or non-text binaries (keys) with this utility. The program has limited
error-handling.

File help.c in Table 7 described the user interface of the backend C
utility. It has a very terse instructions, intended as a reminder about the
utility’s interface to a user already well-versed in (plactic) signatures. It uses
the terser terms lock and key instead of the usual public key and secret
key (or verification key and signing key).

File rng-util.c in Table 8 likely suffices for the way that the plactic
signature utility uses random numbers. The header file rng.h can then be
as simple as specifying the prototype for the function randombytes.

File ps-util.sh in Table 94 uses the ps-util utility as a backend, to
provide a more sophisticated user interface.

For signing, the shell script utility takes the message as either the command-
line arguments or the terminal stdin if there are no command-line argu-
ments. The last word of the message is presumed to the signer’s name, and
is used to derive the filename of the encrypted secret signing key.

If secret key file does not exist, then the script asks if the user would like
to create a new key. In other words, there is no dedicated interface for key
pair generation. If the user says no, then the utility assumes that the user
wants to verify a signed message. Also, if any words in the message look
like the filename of a signed messages created by the utility, then the utility
assumes the verification is needed.

The secret keys are encrypted for security. The utility uses the OpenSSL
utility for encryption and decryption of the secret keys.

The verification tries to verify all words of the input as though they were
filenames, and asks the user which public key files to be used for verification.

4Like other files in this report, manual line-merging and space-deletion has been used
to squeeze the file into a single page. Shells are more delicate than C in handling blank
space, fewer spaces can be deleted and some newlines need to be replaced by semi-colons.
So, this version is more likely to have bugs.

16

#include <stdio.h>

#include <string.h>

#include <unistd.h>

#include "api.h"

#include "help.c"

#define MAX_LEN 1000000

int key(void) {

unsigned char pk[CRYPTO_PUBLICKEYBYTES], sk[CRYPTO_SECRETKEYBYTES];

crypto_sign_keypair(pk,sk);

fwrite(pk,1,CRYPTO_PUBLICKEYBYTES,stderr);

fwrite(sk,1,CRYPTO_SECRETKEYBYTES,stdout); return 0;}

int sig(char *msg) {

unsigned char sk[CRYPTO_SECRETKEYBYTES], sig[MAX_LEN];

unsigned long long sklen,slen;

if (isatty(fileno(stdin))) {help (); return 6;}

sklen=fread(sk,1,CRYPTO_SECRETKEYBYTES,stdin);

if (sklen != CRYPTO_SECRETKEYBYTES) {

fprintf(stderr,"\nBad secret key\n"); return 2;}

crypto_sign(sig,&slen, msg,strlen(msg), sk);

fwrite(sig,1,slen,stdout); return 0;}

int ver(char *pk_filename) {

unsigned char pk[CRYPTO_PUBLICKEYBYTES], msg[MAX_LEN], sig[MAX_LEN];

unsigned long long pklen,mlen,slen;

if (fopen(pk_filename, "r")) {

pklen=fread(pk,1,CRYPTO_PUBLICKEYBYTES,fopen(pk_filename,"r"));

if (CRYPTO_PUBLICKEYBYTES==pklen) {

slen=fread(sig,1,MAX_LEN,stdin);

if (slen >= CRYPTO_BYTES) {

if(0 == crypto_sign_open(msg,&mlen,sig,slen,pk)){

fwrite(msg,1,mlen,stdout); return 0;}

else {fprintf(stderr,"\nBad signature\n");return 1;}}

else {fprintf(stderr, "\nBad signature (too short)\n");return 3;}}

else {fprintf(stderr,"\nBad public key\n");return 4;}}

else {fprintf(stderr,"\nBad public key (could not open file)\n");return 5;}}

int main (int c, char **a){

return 1==c?key(): 2==c?sig(a[1]): 3==c?ver(a[1]): help();}

Table 6: File ps-util.c (key generation, signing, verifying)

17

int help (void){ printf(

"Plactic signature utility, by Dan Brown (BlackBerry)."

"\nUsage summary:"

"\n ps-util [message-or-filename [...]]"

"\n"

"\n task |args| arg1 | stdin | stdout | stderr"

"\n -------+----+-----------+-----------+-----------+---------"

"\n new | 0 | | | key | lock"

"\n sign | 1 | 'message' | key | signature |"

"\n verify | 2 | lock file | signature | message | alert"

"\n help |1,3+| | terminal | this |"

"\n"

"\n Note: signature has message as prefix."

