
Secure Quantum Computation with Classical
Communication

James Bartusek*

University of California, Berkeley

Abstract

The study of secure multi-party computation (MPC) has thus far been limited to the following two
settings: every party is fully classical, or every party has quantum capabilities. This paper studies a notion
of MPC that allows some classical and some quantum parties to securely compute a quantum functionality
over their joint private inputs.

In particular, we construct (constant-round, composable) protocols for blind and verifiable classical
delegation of quantum computation, and give applications to the secure computation of quantum func-
tionalities using only classical communication. Assuming QLWE (the quantum hardness of learning with
errors), we obtain the following (maliciously-secure) protocols for computing any BQP (bounded-error
quantum polynomial-time) functionality.

• A six-round protocol between one quantum server and multiple classical clients in the CRS (common
random string) model.

• A three-round protocol between one quantum server and multiple classical clients in the PKI (public-
key infrastructure) + QRO (quantum random oracle) model.

• A two-message protocol between quantum sender and classical receiver (a quantum non-interactive
secure computation protocol), in the QRO model.

To enable the composability of our classical verification of quantum computation protocols, we require
the notion of malicious blindness, which stipulates that the prover does not learn anything about the veri-
fier’s delegated computation, even if it is able to observe whether or not the verifier accepted the proof. To
construct a protocol with malicious blindness, we use a classical verification protocol for sampBQP com-
putation (Chung et al., Arxiv 2020), which in general has inverse polynomial soundness error, to prove
honest evaluation of QFHE (quantum fully-homomorphic encryption) ciphertexts with negligible sound-
ness error. Obtaining a constant-round protocol requires a strong parallel repetition theorem for classical
verification of quantum computation, which we show following the “nearly orthogonal projector” proof
strategy (Alagic et al., TCC 2020).

1 Introduction

Secure multi-party computation (MPC) is a fundamental cryptographic task that allows for multiple parties
to securely evaluate a function on their joint private inputs. The study of MPC is foundational to the field of
modern cryptography [Yao86, GMW87, BGW88, CCD88] and has since only increased in depth and scope.

Naturally, the vast majority of MPC literature considers the task of securely evaluating a classical func-
tionality over classical inputs. However, the emergence of quantum computing technology raises several

*Email: bartusek.james@gmail.com

1

interesting and increasingly relevant questions for the field of secure computation. Indeed, secure compu-
tation of quantum functionalities over potentially quantum inputs also has a rich history of study, includ-
ing many recent works [CGS02, BCG+06, Unr10, DNS12, KP17, DGJ+20, ACC+20, GLSV21, BCKM21a,
BCKM21b, KKMO21].

One drawback of each of the above multi-party quantum computation (MPQC) protocols is that they
require each party to operate a quantum computer, or at least be able to manipulate some quantum in-
formation. Indeed, personal quantum computers remain far from a reality, and it appears as if quantum
computation will be concentrated in the hands of a few technologically-advanced entities for the foresee-
able future. Thus, recent years have seen a major research effort towards the goal of classical delegation
of quantum computation, which allows a classical client to enlist the resources of a quantum server, ideally
without comprising the privacy of the client’s data or the integrity of the computation [Mah18a, Mah18b,
Bra18, GV19, ACGH20, CCY20, CLLW20].

These works consider a single classical client with (potentially private) input, interacting with an input-
less quantum server. Thus, they do not address the possibility of multi-party quantum computation with
classical communication, and do not attempt to realize fully simulation-secure protocols, which is the gold
standard notion of security for distributed computation. In this work, we address the following feasibil-
ity question for the first time, where “securely compute” refers to simulation security against arbitrarily
malicious parties.

Can multiple parties, some of which do not have any quantum capabilities, securely compute a quantum
functionality over their joint private inputs?

1.1 Results

We study the notion of MPQC with classical communication secure against a dishonest majority of arbi-
trarily malicious parties. We focus on MPQC for BQP (bounded-error quantum polynomial-time) com-
putation.1 We capture BQP by considering “pseudo-deterministic” quantum functionalities 𝐷(·) that on
classical input 𝑥, produce a fixed classical output 𝑧 except with negligible probability.

Composable blind CVQC. We begin by considering a simple two-party functionality between classical
client and quantum server, defined by a pseudo-deterministic circuit𝐷(·). It takes an input 𝑥 from the client
and a bit 𝑏 from the server (indicating honest or dishonest behavior) and delivers the output 𝐷(𝑥) to the
client if 𝑏 = 0 and the output ⊥ if 𝑏 = 1. We say that a protocol with classical communication that securely
implements this ideal functionality is a composable blind CVQC protocol. Our first result is described in the
following informal theorem.

