
Plactic signatures

Daniel R. L. Brown∗

July 4, 2022

Abstract

Plactic signatures use the plactic monoid (semistandard tableaus
with Knuth’s associative multiplication) and full-domain hashing (SHAKE).

1 Introduction
Plactic signatures instantiate multiplicative signatures (see Table 1, §2, and
[RS93]), with the plactic monoid1 and full-domain hashing (see §3).

Notation Name Typically:
a (Attested) Matter A message digest
b (Binding) Secret Key SECRET to one signer
c Checker System-wide
d (Digital) Signature Attached to message
e Endpoint Signer-specific value

[a, d] Signed Matter Thing to be verified
[c, e] Public Key Certified as signer’s

e = bc Key Generation Signer uses secret key b
d = ab Signing Signer uses secret key b
ae = dc Verifying Verifier uses public information

Table 1: Summary of plactic (and multiplicative) signatures

∗danibrown@blackberry.com
1For more about Knuth’s plactic monoid, one can start from [Bro21] or Wikipedia.

1

danibrown@blackberry.com


2 Multiplicative signatures
This section describes multiplicative signatures, which are summarized in
Table 1. Rabi and Sherman [RS93] mentioned the main idea behind multi-
plicative signatures in 1993.

Multiplicative signatures can be defined for any multiplicative semigroup.
Security and efficiency depend on the semigroup.

Custom terminology for multiplicative signatures helps to discuss features
specific to multiplicative signatures.

2.1 Multiplicative semigroups: a brief review
Recall the definition of a (multiplicative) semigroup. Firstly, a semigroup
is a set together with a multiplication operation. This means, in more detail,
that multiplication is a well-defined binary operation, and the set is closed
under multiplication. Multiplication of variables a and b is written as ab,
whenever clear from context. Secondly, multiplication must be associative,
which means that it obeys the associative law: a(bc) = (ab)c. As an exam-
ple, matrices with positive integer entries form a semigroup, under standard
matrix and integer arithmetic.

2.2 The plactic monoid
This report focuses on one semigroup: Knuth’s plactic monoid.

An introduction (for cryptographers) to the plactic monoid may be found
in [Bro21]. A general introduction to the plactic monoid may be found on
Wikipedia. The reader is assumed henceforth to have some familiarity with
the plactic monoid, to facilitate discussion of how the plactic monoid elements
and multiplication are used in plactic signatures.

Elements of the plactic monoid are semistandard tableaus. Elements
of the plactic monoid can also be represented by sequences. The canonical
sequence representation is the row reading, a concatenation of the tableau’s
rows. More generally, every sequence represents a unique tableau, the tableau
obtained by applying the Robinson–Schensted algorithm to the sequence. A
tableau typically has many different sequence representations, but only one
canonical representation, the row reading of the tableau.

In the plactic signatures, the tableaus d and e (from Table 1) should be
communicated using the canonical representation. (Other representations

2



risk leaking the secret key b.)
Multiplication in the plactic monoid is Knuth multiplication of semistan-

dard tableaus, which can be implemented by: first, concatenating all the
rows (row readings) of the two tableaus; second, applying the Robinson–
Schensted to the resulting concatenated sequence to obtain a semistandard
tableau; and third, taking the row reading as the canonical representation.

2.3 Public keys
A public key is a pair [c, e] of elements. Element c is the checker and
element e is the endpoint. The checker c can be shared between many
signers, but endpoint e is usually specific to a single signer.

Alternative names for the public key in a digital signature include the
following. A common term is verification key, because the public key is
the key that the verifier needs to verify a signature. A common graphical
symbol (and arguably more user-friendly indication) is a lock. However, the
lock symbol often indicates several layers of security (for example, in web
browsers, a lock symbol typically indicates successful verification of several
digital signatures within a certificate chain of trusted public keys, and also
an application of encryption and other symmetric-key cryptography).

For simplicity, this report presumes that a signer’s public key is reliably
and correctly available to the verifier.

In practice, a public key infrastructure (PKI) would be used to es-
tablish each signer’s public key [c, e], binding the cryptographic value [c, e]
to a more legible name of the signer. The signer’s public key [c, e] will be
embedded into a certificate, which certifies that the [c, e] belongs to the
signer. A typical hierarchal PKI distributes some certificates manually as
root certificates, and then transfers trust to other certificates using digital
signatures (which could be plactic signatures).

2.4 Digital signatures
A signed matter is a pair [a, d] of elements. Element a is the (attested)
matter and element d is the (digital) signature. The matter is usually
derived as a digest of a meaningful message (such as legible text). A matter
is sometimes common to many signers (for example, when short messages
like “yes” or “no” are to be signed). We often say that d is a signature on
matter a, or that d is a signature over a.

3



A signed matter [a, d] is verifiable for public key [c, e] if

ae = dc, (1)

which we call the verification equation. We often also say that [a, d] is
valid for [c, e], or that signer [c, e] has signed matter a, or that matter a
has been signed by [c, e], or that d is a signature under [c, e].

If the two sides of (1) are different, then signed matter [a, d] is non-
verifiable for public key [c, e]. We also often say that d is an invalid signature.

To enable discussion of the two sides of the verification equation (1), such
as in the case of invalid signatures or the during the course implementing
verification, we can call ae the endmatter and call dc the signcheck. So,
with this terminology, a multiplicative signature is valid if and only if the
endmatter equals the signcheck.

2.5 Secret keys
A secret key b for public key [c, e] is an element b such that

e = bc. (2)

Alternative names for secret keys of digital signatures include the following.
The commonly used term private key can be useful to distinguish from other
secret keys, such as keys used in symmetric-key cryptography. Another sen-
sible term is signature generation key, or signing key. A more mnemonic
name for b is binder, but this is quite far from any existing traditions (which
use different letter variables for the secret key).

Note an exception to this terminology in this report’s implementations
of plactic signatures. The value b, which is a semistandard tableau, will be
derived by computing the hash of a shorter seed key. (Two reasons for this:
to save on the amount of long-term secret data that needs protection, and to
slightly discourage poorly chosen values for b.) In this case, the secret seed
key can then be considered the secret signing key, while the tableau b is an
intermediate temporary secret that is only computed during the signing and
key generation procedures. But, for a security analysis, the attacker can win
by finding b, entirely by-passing the seed secret key. So, even if b is derived
from a seed secret key, the value b remains the effective secret key.

The rest of this section, which describes plactic signatures at a higher
level, refers to b itself as the secret key.

4



A public key [c, e] is viable if there exists at least one secret key b for
[c, e].

A signer can choose secret key b before choosing a public key [c, e], by
computing the endpoint e from the formula (2). This results in a viable
public key. In the plactic monoid, it seems difficult to generate a viable
public key [c, e] in any way other than computing e = bc for some b.

A weak secret key b for public key [c, e] is an element b such that
abc = ae for all matters a (in the set of matters to be signed). In the plactic
monoid, allowing matters a to range over a large set, then it seems likely
that every weak secret key is a secret key. (For some other semigroups, this
might not be the case.)

2.6 Signing
A signer with secret key b can sign matter a by computing signature

d = ab. (3)

The resulting signed matter [a, d] is valid for the signer’s public key [c, e],
because multiplication is associative:

ae = a(bc) = (ab)c = dc. (4)

A signer with public key [c, e] should keep b secret, so that nobody else can
generate signatures under [c, e].

2.7 Key and hash spaces
For security reasons, the values a, b and c should be chosen from sufficiently
secure subsets A, B, and C of the chosen semigroup (the plactic monoid).
Furthermore, secure methods to choose elements a, b, c in the subsets A, B, C
should be specified.

In plactic signatures with the recommended parameters, each of a, b, and
c will be obtained by the same general method: as a sequence of 500 bytes,
taken from the output of the extendable output function SHAKE (part of the
SHA-3 hash function). The only difference will be the inputs to SHAKE: for
a, the SHAKE input is the message being signed; for b, the SHAKE input is
the secret seed key (a string of 100 bytes, which should be chosen uniformly
at (pseudo)random); for c, the SHAKE input is a fixed, system-wide byte
string (or perhaps a string customized to the signer).

5



3 Hashed multiplicative signatures
Hashed multiplicative signatures are multiplicative signature system in which
the matter is a hash of a message. Hashed multiplication signatures are
summarized in Table 2. In hashed multiplicative signatures, both the signer

Notation Name Typically:
a Matter A message digest
b Secret key SECRET to one signer
c Checker System-wide
d Raw signature Attached to the message
e Endpoint Signer-specific value
f Hash function Fixed or signer-chosen
h Fixed hash function System-wide, fixed or keyed, f() = hk()
k Hash function key Fixed or signer chosen f() = hk()
m Message Reviewed (or chosen) by signer

[d, f ] Signature Extension of multiplicative signature
[m, d, f ] Signed message Thing to be verified

[c, e] Public key Certified as signer’s
a = f(m) Digesting Signer and verifier compute short a

e = bc Key generation Signer uses secret key b
d = ab Signing Signer uses secret key b
ae = dc Verifying Verifier uses public information

Table 2: Summary of hashed multiplicative signatures

and verifier compute the matter a from the message m by applying hash
function f :

a = f(m). (5)

A hashed signature is [d, f ], and the signed message is [m, d, f ].
To sign message m, the signer with secret key b selects f and computed

f = ab = f(m)b. To verify signed-message [m, d, f ] under public key [c, e],
the verifier checks that f(m)e = dc.

Generally, security of the signature schemes requires that f be chosen
securely. In other words, hashed signature [d, f ] being valid requires that
hash function f is secure. One of the simple systems described next, will
help to assure verifiers that f is a secure hash function.

6



3.1 Choice of hash function
The hash function f will typically take the form f(m) = hk(m), where h is
a keyed hash function, and k is a key for h. Because h is fixed across the
whole system, the key k suffices to specify f . This allows f to have a short
specification, so that the signature [d, f ] = [d, k] is not too long. (So, it not
necessary to specify the algorithm for f in each signature.)

The hash key k can be fixed across the whole system, with the same key k
in every signature. In this mode, the signed message [a, d, f ] reduces to [a, d],
because it is unnecessary for the signer to transmit k to a verifier. Plactic
signatures use this mode.

Alternatively, each signer might want choose a different hash key k for
each signature. For example, the signer might choose k as a deterministic,
pseudorandom function of the message, like this k = hb(m). The unique
k must be then be appended to the signature, which is an extra cost. A
potential benefit of this approach is that it obviates the need for a collision-
resistant hash function.

Plactic signatures, which use a fixed hash function, can approximate the
mode of having a unique key k per signature, by using message randomizers.
For example, just prepend the message with a unique key k. Assuming that
the fixed hash is strong enough, the random bytes prefixing the message
effectively make the fixed hash into a keyed hash. This approach would
require the verifier to be aware of the randomizer, and to remove it from the
signed message to recover the actual content part of the message.

Multiplicative signatures (from the previous section) can be considered to
be a special case of hashed multiplication signatures where the hash function
f is the identity function, meaning f(m) = m. Pure multiplicative signatures
only allow us to sign messages that are already elements in the semigroup.

With the plactic monoid, purely multiplicative signatures would be possi-
ble, because any byte string a can represent a tableau. However, the resulting
signature length would be proportional to the message length. Also, colli-
sions in this identity function would be easy to find, since a given tableau has
multiple representations (and finding them is easy). Collisions would result
in certain types of forgery attacks against the signature scheme. Therefore,
plactic signatures use hashed multiplicative signatures.

In this report’s reference implementation, a fixed, system-wide hash func-
tion is suggested, based on the FIPS 202 hash function, SHAKE-128, which
is extendable output version of SHA-3.

7



3.2 Full-domain (embedded) hashing
The hash function must map messages into a set A of semigroup elements.
Some form of full-domain, embedded hashing is needed. Embedding refers
to the the step of mapping the natural output of the hash function, usually
a byte string, into the semigroup. Full-domain hashing refers to the idea
that the hashed matters a = f(m) should appear indistinguishable from a
randomly chosen from the set A.

In the case of plactic signatures, we will assume that all entries in the
semistandard tableaus have numeric values from 0 to 255. So, each entry
of the tableau can then be represented as a single byte. Every byte string
represents a semistandard tableau, since the Robinson–Schensted algorithm
converts any byte string s into a semistandard tableau P (s).

The embedding function used in plactic signatures is therefore to take the
byte string output of the hash function, and consider it to be a representation
of a semistandard tableau.

Towards getting a full-domain hash function, an extendable output
hash function can be used, meaning that the hash function can output as
many bytes as needed for the chosen byte size of the matter a. In this case
A represents all semistandard tableaus of a given length.

The Robinson–Schensted map s 7→ P (s) is not injective, so it introduces
a bias (non-uniformity) in the tableaus when the input is a unbiased (uni-
formly distributed) byte string. For digital signatures, this bias seems quite
harmless. It slightly increases the chances of collisions, meaning messages
with the same effective hash value, here the tableau a. Plactic signatures
attempt to mitigate this risk by using strings of greater length.

3.3 Usability benefits of hashing
A usability benefit of hashing is that a long message m can have short hash
a = f(m). A short a usually means that the signature d = ab is short. In
other words, f(m)b is shorter than mb (for some embedding of m into the
semigroup).

Another usability benefit of hashing is that hashing algorithms can be
faster than semigroup multiplication. In the plactic monoid, semigroup mul-
tiplication runs in time that is super-linear, sub-quadratic in the input length,
whereas hash functions run in time that is linear in the input length. In other
words, for long messages m, computing f(m)b is faster than computing mb.

