
Compact Ring Signatures from Learning With Errors

Rohit Chatterjee * Sanjam Garg † Mohammad Hajiabadi ‡ Dakshita Khurana §

Xiao Liang¶ Giulio Malavolta || Omkant Pandey ** Sina Shiehian ††

July 11, 2021

Abstract

Ring signatures allow a user to sign a message on behalf of a “ring” of signers, while hiding the true
identity of the signer. As the degree of anonymity guaranteed by a ring signature is directly proportional
to the size of the ring, an important goal in cryptography is to study constructions that minimize the size
of the signature as a function of the number of ring members.

In this work, we present the first compact ring signature scheme (i.e., where the size of the signature
grows logarithmically with the size of the ring) from the (plain) learning with errors (LWE) problem. The
construction is in the standard model and it does not rely on a common random string or on the random
oracle heuristic. In contrast with the prior work of Backes et al. [EUROCRYPT’2019], our scheme does
not rely on bilinear pairings, which allows us to show that the scheme is post-quantum secure assuming
the quantum hardness of LWE.

At the heart of our scheme is a new construction of compact and statistically witness indistinguishable
ZAP arguments for NP ∩ coNP, that we show to be sound based on the plain LWE assumption. Prior to
our work, statistical ZAPs (for all of NP) were known to exist only assuming sub-exponential LWE. We
believe that this scheme might find further applications in the future.

*Stony Brook University. Email: rochatterjee@cs.stonybrook.edu
†University of California, Berkeley and NTT Research. Email: sanjamg@berkeley.edu
‡University of Waterloo. Email: mdhajiabadi@gmail.com
§University of Illinois Urbana-Champaign. Email: dakshita@illinois.edu
¶Stony Brook University. Email: liang1@cs.stonybrook.edu
||Max Planck Institute for Security and Privacy. Email: giulio.malavolta@hotmail.it

**Stony Brook University. Email: omkant@cs.stonybrook.edu
††University of California Berkeley and Stony Brook University. Email: shiayan@umich.edu

1

1 Introduction

In a ring signature scheme, (introduced in [RT01]) a user can sign a message with respect to a ring of public
keys. The ring can be arbitrarily chosen by the signer and the verification keys that populate the ring can
be sampled locally by each user, i.e., no central coordination is required. No user or entity should be able
to tell which user in the ring actually produced a given signature — a property referred to as anonymity.
This is complemented with the standard notion of unforgeability for signatures, which in this case requires
that no user outside a specified ring should be able to produce valid signatures on behalf of this ring. A
salient feature is the online or setup-free generation of ring signatures, which requires that signatures can be
generated without any prior interaction between members of the ring. Ring signatures and their variants have
found natural applications related to whistleblowing, authenticating leaked information, and more recently to
cryptocurrencies [TSS+18, Noe15].

There is a sizeable body of work [LPQ18, PS19a, BLO18, BDH+19] that construct ring signatures under
various definitions and hardness assumptions. As the degree of anonymity guaranteed by the ring signature is
directly proportional to the size of the ring, an important property of ring signatures becomes compactness,
which requires that signatures only have a logarithmic (or lower) dependence on the size of the ring. Recently,
the work of [BDH+19] provided a compact ring signature construction in the plain model (i.e., not needing a
common random string or a setup). Their construction assumes the existence of the following: noninteractive
witness indistinguishable proofs or NIWIs (which are known only from bilinear pairing based assumptions or
indistinguishability obfuscation), somewhere perfectly binding (SPB) hashes, public key encryption with
oblivious public key generation and pseudorandom ciphertexts, and a standard signature scheme. While most
of these primitives are known under a variety of cryptographic assumptions including LWE, unfortunately,
we currently do not know any constructions of NIWI proofs from LWE (please see the technical overview for
related discussion).

This leads to the natural question of whether NIWIs are necessary to construct compact ring signatures in
the plain model. The looming threat of quantum computers makes this question particularly pressing, since
we would lose our only candidate construction to quantum attacks (due to the reliance on bilinear maps). We
therefore ask the following open question:

Can we obtain compact (logarithmic size) ring signatures from the standard (polynomial)
hardness of the learning with errors (LWE) problem?

1.1 Our Results

Our main contribution resolves the open problem stated above. In other words, we obtain a ring signature
construction from plain or standard LWE, i.e., only assuming polynomial hardness of the LWE problem with
polynomial modulus-to-noise ratio. Our result is obtained as follows:

ZAPs for NP ∩ coNP. The first key step to our construction of ring signatures is realization of a new argument
system that we call relaxed ZAPs for extended NP ∩ coNP. These are akin to ZAPs but with a few additional
restrictions, and can also be viewed as a generalization of (non-adaptive) ZAPs for languages in NP ∩ coNP.
We show how to construct these ZAPs from the plain (polynomially-hard) LWE. This is in contrast with
the known constructions of ZAPs for NP [BFJ+20, GJJM20, LVW19] that assume subexponential hardness
of LWE. Our ZAP construction also enjoys several other attractive properties such as statistical witness

2

indistinguishability and proof compactness; which we expect will make them useful in other application
contexts. We defer further exposition to our technical overview.

Compact ring signatures from LWE. Next, we show that our notion of relaxed ZAPs, along with SPB hash
schemes and a special public key encryption scheme, is sufficient to construct compact ring signatures. All
these components have constructions from plain LWE. Thus, we obtain the first construction of compact
ring signatures in the plain model from purely post-quantum assumptions in the literature. In addition,
we investigate security in the fully quantum setting, where the adversary can query the signing oracle on
a superposition of messages. Towards this goal, we give a construction that retains unforgeability and
anonymity in this setting.

1.2 Background

Fiat-Shamir transformation, trapdoor Σ-protocols, and correlation intractability. A trapdoor Σ-
protocol [CCH+19] for a language L is a 3-move (honest verifier) zero-knowledge protocol between a
prover and a verifier, where the prover tries to convince the verifier about the veracity of a statement x. The
protocol is instantiated with an extractable commitment scheme where there is an extraction trapdoor td
which allows extracting the plaintexts in the commitments. In the first move of the protocol, the prover
commits to a string a and sends this commitment Com(a) to the verifier. Next, in the second move, the
verifier sends a challenge b to the prover. In the final round, based on the challenge b, the prover computes the
final message and sends it to the verifier. The distinctive property of trapdoor sigma protocols is that, for a
false statement x, there is at most one bad challenge b∗ which lets a malicious prover to successfully complete
its proof, and this bad challenge is efficiently computable given a. Consequently, given the extraction trapdoor
td, the bad challenge can be efficiently computed from Com(a).

The Fiat-Shamir transformation [FS86] can convert a trapdoor Σ-protocol (indeed any Σ-protocol) to a
noninteractive protocol in the random oracle model. The way it works is that the prover evaluates a hash
function on its first message to compute the challenge b, and then proceeds to send the full proof generated
using this challenge to the verifier. To argue soundness, notice that since the bad challenge is unique and the
hash function is modeled as a random oracle, a malicious prover has a negligible chance of finding a first
message such that the hash of it equals the bad challenge b∗.

A line of work [CCH+19, PS19b] builds a special type of hash functions called correlation intractable
(CI) hash functions, to securely instantiate the Fiat-Shamir heuristic in the plain model for trapdoor Σ-
protocols, thus turning them into noninteractive protocols in the CRS model. In particular, the LWE-based CI
hash functions in [PS19b] allow building noninteractive zero knowledege protocols for all of NP from the
LWE assumption. Informally, a hash function is CI for a class of circuits if for any circuit C in the class,
given a random hash key k, it is hard to find an input z whose image under the hash function equals C(z). We
can securely replace random oracles with CI hash functions when we apply the Fiat-Shamir transformation to
trapdoor Σ-protocols. To see this, notice that since in trapdoor Σ-protocols the bad challenge is efficiently
computable given the prover’s first message, a malicious prover that can find a first message which gets
mapped to the bad challenge is breaking the correlation intractability of the hash function.

Somewhere perfectly binding hash. A somewhere perfectly binding (SPB) hash is similar to a Merkle
tree [Mer87]: it can compress a large database of N records into a small digest. In a SPB hash with private
local openings, binding holds perfectly for a single hidden index i ∈ [N]. In more detail, the SPB hash key
generation algorithm takes as input a binding index i ∈ [N] and outputs a pair of keys (hk, shk). The hash

3

key hk can be used to generate a digest. The secret key shk, can be used to generate a short opening for
the ith record in the database. Perfect binding says that a valid opening for the ith location of the database
uniquely determines the value of that location. Also, the hash key hk is index hiding, i.e, it computationally
hides the binding index i.

Compact ring signatures of [BDH+19]. The construction of [BDH+19] is based on four ingredients: a
noninteractive witness indistinguishable argument system NIWI, a public key encryption scheme PKE, a
standard signature scheme Sig, and a somewhere perfectly binding hash scheme SPB. In this scheme, each
verification key consists of two components: a uniformly chosen public key pk (not generated through the
key generation algorithm of PKE) and a standard signature verification key vk. The signing key consists
of sk, the corresponding signing key for vk. To sign a message m using signing key ski corresponding to
verification key VKi = (vki, pki), and on behalf of ring R = (VK1, · · · ,VK`), the signer

• first generates a standard signature σ for message m as σ ← Sig.Sign(ski,m),

• encrypts σ under pki with random coins r to get ciphertext c← PKE.Enc(pki, σ; r),

• generates a binding SPB key pair for index i, (hk, shk)← SPB.Gen(i),

• hashes the ring R with hk to get a short digest h := SPB.Hash(hk,R),

• creates an opening for the ith location τ ← SPB.Open(hk, shk,R, i),

• generates a NIWI proof π which using the short opening τ proves existence of a verification key
VKi = (vki, pki) in the ring R such that under pki, c encrypts a valid signature verifiable with vki,

• finally, it publishes (π, c, hk) as the signature for message m.

To prove unforgeability, we switch to a hybrid where we generate each pki with a corresponding secret key
ski. Consequently, perfect binding of SPB and soundness of NIWI imply that given a forgery (π, c, hk) for
ring R, there exists a ski such that PKE.Dec(ski, c) is valid forgery against Sig. Proving anonymity involves
techniques similar to [NY90].

1.3 Technical Overview

ZAP instead of NIWI. As already mentioned, the issue that prevents [BDH+19] from basing their construc-
tion solely on LWE is their reliance on NIWIs. Our starting point is the observation of [BKM06] which
proposes using two-message public coin argument systems, known in the literature as ZAPs [DN00], instead
of NIWIs. Namely, we can add a ZAP first message ρ to each verification key. The signer now picks the
lexicographically smallest verification key VK1 = (vk1, pk1, ρ1) ∈ R in the ring and uses ρ1 to generate a
proof. Using LWE-based ZAPs constructed in [BFJ+20, GJJM20, LVW19], this approach gives us LWE
based compact ring signatures. However, there is a major caveat: none of the LWE-based ZAPs mentioned
above are based on polynomial hardness assumptions. They all need super-polynomial hardness of LWE
(in fact subexponential hardness if the goal is to achieve conventional λ bits of security). Therefore, using
lattice based ZAPs for NP seems to be unsatisfactory as the resulting construction would rely on qualitatively
stronger super-polynomial hardness assumptions whereas [BDH+19] is based on only polynomial hardness.

ZAPs for NP ∩ coNP. Our next insight is that we may not need ZAPs for all of NP. Assume that in the
forgery Σ∗ = (π∗, c∗, hk∗), the ciphertext c∗ is guaranteed to be encrypted under one of the public keys

4

pki. In the unforgeability game we can generate pkis with corresponding secrets ski. In this case, given ski,
checking that Σ∗ is a forgery can be done efficiently, i.e., ski is a witness for the fact that Σ∗ is not a valid
signature. Therefore, ZAPs for NP ∩ coNP might suffice for our application.

It turns out that for NP ∩ coNP we can build ZAPs based on the polynomial hardness of LWE. We will
now describe a ZAP protocol for any arbitrary language L ∈ NP ∩ coNP. The ZAP that we describe here is
constructed by following the general framework of converting a Σ-protocol to a noninteractive protocol using
a CI hash function [CCH+19, PS19b]. More specifically, we describe a two round commitment scheme and
use it to instantiate [CCH+19, PS19b]. Our commitment scheme is defined with respect to the complement
language L. To commit to a bit b and generate the second commitment message, the sender specifies a
statement x. The receiver can recover the committed bit, if, when generating the first message it specified a
(non-)witness w for the fact that x ∈ L. If x 6∈ L, the committed bit is hidden. The commitment scheme
works as follows:

• The receiver sends an arbitrary bitstring w bit-by-bit via the first message of a statistically sender
private (1 out of 2) OT, OT1(w).

• The sender garbles the following circuit: on input w, if w is a witness for x ∈ L, output b, otherwise,
output 0. The sender sends the garbled circuit along with an OT second message containing the labels
OT2({lbli,0, lbli,1}).

We instantiate [CCH+19, PS19b] for language L with our two round witness extractable commitment for L,
to get a ZAP for NP ∩ coNP: the verifier sends the commitment first message along with a key for a CI hash
function, the prover uses the hash key and the commitment scheme to proceed as in [CCH+19]. Recall that
to apply the transformation of [CCH+19, PS19b], we have to make sure that when x 6∈ L, the commitments
used in the underlying Σ-protocol are extractable given the extraction trapdoor. If x 6∈ L, the verifier can
(undetectably) switch to generating the first commitment message using a non-witness wx for x ∈ L and this
will let the soundness proof go through.

