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Abstract. In this work we introduce a new (circuit-dependent) homomorphic secret sharing
(HSS) scheme for any log / log log-local circuit, with communication proportional only to the
width of the circuit and polynomial computation, which is secure assuming the super-polynomial
hardness of learning parity with noise (LPN). At the heart of our new construction is a pseu-
dorandom correlation generator (PCG) which allows two parties to locally stretch short seeds
into pseudorandom instances of an arbitrary log / log log-local additive correlation.
Our main application, and the motivation behind this work, is a generic two-party secure
computation protocol for every layered (boolean or arithmetic) circuit of size s with total
communication O(s/ log log s) and polynomial computation, assuming the super-polynomial
hardness of the standard learning parity with noise assumption (a circuit is layered if its nodes
can be partitioned in layers, such that any wire connects adjacent layers). This expands the
set of assumptions under which the ‘circuit-size barrier’ can be broken, for a large class of
circuits. The strength of the underlying assumption is tied to the sublinearity factor: we achieve
communication O(s/k(s)) under the s2

k(s)

-hardness of LPN, for any k(s) ≤ (log log s)/4.
Previously, the set of assumptions known to imply a PCG for correlations of degree ω(1) or
generic secure computation protocols with sublinear communication was restricted to LWE,
DDH, and a circularly secure variant of DCR.
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1 Introduction

In this work, we present a novel (circuit dependent) homomorphic secret sharing (HSS) scheme for any
(log / log log)-local circuit which is secure under the super-polynomial hardness of the learning parity
with noise (LPN) assumption. The main application, and motivation for this work, is a new protocol
for securely computing layered arithmetic and boolean circuits with communication sublinear in the
circuit size, under the quasi-polynomial hardness of LPN.

Homomorphic Secret Sharing (HSS). An HSS is a compact secret sharing scheme equipped with
homomorphism: the parties can locally convert compact shares of an input into (additive) shares
of some function of it, without interaction. Compactness here means that the input shares should
be much smaller than, and ideally independent of, the size of the evaluated circuit. More precisely,
HSS for a circuit class allows the parties to homomorphically convert their shares for any circuit
in the class. This powerful primitive has been instantiated for all circuits under LWE [BKS19], or
for NC1 under DDH [BGI16a] or DCR [FGJS17,OSY21,RS21], and for the class of constant degree
polynomials from LPN [BCG+19b].

The circuit size barrier in secure computation. Secure computation allows mutually distrustful par-
ties to securely compute a public function of their joint private inputs, concealing all information
beyond the output. Since its introduction in the seminal works of Yao [Yao86], and Goldreich, Mi-
cali, and Wigderson [GMW87b, GMW87a], secure computation has received a constant attention.
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For a long time, however, all standard approaches to secure computation have been stuck at an
intriguing circuit-size barrier, in that they require an amount of communication (at least) propor-
tional to the size of the circuit being computed. In contrast, insecure computation only requires
exchanging the inputs, which are usually considerably smaller than the entire circuit. Getting beyond
this limitation has been a major challenge in secure computation. Early positive results required
exponential computation [BFKR91, NN01], or were limited to very simple functions such as point
functions [CGKS95,KO97,CG97] or constant-depth circuits [BI05].

The situation changed with the breakthrough result of Gentry [Gen09] on fully-homomorphic en-
cryption (FHE), which led to optimal communication protocols in the computational setting [DFH12,
AJL+12]. On the downside, the set of assumptions under which we know how to build FHE is very
narrow; it is restricted to lattice-based assumptions such as LWE, and in particular does not include
any of the traditional assumptions which were used in the 20th century. More recently, the elegant
work of [BGI16a] showed for the first time that secure computation with sublinear communication
could be based on assumptions not known to imply FHE, by building a two-party secure computa-
tion protocol under the DDH assumption, with communication O(s/ log s) for layered circuits of size
s.3 [FGJS17,OSY21,RS21] later followed this blueprint and switched out the DDH assumption for
DCR assumption. It remains open whether secure computation with sublinear communication can be
based on any other traditional and well-studied assumption, such as code-based assumptions.

1.1 Our Contribution

We show that circuit-dependent homomorphic secret sharing, i.e. HSS where the share generation
requires knowing in advance the circuit to be evaluated homomorphically, for the class of log-local
circuits exists, conditioned on (the quasi-polynomial hardness of) a well-studied 20th century assump-
tion: the learning parity with noise (LPN) assumption [BFKL94]. Informally, the LPN assumption
captures the hardness of solving an overdetermined system of linear equations over F2, when a small
subset of the equations is perturbed with a random noise. The LPN assumption has a long history in
computational learning theory, where it emerged. Furthermore, our results only require a flavour of
LPN where the adversary is given a very limited number of samples (typically, O(n) equations in n
indeterminates). In this regime, LPN is equivalent to the hardness of decoding random linear codes
over F2, which is the well-known syndrome decoding problem in the coding theory community, where
it has been studied since the 60’s [Pra62].

Details on the underlying assumption. In a bit more detail, given a security parameter λ, the
(T, n,N, r)-LPN assumption with dimension n = n(λ), number of samples N = N(λ) and noise
rate r = r(λ) states that for every adversary Adv running in time at most T = T (λ),

Pr
[
A

$← FN×n2 , e
$← BerNr , s

$← Fn2 : Adv(A,A · s+ e) = s
]
= negl(λ),

where Berr denotes the Bernouilli distribution which outputs 1 with probability r, and negl denote
some negligible function. When T can be any polynomial (resp. any super-polynomial function, some
super-polynomial function), we say that we assume the polynomial (resp. quasi-polynomial, super-
polynomial) hardness of LPN. For arithmetic circuits, we need to assume LPN over large fields, or
equivalently syndrome decoding for random linear codes over large fields; this is also a well-founded
and well-studied assumption, used in several previous works, e.g. [BCGI18,BCG+19b].

HSS for Any loglog-Depth Circuit. We introduce a new circuit-dependent HSS scheme for the
class of any log log-depth circuits. We emphasise that unlike traditional forms of HSS, here the input-
sharing phase depends on the homomorphic evaluation circuit: in other words it is an HSS scheme for
any singleton class comprised of a single circuit of depth log log, not for the class of all such circuits
simultaneously.

Main Theorem 1 (HSS for any loglog-Depth Circuit, Informal). Let C be a size-s, n-input, m-
output, (ε · log log)-depth arithmetic circuit over F (for some ε ≤ 1/4). If the F-LPN assumption with
super-polynomial dimension `, O(`) samples, and inverse super-polynomial rate holds then there exists
a secure HSS scheme for the class {C} with share size n+O(m · s · log s/clog1−ε s−log1−2ε s) (for some
constant c) and computational complexity O(m · poly(s) · (log |F|)2).
3 A depth-d circuit is layered if it can be divided into d layers such that any wire connects adjacent layers.
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Restricting the circuit class to depth-k size-s circuits where k(s) ≤ log log s/4 leads to quantitative
improvements in the size of the shares, the computational complexity of expanding shares, and the
strength of the LPN assumption.

Application to Sublinear Computation. Our HSS scheme has (non black-box) implications
for sublinear computation. As in [BGI16a], our results holds for all layered (boolean or arithmetic)
circuits, in the two-party setting.

Main Theorem 2 (Sublinear Computation of Layered Circuits, Informal). For any layered arith-
metic circuit C of polynomial size s = s(λ) with n inputs and m outputs, for any function k(s) ≤
log log s− log log log s+O(1), there exists a two party protocol for securely computing C in the honest-
but-curious model, with total communication 2(n+m+s/k) · log |F|+o(s/k) and computation bounded
by s3 ·polylog(s) · (log |F|)2 under a set of LPN assumptions, the exact nature of which depends on the
sublinearity factor k.

In particular, setting k ← O(log log s) leads to a protocol with total communication O(n + m +
s/ log log s), secure under the super-polynomial hardness of:

– F-LPN with super-polynomial dimension `, O(`) samples, and inverse super-polynomial rate,
– F2-LPN with super-polynomial dimension `′, O(`′) samples, and inverse polynomial rate 1/sO(1)

(which is implied by the above if F = F2).

Furthermore (but with a slighly different choice of parameters than the one described above), as k is
reduced to an arbitrarily small k = ω(1), we need only assume the quasi-polynomial hardness of:

– F-LPN with quasi-polynomial dimension `, O(`) samples, and inverse quasi-polynomial rate,
– F2-LPN with quasi-polynomial dimension `′, O(`′) samples, and inverse polynomial rate 1/sO(1)

(which is implied by the above if F = F2).

and the computation is reduced to O(s1+o(1) · (log |F|)2).

Remark 1. While we require security against super-polynomial-time adversaries, this remains a rela-
tively weak flavour of LPN where the dimension is very high, i.e. super-polynomial as well (and the
adversary is allowed to run in time O(`2) where ` is the dimension), and the number of samples
which the adversary gets is very limited, O(`). On the other hand, we require a very small noise rate
λ/N . For example, instantiating the above with k = (log log s)/5, we obtain a secure computation
protocol with total communication O(`+m+ s/ log log s) (sublinear in s) and polynomial computa-
tion, assuming that LPN is hard against adversaries running in super-polynomial time λO(log λ), with
dimension ` = λO(log λ), N = 2` samples, and noise rate λ/N . More generally, for any super-constant
function ω(1), there is a two-party protocol with communication O(n+m+s/ logω(1)) assuming the
λω(1)-hardness of LPN (i.e., the quasi-polynomial hardness of LPN).

We note that, in this regime of parameters, the best known attacks are the information set decoding
attack [Pra62] and its variants (which only shave constant in the exponents, hence have the same
asymptotic complexity), which require time 2O(λ).4 Therefore, assuming hardness against λO(log λ)-
time adversaries is a very plausible assumption.

Remark 2 (On the Generality of Layered Circuits). Our construction is restricted to the class of
(boolean or arithmetic) layered circuits. This restriction stems from the blockwise structure of the
construction, and was also present in the previous works of [BGI16a] and [Cou19]. As noted in [Cou19],
layered circuits are a relatively large and general class of circuits, which furthermore capture many
“real-world” circuits such as FFT-like circuits (used in signal processing, integer multiplication, or
permutation networks [Wak68]), Symmetric crypto primitives (e.g. AES and algorithms that proceed
in sequences of low-complexity rounds are naturally “layered by blocks”), or dynamic-programming
algorithm (e.g. the Smith-Waterman distance, or the Levenshtein distance and its variants).

4 BKW and its variants [BKW00,Lyu05] do not improve over information set decoding attacks in this regime
of parameters, due to the very low number of samples.
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Generalisation to the malicious setting. Our result can directly be generalised to the malicious
setting using a generic GMW-style compiler [GMW87a], which is communication preserving when
instantiated with succinct zero-knowledge arguments [NN01]. Such arguments exist under collision-
resistant hash functions; hence, Theorem 2 extends to the malicious setting as well, at the cost
of further assuming collision-resistant hash functions (which is a mild assumption). We note that
CRHFs have recently been built from (sub-exponentially strong) flavours of LPN [AHI+17,YZW+19,
BLVW19].

1.2 Our Techniques

Our starting point is the construction of pseudorandom generator (PCG) from the work of [BCG+19b],
under the LPN assumption. At a high level, a PCG allows to distributively generate long pseudorandom
instances of a correlation. More precisely, a PCG for a correlation corr (seen as a distribution over pairs
of elements) is a pair (Gen,Expand) where Gen(1λ) generates a pair of seeds (k0, k1) and Expand(b, kb)
output a string Rb. A PCG must satisfy two properties: (correctness) (R0, R1) is indistinguishable
from a random sample from corr, and (security) for b ∈ {0, 1}, the string Rb is indistinguishable, even
given k1−b, from a string R′b sampled randomly conditioned on satisfying the correlation with R1−b.

The technical contribution at the heart of this paper is to show that, under a certain LPN assump-
tion, there exists a 2-party PCG for the following correlation, which we call substrings tensor powers
(stp) correlation. It is (publicly) parametrised by

– a string length n;
– subsets S1, . . . , Sns ∈

(
[n]
≤K
)
of at most K = log n/ log log n many coordinates each;

– a tensor power parameter tpp (which can be super-constant, as high as K);

and generates additive shares of all the tensor powers of the prescribed substrings of a random string,
i.e.

(r, ((1F || r[Si])⊗tpp)1≤i≤ns), where r ∈ Fn is (pseudo)random.

In the above, a⊗b denotes a vector a tensored with itself b rimes. In order to build shares of
(r, r⊗2) for some (pseudo)random r ∈ Fn (the bilinear correlation), the PCG of [BCG+19b] uses a
multi-point function secret sharing scheme (MPFSS) (defined in section 3.1) to give the parties small
seeds which can be expanded locally to shares of (e, e⊗2) for some random sparse vector e ∈ Fn.
Thence, if H is some suitable public matrix the parties can get shares of r := H · e, which is pseu-
dorandom under LPN, and of r⊗2 = H⊗2 · e⊗2 by locally multiplying their shares of e and e⊗2 by
H and H⊗2 respectively. The main issue in using this approach directly is that performing the ex-
panding r⊗tpp = H[Si]

⊗tpp · e⊗tpp (where H[Si]–abusively–denotes the submatrix of H with only the
rows indexed by elements of Si) would require super-polynomial computation, asH[Si] has n columns.

