
Plactic signatures

Daniel R. L. Brown∗

October 22, 2021

Abstract

Plactic signatures use the plactic monoid (semistandard tableaus
with Knuth’s associative multiplication) and full-domain hashing (SHAKE).

1 Introduction

Plactic signatures instantiate multiplicative signatures (see Table 1, §2, and
[RS93]), with the plactic monoid1 and full-domain hashing (see §3).

Notation Name Typically:
a (Attested) Matter A message digest
b (Binding) Secret Key SECRET to one signer
c Checker System-wide
d (Digital) Signature Appendix of signed matter
e Endpoint Signer-specific value

[a, d] Signed Matter Thing to be verified
[c, e] Public Key Certified as signer’s

e = bc Key Generation Signer uses secret key b
d = ab Signing Signer uses secret key b
ae = dc Verifying Verifier uses public information

Table 1: Summary of plactic (and multiplicative) signatures

∗danibrown@blackberry.com
1For more about Knuth’s plactic monoid, one can start from [Bro21] or Wikipedia.

1

danibrown@blackberry.com

2 Multiplicative signatures

This section describes multiplicative signatures, which are summarized in
Table 1. Rabi and Sherman [RS93] mentioned the main idea behind multi-
plicative signatures in 1993.

Multiplicative signatures can be defined for any multiplicative semigroup.
Security and efficiency depend on the semigroup used.

Custom terminology for multiplicative signatures helps to discuss fea-
tures specific to multiplicative signatures, for comparison to generic digital
signatures.

2.1 Multiplicative semigroups, an overview

Recall the definition of a (multiplicative) semigroup. Firstly, it is a set
where any two elements can be multiplied with a result in the set. In other
words, multiplication is a well-defined binary operation, and the set is closed
under multiplication. Multiplication of variables a and b is written as ab,
whenever clear from context. Secondly, multiplication must be associative,
which means that it obeys the associative law: a(bc) = (ab)c.

This report fixes the semigroup to be Knuth’s plactic monoid. An
introduction (for cryptographers) to the plactic monoid may be found in
[Bro21].

Recall that elements of the plactic monoid are semistandard tableaus.
Elements can also be represented by their row readings, a concatenation of
the tableau’s rows. More generally, every sequence (with entries in same
finite ordered set as entries of the tableaus) represents a unique tableau, via
application of the Robinson–Schensted algorithm. Each tableau has multiple
sequence representations, but the standard representation is the row reading
of the tableau. The values d and e must be communicated in standard
representation.

Multiplication is Knuth multiplication of semistandard tableaus. This
amounts to first concatenating of the row reading of the two tableaus, and
then applying the Robinson–Schensted to put the concatenation back into
semistandard tableau form.

2

2.2 Public keys

A public key is a pair [c, e] of elements. Element c is the checker and
element e is the endpoint. The checker c can be shared between many
signers, but endpoint e is usually specific to a single signer.

Alternative names for the public key in a digital signature include the
following. A common term is verification key, because the public key is
the key that the verifier needs to verify a signature. A common graphical
symbol (and arguably more user-friendly indication) is a lock. However,
the the lock symbol often indicates several layers of security (for example,
in web browsers, a lock symbol typically indicates successful verification of
digital signature with a chain of trusted public keys, and also an application
of encryption and other symmetric-key cryptography).

For simplicity, this report presumes that a signer’s public key is reliably
and correctly available to the verifier. Occasionally, a signer is identified via
the public key.

In practice, a public key infrastructure (PKI) would be used to estab-
lish each signer’s public key [c, e], binding the cryptographic value [c, e] to a
more legible name of the signer. The signer’s public key [c, e] will be embed-
ded into a certificate, which certifies that the [c, e] belongs to the signer.
A typical PKI distributes some certificates manually as root certificates,
and then transfers trust to other certificates using digital signatures (which
could be plactic signatures).

2.3 Digital signatures

A signed matter is a pair [a, d] of elements. Element a is the (attested)
matter and element d is the (digital) signature. The matter is usually
derived as a digest of a meaningful message. A matter is sometimes common
to many signers (for example, when short messages like “yes” or “no” are to
be signed). We often say that d is a signature on matter a, or that d is a
signature over a.

A signed matter [a, d] is verifiable for public key [c, e] if

ae = dc. (1)

We often also say that [a, d] is valid for [c, e], that signer [c, e] has signed
matter a, that matter a has been signed by [c, e], and that d is a signature
under [c, e].

3

The two sides of (1) are different in invalid signatures. Call ae the end-
matter and dc the signcheck. A multiplicative signature is valid if and only
if the endmatter equals the signcheck.

2.4 Secret keys

A secret key b for public key [c, e] is an element b such that

e = bc. (2)

Alternative names for secret keys of digital signatures include the following.
The commonly used term private key can be useful to distinguish from other
secret keys, such as keys used in symmetric-key cryptography. Another sen-
sible term is signature generation key, or signing key. A more mnemonic
name for b is binder, but this is quite far from any existing traditions.

A public key [c, e] is viable if there exists at least one secret key b for
[c, e].

A signer can choose secret key b before choosing a public key [c, e], by
computing the endpoint e from the formula (2). This results in a viable
public key. In the plactic monoid, it seems difficult to generate a viable
public key [c, e] in any way other than computing e = bc for some b.

A weak secret key b for public key [c, e] is an element b such that
abc = ae for all matters a (in the set of matters to be signed). In the plactic
monoid, allowing matters a to range over a large set, then it seems likely
that every weak secret key is a secret key. (For some other semigroups, this
might not be the case.)

2.5 Signing

A signer with secret key b can sign matter a by computing signature

d = ab. (3)

The resulting signed matter [a, d] is verifiable for the signer’s public key [c, e],
because multiplication is associative:

ae = a(bc) = (ab)c = dc. (4)

A signer with public key [c, e] should keep b secret, so that nobody else can
generate signatures under [c, e].

4

2.6 Key and hash spaces

For security reasons, the values a, b and c should be chosen from sufficiently
secure subsets A, B, and C of the semigroup. To fully specify the multi-
plicative signatures scheme, the subsets A, B, and C should be specified.
Furthermore, the methods to choose elements a, b, c in the subsets A, B, C
must also be specified.

3 Hashed multiplicative signatures

Hashed multiplicative signatures are multiplicative signature system in which
the matter is a hash of a message. Hashed multiplication signatures are
summarized in Table 2. In hashed multiplicative signatures, both the signer

Notation Name Typically:
a Matter A message digest
b Secret key SECRET to one signer
c Checker System-wide
d Raw signature Appended to signed matter
e Endpoint Signer-specific value
f Hash function Fixed or signer-chosen
h Fixed hash function System-wide, fixed or keyed, f() = hk()
k Hash function key Fixed or signer chosen f() = hk()
m Message Reviewed (or chosen) by signer

[d, f] Signature Extension of multiplicative signature
[m, d, f] Signed message Thing to be verified

[c, e] Public key Certified as signer’s
a = f(m) Digesting Signer and verifier compute short a

e = bc Key generation Signer uses secret key b
d = ab Signing Signer uses secret key b
ae = dc Verifying Verifier uses public information

Table 2: Summary of hashed multiplicative signatures

and verifier compute the matter a from the message m by applying hash
function f :

a = f(m). (5)

A hashed signature is [d, f], and the signed message is [m, d, f].

5

To sign message m, the signer with secret key b selects f and compute
f = ab = f(m)b. To verify signed-message [m, d, f] under public key [c, e],
the verifier checks that f(m)e = dc.

3.1 Choice of hash function

The hash function f will typically take the form f(m) = hk(m), where h
is a keyed hash function, and k is the key. Because h is fixed across the
whole system, the key k suffices to specify f . This allows f to have a short
specification, so that the signature [d, f] is not too long.

