
Practically Solving LPN

Thom Wiggers
Radboud University
thom@thomwiggers.nl

Simona Samardjiska Radboud University
simonas@ru.nl

July 16, 2021

Abstract

The best algorithms for the Learning Parity with Noise (LPN) problem require
sub-exponential time and memory. This often makes memory, and not time, the
limiting factor for practical attacks, which seem to be out of reach even for relatively
small parameters. In this paper, we try to bring the state-of-the-art in solving LPN
closer to the practical realm. We improve upon the existing algorithms by modifying
the Coded-BKW algorithm to work under various memory constrains. We correct
and expand previous analysis and experimentally verify our findings. As a result we
were able to mount practical attacks on the largest parameters reported to date using
only 239 bits of memory.

1 Introduction
The Learning Parity with Noise (LPN) problem has its roots in machine learning, where
it is connected to a crucial question of learning functions in the presence of noise. But
LPN is also a fundamental problem in the fields of coding theory and cryptography [1].
In essence, the LPN problem asks to recover a secret vector given noisy system of linear
equations over F2, where the noise follows a Bernoulli distribution. The extension of
LPN to fields larger than F2, Learning With Errors (LWE), forms the basis of many
submissions in the second and third round of the NIST Post-Quantum Standardization
Process [2]. Both LPN and LWE are believed to be hard even for adversaries with access
to a quantum computer.
A lot of effort has been put in determining the hardness of the LPN problem. The

best algorithms run in sub-exponential time, but also require sub-exponential amounts of
memory [3–6]. This is the main practical limitation, even for small sizes of the problem.
Only recently have a series of algorithms been proposed that try to balance the demands
on memory and time [7–9]. This line of research is however far from closed, since it is
still not clear what the limits are of time-memory trade-offs for LPN algorithms.

1.1 Contributions
The focus of this paper are algorithms for solving LPN in a low memory regime. We
show that it is possible to modify and enhance the Coded-BKW algorithm [5] to be
used when only restricted memory is available, and that it is possible to achieve scalable
time-memory trade-off for various parameters. We adopt the approach from [6] and
devise an improved and more efficient chain finding algorithm under memory restrictions.

mailto:thom@thomwiggers.nl
mailto:simonas@ru.nl

Unlike suggested in [7], we show that for mid-range parameters the WHT decoding
method is superior to the Gauss decoding method and is more suitable for combining
with other reduction steps. This can be seen by our concrete complexity estimates
in Table 1 that improve significantly over the similar Hybrid algorithm from [7]. Note,
that without any reduction steps, using MMT [10] is still superior for larger parameters as
reported in [7], however these parameters are already far from practical reach. We verify
our results by practically mounting an attack against LPN for the largest parameters
reported so far, using only 239 bits of memory.

1.2 Organization
In Section 2 we give the necessary preliminaries, and in Section 3 we present the known
solving techniques for the LPN problem. Section 4 provides analysis and comparison
of the two decoding methods we are interested in: WHT and Gauss. In Section 5 and
Section 6 we present our main results and the obtained best reduction chains under
different memory constrains. Finally in Section 7 we experimentally verify our findings.

Acknowledgements
We thank the authors of [6] for providing the implementation of their chain-finding
algorithm and the authors of [7] for providing their complexity calculation script.
This work was supported by ERC Starting Grant No. 805031 (EPOQUE).

2 Preliminaries
We will denote vectors and matrices with bold-face letters, like v orM. We write inner
product of two vectors as 〈v1, v2〉 The Hamming weight of v is 𝑤𝑡 (v). We write Ber𝜏
for a Bernoulli distribution with parameter 𝜏. Bin𝑛

𝜏 is the binomial distribution with 𝑛
trails and success rate 𝜏. We write 𝑦

$← 𝑌 when we uniformly sample 𝑦 from 𝑌 .
The LPN Search problem can be defined using the following definition from [11].

Definition 1. (Search LPN problem). Let s $← F𝑘2 be a secret vector of length 𝑘 and let
0 6 𝜏 < 1

2 be a constant noise parameter. An LPN oracle OLPN
s,𝜏 outputs independent

random samples (a, 𝑐) according to the distribution:{
(a, 𝑐)

��� a $← F𝑘2 , 𝑐 = 〈a, s〉 + 𝑒, 𝑒 ← Ber𝜏
}
.

The Search LPN Problem, denoted by LPN𝑛
𝑘,𝜏 is to find the (secret) vector s, given access

to the LPN oracle.

We will be interested in algorithms that solve LPN𝑛
𝑘,𝜏 in time 𝑡, using at most 𝑛

samples and using at most 𝑚 bits of memory. Such an algorithm may fail with a certain
probability \. Sometimes, instead of the noise parameter 𝜏 we will use the bias of an
LPN instance LPN𝑘,𝜏 , defined as 𝛿 = 𝐸

(
(−1)𝑋

)
= 1 − 2𝜏 where 𝑋 ∼ Ber𝜏 . We will

refer to the bias of the secret as 𝛿𝑠 .