Theorem 1.1. (Informal) Assuming the quantum hardness of learning with errors (QLWE), there exists a four-round
composable blind CVQC protocol. The protocol can be made two rounds in the quantum random oracle model.

Next, we give applications of composable blind CVQC to secure quantum computation.

Multi-party results. In the multi-party setting, we construct two protocols, both of which only require a
single party (called the server) to have quantum capabilities. This setting of one quantum server and several
classical clients can be viewed as a quantum analogue of “cloud-assisted” MPC, introduced by [AJL+12]. In
their setting, several clients wish to securely outsource the bulk of some computation to a single powerful
server, and they require that the client computation is much smaller than the functionality to be computed.
In our setting, we consider several classical clients that wish to outsource a quantum computation to a

1This is as opposed to a more general class of quantum functionalities that may output an arbitrary distribution over classical
strings (see discussion in Section 1.3). Note that this distinction generally does not arise in the classical setting, since one can make
any randomized functionality deterministic by fixing the random coins. In the quantum setting, this strategy will not always work
since randomness can come from measurement.

2

single quantum server, and we require that the client computation is entirely classical (though it may grow
with the size of the functionality to be computed).

The features of our first protocol are described in the following theorem.

Theorem 1.2. (Informal) Assuming the quantum hardness of learning with errors (QLWE), there exists a six-round
protocol (in the common random string model2) between multiple classical clients and one quantum server for com-
puting any pseudo-deterministic quantum functionality over the private inputs of the clients. The protocol tolerates
any coalition (including client-server collusion) of malicious quantum polynomial-time adversaries.

We next study cloud-assisted MPQC with the following interaction pattern.

• Round 1: each classical client 𝑃𝑖 computes and broadcasts an encryption ct𝑖 of their input 𝑥𝑖.

• Round 2: the quantum server computes and broadcasts an encryption ̃︀ct of the output.

• Round 3: the clients participate in a one-round decryption procedure that delivers output 𝑦𝑖 to each
client 𝑃𝑖.

The feasibility of this interaction pattern in the classical setting was established by [AJL+12] in the PKI
(public-key infrastructure) model, where each client can publish a succinct and reusable public key before
the protocol begins.3 Here, we show how to achieve three-round cloud-assisted MPQC in the QROM
(quantum random oracle model),4 also assuming a PKI setup, as described in the following theorem.

Theorem 1.3. (Informal) Assuming QLWE, there exists a three-round protocol (in the QRO + PKI model) between
multiple classical clients and one quantum server for computing any psuedo-deterministic quantum functionality over
the private inputs of the clients. The protocol tolerates any coalition (including client-server collusion) of malicious
quantum polynomial-time adversaries.

Two-party results. In the two-party setting, we show how to construct a round-optimal (two-message)
protocol where one party receives output. That is, we consider a quantum sender 𝒮 with classical input
𝑥𝒮 and a classical receiver ℛ with classical input 𝑥ℛ, and we construct a maliciously-secure two-message
protocol that delivers 𝐷(𝑥ℛ, 𝑥𝒮) to the receiver. This can be seen as a (non-reusable) NISC (non-interactive
secure computation) protocol for BQP. Both non-reusable and reusable NISC protocols have a long history
of study in the classical setting [Yao86, IPS08, IKO+11, AMPR14, BGI+17, CDI+19, MPP20], and we give
the first construction that supports quantum functionalities while maintaining classical communication.

Theorem 1.4. (Informal) Assuming QLWE, there exists a NISC for BQP with classical receiver in the quantum
random oracle model.

This result continues a recent line of work that constructs maliciously-secure two-message protocols for
quantum functionalities, which we survey in Appendix A.

1.2 Technical overview

Background. Our starting point is two works of Mahadev [Mah18a, Mah18b] on classical delegation of
quantum computation. Taken together, they show that a classical client can delegate a BQP computation
to a quantum server while maintaining both privacy of the client’s input and integrity of the computation
performed. Indeed, [Mah18b] shows how to obtain soundness via a construction of classical verification of
quantum computation (CVQC), meaning that a (computationally bounded) cheating server won’t be able
to convince the classical client of a false outcome. Furthermore, [Mah18a] shows how to obtain privacy of

2A constant-round protocol in the plain model can also be obtained by using constant-round post-quantum MPC [ABG+21] to set
up the CRS. However, this introduces more rounds and assumptions (in particular, a circular-security assumption).