Sometimes, the key k can be fixed for the whole system. In this case, the
signed message [a, d, f] reduces to [a, d], because it is actually unnecessary
for the signer to transmit k to a verifier.

Sometimes, the signer will choose k randomly from a key space.
Sometimes, the signer will choose k as a deterministic, pseudorandom

function of the message, like this k = hb(m).
Multiplicative signatures can be considered to be a special case of hashed

multiplication signatures if we fix the hash function f to be the identity
function, defined f(m) = m. To be clear, this only allows us to sign messages
that are already elements in the semigroup.

In this report and its reference implementation, a fixed, system-wide hash
function is suggested, based on the FIPS 202 hash function, SHAKE-128,
which is extendable output version of SHA-3. This is mostly for simplicity.

3.2 Full-domain (embedded) hashing

The hash function must map messages into a set A of semigroup elements.
Some form of full-domain and embedded hashing is needed. Embedding
refers to the the step of mapping the natural output of the hash function,
usually a byte string, into the semigroup. Full-domain hashing refers to the
idea that the hashed matters a = f(m) should appear indistinguishable from
a randomly chosen from the set A.

In the case of plactic signatures, we will assume that all entries in the
semistandard tableaus have numeric values from 0 to 255, so that can be
represented as a single byte. In this case, every byte string represents a
semistandard tableau: the Robinson–Schensted algorithm converts any byte
string s into a semistandard tableau P (s). The simple embedding function

6

used in plactic signatures is to take the byte string output of the hash func-
tion, and consider it to be a representation of a semistandard tableau.

Towards getting a full-domain hash function, an extendable output
hash function can be used, meaning that the hash function can output as
many bytes as needed for the chosen byte size of the matter a. In this case
A represents all semistandard tableaus of a given length. (The Robinson–
Schensted map s 7→ P (s) is not injective, so it introduces a bias (non-
uniformity) in the tableaus when the input is a unbiased (uniformly dis-
tributed) byte string. For digital signatures, this bias seems quite harmless.
It slightly increase the chances of collisions, which can be mitigated by using
longer strings.)

3.3 Usability benefits of hashing

A usability benefit of hashing is that a long message m can have short hash
a = f(m). A short a usually means that the signature d = ab is short. In
other words, f(m)b is shorter than mb (for some embedding of m into the
semigroup).

Another usability benefit of hashing is that hashing algorithms can be
faster than semigroup multiplication. In the plactic monoid, semigroup mul-
tiplication run in time quadratic in the the input length, while hash functions
run in time linear in the input length. In other words, for long messages m,
computing f(m)b is actually faster than computing mb.

Security benefits of hashing are discussed in §6.

4 Suggested parameters

For concreteness, this report suggests some specific parameters.

4.1 Recommended parameters: ps8000

The recommended set of parameters, ps8000, is described below.

• Tableau entries are bytes, numbers ranging from 0 to 255.

• A tableau is represented by a byte string: string s representing tableau
P (s) (where P is the Robinson–Schensted algorithm).

7

• Values a, b, c are each 500 bytes (4000 bits).

• Values d, e are each 1000 bytes (8000 bits).

• Row readings (of semistandard tableaus) represent d and e.

• Endpoint e represents public key [c, e].

• Value c is fixed system-wide, or communicated out-of-band.

• The hash function is SHAKE-128.

• The hash function output length is 500 bytes.

• The embedding function is the identity function, sending byte strings
(500 bytes from SHAKE-128) to byte strings (representing semistan-
dard tableaus).

• Value c is the hash of a fixed system-wide byte string, the algorithm
name, or perhaps some other string communicated out-of-band.

• Value a is the hash of a message to be signed (so is different for each
message signed).

• Value b is the hash of a 100-byte string, which is to be considered the
private signing key.

• A signed message consists of the concatenation of d and the message
m, with d first, so a signed message is exactly 1000 bytes longer than
the message signed.

The main aim for parameters ps8000 is that any successful forgery attack
(with success rate at least one half) takes computation of at least 2128 steps
(bit operations). Furthermore, more general attack strategies should be in-
feasible in some other way, such as by having negligible success probability,
or by having excessive number of queries to honest signers.

4.2 Obsoleted parameters: ps12288

A previous version of this report recommended a different set of parameters,
ps12288. The main advantages of ps8000 over ps12288 are:

8

• Parameters ps8000 round lengths down decimally, so instead of 512-
byte hashes, parameters ps8000 use 500-byte hashes.

• Parameters ps8000 exclude the value c from the representation of the
public key, giving the public key a smaller representation (two-thirds
the size), on the grounds the c will generally be fixed, or known in
advance (out-of-bound), or derived as the hash of a shorter string.

• Parameters ps8000 place the d at the beginning of a signed message,
which might slightly discourage readers of a signed message from ig-
noring the value d in an invalid signature.

• Parameters ps8000 define b as the hash of a 100-byte secret key, allow-
ing for a smaller secret key, and somewhat mitigating against the user
error of choosing a weak value b instead of a randomized value for b.

5 An implementation of plactic signatures

This section provides an implementation for plactic signatures is provided.
An implementation can clarify the practicality issues with plactic signa-

tures. An implementation can clarify any ambiguities in the written descrip-
tion of the previous sections of this report.

The implementation follows the NIST PQC2 the requirements for digital
signature implementations in C.

5.1 Implementing plactic monoid multiplication

This section provides a few implementations of plactic monoid multiplication,
which is the core operation of plactic signatures.

The C implementations share a header file plactic.h listed in Table 3.

typedef unsigned char u;

void multiply(u*ab, const u*a, int alen, const u*b, int blen);

Table 3: File plactic.h

2The NIST post-quantum cryptography (PQC) project takes its requirements from the
SUPERCOP system of timing cryptography.

9

In this interface, the intent is that the inputs a and b to the function
multiply are byte strings of lengths given by input alen and blen. The
input byte strings represent tableaus. such as row readings of semistandard
tableaus.

The output d is byte string of length alen+blen. The ouptut d is to be
be represent a tableau, the product of tableaus represented by byte strings
a and b. Generally, d is intended to be the row reading of the tableau.

A different tableau representation might be acceptable too – if it does
not leak the input tableaus. A column reading might be fine. It is possible
to generate a randomized reading too. It is unclear (to me) if any alternate
can safely offer any advantage over the row reading representation.

The caller of function multiply (such as one of the functions used for
digital signatures), needs to ensure that enough memory is allocated for byte
strings at locations

5.1.1 A reference implementation

File plactic-ref.c in Table 4 is a reference implementation of plactic
monoid multiplication.

/* Plactic multiplication. (c) Dan Brown, BlackBerry, 2021 */

// Reference. (Needs aemax >= aelen from sign-defs.h)

#define swap(a,b) (a^=b, b^=a, a^=b)

enum{aemax=1500, rmax=256, smax=(aemax*6125/1000)};

typedef unsigned char u;

void insert(u**t, int*r, u v){ int i=0, j;

for(; i<rmax && r[i] && t[i][r[i]-1]>v; swap(t[i][j], v), i++)

for(j=0; j<r[i] && t[i][j]<=v; j++) ;

t[i][r[i]++] = v;}

void multiply (u*d, const u*a, int alen, const u*b, int blen){

int i, j, dlen=alen+blen, r[rmax]={0}; u s[smax], *t[rmax]={s};

for(i=1; i<rmax; i++) t[i] = t[i-1] + dlen/i;

for(i=0; i<dlen; i++) insert (t, r, (i<alen)? a[i]: b[i-alen]);

for(i=rmax-1; i>=0; i--) for(j=0; j<r[i]; j++) *d++ = t[i][j];}

Table 4: File plactic-ref.c

The reference implementation does not aim for side channel resistance.