3 Solving LPN problems
The known algorithms that solve an LPN instance LPN𝑘,𝜏 typically follow a common
structure. We can usually split them in two phases: a reduction phase in which a
reduction algorithm reduces the problem to a smaller one LPN𝑘′,𝜏′ , 𝑘 ′ 6 𝑘; and a
decoding phase in which a decoding algorithm recovers the secret of the smaller LPN
instance. Intuitively, a smaller LPN problem is easier to decode, but a reduction typically
increases the level of noise and may change the number of samples.
It is possible to apply a sequence of reduction algorithms before decoding the reduced

LPN𝑘′,𝜏′ instance. This is already implied by the original BKW algorithm. Bogos
et al. [6] proposed using chains of different reduction algorithms before applying a
decoding algorithm. We summarize this meta-algorithm in Algorithm 1.
Note that most decoding algorithms recover only part of the secret. However, the

algorithm can be repeated to obtain more information. We will, as in the literature,
only discuss the first run of the algorithm, since this is the most resource-intensive of
recovering the full s.

Algorithm 1. General LPN decoding algorithm
Input: 𝑛 samples (a, 𝑐) from OLPN

s,𝜏 , list of reduction algorithms R, and decoding algorithm 𝐷

Output: Information on s
for 𝑅 ∈ R do
Apply 𝑅 to obtain LPN𝑘′,𝜏′ , 𝑘′ 6 𝑘 and 𝑛′ samples.
𝑘 ← 𝑘′, 𝑛← 𝑛′

end for
Use decoding algorithm 𝐷, consuming 𝑛 samples.
return Information on s

3.1 Reduction algorithms
We will now briefly discuss algorithms that reduce an LPN𝑛

𝑘,𝜏 problem to an LPN𝑛′

𝑘′,𝜏′

problem. For more details on these algorithms, we refer to the cited works.

3.1.1 drop-reduce(𝑏)

Deletes all samples that do not have 𝑏 zero bits at the end.
𝑘 ′ = 𝑘 − 𝑏; 𝑛′ = 𝑛2−𝑏; 𝛿′ = 𝛿; 𝛿′𝑠 = 𝛿𝑠;
𝑡 = O (𝑘𝑛); 𝑚 = O (𝑘𝑛).

3.1.2 xor-reduce(𝑏) [4]

Partitions samples by the last 𝑏 bits and sums all pairs of vectors within each partition.
This cancels out the last 𝑏 bits. The bias of the LPN problem is squared as per the
piling-up lemma: the bias of the sum of 𝑛 Bernoulli variables with bias 𝛿 is 𝛿𝑛.

𝑘 ′ = 𝑘 − 𝑏; 𝑛′ = 𝑛(𝑛−1)
2𝑏+1 ; 𝛿′ = 𝛿2; 𝛿′𝑠 = 𝛿𝑠;

𝑡 = O (𝑘 max(𝑛, 𝑛′)); 𝑚 = O (max(𝑘𝑛, 𝑘 ′𝑛′)).

3.1.3 sparse-secret [5, 6, 12]

Transforms the problem so that the secret is Bernoulli-distributed with 𝜏 < 1
2 instead

of uniform. This reduction does not simplify the LPN problem, but is necessary for

code-reduce.
𝑘 ′ = 𝑘; 𝑛′ = 𝑛 − 𝑘; 𝛿′ = 𝛿; 𝛿′𝑠 = 𝛿; 𝑚 = O (𝑘𝑛);
𝑡=O

(
min𝜒∈N

(
𝑛′𝑘2

log2 𝑘−log2 log2 𝑘
+𝑘2, 𝑘𝑛′d 𝑘

𝜒
e+𝑘3+𝑘 𝜒2𝜒

))
.

3.1.4 code-reduce([𝑘, 𝑘 ′] 𝑐𝑜𝑑𝑒) [5, 6, 11]

Uses the covering property of codes to reduce the LPN problem size. Using a linear
[𝑘, 𝑘 ′] code, code-reduce approximates the samples to the closest codeword of the
code. The effect on the bias is called bc and depends on the original 𝛿 and the properties
of the code. A bigger bc is better, as it will maximize the bias of the reduced LPN
instance.

Theorem 1. (Upper bound for bc [6]). A [𝑘, 𝑘 ′, 𝐷] linear code 𝐶 has for any 𝑟 ∈ N
and 𝛿𝑠 ∈ [0, 1]:

bc 6 2𝑘′−𝑘
𝑟∑︁

𝑤=0

(
𝑘

𝑤

) (
𝛿𝑤𝑠 − 𝛿𝑟+1𝑠

)
+ 𝛿𝑟+1𝑠 .

Equality for any 𝛿𝑠 implies that 𝐶 is a (quasi-)perfect code, in which case 𝑟 equals the
packing radius 𝑅 = b𝐷−1

2 c.

In [5] the analysis of code-reduce was done for codes that reach the bound
in Theorem 1. This overestimates the efficiency of the reduction. In practice we know a
few small codes that are close to the bound and have efficient decoding. Instead, [6]
concatenates small codes that either reach or are close to the bound. We use the same
approach. As the modified 𝛿𝑠 is hard to quantify, we only allow code-reduce to be
applied once.
𝑘 = 𝑘 ′; 𝑛′ = 𝑛; 𝛿′ = 𝛿 · bc; 𝑡 = O (𝑘𝑛); 𝑚 = O (𝑘𝑛).