3It was later shown how to remove the PKI via multi-key fully homomorphic encryption [MW16].
4We also require a common random string (CRS) setup, but this is subsumed by the random oracle model.

3

the client’s input via a construction of quantum fully-homomorphic encryption (QFHE) with classical keys.
Executing CVQC under the hood of QFHE then provides both privacy and soundness, which was recently
formalized by [CLLW20].

Our goal is to extend these results to the setting of fully-simulatable maliciously-secure computation,
while also enabling multiple classical clients to outsource a quantum computation on their private inputs to
a single quantum server. A natural idea would be to make use of post-quantum classical MPC to simulate
the classical client in the above two-party client-server protocol. That is, 𝑛 parties engage in classical MPC
to set up a joint encryption QFHE.Enc(𝑥1, . . . , 𝑥𝑛) of their inputs, and then they proceed to interact with the
quantum server as a single entity.

Unfortunately, the resulting protocol suffers from an input-dependent abort issue, rendering it insecure.
Consider a malicious server that colludes with any one of the classical clients 𝑃1. Under QFHE, the server
can decide whether to honestly complete the CVQC or force an abort as a function of the clients’ private
inputs. Then, 𝑃1’s output will signal which was the case, allowing the server (and 𝑃1) to learn any arbitrary
predicate of the honest clients’ inputs. In fact, the possibility of causing an input-dependent abort also
prevents the original protocol between single client and single server from satisfying the standard notion
of simulatable two-party computation. In other words, executing CVQC under QFHE does not result in a
composable blind CVQC protocol.

CVQC with malicious blindness. In order to prevent such input-dependent abort attacks, what we need
is a CVQC protocol where the prover cannot learn anything about the verifier’s input, even if is able to learn
whether or not the verifier aborted (rejected its proof). We will refer to this property as malicious blindness.

As explained above, executing CVQC under QFHE does not result in malicious blindness. But what if
we switch the nesting of CVQC and QFHE, using CVQC to prove that a QHFE evaluation QFHE.Enc(𝑥)→
QFHE.Enc(𝑦) is performed honestly? It is not immediately clear how to do this, since [Mah18b]’s CVQC
protocol only works for BQP computation, and QFHE evaluation is a sampBQP computation. Indeed, the
“encrypted CNOT” operation at the heart of [Mah18a]’s QFHE involves obliviously sampling a classical
FHE ciphertext by measuring a superposition over encryption random coins. Thus, performing QFHE
evaluation of a pseudo-deterministic quantum functionality 𝑦 := 𝐷(𝑥) will produce a distribution over
ciphertexts QFHE.Enc(𝑦; 𝑟) with the same outcome 𝑦 but with varying random coins 𝑟.

However, Chung et al. [CLLW20] recently showed how to extend the protocols of [FHM18, Mah18b] to
prove the correctness of sampBQP computations. The caveat is that the soundness error of their protocol is
non-negligible, due to the following issue. Roughly, the prover prepares multiple copies of the history state
of the computation, and the verifier chooses all but one of them to test and one of them to sample from.
A malicious prover can always guess which state the verifier will sample from with inverse polynomial
probability and cheat only in that copy of the history state, convincing the verifier to accept a completely
invalid result. For general sampBQP problems, this issue appears somewhat inherent to their approach,
since there is no meaningful way to combine multiple potentially invalid samples into a single valid sample.

We observe that for the special case of proving honest QFHE evaluation of some BQP computation, one
can meaningfully combine multiple potentially invalid samples. Consider a verifier that requests multiple
output ciphertexts, decrypts them all, and then outputs the most frequently occurring plaintext. If the
prover can only cheat with some small (say 1/4) probability on each sample, then one should be able to
drive the probability of accepting an invalid result down to negligible, with enough samples.

More abstractly, we consider any pseudo-deterministic circuit𝐷(·) that can be written as𝐶(𝑄(·)), where
𝑄 is a quantum circuit and𝐶 is a classical circuit. On any classical input 𝑥, 𝐶(𝑄(𝑥)) produces a well-defined
output 𝑧 (with overwhelming probability), while 𝑄(𝑥) may produce any distribution over intermediate
classical values 𝑦. The goal will be to obtain a protocol for delegating the computation of 𝐶(𝑄(·)) where the
prover’s computation and the verifier’s decision to accept or reject is independent of 𝐶.

