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Abstract

We propose OmniLytics, a blockchain-based secure data trad-
ing marketplace for machine learning applications. Utilizing
OmniLytics, many distributed data owners can contribute
their private data to collectively train an ML model requested
by some model owners, and receive compensation for data
contribution. OmniLytics enables such model training while
simultaneously providing 1) model security against curious
data owners; 2) data security against the curious model and
data owners; 3) resilience to malicious data owners who pro-
vide faulty results to poison model training; and 4) resilience
to malicious model owners who intend to evade payment. Om-
niLytics is implemented as a blockchain smart contract to
guarantee the atomicity of payment. In OmniLytics, a model
owner splits its model into the private and public parts and
publishes the public part on the contract. Through the exe-
cution of the contract, the participating data owners securely
aggregate their locally trained models to update the model
owner’s public model and receive reimbursement through the
contract. We implement a working prototype of OmniLytics
on Ethereum blockchain and perform extensive experiments
to measure its gas cost, execution time, and model quality
under various parameter combinations. For training a CNN on
the MNIST dataset, the MO is able to boost its model accu-
racy from 62% to 83% within 500ms in blockchain processing
time.This demonstrates the effectiveness of OmniLytics for
practical deployment.

Introduction
With the rapid development of sensing, processing, and stor-
age capabilities of computing devices (e.g., smartphones and
IoT devices), the collection and storage of data has been in-
creasingly convenient and cost-effective (Sheng et al. 2013;
Cornet and Holden 2018). On the other hand, crowdsourc-
ing big data has been shown to be extremely effective in
improving the performance of various fields such as health-
care, smart city, and recommender systems (Raghupathi and
Raghupathi 2014; Wang, Kung, and Byrd 2018; Hashem et al.
2016; Al Nuaimi et al. 2015; Yin et al. 2013). The abundant
supply of data stored locally at individual nodes and the large
demands from data-intensive applications incentivise the de-
velopment of a data market on which data owners can easily
trade the rights of using their data with interested consumers
for monetary returns.

Conventionally, a data market is often operated as a cen-

tralized service platform that collects data from data owners
and sells raw or processed data to the consumers (Mišura and
Žagar 2016; Krishnamachari et al. 2018; Niu et al. 2018a).
This approach leaves the platform as a single point of secu-
rity vulnerability for the data market, and corruption on the
platform servers may lead to severe security issues includ-
ing leakage of private data, faulty computation results, and
manipulation of data price. A number of recent works have
proposed to leverage technologies of decentralized systems
like blockchains and smart contracts to tackle the weakness of
the centralized implementation (see, e.g., (Özyilmaz, Doğan,
and Yurdakul 2018; Duan et al. 2019; Ramachandran, Rad-
hakrishnan, and Krishnamachari 2018; Koutsos et al. 2020)).

To further improve data security, more advanced crypto-
graphic techniques like homomorphic and functional encryp-
tion have been utilized to generate analytics over the raw data
for consumers to purchase without revealing the data them-
selves (Duan et al. 2019; Niu et al. 2018b,a; Koutsos et al.
2020). However, these approaches are limited in the follow-
ing three aspects: 1) data owners upload the encrypted raw
data on the blockchain, which leads to permanent loss of the
data ownership to any adversarial party with the decryption
key; 2) the available analytics are limited to simple operations
like linear combinations; 3) they still require a (trusted or
untrusted) third party other than the data owner and consumer
acting like a broker or service provider to maintain the utility
and security of trading session.

In this paper, our goal is to build a secure and broker-free
data market for general machine learning applications. Par-
ticularly, a model owner would like to crowdsource training
data from interested data owners through the data market for
improving the quality of its ML models (e.g., a deep neural
network for image classification). Moreover, we enforce the
following privacy and security requirements: Model privacy:
parameters of the trained ML model are (mostly) kept private
to the model owner itself and are not revealed to other par-
ties; Data privacy: a model owner learns nothing about data
owners’ private data other than the learnt model; Byzantine
resistance: 1) robust to malicious data owners who intention-
ally provide incorrect computation results, and 2) robust to
malicious model owners who try to evade payment.