Unfortunately, when trying to use our NP∩ coNP ZAPs to build ring signatures we encounter two issues:

1. The ZAPs that we need for our ring signatures need to be adaptively sound. However, the ZAPs that
we just constructed are only selectively sound. This is because, in the soundness reduction we have to
switch to a commitment first message that depends on a non-witness w for the statement x (depends on
a w such that (x,w) ∈ R).

2. We assumed the ciphertext c∗ in the forgery is a valid encryption under one of the public keys of the
ring. This may not be true. In particular, L might not be in NP.

The first issue seems relatively easy to resolve. Our ZAP construction already achieves a weak notion of
adaptivity that is sufficient for our purpose: as long as the non-witness w is fixed in advance, the cheating
prover cannot come up with a valid proof for a statement x where (x,w) ∈ R. In our case, the non-witnesses
which are the secret keys corresponding to pkis are clearly fixed in advance.

Extending the complement language. For the second issue, our solution is to extend L to a language
L̃ ∈ NP and use a witness extractable commitment for this extended language L̃. In more detail, given a
forgery Σ∗ for a ring R∗ of size `, we define statement x = (Σ∗,R∗). For a witness w̃ = (sk1, · · · , sk`) we
say that (x, w̃) ∈ L̃, if each ski is a valid secret key for pki, and decrypting c∗ with any skj does not yield
a valid standard signature corresponding to vkj . Accordingly, in the unforgeability game, we can generate
each public key pki with a corresponding secret ski, and put these secret keys inside the witness extractable

5

commitment first message. With this approach we encounter a new obstacle: the size of the commitment first
message-and consequently the size of verifier’s first message in the ZAP scheme-scales at least linearly with
the maximum number of members in a ring. However, the number of members in a ring can be arbitrarily
large.

One secret key, multiple public keys. To overcome this problem we use a public key cryptosystem which
can generate multiple public keys having a single secret key. Using such a public key scheme, the first
commitment message now only needs to hold one short secret key. Luckily, public key cryptosystems with
this property already exist in the literature. In particular, Regev’s cryptosystem [Reg05] already has the
ability to generate multiple pseudorandom public keys having a single uniformly chosen secret key. This
cryptosystem also has another appealing feature: it has sparse valid public keys. In other words, a randomly
chosen public key does not have a corresponding secret key (except with negligible probability). In the
ring signature context, this sparseness property will be helpful in proving the anonymity of the scheme.
Specifically, given a signature Σ for a ring R, if at least one verification key in R is generated honestly, or in
particular if at least one public key pki ∈ R is chosen uniformly at random, then (Σ,R) 6∈ L̃, and therefore,
the commitment scheme is hiding.

Compactness through malicious circuit private FHE. The ZAP that we have constructed so far seems to
satisfy the soundness and witness indistinguishibility properties that we need in the application to our ring
signature scheme. However, upon a closer look, it seems that our resulting ZAP scheme suffers from a major
flaw. Namely, the size of our ring signatures is linear in the size of the ring. This is because in the witness
extractable commitment scheme, each commitment contains a garbling of a circuit that computes on each
verification key in the ring separately. Specifically, while the size of the circuit for checking membership
in L is independent of the size of the ring (thanks to the properties of SPB hashing), circuits for checking
membership in L̃, and even the relevant statements, have size that depend on the ring. It seems that to
overcome this, we additionally need some guarantee of compactness in our witness extractable commitment.
Our final idea is to use a fully homomorphic encryption scheme [Gen09] to build such a compact witness
extractable commitment. The construction is as follows:

• The receiver generates an FHE key pair (FHE.pk,FHE.sk) and sends a ciphertext
ct← FHE.Enc(FHE.pk, w̃) encrypting an arbitrary string w̃.

• The sender homomorphically evaluates the following circuit on ct: on input w̃, if w̃ is a witness for
x ∈ L̃, output b, otherwise, output 0. The sender sends the evalauted ciphertext cteval.

Observe now that the compactness of the commitment scheme follows from the compactness of the FHE
scheme. Clearly, if the receiver encrypts a non-witness for x, it can recover the committed bit b using the
secret key FHE.sk. For this commitment scheme to be hiding, it is sufficient that in the FHE scheme, the
evaluated ciphertext hides the circuit that has been evaluated on it, even if the initial FHE ciphertext and
public key are maliciously generated. Fortunately, FHE schemes satisfying the aforementioned malicious
circuit privacy have already been constructed from LWE [OPP14, BD18].

1.4 Related Existing Work

The initial construction of ring signatures by Rivest, Shamir and Kalai [RT01] is in the random oracle model.
Several subsequent constructions [AOS02, BGLS03, HS03] were also given in the ROM. Constructions in
the standard model were first obtained concurrently by Chow, Liu, Wei and Yuen [CWLY06] and Bender,

6

Katz and Morselli [BKM06]. Several works also construct schemes in the CRS model [SW07, BH18, SS10].
Brakerski and Kalai [BK10] gave a construction based on the SIS problem in the standard model, and there
are subsequent lattice-based constructions [BLO18, TSS+18] that give more practical constructions (these
works actually construct linkable ring signatures). Park and Sealfon [PS19a] give certain constructions
based on SIS and others based on verifiable random functions that satisfy new and interesting definitions of
repudiability and claimability that they develop. All of these constructions give ring signatures linear in the
ring size.

Dodis et al [DKNS04] gave the first sublinear size ring signatures in the ROM. Since then, constructing
logarithmic size ring signatures in the ROM been the focus of many works [GK15, LLNW16, LPQ18,
EZS+19, BKP20, LNS21]. In the CRS model, [CGS07, Gha13, Gon17, LNPY20] build sublinear ring
signatures under various assumptions. In the plain model, Backes et al [BHKS18] construct sublinear ring
signatures using a primitive called signatures with flexible public key, and Malavolta and Schroder [MS17]
construct constant size ring signatures under a knowledge of exponent assumption, which is unfalsifiable.
Finally, as mentioned, Backes et al [BDH+19] construct the first logarithmic size ring signatures in the plain
model under standard and falsifiable assumptions, namely DDH or LWE along with NIWI proofs.

2 Preliminaries

We denote the security parameter by λ. For any ` ∈ N, we denote the set of the first ` positive integers by [`].
For a set S, x← S denotes sampling a uniformly random element x from S.

2.1 Learning With Errors

We recall the Learning With Errors (LWE) problem, and its hardness based on worst-case lattice problems.
For a positive integer dimension n and modulus q, and an error distribution χ over Z, the LWE distribution

and decision problem are defined as follows. For an s ∈ Zn, the LWE distributionAs,χ is sampled by choosing
a uniformly random a← Znq and an error term e← χ, and outputting (a, b = 〈s,a〉+ e) ∈ Zn+1

q .

Definition 2.1. The decision-LWEn,q,χ problem is to distinguish, with non-negligible advantage, between
any desired (but polynomially bounded) number of independent samples drawn from As,χ for a single
s← Znq , and the same number of uniformly random and independent samples over Zn+1

q .

A standard instantiation of LWE is to let χ be a discrete Gaussian distribution over Z with parameter
r = 2

√
n. A sample drawn from this distribution has magnitude bounded by, say, r

√
n = Θ(n) except

with probability at most 2−n, and hence this tail of the distribution can be entirely removed. For this
parameterization, it is known that LWE is at least as hard as quantumly approximating certain “short vector”
problems on n-dimensional lattices, in the worst case, to within Õ(q

√
n) factors [Reg05, PRS17]. Classical

reductions are also known for different parameterizations [Pei09, BLP+13].
Fix a dimension n = poly(λ). For the rest of this paper, when we refer to hardness of LWE, we

mean hardness of LWE with polynomial modulus-to-noise ratio against polynomial sized adversaries, i.e.,
polynomial hardness of LWEn,q,χ where, q is a polynomial in n, and χ is the error distribution described in
the previous paragraph.

2.2 Correlation Intractable Hash Functions

We borrow the following the definition of CI hash functions from [PS19b] verbatim.

7

Definition 2.2. Let C = {Cλ} be a family of circuits, i.e., a set of circuits for each λ. A hash function family
Hash = (Gen,Eval) is correlation intractable (CI) for C if for every non-uniform polynomial-size adversary
A = {Aλ} there exists a negligible function ν(λ) such that for every C ∈ Cλ,

Pr
k←Hash.Gen(1λ)

x←Aλ(k)

[Hash.Eval(k, x) = C(x)] ≤ ν(λ) .

We will also use CI hash construction of [PS19b].

Theorem 2.3 ([PS19b]). Assuming hardness of LWE, there exists a polynomial m = m(λ) such that, for
every family of polynomial sized circuits C with output size at least m bits, there exists a hash function family
which is CI for C. Furthermore, the key generation algorithm in this hash function family simply outputs a
uniformly random key from its key space.

2.3 Public Key Encryption

Similar to [BDH+19], we need a public key encryption scheme which has pseudorandom ciphertexts and
public keys. For our application, we also require additional properties.

Definition 2.4. A public key encryption scheme is a tuple of PPT algorithms PKE = (GenWithKey,Enc,Dec,Valid),
with the following interfaces, where for each security parameter λ ∈ N, PKλ, SKλ and CTλ are three sets
where the uniform distribution is efficiently sampleable,

• GenWithKey(sk), on input a secret key sk ∈ SKλ outputs a public key pk ∈ PKλ.

• Enc(pk, b), on input a public key pk, and a message b ∈ {0, 1}, outputs a ciphertext ct ∈ CTλ.

• Dec(sk, ct), on input a secret key sk and a ciphertext ct, outputs a bit b.

• Valid(pk, sk), on input a public pk and a secret key sk, either accepts or rejects.

We consider the following properties:

1. Completeness: for any λ ∈ N, any key pair (pk, sk) such that Valid(pk, sk) accepts, and any message
b,

Pr[Dec(sk, ct) = b] = 1,

where ct← Enc(pk,m). Furthermore, for any λ ∈ N,

Pr
sk←SKλ

pk←GenWithKey(sk)

[Valid(pk, sk) accepts] = 1.

2. Sparseness of valid public keys: for any λ ∈ N,

Pr
pk←PKλ

[∃sk : Valid(pk, sk) accepts] = negl(λ).

3. Injectivity of key generation: for any sk,

Pr
pk←GenWithKey(sk)

[∃sk′ 6= sk : Valid(pk, sk′) accepts] = negl(λ).

8

4. Pseudorandomness of public keys: for every Q = poly(λ), the following two distributions

• first, samples a uniformly random secret key sk ← SKλ, then outputs {pki ← GenWithKey(sk)}i∈[Q]

• outputs L uniformly random public keys {pki ← PKλ}i∈[Q],

are computationally indistinguishable.

5. Closeness of ciphertexts to uniform: for every message b, the output of the following two distributions

• first, samples a uniformly random public key pk ← PKλ, then, outputs (pk,Enc(pk, b)),

• first, samples a uniformly random public key pk ← PKλ, then, chooses a uniformly random
ciphertext ct← CTλ and outputs (pk, ct),

are statistically indistinguishable.

Consider Regev’s public key cryptosystem [Reg05]. For some appropriate parameters n = poly(λ), q =
poly(n),m ≥ 2n log q, B � q/4, a secret key in this scheme is a vector s ∈ Znq and valid public keys for
secret s are generated as

pk := A =

[
Ā

stĀ + et

]
∈ Z(n+1)×m

q ,

where, Ā← Zn×mq and e is chosen from some B-bounded distribution. For this cryptosystem we define the
following validity check algorithm

• Valid(pk = A, sk = s): Accept iff |(st,−1) ·A|∞ ≤ B.

Theorem 2.5. Assuming hardness of LWE, there exists a public key encryption scheme satisfying all the
properties in Definition 2.4.

Proof. We briefly argue that equipped with algorithm Valid, Regev’s cryptosystem satisfies all the properties
in Definition 2.4. When q is a prime number, injectivity of key generation is an implication of Lemma 5.3 in
[GPV08]. The rest of the properties are already established in [Reg05, Mic10].

2.4 Blum’s Raw Protocol

Here, we formally define and state the properties of the raw version of Blum’s sigma protocol [Blu87]. In
this abstraction, the prover does not use any commitment or encryption scheme to hide its first message and
therefore, the protocol does not satisfy a conventional zero knowledge property. Using a commitment scheme,
this protocol can be converted into an honest verifier zero knowledge protocol.

Definition 2.6. Let L ∈ NP be a language with a corresponding relation R. Blum’s raw protocol for L, is a
tuple of PPT algorithms
Π = (P1,P2,V,BadChallenge,Sim) with the following interfaces

• P1(x,w), on input a statement witness pair (x,w) ∈ L, it outputs a first message a, two substrings
(a0, a1) of a corresponding to two subsets of indices S0, S1, and an internal state ζ. We implicitly
assume (a0, a1) uniquely determine the subsets S0, S1.

• P2(a, b, ζ), on input first message a, a challenge bit b ∈ {0, 1}, and internal state ζ , it outputs a second
message c.

9

• V(x, b, ab, c), on input an instance x, a challenge bit b ∈ {0, 1}, an opening ab, and a response c, it
either accepts or rejects.

• BadChallenge(a), on input a first message a, it outputs a bad-challenge bit b ∈ {0, 1}.

• Sim(b, x), takes as input a challenge bit b, and an instance x, and outputs two strings ab and c.