The core idea of our work is to develop a very careful modified strategy. Instead of letting each
r be a (pseudo)random mask, we construct r as a sum of n · log n vectors rj , each associated with a
public subset of at most K coordinates: these K coordinates are random, but all others are zero. The
crucial property achieved by this construction is the following: with high probability, the sum of these
sparse vectors will be pseudorandom, but every size-K substring of r (and in particular S1, . . . , Sns)
will be expressible as a sum of ‘not too many’ of the rj . This allows the expanding to be done by
raising to the tensor power tpp a matrix whose dimensions are both KO(1), and not n as before. Thus
computation remains polynomial.

If we were to stop here, the size of the seeds would grow linearly with ns, the number of subsets;
this would violate the compactness requirement. Instead, we show that we can batch the subsets into
ns/β groups of at most β subsets each, for some parameter β to be refined, to reduce the share size
and recover compactness, without harming computational efficiency. Indeed, so long as β is not too
large, the substring of r associated with the union of any β size-K subsets of coordinates will still
be expressible as a sum of ‘not too many’ of the rj . Our computations reveal a sweet spot for the
choice of β, for which the PCG seeds are compact and yet the complexity of expanding them remains
polynomial.
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1.3 Related Work

Pseudorandom correlation generators were first studied (under the name of cryptocapsules) in [BCG+17].
Constructions of PCGs for various correlations, under variants of the LPN assumptions, and applica-
tions of PCGs to low-communication secure computation, have been described in [BCGI18,BCG+19b,
BCG+19a,SGRR19,BCG+20b,BCG+20a].

Early works on sublinear-communication secure computation either incurred some exponential
cost, or were restricted to very limited types of computations. The first protocols to break the circuit
size barriers was shown in [BFKR91] (which gave a protocol with optimal communication, albeit
with exponential computation and only for a number of parties linear in the input size). The work
of [NN01] gave a sublinear protocol, but with exponential complexity. The work of [BI05] gives a low-
communication protocol for constant-depth circuit, for a number of parties polylogarithmic in the
circuit size, and the works of [CGKS95,KO97,CG97] gave sublinear protocols for the special case of
point functions. The result of Gentry [Gen09] led to the first optimal communication protocols in the
computational setting [DFH12,AJL+12] under LWE-style assumptions, for all circuits and without
incurring any exponential cost. The work of [IKM+13] gave an optimal communication protocol in
the correlated randomness model, albeit using an exponential amount of correlated randomness. More
recently, [Cou19] constructed an unconditionally secure MPC protocol with sublinear communication
for layered circuits, in the two-party setting, with a polynomial amount of correlated randomness.
Finally, progress in breaking the circuit-size barrier for layered circuits in the computational setting is
closely tied to the advances in HSS for super-constant depth circuits [BGI16a,FGJS17,OSY21,RS21].

2 Technical Overview

Notations. We say that a function negl : N → R+ is negligible if it vanishes faster than every
inverse polynomial. For two families of distributions X = {Xλ} and Y = {Yλ} indexed by a security
parameter λ ∈ N, we write X

c
≈ Y if X and Y are computationally indistinguishable (i.e. any family

of circuits of size poly(λ) has a negligible distinguishing advantage), X
s
≈ Y if they are statistically

indistinguishable (i.e. the above holds for arbitrary, unbounded, distinguishers), and X ≡ Y if the
two families are identically distributed.

We usually denote matrices with capital letters (A,B,C) and vectors with bold lowercase (x,y).
By default, vectors are assumed to be column vectors. If x and y are two (column) vectors, we use
x||y to denote the (column) vector obtained by their concatenation. We write x ⊗ y to denote the
tensor product between x and y, i.e., the vector of length nxny with coordinates xiyj (where nx is
the length of x and ny is the length of y). We write x⊗2 for x⊗ x, and more generally, x⊗n for the
n-th tensor power of x, x ⊗ x ⊗ · · · ⊗ x. Given a vector x of length |x| = n, the notation HW (x)
denotes the Hamming weight x, i.e. , the number of its nonzero entries. Let k be an integer. We let
{0, 1}k denote the set of bitstrings of length k. For two strings (x, y) in {0, 1}k, we denote by x ⊕ y
their bitwise xor.

Circuits. An arithmetic circuit C with n inputs and m outputs over a field F is a directed acyclic
graph with two types of nodes: the input nodes are labelled according to variables {x1, · · · , xn}; the
(computation) gates are labelled according to a base B of arithmetic functions. In this work, we will
focus on arithmetic circuits with indegree two, over the standard basis {+,×}. C contains m gates
with no children, which are called output gates. If there is a path between two nodes (v, v′), we say
that v is an ancestor of v′. In this work, we will consider a special type of arithmetic circuits, called
layered arithmetic circuits (LBC). An LBC is a arithmetic circuit C whose nodes can be partitioned
into D = depth(C) layers (L1, · · · , Ld), such that any edge (u, v) of C satisfies u ∈ Li and v ∈ Li+1

for some i ≤ d − 1. Note that the width of a layered arithmetic circuit is also the maximal number
of non-output gates contained in any single layer. Evaluating a circuit C on input x ∈ Fn is done by
assigning the coordinates of x to the variables {x1, · · · , xn}, and then associating to each gate g of
C (seen as an arithmetic function) the value obtained by evaluating g on the values associated to its
parent nodes. The output of C on input x, denoted C(x), is the vector of values associated to the
output gates.
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2.1 PCG and HSS

Much like a PCG for the bilinear correlation yields an HSS for degree-two circuits [BCG+19b], given
a PCG for the stp correlation with tpp = K, it is almost immediate to build an HSS scheme for
any singleton class comprised of a log/loglog-local circuit C (which is the case in particular if its
depth is at most log log− log log log, since the gates have in-degree at most 2). Since the circuit to
be homomorphically evaluated on the input shares is known, the Share procedure can depend on it
(which is not usually the case for HSS). Let S1, . . . , Sm be the subsets of inputs on which each output
depends, and let K denote the locality of C; we build a (circuit dependent) HSS scheme as follows:

– HSS.Share(x): Generates compact PCG key (k0, k1) which expand to shares of (r, ((1F || r[Si])⊗tpp)1≤i≤m),
set x′ ← x⊕ r, and give to each party Pσ a share sσ = (kσ,x

′).
– HSS.Eval(σ, sσ): Expand sσ and, for each i = 1 . . .m, extract a share of (1F || r[Si])⊗tpp. Use

it to generate shares of the coefficients of the “degree-K polynomial” on |Si| ≤ K variables Pi
satisfying Pi(X) = C(X−r[Si]). Output the inner product of the vector of coefficient shares with
the vector (1F || x′)⊗K . (This linear product is a share of Pi(x′).)

Correctness and security follow from inspection, along the same lines as [BCG+19b]. Usually,
HSS.Share is given only a circuit class as auxiliary input, not a specific circuit, and the parties
should be able to homomorphically evaluate any circuit in the class. In our case however the HSS is
circuit-dependent, because the subsets S1, . . . , Sm are intrinsically tied to the evaluated circuit. An
alternative formulation is that our HSS scheme supports singleton circuit classes (or, more generally,
local circuits with the same pattern of subsets).

2.2 Generating Correlated Randomness from a PCG

From now on, we set the number of parties to N = 2. The work of [BCG+19b, Section 6] provides
a pseudorandom correlation generator under the LPN assumption, generates correlated (pseudo)
random strings for the low-degree polynomial correlation, i.e. shares of (r, r⊗2, . . . , r⊗d) for some
constant d, where r is a (pseudo)random vector. With the construction from the previous paragraph,
this yields an HSS for constant-depth circuits. Our goal is to design a PCG which would lead to an
HSS for super-constant depth circuits. More specifically, and keeping our end application in mind,
we would like for our PCG to have short enough seeds to lead to a compact HSS scheme (i.e., shares
of an input x should be at most O(x)). This is fundamental when using the scheme to generate
correlated randomness in the protocol of [Cou19], which achieves sublinear communication in the
correlated randomness model, and which is the starting point of our application to sublinear secure
computation.

Our approach is therefore to directly plug in the construction of [BCG+19b] and see where it
fails. Two issues emerge: the computation is super-polynomial, and the communication not sublinear.
Below, we outline each of these issues, and explain how we overcome them.

First Issue: Too Many Polynomials. The first problem which appears when plugging the PCG
of [BCG+19b] in the protocol of [Cou19] is that the latter requires distributing many shares of
multivariate polynomials Q̂ – more precisely, s/k such polynomials (one for each coordinate of each
first layer of a bloc). While the PCG of [BCG+19b] allows to compress pseudorandom pairs (r, Q(X−
r)) into short seeds, these seeds will still be of length at least ω(log λ), where λ is the security
parameter, for the PCG to have any hope of being secure. That means that even if we could manage to
securely distribute all these seeds with optimal communication protocols, the overall communication
would still be at the very least ω((s log λ)/ log log s), which cannot be sublinear since log log s =
o(log λ) (as s is polynomial in λ).

We solve this first issue as follows: we fix a parameter β, and partition each yi into w/β subvectors,
each containing β consecutive coordinates of yi. Then, the core observation is that a simple variant of
the PCG of [BCG+19b] allows in fact to generate shares of (r, r⊗2, · · · , r⊗2k) for some pseudorandom
r, where r⊗j denotes the tensor product of r with itself j times (which we call from now on the j-th
tensor power of r): this correlation is enough to generate shares of all degree-2k polynomial in r
rather than a single one. We will build upon this observation to show how to generate a batch of β
shares of multivariate polynomials from a single tensor-power correlation, thus reducing the number
of PCG seeds required in the protocol by a factor of β, at the tolerable cost of slightly increasing the
size of each seed.
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Solution: Batching β Multivariate Polynomials. Consider the first length-β subvector of yi+1, which
we denote v. Observe that the entire subvector v can depend on at most β · 2k coordinates of
yi, since each coordinate of v depends on at most 2k coordinates of yi. Therefore, we can now
see the computation of v from yi as evaluating β multivariate polynomials (Q1 · · · , Qβ), where all
multivariate polynomials take as input the same size-(β2k) subset of coordinates of yi. To securely
compute shares of v from shares of yi, the parties can use the following type of correlated randomness:
they will have shares of (r, r⊗2, · · · r⊗2k), where r is a random mask of length β · 2k. Consider the
following polynomials:

(Q̂1(X), · · · , Q̂β(X)) def= (Q1(X − r), · · · , Qβ(X − r)).

Each coefficient of each Q̂ can be computed as a degree-2k multivariate poynomial in the coordinates
of r – or, equivalently, as a linear combination of the coordinates of (r, r⊗2, · · · r⊗2k). Hence, given
additive shares of (r, r⊗2, · · · r⊗2k), the parties can locally compute additive shares of the coeffi-
cients of all the polynomials (Q̂1, · · · Q̂β). Using the PCG of [BCG+19b], the seeds for generating
pseudorandom correlations of the form (r, r⊗2, · · · r⊗2k) have length:

O

(
λ2

k

· log
((
β · 2k

)2k))
,

where λ is some security parameter related to the hardness of the underlying LPN assumption. Or
more simply, using the fact the computational cost of generating the correlations contains the term(
β · 2k

)2k which must remain polynomial in s. Therefore, the total number of bits which the parties
have to distribute (for all (d/k) · (w/β) = s/(βk) such seeds) is O((s/k) · (λ2k · log s)/β).

Choosing the Parameter β. Suppose for simplicity that we already have at hand an MPC protocol
allowing to securely distribute such seeds between the parties, with linear overhead over the total
length of the seeds generated. This means that generating the full material will require a total com-
munication of c ·s ·λ2k · log s/(βk). By setting β to be larger than c ·λ2k · log s, the total communication
will be upper bounded by O(s/k) = O(s/ log log s) when setting k ← O(log log s), which is the highest
our techniques will allow it to be pushed. The most important remaining question is whether we can
execute this process in polynomial time given such a large β. Put more simply, the core issue is that
the computational complexity of expanding short seeds to shares of (r, r⊗2, · · · r⊗2k) with the PCG
of [BCG+19b] contains a term of the form (β · 2k)2k . To make the computation polynomial, we must
therefore ensure that β is at most sO(2−k), which is subpolynomial. Fortunately, this can be done by
setting the security parameter λ of the underlying PCG to be sO(2−2k). For instance, for any constant
ε ∈]0, 1[, we can set λ← 2log

ε s, k ← log log s/cε, and β ← sO(2−k) for some explicit constant cε > 2,
at the cost of now having to assume the quasi-polynomial security of the LPN assumption.