8



Security benefits of hashing are discussed in §6.

4 Suggested parameters
For concreteness, this report suggests some specific parameters.

4.1 Recommended parameters: ps8000
The recommended set of parameters, ps8000, is described below.

• Tableau entries are bytes, numbers ranging from 0 to 255.

• A tableau is represented by a byte string: string s representing tableau
P (s) (where P is the Robinson–Schensted algorithm).

• Values a, b, c are each 500 bytes (4000 bits).

• Values d, e are each 1000 bytes (8000 bits).

• Row readings (of semistandard tableaus) are the default representations
d and e.

• Endpoint e represents public key [c, e].

• Value c is fixed system-wide, or communicated out-of-band.

• The hash function is SHAKE-128.

• The hash function output length is 500 bytes.

• The embedding function is the identity function, sending byte strings
(500 bytes from SHAKE-128) to byte strings (representing semistan-
dard tableaus).

• Value c is the hash of a fixed system-wide byte string, the algorithm
name, or perhaps some other string communicated out-of-band.

• Value a is the hash of a message to be signed (so is different for each
message signed).

• Value b is the hash of a 100-byte string, which is to be considered the
private signing key.

9



• A signed message consists of the concatenation of d and the message
m, with d first, so a signed message is exactly 1000 bytes longer than
the message signed.

The main aim for parameters ps8000 is that any successful forgery attack
(with success rate at least one half) takes computation of at least 2128 steps
(bit operations). Furthermore, more general attack strategies should be in-
feasible in some other way, such as by having negligible success probability,
or by having excessive number of queries to honest signers.

To clarify, parameters ps8000 permit d and e to be other byte string rep-
resentations of tableaus, not just row readings. For example, column readings
are considered valid. But, the risk attached to alternative representations is
the signer’s responsibility. For example, a signer could just use simple con-
catenations to compute d = ab, which would be much faster, but which would
be totally insecure.

4.2 Optional: strict row reading mode
As an optional strict set of requirements, we can insist on one or both the
following conditions:

• Signature d is the row reading of a semistandard tableau.

• Endpoint e is the row reading of a semistandard tableau.

In other words, a signature d or endpoint e could be deemed invalid if it is
not the row reading the a semistandard tableau.

The recommended default formats for d and e are row readings. In the
stricter mode, a signer would be forbidden from using other byte string repre-
sentations of tableaus, such as column readings. A verifier would then reject
other representations, including column readings.

In the stricter mode, the verifier must do an extra check on d and e to
ensure they are proper row readings. This extra check takes a small amount
of computation. It arguably protects signers from using insecure representa-
tions. Signer who uses insecure representation, such as concatenation would
find their signatures rejected by strict verifiers. This would be de-incentivize
signers from using insecure representations, but would do so artificially, by
transferring the signer’s security responsibility partially to the verifier.

Strict mode is optional. It is not used by verification implementations
in this report. Signing and key generation do comply with the strict mode,

10



because they do following the recommended default of using row reading
representations of tableaus for d and e.

4.3 Other parameters (to be completed)
Cryptanalysts can easily use reduced size parameters to test out various
attack strategies.

Using larger parameters as a margin for error, traditionally a reasonable
precaution, seems an incongruous for a new cryptographic system like plactic
signatures.

Perhaps a more thorough cryptanalysis might fortuitously suggest that
smaller signatures are just as safe as the ps8000 parameters. Maybe a and
b could be reduced to 300 bytes each, instead of 500 bytes each.

5 Implementations of plactic signatures
This section presents some C implementations of plactic signatures.

Implementations of cryptographic algorithms are essential to their appli-
cations, gauge their practicality, resolve ambiguities in their written descrip-
tions, and develop their more thorough understanding.

The NIST post-quantum cryptography project has a required application
programming interface (API) for C implementations2. This API makes it
simple for application programmers to use a variety of possible digital sig-
nature algorithm in a uniform manner, without needing to interact with the
algorithm internal. The application programmer mainly needs to know the
byte lengths of the inputs and outputs of three C functions.

This report’s implementations of plactic signatures try to use the NIST
required API.

5.1 Common header files
The various C files in this report’s implementations include the following
header files to declare various common types, macros, and constants.

A header file types.h listed in Table 3 defines abbreviations for C types
used often throughout the implementation, using the typedef mechanism.

2The NIST PQC project takes its requirements from the SUPERCOP system of timing
cryptography.

11



typedef unsigned char u; typedef unsigned long long ll;

Table 3: File types.h

File api.h listed in Table 4 is an application programming interface (API)
header file required by the NIST PQC project. First, the file specifies the
byte sizes for keys (secret and public) and signature. Next, the file specifies a
string formalizing algorithm’s name (including key size parameters). Finally,
it declares the required C function prototypes for key generation, signing and
verifying (using the abbreviated type names defined in file types.h).

#define CRYPTO_SECRETKEYBYTES 100
#define CRYPTO_PUBLICKEYBYTES 1000
#define CRYPTO_BYTES 1000
#define CRYPTO_ALGNAME "placticsignature8000bits"
#include "types.h"
int crypto_sign_keypair(u*pk, u*sk);
int crypto_sign(u*sm, ll*smlen, const u*m, ll mlen, const u*sk);
int crypto_sign_open(u*m, ll*mlen, const u*sm, ll smlen, const u*pk);

Table 4: File api.h

File lengths.h listed in Table 5 specifies the byte sizes of various in-
termediate array variables arising during the course of signing. The main
signing implementation uses these lengths. The reference implementation of
plactic monoid multiplication also uses the lengths to determine the size of
memory to allocate for a buffer that stores the entries of the tableau.

5.2 Implementing plactic monoid multiplication
This section provides a few implementations of plactic monoid multiplication,
which is the core operation of plactic signatures.

5.2.1 A header file for plactic monoid multiplication

The C implementations share common interface, described by the header file
plactic.h listed in Table 6.

12



#include "api.h"
enum {

sklen = CRYPTO_SECRETKEYBYTES,
elen = CRYPTO_PUBLICKEYBYTES,
dlen = CRYPTO_BYTES,
blen = (dlen<elen?dlen:elen)/2,
alen = dlen - blen, clen = elen - blen,
aelen = alen + elen, dclen = dlen + clen};

Table 5: File lengths.h

#include "types.h"
void multiply(u*ab, const u*a, int alen, const u*b, int blen);

Table 6: File plactic.h

In this interface, the intent is that the inputs a and b to the function
multiply are byte strings of lengths given by input alen and blen. The input
byte strings represent tableaus, which could be row readings of semistandard
tableaus, or perhaps just arbitrary byte strings obtained as the output of a
hash function.

The output ab is byte string of length alen+blen. The output ab is a
byte string representing a tableau, the product of tableaus represented by
byte strings a and b. Generally, ab is intended to be the row reading of the
tableau, which is the canonical representation of the tableau.

A different tableau representation might be acceptable too, but the rep-
resentation should minimum not leak information about the input tableaus.
The worst case would be a plactic monoid multiplication that just concate-
nates the input strings, because the concatenation is one possible representa-
tion of the output in the plactic monoid. The concatenation representation
would immediately reveal the input strings, which is totally insecure, be-
cause the signer’s effective secret key would be revealed by the public key.
By contrast, a column reading instead of a row reading should be fine. A
randomized representation might work for signatures and public keys, but
a canonical representation seems necessary for signature verification. It is
unclear (to me) if any alternate can safely offer much advantage over the row
reading representation.

13



Beware that the caller of function multiply needs to ensure that enough
memory is allocated for byte strings at locations pointed to by variables a,
b, and ab, with the room for alen, blen, and alen+blen bytes respectively.

Beware that, some of the plactic monoid multiplication implementations
might not tolerate overlapping of the strings pointed by a, b, ab, (although
the reference implementation tries to tolerate such an overlap). If the output
ab overlaps with inputs a or b, then the multiplication might also modify the
inputs a or b. (Proper array bounds checking might avoid this problem, but
this report’s implementations skips some of these mitigations.)

5.2.2 A reference implementation

File plactic-ref.c listed in Table 7 is a reference implementation of plactic
monoid multiplication. Beware that the reference implementation does not
aim for side channel resistance.

/* Plactic multiplication. (c) Dan Brown, BlackBerry, 2021 */
// Reference
#include "lengths.h" // aelen, u
#define swap(a,b) (a^=b, b^=a, a^=b)
enum{aemax=aelen, rmax=256, smax=((aemax*49)/8)};
void insert(u**t, int*r, u v){ int i=0, j;

for(; i<rmax && r[i] && v<t[i][r[i]-1]; swap(t[i][j], v), i++)
for(j=0; j<r[i] && t[i][j]<=v; j++) ;

t[i][r[i]++] = v;}
void multiply (u*ab, const u*a, int alen, const u*b, int blen){

int i, j, ablen=alen+blen, r[rmax]={0}; u s[smax], *t[rmax]={s};
for(i=1; i<rmax; i++) t[i] = t[i-1] + ablen/i;
for(i=0; i<ablen;i++) insert (t, r, (i<alen)? a[i]: b[i-alen]);
for(i=rmax; i--;) for(j=0; j<r[i]; j++) *ab++ = t[i][j];}

Table 7: File plactic-ref.c

The reference implementation allocates a memory buffer s to store the
rows of the product tableau. Each row occupies a fixed place in s with enough
room between rows such that insertion of new entries does not require any
shifting of rows. The buffer’s size is proportional to the signature parameters,
such as the ps8000 parameters. The included file lengths.h provides aelen,

14



deduced from the signature parameters, which is then used to calculate the
buffer size. (The defined type u is also provided by lengths.h.)

The reference implementation assumes that the tableau entries are con-
fined to byte values, 0–255 (as represented by type u). This assumption
implies that are at most 256 rows (because the tallest column has distinct
entries), a fact that the reference implementation uses by defining a constant
rmax=256. The maximum size smax of the linear buffer to store the tableau’s
rows is calculated by rounded-up multiplication aemax by the harmonic num-
ber 1

1 + 1
2 + 1

3 + · · · + 1
256 < 6.125 = 49/8.

Function multiply allocates three array variables r, s, and t. Array r
records the row lengths of the tableau, and is initialized with all row lengths
are zero. Array s is a buffer where the tableau entries are stored: each row of
the tableau will occupy a distinct segment of s, chosen so that each segment
is long enough to store the maximum possible length for the given row. Array
t is an array of pointers into these segments of s: so doubly-indexed t[i][j]
is the value of the individual tableau entry located at row i and column j.

The first for loop in function multiply sets up the pointers t[i] at
fixed locations within s. The second for loop iterates Robinson–Schensted
insertion, running over bytes of input a and then bytes of input b. The third
for loop is a doubly-nested for loop, and places the row reading of the table
stored t into the output array ab.

Function insert implements the Robinson–Schensted insertion, by in-
serting v into the tableau represented by the pair of arrays t and r. The
first for loop bumps entries into the rows. Nested inside the first for loop
is a second inner for loop that finds the correct entry to be bumped. When
there is no entry to bump, the two nested for loops are done. The last line
of function insert appends a new entry to the end of the next available row,
and increments the length of that row by one.

5.2.3 Binary searching in rows

File plactic-search.c listed in Table 8 modifies the reference implemen-
tation plactic-ref.c, by using a binary search (instead of a left-to-right
scan) within a row to find which entry needs to be bumped to the next row
and replaced with the next element to insert.

In more detail, file plactic-search.c modifies the insert function from
plactic-ref.c by replacing a scan search by a binary search in the lowest
64 rows. The motivation for binary searching in only lowest 64 rows, is that

15



/* Plactic multiplication. (c) Dan Brown, BlackBerry, 2021 */
// Binary search (in lower rows)
#include "lengths.h" // aelen, u
#define swap(a,b) (a^=b, b^=a, a^=b)
enum{aemax=aelen, rmax=256, smax=((aemax*49)/8)};
void insert(u**t, int*r, u v){ int i=0, j=aemax, k, m;

for(; i<rmax && r[i] && v<t[i][r[i]-1]; swap(t[i][j], v), i++)
if(i<64)

for(k=r[i]-1, k=(j<k)?j:k, j=0; t[i][j]<=v; )
v<t[i][m=(++j+k)/2]? swap(m,k): swap(m,j) ; else

for(j=0; j<r[i] && t[i][j]<=v; j++) ;
t[i][r[i]++] = v;}

void multiply (u*ab, const u*a, int alen, const u*b, int blen){
int i, j, ablen=alen+blen, r[rmax]={0}; u s[smax], *t[rmax]={s};
for(i=1; i<rmax; i++) t[i] = t[i-1] + ablen/i;
for(i=0; i<ablen;i++) insert (t, r, (i<alen)? a[i]: b[i-alen]);
for(i=rmax; i--;) for(j=0; j<r[i]; j++) *ab++ = t[i][j];}

Table 8: File plactic-search.c

16



in short rows, left-to-right scanning is faster than binary search, probably
because there is less overhead calculation. An approximate tuning by trial
and error led to the choice of 64 to minimize verification time. Experiments
using row length, which can only be determined at run-time to decide between
binary search or left-to-right scan, suggested that run-time decisions were
slower.

With the recommended parameters ps8000, the binary search method
gives a small speed-up (over the reference implementation plactic-ref.c):
approximately 5% faster signing, and 15% faster verifying.