These algorithms satisfy the following properties:

1. Completeness: for any (x,w) ∈ L, any ` ∈ N, and any b ∈ {0, 1},

Pr[V(x, b, ab, c) accepts] = 1,

where, (a, (a0, a1), ζ)← P1(x,w), and c← P2(a, b, ζ).

2. Soundness: if x 6∈ L, then, for any two subsets of indices S0, S1, bit b = 1− BadChallenge(a), and
any c,

Pr[V(x, b, ab, c) rejects] = 1,

where, ab denotes the subset of a specified by indices in Sb.

3. Zero knowledge: for any b ∈ {0, 1} and any (x,w) ∈ R the following two distributions,

• outputs (b, ab, c), where (a, (a0, a1), ζ)← P1(x,w), and c← P2(a, b, ζ)

• outputs (b,Sim(b, x))

are identical.

Blum’s raw protocol exists unconditionally for any language L ∈ NP [Blu87].

2.5 Maliciously Circuit Private FHE

We review the definition of maliciously circuit private FHE.

Definition 2.7 ([OPP14]). A maliciously circuit private leveled FHE scheme is a tuple of algorithms
FHE = (Gen,Enc,Eval,Dec, Sim), where, except for Sim the rest of the algorithms are PPT, having the
following interfaces

• Gen(1λ, 1d), given a security parameter λ ∈ N and a depth parameter d ∈ N, outputs a public and
private key pair (pk, sk).

• Enc(pk, b), given a public key pk and a message b ∈ {0, 1}, outputs a ciphertext ct ∈ {0, 1}`ct(λ,d).

• Eval((ct1, · · · , ctk), C; r), given k ciphertexts ct1, · · · , ctk, a boolean circuit C : {0, 1}k → {0, 1},
and random coins r, outputs an evaluated ciphertext cteval ∈ {0, 1}`eval .

• Dec(sk, ct), given a secret key sk and a ciphertext ct, outputs a bit b ∈ {0, 1}.

• Sim(pk∗, (ct∗1, · · · , ct∗k), b), on input a (not necessarily honestly generated) public-key pk∗ and k (not
necessarily honestly generated) ciphertexts ct∗1 ∈ {0, 1}`ct(λ,d), ..., ct∗k ∈ {0, 1}`ct(λ,d), and a bit b,
outputs a simulated ciphertext ctsim.

10

We consider FHE schemes that satisfy the following properties:

1. Completeness: for every λ, d ∈ N, every circuit C : {0, 1}k → {0, 1} of depth at most d and every
input m ∈ {0, 1}k,

Pr[Dec(sk, cteval) = C(m)] = 1,

where, (pk, sk)← Gen(1λ, 1d), cti ← Enc(pk,mi) for every i ∈ [`],
and cteval ← Eval((ct1, · · · , ct`), C).

2. Compactness: there exists fixed polynomials `eval = `eval(λ, d) and `rand = `rand(λ, d), such that
evaluated ciphertexts have size `eval(λ, d) and the size of the randomness used in Eval algorithm is
`rand(λ, d), i.e., the size of evaluated ciphertexts and the size of randomness in the evaluation algorithm
only depend on the depth of the circuit being evaluated.

3. Pseudorandomness of public keys: the public key pk output by the Gen algorithm is pseudorandom.

4. Pseudorandomness of ciphertexts: for every non-uniform polynomial-size adversary A, every d ∈ N
and every b ∈ {0, 1}, the probabilities

Pr[A(pk, ct) = 1],

in the following two experiments differ by only negl(λ):

• in experiment 1, (pk, sk)← Gen(1λ, 1d), ct← Enc(pk, b)

• in experiment 2, (pk, sk)← Gen(1λ, 1d), ct← {0, 1}`ct(λ,d)

5. Malicious circuit privacy: for every (not necessarily honestly generated) public-key pk∗, every k ∈ N,
and every k (not necessarily honestly generated) ciphertexts ct∗1 ∈ {0, 1}`ct(λ,d), ..., ct∗k ∈ {0, 1}`ct(λ,d),
there exists a m∗ ∈ {0, 1}k such that, for every circuit C : {0, 1}k → {0, 1} of depth at most d,

Eval((ct∗1, · · · , ct∗k), C)
s
≈ Sim(pk∗, (ct∗1, · · · , ct∗k), C(m∗))

.

Theorem 2.8 ([OPP14, BD18]). Assuming hardness of LWE, there exists a maliciously circuit private lev-
eled FHE, where the size of evaluated ciphertexts and secret keys only depend on the security parameter
λ.

2.6 Somewhere Perfectly Binding Hash

We next define the notion of somewhere perfectly binding hash or SPB schemes, which are very similar to
somewhere statistically binding hash schemes (as can be surmised, the only change from the latter is that here
we expect the somewhere binding property to hold with probability 1). As in the scheme of [BDH+19], we
will only define and employ a slightly weaker primitive denoted as somewhere perfectly binding hash with
private local openings, which is what we will need for our signature scheme as well. We direct the reader to
[BDH+19] for further details. The definition is essentially identical to that in [BDH+19], and is as follows.

Definition 2.9 (SPB Hash). A somewhere perfectly binding hash scheme with private local openings, de-
noted by SPB, consists of a tuple of probabilistic polynomial time algorithms (Gen,Hash,Open,Verify),
with the following syntax:

11

• Gen(1λ, n, ind), given a security parameter λ, a database size n, and index ind as input, outputs a hash
and secret key pair (hk, shk).

• Hash(hk, db), given a hash key hk and database db as input, outputs a hash value h.

• Open(hk, shk, db, ind), given a hash key hk, secret key shk, database db and index ind as input,
outputs a witness τ .

• Verify(hk, h, ind, x, τ), given as input a hash key hk, a hash value h, an index ind, a value x and a
witness τ , either accepts or rejects.

To maintain clarity, we will not explicitly specify the block size of databases as input to Gen, but assume
that this is clear from the specific usage and hardwired into the algorithm. We ask that the SPB scheme
satisfies the following properties:

1. Correctness: for all λ ∈ N, n = poly(λ), all databases db of size n, and all indices ind ∈ [n], we have,

Pr[Verify(hk, h, ind, dbind, τ) accepts] = 1,

where, (hk, shk)← Gen(1λ, n, ind), h← Hash(hk, db) and τ ← Open(hk, shk, db, ind).

2. Efficiency: any hash keys hk and witnesses τ corresponding to size n databases, are of size log(n) ·
poly(λ). Further, for size n databases, Verify can be computed by a circuit of size log(n) · poly(λ).

3. Somewhere perfectly binding: for all λ, n ∈ N, all databases db of size n, all indices ind ∈ [n],
all purported hashing keys hk, all purported witnesses τ , all h in the support of Hash(hk, db), if
Verify(hk, h, ind, x, τ) accepts, then x = dbind.

4. Index hiding, for any n ∈ N and any ind0, ind1 ∈ [n],

{hk : (hk, shk)← Gen(1λ, n, ind0)}
c
≈ {hk : (hk, shk)← Gen(1λ, n, ind1)}

Theorem 2.10 ([BDH+19]). Assuming hardness of LWE, there exists a SPB hash.

2.7 Signature Schemes

Definition 2.11 (Signature Schemes). LetM = {Mλ} be a family of sets where for each λ,Mλ consists
of bit-strings of some fixed polynomial size. A signature scheme Sig forM is described by a triple of PPT
algorithms (Gen,Sign,Verify) that have the following syntax:

• Gen(1λ), given a security parameter λ as input, outputs a verification and signing key pair (vk, sk).

• Sign(sk,m), given a signing key sk and a message m ∈Mλ as input, outputs a signature σ.

• Verify(vk,m, σ), given a verification key vk, message m ∈ Mλ and signature σ as input, either
accepts or rejects.

Further, we require that the signature scheme satisfies the following requirements:

12

1. Correctness: for all λ ∈ N and m ∈Mλ, we have

Pr[Verify(vk,m, σ) accepts] = 1,

where (vk, sk)← Gen(1λ) and σ ← Sign(sk,m).

2. Existential unforgeability: any PPT adversary A has negligible advantage in the following experiment:

Experiment EUF−CMA(A): This experiment is run by a challenger that proceeds as follows:

• The challenger generates a key pair (vk, sk)← Gen(1λ) and stores it. It provides vk to A.

• A can now make signing queries of the form (sign,m). Upon receiving such a query, the
challenger computes σ ← Sign(sk,m) and sends this to A. It also keeps a list of all such queries
made by A.

• Finally, A outputs a forgery attempt, namely a purported signature σ∗ with respect to a message
m∗. The challenger checks if:

– A never made a signing query with respect to m∗, and
– Verify(vk,m∗, σ∗) accepts

If so, the challenger outputs 1, otherwise, it outputs 0.

The advantage of the adversary A is defined to be AdvEUF−CMA(A) = Pr[EUF−CMA(A) = 1].

Signature schemes based on hardness of LWE are well known in the lattice cryptography literature [GPV08,
Lyu12].

2.8 Ring Signatures

We review the definition of compact ring signatures as presented in [BDH+19].

Definition 2.12 (Compact Ring Signature [BDH+19]). A compact ring signature scheme RS is described
by a triple of PPT algorithms (Gen,Sign,Verify) that have the following interface:

• Gen(1λ, N), given a security parameter λ and the maximum number of members in a ring N , outputs
a verification and signing key pair (VK,SK).

• Sign(SK,m,R), given a secret key SK, a message m ∈Mλ. and a list of verification keys (interpreted
as a ring) R = (VK1, · · · ,VK`) as input, outputs a ring signature Σ.

• Verify(R,m,Σ), given a ring R = (VK1, . . . ,VK`), message m ∈Mλ and ring signature Σ as input,
either accepts or rejects.

Further, we require that the ring signature satisfies the following properties:

1. Completeness: for all λ ∈ N, N ∈ N, ` ≤ N , i ∈ [`] and m ∈Mλ, we have:

Pr[RS.Verify(R,m,Σ) accepts] = 1,

where, (VKi,SKi)← Gen(1λ, N), Σ← Sign(SKi,m,R) (where R = (VK1, . . . ,VK`)).

13

2. Unforgeability: for any N ∈ N, and any Q = poly(λ), any PPT adversary A has negligible advantage
in the following game:

Experiment RS−ForgeQ(A): This experiment is run by a challenger that proceeds as follows:

• For each i ∈ [Q], the challenger generates key pairs (VKi,SKi) ← Gen(1λ, N ; ri), and stores
these key pairs along with their corresponding randomness. It then sets VK = {VK1, . . . ,VKQ}
and initializes C = ∅.

• The challenger sends VK to A.

• A can now make the following two kinds of queries: signing queries sign to get signatures signed
by a particular entity on a particular message with respect to a ring of its choice, and corruption
queries corrupt to corrupt a particular entity. The challenger responds as follows:

– Signing query (sign, i,m,R): The challenger first checks if VKi ∈ R. If so, it computes
Σ← Sign(SKi,m,R) and sends this to A. It also keeps a list of all such queries made by A.

– Corruption query (corrupt, i): The challenger adds VKi to the set C and returns the random-
ness ri to A.

• Finally, A outputs a forgery attempt, namely a purported ring signature Σ∗ with respect to a ring
R∗ and message m∗. The challenger checks if:

– R∗ ⊆ VK \ C,
– A never made a signing query with respect to m∗ and R∗ (together, i.e. of the form

(sign, ·,m∗,R∗)), and
– Verify(R∗,m∗,Σ∗) accepts.

If so, the challenger outputs 1, otherwise, it outputs 0.

The advantage of the adversary A is defined to be AdvRS−ForgeQ(A) = Pr[RS−ForgeQ(A) = 1].

3. Anonymity: for all Q = poly(λ), any PPT adversary A has negligible advantage in the following
game:

Experiment RS−AnonQ(A): This experiment is run by a challenger that proceeds as follows:

• For each i ∈ [Q], the challenger generates key pairs (VKi,SKi) ← Gen(1λ; ri). It sends these
key pairs along with their corresponding randomness to A.

• Eventually A sends a challenge to the challenger of the form (R,m, i0, i1). We stress that R
might have keys that are not generated by the challenger in the previous step. In particular, it
might contain maliciously generated keys. The challenger checks if VKi0 ,VKi1 ∈ R. If so, it first
samples a uniform bit b← {0, 1}, then computes Σ← Sign(SKib ,m,R), and sends this to A.

• A sends back its guess bit b′. The challenger outputs 1 if b′ = b, otherwise it outputs 0.

The advantage of the adversary A in this game is defined as

AdvRS−AnonQ(A) = |Pr[RS−AnonQ(A) = 1]− 1

2
|.

4. Compactness: the size of a signature is upper-bounded by a polynomial in λ and logN .

14

We mention that the unforgeability and anonymity properties defined in Definition 2.12 correspond respec-
tively to the notions of unforgeability with insider corruption and anonymity with respect to full key exposure
presented in [BKM06].

3 Compact Witness Extractable Commitments

In this section we define witness extractable commitments. A witness extractable commitment for a language
L ∈ NP with corresponding NP relation R is a two round commitment protocol. The receiver’s message
is generated using a witness w, and the sender’s commitment to a bit b is generated using a statement x.
Informally speaking, the bit b can be efficiently extracted when (x,w) ∈ R, however, when x 6∈ L, b is
statistically hidden.

For our application in this paper, we are interested in witness extractable commitments that are compact.
This means that the size of a commitment second message does not depend on the size of the NP verifier
circuit (except for maybe its depth).