We first use the one-round sampBQP verification protocol of [CLLW20] (with a quantum verifier that
performs single-qubit computational and Hadamard basis measurements) to show how to verify such
pseudo-deterministic computations with negligible soundness error (details in Section 4.2). The resulting
protocol consists of a quantum proof and requires a quantum verifier to perform single-qubit meausure-

4

ments. The next step is then to incorporate Mahadev’s measurement protocol [Mah18b] in order to make
the proof and the verifier fully classical.

The measurement protocol as described in [Mah18b] proceeds in a number of rounds, where in each
round, the verifier issues a single bit challenge indicating either a “test” round or a “Hadamard” round.
The test round is meant to check that the prover is behaving honestly (i.e. it is honestly “committing”
to some particular quantum state), while the Hadamard round is meant to produce a sequence of classical
measurement results that the verifier can use to produce its verdict. A single round consists of four classical
messages between prover and verifier, and [Mah18b] shows that it satisfies the following property: Any
prover that passes the test round with overwhelming probability will only be able to “cheat” in a Hadamard
round with negligible probability, assuming QLWE.

In Section 4.3, we use this protocol to obtain a four message protocol for verifying circuits𝐷(·) = 𝐶(𝑄(·))
that satisfies the following property. The verifier will either choose a test round, in which case they simply
accept or reject, or they will choose a Hadamard round, in which case they either reject or obtain a purported
sample 𝑦 ← 𝑄(𝑥). In the latter case, they compute and output 𝑧 := 𝐶(𝑦). Any prover that passes the test
round with overwhelming probability will only be able to force an incorrect output in a Hadamard round
with negligible probability.

Parallel repetition. Now, we would like to obtain negligible soundness error, ideally while maintaining
the four-message interaction. Recent works [ACGH20, CCY20] have shown how to do this in the setting
where the cheating prover is attempting to convince the verifier to accept some false BQP statement. They
show that if the four-message protocol is run sufficiently many times 𝑛 in parallel, then the probability that
the verifier accepts on all repetitions is negligible. Phrased differently, they show that, conditioned on the
verifier accepting each of the (roughly) 𝑛/2 test rounds, the prover will not be able to successfully “cheat”
on all the Hadamard rounds, except with negligible probability.

However, this is not quite enough for our setting. Recall that in the 𝑖’th Hadamard round, the verifier
receives a purported sample 𝑦𝑖 ← 𝑄(𝑥) and computes 𝑧𝑖 := 𝐶(𝑦𝑖). Crucially, we want the verifier to have
already decided to accept by the time they invoke 𝐶 to compute the outputs 𝑧𝑖. Thus, to combine these
{𝑧𝑖}𝑖 into a final output 𝑧, we will simply have the verifier output the most frequently occurring string 𝑧 in
the set (in particular, this final output computation cannot decide to accept/reject based on any properties
of the set {𝑧𝑖}𝑖). Now, a prover that successfully cheats in only half of the Hadamard rounds may be able to
force an invalid output. Our goal is thus to show that this can only happen with negligible probability.

To do so, we take a closer look at the proof of the parallel repetition theorem from [ACGH20]. The
following exposition will be simplified and not technically accurate, and is just meant to convey intuition.
They consider any cheating prover state |𝜓⟩ right before the verifier’s challenge 𝑐 ← {0, 1}𝑛 is chosen (𝑛 is
the number of repetitions, and 𝑐𝑖 = 0 corresponds to a test round while 𝑐𝑖 = 1 corresponds to a Hadamard
round). Then, for each possible 𝑐 ∈ {0, 1}𝑛, they consider a binary-valued projector Π𝑐 that corresponds to
running the prover’s remaining strategy and then applying the verifier’s verdict function on the resulting
proof. Since 𝑐 is chosen uniformly at random, it suffices to show that 1

2𝑛 ⟨𝜓|
∑︀

𝑐∈{0,1}𝑛 Π𝑐 |𝜓⟩ is negligible.
To do so, they square the quantity ⟨𝜓|

∑︀
𝑐 Π𝑐 |𝜓⟩ and then show that each cross term ⟨𝜓|Π𝑐Π𝑐′ |𝜓⟩ for 𝑐 ̸= 𝑐′

is negligible.
This is possible in their setting because the verifier only accepts if every test and Hadamard round ac-

cepts. This means that if Π𝑐 and Π𝑐′ are both accepting for 𝑐 ̸= 𝑐′, there must be some index 𝑖 where the
prover is being accepted on both a test round and a Hadamard round (any 𝑖 such that 𝑐𝑖 ̸= 𝑐′𝑖). This can be
used to contradict the key property of the single repetition protocol described above, that any prover ac-
cepted on a test round with overwhelming probability can only cheat on a Hadamard round with negligible
probability.