Table 9 shows the differences – excluding spacing differences – between
the files plactic-search.c and plactic-ref.c: the main difference being
that a binary search is applied to the bottom 64 rows.

$--$ diff -b plactic-search.c plactic-ref.c
2c2
< // Binary search (in lower rows)
---
> // Reference
6c6
< void insert(u**t, int*r, u v){ int i=0, j=aemax, k, m;
---
> void insert(u**t, int*r, u v){ int i=0, j;
8,10d7
< if(i<64)
< for(k=r[i]-1, k=(j<k)?j:k, j=0; t[i][j]<=v; )
< v<t[i][m=(++j+k)/2]? swap(m,k): swap(m,j) ; else

Table 9: Differences between plactic-search.c and plactic-ref.c

5.2.4 Sped-up plactic multiplication

Generally, the signer computed d as the row reading of a tableau. A verifi-
cation can check a signature d for this condition, and also then speed up the
can speed up the computation of dc (the signcheck), because the reason is
that signer has already completed part of the Robinson–Schensted algorithm
to compute dc, namely the part applied to d.

17



File plactic-prep.c listed in Table 10 implements this trick to speed up
verification by about 15% (over file plactic-search.c). Many new line of
C code have been added to, but these new lines do not use much run-time.
The new C code scans d, assuming row reading format, and check that the
row reading is correct.

File plactic-prep.c also applies a different tuning of the decision process
for choosing between scan and binary search, but that accounts for only a
3% speed-up.

5.2.5 Low-memory plactic multiplication

File plactic-lowmem.c listed in Table 11 aims to use less memory than the
reference implementation, at the cost of longer runtime.

To do this, function multiply first concatenates input arrays a and b into
the the output array ab. Then it iteratively applies Knuth’s relations to the
array ab, achieving the same effect as the Robinson–Schensted algorithm.
Instead of scanning rows of a two-dimensional array, and then swapping
entries with variable v, adjacent elements of a one-dimensional array are
swapped, in-place.

Some previous versions of this report had named plactic-lowmem.c as
the reference implementation of plactic monoid multiplication. This previous
choice was partly because the low memory code is actually simpler than the
two-dimensional array version and partly because the use of Knuth’s rela-
tions ties the implementation more closely connected to the monoid algebraic
structure, and thus to idea behind multiplicative signatures. But the current
reference implementation, is now based on the Robinson–Schensted algorithm
instead. This is partly because Robinson–Schensted pre-dates Knuth rela-
tions, partly because Robinson–Schensted algorithm seems to be considered
more widely than the Knuth relations.

5.2.6 Towards constant-time multiplication

File plactic-constant.c listed in Table 12 is a step towards implement-
ing plactic monoid multiplication in constant time, which is a step towards
preventing some side channel attacks. The cost of this potential security
improvement is, unfortunately, much longer run-time.

File plactic-constant.c is constructed by modifying file plactic-lowmem.c.
The secret-dependent branching statements from plactic-lowmem.c are re-

18



/* Plactic multiplication. (c) Dan Brown, BlackBerry, 2021 */
// Binary search, sped-up if d has row reading form ...
#include "lengths.h" // aelen, u
#define swap(a,b) (a^=b, b^=a, a^=b)
enum{aemax=aelen, rmax=256, smax=((aemax*49)/8)};
void insert(u**t, int*r, u v, int l){int i=0, j=aemax, k, m;

for(; i<rmax && r[i] && v<t[i][r[i]-1]; swap(v,t[i][j]), i++)
if(128<l || i<32)

for(k=r[i]-1, k=(j<k)?j:k, j=0; t[i][j]<=v /* && j<r[i]*/; )
v<t[i][m=(++j+k)/2]? swap(m,k): swap(m,j) ; else

for(j=0; j<r[i] && t[i][j]<=v; j++) ;
t[i][r[i]++] = v;}

int check(u**t,int*r,int s){int i,j,k=r[0];
for(i=1;i<rmax;k+=r[i++]) {

if(r[i]>r[i-1]) return 0;
for(j=0; j<r[i]; j++)

if(t[i][j] <= t[i-1][j]) return 0;}
if(k!=s) return 0;
for(i=0;i<rmax;i++)

for(j=1; j<r[i]; j++)
if(t[i][j] < t[i][j-1]) return 0;

return 1;}
void wipe(int*r){int i;for(i=0;i<rmax;i++)r[i]=0;}
void multiply (u*ab, const u*a, int alen, const u*b, int blen){

int i, j, k=0, ablen=alen+blen, r[rmax]={0}; u s[smax], *t[rmax]={s};
for(i=1; i<rmax; i++) t[i] = t[i-1] + ablen/i;
if(alen==dlen){

for (i=k=0; k<alen-1; k++) i+=a[k+1]<a[k];
for (j=k=0; k<alen ; k++){

if(0<=i && i<rmax && j<alen/(i+1)) t[i][j]=a[k], r[i]++;
if (k<alen-1 && a[k+1] < a[k]) i--, j=0; else j++;}

if (!check(t,r,alen)) wipe(r),k=0;}
for(; k<ablen; k++) insert (t, r, (k<alen)? a[k]: b[k-alen], k);
for(i=rmax-1; 0<=i; i--) for(j=0; j<r[i]; j++) *ab++ = t[i][j];}

Table 10: File plactic-prep.c

19



/* Plactic multiplication. (c) Dan Brown, BlackBerry, 2021 */
// low memory implementation
#include "types.h"
#define swap(a,b) (a^=b, b^=a, a^=b)
#define knuth(k, xyz) \
( (xyz[2] < xyz[k-1]) && \

(xyz[0] <= xyz[k]) && \
(swap(xyz[1] , xyz[(k+1)%3]), 1==1))
void multiply (u*ab, const u*a, int alen, const u*b, int blen){

int i,j,k;
for(i=0; i<alen+blen; i++)

ab[i] = (i<alen)? a[i]: b[i-alen];
for(i=0; i<alen+blen; i++)

for(j=i-2; 0<=j && ab[j+2] < ab[j+1]; j--)
for(k=1; k<=2; k++)

for(; 0<=j && knuth(k, (ab+j) ) ; j--) ;}

Table 11: File plactic-lowmem.c

placed by non-branching statement that use boolean-based arithmetic, in-
stead of conditional instructions.

In more detail, file plactic-constant.c attempts to be constant-time
by running a state machine with four states {−1, 0, 1, 2}. The states 1 and 2
correspond to Knuth’s two relations defining the plactic monoid. The states
0 and −1 are used to when to manage whether there is need to apply the
transformation associated with the Knuth relations. State 0 means that there
is still to apply them, while state −1 indicates that no further transformations
are needed.

Unfortunately, the code in file plactic-constant.c still uses secret-
dependent array-indexing and the C remainder operator “%”. Both of these C
operations are known to lead to side channel attacks under certain conditions.

A signature implementation using file plactic-constant.c failed to pass
the tests require by the TIMECOP. This is unsurprising, since, for example,
plactic-constant.c uses secret-dependent array-indexing.

Because the constant-time implementation is much slower than the refer-
ence implementation, an alternative side channel mitigation might be useful.

20



/* Plactic multiplication. (c) Dan Brown, BlackBerry, 2021 */
// Towards constant-time?
#include "types.h"
#define swap(a,b,c) (c*=a-b, b+=c, a-=c)
#define xyz(i) xyz[(i)%3]
int knuth(int h, u*xyz){

u d= (xyz[1] <= xyz[2]) & (0==h),
e= (xyz[2] < xyz(2+h)) &

(xyz[0] <= xyz(0+h)) & (0<h);
swap (xyz[1] , xyz(1+h), e);
return d + (0!=e) + (0>h);}

void multiply (u*ab, const u*a, int alen, const u*b, int blen){
int g,h,i,j,k;
for(i=0; i<alen+blen; i++)

ab[i] = (i<alen)? a[i]: b[i-alen];
for(i=0; i<alen+blen; i++)

for(h=0, j=i-2; j>=0; j-=g, h+=1-k, h%=3){
k=knuth(h, ab+j);
g = k | (2==h);
h -= k & (0==h);}}

Table 12: File plactic-constant.c

21



5.2.7 Jeu de Taquin (to be completed)

Schutzenberger defined the jeu de taquin, a non-deterministic algorithm, that
can be used as yet another way to determine the semistandard tableau of a
given sequence.

The jeu de taquin approach has not been implemented for this report.
The jeu de taquin approach looks to be less efficient than the approach based
on Knuth’s relations, since jeu de tauqin looks to have slighlty worse than
quadratic run-time.

Perhaps, an implementation of jeu de taquin would realize significant
benefits over the other approaches used in this report.

5.3 Signing implementation
File sign.c listed in Table 13 implements key generation, signing and veri-
fying, following the interface defined in file api.h listed in Table 4, and using
the helper definitions from file sign-defs.c listed in Table 14.

The implementation sign.c places the digital signature d = ab as prefix
of the signed message, rather than the more traditional suffix to the signed
message. The rationale for the prefixed signature is to somewhat protect a
user who mistakenly processes a signed message file with a user application
instead of using crypto_sign_open to verify the signature and extract the
acutal message. Typical user applications begin processing at beginning of
the file. For such application, the first file data encountered is the signature
prefix d = ab, which is not in a form that the application can process. Thus,
the appliation or the user will quickly see that the signed message is not the
usual file expected the for application.

By contrast, a suffix signature in a long signed message might allow a
user application to start processing the signed message, even if the signature
suffix is invalid. In other words, a suffix singnature suffers from a greater
security risk from user accident.

(Yet further protection against accident non-verified application process-
ing of signed messages is a message recovery. For plactic signatures, a message
recovery could be achieved as follows. The signer takes 1000-byte signature
as input to SHAKE-256 to generate a masking stream of length equal to the
message. The masking stream is XORed with the message. The signed mes-
sage is concatentaion of the signature (as a prefix) and the masked message.
To verify and open, the process is reverse. This mode might prevent more

22



/* Plactic signatures. (c) Dan Brown, BlackBerry, 2021. */
#include "sign-defs.c"
int crypto_sign_keypair(u*pk, u*sk){

u *b=pk; u *c=b+blen, *e=b;
if (sk != pk) random(sk);
digest (b, sk), digest (c, name);
multiply (e, b, c); return 0;}

int crypto_sign(u*sm, ll*smlen, const u*m, ll mlen, const u*sk){
u *a=sm; u *b=a+alen, *d=a;
digest (a, m), digest (b, sk);
multiply (d, a, b), copy (sm + dlen, m), *smlen = dlen + mlen;
return 0;}

int crypto_sign_open(u*m, ll*mlen, const u*sm, ll smlen, const u*pk){
u new(ae), new(dc); u *a=ae, *c=dc+dlen; const u *d=sm, *e=pk;
*mlen=0;
if (smlen < dlen) return -4;
smlen -= dlen, sm += dlen;
digest (a, sm), digest (c, name);
multiply (ae, a, e), multiply (dc, d, c);
if (0 != compare (ae, dc)) return -1;
*mlen = smlen; copy(m, sm); return 0;}

Table 13: File sign.c

23



user accidents, such as reading from the tail end of an invalid signed mes-
sage, but has an extra performance cost, doubling the amount of hashing for
long messages. Perhaps, instead of SHAKE-256 to generate a mask, a much
faster making algorithm would suffice. But is this cryptographic quality pro-
tection? Is this modelling the user as adversary against the user? Note that
this further protection can be applied aftermarket, in the sense that it can
easily be applied and removed plactic signatures as defined by sign.c.)

#include <string.h>
#include "plactic.h"
#include "keccak.h"
#include "rng.h"
#include "lengths.h"
#define namelen (u64)strlen((char*)name)
#define new(a) a[a##len]
#define compare(a,b) memcmp (a, b, (size_t)b##len)
#define copy(a,b) ((a!=0&&a!=b)? memcpy(a, b, (size_t)b##len): 0)
#define multiply(ab,a,b) multiply(ab, a, a##len, b, b##len)
#define digest(t,m) FIPS202_SHAKE128(m, m##len, t, t##len)
#define random(a) (void)randombytes(a, a##len)
u*name=(u*)CRYPTO_ALGNAME;

Table 14: File sign-defs.c

The implementation sign.c sets a default value for the checker tableau c
to be system-wide, as the output of the hash function SHAKE-128, applied to
the official name parameters of the plactic signatures placticsignature8000bits.

Optionally, a programmer using sign.c can change the value of this
checker, as follows. The programmer can re-assign the global variable name,
by pointing it to a string of the programmer’s choice. The reference im-
plementation sign.c will hash this string instead of the official algorithm
name.

A programmer using sign.c can have sign.c generate a new secret key,
or the programmer can supply secret key. To supply an old, pre-existing
secret key, the programmer calls function crypto_sign_keypair with two
equal pointers pk and sk. Equality of these pointers indicates to sign.c
not to generate a random secret key, but rather to compute a public key

24



from the given secret key. This is done by over-writing the memory location
pointed to by sk. A programmer calling sign.c is presumed to be capable of
maintaining a long-term secret key in a safe location, so that this over-writing
will not destroy the only copy of the secret key.