3.1.5 𝑐-sum-Dissection(𝑏)

It is possible to sum upmore than just two samples, such that the last bits add up to 0. This
was initially proposed in [13] as LF(4). [9] rephrased it as a time-memory trade-off for
solving LPN problems. They use the Dissection technique [14] to solve 𝑐-sum problems
in lists of samples. Dissection requires that 𝑐 is one of 𝑐𝑖 ∈

{ 1
2

(
𝑖2 + 3𝑖 + 4

)
| 𝑖 ∈ N

}
.

The first few 𝑐 are 2, 4, 7, 11. It also requires that log2 (𝑛/𝑐𝑖) 6 𝑏/𝑖.

𝑘 ′ = 𝑘 − 𝑏; 𝑛′ =
(𝑛
𝑐

)
· 2−𝑏; 𝛿′ = 𝛿𝑐; 𝛿′𝑠 = 𝛿𝑠; 𝑡 = O

(
2𝑐𝑖−1

𝑛
𝑐𝑖

)
;

𝑚 = O (𝑘𝑛).
Note that [8] further improved 𝑐-sum-Dissection by using the Van Oorschot-Wiener
Parallel Collision Search (PCS) algorithm [15]. We denote this variant as 𝑐-sum-PCS(𝑏).

3.2 Decoding algorithms
The general algorithm from Algorithm 1 for solving LPN reduces LPN𝑛

𝑘,𝜏 to a smaller
instance LPN𝑛′

𝑘′,𝜏′ through a number of reduction steps. It then solves the final instance
using some sort of decoding algorithm. The original BKW used majority decoding [3].
This was improved by using the Walsh-Hadamard transform (WHT) [4] and subsequently
used in [5, 6].
𝑡 = 𝑘 ′ · 2𝑘′−1 (log 𝑠 + 1) + 𝑘 ′𝑠; 𝑚 = 𝑘 ′(2𝑘′ + 𝑠).
Esser et al. [7] used the folklore Gauss algorithm that performs simple Gaussian

eliminations using 𝑘 ′ samples, assuming error-freeness. The obtained candidate s′ is

then tested against 𝑠 samples to determine whether the error’s distribution is closer to
Bin𝑠

𝜏 or Bin𝑠
1
2
. The Pooled-Gauss variant randomly selects samples from a re-used

pool.
𝑡 = (𝑘 ′3 + 𝑘 ′𝑠) · log2 𝑘 ′ · (1 − 𝜏′)−𝑘′ ; 𝑚 = 𝑘 ′(𝑘 ′ + 𝑠).
The two algorithms are given in Algorithm 2 and Algorithm 3.

Algorithm 2. WHT algorithm [4]
Input:A set 𝑉 of 𝑠 𝑘′-bit samples (a, 𝑐) ∈ OLPN

s′,𝜏′ .
Output: (s′1, . . . , s′

𝑘′) from s′

𝑓 (x) = ∑
(a,𝑐)∈𝑉 1𝑉1,...,𝑘′=x (−1)𝑐

𝑓 (x) = ∑
𝑥 (−1) 〈a,x〉 𝑓 (𝑥)

return (s′1, . . . , s′
𝑘′) = arg maxa∈Z𝑘′2

(𝑓 (a))

Algorithm 3. Gauss algorithm [7]
function Gauss(OLPN

s′,𝜏′ , 𝜏
′)

repeat

(A, c) ←
(
OLPN

s′,𝜏′
)𝑘′
such that A is full rank

s′ = A−1c
until Test(s′, 𝜏′, 1

2𝑘 ,
(

1−𝜏′
2

)𝑘
)

return s′
end function
function Test(s′, 𝜏′, 𝛼, 𝛽)

𝑠=

(√︃
3
2 ln(1

𝛼)+
√︃

ln(1
𝛽
)

1
2 −𝜏′

)2

, 𝑐= 𝜏′𝑠+
√︂

3
(

1
2 −𝜏′

)
ln

(
1
𝛼

)
𝑠

(A, c) ←
(
OLPN

s′,𝜏′
)𝑠

return 𝑤𝑡 (As′ + c) 6 𝑐

end function

3.3 Finding the best reduction chain
Bogos et al. proposed in [6] to search for the most efficient combination of reductions
(reduction chain) before decoding the problem. They present their algorithm as an
automaton that defines all possible reduction paths. They used (concatenated) perfect,
quasi-perfect and random codes for the code-reduce reduction and failure probability
\ = 0.33. We modify the algorithm to include the Pooled-Gauss decoding algorithm,
as well as more reduction techniques. We present the updated automaton in Figure 1.

4 Fair Comparison between WHT and Gauss
We revisit both WHT and Gauss and provide a unified analysis in order to compare
them. Our analysis shows that assuming negligible decoding error 1/2𝑘 , both algorithms
require (almost) the same number of samples. However, their efficiency depends very
differently on the size of the problem and the bias. As a consequence, they are suitable
for different scenarios. This has several implications.
First, we show that there is no obstacle in obtaining a negligible error in WHT by

choosing an appropriate number of samples. This was overlooked in [7].
Second, we provide the basis for a fair comparison between chains of reduction steps

ending in Gauss and WHT. As we will see later, this disproves the claim in [7] that Gauss

1initial

2

3 4

decoded

sum-up-reduce

drop-reduce

sum-up-reduce
drop-reduce

sparse-secret

sum-up-reduce
drop-reduce

code-reduce

sum-up-reduce
drop-reduce

WHT

Pooled
Gauss

WHT

Pooled
Gauss

WHT
Pooled
Gauss

WHT

Pooled
Gauss

Figure 1. The automaton accepting valid LPN reduction chains. sum-up-reduce represents any of the
reductions combining samples, i.e. xor-reduce, lf4-reduce, 𝑐-sum-Dissection or 𝑐-sum-PCS.

can be combined with various reduction steps and give better results than performing
reduction steps and using WHT. This further explains the experimental results from [7]
which imply that Gauss almost always performs better without any sum-up-reduce
reduction steps.
As a side result, we improve the efficiency of Gauss by obtaining a better bound for

the sample complexity.