"\n ./ps-util 2>pk|./ps-util Hello|(sleep 0.1;./ps-util pk -);echo"

"\n See demo script ps-util.sh, for more realistic example.\n"

); return 4;}

Table 7: File help.c (help function)

#include <stdio.h>

#include "keccak.h"

int randombytes(unsigned char *x, unsigned long long xlen)

{

fread(x,1,xlen,fopen("/dev/urandom","r"));

FIPS202_SHAKE128 (x,xlen,x,xlen);

}

Table 8: File rng-util.c

18

#! /bin/bash

echo () { builtin echo "$*" > /dev/stderr ; }

if [$# -gt 0] ; then input="$*"; else

if [-t 0] ; then

echo 'Type a message to sign (or files to verify).' ; echo 'Ctrl-D to finish.'

mapfile input_array ; input=$(printf %s "${input_array[@]}") ; input="$input"$'\n'

else

echo This script assumes input from a terminal, sorry. ; exit 1 ; fi; fi

set -- $input # TO DO: this might be insecure: user input --> shell!!!

last_word="${!#}"; signer="$last_word" # TO DO: remove hyphens --Dan

sk=$signer.sk ; pk=$signer.pk # TO DO: search the path for $signer.sk

if [-f $sk]; then signing=yes; fi

if which openssl > /dev/null; then

aes="openssl enc -aes-256-cbc -iter 1000"

encrypt () { $aes ; } ; decrypt () { $aes -d ; }

else

encrypt () { cat ; } ; decrypt () { cat ; }; fi

if [-z $signing] && grep -v [-]signed-message[.] <<< "$input"; then

echo "No signer key file $sk exists here."

read -p "Do you want to generate a new keypair for $signer? [y/n] "

if [$REPLY = y] ; then

if [-f $pk]; then

echo $pk already exists, making a backup ; cp -f -b -v $pk $pk; fi

echo Generating a new key pair

./ps-util 2> $pk |

(echo The secret key should be encrypted. ; encrypt > $sk)

echo Public key '(lock)' stored in $pk; echo Secret key stored in $sk

signing=yes; fi ; fi

if [$signing] ; then

if [-t 1] ; then # stdout it a terminal, signed message > file

sm=$(mktemp $signer-signed-message.XXXXXX)

echo Secret key must decrypted to sign ; decrypt < $sk |

./ps-util "$input" > $sm ; echo Signed message stored as file $sm

else # stdout is a file or pipe, just write

./ps-util < $sk "$input" ; fi

exit 0 ; fi

message=$(mktemp TEMP-recovered-message.XXXXXX)

echo Choose a public key file to verify signed message files: ; echo '(q or Ctrl-D to quit)'

select pk in *.pk ; do

if [-z $pk] ; then break ; fi

for file in $* ; do

if [-f $file] ; then

if ./ps-util <$file $pk verify > $message ; then

if [$messages_printed] ; then printf '\n---\n' ; fi

echo File $file verifies under $pk.

echo The verified message is: ; echo

cat $message ; messages_printed=yes

else

echo '!!!!!'; echo ERROR: "$file" does not verify ; echo '!!!!!'; fi

else

echo ERROR: No file "$file" found ; fi ; done

echo ; echo Choose a public key file to verify signed message files:

echo '(q or Ctrl-D to quit)' ; done ; \rm $message

Table 9: File ps-util.sh (key generation, signing, verifying)

19

B Auxiliary implementations

File keccak.c in Table 10 is an excerpt of one of the implementations of
SHAKE-128 from the official github source code for Keccak.

C Generality of multiplicative signatures

Multiplicative signatures are arguably quite general. To informally illustrate
this generality, consider ECDSA.

An ECDSA signature of the form [R, s] is valid for message h and public
key Q = uG if

hG = sR − rQ (11)

where r is a conversion of elliptic curve point R to an integer. (Strictly, an
ECDSA signature is [r, s], but the point R can be recovered from r in a few
trials.) Let:

[a, b, c, d, e] = [h, 1/u, Q, [R, s], G]. (12)

Reconstruct multiplication operations acting on variables a, b, c, d, e such that
Q = uG is equivalent to e = bc, while ae represents hG and dc represents
sR − rQ.

To get a full semigroup, add an artificial zero element 0 in addition to
those of the forms a, b, c, d, e. Then define all other multiplication to take the
value 0. In other words, define multiplication as the operations matching the
ECDSA operations as explained in the previous paragraph, and 0 otherwise.
Associativity of this multiplication is ensured by the nature of the verification
equation, or by the product of any other three elements being 0.

In the case of ECDSA, the value of e, representing G, is chosen before the
value c, representing Q. This situation corresponds to the secret key b being
an invertible element of the semigroup. In other semigroups, such as the
plactic monoid, the secret keys are not invertible, so value c must be chosen
before e. In ECDSA, the checker c is signer-specifier, while the endpoint e is
system-wide, but that is only possible for multiplicative signatures in which
the secret keys b are easily invertible.

A signature scheme is separable if the verification consists comparing
two data values, and the public key is effectively two values, one determined
by the other via an efficient trapdoor. For example, ECDSA is separable,
and multiplicative signature are separable. It seems that several separable
signature schemes can be considered instances of multiplicative signatures.