5.4 Auxiliary implementations
File rng-util.c listed in Table 15 likely suffices for the way that a plactic
signature utility would use random numbers.
#include <stdio.h>
#include "keccak.h"
#include "rng.h"
int randombytes(unsigned char *x, unsigned long long xlen){

FILE *rng = fopen("/dev/urandom","r");
if(!rng || xlen!=fread(x,1,xlen,rng)) {/*uh oh*/}
FIPS202_SHAKE128 (x,xlen,x,xlen); return xlen;}

Table 15: File rng-util.c

The header file rng.h listed in Table 16 simply specifies the prototype
for the function randombytes.

int randombytes(unsigned char *x, unsigned long long xlen);

Table 16: File rng.h

A header file keccak.h for the SHA-3 Keccak hash function is listed in
Table 17.
typedef unsigned char u8; typedef unsigned long long u64;
void FIPS202_SHAKE128(const u8*in, u64 inLen, u8*out, u64 outLen);

Table 17: File keccak.h

File keccak.c listed in Table 18 is an indentation-added excerpt of one of
the C implementations of SHAKE-128 from the official github source code for
Keccak. This source code is highly condensed, but still considerably longer
than than the source code for plactic monoid multiplication.

25



#include "keccak.h"
#define FOR(i,n) for(i=0; i<n; ++i)
typedef unsigned int ui;
void Keccak(ui r, /*ui c,*/ const u8 *in, u64 inLen, u8 sfx, u8 *out, u64 outLen);
void FIPS202_SHAKE128(const u8 *in, u64 inLen, u8 *out, u64 outLen)
{Keccak(1344, /*256,*/ in, inLen, 0x1F, out, outLen);}
static int LFSR86540(u8 *R) { (*R)=((*R)<<1)^(((*R)&0x80)?0x71:0); return ((*R)&2)>>1; }
#define ROL(a,o) ((((u64)a)<<o)^(((u64)a)>>(64-o)))
static u64 load64(const u8 *x) { ui i; u64 u=0; FOR(i,8) { u<<=8; u|=x[7-i]; } return u; }
static void store64(u8 *x, u64 u) { ui i; FOR(i,8) { x[i]=u; u>>=8; } }
static void xor64(u8 *x, u64 u) { ui i; FOR(i,8) { x[i]^=u; u>>=8; } }
#define rL(x,y) load64((u8*)s+8*(x+5*y))
#define wL(x,y,l) store64((u8*)s+8*(x+5*y),l)
#define XL(x,y,l) xor64((u8*)s+8*(x+5*y),l)
static void KeccakF1600(void *s) {

ui r,x,y,i,j,Y; u8 R=0x01; u64 C[5],D;
for(i=0; i<24; i++) {

/*theta*/
FOR(x,5) C[x]=rL(x,0)^rL(x,1)^rL(x,2)^rL(x,3)^rL(x,4);
FOR(x,5) { D=C[(x+4)%5]^ROL(C[(x+1)%5],1); FOR(y,5) XL(x,y,D); }
/*rho pi*/
x=1; y=r=0; D=rL(x,y);
FOR(j,24) { r+=j+1; Y=(2*x+3*y)%5; x=y; y=Y; C[0]=rL(x,y); wL(x,y,ROL(D,r%64)); D=C[0]; }
/*chi*/
FOR(y,5) { FOR(x,5) C[x]=rL(x,y); FOR(x,5) wL(x,y,C[x]^((~C[(x+1)%5])&C[(x+2)%5])); }
/*iota*/
FOR(j,7) if (LFSR86540(&R)) XL(0,0,(u64)1<<((1<<j)-1)); } }

void Keccak(ui r, /*ui c,*/ const u8 *in, u64 inLen, u8 sfx, u8 *out, u64 outLen) {
/*initialize*/
u8 s[200]; ui R=r/8; ui i,b=0; FOR(i,200) s[i]=0;
/*absorb*/
while(inLen>0) {

b=(inLen<R)?inLen:R;
FOR(i,b) s[i]^=in[i];
in+=b; inLen-=b;
if (b==R) { KeccakF1600(s); b=0; } }

/*pad*/
s[b]^=sfx;
if((sfx&0x80)&&(b==(R-1))) KeccakF1600(s);
s[R-1]^=0x80; KeccakF1600(s);
/*squeeze*/
while(outLen>0) {

b=(outLen<R)?outLen:R;
FOR(i,b) out[i]=s[i];
out+=b; outLen-=b;
if(outLen>0) KeccakF1600(s); } }

Table 18: File keccak.c

26



6 Plactic signature security
This section discusses forgery attack strategies against plactic signatures.

Some types of forgery attacks translate into various computational prob-
lems, such as division, cross-multiplication and parallel division.

6.1 Divide to find a secret key from public key
A secret key b for public key [c, e] can be found by division operator (writ-
ten / and called divider for short) with the computation

b = e/c. (6)

If signatures are to be secure, then division must be difficult. More precisely,
the division problem to compute e/c must be difficult for each public key
[c, e].

Recall (from [Bro21]) that / is a divider if ((bc)/c)c = bc for all b, c. This
means that e/c will be a secret key for public key [c, e]. Conversely, the
ability to find a secret key from a public key, implies a divider (that works
when the inputs are from a public keys [c, e]).

For some semigroups, but not the plactic monoid, a weaker kind of divi-
sion suffices: a((bc)/c)c = abc for all a, b, c. In other words, it suffices to find
a weak secret key. In the plactic monoid, it seems that a weak secret key is
a secret key, so that any weak divider is a divider.

6.2 Left division to find a secret key from a signature
Suppose that binary operator \ is a left divider (meaning a(a\(ab)) = ab
for all a, b, as in [Bro21]). Suppose that d is signature of matter a. Use left
division to compute a value

b′ = a\d. (7)

By definition of left division, we have ab′ = d.
Consider a second matter a′. We could try to generate a signature d′ =

a′b′. This is valid if a′e = d′c, meaning a′bc = a′(a\d)c. The latter equation
is not guaranteed by the given definition of left division. In fact, in the
plactic monoid, there are many different possible values for a\d, because
multiplication is not cancellative. It seems unlikely that a′bc = a′b′c for
b ̸= b′, without somehow using a′ and c to compute b′.

27



The plactic monoid is anti-isomorphic, so left and right division are
equally difficult.

In cancellative semigroups, which does not include the plactic monoid,
there is a post-divider such that (ab)/b = a for all a, b. Similarly, a left
post-divider has a\(ab) = b for all a, b. In that case, b′ = b, so the secret
key could be recovered from a signature using left division.

Although the plactic monoid is not cancellative, there might be a similar
attack, via a parallel left post-division algorithm. Suppose that di = aib
for i ∈ {1, . . . , n}, and that b is uniquely determined by the ai and the di. A
parallel left post-division operator finds b from the ai and di, which we
write as the formula b = [a1, . . . , an]\[d1, . . . , dn]. No good ideas for parallel
division in the plactic monoid are known (to me).

Rather than finding a (parallel) post-divider, one may try to implement
a division-set operator, written as //, and defined as:

d//b = {a : ab = d}. (8)

In the context of multiplicative signatures, we use the left version of the
division-set operator, \\, which is equivalent to the operator // via the anti-
automorphism of the plactic monoid. (In other semigroups, those non not
anti-isomorphic, different algorithms may be needed for the left division).
The attacker can compute the set a\\d. For a valid signature the actual
secret key used belongs to this set: b ∈ a\\d. In this case, one can search for
any b ∈ a\\d such that e = bc, so that b is an effective secret key.

The erosion algorithm for division in the plactic monoid can easily be
adapted to a division-set operator. A little empirical evidence suggest the
following speculation: for random a and b (where d = ab), if division takes s
steps on average, it seems that set d//b has size approximately s on average,
which can be made large. The time to compute the division-set might not
be s times as much as a single division, because the computation between in-
dividual divisions overlaps significantly. Nonetheless, under this speculation
one might be able to safely set the length of a to be as low as half the length
of c.

6.3 Cross-multiply to forge unhashed signatures
A cross-multiplier is an operator written ∗/ such that

(y ∗/ x)x = (x ∗/ y)y, (9)

28



whenever there exists u and v such that ux = vy. (So, if x and y are such
that no such u and v, exist, then (9) is not required to hold.)

The notion of cross multiplication is common and familiar, being used to
cancel terms between linear equations, for example. The notation ∗/ is not
familiar, but convenient for the following discussions.

Some semigroups have fast cross-multipliers.
In a commutative semigroup, x ∗/ y = x defines a cross-multiplier. In

a semigroup with a zero element 0 (such that 0z = 0 for all z), x ∗/ y = 0
defines a cross-multiplier. In a group with efficient inversion, x ∗/ y = y−1

defines a cross-multiplier. In the last example, division would be also be fast
with x/y = xy−1, but in the other two examples, division could potentially
be much slower than cross-multiplication.

The plactic monoid is non-commutative, has no zero element, and has no
inverses, so the three cross-multiplication methods above fail in the plactic
monoid.

A cross-multiplier can be used for forgery of unhashed multiplicative sig-
natures, by putting

[a, d] = [c ∗/ e, e ∗/ c]. (10)

Because this forger uses the cross-multiplier ∗/ as an oracle, the forger has
no control over the matter a (it is whatever the ∗/ algorithm outputs). This
is therefore an existential forger (which could also be called junk message
forger).

For hashed multiplicative signatures, the attacker would also need to find
m (and f) such that f(m) = c ∗/ e. For a secure hash function f such as
SHAKE-128, finding such a message m should be difficult. In other words,
forgery by cross-multiplication is not effective against hashed multiplicative
signatures.

6.4 Dividing a signcheck by the endpoint
An attack can try to compute (dc)/e, where d is a genuine signature for some
matter a. Because division is not cancellative, the division is likely to result
in (dc)/e = a′ ̸= a.

For unhashed multiplicative signature, this would result in an existential
forgery (with help from the signer, of one signed message, not necessarily
chosen by the attacker). For hashed multiplicative signatures, the forger
would need to invert the hash at a′, which should be infeasible.

29



For plactic signatures, dividing by e should be slower than dividing by c,
because e is longer than c, being e = bc.

The forger might try to use this method to generate a forgery without the
help of the signer, by choosing d instead of getting d from the signer. But
then, the forger faces the problem of finding d such that dc = ue for some u.
This is essentially the problem of cross-multiplication, already discussed.

6.5 Factor to forge unhashed signatures
To forge a matter a in an unhashed multiplicative, try to factor a as

a = a2a1 (11)

Then ask the signer to sign matter a1. The signer returns signature d1. Then
compute d = a2d1, which will a valid signature on matter a.

This would be a chosen message forgery (which could also be called a
signer-aided forgery), because the forger chooses what message the signer
honestly signs before getting to the forgery.

Factoring is easy in the plactic monoid. Therefore, unhashed multiplica-
tive signatures would be vulnerable to this type of attack. For hashed multi-
plicative signatures, the factorization does not seem to be enough for forgery.
Plactic signatures are hashed multiplication, so this attack seems to fail.

In particular, in plactic signatures, the matter length is fixed, so that any
actual matter that a signer or a verifier uses cannot be factored into other
matters.

If the verifier can be tricked into using longer matters, but the matters
are still hashed, then factoring tableaus is not enough, because the attacker
would also need to invert the hash on the factor a2. If the signer can also be
tricked into signing a matter without using a hash, then the factoring attack
could work.

6.6 Re-divide to re-sign a message
Let re-signing refer to producing a second signature on a matter, especially
when aided by observing a first signature of the matter. Traditionally, re-
signing is not considered to be an attack on signatures because the matter
in question has already been signed once.

Similarly, re-dividing refers to a computational problem in semigroups,
related in the sense that re-dividing can be used for re-signing.

30



6.6.1 Re-signing details

Suppose that d is a valid plactic signature of matter a, meaning that ae = dc
for public key [c, e]. A second signature is a distinct signature d′ ̸= d that
is also valid, meaning that ae = d′c. A re-signing algorithm is an algorithm
that can find a second signature from a first signature d, matter a and public
key [c, e].

The standard definition of security for signatures does not count re-
signing as an attack. But more recent, more advanced signature security
definitions have been introduced, under the name of strong unforgeabil-
ity, that re-signing should be infeasible (without access to the secret signing
key). In other words, these stricter security definitions regard re-signing as
an attack.

Occasionaly, systems are designed that rely on signatures resistant to re-
signing. Perhaps this reliance arises intuitively by modeling handwritten ink
signatures or implicitly assuming an ideal oracle model for the signature in-
teroperability, meaning anything not achievable by the oracle interface should
be infeasible.

(For another example of such idealized model, consider the fact that the
NIST API has the verifier open a signed message with the verification key
to reveal the message. If the verification key were held as a secret, then the
message should not be revealed by the signed message, in an idealized oracle
operation for the verification. In other words, the idealized model, keeping
the verification key secret could convert a signature scheme into some kind
of encryption scheme. But many signature schemes form the signed message
by concatenation of the message with a signature, in which case the signed
message immediately reveals the message, without requiring the verification
key. The point here is the idealizing the interfaces is perhaps not the ideal
path to defining the security goals.)

In the case of plactic signatures, the condition d′ ̸= d for a second signa-
ture can be interpreted at the concrete level of byte strings, or at the more
abstract level of semistandard tableaus. Generally, it is easy to find multiple
byte strings of a tableau, so the first type of second signature can be consider
as a representational second signature, which is arguably quite bening. It
is arguable more concerning to have an monoidal second signature, where
d′ and d represent distinct elemeents of the plactic monoid, meaning distinct
semistandard tableaus.

Re-signing can also be done by the signer, using the secret signing key.