10

Function multiply allocates some variables. Array r records the row
lengths of the tableau. Arrar r is initialized such that all row lengths are
zero. Array s is a buffer where the tableau entries are stored. Each row of the
tableau will occupy a distinct segment of s, chosen so that each segment is
long enough to store the maximum possible length for the given row. Array t

is an array of pointers into these segments of s. Double-indexing of variable
t provides access to individual tableau entry: t[i][j] is the value of the
tableau entry located at row i and column j.

The first for loop in function muliptly sets up the pointers t[i] into
s. The second for loop of function multiply iterates Robinson–Schensted
insertion, first running over bytes of input a and then bytes of input b. The
third for loop is a doubly-nested for loop, and places the row reading of the
table stored t into the output array d.

The function insert implements Robinso–Schensted insertion. The first
for loop bumps entries into the rows. Nested inside the first for loop is
a second inner for loop, which finds the entry that needs to be bumped.
When there is no entry to bump, the for loops are done. The last line of
function insert appends an entry to the end of the next available row, and
increments the length of that row by one.

5.1.2 Towards constant-time multiplication

File plactic-constant.c listed in Table 5 is a step towards implementing
plactic monoid multiplication in constant time, which is a step towards pre-
venting some side channel attacks. To do this, the code tries to avoid any
secret-dependent branching statements. But, the code still uses both input-
dependent array-indexing and the C operator %, which are both known to
lead to side channel attacks.

In more detail, file plactic-constant.c attempts to be constant-time
by running a state machine with four states {−1, 0, 1, 2}. The states 1 and 2
correspond to Knuth’s two relations defining the plactic monoid. The states
0 and −1 are used to when to manage whether there is need to apply the
transformation associated with the Knuth relations. State 0 means that there
is still to apply them, while state −1 indicates that no further transformations
are needed.

A signature implementation using file plactic-constant.c failed to pass
the tests require by the TIMECOP. This is unsurprising since variable-
indexing of arrays was used, but there may be many more reasons.

11

/* Plactic multiplication. (c) Dan Brown, BlackBerry, 2021 */

// Constant-time?

#include "plactic.h"

#define swap(a,b,c) (c*=a-b, b+=c, a-=c)

#define xyz(i) xyz[(i)%3]

int knuth(int h, u*xyz){

u d= (xyz[1] <= xyz[2]) & (0==h),

e= (xyz[2] < xyz(2+h)) &

(xyz[0] <= xyz(0+h)) & (0<h);

swap (xyz[1] , xyz(1+h), e);

return d + (0!=e) + (0>h);}

void multiply (u*d, const u*a, int alen, const u*b, int blen){

int g,h,i,j,k;

for(i=0; i<alen+blen; i++)

d[i] = (i<alen)? a[i]: b[i-alen];

for(i=0; i<alen+blen; i++)

for(h=0, j=i-2; j>=0; j-=g, h+=1-k, h%=3){

k=knuth(h, d+j);

g = k | (2==h);

h -= k & (0==h);}}

Table 5: File plactic-constant.c

12

Because the constant-time implementation is much slower than the refer-
ence implementation, an alternative side channel mitigation might be useful.

5.2 Application programming interface

File api.h in Table 6 specifies the byte sizes, the specific algorithm name,
and also the C function prototypes for key generation, signing and verifying.

#define CRYPTO_SECRETKEYBYTES 100

#define CRYPTO_PUBLICKEYBYTES 1000

#define CRYPTO_BYTES 1000

#define CRYPTO_ALGNAME "placticsignature8000bits"

typedef unsigned char u; typedef unsigned long long ll;

int crypto_sign_keypair(u*pk, u*sk);

int crypto_sign(u*sm, ll*smlen, const u*m, ll mlen, const u*sk);

int crypto_sign_open(u*m, ll*mlen, const u*sm, ll smlen, const u*pk);

Table 6: File api.h

5.3 Signing implementation

File sign.c listed in Table 7 implements key generation, signing and ver-
ifying, following the interface defined in file api.h, and using the helper
definitions from file sign-defs.h listed in Table 8.

The reference implementation fixes the checker to be system-wide, as
the output of the hash function SHAKE-128, applied to the official name
parameters of the plactic signatures placticsignature8000bits.

Optionally, a programmer using sign.c can change the value of this
checker, as follows. The programmer can re-assign the global variable name,
by pointing it to a string of the programmer’s choice. The reference im-
plementation sign.c will hash this string instead of the official algorithm
name.

A programmer using sign.c can have sign.c generate a new secret key,
or the programmer can supply secret key. To supply an old, pre-existing
secret key, the programmer calls function crypto_sign_keypair with two
equal pointers pk and sk. Equality of these pointers indicates to sign.c

13

/* Plactic signatures. (c) Dan Brown, BlackBerry, 2021. */

#include <string.h>

#include "keccak.h"

#include "rng.h"

#include "api.h"

#include "plactic.h"

#include "sign-defs.h"

int crypto_sign_keypair(u*pk, u*sk){

u array(b), array(c), *e=pk;

if (sk != pk) random(sk);

digest (b, sk), digest (c, name);

multiply (e, b, c); return 0;}

int crypto_sign(u*sm, ll*smlen, const u*m, ll mlen, const u*sk){

u array(a), array(b), *d=sm;

digest (a, m), digest (b, sk);

multiply (d, a, b), copy (sm + dlen, m), *smlen = dlen + mlen;

return 0;}

int crypto_sign_open(u*m, ll*mlen, const u*sm, ll smlen, const u*pk){

u array(a), array(c), array(ae), array(dc); const u *d=sm, *e=pk;

*mlen = 0;

if (smlen < dlen) return -4;

sm += dlen, smlen -= dlen; digest (a, sm), digest (c, name);

multiply (ae, a, e), multiply (dc, d, c);

if (compare (ae, dc)) return -1;

*mlen = smlen; copy(m, sm); return 0;}

Table 7: File sign.c

14

#define multiply(ab,a,b) multiply(ab, a, a##len, b, b##len)

#define digest(t,m) FIPS202_SHAKE128(m, m##len, t, t##len)

#define compare(a,b) memcmp (a, b, b##len)

#define copy(a,b) ((a && a!=b)? memcpy (a, b, b##len): 0)

#define random(a) randombytes(a, a##len)

#define array(a) a[a##len]

#define namelen strlen((char*)name)

enum { sklen = CRYPTO_SECRETKEYBYTES, elen = CRYPTO_PUBLICKEYBYTES,

dlen = CRYPTO_BYTES, alen = dlen/2, blen = dlen - alen,

clen = elen - blen, aelen = alen + elen, dclen = dlen + clen};

u*name=(u*)CRYPTO_ALGNAME;

Table 8: File sign-defs.h

not to generate a random secret key, but rather to compute a public key
from the given secret key. This is done by over-writing the memory location
pointed to by sk. A programmer calling sign.c is presumed to be capable of
maintaining a long-term secret key in a safe location, so that this over-writing
will not destroy the only copy of the secret key.

5.4 Auxiliary implementations

File rng-util.c listed in Table 9 likely suffices for the way that a plactic
signature utility would use random numbers.

#include <stdio.h>

#include "keccak.h"

#include "rng.h"

int randombytes(unsigned char *x, unsigned long long xlen){

FILE *rng = fopen("/dev/urandom","r");

if(!rng || xlen!=fread(x,1,xlen,rng)) {/*uh oh*/}

FIPS202_SHAKE128 (x,xlen,x,xlen); return xlen;}

Table 9: File rng-util.c

The header file rng.h listed in Table 10 simply specifies the prototype
for the function randombytes.