In our setting, we say that the verifier accepts if every test round accepts and at least half of the Hadamard
rounds accept. Thus, it is no longer true that any noticeably large cross term ⟨𝜓|Π𝑐Π𝑐′ |𝜓⟩ will imply a
contradiction to the single repetition protocol. Indeed, if 𝑐 and 𝑐′ are somewhat close in Hamming distance,
a prover could be rejected in a Hadamard round on all indices 𝑖 such that 𝑐𝑖 ̸= 𝑐′𝑖 without causing the overall
verifier to reject.

5

However, we observe that (i) it suffices to bound an overwhelming fraction of the cross terms (rather
than all), and (ii) for any 𝑐, 𝑐′ that have sufficiently large Hamming distance, if ⟨𝜓|Π𝑐Π𝑐′ |𝜓⟩ is large, then
there must be some index where the prover is simultaneously passing both the test and Hadamard rounds.
Thus, we will need an overwhelming fraction of cross terms to correspond to pairs of challenge strings 𝑐, 𝑐′

with Hamming distance at least as large as the number of Hadamard rounds. To facilitate this, we alter the
protocol, setting the number of Hadamard rounds to some fixed 𝜆, the total number of rounds to 𝑛 = 𝜆1+𝜖,
and having the verifier sample a challenge string 𝑐 ∈ {0, 1}𝑛 with Hamming weight exactly 𝜆. The full
details and proof of this strengthened parallel repetition theorem can be found in Section 3.

Secure quantum computation. The above shows how to obtain negligible soundness for classical verifi-
cation of quantum-classical circuits 𝐶(𝑄(·)), where the verifier decides to accept or reject independently of
𝐶. In the remainder of the paper, we show how to use this primitive to construct composable blind CVQC,
and then present applications to secure quantum computation with classical communication.

In Section 4.4 we show that four-message composable blind CVQC follows by letting 𝑄 correspond
to QFHE evaluation, and 𝐶 correspond to QFHE decryption. Crucially, the QFHE decryption key is not
needed to determine whether the verifier accepts or rejects, which results in the malicious blindness needed
to ensure composability. Then, in Section 5.1, we use post-quantum MPC for classical (reactive) function-
alities to allow multiple parties to simulate a single verifier participating in the CVQC protocol with the
server. This results in a constant-round MPQC protocol in the common random string model from QLWE.

Next, we consider the three-round interaction pattern described in Section 1.1. To implement this, we
will need a CVQC protocol with (i) two total messages, and (ii) distributed setup, where multiple parties
can encrypt their respective inputs without any interaction. We construct this primitive in Section 4.5 via
the following observations. Property (i) can be obtained in the quantum random oracle model (QROM)
by appealing to Fiat-Shamir in the QROM [DFMS19, LZ19]. Property (ii) can be obtained via the use of
quantum multi-key fully homomorphic encryption, which was recently constructed in [ABG+21]. In fact,
we will also require the CVQC protocol to satisfy various perfect correctness properties to obtain security
against verifiers that make a malicious choice of random coins, and we defer discussion of this to the body.

Now, in Section 5.2, we show how to combine the two-message CVQC with distributed setup with
a classical multi-party reusable non-interactive secure computation protocol (mrNISC) to obtain three-round
MPQC in the public-key infrastructure (PKI) model. Maliciously-secure post-quantum mrNISC protocols
have recently been constructed from QLWE [AJJM21, BJKL21]. The reason we need a PKI is the following.
In the two-message CVQC protocol, the various inputs can be encrypted in a distributed fashion. However,
the verifier also needs to set up some (input-independent) public parameters pp along with secret parame-
ters sp kept private from the prover. This part cannot be fully distributed, so before the protocol begins, we
will have each party publish a public key consisting of a mrNISC first-round message committing to a PRF
key. This message is succinct (does not depend on the size of the functionality to be computed) and reusable
across any varying subsets of parties (due to the reusability of the mrNISC protocol), and so it satisfies the
requirements of the PKI model. These PRF keys can then be used to compute public parameters in the first
round of the MPQC protocol, which are sent to the server along with the encryptions of each party’s input.