31



Regarding this is an attack is quite questionable, since the signer might be
the only entity with a secret key, and yet this signer is also the attacker.
Perhaps the signer would attempt to repudiate the first signature on the
basis of the second. In any case, this is once again not considered as an
attack under the standard definitions.

6.6.2 Re-dividing details

Re-dividing refers to the following problem in a semigroup (such as the plactic
monoid). The inputs to the problem are semigroup elements x and y. An
output is a semigroup element z such that xy = zy and x ̸= z.

In a general semgiroup, if y has right cancellation, then no such solution
z ̸= x exists, meaning re-division would be impossible (not just infeasible!).
But the plactic monoid does not have cancellation in most cases, so solutions
to re-division can exist.

Division can be used for re-division, by choosing z = (xy)/y, and just
ignoring the element x, and hoping that z ̸= x. But perhaps re-division is
much faster, finding a distinct z easily from x.

6.7 Attacking the hash function
An attacker can try to attack the hash function. The attacker can try to
find collisions, for example. Plactic signatures use SHAKE-128, which has
an internal state of 256 bits, and with an output length much higher, 4096
bits. Finding a collision by known methods, of byte string outputs of the
hash, should therefore take at least 2128 steps.

But, the effective hash is the semistandard tableau represented by the
byte string hash. Each tableau is represented by many different byte strings.
Nevertheless, the space of tableaus is still large, so the output range of the
hash still seems larger than 2256, meaning generic collision attacks should
still take at least 2128 steps.

6.8 Attacking message secrecy and identity secrecy
This section addresses some non-standard signature security goals that (like
the case with resistance to re-signing discussed in §6.6), users sometimes
intuitively expect, or even consciously want, what are considered from signa-

32



tures. Occasionally, protocols are designed that rely on these non-standard
features.

The non-standard goals are to resist non-standard signature attacks, in
which, the message or the signer’s identity is kept secret, and the attacker
attempt to deduce these secrets from the signature, or perhaps even the
public key. Normally, under standard definitions, signatures do not attempt
hide the message or the signer’s message. The purpose of signatures is to
prove to while that the signer signed a message, so keeping this secret is
counter to the overall purpose of signatures.

Users that want secret authentication instead of public authentication,
should use a different technology. They can use key exchange to agree a secret
key, and then apply symmetric message authentication. But even symmetric
message authentication is not guaranteed to hide the message or the identity
of the participants. To hide the message, it should be encrypted not just
authenticated. To hide the identities of the parties, further mitigations are
needed, and achieving full anonymity together with full authentication might
be require sophisticated measures.

Nontheless, users might assume that plactic signature can hide messages
or the signer’s identity. To a small extent, the hash function does help.

However the sorted content of the bytes in a signature, which is math-
ematically the commutative image of the plactic monoid elements, would
usually leak information about the message or the public key, since the con-
tent of the signature is simply a sum of the content of the hash of the message
with the content of the private key.

A partial fix to this problem would be to re-define the hash function as the
shuffle of the order of bytes of a fixed byte string. Under this hash function,
the content of the hashes is always the same, so the content would seem not
to reveal the message or the public key (or even the seed used to generate
the chekcer c).

Another attack strategy would be use divisibility. The attack can com-
pute a as the hash of the message. Upon obtaining a signature d, the attack
tries to detect if a divides on the d on the left, meaning to detect if there
exists b such that d = ab. This is a computational problem, the divisibility
problem.

If the divisibility problem is difficult, then perhaps a shuffle-based hash
would be effective in keeping a secret message hidden from an attacker with
a signature.

In the plactic monoid, the divisibility problem might be easier than the

33



division problem. For example, the erosion algorithm for division could be
used to solve the divisibility problem, and will generally be produce an error
as output when divisibility does not hold. Given d and a generated indepen-
dently, so a does not divide d, it might, on average, be easy to determine
that a does not divide d.

I have not tested the ability of erosion to detect non-divisibility. I expect
it would somewhat depend on how the non-divisible a and d are generated.
But I would also expect that would usually be much faster then division
itself.

Therefore, I expect that message secrecy will not be viable for plactic
signatures, as currently specified, or with a shuffling base hash. Message
randomziation stamps, thought, might help provide message secrecy, but
these have the cost of extra bandwidth.

For signer secrecy, the computational problem of detecting a common
factor b between signature d = ab and public key endpoint e = bc, could to
detect if d is a signature under e for some secret message (whose hash a is
completely unknown). Common factor detection in the plactic monoid might
be much easier than division.

6.9 Linking signatures through determinism
Plactic signatures are deterministic in the sense that the same message and
same private key always produces the same signature.

Such determinism introduces a linkability, which is another non-standard
attack on signatures. If Bob signs the same message twice with the same pri-
vate key, his signatures alone will reveal this fact, because the two signatures
will be identical.

Some partial fixes to this non-standard attack are to stamp or randomize
the message before signing, in a way that ensures the same message is never
signed twice. This could work fine unless the verifier does not does not
understand stamp and interpets the stamp as part of the message.

A Code size
More complicated cryptography is potentially more difficult to study. In par-
ticular, a security analysis might need more time for complicated algorithms,
informally due to what some call a larger “attack surface”. Quantifying

34



how complicated an algorithm is may thus be worth trying, despite objec-
tive quantification being a well-known difficulty (and absolute quantification
might be undecidable).

This section listed some simplisitic measurements for how complicated
plactic signature algorithm is. The measures use various relatively standard
software programming methods, such as the C language, the reference imple-
mentation, the word-count program wc, the C indentation program indent,
the sizes of compiled object files, and also a bit of code golfing.

Similar measurements other post-quantum cryptography (PQC) algo-
rithms might not yet be available. Other PQC algorithms might have ref-
erence implementations written with very different objectives. For example,
perhaps other PQC implementations devote more code to efficiency than to
interoperability, in order to demonstrate the practicality of the PQC algo-
rithm. Code size might then measure the implementability of the other PQC
algorithms, but might not be a fair measure of the intrinsic minimally in-
teroperable description of the other PQC algoirthm. With such a lack of
such measurement, it would not be inapproprate to compare the results here
about plactic signatures to other PQC algorithms, so no detailed comparison
is provided. Tentatively, at a high level, some of other the NIST PQC project
Round 3 signature algorithms reference implementations seems to use about
ten times as much code as plactic signatures. Code compression of these
reference impelementations might yet reduce the code size down to the levels
of plactic signatures.

Table 19 lists tsome C source files of reference implemntation (including
header files). The list includes files specific to plactic signatures, but excludes
files common to other signatures, such as random number generation and
hashing). There are under 70 lines and under 2800 bytes.

The source files in Table 19 use an unconventional highly packed cod-
ing style. A packed style underrates how complicated that implemented
algorithm is. The program indent can somewhat revert C code to a more
standardized, conventional spacing style, with the results shown in Table 20.
This expands the code size, but with fewer than 110 lines and 3000 bytes.

Compiled object file size, instead of source file size, is another way measure
how complicated the algorithm is. Table 21 list object sizes when the compiler
optimizes for small size. For comparison, similar object files for auxiliary files,
hashing and random number generatin, used by the reference implementation
are listed too.

File sign-golf-mono.c, listed in Table 22, is a preliminary effort of ap-

35



$--$ files="api.h lengths.h types.h plactic.h plactic-ref.c \
sign-defs.c sign.c"

$--$ wc -lcL $files
8 352 69 api.h
8 238 44 lengths.h
1 56 55 types.h
2 82 62 plactic.h

14 673 66 plactic-ref.c
14 533 72 sign-defs.c
21 825 69 sign.c
68 2759 72 total

Table 19: Source code size (packed)

$--$ fmt='%4d%5d%5d%5d %s\n' ; \
for file in $files; do
printf "$fmt" $(indent < $file | wc -lwcL ) $file
done ; \
printf "$fmt" $(cat $files | indent | wc -lwcL) total

8 58 373 78 api.h
10 45 242 42 lengths.h
2 9 56 30 types.h
2 19 89 69 plactic.h

28 177 780 72 plactic-ref.c
13 52 522 72 sign-defs.c
42 194 908 73 sign.c

107 554 2972 78 total

Table 20: Source code size, after automated indentation

36



$--$ gcc -c -Os plactic-ref.c keccak.c rng-util.c sign.c \
wc -c *.o

2784 keccak.o
2016 plactic-ref.o
1824 rng-util.o
3152 sign.o
9776 total

Table 21: Smaller object file sizes

plying code golf, meaning to make code small as possible. To be clear, code
golfing forgoes many of the usual programming goals, including efficiency,
source code clarity, and implementation security. The file sign-golf-mono.c
implements the plactic monoid multiplication and multiplicative signatures,
but does not implement the hash function or random number generation.

File sign-golf-mono.c was obtained by applying code compression to
files plactic-lowmem.c and sign.c. Most spacing was removed. Various
tricks with C operators and counters were used as part of an effort to decrease
the file size (byte count). The content of files lengths.h and sign-defs.c
were directly incorporated into sign-golf-mono.c, in order to make the file
self-contained, a single monolithic file that has all the code specific to plactic
signatures.

Beware that the code golf version drops the ability of the user choosing
an arbitrary name as the seed value for hashing to obtain the checker value
c, in order to avoid re-implementing strlen.

Preprocessing macros can be removed, and more conventional indentation
of the code can be restored, by applying a command line like this:

gcc -E sign-golf-mono.c | grep -v ^# | indent | cat -s

Such formatting arguably provides fairer versions to compare under code
golfing. Piping that output into a word count command line, such as wc -w,
might also be a fairer way of code golf scoring than a simpler byte count or
line count.

37



#include "keccak.h"
#include "rng.h"
#include "api.h"
#define S(a,b)(a^=b,b^=a,a^=b,1)
#define R(k,x)x[2]<x[k-1]&&x[0]<=x[k]&&S(x[1],x[(k+1)%3])
#define X(a,b)x(a##b,a,a##L,b,b##L)
#define H(t,m)FIPS202_SHAKE128(m,m##L,t,t##L)
u n[]=CRYPTO_ALGNAME;enum{kL=CRYPTO_SECRETKEYBYTES,
eL=CRYPTO_PUBLICKEYBYTES,dL=CRYPTO_BYTES,bL=(dL<eL?dL:eL)/2,
aL=dL-bL,cL=eL-bL,aeL=aL+eL,dcL=dL+cL,abL=dL,bcL=eL,nL=(sizeof n)-1};

void x(u*d,const u*a,int A,const u*b,int B){int i=A+B,j,k;for(;i--;)
d[i]=(i<A)?a[i]:b[i-A];for(i=1;i++<A+B;)for(j=i-2;d[j+1]<d[j]&&j--;)
for(k=2;k--;)for(;0<=j&&R(2-k,(d+j));j--);}

int crypto_sign_keypair(u*p,u*k){u*bc=p,*b=bc,*c=b+bL;
if(k!=p)randombytes(k,kL);H(b,k),H(c,n);X(b,c);return 0;}

int crypto_sign(u*s,ll*sL,const u*m,ll mL,const u*k){
u*ab=s,*a=ab,*b=a+aL;int i=0;H(a,m),H(b,k);X(a,b);
for(;i<mL;i++)s[dL+i]=m[i];*sL=dL+mL;return 0;}

int crypto_sign_open(u*m,ll*mL,const u*s,ll sL,const u*p){
u ae[aeL],*a=ae,dc[dcL],*c=dc+dL;const u*d=s,*e=p;int i=aeL;
if(0>(sL-=dL))return-4;s+=dL;H(a,s),H(c,n);X(a,e),X(d,c);
for(;i--;)if(ae[i]^dc[i])return-1;
for(;++i<sL;)m[i]=s[i];*mL=i;return 0;}

Table 22: File sign-golf-mono.c

38



B Some timing results
Example runs of a timing program for plactic signatures are listed in Ta-
bles 23 and 24. The examples were run on a day-to-day personal computer.

$--$ gcc plactic-ref.c keccak.c rng-util.c sign.c timer.c \
-o Timers/time-ref-O3 -O3

$--$ grep name /proc/cpuinfo | uniq
model name : Intel(R) Core(TM) i5-8350U CPU @ 1.70GHz

$--$ Timers/time-ref-O3
Key pair generation
Average 5.218701e+05 cycles, relative deviation 0.038044
Signing, under same key, same message: 'Time me!'
Average 4.879321e+05 cycles, relative deviation 0.031624
Signing, under new keys, new random 200-byte messages
Average 5.066483e+05 cycles, relative deviation 0.040254
Verifying same signature, under same key, of same message: 'Time me!'
Average 1.471657e+06 cycles, relative deviation 0.061509
Verifying signatures, under new keys, of new random 200-byte messages
Average 1.461324e+06 cycles, relative deviation 0.056194
Sucessfully verified all 3457 out of 3457 signatures.

Table 23: A timing run of the reference implementation

Beware that no extra effort towards accurate benchmarking were applied
in the results of Table 23 and Table 24.

Discrepancies from Table 23 and Table 24 have subsequently been found,
by running the tests under more stringent conditions.

Battery power operation approximately triples the average cycle counts.
Worse, the relative deviations are higher. Perhaps the system somehow re-
duces the cycle count when connected to external power, as a power man-
agement feature.