Second Issue: Too Much Communication. In the previous paragraphs, we focused on generating
the appropriate correlated random coins using sublinear total communication. But doing so, we glossed
over the fact that in the full protocol, the parties must also broadcast (shares of) values of the form
y+r, where y contains values of some layer, and r is some mask. Recall that with the method which
we just outlined, the parties must generate such a length-(β2k) mask r for the k-ancestors of each
length-β subvector of each last layer of a block. Since there are d/k blocks, whose first layers contain
w/β subvector each, and since each y + r is of length β · 2k, this requires to communicate a total of
(d/k) · (w/β) · β2k = s · 2k/k values – and this cannot possibly be sublinear in s. In fact, this issue
already appears in [Cou19], where it was solved as follows: rather than picking an independent mask
for each vector of ancestors of a node on a layer (or, in our case, of a length-β block of nodes), pick a
single ri to mask a full layer yi, and define the mask for the subset Si,j of ancestors of a target value
yi+1,j to be ri[Si,j ]. This implies that the parties must mow broadcast a single masked vector yi+ ri
for each first layer of a block, reducing the overall communication back to O(s/k). The correlated
randomness which the parties must securely distribute now consists of tensor powers of many subsets
of the coordinates of each mask.
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Using the PCG of [BCG+19b] for ‘Subvectors Tensor Powers Correlations’. However, attemping to
construct a PCG for generating this kind of correlated randomness from the PCG of [BCG+19b]
blows up the computation to the point that it can no longer be polynomial. To explain this issue, we
briefly recall the high level construction of the PCG of [BCG+19b]. To share a pseudorandom vector
(r, · · · , r⊗2k) where r is of length w, the PCG will first generate a very sparse vector r′, with some
number t of nonzero coordinates. Then, each (r′)⊗n for some n ≤ 2k is itself a tn-sparse vector, of
length wn. Using multi-point function secret sharing (MPFSS, a primitive which was developed in
a recent line of work [GI14,BGI15,BGI16b,BCGI18] and can be built from one way functions), one
can compress shares of (r′)⊗n to length-tn · logw seeds. Then, the final pseudorandom correlation
is obtained by letting the parties locally compress r′ by multiplying it with a large public matrix
H, giving a vector r = H · r′. Similarly, r⊗n can be reconstructed by computing H⊗n · (r′)⊗n =
(H · r′)⊗n = r⊗n, using the multilinearity of tensor powers. The security relies on the fact that if H
is a large compressing public random matrix, then its product with a random sparse noise vector r′ is
indistinguishable from random, under the dual LPN assumption (which is equivalent to the standard
LPN assumption). Concretely, one can think of r′ as being of length 2w, and of H as being a matrix
from Fw×2w which compresses r′ to a pseudorandom length-w vector.

Now, the issue with this construction is that even if we need only tensor powers of small subvectors
(of length β · 2k in our construction) of the vector r, the computation for expanding the seed to these
pseudorandom tensor powers will grow super-polynomially with the length of of entire vector w.
Indeed, consider generating the 2k-th tensor power of a subvector r[S] of r, for some size-β ·2k subset
S of [w]. Then with the PCG of [BCG+19b], this requires computing (H[S])

⊗2k ·(r′[S])⊗2k , where the
share of (r′[S])⊗2

k

are obtained from a short seed using MPFSS, and H[S] ∈ F|S|×2w is the submatrix
of H whose columns are indexed by S. The core issue becomes now visible: even though H[S] has
only |S| rows, it still has 2w columns, and computing H[S]⊗2

k

requires roughly (|S| ·w)2k arithmetic
operation. But since we want ultimately to have k be some increasing function of s, the above will
contain a term of the form w2k = wω(1), where w (the circuit width) can be polynomial in the circuit
size s, leading to an overall computational complexity of sω(1), which is super-polynomial.

Solution: Covering the Private Values with the Sum of Separable Masks. Our solution to circumvent
the above problem is to generate r as the sum of a certain numberm of shorter masks r1, r2, . . . which
each only cover θ values (note that they may – and will – overlap). This way the 2k-th tensor power
of a subvector v can be obtained from appropriate linear combinations of coordinates of the 2k-th
tensor power of the concatenation of only the rj which overlap with v. The amount of computation
grows super-polynomially in the length of this concatenated vector only (instead of w as before).

More formally, we have a list of w/β target subsets S1, . . . , Sw/β (each one corresponding to the
2kβ ancestors of a batch of β outputs) for which we want to compute the 2k-th tensor power of
r[Si], for some random r ∈ Fw. We want to find M size-K sets α1, α2, . . . , αM ∈

(
[w]
K

)
such that

each Si intersects with a small number B of αjs, while ∪Mi=1αi = [w]. We associate each αj with a
vector rj ∈ FK : together they define a sparse subvector of Fw. If we let r be the sum of these sparse
vectors, it is clear that for any i ∈ [w/β], each element of (1F || r[Si])⊗2

k

can be obtained by a linear
combination of the elements of the 2k-th tensor power of the vector of size (1 + BK) obtained by
concatenating (1F) and the rjs such that αj ∩ Si 6= ∅. The amount of computation required is then
of the order (BK)2

k

.
The problem of deterministically finding such subsets α1, . . . , αM – which we call a B-Good Cover

of (Si)i∈[w/β] – turns out to be difficult in the general case. Fortunately, there is a straightforward
probabilistic solution: choosing them independently and at random works with high probability. More
specifically, taking M ← O(w · lnw) i.i.d. uniformly random submasks covering K ← β2k values each
means that the β2k ancestral inputs of any batch of β outputs will be covered by only a total of roughly
B = logw submasks (the proof of this relies on standard concentration bounds). This effectively lifts
the cost of the computation from being super-polynomial in w to being only super-polynomial in
β2k logw, which remains polynomial overall when setting β and k to be appropriately small.

2.3 Application to Sublinear Secure Computation

The work of [Cou19] gives a generic secure protocol with sublinear communication for layered circuits.
It works in the corruptible correlated randomness model : before the protocol, a trusted dealer lets the
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adversary choose the strings that the corrupted parties will get, samples the correlated random coins
of the remaining parties afterwards, and distributes them to the parties. As shown in [BCG+19b],
generating this corruptible randomness using a PCG leads to a secure protocol in the standard model.
In a bit more detail, the parties use a generic secure protocol to generate the short seeds (k0, k1) then
expand them locally; it might have a high overhead, but it will not be a bottleneck since the seeds
are very small. We show that our new PCG can be used for just this purpose.

The general idea is to split a layered circuit of size s into carefully chosen blocks, each containing
O(log log s) consecutive layers. The precise block decomposition is detailed in [Cou19]. Using our
PCG cast as an HSS scheme for O(log log s)-depth circuits (with the duality described in section 2.1)
allows the parties to evaluate the circuit in a block-by-clock fashion: for each block the parties start
with additive shares of

– the inputs of the circuit;
– the values of the first layer of the block;

and, using HSS, compute additive shares of

– the outputs of the circuit which are in the block;
– the values of the last layer, which are also the values of the first layer of the next block.

Let us note that since the circuit and its blocks are publicly known to both parties, so the fact our
HSS scheme is circuit-dependent is not an issue here. This block-by-block approach allows the parties
to ‘skip’ a fraction O(log log(s)) of the gates when computing the circuit, by communicating at each
block rather than at each gate. Unfortunately, combining all these blocks together involves pesky
technicalities which prohibit a very modular approach and require us to consider the protocol in its
entirety. Indeed, the inputs can appear arbitrarily many times–up to O(s) even–across many blocks,
so the randomness used to mask them has to be reused, and we cannot deal with each block using
an independent instance of HSS. However, dealing with this problem does not require any additional
insight, only more cumbersome notations.

In the above outline, we assumed that we had access to a sufficiently low-communication MPC
protocol to distribute the generation of the seeds to our new PCG. To obtain our claimed result, it
remains to show that this building block can be instantiated under the quasi-polynomial hardness of
LPN. In fact, this MPC protocol needs not have linear communication in the seed size; it turns out that
by tuning the parameters appropriately, any fixed polynomial in the seed size suffices to guarantee the
existence of a “soft spot” for the parameters of our PCG such that we simultaneously get sublinear total
communication O(s/log log s) and polynomial computation. Distributing the generation procedure of
our PCG essentially boils down to generating (many) seeds for a multi-point function secret sharing
scheme, which itself boils down mainly to securely generating seeds for a standard length-doubling
pseudorandom generator (PRG), and securely executing about log(domsize) expansions of these short
seeds, where domsize denotes the domain size of the MPFSS. Using a standard LPN-based PRG and
GMW-style secure computation, instantiated with an LPN-based oblivious transfer protocol, suffices
to securely generate the MPFSS seeds we need.

3 Preliminaries

3.1 Function Secret Sharing

Informally, an FSS scheme for a class of functions C is a pair of algorithms FSS = (FSS.Gen,FSS.Eval)
such that:

– FSS.Gen given a function f ∈ C outputs a pair of keys (K0,K1);
– FSS.Eval, given Kb and input x, outputs yb such that y0 and y1 form additive shares of f(x).

The security requirement is that each key Kb computationally hide f , except for revealing the input
and output domains of f . Formally:

Definition 3 (Function Secret Sharing; adapted from [BGI16b]). A 2-party function secret
sharing (FSS) scheme for a class of functions C = {f : I → G} with input domain I and output
domain an abelian group (G,+), is a pair of PPT algorithms FSS = (FSS.Gen,FSS.Eval) with the
following syntax:
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– FSS.Gen(1λ, f), given security parameter λ and description of a function f ∈ C , outputs a pair
of keys (K0,K1);

– FSS.Eval(b,Kb, x), given party index b ∈ {0, 1}, key Kb, and input x ∈ I, outputs a group element
yb ∈ G.

Given an allowable leakage function Leak : {0, 1}∗ → {0, 1}∗, the scheme FSS should satisfy the
following requirements:

– Correctness: For any f : I → G in C and x ∈ I, we have Pr[(K0,K1)
$← FSS.Gen(1λ, f) :∑

b∈{0,1} FSS.Eval(b,Kb, x) = f(x)] = 1.
– Security: For any b ∈ {0, 1}, there exists a PPT simulator Sim such that for any polynomial-

size function sequence fλ ∈ C , the distributions {(K0,K1)
$← FSS.Gen(1λ, fλ) : Kb} and {Kb

$←
Sim(1λ, Leak(fλ))} are computationally indistinguishable.

Our application of FSS requires applying the evaluation algorithm on all inputs. Following [BGI16b,
BCGI18,BCG+19b,BCG+19a], given an FSS scheme (FSS.Gen,FSS.Eval), we denote by FSS.FullEval
an algorithm which, on input a bit b, and an evaluation key Kb (which defines the input domain I),
outputs a list of |I| elements of G corresponding to the evaluation of FSS.Eval(b,Kb, ·) on every input
x ∈ I (in some predetermined order). Below, we recall some results from [BGI16b] on FSS schemes
for useful classes of functions.

Distributed Point Functions A distributed point function (DPF) [GI14] is an FSS scheme for the
class of point functions fα,β : {0, 1}` → G which satisfies fα,β(α) = β, and fα,β(x) = 0 for any x 6= α.
A sequence of works [GI14,BGI15,BGI16b] has led to highly efficient constructions of DPF schemes
from any pseudorandom generator (PRG).

Theorem 4 (PRG-based DPF [BGI16b]). Given a PRG G : {0, 1}λ → {0, 1}2λ+2, there exists
a DPF for point functions fα,β : {0, 1}` → G with key size ` · (λ + 2) + λ + dlog2 |G|e bits. For
m = d log |G|λ+2 e, the key generation algorithm Gen invokes G at most 2(` + m) times, the evaluation
algorithm Eval invokes G at most ` +m times, and the full evaluation algorithm FullEval invokes G
at most 2`(1 +m) times.

FSS for Multi-Point Functions Similarly to [BCGI18, BCG+19b, BCG+19a], we use FSS for
multi-point functions. A k-point function evaluates to 0 everywhere, except on k specified points.
When specifying multi-point functions we often view the domain of the function as [n] for n = 2`

instead of {0, 1}`.

Definition 5 (Multi-Point Function [BCGI18]). An (n, t)-multi-point function over an abelian
group (G,+) is a function fS,y : [n]→ G, where S = (s1, · · · , st) is an ordered subset of [n] of size t
and y = (y1, · · · , yt) ∈ Gt, defined by fS,y(si) = yi for any i ∈ [t], and fS,y(x) = 0 for any x ∈ [n]\S.

We assume that the description of S includes the input domain [n] so that fS,y is fully specified. A
Multi-Point Function Secret Sharing (MPFSS) is an FSS scheme for the class of multi-point functions,
where a point function fS,y is represented in a natural way. We assume that an MPFSS scheme leaks
not only the input and output domains but also the number of points t that the multi-point function
specifies. An MPFSS can be easily obtained by adding t instances of a DPF.

3.2 Learning Parity with Noise

Our constructions rely on the Learning Parity with Noise assumption [BFKL93] (LPN) over a field
F (the most standard variant of LPN typically assumes F = F2, but other fields can be considered).
Unlike the LWE assumption, in LPN over F the noise is assumed to have a small Hamming weight.
Concretely, the noise is a random field element in a small fraction of the coordinates and 0 elsewhere.
Given a field F, Berr(F) denote the distribution which outputs a uniformly random element of F\{0}
with probability r, and 0 with probability 1− r.