Finally, in Section 5.3, we show that the two-message CVQC with distributed setup primitive can also be
used to construct a two-message protocol between two parties: a quantum sender 𝒮 and a classical receiver
ℛ. Both parties have classical inputs, but can compute a (pseudo-deterministic) quantum functionality
over these inputs. This follows by letting each of the sender and receiver independently encrypt their
input, having the sender evaluate the CVQC prover, and then executing the CVQC verifier under a classical
NISC (non-interactive secure computation) protocol. This results in a quantum NISC protocol with classical
communication.

1.3 Discussion and open problems

Quantum sampling circuits. The above describes how to achieve standard malicious security for secure
multi-party computation of pseudo-deterministic circuits. That is, any adversary will only have negligible

6

advantage in distinguishing the real and simulated worlds. A natural next question is whether this is
achievable for the more general class of polynomial-time quantum sampling problems, i.e. functionalities
that output an arbitrary distribution over classical strings.

It is straightforward to see that the sampBQP protocol of [CLLW20] can be combined with QFHE and
post-quantum classical MPC to give MPQC for quantum sampling problems with classical communica-
tion, but with some inverse polynomial security. That is, the adversary will be able to distinguish the real
and simulated worlds with at most some inverse polynomial probability (but where the communication
complexity of the protocol grows with this polynomial). This follows by using their sampBQP protocol to
prove the correct computation of QFHE.Enc(𝑦) ← QFHE.Eval(𝑄,QFHE.Enc(𝑥)), where 𝑄 is some quantum
sampling circuit, and 𝑥 is the joint private inputs of the clients.

Another potential approach to secure computation of sampling circuits would be to follow [GV19],
which uses ideas from [BCM+18] and [Mah18b] to construct a blind CVQC protocol in the measurement-
based quantum computing framework (avoiding the reduction to local Hamiltonian). This framework
appears to naturally support quantum sampling circuits, though its soundness for sampling circuits has
not been analyzed. However, the inverse soundness error of their protocol also grows with the communi-
cation complexity. Thus, we leave MPQC for sampling circuits with classical communication and standard
negligible security as an open question. Indeed, the more basic question that remains open is whether it
is possible to construct a CVQC protocol for sampling circuits where the verifier only accepts samples that
are distributed negligibly close to the real distribution induced by the quantum circuit.

Obfuscation of quantum circuits. As also discussed in [BM21], one approach to obtaining (heuristic)
obfuscation of quantum circuits involves the notion of blind CVQC. Given a two-message composable
blind CVQC with delayed functionality (meaning that the circuit 𝐷 can be chosen by the prover after the
verifier’s message has been sampled) one could imagine obfuscating the (psuedo-deterministic) quantum
circuit 𝑈 as follows. Sample the verifier’s first message on input 𝑈 and output this message along with
a classical obfuscation of the verification circuit (with the verification secret key hard-coded). Then, the
evaluator with input 𝑥 can attempt to produce a proof 𝜋 for the circuit 𝐷𝑥(·) that takes 𝑈 as input and
outputs 𝑈(𝑥). It can then query the obfuscated verifier on 𝜋 to learn 𝑈(𝑥). Note that malicious blindness is
crucial for making this approach work, as the evaluator can clearly see whether or not the verifier accepts
or rejects its proof.

Unfortunately, this is not the only property that is required. It is also crucial that the blind CVQC pro-
tocol is reusably sound, meaning that it securely implements an ideal functionality that allows the prover
to repeatedly query the verifier on different circuits of its choice, learning the verifier’s output each time.
The composable blind CVQC constructed in this paper does not satisfy this reusable ideal functionality,
and more discussion about the difficulties in obtaining reusable security can be found in [BM21]. Thus, the
(one-time) composable blind CVQC protocol constructed in this paper can be seen a step towards heuris-
tic obfuscation of quantum circuits, though the possibility of obtaining the crucial property of reusability
remains open.

Quantum vs. classical simulation. Our definition of secure multi-party quantum computation (Defini-
tion 2.6) by default allows for a quantum simulator. However, in some settings it would be desirable to
require a classical simulator in the case where the adversary is only corrupting classical parties, in order to
argue that the malicious classical parties cannot obtain arbitrary quantum-computable information by in-
teracting in the protocol. In fact, it is easy to see that our construction of constant-round MPQC from QLWE
(Protocol 3) does satisfy this stricter requirement. On the other hand, our other results (three-round MPQC
protocol and NISC protocol) require a quantum simulator, even for corrupted classical parties. It would
be interesting to explore this question further, to see if such protocols can be constructed with a classical
simulator.