Proposition 1. If 𝑠=
(

4
(1−2𝜏)2 −2

)
ln 1√

2𝜋𝛾
samples are avai-lable, where 𝛾 ∈ (0, 1√

2𝜋𝑒
],

the WHT algorithm applied to LPN𝑛
𝑘,𝜏 outputs the correct solution with probability at

least 1 − 𝛾.

Proof. We detail the analysis for a positive bias following the approach of [6]. For a
negative bias, the analysis is equivalent. WHT outputs the candidate with the largest
value of 𝑓 . Failure occurs when there exists another s̄ ≠ s such that 𝑓 (s̄) > 𝑓 (s)
i.e. when HW(As̄ + c) < HW(As + c). Let ȳ = As̄ + c and y = As + c. Then the
expectation and variance of the random variables x𝑖 = y𝑖 − ȳ𝑖 is E(x𝑖) = 2𝜏−1

2 and
Var(x𝑖) = 1

2 −
(2𝜏−1

2
)2. Let 𝑍 =

√
𝑠(𝑆𝑠 − E(x𝑖))/

√︁
Var(x𝑖), where 𝑆𝑠 = x1+···+x𝑠

𝑠
. By

the Central Limit Theorem 𝑍
𝑑→ 𝑁 (0, 1). Using standard upper-tail inequalities for the

standard normal distribution 𝑁 (0, 1), we obtain

𝑃𝑟

[
𝑓 (s̄) > 𝑓 (s)

]
= 𝑃𝑟

[
𝑍 >

(1−2𝜏)
√
𝑠

√
2−(1−2𝜏)2

]
6

𝑒
− (1−2𝜏)2𝑠

2(2−(1−2𝜏)2)
√

2𝜋
(1)

Taking 𝑠=
(

4
(1−2𝜏)2 −2

)
ln 1√

2𝜋𝛾
, inequality (1) becomes

𝑃𝑟

[
𝑓 (s̄) > 𝑓 (s)

]
6 𝛾.

We can make the probability of an error in the WHT procedure arbitrarily small if we
take 𝛾 = negl(𝑘). �

Proposition 2. If 𝑠 =

(√︃
2𝜏 (1−𝜏) ln(1√

2𝜋𝛼
)+

√︃
1
2 ln(1√

2𝜋𝛽
)

1
2−𝜏

)2

samples are available for

𝛼, 𝛽 ∈ (0, 1√
2𝜋𝑒
], the Test function from the Gauss algorithm applied on LPN𝑛

𝑘,𝜏 accepts
the correct solution with probability at least 1 − 𝛼, and rejects incorrect solutions with
probability at least 1 − 𝛽.

Proof. A correct s′ input to the Test algorithm, means that e = As′ + c follows the
Binomial distribution Bin𝑠

𝜏 i.e. e𝑖 ∼ Ber𝜏 , 𝑖 ∈ {1, . . . , 𝑠}. Then E(e𝑖) = 𝜏 and
Var(e𝑖) = 𝜏(1 − 𝜏). Using the same approach as in Proposition 1 for 𝑍 =

√
𝑠 (𝑆𝑠−E(e𝑖))√

Var(e𝑖)
,

and 𝑆𝑠 = e1+···+e𝑠
𝑠
, and we obtain

𝑃𝑟 [HW(As′ + c) > 𝑐] 6 1
√

2𝜋
exp

(
− 1

2𝑠 ·
(𝑐 − 𝑠𝜏)2

𝜏(1 − 𝜏)

)
(2)

Taking 𝑐 = 𝑠𝜏 +
√︃

2𝑠𝜏(1 − 𝜏) ln 1√
2𝜋𝛼

(similarly as in [7]), Equation (2) turns into
𝑃𝑟 [HW(As′ + c) > 𝑐] 6 𝛼. For the chosen 𝑐, the probability that a correct s′ will
produce an error e of larger weight than 𝑐 can be made negligible. Therefore we can use
this 𝑐 as a threshold value in the Test algorithm.
We estimate 𝑃𝑟 [HW(As′ + c) 6 𝑐] similarly,

𝑃𝑟 [HW(As′ + c) 6 𝑐] 6 1
√

2𝜋
exp

(
− (𝑠 − 2𝑐)2

2𝑠

)
(3)

Taking 𝑠 =

(√︃
2𝜏 (1−𝜏) ln(1√

2𝜋𝛼
)+

√︃
1
2 ln(1√

2𝜋𝛽
)

1
2−𝜏

)2

and the previously found 𝑐, Equation (3)

turns into 𝑃𝑟 [HW(As′ + c) 6 𝑐] 6 𝛽. With this we have also estimated the required
amount of samples needed for the Test function. �

In order to compare fairly the two decoding algorithms, the errors 𝛾 for WHT
and 𝛼 + 𝛽 for Gauss should be approximately the same. For simplicity we take
𝛼 = 𝛽 = 𝛾 = 1/(2𝑘

√
2𝜋). Then we get approximately the same amount of needed

samples i.e.