15

int randombytes(unsigned char *x, unsigned long long xlen);

Table 10: File rng.h

A header file keccak.h for the SHA-3 Keccak hash function is listed in
Table 11.

typedef unsigned char u8; typedef unsigned long long u64;

void FIPS202_SHAKE128(const u8*in, u64 inLen, u8*out, u64 outLen);

Table 11: File keccak.h

File keccak.c listed in Table 12 is an indentation-added excerpt of one of
the C implementations of SHAKE-128 from the official github source code for
Keccak. This source code is highly condensed, but still considerably longer
than than the source code for plactic monoid multiplication.

6 Plactic signature security

This section discusses forgery attack strategies against plactic signatures.
Some types of forgery attacks translate into various computational prob-

lems, such as division, cross-multiplication and parallel division.

6.1 Divide to find a secret key from public key

A secret key b for public key [c, e] can be found by division operator (writ-
ten / and called divider for short) with the computation

b = e/c. (6)

If signatures are to be secure, then division must be difficult. More precisely,
the division problem to compute e/c must be difficult for each public key
[c, e].

Recall (from [Bro21]) that / is a divider if ((bc)/c)c = bc for all b, c. This
means that e/c will be a secret key for public key [c, e]. Conversely, the
ability to find a secret key from a public key, implies a divider (that works
when the inputs are from a public keys [c, e]).

16

#include "keccak.h"

#define FOR(i,n) for(i=0; i<n; ++i)

typedef unsigned char u8;typedef unsigned long long int u64;typedef unsigned int ui;

void Keccak(ui r, /*ui c,*/ const u8 *in, u64 inLen, u8 sfx, u8 *out, u64 outLen);

void FIPS202_SHAKE128(const u8 *in, u64 inLen, u8 *out, u64 outLen)

{Keccak(1344, /*256,*/ in, inLen, 0x1F, out, outLen);}

static int LFSR86540(u8 *R) { (*R)=((*R)<<1)^(((*R)&0x80)?0x71:0); return ((*R)&2)>>1; }

#define ROL(a,o) ((((u64)a)<<o)^(((u64)a)>>(64-o)))

static u64 load64(const u8 *x) { ui i; u64 u=0; FOR(i,8) { u<<=8; u|=x[7-i]; } return u; }

static void store64(u8 *x, u64 u) { ui i; FOR(i,8) { x[i]=u; u>>=8; } }

static void xor64(u8 *x, u64 u) { ui i; FOR(i,8) { x[i]^=u; u>>=8; } }

#define rL(x,y) load64((u8*)s+8*(x+5*y))

#define wL(x,y,l) store64((u8*)s+8*(x+5*y),l)

#define XL(x,y,l) xor64((u8*)s+8*(x+5*y),l)

static void KeccakF1600(void *s) {

ui r,x,y,i,j,Y; u8 R=0x01; u64 C[5],D;

for(i=0; i<24; i++) {

/*theta*/

FOR(x,5) C[x]=rL(x,0)^rL(x,1)^rL(x,2)^rL(x,3)^rL(x,4);

FOR(x,5) { D=C[(x+4)%5]^ROL(C[(x+1)%5],1); FOR(y,5) XL(x,y,D); }

/*rho pi*/

x=1; y=r=0; D=rL(x,y);

FOR(j,24) { r+=j+1; Y=(2*x+3*y)%5; x=y; y=Y; C[0]=rL(x,y); wL(x,y,ROL(D,r%64)); D=C[0]; }

/*chi*/

FOR(y,5) { FOR(x,5) C[x]=rL(x,y); FOR(x,5) wL(x,y,C[x]^((~C[(x+1)%5])&C[(x+2)%5])); }

/*iota*/

FOR(j,7) if (LFSR86540(&R)) XL(0,0,(u64)1<<((1<<j)-1)); } }

void Keccak(ui r, /*ui c,*/ const u8 *in, u64 inLen, u8 sfx, u8 *out, u64 outLen) {

/*initialize*/

u8 s[200]; ui R=r/8; ui i,b=0; FOR(i,200) s[i]=0;

/*absorb*/

while(inLen>0) {

b=(inLen<R)?inLen:R;

FOR(i,b) s[i]^=in[i];

in+=b; inLen-=b;

if (b==R) { KeccakF1600(s); b=0; } }

/*pad*/

s[b]^=sfx;

if((sfx&0x80)&&(b==(R-1))) KeccakF1600(s);

s[R-1]^=0x80; KeccakF1600(s);

/*squeeze*/

while(outLen>0) {

b=(outLen<R)?outLen:R;

FOR(i,b) out[i]=s[i];

out+=b; outLen-=b;

if(outLen>0) KeccakF1600(s); } }

Table 12: File keccak.c

17

For some semigroups, but not the plactic monoid, a weaker kind of divi-
sion suffices: a((bc)/c)c = abc for all a, b, c. In other words, it suffices to find
a weak secret key. In the plactic monoid, it seems that a weak secret key is
a secret key, so that any weak divider is a divider.

6.2 Left division to find a secret key from a signature

Suppose that binary operator \ is a left divider (meaning a(a\(ab)) = ab
for all a, b, as in [Bro21]). Suppose that d is signature of matter a. Use left
division to compute a value

b′ = a\d. (7)

By definition of left division, we have ab′ = d.
Consider a second matter a′. We could try to generate a signature d′ =

a′b′. This is valid if a′e = d′c, meaning a′bc = a′(a\d)c. The latter equation
is not guaranteed by the given definition of left division. In fact, in the
plactic monoid, there are many different possible values for a\d, because
multiplication is not cancellative. It seems unlikely that a′bc = a′b′c for
b 6= b′, without somehow using a′ and c to compute b′.

The plactic monoid is anti-isomorphic, so left and right division are
equally difficult.

In cancellative semigroups, which does not include the plactic monoid,
there is a post-divider such that (ab)/b = a for all a, b. Similarly, a left
post-divider has a\(ab) = b for all a, b. In that case, b′ = b, so the secret
key could be recovered from a signature using left division.

Although the plactic monoid is not cancellative, there might be a similar
attack, via a parallel left post-division algorithm. Suppose that di = aib
for i ∈ {1, . . . , n}, and that b is uniquely determined by the ai and the di. A
parallel left post-division operator finds b from the ai and di, which we
write as the formula b = [a1, . . . , an]\[d1, . . . , dn]. No good ideas for parallel
division in the plactic monoid are known (to me).

Rather than finding a (parallel) post-divider, one may try to implement
a division-set operator, written as //, and defined as:

d//b = {a : ab = d}. (8)

In the context of multiplicative signatures, we use the left version of the
division-set operator, \\, which is equivalent to the operator // via the anti-
automorphism of the plactic monoid. (In other semigroups, those non not

18

anti-isomorphic, different algorithms may be needed for the left division).
The attacker can compute the set a\\d. For a valid signature the actual
secret key used belongs to this set: b ∈ a\\d. In this case, one can search for
any b ∈ a\\d such that e = bc, so that b is an effective secret key.

The erosion algorithm for division in the plactic monoid can easily be
adapted to a division-set operator. A little empirical evidence suggest the
following speculation: for random a and b (where d = ab), if division takes s
steps on average, it seems that set d//b has size approximately s on average,
which can be made large. The time to compute the division-set might not
be s times as much as a single division, because the computation between in-
dividual divisions overlaps significantly. Nonetheless, under this speculation
one might be able to safely set the length of a to be as low as half the length
of c.