20

#define FOR(i,n) for(i=0; i<n; ++i)

typedef unsigned char u8;

typedef unsigned long long int u64;

typedef unsigned int ui;

void Keccak(ui r, ui c, const u8 *in, u64 inLen, u8 sfx, u8 *out, u64 outLen);

void FIPS202_SHAKE128(const u8 *in, u64 inLen, u8 *out, u64 outLen)

{Keccak(1344, 256, in, inLen, 0x1F, out, outLen);}

int LFSR86540(u8 *R) { (*R)=((*R)<<1)ˆ(((*R)&0x80)?0x71:0); return ((*R)&2)>>1; }

#define ROL(a,o) ((((u64)a)<<o)ˆ(((u64)a)>>(64-o)))

static u64 load64(const u8 *x) { ui i; u64 u=0; FOR(i,8) { u<<=8; u|=x[7-i]; } return u; }

static void store64(u8 *x, u64 u) { ui i; FOR(i,8) { x[i]=u; u>>=8; } }

static void xor64(u8 *x, u64 u) { ui i; FOR(i,8) { x[i]ˆ=u; u>>=8; } }

#define rL(x,y) load64((u8*)s+8*(x+5*y))

#define wL(x,y,l) store64((u8*)s+8*(x+5*y),l)

#define XL(x,y,l) xor64((u8*)s+8*(x+5*y),l)

void KeccakF1600(void *s) {

ui r,x,y,i,j,Y; u8 R=0x01; u64 C[5],D;

for(i=0; i<24; i++) {

/*theta*/

FOR(x,5) C[x]=rL(x,0)ˆrL(x,1)ˆrL(x,2)ˆrL(x,3)ˆrL(x,4);

FOR(x,5) { D=C[(x+4)%5]ˆROL(C[(x+1)%5],1); FOR(y,5) XL(x,y,D); }

/*rho pi*/

x=1; y=r=0; D=rL(x,y);

FOR(j,24) { r+=j+1; Y=(2*x+3*y)%5; x=y; y=Y; C[0]=rL(x,y); wL(x,y,ROL(D,r%64)); D=C[0]; }

/*chi*/

FOR(y,5) { FOR(x,5) C[x]=rL(x,y); FOR(x,5) wL(x,y,C[x]ˆ((˜C[(x+1)%5])&C[(x+2)%5])); }

/*iota*/

FOR(j,7) if (LFSR86540(&R)) XL(0,0,(u64)1<<((1<<j)-1)); } }

void Keccak(ui r, ui c, const u8 *in, u64 inLen, u8 sfx, u8 *out, u64 outLen) {

/*initialize*/

u8 s[200]; ui R=r/8; ui i,b=0; FOR(i,200) s[i]=0;

/*absorb*/

while(inLen>0) {

b=(inLen<R)?inLen:R;

FOR(i,b) s[i]ˆ=in[i];

in+=b; inLen-=b;

if (b==R) { KeccakF1600(s); b=0; } }

/*pad*/

s[b]ˆ=sfx;

if((sfx&0x80)&&(b==(R-1))) KeccakF1600(s);

s[R-1]ˆ=0x80; KeccakF1600(s);

/*squeeze*/

while(outLen>0) {

b=(outLen<R)?outLen:R;

FOR(i,b) out[i]=s[i];

out+=b; outLen-=b;

if(outLen>0) KeccakF1600(s); } }

Table 10: File keccak.c, implementing the SHAKE-128 full-domain (ex-
tendable output) hash function

21

References

[Bro21] Daniel R. L. Brown. Plactic key agreement. Cryp-
tology ePrint Archive, Report 2021/625, 2021.
https://eprint.iacr.org/2021/625. 1, 2, 2.1, 5.1, 5.2, 6.2,
7

[RS93] Muhammad Rabi and Alan T. Sherman. Associative one-
way functions: A new paradigm for secret-key agree-
ment and digital signatures. Technical Report CS-TR-
3183/UMIACS-TR-93-124, University of Maryland, 1993.
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.118.6837&rep=rep1&t

1, 2

22

https://eprint.iacr.org/2021/625
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.118.6837&rep=rep1&type=pdf

	1 Introduction
	2 Multiplicative signatures
	2.1 Multiplicative semigroup, an overview
	2.2 Public keys
	2.3 Digital signatures
	2.4 Secret keys
	2.5 Signing
	2.6 Key and hash spaces

	3 Hashed multiplicative signatures
	3.1 Choice of hash function
	3.2 Full-domain (embedded) hashing
	3.3 Usability benefits of hashing

	4 Suggested parameters
	4.1 Recommended parameters: ps12288

	5 Plactic signature security
	5.1 Divide to find a secret key from public key
	5.2 Left division to find a secret key from a signature
	5.3 Cross-multiply to forge unhashed signatures
	5.4 Factor to forge unhashed signatures
	5.5 Attacking the hash function

	6 A reference implementation
	6.1 Implementing plactic monoid multiplication
	6.2 Application programming interface
	6.3 Signing implementation

	7 Towards an optimized implementation
	A Experimental utilities
	B Auxiliary implementations
	C Generality of multiplicative signatures