TurboBoost (over-clocking feature) being turned off approximately dou-
bles the cycle count. This seems to contradicts the naive understanding

39



$--$ Timers/time-search-O3
Key pair generation
Average 4.985541e+05 cycles, relative deviation 0.089669, (excluding max)
Signing, under same key, same message: 'Time me!'
Average 4.588053e+05 cycles, relative deviation 0.021693, (excluding max)
Signing, under new keys, new random 200-byte messages
Average 4.729537e+05 cycles, relative deviation 0.026023, (excluding max)
Verifying same signature, under same key, of same message: 'Time me!'
Average 1.223879e+06 cycles, relative deviation 0.014959, (excluding max)
Verifying signatures, under new keys, of new random 200-byte messages
Average 1.228747e+06 cycles, relative deviation 0.018206, (excluding max)
Sucessfully verified all 3457 out of 3457 signatures.
$--$ Timers/time-prep-O3
Key pair generation
Average 5.028088e+05 cycles, relative deviation 0.123387, (excluding max)
Signing, under same key, same message: 'Time me!'
Average 4.421923e+05 cycles, relative deviation 0.057066, (excluding max)
Signing, under new keys, new random 200-byte messages
Average 4.695113e+05 cycles, relative deviation 0.052737, (excluding max)
Verifying same signature, under same key, of same message: 'Time me!'
Average 9.760128e+05 cycles, relative deviation 0.039104, (excluding max)
Verifying signatures, under new keys, of new random 200-byte messages
Average 1.003544e+06 cycles, relative deviation 0.046278, (excluding max)
Sucessfully verified all 3457 out of 3457 signatures.
$--$ Timers/time-lowmem-O3
Key pair generation
Average 1.939491e+06 cycles, relative deviation 0.017501, (excluding max)
Signing, under same key, same message: 'Time me!'
Average 1.929069e+06 cycles, relative deviation 0.016375, (excluding max)
Signing, under new keys, new random 200-byte messages
Average 1.942828e+06 cycles, relative deviation 0.019002, (excluding max)
Verifying same signature, under same key, of same message: 'Time me!'
Average 7.465280e+06 cycles, relative deviation 0.047148, (excluding max)
Verifying signatures, under new keys, of new random 200-byte messages
Average 7.427583e+06 cycles, relative deviation 0.038609, (excluding max)
Sucessfully verified all 3457 out of 3457 signatures.
$--$ Timers/time-con-O3
Key pair generation
Average 1.132362e+07 cycles, relative deviation 0.006755, (excluding max)
Signing, under same key, same message: 'Time me!'
Average 1.128513e+07 cycles, relative deviation 0.005047, (excluding max)
Signing, under new keys, new random 200-byte messages
Average 1.133913e+07 cycles, relative deviation 0.017428, (excluding max)
Verifying same signature, under same key, of same message: 'Time me!'
Average 4.999261e+07 cycles, relative deviation 0.007808, (excluding max)
Verifying signatures, under new keys, of new random 200-byte messages
Average 5.003160e+07 cycles, relative deviation 0.008686, (excluding max)
Sucessfully verified all 3457 out of 3457 signatures.

Table 24: Other timing results

40



that over-clocking only changes the time per cycle, not the number of cycles.
Perhaps, TurboBoost does more than over-clocking?

Hyper-threading disabling seemed to have negligible effect on the cycle
counts.

File timer.c, listed in Table 25, is the latest version of the timing program
for plactic signatures that was used to generate these test results.

41



/* Time key generation, signing and verifying */
#include <stdio.h>
#include <string.h>
#include <time.h>
#include "rng.h"
#include "api.h"
int reps= 3456, cycles=1, all=0, test_no=5;
static ll ns (void) {

struct timespec t;
clock_gettime(CLOCK_REALTIME, &t);
return t.tv_sec * (ll)1e9 + t.tv_nsec ;}

static ll cy(void) {
unsigned int lo, hi;
__asm__ __volatile__ ("xorl %%eax,%%eax \n cpuid"

::: "%rax", "%rbx", "%rcx", "%rdx");
__asm__ __volatile__ ( "rdtsc" : "=a" (lo), "=d" (hi));
return (unsigned long long)hi << 32 | lo;}

static ll tm (void){return cycles? cy(): ns();}
static double sqrt (double x){double y=x; int i=200;

while(i--) y = (y+x/y)/2;
return y;}

static void report_stats (double sum, double sum2, double top){
double avg=(sum-top)/(reps-1),

dev=sqrt((sum2-top*top)/(reps-1)-avg*avg)/avg;
printf ("Average %e %s, relative deviation %f, (excl. max)\n",

avg, (cycles? "cycles": "nanoseconds"), dev);}
#define TIME(CODE,...) for(test_no,t=s2=s=0, i=reps; i--; ){\

__VA_ARGS__; \
if (!all) fprintf(stderr,"%d,""%d \r",test_no,i+1); \
o=tm(); CODE; n=tm(); \
d = n-o; s += d; s2 += d*d; t=(d>t)?d:t; \
if (all) fprintf(stderr,"%g %s",d, i?"":"\n");} \

test_no--; if (!all) fprintf(stderr," \r"); \
report_stats(s,s2,t);

static void time_sign_keypair (void){
u pk[CRYPTO_PUBLICKEYBYTES], sk[CRYPTO_SECRETKEYBYTES];
double o,n,d,s,s2,t; int i;
printf ("Key pair generation\n");
TIME(crypto_sign_keypair(pk,sk),);}

static void time_sign (void) {
u pk[CRYPTO_PUBLICKEYBYTES], sk[CRYPTO_SECRETKEYBYTES];
u m[200]="Time me!"; ll mlen=strlen((char *)m), smlen;
u sm[CRYPTO_BYTES+sizeof(m)];
double o,n,d,s,s2,t; int i;
printf("Signing, under same key, same message: '%s'\n",m);
crypto_sign_keypair(pk,sk);
TIME(crypto_sign(sm, &smlen, m, mlen, sk),);
mlen=sizeof(m);
printf("Signing, under new keys, new random %llu-byte messages\n",mlen);
TIME(crypto_sign(sm, &smlen, m, mlen, sk),

(crypto_sign_keypair(pk,sk),randombytes(m,mlen)));}
static void time_sign_open (void){

u pk[CRYPTO_PUBLICKEYBYTES], sk[CRYPTO_SECRETKEYBYTES];
u m[200]="Time me!"; ll mlen=strlen((char *)m), smlen;
u sm[CRYPTO_BYTES+sizeof(m)];
double o,n,d,s,s2,t; int i; int fail=0;
crypto_sign_keypair(pk,sk);
crypto_sign(sm, &smlen, m, mlen, sk);
printf("Verifying same signature, under same key, of same message: '%s'\n",m);
TIME(fail+=!!crypto_sign_open(m, &mlen, sm, smlen, pk),);
mlen=sizeof(m);
printf("Verifying signatures, under new keys, of new random %llu-byte messages\n",mlen);
TIME(fail+=!!crypto_sign_open(m, &mlen, sm, smlen, pk),

(crypto_sign_keypair(pk,sk),
randombytes(m,mlen),
crypto_sign(sm, &smlen, m, mlen, sk)));

if(fail){
printf("FAILURES: %d out of %d tries !!!!\n",fail, 2*reps);
fprintf(stderr,"\a\a\a\a");}

else printf("Sucessfully verified all %d out of %d signatures.\n", reps+1, reps+1);}
int main (int c, char**a){

if (2<=c) sscanf(a[1],"%d",&reps);
if (3<=c && 'n'==*a[2]) cycles=0;
if (4<=c) all=1;
time_sign_keypair(); time_sign(); time_sign_open();}

Table 25: File timer.c

42



C Experimental utilities
This section lists code for some experimental command-line utilities. The
utilities can generate key pairs, sign messages, and verify and open signed
messages. The utilities can run on some Linux systems.

C.1 A simplistic utility
File ps-util.c in Table 26 combines some standard C libraries with the
plactic signature library. The message to be signed is supplied as a command-
line argument. If the first argument is the name of a file, then the utility will
treat the named file as the message. Otherwise (if the argument is not the
name of a file), the argument is taken as the message to be signed. In a shell
environment, supplying a message with space as command-line argument can
be achieved by surrounding the argument with quotation marks.

File ps-util-help.c in Table 27 describes the user interface of the sim-
plistic C utility. The terse instructions are addressed to a user already quite
familiar signatures (especially plactic signatures) and already quite familar
with command-line utilities in general. The instructions intend to remind
the user about the utility’s interface map to the standard digital signature
interface. The instruction are too terse to teach what this interface to a
digital signature means. The terms lock and key are used instead of the
usual public key and secret key (or verification key and signing key)
to squeeze as much information into a single screen of text.

The utility’s interface intends for the user for to pipe the secret key into
and out of an encryption program, and deliberately avoids reading a secret
key directly from a file. For brevity, the one-line example of usage in the
help message pipes the secret key directly from key generation mode to the
signing mode. The secret key would then be lost forever.

Verification expects that the public key is stored in the file system, thus
presuming the file system can be trusted. If the public key was originally
conveyed to the user within a certificate, then the utility expects the user
securely extract the public key from the certificate and store it in a file.
This clearly does account for expiry or revocation of the public key, so a user
might want to do certificate validation as an extra step before every signature
verification.

43



#include <stdio.h>
#include <string.h>
#include "api.h"
#include "ps-util-help.c"
enum{MAX_LEN=10000000}; u buffer[MAX_LEN];
int key(void) {

u pk[CRYPTO_PUBLICKEYBYTES], sk[CRYPTO_SECRETKEYBYTES];
crypto_sign_keypair(pk,sk);
fwrite(pk,1,CRYPTO_PUBLICKEYBYTES,stderr);
fwrite(sk,1,CRYPTO_SECRETKEYBYTES,stdout); return 0;}

int sig(char *msg) {
u sk[CRYPTO_SECRETKEYBYTES], *sig=buffer;
ll sklen,slen,mlen;
if(0 == memcmp(msg,"--help",6)) {help(); return 6;}
sklen=fread(sk,1,CRYPTO_SECRETKEYBYTES,stdin);
if (sklen != CRYPTO_SECRETKEYBYTES )

return err(2,"Bad secret key");
if (fopen(msg,"r")) {

mlen=fread(sig+CRYPTO_BYTES,1,MAX_LEN-CRYPTO_BYTES,fopen(msg,"r"));
msg=sig+CRYPTO_BYTES;

} else mlen=strlen(msg);
crypto_sign(sig, &slen, (u*)msg, mlen, sk);
fwrite(sig,1,slen,stdout); return 0;}

int ver(char *pk_filename) {
u pk[CRYPTO_PUBLICKEYBYTES], *sig=buffer, *msg=sig+CRYPTO_BYTES;
ll pklen,mlen,slen;
if ( fopen(pk_filename, "r")) {

pklen=fread(pk,1,CRYPTO_PUBLICKEYBYTES,fopen(pk_filename,"r"));
if (CRYPTO_PUBLICKEYBYTES==pklen) {

slen=fread(sig,1,MAX_LEN,stdin);
if (slen >= CRYPTO_BYTES) {

if(0 == crypto_sign_open(msg, &mlen, sig, slen, pk)){
fwrite(msg,1,mlen,stdout); return 0;}

else return err(1,"Bad signature");}
else return err(3,"Bad signature");}

else return err(4,"Bad public key");}
else return err(5,"Bad public key");}

int main (int c, char **a){
return 1==c?key(): 2==c?sig(a[1]): 3==c?ver(a[1]): help();}

Table 26: File ps-util.c (key generation, signing, verifying)
44



int help (void){ printf(
"Usage summary:\n"
" ./psu [message-or-filename [open]]\n"
" task |args| arg1 | stdin | stdout | stderr\n"
" -----+----+-----------+-----------+-----------+-------\n"
" pair | 0 | | | key | lock\n"
" sign | 1 | 'message' | key | signature |\n"
" open | 2 | lock file | signature | message | alert\n"
" Example (artificial, single signature only):\n"
" ./psu 2>pk|./psu 'Hello World'|(sleep 0.1;./psu pk open)\n"
"Plactic signature experimental utility. Dan Brown, BlackBerry.\n"
); return 4;}

int err(int r, char*e){
fprintf(stderr, "psu: %s. Try ./psu --help\n", e); return r; }

Table 27: File ps-util-help.c (help function)

C.2 A more flexible utility (unfinished)
A previous version of this report included an implementation of plactic sig-
nature command-line with a very flexible interface.

Future versions of this report might include an improved version of that
flexible utility (perhaps supporting compression).

D Layered signatures
A signer can apply more than one signature to a message by using different
signature algorithms, as a defense against one of the signature algorithms
being weak.

The NIST API of a signed message rather than a signature, strongly
encourages that the application of multiple signature algorithms should be
done by nesting signed message within other signed messages. In effect, the
inner signatures of the nest are signed by the outer algorithms.

Intuitively, such nesting of signatures should be secure, provided that at
least one of the signature algorithms is secure. (Presumably a formal proof
of this already exists.)