6.3 Cross-multiply to forge unhashed signatures

A cross-multiplier is an operator written ∗/ such that

(y ∗/ x)x = (x ∗/ y)y, (9)

whenever there exists u and v such that ux = vy. (So, if x and y are such
that no such u and v, exist, then (9) is not required to hold.)

The notion of cross multiplication is common and familiar, being used to
cancel terms between linear equations, for example. The notation ∗/ is not
familiar, but convenient for the following discussions.

Some semigroups have fast cross-multipliers.
In a commutative semigroup, x ∗/ y = x defines a cross-multiplier. In

a semigroup with a zero element 0 (such that 0z = 0 for all z), x ∗/ y = 0
defines a cross-multiplier. In a group with efficient inversion, x ∗/ y = y−1

defines a cross-multiplier. In the last example, division would be also be fast
with x/y = xy−1, but in the other two examples, division could potentially
be much slower than cross-multiplication.

The plactic monoid is non-commutative, has no zero element, and has no
inverses, so the three cross-multiplication methods above fail in the plactic
monoid.

A cross-multiplier can be used for forgery of unhashed multiplicative sig-
natures, by putting

[a, d] = [c ∗/ e, e ∗/ c]. (10)

19

Because this forger uses the cross-multiplier ∗/ as an oracle, the forger has
no control over the matter a (it is whatever the ∗/ algorithm outputs). This
is therefore an existential forger (which could also be called junk message
forger).

For hashed multiplicative signatures, the attacker would also need to find
m (and f) such that f(m) = c ∗/ e. For a secure hash function f such as
SHAKE-128, finding such a message m should be difficult. In other words,
forgery by cross-multiplication is not effective against hashed multiplicative
signatures.

6.4 Dividing a signcheck by the endpoint

An attack can try to compute (dc)/e, where d is a genuine signature for some
matter a. Because division is not cancellative, the division is likely to result
in (dc)/e = a′ 6= a.

For unhashed multiplicative signature, this would result in an existential
forgery (with help from the signer, of one signed message, not necessarily
chosen by the attacker). For hashed multiplicative signatures, the forger
would need to invert the hash at a′, which should be infeasible.

For plactic signatures, dividing by e should be slower than dividing by c,
because e is longer than c, being e = bc.

The forger might try to use this method to generate a forgery without the
help of the signer, by choosing d instead of getting d from the signer. But
then, the forger faces the problem of finding d such that dc = ue for some u.
This is essentially the problem of cross-multiplication, already discussed.

6.5 Factor to forge unhashed signatures

To forge a matter a in an unhashed multiplicative, try to factor a as

a = a2a1 (11)

Then ask the signer to sign matter a1. The signer returns signature d1. Then
compute d = a2d1, which will a valid signature on matter a.

This would be a chosen message forgery (which could also be called a
signer-aided forgery), because the forger chooses what message the signer
honestly signs before getting to the forgery.

20

Factoring is easy in the plactic monoid. Therefore, unhashed multiplica-
tive signatures would be vulnerable to this type of attack. For hashed multi-
plicative signatures, the factorization does not seem to be enough for forgery.
Plactic signatures are hashed multiplication, so this attack seems to fail.

In particular, in plactic signatures, the matter length is fixed, so that any
actual matter that a signer or a verifier uses cannot be factored into other
matters.

If the verifier can be tricked into using longer matters, but the matters
are still hashed, then factoring tableaus is not enough, because the attacker
would also need to invert the hash on the factor a2. If the signer can also be
tricked into signing a matter without using a hash, then the factoring attack
could work.

6.6 Attacking the hash function

An attacker can try to attack the hash function. The attacker can try to
find collisions, for example. Plactic signatures use SHAKE-128, which has
an internal state of 256 bits, and with an output length much higher, 4096
bits. Finding a collision by known methods, of byte string outputs of the
hash, should therefore take at least 2128 steps.

But, the effective hash is the semistandard tableau represented by the
byte string hash. Each tableau is represented by many different byte strings.
Nevertheless, the space of tableaus is still large, so the output range of the
hash still seems larger than 2256, meaning generic collision attacks should
still take at least 2128 steps.

A Some timing results

A file timer.c, listed in Table 13, is a simplistic timing program for plactic
signatures.

For an example run of the timing program, see Table 14. This was run on
a regular personal computer without making special adjustments for accu-
rate benchmarking (pausing all other process, disabling hyperthreading and
overclocking).

The timinig results seem fairly consistent with SUPERCOP timing re-
sults, run locally on the same device, under similar conditions.

21

/* Time key generation, signing and verifying */

#include <stdio.h>

#include <string.h>

#include <time.h>

#include "rng.h"

#include "api.h"

int reps= 3456, cycles=1, all=0;

static ll ns (void) {

struct timespec t;

clock_gettime(CLOCK_REALTIME, &t);

return t.tv_sec * (ll)1e9 + t.tv_nsec ;}

static ll cy(void) {

unsigned int lo, hi;

__asm__ __volatile__ ("xorl %%eax,%%eax \n cpuid"

::: "%rax", "%rbx", "%rcx", "%rdx");

__asm__ __volatile__ ("rdtsc" : "=a" (lo), "=d" (hi));

return (unsigned long long)hi << 32 | lo;}

static ll tm (void){return cycles? cy(): ns();}

static double sqrt (double x){double y=x; int i=200;

while(i--) y = (y+x/y)/2;

return y;}

static void report_stats (ll sum, ll sum2){

double avg=sum, dev=sum2;

avg /= reps; dev /= reps;

dev -= avg*avg; dev = sqrt(dev); dev /= avg;

printf ("Average %e %s, relative deviation %f\n",

avg, (cycles? "cycles": "nanoseconds"), dev);}

#define TIME(CODE,...) for(s2=s=0, i=reps; i--;){ \

__VA_ARGS__; \

o=tm(); CODE; n=tm(); \

d = n-o; s += d; s2 += d*d; \

if (all) fprintf(stderr,"%llu %s",d, i?"":"\n");\

else fprintf(stderr,"%5d\r",i);} \

report_stats(s,s2);

static void time_sign_keypair (void){

u pk[CRYPTO_PUBLICKEYBYTES], sk[CRYPTO_SECRETKEYBYTES];

ll o,n,d,s,s2; int i;

printf ("Key pair generation\n");

TIME(crypto_sign_keypair(pk,sk),);}

static void time_sign (void) {

u pk[CRYPTO_PUBLICKEYBYTES], sk[CRYPTO_SECRETKEYBYTES];

u m[200]="Time me!"; ll mlen=strlen((char *)m), smlen;

u sm[CRYPTO_BYTES+sizeof(m)];

ll o,n,d,s,s2; int i;

printf("Signing, under same key, same message: '%s'\n",m);

crypto_sign_keypair(pk,sk);

TIME(crypto_sign(sm, &smlen, m, mlen, sk),);

mlen=sizeof(m);

printf("Signing, under new keys, new random %llu-byte messages\n",mlen);

TIME(crypto_sign(sm, &smlen, m, mlen, sk),

(crypto_sign_keypair(pk,sk),randombytes(m,mlen)));}

static void time_sign_open (void){

u pk[CRYPTO_PUBLICKEYBYTES], sk[CRYPTO_SECRETKEYBYTES];

u m[200]="Time me!"; ll mlen=strlen((char *)m), smlen;

u sm[CRYPTO_BYTES+sizeof(m)];

ll o,n,d,s,s2; int i; int fail=0;

crypto_sign_keypair(pk,sk);

crypto_sign(sm, &smlen, m, mlen, sk);

printf("Verifying same signature, under same key, of same message: '%s'\n",m);

TIME(fail+=!!crypto_sign_open(m, &mlen, sm, smlen, pk),);

mlen=sizeof(m);

printf("Verifying signatures, under new keys, of new random %llu-byte messages\n",mlen);