3.1 Definition

Definition 3.1. Fix a language L ∈ NP. By R and {Cn,` : {0, 1}n×{0, 1}` → {0, 1}}n,`∈N denote the NP
relation and the NP verification circuit corresponding to L respectively. Also, let d = d(n, `) be the depth
of Cn,`. When it is clear from the context, we use d instead of d(n, `). A witness extractable commitment
scheme for L, is a tuple of PPT algorithms (Com1,Com2,Verify,Extract) having the following interfaces:

• Com1(1λ, 1D, w), given a security parameter λ, circuit depth upper bound D, and a witness w ∈
{0, 1}`, outputs the commitment first message com1 ∈ {0, 1}`com1=`com1(λ,D,`) and a string st ∈
{0, 1}`st representing the internal state.

• Com2(com1, x, b; r), given a commitment first message com1, a statement x, a bit b to commit, and
randomness r ∈ {0, 1}`r , outputs a commitment com2 ∈ {0, 1}`com2 .

• Verify(com1, com2, x, b, r), given a commitment transcript com1, com2, a statement x, a bit b, and
random coins r, it either accepts or rejects.

• Extract(com2, st), given a commitment com2 and internal state st, outputs a bit b.

We consider the following properties:

1. Completeness: for every λ ∈ N, bit b, every statement x, every witness w, every D ≥ d,

Pr[Verify(com1, com2, x, b, r) accepts] = 1,

where, com1← Com1(1λ, 1D, w), r ← {0, 1}`r , and com2← Com2(com1, x, b; r).

2. Statistical hiding: if x 6∈ L, then, for any ` ∈ N, any D ≥ d(|x|, `), and any sequence of strings
{com1λ ∈ {0, 1}`com1(λ,D,`)}λ∈N,

com1λ,Com2(com1λ, x, 0)
s
≈ com1λ,Com2(com1λ, x, 1)

3. Pseudorandomness of first message: for any w and any D,

Com1(1λ, 1D, w)
c
≈ U`com1

15

4. Extractability: if (x,w) ∈ R, then, for any bit b, any D ≥ d, any com1, st in the support of
Com1(1λ, 1D, w), any randomness r, and any com2 such that Verify(com1, com2, x, b, r) accepts,

Pr[Extract(com2, st) = b] = 1.

5. Compactness: the parameters `com2,`r and `st are upper-bounded by some language-independent fixed
polynomials in λ and D. In particular, they are independent of the size of the NP verifier circuit Cn,`
and the size of the statement x.

3.2 Construction

We will use the maliciously circuit private FHE scheme FHE = (FHE.Gen,FHE.Enc,FHE.Eval) of [OPP14].

Construction 3.2. Here we use the same notation as in Definition 3.1.

• Com1(1λ, 1D, w): run (FHE.pk,FHE.sk)← FHE.Gen(1λ, 1D+1). Output com1← FHE.Enc(FHE.pk, w).
Keep st := FHE.sk as internal state. Notice that for any circuit C of depth D, the circuit constructed
in Figure 1 has depth D + 1.

• Com2(com1, x, b): on input first message com1 and bit b, output

com2← FHE.Eval(com1, Gx,b; r),

where, Gx,b is the circuit defined below and r represents the random coins used in the FHE evaluation
algorithm.

• Extract(com2, st = FHE.sk): output FHE.Dec(FHE.sk, com2).

• Verify(com1, com2, x, b, r): accept iff com2 is equal to FHE.Eval(com1, Gx,b; r).

procedure Gx,b(w)
if C(x,w) = 1 then

Output b
else

Output 0

Figure 1: Description of Gx,b

Extractability and completeness of Construction 3.2 follow immediately from completeness of FHE.
Compactness also follows from compactness of FHE. In fact, using the FHE in [OPP14], both `st and `com2

only depend on λ. Finally, pseudorandomness of FHE ciphertext and public keys imply pseudorandomness
of the first message in Construction 3.2.

Theorem 3.3. If FHE is maliciously circuit private, then, the commitment scheme in Construction 3.2 is
statistically hiding.

Proof. Let x 6∈ L and let com1 be an arbitrary string. We prove this theorem via a series of hybrids.

Hybrid H0: This hybrid corresponds to committing to bit 0, i.e., it outputs

(com1,FHE.Eval(com1, Gx,0)).

16

Hybrid H1: This hybrid outputs

(com1,FHE.Sim(FHE.pk, com1, 0)).

Hybrid H2: This hybrid corresponds to committing bit 1, i.e., it outputs

(com1,FHE.Eval(com1, Gx,1)).

Lemma 3.4. If FHE is statistically maliciously circuit private, H0
s
≈ H1.

Proof. Since x /∈ L, C(x,w) = 0 for any w. The lemma follows by the statistical malicious circuit privacy
of FHE.

Lemma 3.5. If FHE is statistically maliciously circuit private, H1
s
≈ H2.

Proof. Since x /∈ L, C(x,w) = 0 for any w. The lemma follows by the statistical malicious circuit privacy
of FHE.

This completes the proof.

4 Compact Relaxed ZAPs for Extended NP ∩ coNP

In this section, we define and construct a 2-round public-coin argument system. Our argument system can be
viewed as a generalization of ZAPs for NP ∩ coNP. To describe this generalization, first we introduce the
notion of super-complement of a language. A super-complement of a language is an extension of a subset of
the complement of that language. Notably, the complement of a language is a super-complement of it.

Definition 4.1 (Super-Complement). Let L, L̃ be two languages where the elements of L̃ are represented
as pairs of bit strings. We say L̃ is a super-complement of L, if

L̃ ⊆ ({0, 1}∗ \ L)× {0, 1}∗,

i.e., L̃ is a super complement of L if for any x = (x1, x2),

x ∈ L̃⇒ x1 6∈ L.

Our argument system is defined for two NP languages L, L̃, where, L̃ is a super-complement of L. Notice
that, while the complement of L might not be in NP, however we require that L̃ ∈ NP. The language L̃ is
used to define the soundness property. Namely, producing a proof for a statement x = (x1, x2) ∈ L̃, should
be hard. We also use the fact that L̃ ∈ NP to mildly strengthen the soundness property. In more detail, instead
of having selective soundness where the statement x ∈ L̃ is fixed in advance, now, we fix a non-witness w̃
and let the statement x be adaptively chosen by the malicious prover from all statements which have w̃ as a
witness to their membership in L̃.

For our application to compact ring signatures, we further require the size of the proofs to be compact
with respect to L̃. Roughly speaking, this means that size of a proof for a statement x = (x1, x2) only
depends on the size of x1.

17

4.1 Definition

Definition 4.2. Let L, L̃ ∈ NP be two languages such that L̃ is a super complement of L. By R and R̃
denote the NP relations corresponding to L and L̃ respectively. Let {Cn,`}n,`∈N and {C̃n,`}n,`∈N be the NP
verification circuits for L and L̃ respectively. Let d̃ = d̃(n, `) be the depth of C̃n,`. A compact relaxed ZAP
for L, L̃ is a tuple of PPT algorithms (V,P,Verify) having the following interfaces (where 1n, 1λ are implicit
inputs to P, Verify):

• V(1λ, 1n, 1
˜̀
, 1D̃), given a security parameter λ, statement length n for L, witness length ˜̀for L̃, and

NP verifier circuit depth upper-bound D̃ for L̃, outputs a first message ρ.

• P(ρ, x = (x1, x2), w), given a string ρ, a statement (x1 ∈ {0, 1}n, x2), and a witness w such that
(x1, w) ∈ R, outputs a proof π.

• Verify(ρ, x = (x1, x2), π), given a string ρ, a statement x, and a proof π, either accepts or rejects.

We consider the following properties:

1. Completeness: for every (x1, w) ∈ L, every x2 ∈ {0, 1}∗, every ˜̀∈ N, every D̃ ≥ d̃(|x1|+ |x2|, ˜̀),
and every λ ∈ N,

Pr[Verify(ρ, x = (x1, x2), π) accepts] = 1,

where, ρ← V(1λ, 1|x1|, 1
˜̀
, 1D̃) and π ← P(ρ, x, w).

2. Public coin: V(1λ, 1n, 1
˜̀
, 1D̃) simply outputs a uniformly random string.

3. Selective non-witness and adaptive statement soundness: for every non-uniform polynomial-size
“cheating” prover P ∗ = {P ∗λ} there exists a negligible function ν(λ) such that for any n, D̃ ∈ N and
any non-witness w̃ ∈ {0, 1}∗,

Pr
ρ←V(1λ,1n,1|w̃|,1D̃)

(x=(x1,x2),π∗)←P ∗λ (ρ)

[Verify(ρ, x, π∗) accepts ∧ D̃ ≥ d̃(|x|, |w̃|) ∧ (x, w̃) ∈ R̃] ≤ ν(λ).

4. Statistical witness indistinguishability: for every (possibly unbounded) “cheating” verifier V ∗ =
(V ∗1 , V

∗
2), and every n, ˜̀, D̃ ∈ N the probabilities

Pr[V ∗2 (ρ, x, π, ζ) = 1 ∧ (x,w) ∈ R ∧ (x,w′) ∈ R]

in the following two experiments differ only by negl(λ):

• in experiment 1, (ρ, x, w,w′, ζ)← V ∗1 (1λ, 1n, 1
˜̀
, 1D̃), π ← P(ρ, x, w)

• in experiment 2, (ρ, x, w,w′, ζ)← V ∗1 (1λ, 1n, 1
˜̀
, 1D̃), π ← P(ρ, x, w′)

5. Compactness: bit-size of proof π is a fixed polynomial in n, ˜̀, D̃, |C| and λ. In particular, it is
independent of the size of C̃ and x2.

18

4.2 Construction

For languages L, L̃, we give the tuple of algorithms (V,P,Verify) that make up our relaxed ZAP scheme. In
the construction we will use the following ingredients:

• A witness extractable commitment Com = (Com1,Com2,Verify,Extract) for L̃. We denote the sizes
of the first commitment message, second commitment message, the internal state output by Com1, and
the randomness for Com2, by `com1 ,`com2, `st and `r respectively.

• Blum’s raw protocol Π = (P1,P2, V,BadChallenge,Sim) for L. We denote the size of the first and
second prover messages by `p1 and `p2 respectively. For any ` ∈ N , Π` means repeating the protocol
Π, ` times in parallel and interpreting the inputs to the algorithms accordingly. When it is clear from
the context, we drop the superscript `.

• A hash family Hashn,`rep = (Gen,Eval) that for any n ∈ N, and any polynomial `rep = `rep(λ) that is
larger than the polynomial m(λ) in Theorem 2.3, is CI for a circuit family Cn,`rep which we will define
next. The circuit family is defined as

Cn,`rep = {Cn,`repλ }λ∈N,

where for each λ ∈ N,

Cn,`repλ = {fst : {0, 1}`rep·`p1·`com2 → {0, 1}`rep}st∈{0,1}`st(λ) ,

where, fst is defined as

fst(x) = Π`rep .BadChallenge(Com.Extract(x, st)),

i.e., fst extracts a message from the input commitment and outputs the bad challenge corresponding to
that message. We will drop the indices n, `rep when they are clear from the context.

Construction 4.3. Let `rep = `rep(λ) be a polynomial that is larger than the polynomial m(λ) in Theo-
rem 2.3.

• V(1λ, 1n, 1
˜̀
, 1D̃): first, pick a uniformly random commitment first message com1← {0, 1}`com1(λ,D̃,˜̀),

then, generate CI-hash key k ← Hashn,`rep .Gen(1λ). Output ρ := (com1, k).

• P(ρ = (com1, k), x = (x1, x2), w): first, compute

(a, {ai,b}i∈[`rep],b∈{0,1}, ζ)← Π`rep .P1(x1, w),

and then send

π = (com2 = Com.Com2(com1, x,a; r), I = Hash.Eval(k, com2), c = Π.P2(a, I, ζ), rI ,aI)

to the verifier, where, aI = {ai,Ii}i∈[`rep] and rI denotes the subset of randomness used to commit to
aI . Also, com2I denotes the chunks of com2 which commit to aI .

• Verify(ρ, x = (x1, x2), π): parse π = (com2, I , c, rI , aI). Accept iff both Π.V(x, I,aI , c) and
Com.Verify(com1, com2I , x,aI , rI) accept.

19

Completeness of Construction 4.3 follows directly from the completeness of Π and Com. It is also public
coin because the CI hash keys are uniform. Compactness also follows from the compactness of Com, namely,
it follows from the fact that `com2, `st and `r may only polynomially depend on the depth D̃ of C̃ and not its
size.

Theorem 4.4. The protocol described in Construction 4.3 satisfies selective non-witness adaptive statement
soundness.

Proof. Fix a non-witness w̃ ∈ {0, 1}˜̀ and let A be an adversary against the selective non-witness adaptive
statement soundness of Construction 4.3. Consider the following hybrids:

Hybrid H0: This is the protocol described in Construction 4.3.

Hybrid H1: Here, the verifier generates com1 using Com.Com1 instead of sampling it uniformly at random.
Namely, it computes (com1, st)← Com.Com1(1λ, w̃) and stores st.

Lemma 4.5. Assuming Construction 3.2 has pseudorandom first messages, H0
c
≈ H1.

Proof. This follows directly from the definition of pseudorandomness of first message property in Defini-
tion 2.4.

Lemma 4.6. Assuming Hash is CI for C, Com is extractable, and Π is sound, the probability that in H1 the
verifier accepts is negligible.