Our main contribution is the construction of a novel
blockchain-based data market named OmniLytics, which
is the first implementation of an Ethereum smart con-
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Figure 1: An overview of the operation of the proposed Om-
niLytics data market. The model owner splits its initial model
into a private model W s and a public model W p, updates
the public model through the data market using data owners’
private data, and combines the updated public model with the
old private model and performs local model adaptation with
its private data. The smart contract implementing the data
market reimburses the honest data owners who contribute to
updating public model, and rejects erroneous results from
malicious data owners.

tract (ETH 2021) that simultaneously satisfies all the above
security requirements. As shown in Figure 1, during a trad-
ing session, the model owner splits its initial model into
a private part that contains most of the model parameters,
and a public part with a much smaller size, and deploys a
smart contract only containing the public model. This model
splitting helps to protect the privacy of model parameters,
and to reduce the computation complexity hence the gas
cost of running the contract. Upon observing the contract,
interested data owners retrieve the public model, update the
model locally using their private data, and upload the updated
models back to the contract for further aggregation. During
this process, the data owners hide their local models with
pair-wise masks generated according to the secure aggrega-
tion protocol (Bonawitz et al. 2017) to further protect from
data leakage. Moreover, OmniLytics implements the multi-
Krum algorithm (Blanchard et al. 2017a,b) to remove faulty
computation results from malicious data owners. Finally, the
model owner fetches the updated public model, concatenates
it with its private model, and continues to train the combined
model with the private data. The training reward is provided
by the model owner when deploying the contract and is auto-
matically distributed to honest data owners by the contract,
preventing malicious model owners from evading payments
after obtaining the trained model.

We implement an Ethereum smart contract SecModelUp-
date and the off-chain application of the proposed Omni-
Lytics data market. We conduct extensive experiments to
measure the gas cost, execution time of SecModelUpdate,
and trained model accuracy under various combinations of
system and design parameters. For instance, for a training
task on the MNIST dataset, the MO is able to boost its model
accuracy from 62% to 83% using OmniLytics, with less than
500ms in blockchain processing time.

Related works

Secure data markets. Traditional data markets require full
trust on the centralized service platform, which leaves the
platform a single point of failure. To resolve this issue,
implementing data market over decentralized systems like
blockchains has been recently proposed (Özyilmaz, Doğan,
and Yurdakul 2018; Ramachandran, Radhakrishnan, and Kr-
ishnamachari 2018; Banerjee and Ruj 2018; Duan et al. 2019;
Koutsos et al. 2020). In these implementations, encrypted
data are uploaded to the blockchain, on which a smart con-
tract with a funding deposit from the consumer is executed
automatically, guaranteeing the atomicity of the payment.
To further enhance the data privacy and robustness against
malicious behaviors, more advanced techniques like homo-
morphic encryption, functional encryption, and differential
privacy have been utilized to securely generate simple ana-
lytics over the raw data for sale (Duan et al. 2019; Niu et al.
2018b; Koutsos et al. 2020), and zero-knowledge proofs and
trusted hardware like Intel SGX have been used to guarantee
the correctness of the computations (Duan et al. 2019; Niu
et al. 2018a; Koutsos et al. 2020).

Federated learning on blockchains. Federated learning
(FL) (McMahan et al. 2017) has recently emerged as a
privacy-preserving framework for distributed ML, where a
set of clients, instead of directly uploading their private data
to the cloud, upload the gradients computed from the data,
which are aggregated at a cloud server to update a global
model. In addition, techniques of masking local gradients
like secure aggregation (Bonawitz et al. 2017; Bell et al.
2020; So, Güler, and Avestimehr 2021) and differential pri-
vacy (Geyer, Klein, and Nabi 2017; Wei et al. 2020) have
been developed for FL to further protect data privacy.

Recently, it has been proposed to execute FL tasks on
blockchains to combat server corruption and facilitate a more
fair and transparent reward distribution (see, e.g., (Zhao et al.
2020; Liu et al. 2020; Kim et al. 2019; Shayan et al. 2020;
Ma et al. 2020)). In (Zhao et al. 2020), an FL on blockchain
system is designed for the smart appliance manufactures to
learn a ML model from customers’ data. Differential privacy
techniques are applied to protect data privacy. One major
weakness of the design in (Zhao et al. 2020) is that the learnt
model of the manufacturer is completely revealed to pub-
lic, which may not be desirable for the model owner who
pays for training. In (Lyu et al. 2020), an FL framework over
blockchain named FPPDL was proposed to facilitate fair and
privacy-preserving machine learning. While both FPPDL and
the proposed OmniLytics data market protect data privacy
via encrypting model updates, they differ drastically in the
scope of applicability. In FPPDL, a data owner is co-located
with a blockchain miner such that a learning participant has
to perform local training and block verification. This restricts
FPPDL to permissioned blockchains. In contrast, OmniLyt-
ics is designed as a plug-and-play smart contract on top of
any blockchain platform, without needing to modify miners’
operations. This allows OmniLytics to be easily deployed on
permissionless public blockchains like Ethereum.