7

1.4 Other related work

Composable security. The notion of composable blind and verifiable quantum computation has been studied
previously both in the setting of a quantum verifier and a classical verifier. In particular, [DFPR14] showed
that the blind and verifiable protocols of [FK17] and [Mor14] with quantum verifier are composable. Next,
[GV19] gave a construction of composable blind and verifiable delegation of quantum computation with a
classical verifier, and noted that such a protocol should have implications to multi-party quantum compu-
tation (though they left this formalization to future work). However, their protocol only achieves inverse
polynomial security and requires polynomially many rounds,5 while ours achieves standard negligible se-
curity and has constant rounds.

We also remark that the works of [DFPR14] and [GV19] achieve composable security by combining
the properties of standard blindness and “independent” verifiability, which are very similar to the two
properties of malicious blindness and standard soundness that we use to enable composable security.

Two-party quantum computation. As discussed in Appendix A, many recent works (e.g. [CVZ20, ACGH20,
Shm20, BCKM21a, MY21]) have considered maliciously-secure two-message two-party protocols for com-
puting quantum functionalities.

In addition, there are a couple of recent works that study a relaxed variant of two-party secure com-
putation, called secure function evaluation (SFE), in the quantum setting. This notion relaxes security from
simulation-based to indistinguishability-based, and in particular does not require correctness against ma-
licious senders, meaning that constructions of quantum SFE do not require (classical) verification of quan-
tum computation. First, the work of [CCKM20] constructs SFE for quantum functionalities with classical
communication from QLWE, and even achieves one-sided simulation security (against malicious classical
receiver). Next, the work of [CDM20] constructs SFE for quantum functionalities (where receiver may have
a quantum input, and thus communication is quantum) from QLWE, and even show how to achieve rate-1
communication complexity.

Multi-party delegated quantum computation. Multi-party delegated quantum computation was first
studied by [KP17], in the setting where multiple computationally weak but quantum clients would like
to outsource some quantum computation to a powerful quantum server. This work only provides blind-
ness (no correctness against a malicious server) and does not handle client-server collusions. Very recently,
[KKMO21] showed how to achieve standard malicious security in this setting, though still with the re-
quirement that the clients have quantum resources. The work of [Goy18] studies the notion of multi-party
delegated quantum computation in three rounds, though security is only semi-honest, and again the clients
require quantum resources. In summary, our work is the first to construct multi-party delegated quantum
computation with entirely classical clients.

2 Preliminaries

Let 𝜆 denote the security parameter. A function 𝑓 : N→ [0, 1] is negligible if for every constant 𝑐 ∈ N there
exists𝑁 ∈ N such that for all 𝑛 > 𝑁 , 𝑓(𝑛) < 𝑛−𝑐, and we write negl(·) to denote such a function. Letℋ𝒲𝑛,𝑚

denote the set of binary strings of length 𝑛 with Hamming weight 𝑚. We will refer to pure quantum states
with ket notation |𝜓⟩ and mixed quantum states with lowercase Greek letters such as 𝜌. Throughout, we
will consider non-uniform quantum polynomial-time (QPT) adversaries, which are families of polynomial-
size quantum circuits {Adv𝜆}𝜆∈N along with some polynomial-size quantum advice {|𝜓𝜆⟩}𝜆∈N, though we
will often drop the indexing by 𝜆 when clear from context. We will also often refer to families of “psuedo-
deterministic” quantum circuits, defined below. Again, we usually drop the indexing by 𝜆 when clear from
context.

5This appears to be somewhat inherent to their approach, as they follow the measurement-based computing paradigm, which
requires the prover and verifier to interact for each sequential gate being computed.

8

Definition 2.1 (Pseudo-Deterministic Quantum Circuit). A family of psuedo-deterministic quantum circuits
{𝐷𝜆}𝜆∈N is defined as follows. The circuit 𝐷𝜆 takes as input a classical bit string 𝑥 ∈ {0, 1}𝑛(𝜆) and outputs a single
classical string 𝑧 ← 𝐷(𝑥). The circuit is pseudo-deterministic if there exists a negligible function 𝜈 such that for
every sequence of classical inputs {𝑥𝜆}𝜆∈N, there exists a sequence of outputs {𝑧𝜆}𝜆∈N such that

Pr[𝐷𝜆(𝑥𝜆) = 𝑧𝜆] = 1− 𝜈(𝜆).

The following notation will also be useful.