Proof. Using A we build an adversary A′ against the CI property of Hash, having at least as much advantage
as A. Before receiving a hash key k for Hash, A′ generates (com1, st)← Com.Com1(1λ, w̃). The goal of
A′ is to find a correlation for Hash with respect to the function fst ∈ Cλ. When A receives the hash key k, it
sends ρ = (com1, k) to A. Next, A responds with a pair (x, π = (com2, I, c, rI ,aI)). Finally, A′ outputs
z := com2.

Clearly, the distribution of ρ sent by A′ is identical to its distribution in H1. Now, notice that, if
(x, w̃) ∈ R̃, then, x1 6∈ L. Let a′ := Com.Extract(com2, st). If Verify(ρ, x, π) accepts, then,

(i)Com.Verify(com1, com2, x1,aI , rI) accepts

and,
(ii)Π.V(x1, I,aI , cI) accepts.

By extractability of Com, (i) implies that, aI = a′I , where a′I denotes the substring of a′ whose indices
corresponds to the indices determined by aI . Consequently, since Π is sound, (ii) implies that, I =
Π.BadChallenge(a′). Therefore,

Pr[Verify(ρ, x, π) accepts] ≤ Pr[Hash.Eval(k, com2) = fst(com2)].

This completes the proof of this lemma.

Observe that, checking (x, w̃) ∈ R̃ can be done efficiently. Therefore, the theorem follows by Lemma 4.5
and Lemma 4.6.

We now show that Construction 4.3 is statistically witness indistinguishable. Our proof strategy resembles
the one used in [GJJM20].

20

Theorem 4.7. The protocol described in Construction 4.3 is statistically witness indsitinguishable.

Proof. We proceed via a series of hybrids. For each 0 ≤ i ≤ `rep and each 0 ≤ j ≤ 5 define hybrids Hi,j as
follows:

Hybrid Hi = Hi,0: In this hybrid, the first i repetitions of the proof use witness w2 and the rest use w1.
More concretely, here, for each j ∈ [i] the prover computes

(aj , (aj,0, aj,1), ζj)← Π.P1(x1, w2),

and for each j ∈ [i+ 1, `rep] computes,

(aj , (aj,0, aj,1), ζj)← Π.P1(x1, w1).

The rest of Hi proceeds exactly as in P.

Hybrid Hi,1: Here, the prover first picks a uniformly random bit b′ ← {0, 1} and then proceeds exactly as
in Hi,0 to compute I . If b′ 6= Ii+1, it restarts, otherwise it continues and finishes the proof as in Hi,0.

Hybrid Hi,2: The difference between this hybrid and the previous hybrid is how the prover generates
the commitment com2i+1. In this hybrid, the prover commits to ai+1,b′ as before. But, instead of
committing to the bits of ai+1 which are not in ai+1,b′ , i.e. ai+1 \ ai+1,b′ , the prover commits to 0.

Hybrid Hi,3: This hybrid does not use Π.P1 to generate ai+1. Instead, it computes (ai+1,b′ , ci+1) as

(ai+1,b′ , ci+1)← Π.Sim(b′, x1),

and implicitly sets the rest of bits of ai+1, i.e., the bits of ai+1 not determined by ai+1,b′ , to zero.

Hybrid Hi,4: The only difference between this hybrid and the previous one is that, here, the prover computes
ai+1, ai+1,0, ai+1,1, ci+1 as follows

(ai+1, (ai+1,0, ai+1,1), ζi+1)← Π.P1(x1, w2)

ci+1 ← Π.P2(ai+1, b
′, ζi+1).

Hybrid Hi,5: This hybrid is almost identical to Hi,4 except that, here, the prover computes com2i+1 as

com2i+1 ← Com.Com2(com1, x, ai+1).

Notice that H0,0 corresponds to generating a proof using w1 and H`rep,0 corresponds to using w2 as the
witness.

Lemma 4.8. For every 0 ≤ i < `rep, Hi,0 and Hi,1 are distributed identically.

Proof. This follows from the fact that in Hi,1, b′ is chosen uniformly at random.

Lemma 4.9. For every 0 ≤ i < `rep, Hi,1
s
≈ Hi,2.

Proof. Since x1 ∈ L, x 6∈ L̃. Therefore, the lemma follows by the statistical hiding property of Com.

Lemma 4.10. For every 0 ≤ i < `rep, Hi,2 and Hi,3 are identically distributed.

21

Proof. This is a direct implication of the zero knowledge property of Π.

Lemma 4.11. For every 0 ≤ i < `rep, Hi,3 and Hi,4 are identically distributed.

Proof. This is a direct implication of the zero knowledge property of Π.

Lemma 4.12. For every 0 ≤ i < `rep, Hi,4
s
≈ Hi,5.

Proof. Since x1 ∈ L, x 6∈ L̃. Therefore, the lemma follows by the statistical hiding property of Com.

Lemma 4.13. For every 0 ≤ i < `rep, Hi,5 and Hi+1,0 are identically distributed.

Proof. This follows from the fact that b′ is chosen uniformly at random.

This completes the proof.

5 Compact LWE-based Ring Signature Scheme

In this section, we present our compact ring signature scheme. First, we briefly list the ingredients in our
construction:

• A standard signature scheme Sig = (Gen, Sign, Verify) with EUF−CMA security.

• A public key encryption scheme PKE = (GenWithKey, Enc, Dec, Valid) as defined in Definition 2.4.

• A somewhere perfectly binding hash function SPB = (Gen, Hash, Open, Verify) with private local
openings.

• A compact relaxed ZAP scheme ZAP = (V, P, Verify) as described in section 4.

Next, we define the languages L and L̃ that we will instantiate our relaxed ZAP construction for. The
language L is identical to the language L used in the ring signature construction of [BDH+19]. For a
statement y1 = (m, c, hk, h) and witness w = (VK = (vk, pk, ρ), i, τ, σ, rc), define relations R1, R2 and
R3 as follows:

(y1, w) ∈ R1 ⇔ SPB.Verify(hk, h, i,VK, τ) accepts

(y1, w) ∈ R2 ⇔ PKE.Enc(pk, (σ, vk); rc) = c

(y1, w) ∈ R3 ⇔ Sig.Verify(vk,m, σ) accepts

Next, define the relation R′ as
R′ := R1 ∩R2 ∩R3.

Let L′ be the language corresponding to R′. For statements of the form (m, c1, c2, hk1, hk2, h1, h2),
define the language L as

L = {(m, c1, c2, hk1, hk2, h1, h2)|(m, c1, hk1, h1) ∈ L′ ∨ (m, c2, hk2, h2) ∈ L′}.

22

Now, we define the language L̃ and prove that it is a super-complement of L. Let x2 = R =
(VK1, . . . ,VK`), y = (y1, x2), and w̃ = s. Define the following relations:

(y, w̃) ∈ R4 ⇔ ∀j ∈ [`] : PKE.Valid(pkj , s) accepts ∧ h = SPB.Hash(hk,R)

(y, w̃) ∈ R5 ⇔ PKE.Dec(s, c) = (σ, vk) ∧ Sig.Verify(vk,m, σ) accepts

∧ ∃VK ∈ R : VK = (vk, pk, ρ) for some pk and ρ

where, for each j ∈ [`], VKj = (vkj , pkj , ρj). Let L4, L5 be the languages corresponding to R4, R5

respectively.
Define further the relation R̂ according to

R̂ := R4 \R5,

and let L̂ be the corresponding language. Finally, for statements of the form
x = (x1 = (m, c1, c2, hk1, hk2, h1, h2), x2 = R), let L̃ be the language given by

L̃ = {(m, c1, c2, hk1, hk2, h1, h2,R)|(m, c1, hk1, h1,R) ∈ L̂ ∧ (m, c2, hk2, h2,R) ∈ L̂}.

Given the properties of the SPB and PKE we can quickly prove the following lemma.

Lemma 5.1. If SPB is somewhere perfectly binding and PKE is complete, L̃ is a super-complement of L.

Proof. Consider the statement

x = (x1 = (m, c1, c2, hk1, hk2, h1, h2), x2 = R),

and let

y1 = (m, c1, hk1, h1) and

y′1 = (m, c2, hk2, h2).

We show that for every w = (VK = (vk, pk, ρ), i, τ, σ, rc) and every w̃ = s,

(y1, w) ∈ R′ ∧ ((y1, x2), w̃) ∈ R4 ⇒ ((y1, x2), w̃) ∈ R5.

If (y1, w) ∈ R1 and ((y1, x2), w̃) ∈ R4, then, by the somewhere perfectly binding of SPB, VK ∈ R.
Now, notice that by the completeness of PKE, since PKE.Valid(pk, s) accepts, if (y1, w) ∈ R2 ∩R3, then,
(y1, w̃) ∈ R5.

With a similar approach we can argue that

(y′1, w) ∈ R′ ∧ ((y′1, x2), w̃) ∈ R4 ⇒ ((y′1, x2), w̃) ∈ R5.

This completes the proof.

We will employ the relaxed ZAP scheme for the languages L and L̃.

23

5.1 Construction

Construction 5.2. Let D̃ = D̃(λ,N) be the maximum depth of the NP verifier circuit for language L̃
restricted to statements where the the ring has at most N members, and the security parameter corresponding
to SPB hash keys and values and PKE ciphertext is λ. By n = n(λ, logN) denote the maximum size of the
statements of language L where the ring has at most N members and the security parameter is λ. Recall
that for security parameter λ, secret keys in PKE have size ˜̀= `sk(λ). We now describe our ring signature
construction:

• Gen(1λ, N):

– sample signing and verification keys (vk, sk)← Sig.Gen(1λ),

– sample pk uniformly from the keyspace of PKE,

– compute the first message ρ← ZAP.V(1λ, 1n, 1
˜̀
, 1D̃) for the relaxed ZAP scheme,

– output the verification key VK = (vk, pk, ρ) and signing key SK = (sk, vk, pk, ρ).

• Sign(SK,m,R = (VK1, . . . ,VK`)):

– parse SK = (sk, vk, pk, ρ),

– compute σ ← Sig.Sign(sk,m),

– let VK = VKi ∈ R be the verification key corresponding to SK,

– sample hash keys (hk1, shk1)← SPB.Gen(1λ, |R|, i), and compute the hash h1 ← SPB.Hash(hk1,R),

– compute the opening τ1 ← SPB.Open(hk1, shk1,R, i) to position i,

– compute c1 ← PKE.Enc(pk, (σ, vk); rc1)

– sample hash keys (hk2, shk2)← SPB.Gen(1λ, |R|, i) and compute the hash h2 ← SPB.Hash(hk2,R),

– sample c2 randomly from the ciphertext space of PKE,

– let VK1 = (vk1, pk1, ρ1) denote the lexicographically smallest member of R (as a string; note
that this is necessarily unique).,

– fix statement x1 = (m, c1, c2, hk1, hk2, h1, h2), witness w = (vk, pk, i, τ1, σ, rc1), and state-
ment x2 = R,

– Compute π ← ZAP.P(ρ1, x = (x1, x2), w),

– output Σ = (c1, hk1, c2, hk2, π).

• Verify(Σ,m,R):

– identify the lexicographically smallest verification key VK1 in R,

– compute h′1 = SPB.Hash(hk1,R),

– compute h′2 = SPB.Hash(hk2,R),

– fix x1 = (m, c1, c2, hk1, hk2, h
′
1, h
′
2), and x2 = R,

– determine ρ1 in VK1,

– compute and output ZAP.Verify(ρ1, x, π).

Completeness of Construction 5.2 follows by the completeness of SPB and ZAP. For compactness,
notice that D̃ is upper-bounded by a polynomial in λ and logN , and therefore, since Construction 4.3 is
compact, Construction 5.2 is also compact.

24

5.2 Unforgeability

Here, we prove that our ring signature scheme possesses the unforgeability property as defined in Defi-
nition 2.12. The proof strategy is as follows: we leverage the selective non-witness adaptive statement
soundness of ZAP to conclude that there must be a valid signature σ in the forgery attempt, and essentially try
to obtain this signature with significantly high probability so that we can devise a reduction to the existential
unforgeability of Sig.

Theorem 5.3. Construction 5.2 is unforgeable, assuming Sig is EUF−CMA secure, PKE has injective key
generation and pseudorandom public keys, SPB is somewhere perfectly binding, and ZAP satisfies selective
non-witness adaptive statement soundness.

Proof. We start by considering a PPT adversary A that participates in the unforgeability game. Let Q =
poly(λ) be an upper bound on the number of key queries made by A.

We proceed with a hybrid argument to set up our reduction to the unforgeability of Sig. Consider the
following hybrids:

Hybrid H0: This is just the standard unforgeability game. In particular, for all i ∈ [Q], the challenger in the
game generates pki by sampling an element uniformly from the keyspace of PKE.

Hybrid H1: In this experiment, the only difference is that, the challenger first picks a uniformly random
secret key skPKE for PKE, and then generates the corresponding public keys for the adversary using this,
namely pki ← PKE.GenWithKey(skPKE), for all i ∈ [Q]. The challenger now stores skPKE.

Lemma 5.4. Assuming PKE has pseudorandom public keys, H0
c
≈ H1.

Proof. Let A be a PPT adversary attempting to distinguish H0 and H1. We use A to build an adversary A′
having the same advantage against the pseudorandomness of public keys of PKE. Here, A′ is either given
{pki ← GenWithKey(sk)}i∈[Q] for a sk chosen uniformly at random or {pki ← PKλ}i∈[Q]. We define A′
to proceed exactly as in H0 but using the public keys that is given to it as input. Clearly, if pkis are generated
with a single uniformly chosen secret key, then, the view of A is identical to H1, whereas, if pkis are chosen
uniformly at random, the view of A is identical to H0.