10



Definition 6 (LPN). For dimension k = k(λ), number of samples (or block length) q = q(λ), noise
rate r = r(λ), and field F = F(λ), the F-LPN(k, q, r) assumption states that

{(A, b) | A $← Fq×k, e $← Berr(F)q, s $← Fk, b← A · s+ e}
c
≈{(A, b) | A $← Fq×k, b $← Fq}

Here and in the following, all parameters are functions of the security parameter λ and computa-
tional indistinguishability is defined with respect to λ. Note that the search LPN problem, of finding
the vector can be reduced to the decisional LPN assumption [BFKL93, AIK09]. In this paper, our
protocols will mostly rely on a variant of LPN, called exact LPN (xLPN) [JKPT12]. In this variant,
the noise vector e is not sampled from Berr(F)q, but it is sampled uniformly from the set HWrq(Fq) of
length-q vectors over F with exactly rq nonzero coordinates (in contrast, a sample from Berr(F)q has
an expected number r · q of nonzero coordinates). While standard LPN is usually preferred since the
Bernouilli distribution is convenient to analyze, xLPN is often preferred in concrete implementations,
since it offers a potentially higher level of security for similar parameters (by avoiding weak instances
with a low amount of noise). Furthermore, as outlined in [JKPT12], xLPN and LPN are equivalent:
xLPN reduces to its search version using the sample-preserving reduction of [AIK07], and search-xLPN
is easily seen to be polynomially equivalent to search-LPN.

Dual LPN. In our protocols, it will also prove convenient to work with the (equivalent) alternative
dual formulation of LPN.

Definition 7 (Dual LPN). For dimension k = k(λ), number of samples (or block length) q = q(λ),
noise rate r = r(λ), and field F = F(λ), the dual-F-LPN(k, q, r) assumption states that

{(H, b) | H $← Fq−k×q, e $← Berr(F)q, b← H · e}
c
≈{(H, b) | H $← Fq−k×q, b $← Fq}

Solving the dual LPN assumption is easily seen to be at least as hard as solving LPN: given
a sample (A, b), define H ∈ Fq−k×q to be the parity-check matrix of A (hence H · A = 0), and
feed (H,H · b) to the dual LPN solver. Note that the parity check matrix of a random matrix is
distributed as a random matrix. Furthermore, when b = A · s+ e, we have H · b = H · (A · s+ e) =
H · e. For discussions regarding existing attacks on LPN and their efficiency, we refer the reader
to [BCGI18,BCG+19b].

3.3 Pseudorandom Correlation Generators

Pseudorandom correlation generators (PCG) have been introduced in [BCG+19b]. Informally, a pseu-
dorandom correlation generator allows to generate pairs of short keys (or seeds) (k0, k1) such that
each key kσ can be expanded to a long string Rσ = Expand(σ, kσ), with the following guarantees:
given the key k1−σ, the string Rσ is indistinguishable from a random string sampled conditioned on
satisfying the target correlation with the string R1−σ = Expand(1−σ, k1−σ). We provide below the for-
mal definition of pseudorandom correlation generators, after defining the notion of reverse-sampleable
correlation generator.

Definition 8 (Correlation Generator). A PPT algorithm C is called a correlation generator, if
C on input 1λ outputs a pair of elements in {0, 1}n × {0, 1}n for n ∈ poly(λ).

In order to define security, we require the notion of a reverse-sampleable correlation generator
introduced in the following.

Definition 9 (Reverse-sampleable Correlation Generator). Let C be a correlation generator.
We say C is reverse sampleable if there exists a PPT algorithm RSample such that for σ ∈ {0, 1} the
correlation obtained via:

{(R′0, R′1) |(R0, R1)
$← C (1λ), R′σ := Rσ, R

′
1−σ

$← RSample(σ,Rσ)}

is computationally indistinguishable from C (1λ).
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Definition 10 (Pseudorandom Correlation Generator (PCG)).
Let C be a reverse-sampleable correlation generator. A pseudorandom correlation generator (PCG)

for C is a pair of algorithms (PCG.Gen,PCG.Expand) with the following syntax:

– PCG.Gen(1λ) is a PPT algorithm that given a security parameter λ, outputs a pair of seeds (k0, k1);
– PCG.Expand(σ, kσ) is a polynomial-time algorithm that given party index σ ∈ {0, 1} and a seed

kσ, outputs a bit string Rσ ∈ {0, 1}n.

The algorithms (PCG.Gen,PCG.Expand) should satisfy the following:

– Correctness. The correlation obtained via:

{(R0, R1) |(k0, k1) $← PCG.Gen(1λ), Rσ ← PCG.Expand(σ, kσ) for σ ∈ {0, 1}}

is computationally indistinguishable from C (1λ).
– Security. For any σ ∈ {0, 1}, the following two distributions are computationally indistinguish-

able:

{(k1−σ, Rσ) | (k0, k1) $← PCG.Gen(1λ),Rσ ← PCG.Expand(σ, kσ)} and

{(k1−σ, Rσ) | (k0, k1) $← PCG.Gen(1λ),R1−σ ← PCG.Expand(σ, k1−σ),

Rσ
$← RSample(σ,R1−σ)}

where RSample is the reverse sampling algorithm for correlation C .

Note that the above definition is trivial to achieve in general: We can let PCG.Gen on input 1λ

return (R0, R1)← C (1λ), and simply define Expand to be the identity. Typically, we will be interested
in non-trivial constructions of PCGs, in which the seed size is significantly shorter than the output
size. A pseudorandom generator with image in {0, 1}n is a simple example for an expanding PCG for
the equality correlation {(R,R) | R ∈ {0, 1}n}.

4 Secure Computation from Super-Constant-Degree Low-Locality
Polynomial Correlated Randomness

4.1 Block Decomposition of Layered Circuits

Given an arithmetic circuit C and an input vector x, we call value of the gate g on input x the
value carried by the output wire of a given gate g of C during the evaluation of C(x). The following
decomposition of layered circuits is implicit in [Cou19]; for completeness, we give the proof here.

Lemma 11 (Block-Decomposition of Layered Circuits, Implicit in [Cou19]). Let C be a
layered arithmetic circuit over a field F with n inputs and m outputs, of size s and depth d = d(n).
For any integer k, denoting t = t(k) = dd/ke, there exists 2t+1 integers (s0 = 0, s1, · · · , st−1, st = 0),
(m0, · · · ,mt−1), and functions (f0, · · · , ft−1) with fi : Fn × Fsi → Fsi+1 × Fmi , such that:

– The algorithm A given below satisfies, for any input vector x ∈ Fn, A(x) = C(x) (that is, A
computes C);

function A(x)
x0 ← x
for i = 0 to t− 1 do (xi+1,yi)← fi(xi)

y ← y0|| · · · ||yt−1
return y

– For any i ∈ [[0, t − 1]], j ≤ si+1 + mi, the j-th output5 of fi : Fn × Fsi 7→ Fsi+1 × Fmi can be
computed by a multivariate polynomial Pi,j over F2k of degree degPi,j ≤ 2k;

–
∑t−1
i=0 si ≤ s/k and

∑t−1
i=0mi = m.

The decomposition of a layered circuits into chunks computable by low-degree functions is illus-
trated on Figure 1.
5 i.e. the jth coordinate of the image by fi, seen as fi : Fn × Fsi → Fsi+1+mi .
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Fig. 1: Block Decomposition of a Circuit.

Proof. Let C be a layered boolean circuit with n inputs and m outputs, of size s and depth d, with
layers (L1, · · · , Ld). For i = 1 to d, we let wi denote the width of the layer Li (that is, the number of
computation gates it contains; note that s =

∑d
i=1 wi). Fix an integer k and let t = dd/ke.

We start by considering t ‘chunks’ of layers, each containing k consecutive layers (the last may
in fact contain fewer if k - d). Observe there must exist a j ∈ {0, . . . , k − 1}, such that the sum
of the widths of the jth layer of each chunk (with the convention that if the last chunk has fewer
than j layer, its jth one is empty; wi = 0 if i > d) is at most s/k, i.e.

∑t
i=1 wk·(i−1)+j ≤ s/k.

Indeed otherwise ∀j ∈ {0, . . . , k},
∑t−1
i=0 wr0+1+k·(i−1)+j > s/k, so s =

∑d
i=1 wi ≥

∑d−r1
i=r0+1 wi =∑k−1

j=0

∑t
i=1 wr0+1+k·(i−1)+j > k · s/k = s, which is a contradiction. With j being fixed we now define

ji ← k · (i− 1) + j for i ∈ [t− 1] and jt ← min(d, k · (t− 1) + j).
Now, for each 0 ≤ i ≤ t, we let Bi the block containing the consecutive layers (Lji , · · · , Lji+1

).
Note that the depth of each block is at most k. Let mi denote the number of output nodes contained
in Bi (note that

∑t−1
i=0mi = m). For each 1 ≤ i ≤ t, set si ← wji , and s0, sd ← 0. This decomposition

into blocks is illustrated in fig. 1.
The intuition behind the decomposition of C is the following: each function fi will take as input

the n inputs x to C, together with the si values of the gates in the first layer of Bi. It evaluates the
layers of Bi, starting from the si values of the first layer (using the input x when the layer contains an
input node), and outputs the si+1 values on the first layer of Bi+1, together with the mi values of the
output nodes contained in Bi. Given this decomposition, the correctness of algorithm A is guaranteed
by definition: A simply corresponds to a “block-by-block” evaluation of the circuit C, where each block
evaluation outputs the current state xi+1 (which must be given as input to the next block in addition
to the input vector x) together with the outputs of C contained in this block. Since each block has
depth at most k, each output of fi can be computed by multivariate polynomials with at most 2k

inputs, and of degree at most 2k.

4.2 Securely Computing C in the Correlated Randomness Model

We represent in fig. 2 the ideal functionality for securely evaluating the layered arithmetic circuit C.
We represent on fig. 3 an ideal functionality for distributing (function-dependent) correlated ran-

domness between the parties.

Theorem 12. Let k ≤ log log s − log log log s. There exists a protocol ΠC which (perfectly) securely
implements the N -party functionality FC in the Fcorr-hybrid model, against a static, passive, non-
aborting adversary corrupting at most N − 1 out of N parties, with communication complexity upper
bounded by O(N · (n+ s

k +m) · log |F|) and polynomial computation.

The protocol follows closely the construction of [Cou19], with some tedious technical adaptations
which are necessary to rely on the specific type of correlated randomness which we will manage to

13



Ideal Functionality FC

– Parameters. The functionality is parametrised with an arithmetic circuit C with n inputs over a
finite field F.

– Parties. An adversary A and N parties P1, · · · , PN . Each party P` has p` ∈ [0, n] inputs over F,
with

∑
`≤N p` = n.

The functionality aborts if it receives any incorrectly formatted message.

1. On input a message (input,x`) from each party P` where x` ∈ Fp` , set

x← x1|| · · · ||xN ∈ Fn.

2. Compute y ← C(x). Output y to all parties, and terminate.

Fig. 2: Ideal functionality FC for securely evaluating an arithmetic circuit C among N parties.

Ideal Functionality Fcorr

– Parameters. For every i = 0, . . . , dd/ke − 1, functionality is parameterised with subsets
(U in

i,j , Ui,j)1≤j≤dsi+1/βe and (V in
i,j , Vi,j)1≤j≤dmi/βe.

– Parties. An adversary A and N parties P1, · · · , PN .

The functionality aborts if it receives any incorrectly formatted message.

1. On input a message (corrupt, D) with D ( [N ] from A , set H ← [N ] \D and store (H,D).
2. On input a message input with from each party P`, send ready to A .
3. Setup input masks: On input a message (setinputshare, (rin,`)`∈D) from A with ∀` ∈ D, rin,` ∈ Fn,

sample (rin,`)`∈H
$← (Fn)|H|, and set rin ←

∑
`∈[N ] rin,`.

4. For i = 1 to dd/ke − 1:
(a) Setup masks for the computation gates of the first layer of the ith chunk: On input a message

(setblockshare, i, (ri,`)`∈D) from A with ∀` ∈ D, ri,` ∈ Fsi , sample (ri,`)`∈H
$← (Fsi)|H|, and

set rin ←
∑
`∈[N ] rin,`.

(b) Setup evaluation of the computation gates on the final layer of the ith chunk:
– For j = 1 to dsi+1/βe, set:

π(i,j) ←
(
1

n
rin[U

in
i,j ]

n
ri[Ui,j ]

)⊗2k

.

– Wait for a message (setshare, (i, j), (π
(i,j)
` )`∈D) from A with π(i,j)

` ∈ Fδ;
– Compute uniformly random shares (π(i,j)

` )`∈|H| of π(i,j) −
∑
`∈D π

(i,j)
` .

(c) Setup evaluation of the output gates in the ith chunk:
– For j = 1 to dmi/βe, set:

π(i,j) ←
(
1

n
rin[V

in
i,j ]

n
ri[Vi,j ]

)⊗2k

.

– Wait for a message (setoutputshare, (i, j), (π
(i,j)
` )`∈D) from A with π(i,j)

` ∈ Fδ;
– Compute uniformly random shares (π(i,j)

` )`∈|H| of π(i,j) −
∑
`∈D π

(i,j)
` .

5. Output (rin,`, (ri,`, (π
(i,j)
` )1≤j≤dsi+1/βe, (π

(i,j)
out,`)1≤j≤dmi/βe)0≤i<dd/ke) to each party P`.

Fig. 3: Ideal corruptible functionality Fcorr to deal out correlated randomness to the parties.
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securely generate with low communication overhead. The rest of this section is dedicated to making
ΠC explicit and to analysing its security.

In the sequel, we fix a layered arithmetic C with block decomposition:

(s0, s1, · · · , st−1), (m0, · · · ,mt−1), and (f0, · · · , ft−1).