𝑠𝐺 ≈
8𝑘 ln 2
(1 − 2𝜏)2 , 𝑠𝑊𝐻𝑇 ≈

4𝑘 ln 2
(1 − 2𝜏)2

This shows that we can ignore the sample number 𝑠 from the time and memory
expressions of both decoding algorithms and look at them as functions in 𝑘 ′ and 𝜏′.
Interestingly, the time complexity of both algorithms is exponential in 𝑘 ′, but with
different bases: 2 for WHT and ((1 − 𝜏)−1) for Gauss. As we add more reduction steps,
((1− 𝜏)−1) grows and the Gauss algorithm quickly overruns WHT. Hence, we can expect
that having more reduction steps favors WHT instead of Gauss as this reduces the LPN
problem, and it becomes more likely that we can fit the WHT algorithm in memory.
This observation is shown in Figure 2 and further confirmed in Subsection 3.3.

0 10 20 30 40 50
0

20

40

60

k′

t

tgauss c=0
tWHT c=0

0 10 20 30 40 50
0

20

40

60

80

k′

t

tgauss c=4
tWHT c=4

Figure 2. Comparing WHT and Gauss for different 𝛿′ = 𝛿2𝑐 . 𝑐 indicates the number of reduction steps.

5 Combining code-reduce with Gauss
In [7] it was suggested that the low-memory Gauss decoding algorithms can be combined
with various reduction algorithms. The intuitive combination with the code-reduce

reduction that uses little memory and does not consume any samples, would appear
to make sense. Using Pooled-Gauss, a variant that does not regenerate samples, this
combination looks like Algorithm 4. However, we will show that this approach is not
more viable than just applying Pooled-Gauss to the full problem. Even hypothetical
codes that reach the Hamming Bound [16] don’t have good enough bc that makes Coded
(Pooled) Gauss better.

Algorithm 4. Coded Pooled Gauss
Input: 𝑛 = 𝑘 + 𝑘2 log2

2 𝑘 + 𝑠 samples from OLPN
s,𝜏 ,

a [𝑘, 𝑘′] code 𝐶 with generator matrix 𝐺
Output: Linear relations on s
sparse-secret()
code-reduce(𝑘, 𝑘′, 𝐶)
𝑠 ← Pooled-Gauss(𝑘′)
return s′ of size 𝑘′ such that s𝐺𝑇 = s′

In our analysis we assume that we can decode a sample in insignificant time. We
explore whether even under this assumption, Coded Gauss can be competitive. In
practice, constant decoding time is only feasible for (concatenations of) small codes.
Those are not the best possible covering codes theoretically.

5.1 Analysis of the required bias of the code
In order for Coded Pooled Gauss to have advantage over Plain Pooled Gauss, we need
the time complexity of Coded Pooled Gauss to be better, i.e.

(𝑘3 + 𝑘𝑠) log2
2 𝑘

(12 +
1
2𝛿)

𝑘
>
(𝑘 ′3 + 𝑘 ′𝑠) log2

2 𝑘
′

(12 +
1
2𝛿bc)𝑘

′ + 𝑠 + 𝑛. (4)

Recall that Theorem 1 bounds the bc of any [𝑘, 𝑘 ′] code and that the bound is met
for perfect or quasi-perfect codes. Combining it with the Hamming bound, reached by
perfect codes, (2𝑘′ >

∑𝑅
𝑤=0

(𝑘
𝑤

)
), we can compute the upper bound on bc for any [𝑘, 𝑘 ′]

code. In turn, this gives us the best possible time complexity for Coded (Pooled) Gauss
using any [𝑘, 𝑘 ′] code. Unfortunately, our calculations show (see Figure 3(a)) that the
required bc can not be reached even for codes on the Hamming bound. This implies that
Coded (Pooled) Gauss is always worse than immediately applying (Pooled) Gauss.
Note that here, since we only combine code-reduce and Gauss we have 𝛿 = 𝛿𝑠

(the sparse-secret transformation is performed right before code-reduce). However,
in order for the code-reduce step to be worth applying we actually need 𝛿 < 𝛿𝑠. This
corresponds to applying other reduction steps in between sparse-secret and code-reduce.
Figure 3(b) depicts this scenario. As before, 𝑐 indicates the number of reduction steps.
Note that as 𝑐 increases, so does the possible advantage of applying code-reduce.
The previous analysis does not give the full picture. We have neglected the running

time of the in-between steps for the sake of argument and to show that the only favorable
case involves several reduction steps before Coded Gauss.