Secure Data Market for Decentralized
Machine Learning

We consider a network of many compute nodes (e.g., mobile
devices like smartphones, or institutions like hospitals, banks,
and companies), each of which has some local data storage
and processing power. Some nodes would like to obtain a
machine learning model (e.g., to predict certain disease from
patients’ exam data). We call such node the model owner,
denoted by MO. However, as the local data possessed by
MO may not be sufficient to train a good model with high
accuracy, the MO intends to crowdsource data from other
nodes to improve the model quality. In return, the MO com-
pensates the nodes who contribute to the model training with
their local private data. We call these nodes as data owners,
denoted by DOs.

We consider a threat model where neither the MO nor the
DOs can be trusted, i.e., they may attempt to recover the
private data of other participants, deviate from the agreed
data trading protocol, or intentionally evade payments. The
goal of this paper is to design a secure data market that meets
the following specific security requirements:

• Model privacy. The MO would like to keep its (complete)
model secret from the DOs and the data market, because
1) the MO pays to train the model, which may provide it
with competitive advantage over other parties; and 2) the
model itself may be pre-trained using MO’s private data
that contains confidential information about MO.

• Data privacy. A DO would like to keep its private data
secret from the MO and other DOs.

• Resistance to Byzantine data owners. The data market
should protect the quality of the trained model from be-
ing undermined by malicious DOs, who might arbitrarily
deviate from the trading protocol, and supply faulty results.

• Resistance to Byzantine model owner. The data market
should restrain malicious MO from escaping the payment,
and enforce that honest DOs who faithfully follow the
protocol are properly compensated.

Secure Federated Machine Learning
In this section we review the federated learning (FL) frame-
work (McMahan et al. 2017) and some of its security-
enhancing techniques, which constitute the starting point
towards our design of a secure data market.

Federated learning framework
A FL network consists of a central server and a group
of N clients. Each client k locally has a dataset Sk =
{(x1,y1), . . . , (xMk

,yMk
)} of Mk data samples. Each data

sample (xi,yi) consists of an input vector xi ∈ Rd and
its label yi ∈ Rp for some input dimension d and out-
put dimension p. The server aims to train a global model
W (e.g., a deep neural network) to minimize the objec-
tive function L(W ) =

∑N
k=1 pkLk(W ). Here Lk(W ) =

1
Mk

∑Mk

i=1 `(W ; (xi,yi)) is the empirical loss at client k for
some loss function `. The weight pk , Mk∑N

k=1 Mk
.

The server collaborates with the clients to train the global
model using the FedAvg algorithm (McMahan et al. 2017)
over multiple iterations. To start with, the server broadcasts an
initial model W (0) to all clients. In iteration t, each client k
first splits its local dataset Sk into batches of sizeB, and start-
ing from the global model received in last iteration W (t−1),
runs for E local epochs batched-gradient descent through Sk
to obtain local model W (t)

k , and sends it to the server. The
server aggregates the received gradients from the N clients
and updates the global model as W (t) =

∑N
k=1 pkW

(t)
k .

Secure model aggregation
While the FL framework was designed to protect the pri-
vacy of clients’ data by having them send merely the models
(rather than the actual data) to the server, it was shown in
(Zhu and Han 2020; Wang et al. 2019; Geiping et al. 2020)
that the server can recover private data Sk from the local
model W (t)

k and the global model W (t−1) via model inver-
sion attacks. To prevent such data leakage, the secure model
aggregation protocol was proposed in (Bonawitz et al. 2017)
to mask local models before uploading to the server. Specifi-
cally, each client k sends a masked model W̃k = Wk +Zk

with some random mask Zk to the server. The secure aggre-
gation protocol guarantees 1) server cannot deduce any infor-
mation about each individual Wk and hence the private data
Sk; and 2) the masks are generated such that

∑N
k=1 Zk = 0,

and server can exactly recover the aggregation of the local
model weights

∑N
k=1 W̃k =

∑N
k=1 Wk.