45



A plactic signature public key is listed in Table 28 with standard base64
encoding.
$--$ base64 public # plactic signature public key
9/b179zb+crw/sjp/cDP6vy9yOn6s8Lj+bK92t/8n7nS2/aen8/Y7Jacvs/Tipuxw9H2iJaqtNDs
hZKfrbPg8vn/couboqzNze/xbYeUoau3yefp+muDipiotsjZ3uvranSFkae1wdXX2en8WGh/ipi0
wMHL1+jrVGd6fZSutbrA0uHpUmF4eoCVsLe8yNzh+FFgbnN+i6WuucHG1ff//0lTWmV4ipmipq+9
xef2+0BOVWJ1h5WXn5+2vuLl9DdGUFlug4WNmJ6uutDU3Ps1REtXbXWAhoqcq6+8wsfv/S5CSVZg
b3KDhpGjqbe+xeDs7Cw6SFVcZXGBhI+Wn6usu97i4/QrOUJMW2Bsf4ONlJidqrjM0OLz9yctPEVY
WWd0eoGHj5ymp7TA4fHx9SYsNkRNWGNlbn2Ah5mbpbCyu7zp7f4jKzE/RlBiZGdxeoSHipesrLOz
0eXl5+/+ICcuOEVKW2FmaXKAhYaUoKutrrzU2drg6u8eJCk1Q0dRVltkZXV1eYSFn5+ktrnDxcnb
4+v2HR4oMj5FSVVXYmNuc3R5e3+YorO3ucHI0tfi9PQWGSMxNzpERkxRX2lucHh5e3uVnKeytcPD
y9Lp7/D6FBggLDI3OUJFRUlaam9vc3Z5hpCdo6e3ubnGzdXW7O75ExcdJS0zNzo/QENGXmRlZm1y
eX6ElqWorrC3xsbO0djkERQbJCssMDI4PkJEUVtbW2BqcnWChZWZnq6uv8LDzM/R3/H0DxAXHR0d
JiksPD5CQk9TV11ia2uAhImVmqqqsLq9vcPN0d7q/g4OFBQcHCMnKjE7QEBDQ0xQVWRmcXSFhoiQ
pKeusrvAxsfT2Ors+/7+Bw0PExUWHiQkJSo8PkJCR0hNW2FhY2t6goOGkJSioqytu7/R09zh4fr/
BgsMEBMVGRsbJCQvOTs7RkdIUFVbX2ZrdnyAhIWWoKGksra5yszN09rl5+3y/AUHCgoQFBYYGRod
IywwOEVFRkpRUVpcXG9wf4GEjI2PmZ2utrm6xcXT09XW5ufyAwQGBw8REhIXGBgdHSYsNTo8Q0RE
RUxQXWNlZW52e4WGkpOXnJ6wur3HztTV5erq8fsCAwMGBwoLDRERERscHiAqLjQ0O0BAQkZISU9R
V2drb3aMjJKanJ2etLbAz9DZ3ufn9vYBAgICAwYHCwsNDxQUFBgYGyMvMDU7QUJDRUZGSUpSWmlv
dnZ2d3h9naS2ucPP19fk5fT19/f7/P39AAAAAAEBAQUKCgoLDBESExMUFBgcJCksLDU/QkVGR0tL
Tk9QUlVkbHB2dnmCiJKXl5qfpbe3usPP0Nbi6/H+/w==

Table 28: Plactic signature public key, base64

Similarly, a Dilithium2 public key is listed in Table 29 with standard
base64 encoding, which was generated using a command-line interface utility
downloaded from libpqcrypto.org.
$--$ base64 dilith-pk2 # Dilithium2 public key
lU3N5aD/xlzXpS/9hKWppZkIjXeByzVjk41SWn19zI9Y/q41ui+rHIVfMcsSjY/dNgZZmgSn3dil
6unTyOxz27P10ZoY485T4xqt2xQTXgAFBqpGOE58IO9EF25zy4jXyFqbxJt86kfSCiUH/62dYnCK
owvH9od6hRmORaZAkgc0FZ2H5SvS0Pn3BVjzDD460tSp2VNuFPN5RjCQI7rE7qgU436640c+4luT
7jlul2tdAUJ80ajd7QB+F4uJ99B8nhmKHfqLLQ70NsyhL5G5eYDxQ0UtJNCre63TwWY/pV7ydyqd
8+gwyT2YX2t8CTZ9Ny2OX+mUEaKjUhvEp+S4salxt54Bq4E14/C1pPqd7FWB72jRFVBaogoJAbsW
hvYymUE6CpdVDEGzVEvCATB1VCSAy2rvVBYwi+iF74LBGC2sLfmo8pKJH+xslajPt8iNkgEh+SHM
MvFAcwIutNdxbAVm0i2Nmi0O4uVW266LvxBk99xwjEgrhWTiNBlkUILcieINlWBwWZ9wr5BHslf+
RWTh8f+mHJCroYs6MoGoh15T/KHjqR1azfnxu3tbGSv7xqHzKUkAIn80UW98p94bjdKLRhNUQFub
Q0xrFvMRWq5T+qsnUEt8dKF6ViRnWgpTRrWqiEphRvJZwkG4uYmACAJ+NUNj18KW/I0nwn892f3K
PhZSBDkhPjOI/SRiPkPIBmye98tgipukUQP7ggZ/8iE9pLq5Y8ymjcWiTBrr+Cp457Y/dfhPf4C+
pByJaIrL77je0Q84rQ1QJIATonT9ysJXC3UxnYOP5bE87NQytz5uJ6Llw9ESDq9ZXqkhPq8RnnqG
zOSiEypn9Ieb6K2ZDht4GpD27id5O340Pjp1HKus+S/QBDTMyvXifz5psK1LKJkAo1FEIHxFA9Gq
SNG7cgGT1lK8wHc+RoLcJoXxoVTjeaZJdqFrrrZJsueHyKKCNe0M9vsN4Uil6YIYiTWSeEAo2g3Y
8jLFuZ07Yor5kRArJy2LaDJvlXpEey/9PjTrB3oQC5PWBtjOh0X6AK99Wgu5PyJ2Lb8N/FlDldc/
l7Irdsohq+IxGedFJTXXlA6+TVOAmaBYlcDcMxeHmHcrWEUF3oOykB1V97KNcKR+3cpx92SLfIIl
dN0fAvJVp/zJwao5GQAsGacO/CyT/UPGit+7bR2c/ZKN1/xEy9tm1MsP9hk2k0O6LMow948bKe+4
aej084OpUauwPZ6j/5Xh1hqH7nouuPYtI1hEG5KUaGT7pUi5xUsLpwRCZT5HCCrlho1ha/Kbfb0N
ABxl/iiSrsnG9ec3XRMYpkkfM4p0+V2/TmeNEPsbaN71pjHBcbGkRwrfsWgaGL8l20X++dkOSOPB
s8xD699pY/vIegZWtYmI4KPMa4q5soy/PXct4MO7RvScLjVb79qEQIYp2X6Q943lIxHci9xFSXeA
W+NSjOQxcuXfpueyW13gF7OWzyI1gUAj8A+eQqr65tGpJYpVJSluJ28fLCiTuKZiPguNUQn+1YYu
7GdypxiuuirJRURZVy+rOdtcAzvEnO5BYf3DWHx/htR6uXNOfH4v3B1CUpM=

Table 29: Dilithium public key, base64

A doubly-nested signed message is listed in Table 30 with base64 en-
coding. The outer signature algorithm is Dilithium2; the inner algorithm is
plactic signature.

Verification and opening of the doubly-nested signature can be achieved
by running the two utilities in a pipeline, as shown Table 31.

46



$--$ base64 hello2.signed.dilithium # Nested signed message
3wtkvEDW1OxMzUjAXQbcL+Q3Q35djBzFyOSNttto85pIrYm/Bv1u0MSRIhopsRA5CpH2gbYeaEKv
c/Q6ch6H43EnSXOQNE3Kf6f8YfWDVj91VidpdXUXRHdBwXULXLd4wOcEfFFK4KQESgQLRLDDYQse
tg9FoVMUn6/8+8rIeaCcB+/J0KIM7JBOEOl1Irgkgqjf8/s9Jc/58JybjfnZmBzQYQMduFJdLNUL
xm5c7HMGrGbAcFOeN+VkOlarY9BeOOyFAhJcI8EuKxSxQm4mwWQS5MbWb2wh2W6S7QGP1e5YuM9i
/CytbnnrlpgDqzawj2JaJ6ZuJ3h2griIR4p4Xs7B5Bx5Oo2o0+iU0UwZ8V4l71WWMNEGEzTkpEFO
xrcaequYyceafBTSaSOdPKfncXqQ5MlLnnjKLKrMwnOkOkfDiveseGIt5dNSVH8p+peOjSzayONZ
/6P12HWOXOc1F2JwIV1KlaNUa7/49YtWhiVoWO179L1HdLrjpTvPvX3Y20wrM7gy8WtqvKZnLuLl
Ir6OF+p4N7/B8xv/oKYOalmmB2R6d7+k90v0IyM+MjQSgCUBs9CRCh2zmPqLqUC5kpIrNNQKR63O
bPHIFr57nrznWf+m8m8IU0sstTh+F+V3C3AIBIdB26G2Hf8WsmohFBDKBKEjf9fvd+Ur1b1SKtCu
/eyafNzLx13JgZUcdYC5CJg8+2uzvxK9mtGrHWAtANZ+gcwUyL3QdQ9dNg/J85CfCu+v8EjZwo4t
Jd9Y9o0eg0swuMQpUJ4C7jt8wMN4VRVZVULb0LENjXRZQ5cF59RxTvWPw/w4E1VeUeXu/3D6D/za
cLMN/fISLS9lCpamYFJh7xf2nqUWW2rDNDdQcy6FF1J4ESoUoEJbFhtksY++eOmLuBnLnrGnqzy6
yvFNVd5U+50I4IlMtHxIy7HwaQifDGM0N0Y2tchUi3bvDvbujaSWRmpJ4ckQnhFRURQVMHgdgdeF
jDzIyKncrM3NpuJwJg486UGUHjtBlxR0iXqlqFfdJLxOwiZokIEG18N2OmwqH5nzkUZMGcSUluRj
SD40c4sxt1GcRsFpAvGpD5/8FO5P4V+mpWJaWQHPEvBfLzj1gvzyiC6PC/EoDo/aQUogpPnXHYLd
AHKAHgeKShOlNId4rovntyoOr+IGDAK/IIHj+jiux2BiDCYQ8981/2s79rdjCTt1r1P5JqltkiWa
kaQZqdZsas0DBv1e0MmvV/t6sAxGzmC6yMKKLHOWUGcJlt8W+W3JEfgcgdkKBa5Q36H0GUrQ4dog
rsMskckSD6/48IqaoToYqrJdiNuFd4IQJAjwtgxxywuekeMZKW+n8na+EL0K0Rq0ez+7kDDNCdNP
gZ0T2EK7BLdLQhUtU9Ffk/wwyfhMO8+0Pp+u9OnjDt7u4OGN8N0I7/X1Xl8hakWnVoRrGrWm1q7X
6HpYTLrGpGCT4jQpS3gDgjfuNUlikzoZPpLhhwsIuIA83ZrTrV67LLfLqYNyOyi3q3686kqEqECI
nkHmGmRGLbDVAurVkmItBwHIEID2SBeKdPJL48A0iKZ/afogwIj/i3M8p8tzIwkqkqCBjX7X6GTz
7DTPkstCuiz133QHTsOJsZ4Yc1xDyDUrpQdTeoVxMhwnUVlwlQVYPSfVc/uXHIDJpu2L2r4R/+zv
z8Yzej6j8F/n/3U4yByCzCUB1Q9QbXdkdkdQlLJFKf8G6W+QydW+Xe0OIGMEMqERmBeBz+4f7v5l
KnGnEtWuZe1auxtQvgGTmvmnmWmcVsZpavwaxK+mKwi7ghXCZx98awiRhxBKbnHmFgjNdtNsQdtS
si1VOGCFAykyfiLjkOF9Gt4GZKlAlvrerPDNH/JbHr8kOaeTc+vdPN7NkS4M48LEFphsgUd6qaWX
Ogf1cVDQpx9++uUuJfNSkAhpiJCGnSDWCYfYD4r9OGeNc9aZW/m4lUay9yV7XnZ1Zldx/MDJDzOF
t1F4WIABCRgSzo/i/FMhoRgSBX+08keFd7x3x5WNnNvIniQcSsK8ke4f6YeP+vSoHRPjMjE5qa+R
+p2wXw37fV112lW1RChJhMlb3bnVv9SUTU2zE0I8IRyxmhGrQjPjNDOUcUgah1D/RPdPK4AXA3h/
hDJHKMPuZ+t+NtZCZi33ZBlSljB70rInNzIgJQMIj6XuWNJlY142b6/c88pkh+V3WE4lgVYSkE2z
2DQ/lMhGiTXlEVMesLxlx1s9fv3h17RIP4v0ql716FVKUTYVZdlGzGrEsmTdSNalZsVlVitJF5J0
p5KQJgl6G6a3YTHCUyM87juWvmPmrpfuegoQHAHBIAglhlAcsg0i27PB4hosOIq9otjTkIAJCZL+
YOkP0LZ3b3tkSJqApCXVTVLdCnJ+IOenmnGqGYHssssuessEu0yr6z253imbq7G5g7A6B6uar6n6
mj7vKPSOYlR8RcXvY+A8BlJr3rjmvjsAvAM5JCk9klSADQXYHpi6ganSAZsbsMdx8RsXdL8C9ytV
7iPkPtgH73zwjMhYhYyuti9r+4dNgd0UTWYMZMYZPTPQM+PxOBqPGT5OXGB8hpqhuMrLzOT6HCMk
RlRidpemqLLV2f4qK19sfYGEi5635ebv+h0kKD1xdnd6gZGrz9js7/P8AAAAAAAAAAAAAAAAAAAA
AAAAAAAPHSs8CBgCBUwGwUAKsEQoEQglCKCMIrAACKADAYQSFMFAEAYn4ocSv/qyCf705+T54ezY
69fY1dfC1Pq+0/S50OC3ytqzwdnp/ZS70+X3kbnO4vH7kLHM1O/6/Y+uydHg5O+MnsDQ2ODs/4KW
mM/R2Ojyf5WXwszU5PF5jZS1y9Pj8Pxqh42yvNDe7vFnf4KvtMHZ6ez6/19+fpaoqcLf3/f7XWV0
jJeku9Tc8/P/TVhtd3yetMzY3fL7SVRsdHmLobS5wtrtR1Brb3eEk6CusMza4PxBTmRlb4KOlKis
urrC9DRMYWFodomSlaO4uMHmMEhXX2NxeYqKoK+1utzq9ixGTVRebXB4fJ+fs7PDytsnRUxTVl5p
c3mPmaays8HQ5vz+Iz9JTk5ZZW5zi42fprC+w+Ln/SI4Qk1NVFtscYmKm56rvb2+z+fp/Bw2QEpL
UlZla4CBmZygtbW5ucDZ2tr6GzQ6QElJU1VmeHuKjpqbra2xsb3Cwt/tGiMyP0ZHT1NYX3eAgoSS
nKOjpqy3vdLj8/kXIjA6REZOUVRcam6AgYqWlp+iqbO2x9rq7/kVICktNUNGS1BSWGVoe3uGiIqb
n6i0vdjb6fATHSQrLzpARktOUmRnaHmChIeSmJ+qtcPP4On19vwRHCMmKTg7QEhLS1VcZW1yeYGP
kZShp7PByNPn7Oz2DxQeIScqMDA8RklOUVpbYXR/g4WImJmlvsDR2d7p7/L5+g4RHR4kJyguNjc4
OkJOWl9hc3h7fYCLi6uwwcjNz9DV6+sNEBgdICMnKywtLTI5RlJWWGJudXp6foONoq60tbrJzdnp
8f8JDRcYHSIlKCgsLCw2PUhTV1xlbnJ4eoCKip+frre8yMvX4eH4CAwVFRYgIiUmJycrMDxERVBV
WVtjbW91hYeKlJWXub3Bxtfc3OL7BwkUFBUYGBoeHiYpLjVAQERGSVZgYGdscXF0g4WKkaavtrq7
vsjr/wYIDRIUFhYWGR0jJCcrLD9AQkZHTFVgYmRnboGEhoaVo66vsLLH0ODi7O/8BAYIDhATExQW
GR0jIyUoMTU4QkNFTVhZW2VpdXV/hIeWnp+rq7O3vNLV5fQDBAcHCw4PEBEWGBsdHSYrLTI6PkRF
SlBWYWJkbnJzeYCDh4+YnKystMDF3uns+wIDAwYICA4OEBERFBccICQkKSw3P0JCSUxRUVhbW2Nl
bnR6fZSYmZ2srbO+wsPQ5fcBAQICBAcKCgoLEBETFBQdIyQqMjM3Nzo+QEBCRUZGSU9XW2lqe4GN
j5yfpqepqri8xdTU6Pb/AAAAAAMFBgcHCg8QERERFRYXGRscHR0kLDE5OzxDQ0NFVVpbX295eXuA
hYWGh5egp6eurrm5u8PFyczN0dLZ5+1IZWxsbyBXb3JsZAo=