5.2 Memory Cost
The samples used by Gauss to test if candidate s′ is correct greatly contributes to its
memory consumption. With small bias, Gauss is not memory-efficient. For quite
realistic 𝛿 · bc ≈ 10−6 and 𝑘 ′ ' 16, Gauss needs many terabytes of memory. When

0 64 128 192 256 320 384 448 512
2−106

2−71

2−36

2−1

k′

b
c

bc at Ham. bound
δ = δs min bc

0 64 128 192 256 320 384 448 512
2−288

2−192

2−96

20

k′

b
c bc at Ham. bound

δ = δ2
c

s min bc (c = 1)

δ = δ2
c

s min bc (c = 2)

δ = δ2
c

s min bc (c = 3)

δ = δ2
c

s min bc (c = 4)

(a) 𝛿 = 𝛿𝑠; 𝜏 = 1
8 (b) 𝛿 = 𝛿2𝑐

𝑠 < 𝛿𝑠 =
3
4

Figure 3. Minimal bc for Coded Gauss to be faster than just applying Gauss and the bc obtained at the
Hamming bound. (b) actually requires additional reduction steps before code-reduce.
𝛿 · bc ≈ 10−7, it even crosses into the exabytes. This further limits realistic attacks. We
note that relaxing the failure probability reduces the memory consumption, though not
by many orders of magnitude. However, this could make the difference for a practical
attack to fit in memory.

6 Finding memory restricted reduction chains
Our main goal here is to find the best reduction chains in the spirit of [6] but under
memory constraints. As a first step, we modified the chain finding algorithm from [6] to
only allow branches to be taken if the memory consumed by the reduction or decoding is
below a set limit. Although in theory this approach should yield the best chain in the end,
it is extremely inefficient, time consuming and does not scale well. This was especially
visible after adding new reduction steps to the algorithm. However, we noticed that the
automaton can be greatly simplified due to many impossible branches and some clear
optimization steps due to the memory restrictions.

Table 1. Complexities of solving LPN𝑘,𝜏 in restricted memory

k= 128 256 384 512
𝜏 m= 40 60 80 40 60 80 40 60 80 40 60 80

0.05 Our work 26W 26W 26W 38W 38W 38W 58G 49W 49W 68W 58W 58W

Hybrid / MMT 37 34 37 34 37 34 54 40 54 40 54 40 70 48 68 48 68 48 87 57 87 57 84 57

0.10 Our work 31W 31W 31W 50W 46W 46W 81G 60W 60W 99W 92W 73W

Hybrid / MMT 41 38 41 38 41 38 76 53 61 53 61 53 106 70 106 70 74 70 136 87 136 87 101 87

0.125 Our work 33W 33W 33W 56W 49W 49W 92G 71W 64W 114W 105W 78W

Hybrid / MMT 41 41 41 41 41 41 86 61 61 61 61 61 121 81 110 81 81 81 157 102 157 102 101 102

0.25 Our work 38W 38W 38W 102G 58W 58W 140G 92W 77W 179G 186G 115W

Hybrid / MMT 47 57 47 57 47 57 113 95 69 95 69 95 175 134 135 134 104 134 230 172 202 172 171 172

0.40 Our work* 51W 48W 48W 136G 84W 71W 189G 176G 116W 245G 241G 209W

Hybrid / MMT 62 75 57 75 57 75 129 132 93 132 81 132 197 189 160 189 139 189 264 245 228 245 207 245

𝐺: Gauss decoding method. 𝑊 : WHT decoding method.
Hybrid / MMT per [7], generated by a version of their script that contains a bug-fix
acknowledged by the authors. *: 0.40 results do not use random codes from [6].

Proposition 3. The sequence sum-up-reduce→ drop- reduce can never occur in
the best reduction chain for solving a given LPN𝑘0 ,𝜏0 search problem under memory
constrains.

Proof. We will prove the claim for sum-up- reduce=xor-reduce. The rest can
be shown very similarly. Suppose that after a number of reduction steps we need
to reduce the problem LPN𝑘,𝜏 . Using the sequence xor-reduce → drop-reduce,
we can reduce it first to LPN𝑘−𝑏,𝜏′ using xor-reduce, and then to LPN𝑘′,𝜏′ using

drop-reduce. Here 𝜏′ = (1−(1−2𝜏)2)/2 and 𝑏 ∈ [0, 𝑘−𝑘 ′]. The sequence takes time
𝑡 = 𝑘 max{𝑛, 𝑛(𝑛−1)

2𝑏+1 } + (𝑘 − 𝑏) 𝑛(𝑛−1)
2𝑏+1 and memory 𝑚 = max{𝑘𝑛, (𝑘 − 𝑏) 𝑛(𝑛−1)

2𝑏+1 }. For
some constants 𝐴, 𝐵, 𝐶, these can be written as functions in 𝑏 as 𝑡 (𝑏) = 𝐴+𝑛(𝑛−1) 𝐵𝑘−𝑏

2𝑏+1

and𝑚(𝑏) = 𝐴+𝐶𝑛(𝑛−1) 𝑘−𝑏2𝑏+1 . It is easy to see that both functions are strictly decreasing
in 𝑏, so the minimum on [0, 𝑘 − 𝑘 ′] is achieved when 𝑏 = 𝑘 − 𝑘 ′. Note further that the
number of remaining samples does not depend on 𝑏, so the choice of 𝑏 does not affect
subsequent reduction steps. Summarizing, in the best chain any sequence xor-reduce
→ drop-reduce collapses to just xor-reduce. �

Wealso looked into the sequencescode-reduce→drop-reduce andcode-reduce
→ sum-up-reduce. However, due to the very complex relation between the time com-
plexity and the bias bc of the code, we could not make a compact analysis similar
to Proposition 3. Instead, we performed an extensive set of experiments where we
tested the appearance of these sequences just before a decoding algorithm is applied,
i.e. sequences of type code-reduce→ reduce→ decode. Our experiments showed
that such sequences never appear, and that they collapse to code-reduce→ decode.
Therefore, we decided to not allow in the automaton any other reduction steps after
code-reduce.
As a final modification, we put drop-reduce as a first step. This is a logical choice

in a memory restricted environment and has been used in previous works as well [7].
Samples can be generated on the fly and discarded immediately if they don’t satisfy the
requirements of drop-reduce. This creates a time-memory trade-off since only the
reduced samples from drop-reduce remain in memory.
We updated the automaton from Figure 1 using our findings, and what we get is

depicted in Figure 4.