Byzantine-resilient federated learning
In FL, malicious clients can manipulate the models uploaded
to the server to poison the global model (see, e.g., (Bhagoji
et al. 2019; Fang et al. 2020)), or plant backdoors in the
global model (see, e.g., (Bagdasaryan et al. 2020; Wang et al.
2020)). Current strategies to defend Byzantine clients mainly
follow distributed machine learning protocols designed under
adversarial settings (Blanchard et al. 2017a; Chen, Su, and
Xu 2017; Yin et al. 2018; Yang et al. 2019; Li et al. 2019;
Ghosh et al. 2020; Data and Diggavi 2021). The main idea
is to take advantage of statistical similarities among models
from honest clients, and remove or suppress the adversarial
effects introduced by faulty results from Byzantine clients.
For instance the Krum algorithm, proposed in (Blanchard
et al. 2017a), detects the gradient vectors that have large `2-
distances from the others as being from adversarial clients,
and removes them from the aggregation process.

The Proposed Secure Data Market
While the above techniques can help to protect DOs’ data
privacy, and defend against Byzantine DOs in the federated
learning framework, they are insufficient to meet our security
requirements of keeping model secret from the DOs, and
robustness against malicious MO, for a data market.

We propose to resolve these issues via adopting a private-
public model splitting paradigm at MO, and leveraging
blockchain technologies to securely collect and reimburse
DOs’ contributions to train the public model. Specifically,
we design OmniLytics, an end-to-end solution to provide a



transparent, fair, yet private and secure data market. In the
rest of the section we describe in detail the OmniLytics data
market, which includes the local computations of the MO
and DOs, the design of a smart contract implementing secure
model update and reward distribution, and the interactions
between the model and data owners with the contract.

Private-public model splitting
We consider the scenario where the MO starts with some
initial model W . In practice, this is often obtained by the MO
through adapting a pre-trained foundation model (e.g., BERT
for language understanding or DALL-E for image generation)
to its local task and data (Bommasani et al. 2021).

To improve the accuracy of the initial model W , the
MO pays the DOs to further refine the model using their
local private data. Following the local-global model split-
ting paradigm for federated learning (Liang et al. 2020), the
MO first splits the initial model W = (W s,W p) into a
private model W s and a public model W p. The splitting
is performed such that the public model is much smaller
than the private one. For instance, the public model could
be the last few layers of a large DNN. After the splitting,
the MO submits the public model W p to the data market to
be updated by the participating DOs using their private data.
Once the public model is updated over the data market and
returned to the MO, the MO concatenates the updated public
model and the old private model, and performs another round
of model adaptation using local data, improving the model
accuracy. Subsequently, as shown in Figure 1, the MO can
repeat this pipeline where public model is first updated via
the data market, and can then be combined with the private
model for local adaptation until no significant improvement
is observed on model accuracy.

The approach of splitting MO’s model into private and
public parts provides the following salient benefits:

• Model privacy: most model parameters of the MO are
contained in the private model W s, and kept secret from
the data market and the DOs;

• Computation and communication complexities: as only a
small number of model parameters in the public model
W p need to be updated and communicated over the data
market, the computation and communication costs at the
market and the DOs are significantly smaller, compared
with operating over the entire model.

We next describe our design of a smart contract to execute
the secure update of the public model W p. Since the contract
exclusively deals with the public model, for ease of exposi-
tion, we will drop the superscript of W p, and simply refer to
the public model as the model.

Smart contract design for secure model update
The proposed OmniLytics data market implements the model
update and reward distribution through a smart contract
named SecModelUpdate, over an underlying blockchain
(e.g., Ethereum). The MO and the DOs are users with dedi-
cated addresses who submit transactions to change the state
of SecModelUpdate, while the actual execution of the con-
tract program and the recording of the contract state are

performed by blockchain miners and verifiers, who may or
may not co-locate with the MO and DOs.

SecModelUpdate executes a single iteration of the model
update, with the initial model from the MO, and the model
updates collected up to as many as R rounds and from up
to N DOs in each round. The use of smart contract enforces
automatic payment towards participating DOs whose com-
putation results are considered valid, via some verification
mechanism implemented on the contract.