TIME(fail+=!!crypto_sign_open(m, &mlen, sm, smlen, pk),

(crypto_sign_keypair(pk,sk),

randombytes(m,mlen),

crypto_sign(sm, &smlen, m, mlen, sk)));

if(fail)printf("\aFAILURES: %d out of %d tries !!!!\a\a\a\n",fail, 2*reps);

else printf("Sucessfully verified all %d out of %d signatures.\n", reps+1, reps+1);}

int main (int c, char**a){

if (2<=c) sscanf(a[1],"%d",&reps);

if (3<=c && 'n'==*a[2]) cycles=0;

if (4<=c) all=1;

time_sign_keypair(); time_sign(); time_sign_open();}

Table 13: File timer.c

22

$--$ gcc plactic-ref.c keccak.c rng-util.c sign.c timer.c \

$--$ -o Timers/time-ref-O3 -O3

$--$ grep name /proc/cpuinfo | uniq

model name : Intel(R) Core(TM) i5-8350U CPU @ 1.70GHz

$--$ Timers/time-ref-O3

Key pair generation

Average 5.218701e+05 cycles, relative deviation 0.038044

Signing, under same key, same message: 'Time me!'

Average 4.879321e+05 cycles, relative deviation 0.031624

Signing, under new keys, new random 200-byte messages

Average 5.066483e+05 cycles, relative deviation 0.040254

Verifying same signature, under same key, of same message: 'Time me!'

Average 1.471657e+06 cycles, relative deviation 0.061509

Verifying signatures, under new keys, of new random 200-byte messages

Average 1.461324e+06 cycles, relative deviation 0.056194

Sucessfully verified all 3457 out of 3457 signatures.

Table 14: A timing run

23

Timing results, under similar testing conditions, using implementation
plactic-constant.c of plactic multiplication is 22 times slower for key gen-
eration and signing, and 35 times slower for verification.

B Experimental utilities

This section lists code for some experimental command-line utilities. The
utilities can generate key pairs, sign messages, and verify and open signed
messages. The utilities can run on a Linux system.

B.1 A simplistic utility

File ps-util.c in Table 15 combines some standard C libraries with the
plactic signature library. The message to be signed is supplied as a command-
line argument, which would usally hand-typed (and quoted if it contains
spaces).

Because a command line argument is terminated by a byte of value zero,
the message to be signed cannot contain a zero-valued byte. Large binary
files such as images, videos, executable programs, might easily contain such
zero-valued bytes. (Large files without zero bytes can sometimes be signed
by using shell parameter expansion.)

File ps-util-help.c in Table 16 describes the user interface of the sim-
plistic C utility. The terse instructions are intended as a reminder about the
utility’s interface to a user already well-versed in (plactic) signatures. The
terms lock and key are used instead of the usual public key and secret
key (or verification key and signing key) to squeeze as much information
into a single screen of text.

24

#include <stdio.h>

#include <string.h>

#include "api.h"

#include "ps-util-help.c"

#define MAX_LEN 1000000

int err(int r, char*e){

fprintf(stderr, "psu: %s. Try ./psu --help\n", e); return r; }

int key(void) {

u pk[CRYPTO_PUBLICKEYBYTES], sk[CRYPTO_SECRETKEYBYTES];

crypto_sign_keypair(pk,sk);

fwrite(pk,1,CRYPTO_PUBLICKEYBYTES,stderr);

fwrite(sk,1,CRYPTO_SECRETKEYBYTES,stdout); return 0;}

int sig(char *msg) {

u sk[CRYPTO_SECRETKEYBYTES], sig[MAX_LEN];

ll sklen,slen;

if(0 == memcmp(msg,"--help",6)) {help(); return 6;}

sklen=fread(sk,1,CRYPTO_SECRETKEYBYTES,stdin);

if (sklen != CRYPTO_SECRETKEYBYTES)

return err(2,"Bad secret key");

crypto_sign(sig, &slen, (u*)msg, strlen(msg), sk);

fwrite(sig,1,slen,stdout); return 0;}

int ver(char *pk_filename) {

u pk[CRYPTO_PUBLICKEYBYTES], msg[MAX_LEN], sig[MAX_LEN];

ll pklen,mlen,slen;

if (fopen(pk_filename, "r")) {

pklen=fread(pk,1,CRYPTO_PUBLICKEYBYTES,fopen(pk_filename,"r"));

if (CRYPTO_PUBLICKEYBYTES==pklen) {

slen=fread(sig,1,MAX_LEN,stdin);

if (slen >= CRYPTO_BYTES) {

if(0 == crypto_sign_open(msg, &mlen, sig, slen, pk)){

fwrite(msg,1,mlen,stdout); return 0;}

else return err(1,"Bad signature");}

else return err(3,"Bad signature");}

else return err(4,"Bad public key");}

else return err(5,"Bad public key");}

int main (int c, char **a){

return 1==c?key(): 2==c?sig(a[1]): 3==c?ver(a[1]): help();}

Table 15: File ps-util.c (key generation, signing, verifying)

25

int help (void){ printf(

"Usage summary:\n"

" ./psu [message-or-filename [open]]\n"

" task |args| arg1 | stdin | stdout | stderr\n"

" -----+----+-----------+-----------+-----------+-------\n"

" pair | 0 | | | key | lock\n"

" sign | 1 | 'message' | key | signature |\n"

" open | 2 | lock file | signature | message | alert\n"

" Example (artificial):\n"

" ./psu 2>pk|./psu 'Hello World'|(sleep 0.1;./psu pk open)\n"

"Plactic signature experimental utility. Dan Brown, BlackBerry.\n"

); return 4;}

Table 16: File ps-util-help.c (help function)

B.2 A more flexible utility (unfinished)

This section includes an unfinished C implementation of a command-line
utility with a flexible (perhaps too flexible) interface.

There are two files in the C implementation. (Both files are larger than the
other files in listed in this report, so they are shown in smaller fonts, without
being marked as captioned floating tables.) The file ps-flex-help.c listed
next deals with input and output, including a help message.

#define rarg(i)(fopen(arg[(i)], "r"))

#define warg(i)(fopen(arg[(i)], "w"))

#define rtty() (fopen("/dev/tty", "r"))

#define wtty() (fopen("/dev/tty", "w"))

#define ttyi() (isatty(fileno(stdin)))

#define ttyo() (isatty(fileno(stdout)))

#define ttye() (isatty(fileno(stderr)))

#define getf(var,file)(var##read=fread(var, 1, var##buf, file))

#define putf(var,file)(fwrite(var, 1, var##read, file))

#define get(var) getf(var,stdin)

#define put(var) putf(var,stdout)

#define pute(var) putf(var,stderr)

#define geta(var,i) getf(var,rarg(i))

#define puta(var,i) putf(var,warg(i))

#define move(new,old)(new##read=old##read, memcpy(new, old, new##read), old##read=0)

#define grab(new,old)(move(new, old), \

new##read+=fread(new+new##read, 1, new##buf - new##read, stdin))

#define append(var,str)(memcpy(var+var##read,str,strlen(str)), var##read+=strlen(str))

enum {

msgmax=(1<<24), msgbuf=msgmax+1,

sigmin=CRYPTO_BYTES, sigmax=sigmin+msgmax, sigbuf=sigmax+1,

pklen=CRYPTO_PUBLICKEYBYTES, pkbuf =pklen+1,

sklen=CRYPTO_SECRETKEYBYTES, skbuf =sklen+1};

unsigned char sig[sigbuf];

void usage (void){ printf("Usage (experimental only): ./psfu [arg1 [arg2 [...]]]\n"); }

void more (void){ printf (" ./psfu --help # for more example command lines \n");}

void examples (void){ printf (

"# Generating secret keys and public keys (do as set-up): \n"