1initial 2

3

4 5

decoded

sum-up-reduce

sum-up-reduce

drop-reduce sparse-secret

sum-up-reduce

code-reduce

WHT

Pooled
Gauss

WHT

Pooled
Gauss WHT

Pooled
Gauss

Figure 4. The updated automaton using the results from Section 6. The notation is the same as
in Figure 1.

6.1 Experimental Results
We applied our algorithm to find reduction chains that fit in 240 (128 GiB), 260 (128 PiB)
and 280 (128 ZiB) bits of memory. 240 bits is an amount of memory that is readily
available from server vendors in common configurations. 260 bits is a much larger, but
not necessarily impractical amount of memory. A top supercomputer, Summit, has over
250 PB of storage [17].1 Finally, 280 is included to give some safety margin.
In Table 1, we show that solving most LPN instances is fastest using the WHT decoding

algorithm. Only when we get severely memory-restricted, does the algorithm find chains

1While this is networked storage, Summit nodes have over 10 PB of local storage combined. 128 PB of
RAM is probably within reach in the near future.

with Gauss. This improves upon the results of [7], who were not able to fit any WHT-based
algorithm in 260 bits of memory. We also see that the found reduction and decoding
chain is able to recover LPN256,0.25 in 258 time. This is a significant improvement on
the complexity of 263 for their best attack on LPN256,0.25, which involved a quantum
algorithm. Going up to 𝑚 = 80 shows that more memory does not necessarily allow for
better algorithms. This is probably related to the fact that the most significant factor
affecting memory requirements is the number of samples, which in turn affects the
required time.

7 Practical attack on LPN
Using our results, with memory limit 𝑚 = 39, we have executed several attacks. The
results are listed in Table 2. We implemented the reductions and solving algorithms in
Rust.2 We hope these results and memory bounds are meaningful and illustrate what
some time complexities mean in practice. We ran them on a computer with 192 GB
RAM and two Intel Xeon Gold 6230s totaling 80 threads. Their runtime, due to the tight
memory restriction, is dominated by drop-reduce, so we also give the number of bits
dropped.

Table 2. Solved LPN𝑘,𝜏 instances with 𝑚 = 39

k τ Exp. time Init. samples drop bits runtime

190 1/8 240.9 231.0 7 33 minutes
200 1/8 244.4 231.2 12 290 minutes
150 1/4 244.5 231.4 12 281 minutes
154 1/4 248.4 231.4 16 3 741 minutes

We see that our results scale in line with the theoretical complexity. For 𝑘 = 512,
we see that for 𝜏 = 1

8 the theoretical time complexity is 𝑡 = 2114. Extrapolating to this
complexity, we would expect to need 277 minutes to run an attack in practice, with our
implementation. Of course, both extrapolations assume the exact same hardware and
software for attacking a problem of this size. There is potential for acceleration by using
GPUs or trivially distributing e.g. drop-reduce over multiple computers. We leave
this for future work.

8 Conclusion
In this paper we focused on practical consideration for solving the LPN problem, in
particular the issue of memory consumption. We improved the state-of-the-art by
modifying and enhancing the Coded-BKW algorithm to work under various memory
constraints. Our analysis of Coded (Pooled) Gauss disproved that this intuitive combi-
nation of low-memory algorithms is generally feasible. We further showed that when
combined with several reduction steps, Gauss is generally always worse than using WHT,
especially for practical parameters. The practicality of our approach was demonstrated
by mounting attacks on the largest parameters reported so far, in only 239 bits of memory.

2Our software is available at https://thomwiggers.nl/publication/lpn/.

https://thomwiggers.nl/publication/lpn/

References
[1] O. Regev, “On lattices, learningwith errors, random linear codes, and cryptography,”
in 37th Annual ACM Symposium on Theory of Computing, H. N. Gabow and
R. Fagin, Eds. ACM Press, May 2005, pp. 84–93.

[2] G. Alagic, J. Alperin-Sheriff, D. Apon, D. Cooper, Q. Dang, J. Kelsey, Y.-K. Liu,
C. Miller, D. Moody, R. Peralta, R. Perlner, A. Robinson, and D. Smith-Tone,
“Status Report on the Second Round of the NIST Post-Quantum Cryptography
Standardization Process,” National Institute of Standards and Technology, Tech.
Rep. NIST Internal or Interagency Report (NISTIR) 8309, Jul. 2020. [Online].
Available: https://csrc.nist.gov/publications/detail/nistir/8309/final

[3] A. Blum, A. Kalai, and H.Wasserman, “Noise-tolerant learning, the parity problem,
and the statistical query model,” in 32nd Annual ACM Symposium on Theory of
Computing. ACM Press, May 2000, pp. 435–440.