SetupRegister

ModelAggregate

Payment

OutlierSuppression

whitelist()

Finished

start()

registerDone aggregateDone

exit()

suppressionDone

paymentDone

Figure 2: State transition of the smart contract SecModelUp-
date. The six states are represented by ovals. State transitions
are triggered by either applying a method (in a solid box), or
occurrence of an event (in a dashed box).
Model collection and aggregation The MO initializes the
data trading session by deploying a smart contract SecMod-
elUpdate with a training reward deposit on the blockchain.
As shown in Figure 2, SecModelUpdate transitions between
six states, i.e., Setup, Register, ModelAggregate, Outlier-
Suppression, Payment, and Finished. Upon deployment,
SecModelUpdate is in the Setup state with a set of DOs
the MO would like to purchase data from specified by a
whitelist() method. The MO issues a transaction with the
start() method specifying the following public parameters:

• The initial model parameters W ;
• Minimum number of data points required for each partici-

pating DO to compute its local model, denoted by M0;
• Minimum number of local epochs E;
• Local batch size B;
• Number of rounds to collect models, denoted by R;
• Maximum number of distinct DOs to collect gradients from

within each round, denoted by N .

Executing start() moves SecModelUpdate into the Reg-
ister state, and the contract starts to register for the DOs who
intend to participate in the model aggregation for the first
round. In each round r, r = 1, . . . , R, after N DOs have
registered for this round, SecModelUpdate moves to the
ModelAggregate state and starts to collect local computa-
tion results from the DOs. For each k = 1, . . . , N , the kth
DO registered for round r reads W from the contract, and
performs local training using M0 private data points, as spec-
ified in the previous section, obtaining the local model Wr,k.
Next, the DOs in round r execute the secure aggregation



protocol to generate the random masks Zr,1, . . . ,Zr,N , and
the kth DO sends the masked model W̃r,k = Wr,k + Zr,k

to the contract, for k = 1, . . . , N .
After receiving the masked models from all registered DOs

in round r, the contract aggregates them to obtain

Ar =
1

N

N∑
k=1

W̃r,k =
1

N

N∑
k=1

Wr,k. (1)

If the results of some DOs are still missing after certain
amount of time, the aggregation in round r fails and we have
Ar = ∅.

After the aggregation process of round r, SecModelUp-
date moves back to the Register state for the next round
r + 1. Only DOs whose local computation results have not
been incorporated in the aggregation results of any previous
rounds are eligible to register. By the end of the aggrega-
tion process the contract SecModelUpdate obtains a set
of results {Ar}r∈P , where P ⊆ {1, . . . , R} denotes the in-
dices of the rounds in which the secure aggregation had been
successfully executed. The contract transits to the Outlier-
Suppression state if R rounds of gradient aggregation have
been executed or is manually triggered by the exit() method.

Outlier Suppression During the model collection and ag-
gregation process, Byzantine DOs may upload maliciously
generated models which corrupt the aggregation results in
{Ar}r∈P . SecModelUpdate adopts Byzantine resistance
techniques to remove outliers in the OutlierSuppression
state. Specifically, we assume that at most µ < 1

2 fraction
of the aggregation results {Ar}r∈P may be corrupted by
malicious DOs. The contract runs a distance-based outlier
suppression algorithm m-Krum (Blanchard et al. 2017a,b)
(see Algorithm 1 in Appendix A) on {Ar}r∈P to select a
subset P ′ ⊂ P of |P ′| = m aggregation results that are con-
sidered computed correctly, for some m < (1− 2µ)|P| − 2.

Reward distribution The contract enters the Payment
state after the outlier suppression and the set P ′ is obtained.
The training reward deposited by the MO on the contract
is evenly distributed into the accounts of the DOs, whose
computation results from rounds in P ′ have been accepted.

Public model update After the execution of the SecMod-
elUpdate contract, the MO obtains from the contract the
selected aggregation results {Ar}r∈P′ , and updates its pub-
lic model to

W =
1

|P ′|
∑
r∈P′

Ar. (2)

Security Analysis
In this section, we analyze the security properties of Omni-
Lytics. Particularly, our analysis includes the following four
aspects: 1) the confidentiality of the MO’s model parameters;
2) the privacy of each DO’s data; 3) the security of the model
update; and 4) the correct execution of the SecModelUpdate
contract.

Confidentiality of model parameters
During the execution of the SecModelUpdate contract, only
MO’s public model containing a small number of parameters
is revealed to the data market and the DOs, while the majority
of the model parameters in the private model are kept secret
to the MO itself.

Confidentiality of local data
While each data owner can participate in model aggregation
in at most one round in the contract SecModelUpdate, its
private data is only related to the aggregation result Ar for
a single round r. We consider the situation where a subset
C ⊂ {1, . . . , N} of DOs in round r may collude to infer the
private data of some DO in the same round. Based on the pri-
vacy guarantee of the secure aggregation protocol (Bonawitz
et al. 2017) employed by the contract, we argue that as long
as the number of colluding DOs |C| is less than some secure
parameter T 1, no information about other DOs’ private data
other than the aggregation result Ar can be inferred.