" ./psfu >secret 2>public ; chmod u=r,go-wx secret \n"

26

" ./psfu <secret pk3 ; ./psfu <secret >pk3 \n"

" rm -i pk4 sk4 && ./psfu pk4 sk4 ; chmod u=r,go-wx sk4 \n"

" enc='openssl enc -aes-256-cbc -iter 1000' \n"

" ./psfu 2>pk2 | $enc >sk2.enc \n"

" rm -i pk5 && ./psfu pk5 | $enc >sk5.enc \n"

"# Signing messages (do solemnly): \n"

" ./psfu <secret 'Hello World' > hello1.signed \n"

" ./psfu <secret Hello World > hello2.signed \n"

" ./psfu secret <<<'Hello World' > hello3.signed \n"

" ./psfu secret > typed-message.signed \n"

" ./psfu <secret /dev/tty > typed-msg2.signed \n"

" ./psfu --help | ./psfu secret > help.signed \n"

" ./psfu <secret public > public.signed \n"

" ./psfu <secret psfu > psfu.signed \n"

" ./psfu secret psfu sig2 ; ./psfu psfu sig2 secret \n"

" ./psfu secret <psfu >sig2 ; ./psfu secret psfu >sig2 \n"

" $enc -d <sk2.enc | ./psfu 'Hello ' World > h4.sn \n"

"# Verifying, viewing, or processing signed messages (do often): \n"

" ./psfu <public hello2.signed ; ./psfu public <hello2.signed \n"

" ./psfu public hello2.signed ; ./psfu hello2.signed public \n"

" ./psfu <public * ; ./psfu <hello1.signed * \n");}

void title (void){ printf(TITLE); }

int help (int level){

usage(), (level? examples(): more()), title();

return 101;}

int failure(int code, char*msg){

fprintf(stderr,"psfu: Error, %s, sorry! (Try ./psfu --help)\n", msg);

return code;}

int success(int aloud, char *msg){

if(aloud && (1==aloud || wtty()))

fprintf(1==aloud? stderr: wtty(), "psfu: Success, %s.\n", msg);

return 0;}

void warn(char *msg){

fprintf(stderr, "psfu: Warning, %s, check results!\n", msg);}

int proceed(void){

fprintf(stderr, "psfu: Proceed anyway? [y/n] \a");

return rtty() && 'y'== fgetc(rtty());}

The file ps-flex.c listed next has many lines of code for a decision
processs that tries to be very flexible, so that many different command lines
can lead to useful actions (keypair generation, signing or verification). In
other words, the program tries to find a useful action consistent with the
user’s command line, and act accordingly.

#define TITLE "Plactic signature flexible utility 0.0, Dan Brown, BlackBerry\n"

#include <stdio.h>

#include <string.h>

#include <unistd.h>

#include "api.h"

#include "ps-flex-help.c"

// To do: fix up failure messages to better address user intent

// Re-factor, to simplify decision tree

int main (int c, char **arg){

int args=c-1, termin = ttyi(), termout= ttyo(), termerr= ttye();

unsigned long long skread=0, pkread=0, msgread=0, sigread=0;

unsigned char *msg=sig+sigmin, pk[pkbuf], sk[skbuf];

if(! (sklen < pklen))

return failure(11, "secret keys not smaller than public keys");

if(sigmin < pklen)

return failure(12, "signed messages can be smaller than public keys");

if(0 == args){

if(termout)

return help(0);

if(termin){

if(termerr)

27

return failure(33, "public key (on stderr) to terminal unsupported");

crypto_sign_keypair(pk, sk), pkread=pklen, skread=sklen;

pute(pk), put(sk);

return success(2, "new secret key and public key generated");}

if(sklen == get(pk)){

crypto_sign_keypair(pk, pk), pkread=pklen;

put(pk);

return success(1,"public key computed from secret key");}

return failure(56, "wrong size of secret key");}

if(1 == args){

int argnotreadable=!rarg(1);

if(argnotreadable && termin){

if(termout ||

0 == memcmp(arg[1], "help", strlen("help")) ||

0 == memcmp(arg[1], "-", strlen("-")) ||

0 == memcmp(arg[1], "?", strlen("?")))

return help(1);

if(! warg(1))

return failure(101, "could not write to public key file");

crypto_sign_keypair(pk,sk), pkread=pklen, skread=sklen;

put(sk), puta(pk, 1);

return success(1, "public key written to file, secret key to stdout");}

if(termin && termout)

return help(0),

failure(77, "cryptographic data to/from terminal unsupported");

if(termin)

geta(sk, 1), get(msg);

if(!termin && termout){

get(sk);

if(sklen == skread){

if(!argnotreadable)

return failure(65, "public key file already exists");

if(! warg(1))

return failure(66, "public key file not writable");

move(pk, sk);

crypto_sign_keypair(pk,pk), pkread = pklen;

puta(pk, 1);

return success(1, "computed public key from secret key");}

if(argnotreadable)

return failure(23, "no signed message provided");

grab(pk, sk);

if(pklen == pkread)

geta(sig, 1);

else {

grab(sig, pk);

geta(pk, 1);}}

if(!termin && !termout && argnotreadable){

get(sk);

msg=(unsigned char*)arg[1], msgread=strlen((char*)msg);}

if(!termin && !termout && !argnotreadable){

get(sk);

if(sklen == skread)

geta(msg, 1);

else {

grab(pk, sk);

if(pklen == pkread)

geta(sig, 1);

else {

geta(sk, 1);

if(sklen == skread)

grab(msg, pk);

else {

grab(sig, pk);

geta(pk, 1);}}}}

if(0 == pkread){

if(termout)

return help(0),failure(383,"will not write signture or key to terminal");

if(sklen != skread)

return failure(1,"secret key wrong size");

if(msgmax < msgread)

return failure(8, "message too long");

if(!termin && !argnotreadable && sklen == msgread){

warn("dangerously confused over secret key and message");

if(! proceed())

return failure(545, "no signature generated");}

crypto_sign(sig, &sigread, msg, msgread, sk);

28

put(sig);

return success(1,"signed message generated");}

if(0 < pkread){

if(pklen != pkread)

return failure(3, "wrong size of public key");

if(sigmin > sigread || sigmax < sigread)

return failure(2, "wrong size of signed message");

if(0 != crypto_sign_open(msg, &msgread, sig, sigread, pk))

return failure(1, "invalid signature");

put(msg);

return success(!termout,"signed message verified and accessed");}

return failure(77,"could not determine a key (this should never happen)");}

if(2 <= args){

int f,m,i,p,r,s;

if(termin){

if(termout){

if(3 < args)

return failure(222, "too many command-line arguments");

if(2 == args){

if(! rarg(1) && ! rarg(2)){

if(!(warg(1) && warg(2)))

return failure(747, "could not write a key file");

crypto_sign_keypair(pk, sk), pkread=pklen, skread=sklen;

puta(pk, 1), puta(sk, 2);

return success(1, "wrote two key files");}

if(! (rarg(1)) && rarg(2))

return help(0);

p=1;

geta(pk, p);

if(pklen != pkread){

p=2;

geta(pk, p);

if(pklen != pkread)

return help(0), failure(444, "no public key found");}

geta(sig, 3-p);

if(sigmin > sigread || sigmax < sigread)

return failure(585, "wrong size signed message");

if(0 != crypto_sign_open(msg, &msgread, sig, sigread, pk))

return failure(1,"signed message has invalid signature");

put(msg);

return success(0,"verified and accessed signed message");}

// 3 args ... (termin and termout)

for(s=0,i=1; i<=3; i++)