[4] É. Levieil and P.-A. Fouque, “An improved LPN algorithm,” in SCN 06: 5th
International Conference on Security in Communication Networks, ser. Lecture
Notes in Computer Science, R. D. Prisco and M. Yung, Eds., vol. 4116. Springer,
Heidelberg, Sep. 2006, pp. 348–359.

[5] Q. Guo, T. Johansson, and C. Löndahl, “Solving LPN using covering codes,”
in Advances in Cryptology – ASIACRYPT 2014, Part I, ser. Lecture Notes in
Computer Science, P. Sarkar and T. Iwata, Eds., vol. 8873. Springer, Heidelberg,
Dec. 2014, pp. 1–20.

[6] S. Bogos and S. Vaudenay, “Optimization of LPN solving algorithms,” in Advances
in Cryptology – ASIACRYPT 2016, Part I, ser. Lecture Notes in Computer Science,
J. H. Cheon and T. Takagi, Eds., vol. 10031. Springer, Heidelberg, Dec. 2016, pp.
703–728.

[7] A. Esser, R. Kübler, and A. May, “LPN decoded,” in Advances in Cryptology
– CRYPTO 2017, Part II, ser. Lecture Notes in Computer Science, J. Katz and
H. Shacham, Eds., vol. 10402. Springer, Heidelberg, Aug. 2017, pp. 486–514.

[8] C. Delaplace, A. Esser, and A. May, “Improved low-memory subset sum and LPN
algorithms via multiple collisions,” Cryptology ePrint Archive, Report 2019/804,
2019, https://eprint.iacr.org/2019/804.

[9] A. Esser, F. Heuer, R. Kübler, A. May, and C. Sohler, “Dissection-BKW,” in
Advances in Cryptology – CRYPTO 2018, Part II, ser. Lecture Notes in Computer
Science, H. Shacham and A. Boldyreva, Eds., vol. 10992. Springer, Heidelberg,
Aug. 2018, pp. 638–666.

[10] A.May, A.Meurer, and E. Thomae, “Decoding random linear codes in Õ(20.054𝑛),”
in Advances in Cryptology – ASIACRYPT 2011, ser. Lecture Notes in Computer
Science, D. H. Lee and X. Wang, Eds., vol. 7073. Springer, Heidelberg, Dec.
2011, pp. 107–124.

[11] S. Bogos, F. Tramer, and S. Vaudenay, “On solving LPN using BKW and variants,”
Cryptology ePrint Archive, Report 2015/049, 2015, http://eprint.iacr.org/2015/049.

https://csrc.nist.gov/publications/detail/nistir/8309/final
https://eprint.iacr.org/2019/804
http://eprint.iacr.org/2015/049

[12] B. Applebaum, D. Cash, C. Peikert, and A. Sahai, “Fast cryptographic primitives
and circular-secure encryption based on hard learning problems,” in Advances in
Cryptology – CRYPTO 2009, ser. Lecture Notes in Computer Science, S. Halevi,
Ed., vol. 5677. Springer, Heidelberg, Aug. 2009, pp. 595–618.

[13] B. Zhang, L. Jiao, and M. Wang, “Faster algorithms for solving LPN,” in Advances
in Cryptology – EUROCRYPT 2016, Part I, ser. Lecture Notes in Computer
Science, M. Fischlin and J.-S. Coron, Eds., vol. 9665. Springer, Heidelberg, May
2016, pp. 168–195.

[14] I. Dinur, O. Dunkelman, N.Keller, andA. Shamir, “Efficient dissection of composite
problems, with applications to cryptanalysis, knapsacks, and combinatorial search
problems,” in Advances in Cryptology – CRYPTO 2012, ser. Lecture Notes in
Computer Science, R. Safavi-Naini and R. Canetti, Eds., vol. 7417. Springer,
Heidelberg, Aug. 2012, pp. 719–740.

[15] P. C. van Oorschot and M. J. Wiener, “Parallel collision search with cryptanalytic
applications,” Journal of Cryptology, vol. 12, no. 1, Jan. 1999, pp. 1–28.

[16] R. W. Hamming, “Error detecting and error correcting codes,” The Bell System
Technical Journal, vol. 29, no. 2, Apr. 1950, pp. 147–160.

[17] Oak Ridge National Laboratory. Summit FAQs. Accessed 2021-01-25. [Online].
Available: https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/
summit-faqs/

https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/summit-faqs/
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/summit-faqs/

	Introduction
	Contributions
	Organization

	Preliminaries
	Solving LPN problems
	Reduction algorithms
	drop-reduce(b)
	xor-reduce(b) SCN:LevFou06
	sparse-secret C:ACPS09,AC:GuoJohLon14,AC:BogVau16
	code-reduce([k, k'] code) AC:GuoJohLon14,AC:BogVau16,EPRINT:BogTraVau15
	c-sum-Dissection(b)

	Decoding algorithms
	Finding the best reduction chain

	Fair Comparison between WHT and Gauss
	Combining code-reduce with Gauss
	Analysis of the required bias of the code
	Memory Cost

	Finding memory restricted reduction chains
	Experimental Results

	Practical attack on LPN
	Conclusion