We now proceed with the description of the protocol ΠC , which securely implements FC in the
Fcorr-hybrid model, with security against a static adversary passively corrupting at most N−1 parties.
Fix parameters β, k ∈ N∗. We let x` denote the input vector of party P` over F. We slightly abuse
this notation and view each vector x` as a length-n vector with zeroes at the positions were P` does
not hold an input, so that the vectors x` form additive shares of the input vector x =

∑N
`=1 x`.

For each block Bi, we denote by ui the values on the nodes of the first layer of Bi, and by vi the
values on all output nodes in Bi. Observe that by definition of fi, we have fi(x,ui) = (ui+1,vi). We
further partition the outputs of fi in subvectors (ui+1

j )1≤j≤dsi+1/βe and (vij)1≤j≤dmi/βe, such that
each subvector has length at most β. Recall that each output of fi depends on at most 2k inputs;
therefore, each subvector ui+1

j and vij depends on at most β · 2k coordinates of (x,ui). For each
subvector ui+1

j (resp. vij), we denote by U in
i,j ⊂ [n] (resp. V in

i,j ⊂ [n]) the subset of coordinates of x
which influence ui+1

j (resp. vij), and by Ui,j ⊂ [si] (resp. Vi,j ⊂ [si]) the subset of coordinates of ui

which influence ui+1
j (resp. vij). Note that |U in

i,j | + |Ui,j | ≤ β · 2k and |V in
i,j | + |Vi,j | ≤ β · 2k. This

decomposition is illustrated in fig. 4.

Input/Output Gates

x (size n)

vi (size mi)

Computation Gates

ui (size si)

ui+1 (size si+1)

Layer Lji

Layer Lji+1

Input Gates

Output Gates
in Block i

ui+1
j

(size β)

U i,jU in
i,j

Q(i,j)

Q
(i,j)
out

vij
(size β)

V in
i,j V i,j

Fig. 4: Decomposition of the ith Block into low-degree Polynomials.

Initialisation.

– Each party P` sends input to Fcorr and waits until it receives

(rin,`, (ri,`, (π
(i,j)
` )1≤j≤dsi+1/βe, (π

(i,j)
out,`)1≤j≤dmi/βe)0≤i<t).

– Each party P` broadcasts zin
` ← x` + rin,`. All parties compute zin ←

∑
` z

in
` = x+ rin.

i-th Block Evaluation. We now resume the description of the protocol, and assume that the
protocol maintains the following invariant: at the beginning of the i-th block evaluation, each party
P` holds an additive share ui` of the values u

i on the first layer of the block. The block decomposition
of fi guarantees that each output of fi : Fn × Fsi 7→ Fsi+1 × Fmi can be computed by a multivariate
polynomial of degree at most 2k. Let Q(i,j) denote the vector of multivariate polynomials of degree
at most 2k such that Q(i,j)(x[U in

i,j ] || ui[Ui,j ]) = ui+1
j ∈ Fsi+1 . Similarly, let Q(i,j)

out denote the vector
of multivariate polynomials of degree at most 2k such that Q(i,j)

out (x[V in
i,j ] || ui[Vi,j ]) = vij ∈ Fmi .

– Each party P` broadcasts zi` ← ui` + ri,`. All parties compute zi ←
∑
` z` = u

i + ri,`.
– Define the following vectors of multivariate polynomials:

Q̂(i,j)(X)← Q(i,j)(X − (rin[U
in
i,j ] || ri[Ui,j ]))

Q̂
(i,j)
out (X)← Q

(i,j)
out (X − (rin[V

in
i,j ] || ri[Vi,j ])).
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Observe that each coefficient of Q̂(i,j)(X) is itself a multivariate polynomial of degree at most
2k in the coordinates of (rin[U

in
i,j ] || ri[Ui,j ]). Therefore, all its coefficients can be computed as

linear combinations of the coordinates of π(i,j) = (1F || rin[U
in
i,j ] || ri[Ui,j ])⊗2

k

. Similarly, all
coefficients of Q̂(i,j)

out (X) can be computed as linear combinations of the coordinates of π(i,j)
out =

(1F || rin[V
in
i,j ] || ri[Vi,j ])⊗2

k

.
– Each party P` computes shares (Q̂

(i,j)
` (X), Q̂

(i,j)
out,`(X)) of (Q̂(i,j)(X), Q̂

(i,j)
out (X)) from his shares

(π
(i,j)
` ,π

(i,j)
out,`) of (π

(i,j),π
(i,j)
out ), and sets:

ui+1
` ←

(
Q̂

(i,j)
` (zin[U in

i,j ], z
i[Ui,j ])

)
1≤j≤dsi+1/βe

vi` ←
(
Q̂

(i,j)
out,`(z

in[V in
i,j ], z

i[Vi,j ])
)
1≤j≤dmi/βe

.

Output Reconstruction. Each party P` sets and broadcasts v`, where:

v` ← (v
(0,j)
` )j≤q0 ||(v

(1,j)
` )1≤j≤dm1/βe|| · · · ||(v

(dd/ke−1,j)
` )1≤j≤dmdd/ke−1/βe.

All parties reconstruct and output v ←
∑
` v`.

We now prove Theorem 12 by proving the above protocol satisfies the necessary requirements.

Proof. The efficiency of the protocol follows by inspection: the total length of all messages broadcast
in ΠC is

N ·

(
n+

t−1∑
i=0

si +

t−1∑
i=0

mi

)
≤ N ·

(
n+

s

k
+m

)
.

We now analyse the security of ΠC . We describe in fig. 5 a simulator Sim which perfectly simulates
an execution of ΠC .

Simulator Sim

Let D ( [N ] be the subset of statically corrupted parties, and H = [N ] \D be the (nonempty) subset
of honest parties.

– Initialisation.
• Sim honestly simulates the functionality Fcorr and stores the following values:

(rin,`, (ri,`, (π
(i,j)
` )1≤j≤dsi+1/βe, (π

(i,j)
out,`)1≤j≤dmi/βe)0≤i<dd/ke)`∈[N ].

• Sim broadcasts a random vector zin
` on behalf of all honest parties. Let zin ←

∑
`≤N z

in
` . For

each ` ∈ D, Sim extracts x` ← zin
` − rin,`.

• Sim sends (input,x`) to FC on behalf of all corrupted parties, and receives an output v.
– i-th Block Evaluation.

Sim broadcasts uniformly random zi`
$← Fsi on behalf of all honest parties, waits to receive

(zi`)`∈D, and sets zi ←
∑
`∈[N ] z

i
`.

– Output Phase.
For each ` ∈ D, Sim computes vi` ← Q̂

(i,j)
out,`(z

in[V in
i,j ],z

i[Vi,j ]) and sets v` ← v0
` || · · · ||vt−1

` .
Eventually, Sim broadcasts uniformly random shares of v −

∑
`∈D v` on behalf of the honest

parties.

Fig. 5: Simulator Sim for the sublinear protocol in the Fcorr-hybrid model.

It remains to show that Sim perfectly simulates a run of the real protocol ΠC in the Fcorr-hybrid
model. But this follows almost immediately by inspection, as the view of all corrupted parties in ΠC

contains exactly:

– the tuple (rin,`, (ri,`, (π
(i,j)
` )1≤j≤dsi+1/βe, (π

(i,j)
out,`)1≤j≤dmi/βe)0≤i<t)`∈D, which is chosen by the ad-

versary;
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– the vectors (zin
` = x`+ rin,`)`∈H , which are perfectly random since each rin,` is perfectly random,

by definition of Fcorr;
– the vectors (zi` = u

i
` + r

i
`)`∈H , which are perfectly random since each ri` is perfectly random, by

definition of Fcorr;
– the vectors (v`)`∈H = (v0` || · · · ||v

t−1
` )`∈H . By construction, and by definition of the Q̂(i,j)

v,` (X),
the v` satisfy:

v
(i,j)
` = Q̂

(i,j)
out,`(w[V in

i,j ], z
i[Vi,j ])

= Q
(i,j)
out,`((w[V in

i,j ], z
i[Vi,j ])− (r[V in

i,j ], r
i[Vi,j ]))

= Q
(i,j)
out,`(x[V

in
i,j ],u

i[Vi,j ])).

Therefore, the v` are uniformly random conditioned on:∑
`∈H

v
(i,j)
` = Q

(i,j)
out (x[V in

i,j ],u
i[Vi,j ])−

∑
`∈D

v
(i,j)
` .

By definition of the Q(i,j)
out (X), we have Q(i,j)

out (x[V in
i,j ],u

i[Vi,j ]) = v(i,j), where the v(i,j) are such
that fi(x,ui) = (ui+1, (v(i,j))1≤j≤dmi/βe). Therefore, by definition of the fi, the vectors v` are
uniformly random conditioned on:∑

`∈H

v` = v −
∑
`∈D

v`, where v = C(x).

This concludes the proof that Sim perfectly simulates ΠC .

5 Generating Correlated Randomness from LPN

In this section, we construct a protocolΠcorr, which implements the ideal functionality Fcorr with small
communication, under the quasi-polynomial LPN assumption. A very natural approach to realise a
functionality that distributes correlated random coins using a small amount of communication is to
rely on pseudorandom correlation generators, a primitive recently defined an constructed (for various
types of correlations, and under a variety of assumptions) in [BCG+19b]. At a high level, [BCG+19b]
suggests to distribute correlated randomness with the following approach:

– Use a generic secure computation protocol ΠGen to distributively execute the PCG.Gen function-
ality of the pseudorandom correlation generator. Note that PCG.Gen outputs short seeds, much
smaller than the correlated pseudo-random strings which can be stretched from these seeds.
Therefore, ΠGen can potentially have a relatively high communication overhead in its inputs and
outputs, while maintaining the overall communication overhead of Πcorr small.

– Expand the distributively generated seeds locally using the Expand algorithm of the PCG. Each
such string is guaranteed, by the security of the PCG, to be indistinguishable (from the viewpoint
of the other parties) from a uniformly random string sampled conditioned on satisfying the target
correlation with the expanded strings held by the other parties.

While this approach does not necessarily leads to a secure implementation of an ideal functionality
generating correlated random coins, it was shown in [BCG+19b] (Theorem 19 in [BCG+19b]) that
it provides a provably secure implementation for all corruptible ideal functionalities for distributing
correlated random coins. Note that this property is satisfied by our functionality Fcorr. Our protocol
Πcorr will follow this approach. We start by constructing a pseudorandom correlation generator for
the type of correlated randomness produced by Fcorr, building upon an LPN-based construction
of [BCG+19b].

5.1 Substrings Tensor Powers Correlations (stp)

We now describe our construction of a PCG for generating the type of correlated randomness produced
by Fcorr. As all constructions of [BCG+19b], our construction will be restricted to the two-party
setting; hence, we focus on N = 2 parties from now on. Abstracting out the unnecessary details, the
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functionality Fcorr does the following. It is parametrised with a vector length w, subsets (Si)1≤i≤ns ∈(
[w]
≤K
)ns , a tensor power parameter tpp, and generates shares of:

(r, ((1F || r[Si])⊗tpp)1≤i≤ns), where r ∈ Fw is random.

We call C the correlation generator associated with Fcorr, i.e. the PPT algorithm that, on input
the security parameter in unary 1λ, samples correlated random string as above (where the parameters
(ns,K, tpp) are functions of λ). It is straightforward to see that C is a reverse-samplable correlation
generator (see Definition 9), since it is an additive correlation: given any fixed share share0, a matching
share can be reverse-sampled by sampling r and setting share1 ← (r, ((1F || r[Si])⊗tpp)1≤i≤ns) −
share0. We call this type of correlated randomness a subsets tensor powers (stp). Below, we describe
a pseudorandom correlation generator for such correlations.

5.2 Good Cover

Before we proceed with the description of a PCG to generate such correlations, we need to introduce
a concept, that of a good cover. The notations in this subsection are completely self-contained, and
may conflict with the parameters defined for the main protocol. In the course of our construction we
will want to solve the following problem: given a vector v of size n, a family (Si)i∈[t] ∈ P([n])t of
t (short) subsets of coordinates of v, and a (small) bound B > 0, the problem is to find a family
(vj)j∈[M ] of some number m of size-K subvectors of v such that:

1. The subvectors collectively cover v;
2. For each i ∈ [t], there are at most B subvectors in (vj)j∈[M ] whose coordinates intersect Si.

We call such a family a B-Good Cover of (v, (Si)i∈[t]). First of all we note that the values of the
vectors and subvectors do not matter, so we will conflate them with sets and subsets (of coordinates)
for simplicity, which leads to a more natural formulation.

Definition 13 (Good Cover – Set Formulation). Let n,B,K, t, q,M ∈ N and (Si)i∈[t] ∈
(
[n]
≤q
)t

a family of t subsets of [n] of size at most q each. A family A = (αj)j∈[M ] ∈
(
[n]
K

)M
is a B-Good

Cover of (Si)i∈[t] if:

1. A covers [n]:
⋃M
j=1α

j = [n]

2. Each Si intersects at most B elements of A: ∀i ∈ [t], |{j ∈ [M ] : αj ∩ Si 6= ∅}| ≤ B.

We abusively conflate the two views, where a good cover is just a family of subsets A ∈
(
[n]
K

)M
and where the good cover is a family of sparse vectors—given by a set of coordinates and a short
vector of values—A ∈ (

(
[n]
K

)
× FK)M .