Now, we will proceed to show that unforgeability holds in H1. Consider the adversary’s forgery
attempt (Σ∗ = (c∗1, hk

∗
1, c
∗
2, hk

∗
2, π
∗),m∗,R∗). Define x∗1 as the statement corresponding to Σ∗ as x∗1 =

(m∗, c∗1, c
∗
2, hk

∗
1, hk

∗
2, h
∗
1, h
∗
2), where h∗1 = SPB.Hash(hk∗1,R

∗) and h∗2 = SPB.Hash(hk∗2,R
∗). Let VK∗1 =

(vk∗1, pk
∗
1, ρ
∗
1) be the lexicographically smallest verification key in R∗.

Our next step is to show that if π∗ is a valid proof for x∗ = (x∗1, x
∗
2 = R∗) under ρ∗1, then, with

overwhelming probability, x∗ 6∈ L̃.

Lemma 5.5. In H1, assuming ZAP satisfies selective non-witness adaptive statement soundness, and PKE
has injective key generation,

Pr[x∗ ∈ L̃ ∧ ZAP.Verify(ρ∗1, x
∗, π∗) accepts] = negl(λ).

Proof. It is enough to show that for each j ∈ [Q],

Pr[x∗ ∈ L̃ ∧ ZAP.Verify(ρj , x
∗, π∗) accepts] = negl(λ),

25

where ρj denotes the ZAP first message corresponding to the jth verification key VKj generated in the game.
LetA be an adversary attempting to output a forgery such that x∗ ∈ L̃ ∧ ZAP.Verify(ρj , x

∗, π∗) accepts.
We build an adversaryA′ against the selective non-witness adaptive statement soundness of ZAP for languages
L and L̃ with fixed non-witness w̃ = skPKE. The algorithm A′ proceeds as follows:

• on input ZAP first message ρ̂, it sets ρj = ρ̂ and then proceeds exactly as H1.

• upon recieving the forgery attempt Σ∗ from A, it constructs the corresponding x∗ and π∗, and outputs
(x∗, π∗).

To finish the proof of this lemma, we observe that if x∗ ∈ L̃, then, except with negligible probability,
(x∗, skPKE) ∈ R̃. This is because, if x∗ ∈ L̃, then, by definition of L̃, there exists a non-witness w̃∗ such that,

∀(vk∗i , pk∗i , ρ∗i) ∈ R∗ : PKE.Valid(pk∗i , w̃
∗) accepts,

and since PKE has injective key generation, it follows that except with negligible probability, w̃∗ = skPKE.

In the next lemma we show that if x∗ 6∈ L̃, then, by decrypting c∗1 or c∗2, we can find a forgery for Sig.

Lemma 5.6. In H1, assuming Sig is EUF−CMA secure, PKE has injective key generation, and SPB is
somewhere perfectly binding,

Pr[x∗ 6∈ L̃] = negl(λ).

Proof. Let A be an adversary attempting to output a forgery such that x∗ 6∈ L̃. We build an algorithm A′
against the EUF−CMA security of Sig. The algorithm A′ proceeds as follows,

• on input v̂k, first picks an index j ← [Q] uniformly at random, and then sets vkj = v̂k. It then
proceeds as in H1 to prepare the rest of the verification keys.

• when A sends a signing query, if it is using keys from a party other than the jth party, it proceeds as in
H1, otherwise, it uses the EUF−CMA game’s signing oracle to obtain a signature for the jth party and
then continues exactly as in H1.

• if A tries to corrupt the jth party, A′ aborts.

• upon recieving the forgery attempt Σ∗ from A, it decrypts c∗1 using skPKE to recover σ∗1 .
If Sig.Verify(vkj ,m

∗, σ∗1) accepts, it sets σ̂ := σ∗1 . Otherwise, it decrypts c∗2 with skPKE to recover σ∗2 ,
and sets σ̂ = σ∗2 . It outputs (m∗, σ̂).

To finish the proof, we show that with probability at least

1

Q
(Pr[x∗ 6∈ L̃]− negl(λ)),

(m∗, σ̂) is a valid forgery for key vkj . Without loss of generality assume that

(m∗, c∗1, hk
∗
1, h
∗
1,R
∗) 6∈ L̂.

Observe that due to the way H1 generates the public keys and also by definition of h∗1,

(m∗, c∗1, hk
∗
1, h
∗
1,R
∗) ∈ L4.

26

Therefore, by definition of L̂, there exists a string w̃ such that,

((m∗, c∗1, hk
∗
1, h
∗
1,R
∗), w̃) ∈ R5.

By an argument similar to the one presented in Lemma 5.5, it follows that except with negligible probability
w̃ = skPKE. Consequently, (i) PKE.Dec(skPKE , c∗1) = (σ∗, vk∗) for some σ∗ and vk∗, (ii) due to the
somewhere perfectly binding property of SPB, there exists VK∗ = (vk∗, pk∗, ρ∗) such that VK∗ ∈ R∗, and
finally (iii) Sig.Verify(vk∗,m∗, σ∗) accepts. We conclude that the adversary uses a verification key VK∗ ∈ R∗

and that c∗1 encrypts (among other things) a signature σ∗ that is valid for the forgery message m∗ w.r.t. key
vk∗. Since index j is chosen uniformly at random, vkj = vk∗ with probability 1/Q.

Lemma 5.5 and Lemma 5.6 show that any efficient adversary has negligible chance of winning the
RS−FORGE game in hybrid H1. We observe that winning the RS−FORGE game is an event that can
be efficiently tested, therefore, by Lemma 5.4 no efficient adversary can win the RS−FORGE game in hybrid
H0, i.e., Construction 5.2 is unforgeable.

5.3 Anonymity

We now prove that our construction satisfies anonymity. Recall that this corresponds to an experiment where
the adversary recieves the secret keys and randomness of all the existing parties, and then recieves a challenge
signature created using the keys of one of two possible parties (of course, the challenge ring may also include
parties that were created by the adversary). Our task is to show that the adversary cannot distinguish between
a signature created by party i0 and one created by party i1 (for any distinct i0, i1). We will do this using a
sequence of hybrids. Our strategy will be roughly as follows: we start with a signature produced using the
signing key of party i0. First, we switch c2 to valid encryptions of a signature under vki1 (along with vki1)
and hk2 to a valid SPB hash key to the index for VKi1 in the ring respectively. Next, we switch the witness
used in π to use these values (instead of c1 and hk1). Then, we change c1 to valid encryption of a signature
under vki1 and a valid SPB hash key to the index for VKi1 in the ring respectively. Finally, we change c2 to a
junk ciphertext, as in the honest signing algorithm. The final hybrid just outputs a signature using the keys
for party i1, and thus we only have to show that the adversary cannot detect any of the individual changes
outlined above.

Theorem 5.7. Assume PKE has close to uniform ciphertexts and sparse valid public keys as described
in Definition 2.4, SPB is index hiding, and ZAP is statistically witness indistinguishable. Then the ring
signature scheme in Construction 5.2 satisfies the anonymity property described in Definition 2.12.

Proof. Let A be a PPT adversary participating in the anonymity game. Let Q = poly(λ) be an upper bound
on the number of key queries made by A. Suppose that the adversary’s eventual challenge is (R,m, i0, i1).
Let t0, t1 be the indices of VKi0 , VKi1 in R respectively. Denote by ρ the ZAP first message corresponding
to the lexicographically smallest VK in R. As pointed out, it suffices to show that a signature prepared using
SKi0 is indistinguishable from one prepared using SKi1 , even when A has all the keys VK1, · · · ,VKQ and
the randomness used in creating them. We do so using the following hybrids:

Hybrid H0: This hybrid simply runs the anonymity game honestly as the challenger, and sends an honest
signature generated using SKi0 , namely Σ = (c1, hk1, c2, hk2, π), as the challenge to the adversary.

Hybrid H1: The only change in this hybrid is that it samples hk2 in the signature with index t1, i.e.
(hk2, shk2)← SPB.Gen(1λ, |R|, t1).

27

Hybrid H2: The only difference between this hybrid and H1 is that here, instead of sampling c2 uniformly
from the PKE ciphertext space, it generates c2 as c2 ← PKE.Enc(pki1 , (σ

′, vki1); rc2), where, σ′ ←
Sig.Sign(ski1 ,m).

Hybrid H3: This hybrid works exactly like the previous one, except that it uses a witness corresponding
to (c2, hk2) to generate the proof π. Namely, it computes witness w′ = (vki2 , pki2 , t1, τ

′
2, σ
′, rc2), where,

τ ′2 = SPB.Open(hk2, shk2,R, t1), and proof π is generated as π ← ZAP.P(ρ, x, w′).

Hybrid H4: This hybrid is similar to H3, except that it now computes c1 by sampling it uniformly from the
ciphertext space of PKE.

Hybrid H5: This hybrid works exactly like the previous, with the only difference being that it generates hk1
with respect to index t1, i.e., (hk1, shk1)← SPB.Gen(1λ, |R|, t1).

Hybrid H6: It is identical to H5, except that here, c1 ← PKE.Enc(pki1 , (σ
′, vki1); rc1) where σ′ ←

Sig.Sign(ski1 ,m).

Hybrid H7: The only change in this hybrid is that, it uses a witness corresponding to (c1, hk1) to generate
the ZAP proof. Namely, it computes w′′ = (vk, pk, t1, τ

′
1, σ, rc1 ,), where τ ′1 = SPB.Open(hk1, shk1,R, t1),

and π = ZAP.P(ρ, x, w′′), and uses this in Σ.

Hybrid H8: This hybrids works exactly like the previous, except that it now computes c2 by sampling it
uniformly from the ciphertext space of Enc. Notice that this hybrid corresponds to generating the signature
using SKi1 .

Lemma 5.8. Assuming SPB is index hiding, H0
c
≈ H1.

Proof. Let A be an adversary attempting to distinguish H0 and H1. We use A to build an adversary A′
having the same advantage against the index hiding property of SPB. A′ runs A and interacts with it exactly
like H0, till the point where A sends its challenge (R,m, i0, i1). At this point, A′ sends (t0, t1, |R|) to its
index hiding challenger. A′ then receives a SPB hash key hk∗, which is either SPB.Gen(1λ, |R|, t0) or
SPB.Gen(1λ, |R|, t1). It uses hk∗ as the key hk2 for generating the challenge signature Σ for A. If hk∗ is
generated for index t0 then A’s view is identical to its view in H0. Otherwise, if hk∗ corresponds to t1, A’s
view is identical to its view in H1.

Lemma 5.9. If PKE has close to uniform ciphertexts, H1
s
≈ H2.

Proof. This follows directly from the definition of close to uniform ciphertexts property described in
Definition 2.4.

Lemma 5.10. If ZAP is statistically witness indistinguishable, and PKE has sparse valid public keys,
H2

s
≈ H3.

Proof. At least two of the public-keys in R, pki0 and pki1 are generated uniformly at random. Consequently,
since PKE has sparse valid public keys, except with negligible probability,

6 ∃sk : (∀(vk, pk, ρ) ∈ R : PKE.Valid(pk, sk) accepts).

Thus, x1 6∈ L̃, and consequently, the lemma follows from the definition of witness indistinguishability
described in Definition 2.4.

28

Lemma 5.11. If PKE has close to uniform ciphertexts, H3
s
≈ H4.

Proof. This follows directly from the definition of close to uniform ciphertexts property described in
Definition 2.4.

Lemma 5.12. Assuming SPB is index hiding, H4
c
≈ H5.

Proof. The proof of the lemma is almost identical to Lemma 5.8.

Lemma 5.13. If PKE has close to uniform ciphertexts, H5
s
≈ H6.

Proof. This follows directly from the definition of close to uniform ciphertexts property described in
Definition 2.4.

Lemma 5.14. If ZAP is statistically witness indistinguishable, and PKE has sparse valid public keys,
H6

s
≈ H7.

Proof. The proof for this lemma is very similar to Proof 23 and we won’t repeat it.

Lemma 5.15. If PKE has close to uniform ciphertexts, H7
s
≈ H8.

Proof. This follows directly from the definition of close to uniform ciphertexts property described in
Definition 2.4.

This completes the proof of Theorem 5.7

6 Acknowledgments

We thank anonymous reviewers for pointing out issues in Definition 2.6 and Definition 3.1 in an earlier
version of this work.

Omkant Pandey is supported in part by DARPA SIEVE Award HR00112020026, NSF grants 1907908
and 2028920, and a Cisco Research Award.

Sanjam Garg is supported in part by DARPA under Agreement No. HR00112020026, AFOSR Award
FA9550-19-1-0200, NSF CNS Award 1936826, and research grants by the Sloan Foundation and Visa Inc.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the United States Government, DARPA, AFOSR, NSF,
Cisco, Sloan Foundation, or Visa Inc.