Security of model update
To combat malicious data owners uploading faulty computa-
tion results to the contract, we employ them-Krum algorithm
from (Blanchard et al. 2017b) to select the aggregation re-
sults from a subset of P ′ ⊂ P , which are considered to be
close to the expected value with respect to the underlying
data distribution.

We consider the scenario where all DOs have i.i.d. data.
In this case, all the aggregation results {Ar}r∈P from the
successful rounds of SecModelUpdate are independently
and identically distributed. This is because each honest
data owner follows the same local training operation of Fe-
dAvg (McMahan et al. 2017) with M0 data points, and each
round aggregates results from N DOs. Therefore, according
to Proposition 2 and Proposition 3 in (Blanchard et al. 2017b),
as long as |P ′| < (1− 2µ)|P| − 2, where µ is the maximum
fraction of the aggregation results that may be corrupted, the
estimated overall gradient in (2) provides a close approxima-
tion of the true gradient, which leads to the convergence of
the model training.

Ethereum Implementation and
Experimental Results

We implement a working prototype of OmniLytics over
Ethereum, using Solidity (Sol 2021) to develop the con-
tracts, Python for the off-chain applications and PyTorch (pyt
2021) for the neural network training. We deploy the smart
contract SecModelUpdate via the Remix IDE (Rem 2021)
on the local Geth Ethereum Testnet (get 2021). We connect
the off-chain applications to the smart contracts using the
Web3py library (Web 2021) and monitor the created transac-
tions using Etherscan. Each data owner is connected to the
Geth network with a unique Ethereum address. We conduct
experiments on a machine with AMD R5-5600X CPU @3.70

1Each DO’s secret keys to generate random masks are secret
shared with other DOs such that any T colluding DOs can reveal
the secret keys of any data owner.



GHz, Nvidia RTX3070 GPU, 32 GB of Memory and 1 TB
SSD.

SecModelUpdate consists of four major operations: Reg-
ister, PubKeyInteract, ModelAggregate, and OutlierSup-
pression. Once a SecModelUpdate contract is deployed on
Ethereum by a model owner, data owners greedily register
with the contract to upload their local computation results
until the results are incorporated in the final model aggrega-
tion. Data owners within the same aggregation group runs
PubKeyInteract to exchange public keys for secure aggre-
gation as done in (Bonawitz et al. 2017). Data owners pay
for the transaction fee to upload the results and secure aggre-
gation, which will be reimbursed by the model owner in the
Payment phase.

During the secure aggregation process in each round, while
the default Pytorch data type is float32, we scale each value
by 108 and aggregate the integer part to improve the precision
of the aggregation result. We turn on automatic mining mode
and set the mining time to generate a new block to 1 second.
Parallel group aggregation. We perform a system-level op-
timization such that each round of secure aggregation is car-
ried out in parallel to speed up contract processing. This
means that if all the data owners in one round have submitted
their local results, the process of secure aggregation would be
performed. There is no need to wait until previous rounds are
completed. When the last round is completed, model owner
can initiate the multi-Krum process to obtain the final result.

Aside from experimental results reported in this section,
we provide additional results in Appendix B.

Smart contract measurements
We first measure the gas cost and the execution time of run-
ning the SecModelUpdate smart contract, for training a
five-layer CNN for MNIST Dataset (mni 2021). We split
the CNN model such that the public model contains 5701
parameters, which are 15% of the parameters in the entire
model. Since an Ethereum block can accommodate a maxi-
mum of 250 parameters, we distribute the task of aggregating
the public model into multiple contracts. The following mea-
surement results are taken from one of the contracts, and we
expect similar numbers in all other contracts.

Gas consumption We fix the number of data owners in
each round N = 4 and an estimated fraction of adversarial
data owners µ = 25%, and evaluate the impact of number
of groups R on the gas consumption. As shown in Figure 3,
for fixed N , the gas costs of Register, PubKeyInteract,
and ModelAggregate increase linearly with R. The com-
putational complexity of multi-Krum scales quadratically
with R, which leads to a faster increase in the gas cost of
OutlierSuppression.

Execution time From the breakdown of the execution time
in Tables 1, we observe that the overall contract execution
time is dominated by the ModelAggregate and the Outlier-
Suppression steps. As we increase the number of rounds
R for model aggregation, the execution time of the Outlier-
Suppression step increases rapidly, leading to a significant
increase in the overall execution time.