Table 30: Nested signature, outer layer is Dilithium2, inner plactic

$--$ pq-open-dilithium2 < hello2.signed.dilithium 4<dilith-pk | ./psu public open
Hello World

Table 31: Verification and opening of the nested signed message

47



Both Dilithium2 and plactic signature place the signature as a prefix at
the beginning of the signed message.

E Tableau compression (to be completed)
In some cases, sending a byte might cost approximately as much as run-
ning a 1000 cycles on a device. Therefore, it might be worth compressing
signatures, and public keys. In the case of plactic signatures, the canonical
representation, row readings of tableaus, are highly redundant.

An ideal compression algorithm might be capable a 1000-byte row reading
to less than 500 bytes.

The ad hoc proof-of-concept compression algorithm, implemented below,
seems ready to compress 1000-byte tableaus to an average of approximately
570-ish bytes, because it outputs 1520-ish octal characters (0-7). The com-
pressed lengths vary with the tableau, which does not fit well the NIST API,
so padding might be necessary to meet a requirement for fixed lengths.
/* Ad hoc octal-based tableau (de)compression */

/* This works... Compressed a 1000-byte tableau down to 1500-ish octal
digits (0-7), which on is 570-ish bytes. Pretty good for such an
ad hoc implementation. */

#include <stdio.h>
#define max(a,b) ((a)>(b)?(a):(b))
enum {rowmark=10};
typedef unsigned char u;

// solo
void allocate_tableau(u**t,u*T,int l){int i;

for (t[0]=T, i=1; i<256; i++)
t[i] = t[i-1] + l/i ; }

// pair of near-opposites
void set_tableau(u**t,int*r,u*s,int l){ int i,j,k;

for (i=k=0; k<l-1; k++)
i+=s[k]>s[k+1];

for (j=k=0; t[i][j]=s[k], r[i]++, k<l-1; k++)
if (s[k] > s[k+1]) i--, j=0; else j++; }

void put_tableau(u**t,int*r){ int i,j;
for(i=255;0<=i;i--)

for(j=0; j<r[i]; j++)
putchar(t[i][j]);}

u min(u**t, int i, int j){return
max(j>0? t[i ][j-1] : 0,

i>0? t[i-1][j ]+1: 0);}

// pair of near-opposites
int diff_tableau(int*d, u**t, int*r) {int i,j,k;

for (k=i=0; r[i]>0; i++, d[k++]=-1)
for (j=0; j<r[i]; j++)

d[k++] = t[i][j] - min(t,i,j);
d[k++]=-1;
return k;}

void sum_tableau(u**t, int*r, int*d) {int i,j,k;
for (k=i=0; d[k]>=0; i++, k++)

for (j=0; d[k]>=0; j++, r[i]++)
t[i][j] = d[k++] + min(t,i,j);}

48



// pair of near-opposites
void mark_rows (int*d, int k) { int i;

for (i=0; i<k; i++) {
if (d[i] >= rowmark) d[i]++;
if (d[i] == -1) d[i]=rowmark;}}

int unmark_rows (int *d, int k) { int i,l;
for (l=0,i=0; i<k; i++) {

if (d[i] == rowmark) d[i]=-1, l++;
if (d[i] >= rowmark) d[i]--; }

return l-1;}

// pair of near-opposites
void putoctal (int o) { printf("%o", o); }
int getoctal (void) { int o;

do {
o=getchar();
if (EOF==o) break; }

while (o<'0' || o>'7'); // allow for newlines, comments???
return o-'0'; }

// pair of near-opposites
void encode_octal (int *d) { int i,k;

for (i=0; i<k ; i++) {
if (d[i]<06)

putoctal(d[i]);
else {

d[i] -= 06;
if (d[i] < 016)

putoctal(060 + d[i]);
else {

d[i] -= 016 ;
if (d[i] < 0160)

putoctal( 07600 + d[i]);
else {

d[i] -= 0160;
if (d[i]< 0160)

putoctal(077600 + d[i]);
else {

d[i] -= 0160;
putoctal(0777600 + d[i]);

}
}

}
}

}
}
int decode_octal (int*d) {int i,j;

for (j=i=0; ; i++) {
d[i]=getoctal();
if (d[i]<0)

break;
if (d[i]<06)

continue;
else {

d[i] *= 010;
d[i] += getoctal();
if (d[i] < 076){

d[i] -= 060;
d[i] += 06; }

else {
d[i] *= 010 ;
d[i] += getoctal();
d[i] *= 010;
d[i] += getoctal();
if (d[i] < 07760) {

d[i] -= 07600;
d[i] += 06 + 016;

}
else {

d[i] *= 010 ;
d[i] += getoctal();
if (d[i] < 077760) {

d[i] -= 077600;
d[i] += 06 + 016 + 0160;

}
else {

49



d[i] *= 010;
d[i] += getoctal();
d[i] -= 0777600;
d[i] += 06 + 016 + 0160 + 0160;

}
}

}
}

}
return i;

}

void to_octal (void) {
int i, j, k, l, r[256]={0}, d[2000];
u s[1000], T[6125], *t[256]={T};
allocate_tableau(t,T,1000);
l = fread(s,1,1000,stdin);
set_tableau(t,r,s,l);
k=diff_tableau(d,t,r);
mark_rows(d,k);
encode_octal(d); }

void from_octal(void) {
int i, j, k, l, d[2000], r[256]={0};
u s[1000], T[6125], *t[256]={T};
allocate_tableau(t,T,1000);
k = decode_octal(d);
l = unmark_rows(d,k);
sum_tableau(t,r,d);
put_tableau(t,r); }

int main (int argc, char**args )
{

if ((argc-1) > 0) from_octal(); else to_octal();
return 0;

}

50



F Generality of multiplicative signatures
Multiplicative signatures are arguably quite general. To informally illustrate
this generality, consider ECDSA.

An ECDSA signature of the form [R, s] is valid for message h and public
key Q = uG if

hG = sR − rQ (12)
where r is a conversion of elliptic curve point R to an integer. (Strictly, an
ECDSA signature is [r, s], but the point R can be recovered from r in a few
trials.) Let:

[a, b, c, d, e] = [h, 1/u, Q, [R, s], G]. (13)
Reconstruct multiplication operations acting on variables a, b, c, d, e such that
Q = uG is equivalent to e = bc, while ae represents hG and dc represents
sR − rQ.

To get a full semigroup, add an artificial zero element 0 in addition to
those of the forms a, b, c, d, e. Then define all other multiplication to take the
value 0. In other words, define multiplication as the operations matching the
ECDSA operations as explained in the previous paragraph, and 0 otherwise.
Associativity of this multiplication is ensured by the nature of the verification
equation, or by the product of any other three elements being 0.

In the case of ECDSA, the value of e, representing G, is chosen before the
value c, representing Q. This situation corresponds to the secret key b being
an invertible element of the semigroup. In other semigroups, such as the
plactic monoid, the secret keys are not invertible, so value c must be chosen
before e. In ECDSA, the checker c is signer-specifier, while the endpoint e is
system-wide, but that is only possible for multiplicative signatures in which
the secret keys b are easily invertible.

A signature scheme is separable if the verification consists comparing
two data values, and the public key is effectively two values, one determined
by the other via an efficient trapdoor. For example, ECDSA is separable,
and multiplicative signature are separable. It seems that several separable
signature schemes can be considered instances of multiplicative signatures.

References
[Bro21] Daniel R. L. Brown. Plactic key agreement. Cryptology ePrint

Archive, Report 2021/625, 2021. https://eprint.iacr.org/2021/

51

https://eprint.iacr.org/2021/625
https://eprint.iacr.org/2021/625


625. 1, 2.2, 6.1, 6.2

[RS93] Muhammad Rabi and Alan T. Sherman. Associative one-way func-
tions: A new paradigm for secret-key agreement and digital sig-
natures. Technical Report CS-TR-3183/UMIACS-TR-93-124, Uni-
versity of Maryland, 1993. https://citeseerx.ist.psu.edu/
viewdoc/versions?doi=10.1.1.118.6837. 1, 2

52

https://eprint.iacr.org/2021/625
https://citeseerx.ist.psu.edu/viewdoc/versions?doi=10.1.1.118.6837
https://citeseerx.ist.psu.edu/viewdoc/versions?doi=10.1.1.118.6837

	1 Introduction
	2 Multiplicative signatures
	2.1 Multiplicative semigroups: a brief review
	2.2 The plactic monoid
	2.3 Public keys
	2.4 Digital signatures
	2.5 Secret keys
	2.6 Signing
	2.7 Key and hash spaces

	3 Hashed multiplicative signatures
	3.1 Choice of hash function
	3.2 Full-domain (embedded) hashing
	3.3 Usability benefits of hashing

	4 Suggested parameters
	4.1 Recommended parameters: ps8000
	4.2 Optional: strict row reading mode
	4.3 Other parameters (to be completed)

	5 Implementations of plactic signatures
	5.1 Common header files
	5.2 Implementing plactic monoid multiplication
	5.2.1 A header file for plactic monoid multiplication
	5.2.2 A reference implementation
	5.2.3 Binary searching in rows
	5.2.4 Sped-up plactic multiplication 
	5.2.5 Low-memory plactic multiplication
	5.2.6 Towards constant-time multiplication
	5.2.7 Jeu de Taquin (to be completed)

	5.3 Signing implementation
	5.4 Auxiliary implementations

	6 Plactic signature security
	6.1 Divide to find a secret key from public key
	6.2 Left division to find a secret key from a signature
	6.3 Cross-multiply to forge unhashed signatures
	6.4 Dividing a signcheck by the endpoint
	6.5 Factor to forge unhashed signatures
	6.6 Re-divide to re-sign a message
	6.6.1 Re-signing details
	6.6.2 Re-dividing details

	6.7 Attacking the hash function
	6.8 Attacking message secrecy and identity secrecy
	6.9 Linking signatures through determinism

	A Code size
	B Some timing results
	C Experimental utilities
	C.1 A simplistic utility
	C.2 A more flexible utility (unfinished)

	D Layered signatures
	E Tableau compression (to be completed)
	F Generality of multiplicative signatures