Lemma 14 (Random Covers are Good Covers.). Let n, κ, κ′ ∈ Nr{0, 1}, and (Si)i∈[t] ∈
(
[n]
≤q
)t

a family of t subsets of [n] of size at most q each. Let A = (αj)j∈[M ] ∈
(
[n]
K

)M
be a sequence of M

i.i.d. uniform random size-K subsets of [n], with M = κ · n lnn/K. Let B ← κ′κ · q · lnn.
It holds that A = (αj)j∈[M ] is a B-Good Cover of (Si)i∈[t] with probability at least:

1− 1

nκ−1
− t

n(κ′−2)κ·q/2
.

The proof, which is obtained in a straightforward fashion by combining the union and Chernoff
bounds, is given in

Proof.

1. The probability that i /∈ A (for any i ∈ [n]) is equal to (1 −
(
n−1
K−1

)
/
(
n
K

)
)M = (1 − K

n )
M =

eM ·ln(1−K/n) ≤ e−MK/n = n−κ (using ∀x ≥ −1, ln(1+x) ≤ x), so by union bound, the probability
that A does not cover [n] is at most n · n−κ.
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2. For each i ∈ [q], we arbitrarily extend Si to an S̃i of size exactly q; in particular ∀i ∈ [q], Si ⊆ S̃i
so |{j : αj ∩ Si 6= ∅}| ≤ |{j : αj ∩ S̃i 6= ∅}|. For any j ∈ [M ], the indicator random variable of the
event {αj ∩ S̃i 6= ∅} follows a Bernouilli law with parameters (M, qp ), where p = 1 −

(
n−q
K

)
/
(
n
K

)
.

Its expectancy is µ := E(X) = M · (1 −
(
n−q
K

)
/
(
n
K

)
). Note that, using Bernouilli’s inequality

(∀r ∈ N∗,∀x ≥ −1, (1 + x)r > (1 + rx)):

µ =M ·

(
1−

∏K−1
j=0 (n− q − j)∏K−1
j=0 (n− j)

)
≤ m · (1− (n− 2q)K

nK
)

=M · (1− (1− 2q/n)K) ≤M 2qK

n
= 2κ · q · lnn.

Therefore the probability thatX := |{j : αj ∈ S̃i}| ≤ B is, by (a looser version of the multiplicative
form of) Chernoff’s bound, at most:

∀δ ≥ 0,Pr[X > (1 + δ)µ] ≤ exp

(
− δ2µ

2 + δ

)
.

Setting δ ← B/µ− 1 yields:

Pr[X > B] ≤ exp

(
− δ2µ

2 + δ

)
≤ exp(−δµ/2) = exp

(
−B − µ

2

)
≤ n−(κ

′−2)κ·q/2.

3. The desired bound is then obtained by union bound.

5.3 PCG for Subsets Tensor Powers (PCGstp)

We now proceed with the description of a pseudorandom correlation generator for subsets tensor
powers.

PCG for Low-Degree Polynomials from [BCG+19b]. We start by recalling a natural variant of pseu-
dorandom correlation generator of [BCG+19b, Section 6], which generates shares of r⊗tpp, for a
parameter tpp and a pseudorandom r. It relies on the xLPN assumption with dimension n, number of
samples n′ > n, and a number λ of noisy coordinates. In our instantiation, we will typically consider
n′ = O(n), e.g. n′ = 12n; this corresponds to a particularly conservative variant of LPN with a very
limited number of samples, and is equivalent to the hardness of decoding a random constant-rate
linear code (which is known as the syndrome decoding problem). As discussed in Section 3, all known
attacks on the syndrome decoding problem for constant-rate codes have complexity 2O(λ). The PCG
of [BCG+19b] is parametrised by integers 1λ, n, n′, λ, tpp ∈ N (where n′ > n), a field F, and a random
parity-check matrix Hn′,n

$← F(n′−n)×n′ .

PCG for Degree-tpp Polynomial Correlations

PCG.Gen: On input 1λ:

1. Pick a random λ-sparse vector e $← HWλ(Fn
′
). Note that e⊗tpp ∈ HWλtpp(F(n′)tpp). Let f : [(n′)tpp] 7→

F be the multi-point function with λtpp points, such that f(i) returns the i-th coordinate of e⊗tpp.
2. Compute (K fss

0 ,K
fss
1 )

$← MPFSS.Gen(1λ, f). Output k0 ← (n,K fss
0 ) and k1 ← (n,K fss

1 ).

PCG.Expand: On input (σ, kσ), compute vσ ← MPFSS.FullEval(σ,K fss
σ ) in F(n′)tpp and set rσ ←

H⊗tpp
n′,n · vσ. Output rσ.

Fig. 6: PCG for Low-Degree Polynomials from [BCG+19b].
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Correctness follows from the fact that v0 + v1 = e⊗tpp by the correctness of MPFSS, and H⊗tppn′,n ·
e⊗tpp = (Hn′,n ·e)⊗tpp by multilinearity of the tensor product. Hence, denoting r = Hn′,n ·e, it holds
that r0+r1 = r⊗tpp. For security, we must show that the following distributions are indistinguishable
for any σ = 0, 1:

{(kσ, r1−σ) : (k0, k1)
$← Gen(1λ), r1−σ ← Expand(1− σ, k1−σ)}

c
≈{(kσ, r1−σ) : (k0, k1)

$← Gen(1λ), rσ ← Expand(σ, kσ), r
$← Fn,

r1−σ ← r⊗tpp − rσ}

Proof. We sketch the analysis for the sake of completeness; the full proof is given in [BCG+19b].
Security is shown with the following sequence of hybrids: first generate (kσ, r1−σ) as in the first
distribution above. Then, generate (kσ, r1−σ) as before, and generate an alternative key k′σ solely
from the parameters (1λ,F, n, n′, t, tpp), using the simulator of the MPFSS. Output (k′σ, r1−σ); under
the security of the MPFSS, this distribution is indistinguishable from the previous one. Note that k′σ
does not depend anymore on the noise vector e. In the next hybrid, generate r $← Hn′,n · e and set
r1−σ ← r⊗tpp−Expand(σ, kσ); this game is perfectly indistinguishable from the previous one. Finally,
replace r $← Hn′,n · e by r $← Fn; under the LPN assumption, this last game (which correspond
exactly to the second distribution) is computationally indistinguishable from the previous one, and
security follows.

Our New PCG. We now describe a variant of the above PCG, tailored to computing the tensor
powers of many short subsets. The PCG is parametrised by (Si)i∈[K] ∈

(
[w]
≤K
)ns , ns subsets of at most

K indices taken from [w]. We assume for simplicity, but morally without loss of generality6, that⋃ns
i=1 Si = [w]. Our goal is for the parties to obtain shares of some pseudorandom vector r ∈ Fw as

well as shares of (1 || r[Si])⊗tpp ∈ Fw·tpp for each i ∈ [ns].
We start by generating a B-good cover (for some integer B) of the (Si)i of the form (αj , rj)j∈[m] ∈

(
(
[w]
θ

)
× Fθ)m where each rj is pseudorandom. We generate each of the m pseudorandom masks rj

using a different instance of xLPN, i.e. rj ← Hj · ej , where ej ∈ Fθ′ is λ-sparse and Hj
$← Fθ×θ′

for some θ′ = O(θ). For each Si, we denote Ii := {j ∈ [m] : αj ∩ Si 6= ∅} = {j1, . . . , j|Ii|} the set
of the indices of the masks which ‘intersect’ with Si. Note that ∀i ∈ [ns], |Ii| ≤ B by definition of a
B-good cover. We can now proceed with our main goal: generating shares of a subsets tensor powers
correlation.

We define r :=
∑m
j=1 fαj ,rj ∈ Fw, where fαj ,rj ∈ Fw is the sparse vector defined by (fαj ,rj )|αj = rj

(and which is equal to 0F on [w]r αj). Since
⋃ns
i=1 Si = [w] and each of the rj is pseudorandom, r is

also pseudorandom.
Note that for any given i ∈ [ns], (1F || r[Si]) is a subvector of the vector r̃i obtained by multiplying

the block-diagonal matrix H ′i = Diag((1F), Hj1 , . . . ,Hj|Ii|
) with the vector e′i = (1F||ej1 || · · · ||ej|Ii|).

Therefore for any tensor power tpp (i.e. the degree of the polynomial correlation), r̃⊗tppi = (H ′i ·
e′i)
⊗tpp = (H ′i)

⊗tpp ·(e′i)⊗tpp. If the parties use an MPFSS scheme to generate small seeds which expand
to (e′i)

⊗tpp, they can then locally obtain shares of r̃⊗tppi (since (H ′i)
⊗tpp is public), and therefore of

(1F || r[Si])⊗tpp. From all these shares of all the (1F || r[Si])⊗tpp, i ∈ [ns] the parties can locally extract
shares of all the r[Si] and thence shares of r (since

⋃ns
i=1 Si = [w]). The protocol is given in Figure 7.

Theorem 15. Let w > 0, and (Si)i∈[ns] a list of ns subsets of [w]. Let B, θ′ such that there exists a B-
good cover of (Si)i∈[ns] comprised of size-θ′ vectors, and let θ < θ′. Assume that the F-xLPN(θ, θ′, λ)
assumption holds, and that MPFSS is a secure multi-point function secret-sharing scheme for the
family of (1 + µ · λ)tpp-point functions from [(1 + µ · θ′)tpp] to F for all µ ∈ [B]. Then PCGstp is a
secure pseudorandom correlation generator, which generates pseudorandom shares of a subsets tensor
powers correlation (r, ((1F || r[Si])⊗tpp)1≤i≤ns) where r ∈ Fw.

6 If
⋃ns
i=1 Si 6= ∅, and with the notations of the rest of the section, the vector r we generate is equal to 0F on

[w] r
⋃ns
i=1 Si, hence not pseudorandom. However, we can simply have the parties generate another mask

r′ = H ′ · e′, pseudorandom under xLPN, to cover [w] r
⋃ns
i=1 Si. Since the parties do not need shares of

(r′)⊗tpp, the communication complexity of generating the λ-sparse e′ using an MPFSS is not an issue.
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Pseudorandom Correlation Generator PCGstp

Parameters: w, tpp, λ ∈ N and (Si)1≤i≤ns ⊆ [w]ns .

Gen: On input 1λ:

1. Generate a family of subsets (αj)1≤j≤m ∈
(
[m]
θ′

)m
which form a B-good cover of the (Si)i∈[ns] (when

the αj are paired with length-θ′ vectors in Fθ
′
), and contracting matricesa (Hj)j∈[m] ∈ (Fθ×θ

′
)m .

2. Pick m random λ-sparse vectors ej $← HWλ(Fθ
′
), j ∈ [m] and define:

rj ← Hj · eᵀj , for all j ∈ [m].

3. For each i = 1 . . . ns :
(a) Denoting Ii := {j ∈ [m] : αj ∩ Si 6= ∅} = {j1, · · · , jmi} (with mi ≤ B), set:

r̃i ← (1F || Hj1 · e
ᵀ
j1
|| · · · || Hjmi · e

ᵀ
jmi

)ᵀ.

(b) Let fi : [(1 +mi · θ′)tpp] → F be the multi-point function with (1 +mi · λ)tpp points, such that
fi(x) = (1F||ej1 || · · · ||ejmi )

⊗tpp[x]. Compute (K fss
i,0,K

fss
i,1)

$← MPFSS.Gen(1λ, fi).
4. Output k0 ← (w, (K fss

i,0)i≤ns) and k1 ← (w, (K fss
i,1)i≤ns).

Expand: On input (σ, kσ), parse kσ as (w, (K fss
i,σ)i≤ns).

1. For each i = 1 . . . ns :
Set H ′i ← Diag((1F), Hj1 , . . . , Hjmi

), compute

vi,σ ← MPFSS.FullEval(σ,K fss
i,σ) ∈ F(1+miλ)

tpp

and set yσ ← ((H ′i)
⊗tpp · vσ)1≤i≤ns .

2. Extract from yσ the appropriate linear combinations of its elements corresponding to a share of
(r, ((1F || r[Si])⊗tpp)i∈[ns]). // If there are several ways to do so, it must be consistent accross
σ ∈ {0, 1}.

a Implicitly, the Hj are supposed to be ‘suitably chosen’ for xLPN to be presumed hard, e.g. that they
were randomly and independently sampled.

Fig. 7: Pseudorandom correlation generator PCGstp for generating pseudorandom instances of the
subsets tensor powers correlation over a field F.
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– Communication: If the MPFSS seeds have size O[λ·(1+Bλ)tpp·log((1+Bθ′)tpp)] and MPFSS.FullEval

can be computed with O((1+Bλ)tpp · (1+Bθ′)tpp · log |F|λ ) invocations of a pseudorandom generator
PRG : {0, 1}λ 7→ {0, 1}2λ+2, then PCGstp.Gen outputs seeds of size:

|kσ| = O
(
ns · λ · (1 +Bλ)

tpp · log
(
(1 +Bθ′)tpp

))
.