0

2

4

6

8

10

2 4 6 8

G
as

 C
on

su
m

pt
io

n 
(x

 1
e8

)

Number of round in each contract (R)

ContractPublish Register
PubKeyInteract ModelAggregate
OutlierSuppression

Figure 3: Gas consumption of SecModelUpdate contract for
N = 4 data owners in each aggregation round and µ = 25%
adversarial data owners, with different number of rounds.

Table 1: Breakdown of the SecModelUpdate running time
(ms) for different number of aggregation rounds.

R 2 4 6 8

Register 1.75 1.85 1.77 1.3

PubKeyInteract 0.53 0.58 0.68 0.71

GradientAggregate 3.69 3.93 3.63 3.94

OutlierSuppression 16.65 43.57 69.18 124.02

Total 22.62 49.93 75.26 130.37

Model performance evaluations
We now evaluate the model accuracy achieved by OmniLyt-
ics under various parameter choices. We assume that each
DO has the same but a small amount of IID data. MO has an
even smaller amount of IID data. We consider the task of train-
ing a five-layer CNN network for the MNIST dataset (mni
2021). Parameters for the following experiments are show in
Table 2.

Table 2: Design parameters for a image classification task on
OmniLytics

Parameter Explanation Default

MOPreEp Number of MO pre-train epochs 20
MOEp Number of MO local training epochs 2
DOEp Number of DO local training epochs 2
DONum Number of DOs 64

N
Number of DOs in each round of
SecModelUpdate 4

R Number of rounds of SecModelUpdate 8
PL Number of layers in public model 3

Frag
Fragmentation of DO
sparticipating in each iteration 0.5

To understand the impact of DONum on the contract ex-
ecution time and model accuracy, we fix N = 4 and vary
DONum. Consequently, the number rounds in SecMod-
elUpdate R changes accordingly. When DONum increases,
the accuracy of the model can be improved faster, in terms of
number of times the SecModelUpdate contract is invoked.
However, when the accuracy reaches a certain threshold, in-
troducing more DOs does not help any more. We plot in
Figure 4 the model accuracy as a function of the total amount
of blockchain processing time. While having more DOs con-



tributing to the model training allows the MO to invoke less
number of SecModelUpdate contract to reach certain model
accuracy, the execution time of each contract is also longer.
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Figure 4: Accuracy for different number of data owners

Via changing PL, we examine the impact of the size and
the structure of the public model on the training outcome. We
consider different model splitting and public model config-
urations in Table 3. When PL = 0, it means that MO only
uses its own small dataset for local training. We take it as our
baseline. After many iterations of training, it can only achieve
62% accuracy. When PL = 100%, it means that MO pub-
lishes all its model parameters on the blockchain. We observe
in Figure 5 a sizable improvement for each increased layer in
public model, demonstrating the effectiveness of OmniLytics
on data crowdsourcing to help MO’s learning task.

Table 3: Considered public model configurations

PL Public layer Public/Total
0 / 0%
1 Linear 3 0.71%
2 Linear 3+Linear 2 7.29%
3 Linear 3+Linear 2+ Conv 2 15.54%
4 Linear 3+Linear 2+ Conv 2+ Conv 1 15.96%
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Figure 5: Accuracy for different number of public layers
We also evaluate the influence of MOPreEp, DOEp, and

MOEp on the model accuracy, and present the results in
Table 4. We observe that when MOPreEp is 80, the initial
model is easy to be overfit, resulting in a lower accuracy of
the final model. Choosing 40 epochs of for pre-training gives
the best model accuracy, over various combinations of local
training epochs at the MO and DOs.

Table 4: Impact of Epochs (the 1st column is MOPreEp).

DOEp = 1 DOEp = 2

MOEp = 1 2 4 1 2 4

20 80.68 81.37 82.46 82.33 70.74 82.46
40 82.7 82.68 82.55 83.0 82.83 82.36
80 72.12 71.86 80.99 82.19 73.28 73.1

Resilience on Byzantine data owners
We simulate Byzantine data owners who instead of upload-
ing local computing results to the contract, simply upload
randomly generated data of the same dimension. We set the
parameter µ in our outlier suppression mechanism to 0.25
and 0.5, then vary the actual number of Byzantine DOs to
observe the ability of OmniLytics to defend Byzantine at-
tacks. Through repeated experiments, we simulate different
scenarios where different number of Byzantine DOs join dif-
ferent rounds, and present the average accuracy of the final
model in Table 5. We note that setting µ to be a higher
value allows OmniLytics to be better resilient to attacks from
Byzantine DOs, but it will incur higher complexity in the
contract execution, and increased running time and gas cost.