if(rarg(i)){

geta(sk, i);

if(sklen == skread)

s=i;}

if(s){

for(m=0,i=1; i<=3; i++)

if(i!=s && rarg(i)){

geta(msg, i);

m=i;}

if(0 == m)

return failure(543,"no message file found");

if(msgmax < msgread)

return failure(975,"message file too long");

for(f=0, i=1; i<=3; i++)

if(f!=s && f!=m && ! rarg(i))

f=i;

if(f == 0)

return failure(434, "output file (for sm) already exists");

if(sklen == msgread){

warn("dangerouly confused over secret key and message");

if(! proceed())

return failure(545, "not signing"); }

crypto_sign(sig, &sigread, msg, msgread, sk);

if(! warg(f))

return failure (343, "output file not write-able");

puta(sig, f);

return success (1, "signed message written to file");}

// s==0 (so verify with 3 args)

for(p=0,i=1; i<=3; i++)

if(rarg(i)){

geta(pk, i);

if(pklen == pkread)

p=i;}

29

if(0 == p)

return failure(767, "no public key file found");

for(m=0,i=1; i<=3; i++)

if(i != p && rarg(i)){

geta(sig, i);

m = i;}

if(0 == m)

return failure(676, "no signed message file found");

for(f=0,i=1; i<=3; i++)

if(f!=p && f!=m && ! rarg(i))

f=i;

if(0 == f)

return failure(434, "output file already exists");

if(pklen == sigread)

warn("same size public key and signed message");

if(0 == crypto_sign_open(msg, &msgread, sig, sigread, pk)){

if(! warg(f))

return failure(322, "valid signature, but could not write to file");

puta(msg, f);

return success(1, "signed message valid, message written to file");}

return failure(864, "invalid signature");}

// !termout

for(s=0,r=0,i=1; i<=args; i++){

if(rarg(i)){

r+=1;

geta(sk, i);

if(sklen == skread)

s = i ;}}

if(0 == s)

return failure(765, "no secret key found");

if(1 == r){

for(i=1 ; i<=args ; i++)

if(i != s && msgread+strlen(arg[i])+1 < msgmax)

append(msg,arg[i]), append(msg," ");

msg[msgread-1]='\n';

crypto_sign(sig, &sigread, msg, msgread, sk);

put(sig);

return success (1, "non-key args signed");}

if(2 == r){

if(3 < args)

return failure (876, "too many command-line arguments");

geta(msg, 3-s);

if(msgmax < msgread)

return failure (777,"message too long");

if(sklen == msgread){

warn("dangerously confused over secret key and message");

if(! proceed())

return failure (700, "no signing");}

geta(sk, s); // in case sk read another file

crypto_sign(sig, &sigread, msg, msgread, sk);

put(sig);

return success(1,"signed file");}

return failure(797, "too many files in command-line");}

// ! termin

get(sk);

if(sklen == skread){

if(termout)

return help(1);

for(i=1 ; i<=args ; i++)

if(msgmax > msgread+strlen(arg[i]) + 1)

append(msg,arg[i]), append(msg," ");

msg[msgread-1]='\n';

crypto_sign(sig, &sigread, msg, msgread, sk);

put(sig);

return success(!termout,"command line message signed");}

if(sklen > skread)

return failure(16,"secret key too small");

grab(pk, sk);

if(pkread == pklen){

for(i=1 ; i<=args ; i++){

if(rarg(i)){

geta(sig, i);

if(sigmin <= sigread && sigmax >= sigread)

if(0 == crypto_sign_open(NULL,&msgread,sig,sigread,pk))

puts(arg[i]);}}}

if(pklen > pkread)

return failure(99,"public key too small");

30

grab(sig, pk);

for(i=1 ; i<=args ; i++){

if(rarg(i)){

geta(pk, i);

if(pklen == pkread)

if(0 == crypto_sign_open(NULL,&msgread,sig,sigread,pk))

puts(arg[i]);}}

return success(1,"matching arg files listed");}

return failure(999, "no count of arguments -- this should never happen!");}

C Generality of multiplicative signatures

Multiplicative signatures are arguably quite general. To informally illustrate
this generality, consider ECDSA.

An ECDSA signature of the form [R, s] is valid for message h and public
key Q = uG if

hG = sR − rQ (12)

where r is a conversion of elliptic curve point R to an integer. (Strictly, an
ECDSA signature is [r, s], but the point R can be recovered from r in a few
trials.) Let:

[a, b, c, d, e] = [h, 1/u, Q, [R, s], G]. (13)

Reconstruct multiplication operations acting on variables a, b, c, d, e such that
Q = uG is equivalent to e = bc, while ae represents hG and dc represents
sR − rQ.

To get a full semigroup, add an artificial zero element 0 in addition to
those of the forms a, b, c, d, e. Then define all other multiplication to take the
value 0. In other words, define multiplication as the operations matching the
ECDSA operations as explained in the previous paragraph, and 0 otherwise.
Associativity of this multiplication is ensured by the nature of the verification
equation, or by the product of any other three elements being 0.

In the case of ECDSA, the value of e, representing G, is chosen before the
value c, representing Q. This situation corresponds to the secret key b being
an invertible element of the semigroup. In other semigroups, such as the
plactic monoid, the secret keys are not invertible, so value c must be chosen
before e. In ECDSA, the checker c is signer-specifier, while the endpoint e is
system-wide, but that is only possible for multiplicative signatures in which
the secret keys b are easily invertible.

A signature scheme is separable if the verification consists comparing
two data values, and the public key is effectively two values, one determined
by the other via an efficient trapdoor. For example, ECDSA is separable,

31

and multiplicative signature are separable. It seems that several separable
signature schemes can be considered instances of multiplicative signatures.

References

[Bro21] Daniel R. L. Brown. Plactic key agreement. Cryp-
tology ePrint Archive, Report 2021/625, 2021.
https://eprint.iacr.org/2021/625. 1, 2.1, 6.1, 6.2

[RS93] Muhammad Rabi and Alan T. Sherman. Associative one-
way functions: A new paradigm for secret-key agree-
ment and digital signatures. Technical Report CS-TR-
3183/UMIACS-TR-93-124, University of Maryland, 1993.
https://citeseerx.ist.psu.edu/viewdoc/versions?doi=10.1.1.118.6837.
1, 2

32

https://eprint.iacr.org/2021/625
https://citeseerx.ist.psu.edu/viewdoc/versions?doi=10.1.1.118.6837

	1 Introduction
	2 Multiplicative signatures
	2.1 Multiplicative semigroups, an overview
	2.2 Public keys
	2.3 Digital signatures
	2.4 Secret keys
	2.5 Signing
	2.6 Key and hash spaces

	3 Hashed multiplicative signatures
	3.1 Choice of hash function
	3.2 Full-domain (embedded) hashing
	3.3 Usability benefits of hashing

	4 Suggested parameters
	4.1 Recommended parameters: ps8000
	4.2 Obsoleted parameters: ps12288

	5 An implementation of plactic signatures
	5.1 Implementing plactic monoid multiplication
	5.1.1 A reference implementation
	5.1.2 Towards constant-time multiplication

	5.2 Application programming interface
	5.3 Signing implementation
	5.4 Auxiliary implementations

	6 Plactic signature security
	6.1 Divide to find a secret key from public key
	6.2 Left division to find a secret key from a signature
	6.3 Cross-multiply to forge unhashed signatures
	6.4 Dividing a signcheck by the endpoint
	6.5 Factor to forge unhashed signatures
	6.6 Attacking the hash function

	A Some timing results
	B Experimental utilities
	B.1 A simplistic utility
	B.2 A more flexible utility (unfinished)

	C Generality of multiplicative signatures