References

[AOS02] M. Abe, M. Ohkubo, and K. Suzuki. 1-out-of-n signatures from a variety of keys. In ASIACRYPT,
pages 415–432. 2002. 1.4

[BD18] Z. Brakerski and N. Döttling. Two-message statistically sender-private OT from LWE. In TCC,
pages 370–390. 2018. 1.3, 2.8

29

[BDF+11] D. Boneh, Ö. Dagdelen, M. Fischlin, A. Lehmann, C. Schaffner, and M. Zhandry. Random
oracles in a quantum world. In International conference on the theory and application of
cryptology and information security, pages 41–69. Springer, 2011. A

[BDH+19] M. Backes, N. Döttling, L. Hanzlik, K. Kluczniak, and J. Schneider. Ring signatures:
Logarithmic-size, no setup - from standard assumptions. In EUROCRYPT, pages 281–311.
2019. 1, 1.2, 1.3, 1.4, 2.3, 2.6, 2.10, 2.8, 2.12, 5

[BFJ+20] S. Badrinarayanan, R. Fernando, A. Jain, D. Khurana, and A. Sahai. Statistical ZAP arguments.
In EUROCRYPT, pages 642–667. 2020. 1.1, 1.3

[BGLS03] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and verifiably encrypted signatures
from bilinear maps. In EUROCRYPT, pages 416–432. 2003. 1.4

[BH18] X. Boyen and T. Haines. Forward-secure linkable ring signatures. In ACISP, pages 245–264.
2018. 1.4

[BHKS18] M. Backes, L. Hanzlik, K. Kluczniak, and J. Schneider. Signatures with flexible public key:
Introducing equivalence classes for public keys. In ASIACRYPT, pages 405–434. 2018. 1.4

[BK10] Z. Brakerski and Y. T. Kalai. A framework for efficient signatures, ring signatures and identity
based encryption in the standard model. Cryptology ePrint Archive, Report 2010/086, 2010.
https://eprint.iacr.org/2010/086. 1.4

[BKM06] A. Bender, J. Katz, and R. Morselli. Ring signatures: Stronger definitions, and constructions
without random oracles. In TCC, pages 60–79. 2006. 1.3, 1.4, 2.8

[BKP20] W. Beullens, S. Katsumata, and F. Pintore. Calamari and falafl: Logarithmic (linkable) ring
signatures from isogenies and lattices. In ASIACRYP, pages 464–492. 2020. 1.4

[BLO18] C. Baum, H. Lin, and S. Oechsner. Towards practical lattice-based one-time linkable ring
signatures. In ICICS, pages 303–322. 2018. 1, 1.4

[BLP+13] Z. Brakerski, A. Langlois, C. Peikert, O. Regev, and D. Stehlé. Classical hardness of learning
with errors. In STOC, pages 575–584. 2013. 2.1

[Blu87] M. Blum. How to prove a theorem so no one else can claim it. In Proceedings of the International
Congress of Mathematicians, pages 1444–1451. 1987. 2.4, 2.4

[BZ13a] D. Boneh and M. Zhandry. Quantum-secure message authentication codes. In Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques, pages 592–608.
Springer, 2013. A

[BZ13b] D. Boneh and M. Zhandry. Secure signatures and chosen ciphertext security in a quantum
computing world. In Annual cryptology conference, pages 361–379. Springer, 2013. A, A.1,
A.1, A.2, A.2, A.2, A.2

[CCH+19] R. Canetti, Y. Chen, J. Holmgren, A. Lombardi, G. N. Rothblum, R. D. Rothblum, and D. Wichs.
Fiat-Shamir: From practice to theory. In STOC. 2019. To appear. 1.2, 1.3

30

https://eprint.iacr.org/2010/086

[CGS07] N. Chandran, J. Groth, and A. Sahai. Ring signatures of sub-linear size without random oracles.
In ICALP, pages 423–434. 2007. 1.4

[CWLY06] S. S. M. Chow, V. K. Wei, J. K. Liu, and T. H. Yuen. Ring signatures without random oracles. In
ASIACCS, pages 297–302. 2006. 1.4

[DKNS04] Y. Dodis, A. Kiayias, A. Nicolosi, and V. Shoup. Anonymous identification in ad hoc groups. In
EUROCRYPT, pages 609–626. 2004. 1.4

[DN00] C. Dwork and M. Naor. Zaps and their applications. SIAM J. Comput., 36(6):1513–1543, 2007.
1.3

[EZS+19] M. F. Esgin, R. K. Zhao, R. Steinfeld, J. K. Liu, and D. Liu. Matrict: Efficient, scalable and
post-quantum blockchain confidential transactions protocol. In CCS, pages 567–584. 2019. 1.4

[FS86] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and signature
problems. In CRYPTO, pages 186–194. 1986. 1.2

[Gen09] C. Gentry. A fully homomorphic encryption scheme. Ph.D. thesis, Stanford University, 2009.
http://crypto.stanford.edu/craig. 1.3

[Gha13] E. Ghadafi. Sub-linear blind ring signatures without random oracles. In IMACC, pages 304–323.
2013. 1.4

[GJJM20] V. Goyal, A. Jain, Z. Jin, and G. Malavolta. Statistical zaps and new oblivious transfer protocols.
In EUROCRYPT, pages 668–699. 2020. 1.1, 1.3, 4.2

[GK15] J. Groth and M. Kohlweiss. One-out-of-many proofs: Or how to leak a secret and spend a coin.
In EUROCRYPT, pages 253–280. 2015. 1.4

[Gon17] A. González. A ring signature of size Θ(sqrt[3]{n}) without random oracles. 2017. https:
//eprint.iacr.org/2017/905. 1.4

[GPV08] C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and new cryptographic
constructions. In STOC, pages 197–206. 2008. 1, 2.7

[HS03] J. Herranz and G. Sáez. Forking lemmas for ring signature schemes. In INDOCRYPT, pages
266–279. 2003. 1.4

[LLNW16] B. Libert, S. Ling, K. Nguyen, and H. Wang. Zero-knowledge arguments for lattice-based
accumulators: Logarithmic-size ring signatures and group signatures without trapdoors. In
EUROCRYPT, pages 1–31. 2016. 1.4

[LNPY20] B. Libert, K. Nguyen, T. Peters, and M. Yung. One-shot fiat-shamir-based nizk arguments of
composite residuosity in the standard model. Cryptology ePrint Archive, Report 2020/1334,
2020. https://eprint.iacr.org/2020/1334. 1.4

[LNS21] V. Lyubashevsky, N. K. Nguyen, and G. Seiler. SMILE: set membership from ideal lattices with
applications to ring signatures and confidential transactions. In CRYPTO. 2021. To appear. 1.4

[LPQ18] B. Libert, T. Peters, and C. Qian. Logarithmic-size ring signatures with tight security from the
DDH assumption. In ESORICS, pages 288–308. 2018. 1, 1.4

31

http://crypto.stanford.edu/craig
https://eprint.iacr.org/2017/905
https://eprint.iacr.org/2017/905
https://eprint.iacr.org/2020/1334

[LVW19] A. Lombardi, V. Vaikuntanathan, and D. Wichs. 2-message publicly verifiable WI from (subex-
ponential) LWE. Cryptology ePrint Archive, Report 2019/808, page 808, 2019. 1.1, 1.3

[Lyu12] V. Lyubashevsky. Lattice signatures without trapdoors. In EUROCRYPT, pages 738–755. 2012.
2.7

[Mer87] R. C. Merkle. A digital signature based on a conventional encryption function. In CRYPTO,
pages 369–378. 1987. 1.2

[Mic10] D. Micciancio. Duality in lattice cryptography. In Public Key Cryptography. 2010. Invited talk.
1

[MS17] G. Malavolta and D. Schröder. Efficient ring signatures in the standard model. In ASIACRYPT,
Lecture Notes in Computer Science, pages 128–157. 2017. 1.4

[Noe15] S. Noether. Ring signature confidential transactions for monero. 2015. https://eprint.
iacr.org/2015/1098. 1

[NY90] M. Naor and M. Yung. Public-key cryptosystems provably secure against chosen ciphertext
attacks. In STOC, pages 427–437. 1990. 1.2

[OPP14] R. Ostrovsky, A. Paskin-Cherniavsky, and B. Paskin-Cherniavsky. Maliciously circuit-private
FHE. In CRYPTO, pages 536–553. 2014. 1.3, 2.7, 2.8, 3.2, 3.2

[Pei09] C. Peikert. Public-key cryptosystems from the worst-case shortest vector problem. In STOC,
pages 333–342. 2009. 2.1

[PRS17] C. Peikert, O. Regev, and N. Stephens-Davidowitz. Pseudorandomness of Ring-LWE for any
ring and modulus. In STOC, pages 461–473. 2017. 2.1

[PS96] D. Pointcheval and J. Stern. Provably secure blind signature schemes. In International Confer-
ence on the Theory and Application of Cryptology and Information Security, pages 252–265.
Springer, 1996. A.1

[PS19a] S. Park and A. Sealfon. It wasn’t me! - repudiability and claimability of ring signatures. In
CRYPTO, pages 159–190. 2019. 1, 1.4

[PS19b] C. Peikert and S. Shiehian. Noninteractive zero knowledge for NP from (plain) learning with
errors. In CRYPTO, pages 89–114. 2019. 1.2, 1.3, 2.2, 2.2, 2.3

[Reg05] O. Regev. On lattices, learning with errors, random linear codes, and cryptography. J. ACM,
56(6):1–40, 2009. Preliminary version in STOC 2005. 1.3, 2.1, 2.3, 1

[RT01] R. Rivest and A. S. Y. Tauman. How to leak a secret. In ASIACRYPT, pages 552–565. 2001. 1,
1.4

[SS10] S. Schäge and J. Schwenk. A cdh-based ring signature scheme with short signatures and public
keys. In Financial Cryptography and Data Security, pages 129–142. 2010. 1.4

[SW07] H. Shacham and B. Waters. Efficient ring signatures without random oracles. In PKC, pages
166–180. 2007. 1.4

32

https://eprint.iacr.org/2015/1098
https://eprint.iacr.org/2015/1098

[TSS+18] W. A. A. Torres, R. Steinfeld, A. Sakzad, J. K. Liu, V. Kuchta, N. Bhattacharjee, M. H. Au, and
J. Cheng. Post-quantum one-time linkable ring signature and application to ring confidential
transactions in blockchain (lattice ringct v1. 0). In Australasian Conference on Information
Security and Privacy, pages 558–576. Springer, 2018. 1, 1.4

[Zha12] M. Zhandry. Secure identity-based encryption in the quantum random oracle model. In Annual
Cryptology Conference, pages 758–775. Springer, 2012. A

A Quantum Security for Ring Signatures

In the literature for post-quantum signature schemes, one encounters two flavours of security definitions
against quantum adversaries.

• Weak Security: Here the security games are defined as in the classical case, except that the adversary
is allowed to be a QPT machine. We emphasize that the communication between the challenger and
the adversary is still classical. Namely, the adversary is not allowed to query the challenger’s circuit
in a quantum manner. The technical challenges in these settings typically stem from schemes in
the quantum random oracle model (where the random oracle can be queried in superposition), see
e.g., [BDF+11, Zha12].

• Full Security: In this model we allow the adversary to query the challenger in a quantum manner.
Even defining the right notion of security in these settings can be non-trivial [BZ13b, BZ13a], and the
exact definition depends closely on the functionality that one requires.

In this section we lift the definition of anonymity and unforgeability to the quantum settings (in the full sense),
then we present a generic transformation that allows us to compile any weakly post-quantum secure ring
signature scheme into a fully quantum secure one (under our definitions).

A.1 Defining (Strong) Quantum Security

We present the definitions of anonymity and unforgeability below.

Quantum Anonymity. Recall that in the classical anonymity game (Definition 2.12), the adversary sends i0
and i1 as her challenge identities, and gets a signature signed using the key of identity ib (w.r.t. to the R and
m picked by her). Towards defining full quantum security, a natural first attempt is to allow the adversary to
send a superposition of the form

∑
ψi0,i1,R,m|i0, i1,R,m〉, and let the challenger sign using the key for the ib

register in all the positions. In the following, we argue that it may not be a good idea to allow superpositions
over the challenge identities.

On quantum challenge identities. We show that allowing the adversary to issue queries on superpositions of
identities leads to an unsatisfiable definition. This is due essentially to the same reason as in [BZ13b, Thm.
4.2], where the authors show that allowing quantum challenge query will lead to an unsatisfiable IND-CPA
notion for encryptions. Using the same technique, we can construct an adversary that breaks the anonymity
by means of a single quantum query with superposition over the identities. More specifically, the challenger
will answer the adversary’s quantum query in the following way:∑

ψi0,i1,R,m,t|i0, i1,R,m, t〉 →
∑

ψi0,i1,R,m,t|i0, i1,R,m, t⊕ Sign(SKib ,m,R; r)〉.

33

The adversary puts a uniform superposition of all valid identities in the first register, and a single, classical
identity in the second registers. She uses arbitrary but classical m and R, as long as they are valid. She also
sets t to be a classical string. After the challenger’s signing operation, observe that if b = 0, the last register
will contain signatures in superposition (as i0 is in superposition); if b = 1, it will contain a classical signature
(as i1 is classical). The adversary then measures the last register. If b = 0, the resulting state (over all the 5
registers) will be a purely classical state; if b = 1, the measurement does nothing, so the first register still
contains a superposition over all valid identities. These two cases can be efficiently distinguished by means of
a Fourier transform on the first register followed by a measurement. Therefore, to obtain a meaningful notion
of quantum anonymity, we require the adversary to send its challenge identities (i0, i1) in classical form.

Superposition on the ring. Due to technical reasons, we do not know how to prove quantum security of
our construction if we allow the superposition attacks on the ring. Looking ahead, we will handle the
superposition over the message by hashing it using pair-wise independent hash functions. This technique
(from [BZ13b]) allows us to replace exponentially many messages (in superposition) with polynomially many
random strings. But this does not work for rings (in the sense of ring signatures)—hashing will destroy the
structure of the public keys in the ring. For this reason, in our definition, we will ask the adversary to send
the challenge ring in classical manner.