– Computation: The computational complexity of PCGstp.Expand is predominantly that of O(ns ·
(1+Bλ)tpp · (1+Bθ′) · log |F|λ ) invocations of a PRG, plus ns matrix-vector products with a matrix
of dimensions (1 + Bθ)tpp × (1 + Bθ′)tpp which requires at most O(ns · (Bθ)tpp · (Bθ′)tpp) ⊆
O(ns · (Bθ′)2·tpp) arithmetic operations over F.

Proof. Let us first show correctness of our candidate PCG. By correctness of the MPFSS, vi,0+vi,1 =
(1F||(e`)`∈Ii)ᵀ for every i ∈ [ns]. Therefore,

y0 + y1 = ((H ′i)
⊗tpp · v0 + (H ′i)

⊗tpp · v1)1≤i≤ns
= ((H ′i)

⊗tpp · ((1F || (e`)`∈Ii)ᵀ)1≤i≤ns = (r̃i
⊗tpp)1≤i≤ns .

r[Si] =
(∑m

j=1 fαj ,rj

)
[Si] =

(∑
j∈Ii fαj ,rj

)
[Si], where fαj ,rj is the sparse vector obtained by spread-

ing the vector rj over the coordinates in the ordered set αj . It follows that (1F || r[Si])⊗tpp can be
extracted from r̃j (since any degree-(≤ tpp) polynomial in a+ b is also a degree-(≤ tpp) polynomial
in a||b).

Security follows exactly by the same sequence of hybrids as in the previous analysis. We show the
following indistinguishability:

{(kσ, r1−σ) : (k0, k1)
$← Gen(1λ), r1−σ ← Expand(1− σ, k1−σ)}

c
≈{(kσ, r1−σ) : (k0, k1)

$← Gen(1λ), rσ ← Expand(σ, kσ),

r′
$← Fm, r1−σ ← ((1F||r′)⊗tpp)i≤ns − rσ}.

We first switch all the K fss
i,σ to simulated keys using the security of the MPFSS, then replace the

Hi ·eᵀi by random vectors, applying m times the security of LPN, once for each replacement. The sum
of sparse random vectors which form a good cover is itself a random vector (by item 1 in definition 13),
therefore the resulting distribution is exactly the second distribution above, hence security follows.

Finally, the efficiency claims can be read directly from the construction, and follows from the fact
that Gen consists of ns MPFSS seeds, and the cost of Expand is dominated by ns calls toMPFSS.FullEval
and ns matrix-vector products.

5.4 Instantiating the MPFSS

Theorem 15 assumes the existence of an MPFSS scheme MPFSS for the family of all (1+µ·λ)tpp-point
functions from [(1 + µ · θ′)tpp] to F for some µ ∈ [B] (or, equivalently, an MPFSS for each µ which
can then all be combined into one scheme), with the following efficiency guarantees: MPFSS.Gen(1λ)
outputs seeds of size O((1+Bλ)tpp ·λ · log((1+Bθ′)tpp)), and MPFSS.FullEval can be computed with
O((1+Bλ)tpp·(1+Bθ′)tpp· log |F|λ ) invocations of a pseudorandom generator PRG : {0, 1}λ 7→ {0, 1}2λ+2.
The works of [BGI16b,BCGI18] provides exactly such a construction, which makes a black box use
of any pseudorandom generator PRG : {0, 1}λ 7→ {0, 1}2λ+2.

We instantiate the PRG using the LPN-based construction of [BKW03], which we now recall.
Fix some (constant) noise rate ε, a random matrix A

$← Fn1×n2
2 . Given a random bitstring r ∈

{0, 1}n2+n1·h(ε), where h is the binary entropy function, define s = s(r) ∈ Fn2
2 to be the n2 first

bits of r, and use the remaining n1 · h(ε) bits to sample a random vector e(r) from Berε(F2)
n1 (it

is well known that this distribution can be sampled using roughly n1 · h(ε) bits of randomness).
Define the pseudorandom generator PRG : {0, 1}λ 7→ {0, 1}2λ+2 as PRG(r) = A · s(r) + e(r) ∈ Fn1

2 .
Security follows from the F2-LPN(n2, n1, ε) assumption, and this PRG stretches λ = n2 + n1 · h(ε)
bits to n1 = 2λ + 2 bits when n2 = n1 · (1/2 − h(ε)) − 1. Hence, given the security parameter λ,
security follows from the F2-LPN(λ · (1 − 2h(ε)) − 2h(ε), 2λ + 2, ε) assumption for any constant ε;
for example, setting ε = 1/8, this assumption is implied by the F2-LPN(λ/4, 3λ, 1/8) assumption.
The cost of evaluating PRG is dominated by the matrix-vector product A · s, which requires at most
n1n2 = O(λ2) arithmetic operations.
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5.5 Securely Distributing MPFSS.Gen and Πstp

The seeds of the MPFSS scheme of [BCGI18] can be securely generated by using parallel instances of a
generic secure computation protocols to securely evaluate the above PRG. Using GMW to instantiate
the generic protocol, we have:

Corollary 16. There exists a semi-honest secure two-party protocol ΠMPFSS which distributes the
seeds of a multi-point function secret-sharing scheme MPFSS for the family of t′-point functions
from [(1 + Bθ′)tpp] to F, using O(t′ · ν · λ2) calls to an ideal oblivious transfer functionality, where
ν = log((1 + Bθ′)tpp) and t′ = (1 + Bλ′)tpp, with an additional communication of O(t′ · ν · λ2) bits,
and total computation polynomial in t′ · ν · λ.

Proof. Let t′ ← (1 + Bλ)tpp. The MPFSS scheme MPFSS for the family of t′-point functions from
[(1+Bθ′)tpp] to F of [BCGI18] is constructed using t′ independent instances of a single-point function
secret sharing scheme (also called distributed point function [GI14]): any t′-point function f : [(1 +

Bθ′)tpp] 7→ F can be written as the sum
∑t′

i=1 fi of point functions fi : [(1 + Bθ′)tpp] 7→ F which
evaluate to 0F everwhere, except on a single entry ji where they take the value f(ji) (the ji being
the entries on which f does not evaluate to 0F). Given a distributed point function (Gen,Eval), the
construction and its analysis are straightforward:

– MPFSS.Gen : On input (1λ, f), decompose f as
∑t′

i=1 fi as above, and output (Gen(1λ, fi))1≤i≤t′ .
– MPFSS.Eval : On input (σ, (Ki,σ)i∈[t′], x), output yσ ←

∑t′

i=1 Eval(Ki,σ, fi, x).

Therefore, securely distributing MPFSS seeds reduces to t′ invocations of a secure protocol for
distributing the seeds of a distributed point function (DPF). The DPF.Gen construction of [BGI16b]
for point functions over the domain [(1 + Bθ′)tpp] works as follows: the two output keys are K0 =

(s
(0)
0 , cw1, . . . , cwν+1) and K1 = (s

(0)
1 , cw1, . . . , cwν+1) where s(0)0 , s

(0)
1 are two random seeds for the

PRG and ν = log((1 + Bθ′)tpp). Gen proceeds in ν + 1 steps. In the i-th step it expands s(i−1)0 and
s
(i−1)
1 by using one PRG invocation for each seed and obtains s(i)0 , s

(i)
1 , and cwi. In the final step the

algorithm computes cwν+1 as a function of the expanded seeds and the target value.

Securely Generating DPF Seeds. We recall that the well known GMW protocol [GMW87b] allows
two parties to securely evaluate any circuit of size s (in the semi-honest model) using O(s) calls
to an oblivious transfer functionality, and O(s) additional bits of communication. Using GMW for
distributing the Gen procedure of the DPF over a field F, the communication and computation of
the protocol are dominated by two factors: O(λ) oblivious transfers for a seed and location of the
designated point and by O(ν) secure evaluations of the PRG. Since evaluating the PRG can be done
using O(λ2) arithmetic operations over F2, it can be generically computed using O(λ2) calls to an
oblivious transfer functionality, and O(λ2) additional bits of communication. Hence the following
lemma:

Lemma 17. There exists a semi-honest secure two-party protocol ΠDPF which distributes the seeds
of a distributed point function DPF for the family of point functions from [(1 + Bθ′)tpp] to F, using
O(ν · λ2) calls to an ideal oblivious transfer functionality, where ν = log((1 + Bθ′)tpp), with an
additional communication of O(ν · λ2) bits, and total computation polynomial in ν · λ.

As a direct corollary of Corollary 16, since the seeds of PCGstp contain exactly ns independent
MPFSS seeds, we have:

Corollary 18. There exists a semi-honest secure two-party protocol Πstp which distributes the seeds
of the pseudorandom correlation generator PCGstp represented on Figure 7, using O(ns · t′ ·ν ·λ2) calls
to an ideal oblivious transfer functionality, where ν = log((Bθ′ + 1)tpp) and t′ = (1+Bλ)tpp, with an
additional communication of O(ns · t′ · ν · λ2) bits, and total computation O(ns · poly(t′ · ν · λ)).

Instantiating the oblivious transfer. To execute the GMW protocol, we need an oblivious transfer.
Under the F2-LPN(λ,O(λ), 1/λδ) assumption (δ is any small constant), there exists oblivious transfers
(with simulation security) with poly(λ) communication and computation; see for example [DGH+20].
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Constructing Πcorr. The work of [BCG+19b] shows that any corruptible functionality distributing
the output of a correlation generator C can be secure instantiated using any semi-honest secure two-
party protocol Π for distributing the Gen procedure of a PCG for C , with the same communication
as Π, and with computational complexity dominated by the computational complexity of Π plus
the computational complexity for computing the PCG.Expand procedure. Therefore, using their result
together with our protocolΠstp for generating the seeds of a PCG for subsets tensor powers correlation
allows to securely instantiate Fcorr (with N = 2).

Recall that the computation of PCGstp.Expand is dominated by O(ns ·(1+Bλ)tpp ·(1+Bθ′)tpp · log |F|λ )

invocations of a PRG – which requires at most O(λ2 ·ns ·(1+Bλ)tpp ·(1+Bθ′)tpp · log |F|λ ) operations over
F2 using the simple LPN-based PRG from [BKW03] –, plus an additional O(ns·(1+Bθ)tpp·(1+Bθ′)tpp)
arithmetic operations over F. Since each operation over F can be computed with O(log |F|)2) boolean
operations, combining the two, we get computation O(λ · ns · (1 +Bθ)tpp · (1 +Bθ′)tpp · (log |F|)2).

All that remains is for the parties to generate the necessary material for PCGstp: m random Fθ×θ′

matrices and m size-θ′ subsets of [w]. At its core, this is just a matter for the parties to generate and
hold the same m · (θ · θ′ · log |F|+ log

(
w
θ′

)
) (pseudo)-random bits. This can be achieved by having one

party sample a seed of size λ, send it to the other, and both parties can expand it locally by calling
the length-doubling PRG from [BKW03] (and used above) m · θ′ · (θ · log |F| + logw)/λ times (in a
GGM tree-like approach). This requires λ bits of communication and O(m · θ′ · (θ · log |F|+ logw) ·λ)
bits of local computation. This is summarised in an intermediate theorem, Theorem 19 below.

Theorem 19. Assume the F-xLPN(θ, θ′− θ, λ/θ′) and F2-LPN(λ,O(λ), 1/λδ) – where δ is any small
enough constant – assumptions hold. Then there exists a semi-honest secure two-party protocol Πstp

which securely generates a subsets tensor powers correlation for subsets (Si)i∈[ns] of [w] and for which
there exists a B-good cover comprised of m size-θ′ masks, using the following resources:

– Communication:
O
(
ns · poly(λ) · (1 +Bλ)tpp · log(1 +Bθ′)tpp

)
.

– Computation:

O
(
λ · ns · (1 +Bθ)tpp · (1 +Bθ′)tpp · (log |F|)2

+ ns · poly
(
(1 +Bλ)tpp · log(1 +Bθ′)tpp · λ

)
+m · θ′ · (θ · log |F|+ logw) · λ

)
.

Wrapping up, using Πstp with an appropriate good cover suffices to construct a protocol Πcorr

for securely implementing the functionality Fcorr. For each i = 1 . . . dd/ke − 1, the parties need
to generate a B-good cover of the ((U in

i,j)j∈[dsi+1/βe], (Ui,j)j∈[dsi+1/βe], (V
in
i,j)j∈[dmi/βe], (Vi,j)j∈[dmi/βe])

seen as subsets of [n+ si]. A way to do so is to generate:

– a B/2-good cover Ain of ((U in
i,j)j∈[dsi+1/βe], (V

in
i,j)j∈[dmi/βe])1≤i<dd/ke seen as subsets of [n] com-

prised of Min size-θ′ masks;
– for each i = 1 . . . dd/ke − 1, a B/2-good cover Ai of ((Ui,j)j∈[dsi+1/βe], (Vi,j)j∈[dmi/βe]) seen as

subsets of [si] comprised of Mi size-θ′ masks.

Let κ, κ′, κin be correctness parameters. We set Min ← κin · n · log n, Mi ← κ · si · log si (which is
upper-bounded by M := κ · s · log s), and B ← 2κ′ · κ · ln s. The probability p = p(κin, κ, κ

′) all the
above conditions are satisfied is then, by union-bound (and with si/β ≤ s/β), at least:

1−
(

1

nκin−1
+

(s/k)/β

n(κ′−2)·κin·θ/2

)
− dd/ke ·

(
1

(s/k)κ−1
+

s/β

(s/k)(κ′−2)·κ·θ/2

)
.