Table 5: Average model accuracy achieved by OmniLytics
under Byzantine data owners.

AttackRate µ = 0.5 µ = 0.25

2% 83.12% 76.62%
4% 82.89% 79.72%
6% 81.77% 78.15%
8% 79.97% 75.31%

12% 72.72% 77.91%
16% 56.86% 25.41%

Conclusion
We develop OmniLytics, the first Ethereum smart contract
implementation of a secure data market for decentralized
machine learning. OmniLytics simultaneously achieves 1)
model privacy against curious data owners; 2) data privacy
against curious model and data owners; 3) resilience against
Byzantine data owners who intend to corrupt model train-
ing; and 4) resilience to Byzantine model owner who tries to
evade payment. We develop and deploy an Ethereum smart
contract SecModelUpdate, and measure its gas cost, exe-
cution time, and training performance over various system
and design parameters. Through extensive experiments we
observe high computation and cost efficiency of the contract,
and high accuracy of the trained model, which demonstrate
the applicability of OmniLytics as a practical secure data
market.
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Özyilmaz, K. R.; Doğan, M.; and Yurdakul, A. 2018. IDMoB:
IoT data marketplace on blockchain. In 2018 crypto valley
conference on blockchain technology (CVCBT), 11–19. IEEE.
Raghupathi, W.; and Raghupathi, V. 2014. Big data analytics
in healthcare: promise and potential. Health information
science and systems, 2(1): 1–10.
Ramachandran, G. S.; Radhakrishnan, R.; and Krishna-
machari, B. 2018. Towards a decentralized data marketplace
for smart cities. In 2018 IEEE International Smart Cities
Conference (ISC2), 1–8. IEEE.
Shayan, M.; Fung, C.; Yoon, C. J.; and Beschastnikh, I. 2020.
Biscotti: A Blockchain System for Private and Secure Fed-
erated Learning. IEEE Transactions on Parallel and Dis-
tributed Systems.
Sheng, X.; Tang, J.; Xiao, X.; and Xue, G. 2013. Sensing as
a service: Challenges, solutions and future directions. IEEE
Sensors journal, 13(10): 3733–3741.
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Appendix A
Pseudocode of m-Krum

Algorithm 1: m-Krum
Input: {Ar}r∈P : aggregation results of successfully exe-

cuted rounds, µ: fraction of rounds whose result are corrupted
Output: {Ar}r∈P′ with |P ′| = m

1: T = P , P ′ = ∅
2: for i = 1, . . . ,m do
3: for r ∈ T do
4: neighbors = |T | − µ|P| − 2 closest (`2 distance)

vectors to Ar

5: S(r) =
∑

A∈neighbors ||Ar −A||2
6: end for
7: r∗ = argmin

r
S(r)

8: T .remove(r∗)
9: P ′.add(r∗)

10: end for
11: return {Ar}r∈P′

Appendix B
Additional Experiment Results

Smart contract measurements
Gas consumption We fix the number of ModelAggregate
rounds R = 6 and an estimated fraction of adversarial data
owners µ = 25%, and measure the gas cost of the SecMod-
elUpdate contract for different number of DOs in each round
(N ). We observe in Figure 6 that as N varies from 2 to 8,
the total gas consumption of Register, PubKeyInteract, and
ModelAggregate increases linearly N . In contrast, since the
number of rounds R has not changed, the computation com-
plexity of the multi-Krum algorithm does not change, and
the gas cost of OutlierSuppression stays almost constant.
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Figure 6: Gas consumption of the SecModelUpdate contract
for R = 6 aggregation rounds and µ = 25% adversarial data
owners, for different number of data owners in each round.

Execution time We present additional measurement results
on the execution time of the SecModelUpdate contract in
Table 6. We note that as we increase the number of data own-
ers in each round, the total execution time increases mildly as
the execution time of the bottleneck operation OutlierSup-
pression is not significantly affected by N .

Table 6: Breakdown of the SecModelUpdate running time
(ms) for different number of data owners in each round.

N 2 4 6 8

Register 1.73 1.77 1.9 1.85

PubKeyInteract 0.65 0.68 0.67 0.69

GradientAggregate 3.43 3.63 3.65 3.85

OutlierSuppression 67.78 69.18 72.53 73.43

Total 73.59 75.26 78.76 79.81
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