We stress that this choice should not be attributed to definitional issues; it really is due to the restriction
of our techniques. Unlike the case for challenge identities, a superposition on the ring does not mean the
adversary asks a superposition of the members to sign. Instead, the signer is defined by the signing key (the
identity). The superpositions over the ring have a similar interpretation to those over messages—both the
ring and the message are simply inputs to the signer’s algorithm; superposition attacks on them are possible if
the adversary manages to trick the signer into showing quantum behavior. We leave it as an open question to
achieve security against attacks employing a superposition on both the ring and the message.

The above discussion leads to the following definition for anonymity:

Definition A.1 (Quantum Anonymity). Consider a triple of PPT algorithms RS = (Gen, Sign,Verify) that
satisfies the same syntax as in Definition 2.12. RS achieves quantum anonymity if, for any QPT algorithm A
and any q = poly(λ), A’s probability of success in the following game is negligible in λ:

1. For each i ∈ [q], the challenger generates key pairs (VKi,SKi)← RS.Gen(1λ; ri) (where ri denotes
the randomness used to generate the i th key pair). This defines a set {VKi}i∈[q]. The challenger sends
{(VKi,SKi, ri)}i∈[q] to A;

2. A sends (i0, i1) to the challenger, where both i0 and i1 are in [q];

3. A’s challenge query is allowed to be on superpositions of messages. The challenger picks a random
bit b and a random string r. It signs the message using SKib and randomness r, while making sure
that VKi0 and VKi1 are indeed in the ring specified by A. Formally, the challenger implements the
following mapping: ∑

m∗,t

ψm∗,t|m∗, t〉 →
∑
m∗,t

ψm∗,t|m∗, t⊕ f(m∗)〉,

where f(m∗) =

{
RS.Sign(SKib ,m

∗, R∗; r) if VKi0 ,VKi1 ∈ R∗

⊥ otherwise
.

4. A sends back its guess bit b′. The challenger outputs 1 if b′ = b, otherwise it outputs 0.

34

Quantum Unforgeability. In the unforgeability game, the adversary can make corruption queries. Just as in
the case of challenge identities, we require such corruption queries to be classical, as it does not make much
sense to “corrupt a superposition of all the ring members”. The adversary also makes signing queries. Ideally,
we should now give her quantum access to the signing oracle. But for the same reason as before, we do not
know how to handle superpositions on the ring. Thus, we will only allow the adversary to use superpositions
on the message.

On quantum forgeries. It also requires extra caution to define “valid” forgeries in the quantum setting. Each
quantum signing query can be a superposition of every message in the message space. Sampling the returned
superposition will result in a single message/signature pair for a random message. Therefore, the classical
notion of existential forgery being a signature on a new message is ill-defined. This issue already appeared in
[BZ13b] when the authors tried to define unforgeability for ordinary signatures. There, the authors require
that the adversary cannot produce sq + 1 valid message/signature pairs with sq signing queries (an approach
previously used for blind signatures [PS96]). When restricted to the classical setting, this definition is
equivalent to the standard unforgeability of ordinary signatures.

We want to adapt the above approach in the ring signature setting. But note that the adversary’s forgery
now contains a ring R∗. This forgery will be considered as valid only if R∗ consists of the uncorrupted
members (i.e. R∗ ⊆ VK \ C). We can generalize the approach in [BZ13b] by requiring that, with sq quantum
signing queries, adversary cannot produce sq + 1 signatures, where all the rings are subsets of VK \ C. We
remark that this definition, when restricted to the classical setting, is weaker than the standard unforgeability
in Definition 2.12. But it serves as a good starting point for quantum unforgeability of ring signatures. It will
be interesting for future research to explore this definitional issue.

Based on the above discussion, we present our definition for quantum unforgeability as follows.

Definition A.2 (Quantum Unforgeability). Consider a triple of PPT algorithms RS = (Gen,Sign,Verify)
that satisfies the same syntax as in Definition 2.12. RS achieves quantum unforgeability if, for any QPT
algorithm A and any q = poly(λ), A’s probability of success in the following game is negligible in λ:

1. For each i ∈ [q], the challenger generates key pairs (VKi, SKi)← RS.Gen(1λ; ri) using randomness
ri. It then defines VK = {VKi}i∈[q] and initializes a set C = ∅.

2. The challenger sends VK to A.

3. A is allowed make the following two kinds of queries:

• Corruption Queries: Upon receiving a (classical) query of the form (corrupt, i): the challenger
adds VKi to the set C and returns the randomness ri to A.

• Quantum Signing Queries: A is allowed to query the signing oracle on some index i, some ring
R, and superpositions over messages. The challenger samples a random string r and computes
the following mapping: ∑

m,t

ψm,t|m, t〉 →
∑
m,t

ψm,t|m, t⊕ f(m, i)〉,

where f(m, i) =

{
RS.Sign(SKi,m,R; r) if VKi ∈ R

⊥ otherwise
.

4. Assume that A made sq quantum signing queries in total. A is required to produce sq + 1 tuples of the
form {(R∗j ,m∗j ,Σ∗j)}j∈[sq+1]. The challenger outputs 1 if for all j ∈ [sq + 1] it holds that R∗j ⊆ VK\C
and RS.Verify(R∗j ,m

∗
j ,Σ

∗
j) = 1.

35

A.2 Our Transformation

In the following we preset our quantum-secure ring signature scheme in the form of a generic transformation:
Given a weakly secure scheme (where the adversary has classical access to all oracles) we compile it into a
fully secure one.

Preliminaries. Before delving into the description of the construction we recall some useful lemmas
from [BZ13b].

Lemma A.3. Let A be a quantum algorithm, and Pr[x] be the probability that A outputs x. Let A′ be
another quantum algorithm obtained from A by pausing A at an arbitrary stage of execution, performing a
partial measurement that obtains one of k outcomes, and then resuming A. Let Pr′[x] be the probability that
A′ outputs x. Then Pr′[x] ≥ Pr[x]/k.

Lemma A.4. Let H be an oracle drawn from a 2q-wise independent distribution. Then the advantage of any
quantum algorithm making at most q queries to H has in distinguishing H from a truly random function, is
identically 0.

We next define the notion of small-range distributions, and recall some more associated lemmata from
[BZ13b].

Definition A.5 (Small-range distributions). Fix sets X and Y and a distribution D on Y . Fix an integer
r. Let y = (y1, . . . , yr) be a list of r samples from D and let P be a random function from X to [r]. The
distributions on y and P induce a distribution on functions H : X → Y defined by H(x) = yP (x). This
distribution is called a small-range distribution D on Y .

Lemma A.6. There is a universal constant C0 such that, for any sets X and Y , distribution D on Y , any
integer `, and any quantum algorithm A making q queries to an oracle H : X → Y , the following two cases
are indistinguishable, except with probability less than C0q

3/`:

• H(x) = yx where y is a list of samples from D of size |X |.

• H is drawn from the small-range distribution with ` samples from D.

Lemma A.7. Let X and Y be sets, and for each x ∈ X , let Dx and D′x be distributions on Y such that
|Dx −D′x| ≤ ε for some value ε that is independent of x. Let O : X → Y be a function where, for each x,
O(x) is drawn from Dx, and let O′(x) be a function where, for each x, O′(x) is drawn from D′(x). Then
any quantum algorithm making at most q queries to either O or O′ cannot distinguish the two, except with
probability at most

√
8C0q3ε.

We also recall the notion of chameleon hash, as defined in [BZ13b].

Definition A.8 (Chameleon Hash Functions). A chameleon hash function H is a tuple of efficient algo-
rithms (HGen,H, Inv,Sample) where:

• HGen(λ) generates a secret/public key pair (sk, pk).

• H(pk,m, r) maps messages to space Y .

36

• Sample(λ) samples r from some distribution such that, for every pk and m, H(pk,m, r) is uniformly
distributed.

• Inv(sk, h,m) produces an r such that H(pk,m, r) = h, and r is distributed negligibly-close to
Sample(λ) conditioned on H(pk,m, r) = h.

A chameleon hash function is said to be collision resistant if no efficient quantum algorithm that is given pk
can produce collisions in H(pk, ·, ·)

Construction. On input a ring signature RS = (Gen, Sign,Verify), we define the augmented scheme
analogously, except with the following modifications:

• In the Gen algorithm, we additionally sample a key for a chameleon hash function (s, k)← HGen(1λ).

• In the Sign algorithm, we sample two pair-wise independent functions P and Q, then we com-
pute r ← Sample(1λ;P (m‖R)) and h ← Hash(k,m‖R, r). Finally, we output the signature
Σ← Sign(SK, h,R;Q(m‖R)) and the randomness r.

• The Verify algorithm uses r to recompute h, then verify the signature Σ using the original verification
algorithm.

Where H = (HGen,Hash, Sample, Inv) is a chameleon hash as defined above.

Unforgeability. It was shown in [BZ13b] that any signature scheme can be lifted to the fully quantum
settings with the same transformation described above. While this was not formally shown for the case of
ring signatures, the argument is essentially identical and we report the analysis here only for the sake of
completeness.

Theorem A.9 (Unforgeability). Let RS be a weakly secure ring signature scheme and let H be a chameleon
hash, then the construction as described above is fully quantum unforgeable.

Proof. We define the following series of hybrids.

Hybrid H0: This is the original experiment.

Hybrid H1: In this hybrid we switch the pair-wise independent functions to truly random. The view of the
adversary is identical by Lemma A.3

Hybrid H2: This is identical to the previous hybrid, except that we add the condition that none of the hashes
in the set output by the adversary form a collision. The success probability is unchanged (up to a
negligible function) by a reduction against the collision resistance of H.

Hybrid H3: For all signing queries, we sample the value h uniformly and compute r ← Inv(s, h,m‖R, t),
where t is uniformly chosen. By Lemma A.7, the modified oracle is computationally indistinguishable
from the eyes of the adversary.

Hybrid H4: Let ` = 2 · C0 · sq · p where p is a lower bound on the success probability of the attacker and
C0 is the constant from Lemma A.6. For all i ∈ [sq] and j ∈ [`] sample a uniform h

(i)
j and a uniform

mapping Oi from the message space to [`]. Then for all queries define the oracle that maps the message
pair to some hash in the set H(i) =

⋃
j h

(i)
j and sign the corresponding h(i)j , using the input ring. The

difference with respect to the previous hybrid is that each query is answered signing hashes from
a small range distribution. By Lemma A.6, this modification is indistinguishable to the eyes of the
adversary.

37

Hybrid H5: Sample the mappingsOi and the randomnesses t using two pair-wise independent hash functions
Oi and Ti. By Lemma A.4 the view of the adversary is unchanged.

Hybrid H6: Consider two cases: If one of the hashes in the forgery set of the adversary does not belong
to the total small-domain set of hashes

⋃
iH

(i) sampled by the challenger, then we have a forgery
and therefore a contradiction to the unforgeability of the ring signature scheme. Otherwise, by the
pigeonhole principle, it must be the case that two adversarial hashes belong to the same small domain
subset H(i), for some i ∈ [sq].

Hybrid H7: Guess a query i∗ and abort if i∗ 6= i, where i is the index for which the above condition is
satisfied. Since the adversary asks only a polynomial amount of signing queries, the success probability
is still a polynomial.

Hybrid H8: For the i∗ query, measure the output of Oi∗ that determines which hash we need to sign. By
Lemma A.3, the forgery happens with high enough probability. Note that here we just need to sign one
hash, so there is some hash in the forgery set returned by the adversary that is never signed.

The proof is concluded with a straightforward reduction against the (weak) unforgeability of the ring signture
scheme.

Anonymity. In the following we show that the compiled ring signature construction is fully quantum
anonymous.

Theorem A.10 (Anonymity). Let RS be a weakly secure ring signature scheme and let H be a chameleon
hash, then the construction as described above is fully quantum anonymous.

Proof. We define the following series of hybrids.

Hybrid H0: Fix the oracle that signs using SKi0 .

Hybrid H1: Same as H1 in the proof of Theorem A.9.

Hybrid H2: Same as H3 in the proof of Theorem A.9.

Hybrid H3: Same as H4 in the proof of Theorem A.9, except that now we have only a single query to the
signing oracle.

Hybrid H4: Same as H5 in the proof of Theorem A.9.

Hybrid H5: Observe that now the oracle is efficiently simulatable and signs only a polynomial-size set of
messages. We now switch the signing key used to sign the messages to SKi1 . Indistinguishability
follows by a standard hybrid argument assuming the (weak) anonymity of the scheme RS.

Hybrid H5: Undo the changes done in H4.

Hybrid H6: Undo the changes done in H3.

Hybrid H7: Undo the changes done in H2.

Hybrid H8: Undo the changes done in H1.

Observe that H8 is the original game, except that the oracle uses the key SKi1 to sign. This concludes our
proof.

38

	Introduction
	Our Results
	Background
	Technical Overview
	Related Existing Work

	Preliminaries
	Learning With Errors
	Correlation Intractable Hash Functions
	Public Key Encryption
	Blum's Raw Protocol
	Maliciously Circuit Private FHE
	Somewhere Perfectly Binding Hash
	Signature Schemes
	Ring Signatures

	Compact Witness Extractable Commitments
	Definition
	Construction

	Compact Relaxed ZAPs for Extended NPcoNP
	Definition
	Construction

	Compact LWE-based Ring Signature Scheme
	Construction
	Unforgeability
	Anonymity

	Acknowledgments
	Quantum Security for Ring Signatures
	Defining (Strong) Quantum Security
	Our Transformation