Wrapping-up, we get the following parametrised theorem.

Theorem 20. Assume the F-xLPN(θ, θ′− θ, λ/θ′) and F2-LPN(λ,O(λ), 1/λδ) – where δ is any small
enough constant – assumptions hold. Then there exists a probabilistic semi-honest secure two-party
protocol Πcorr which securely implements the functionality Fcorr given on Figure 3 with success prob-
ability:

p∗ = 1−
(

1

nκin−1
+

(s/k)/β

n(κ′−2)·κin·θ/2

)
− dd/ke ·

(
1

(s/k)κ−1
+

s/β

(s/k)(κ′−2)·κ·θ/2

)
.

Furthermore, it uses the following resources, where B = 2κκ′ · ln s:
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– Communication:

O
( dd/ke−1∑

i=1

si+1 +mi

β
· poly(λ) · (1 +Bλ)2

k

· log(1 +Bθ′)2
k
)
.

– Computation:

O

( dd/ke−1∑
i=1

si+1 +mi

β

[
λ · (1 +Bθ)tpp · (1 +Bθ′)tpp · (log |F|)2

+ ·poly
(
(1 +Bλ)tpp · log(1 +Bθ′)tpp · λ

)]
+ (κin · n log n · θ′ · (θ · log |F|+ log n) · λ)

+ (2κ · s log s · θ′ · (θ · log |F|+ log s) · λ)

)
.

6 Choice of Parameters

In this section, we tune the parameters of our protocol. We want to ensure the scheme is correct
with all but negligible probability, that it is secure, that the communication is sublinear, and that
the computation is polynomial. We make two sets of choices for the parameters: the first optimising
for communication (i.e. maximising the sublinearity factor), and the other for computation (and
incidentally for the strength of the security assumption). Since the latter entails minimising the
sublinearity factor k, we can can see any other choice as a tradeoff between the two, as a smooth
continuum. Before we proceed, let us recall what the parameters are and how they are constrained.

6.1 Parameters.

k = k(s) is the depth of the blocks in the layer separation phase; it is also the sublinearity factor
of the final protocol. β is the number of outputs batched together for evaluation in a block, in the
output separation phase. For the input separation phase, we need one B-good cover comprised of Min
size-θ′ masks and (dd/ke−1) B-good covers comprised of M size-θ′ masks. For convenience we prefer
to consider κin := Min/(n log n), κ := M/(n log n), and κ′ := B/(2κ ln s). λ is the security parameter
in the F-xLPN(θ, θ′ − θ, λ/θ′) assumption (which additionally introduces the parameter θ ≤ θ′) for
the PCG and in the F2-LPN(λ,O(λ), 1/λδ) – where δ is any small enough constant – assumption for
the length-doubling PRG and the oblivious transfer.

6.2 Constraints.

1. Correctness: We have several choices on how to tune the parameters κ, κ′, κin:
– p > 0: If we choose the parameters so that p is non-zero, by a probabilistic argument, there

must exist a choice of randomness which satisfies all the requirements. Then, if we so choose,
we can preprocess circuits to find such a choice, or be satisfied with the non-constructive proof
of existence of a sublinear protocol.

– p = Ω(1): If we now choose them so that 1 ≥ p ≥ c for some positive constant c, then the
parties can sample fresh randomness until a combination of good covers is obtained, which
occurs in an expected constant number of tries.

– p = 1−o(1): Finally if p is taken to be close to 1, the protocol succeeds on the first try of sam-
pling randomness with almost certain probability (or even with all but negligible probability
if p = 1− negl).

We focus only on the last one, which is the most natural requirement. While it is the same(
1

nκin−1
+

(s/k)/β

n(κ′−2)·κin·θ/2

)
+ dd/ke ·

(
1

(s/k)κ−1
+

s/θ

(s/k)(κ′−2)·κ·θ/2

)
=

1

sω(1)
= 2−ω(log s).
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Since θ = ω(1), κ, κ′ are unconstrained (other than κ′ > 2 and κ > 1) and can be taken to be
constant. Therefore the constraint can be simplified to κin being subject to κin = ω

(
log s
logn

)
. Hence

the following correctness constraints:
Min = ω(n · log s)
M = Ω(s · log s)
B = Ω(log s)

(1)

2. Security: Security depends on two security assumptions F-xLPN(θ, θ′−θ, λ/θ′) (for the PCG) and
F2-LPN(λ,O(λ), 1/λδ) – where δ is any small enough constant – (for the underlying PRG and
OT). As we define the parameters θ, θ′, λ, we will refine the exact flavour of assumption required.

3. Communication: The total communication of our protocol is the following:

O

(
n+ s

k +m

Cost of
reconstructing

masked values (n
inputs, ≤ s/k

intermediary gates,
and m outputs)

+ s/k+m
β

Number of
batches of
β nodes

(i.e. number of
calls to PCG)

× poly(λ)

Overhead
from

the PRG
(including
the OTs)

× (1 +Bλ)
2k

Number of DPF
calls in MPFSS

× log
(
(1 +Bθ′)2

k
)

Seed for one DPF

)
.

We want this quantity to be O(n+ s/k +m), which translates to the following condition:

β = Ω

(
poly(λ) ·

(
1 +Bλ

)2k
· log

(
(1 +Bθ′)2

k
))

. (2)

4. Computation: The total computation is the following:

O

(
s/k +m

β

[
λ · (1 +Bθ)tpp · (1 +Bθ′)tpp · log |F|

+ ·poly
(
(1 +Bλ)tpp · log(1 +Bθ′)tpp · λ

)]
+Min · θ′ · (θ · log |F|+ log n) · λ+M · θ′ · (θ · log |F|+ log s) · λ

)
.

We want it to remain polynomial in s.

6.3 Choice of Parameters – Optimising for Communication.

Choosing k. Computation involves a term of the form B2k by eq. (2) with B = Ω(log s) by eq. (1),
which must remain polynomial in s.

(log s)2
k

≤ sO(1) ⇐⇒ k ≤ log log s− log log log s+O(1).

Since k is the sublinearity factor, we also need it to be in ω(1), thus yielding the following constraint:

ω(1) ≤ k ≤ log log s− log log log s+O(1). (3)

When we try and maximise k, it becomes more convenient to introduce the quantity ε := k/ log log s.
Since we are only interested in asymptotic subinearity, we can strengthen the condition ε ≤ 1 −
log log log s−O(1)

log log s to ε < 1
4 (this particular choice of constant will become apparent as we choose the

other parameters as a function of k and hence of ε) without ultimately weakening the result. While it
makes most sense in the vicinity of O(log log s), it is well defined for the full spectrum of values of k:

ω

(
1

log log s

)
≤ ε < 1

4
⇐⇒ ω(1) ≤ k < log log s

4
.
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Choosing B, Min, M . It makes sense so minimise these parameters, i.e. make them match the lower
bounds of eq. (1). Therefore, (if we choose to setMin to the explicit n·(log s)2 rather than an arbitrary
small ω(n · log s) for simplicity), with κ← 2 and κ′ ← 3:


Min = n · (log s)2

M = 2 · s · log s
B = 12 · log s

(4)

Choosing β. We choose to push β as high as it will go, i.e. we just need to ensure β2k remains
polynomial in s (indeed in the general case, a batch of β nodes can have up to 2k·β ancestors in a depth-
2k circuit, hence we need β ≤ Bθ′). This is the optimal choice if we want to prioritise communication
complexity and security, but as we shall show, it will no hinder optimising for computation complexity.

β ← sO(1/2k) = 2O(log1−ε s).

Choosing λ. Since λ determines the security of the LPN scheme it makes sense to maximise it,
especially as it has no bearing on the asymptotic computation complexity. The only upper bound on
λ is β = Ω((Bλ)2

k+2 · log s) i.e. (12 · log s · λ)2k+2 · log s = O(β) = O(s1/2
k

). This translates to the
following for λ:

λ ≤
(
sO(1/22k)

12·log s

)O(1/(22k+2))

/ log s

= 2O(log1−2ε s−log log s·logε s−log log s)

= 2O(log1−2ε s), since ε < 1
4 .

If we set λ ← 2O(log1−2ε s) then s = 2O(log
1

1−2ε λ) = λO(logε
′
λ), where ε′ := 2ε

1−2ε ∈]0, 1[. In other

terms, if λ← (s/log s)
O(1/22k) then s = O(22k · (λ)O(22k) · log λ) = (λ)O(22k). Summarising:

{
s = λO(logε

′
λ)

s = λO(22k)

If we make sure θ′ = Θ(θ), then this means that we can now choose the flavour of security
assumption we need for F-xLPN(θ, θ′ − θ, λ/θ′). If the adversary runs in time poly(s) then we want
their advantage to be 1/sω(1) = 1/2polylog(λ) which is the case if we assume the super-polynomial
security of F-xLPN(θ, θ′, λ). Note however than if k (and therefore 22k) is taken to be an arbitrarily
small ω(1) function, then we only need to assume its quasi-polynomial security (which smoothly
transitions to polynomial as k tends to Θ(1)).

Choosing θ and θ′. We assumed in the previous paragraph that θ′ = Θ(θ), and we choose the
constant θ′/θ so that F2-LPN(λ,O(λ), 1/λδ) – where δ is any small enough constant – is implied by
F2-xLPN(θ, θ

′ − θ, λ/θ′). The computation (and to a lesser extent the communication) grows in Bθ′
rather than in θ′ alone, so the exact value of θ′ isn’t all that important (and can be compensated by
B). Since Bθ′ must be at least β2k in the general case (since all the ancestors of a batch of β outputs
must be covered by the concatenation of B size-θ′ masks) and it makes sense for B to be a positive
integer, we want θ′ ≥ β2k We therefore set θ ← β · 2k = logε s · 2O(log1−ε s).

Summary. We now summarise the choice of parameters which optimises for communication in fig. 8.

27



Parameter Description Choice for Optimal Comm.

k Subl. Factor / Block Depth ε · (log log s), ε ∈]0, 1/4[
β Output batch size 2O(log1−ε s)

λ Security Parameter 2O(log1−2ε s)

θ – β · logε s
θ′ Mask Length in Good Cover O(θ)
κin Defines Min (log s)2/ logn
κ Defines M 2
κ′ Defines B 3
B "Goodness" of Cover 12 · log s

Total Communication: Θ([n+ s/log log s+m] · log |F|)
Total Computation: s3 · polylog(s) · (log |F|)2

Fig. 8: Choice of parameters for Main Theorem 1. The constants hidden in the exponents of β and λ
are correlated, but omitted here for simplicity.

6.4 Choice of Parameters – Optimising for Computation and Security Assumption.

If we fix the sublinearity factor k = ω(1) to be some very slow-growing function (e.g. the inverse
Ackermann function), we can set:

β ← s2
−2k

; λ← s2
−3k

; θ ← β · 2k; θ′ ← cst · θ; κ← 2; κ′ ← 3; κin ←
(log s)2

log n
.

With this choice, we have s = λω(1) where s need only be larger than any polynomial in λ, so the
assumed security of LPN need only be quasi-polynomial. Using these parameters for our sublinear
protocol, we get a quasi-linear amount of computation s1+o(1) (where the exact nature of the o(1)
function depends on how we tune the parameters), with a (log |F|)2 overhead.

6.5 Wrapping-Up: Main Results with Optimal Choices of Parameters

Combining Theorems 12 and 20 (the former providing a secure protocol in the Fcorr-hybrid model,
and the latter instantiating the Fcorr functionality) with the parameter choice of Section 6.3 (and
summarised in fig. 8) we get our main theorem, Main Theorem 1 below.

Main Theorem 1 (Sublinear Computation of Layered Circuits – Optimised for Communication).
Assuming the super-polynomial security of

– F-LPN with super-polynomial dimension `, O(`) samples, and inverse super-polynomial rate,
– F2-LPN with super-polynomial dimension `′ = sO((1)), O(`′) samples, and inverse polynomial rate

(which is implied by the above if F = F2),

there exists a probabilistic semi-honest two-party protocol which securely evaluates any layered arith-
metic circuit over F with success probability 1−negl(s) and which uses O ([n+ s/ log log s+m] · log |F|)
bits of communication and s3 · polylogs · (log |F|)2 bits of computation (where s, n, and m are respec-
tively the number of gates, inputs, and outputs of the circuit).

Instantiating the protocol with the parameters in Section 6.4 instead yields the following.

Main Theorem 2 (Sublinear Computation of Layered Circuits – Optimised for Computation).
Assuming the quasi-polynomial security of

– F-LPN with quasi-polynomial dimension `, O(`) samples, and inverse quasi-polynomial rate,
– F2-LPN with quasi-polynomial dimension `′, O(`′) samples, and inverse polynomial rate (which

is implied by the above if F = F2),

there exists a probabilistic semi-honest two-party protocol which securely evaluates any layered arith-
metic circuit over F with success probability 1−negl(s) and which uses O ([n+ o(s) +m] · log |F|) bits
of communication and s1+o(1) · (log |F|)2 bits of computation (where s, n, and m are respectively the
number of gates, inputs, and outputs of the circuit).
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