Definition 2.2 (𝑀𝑋𝑍(𝜌, ℎ)). For a string ℎ ∈ {0, 1}𝑛 and an 𝑛-qubit quantum state 𝜌, consider the following
procedure. For each 𝑖 ∈ [𝑛], measure the 𝑖’th qubit of 𝜌 in the standard basis if ℎ𝑖 = 0 and in the Hadamard basis if
ℎ𝑖 = 1. Let the resulting random variable (over classical 𝑛-bit strings) be denoted by 𝑀𝑋𝑍(𝜌, ℎ).

2.1 Delegation of quantum computation

We will consider protocols Π = (𝒫,𝒱) for delegating the computation of psuedo-deterministic quantum
circuits 𝐷. In such a protocol, 𝒫 and 𝒱 interact on input the security parameter 1𝜆, and 𝒱 has additional
(possibly private) inputs 𝐷,𝑥. After the interaction, 𝒱 outputs (𝑣, 𝑧), where 𝑣 ∈ {acc, rej} and 𝑧 ∈ {0, 1}*.
We denote this by (𝑣, 𝑧)← (𝒫,𝒱(𝐷,𝑥))(1𝜆). In general, 𝒱 will satisfy some efficiency properties (e.g. it has
limited or no quantum capabilities), making the protocol non-trivial.

Definition 2.3. A protocol Π = (𝒱,𝒫) for delegating the computation of a pseudo-deterministic quantum circuit 𝐷
should satisfy the following properties.

• Completeness: For any circuit 𝐷, input 𝑥, and output 𝑧 such that Pr[𝐷(𝑥) = 𝑧] = 1− negl(𝜆), it holds that

Pr[(acc, 𝑧)← (𝒫,𝒱(𝐷,𝑥))(1𝜆)] = 1− negl(𝜆).

• Soundness: For any circuit 𝐷, input 𝑥, output 𝑧 such that Pr[𝐷(𝑥) = 𝑧] = 1− negl(𝜆), and cheating prover
𝒫* with advice |𝜓⟩, it holds that

Pr[𝑣 = acc ∧ 𝑧′ ̸= 𝑧 : (𝑣, 𝑧′)← (𝒫*(|𝜓⟩),𝒱(𝐷,𝑥))(1𝜆)] = negl(𝜆).

We say that soundness is statistical if 𝒫* is unbounded, and that soundness is computational if 𝒫* is a QPT
machine with polynomial-size advice.

2.2 Quantum fully-homomorphic encryption

We define quantum fully-homomorphic encryption (QFHE) with classical keys and classical encryption
of classical messages. One could also define encryption for quantum states and decryption for quantum
ciphertexts, but we will not need that in this work.

Definition 2.4 (Quantum Homomorphic Encryption). A quantum fully-homomorphic encryption scheme (QFHE.Gen,
QFHE.Enc,QFHE.Eval,QFHE.Dec) consists of the following efficient algorithms.

• QFHE.Gen(1𝜆) → (pk, sk): On input the security parameter, the PPT key generation algorithm returns pub-
lic/secret key pair (pk, sk).

• QFHE.Enc(pk, 𝑥)→ ct: On input the public key pk and a classical plaintext 𝑥, the PPT encryption algorithm
returns a classical ciphertext ct.

• QFHE.Eval(𝑄, ct) → ̃︀ct: On input a quantum circuit 𝑄, and a ciphertext ct, the QPT evaluation algorithm
returns an evaluated ciphertext ̃︀ct.

• QFHE.Dec(sk, ct) → 𝑥: On input the secret key sk and a classical ciphertext ct, the decryption algorithm
returns a message 𝑥.

9

The scheme should satisfy the standard notion of semantic security. We will require the following notion
of correctness for evaluation of pseudo-deterministic quantum circuits. Note that this evaluation correct-
ness holds over all key generation and encryption random coins.

Definition 2.5 (Evaluation Correctness). A QFHE scheme (QFHE.Gen,QFHE.Enc,QFHE.Eval,QFHE.Dec) is
correct if for every 𝜆 ∈ N, every (pk, sk) ∈ QFHE.Gen(1𝜆), every input 𝑥, every ct ∈ QFHE.Enc(pk, 𝑥), and every
polynomial-size pseudo-deterministic quantum circuit 𝑄 and output 𝑦 such that Pr[𝑄(𝑥) = 𝑦] = 1 − negl(𝜆), it
holds that

Pr[QFHE.Dec(sk,QFHE.Eval(𝑄, ct)) = 𝑦] = 1− negl(𝜆).

The works of Mahadev [Mah18a] and Brakerski [Bra18] show that such a QFHE scheme can be con-
structed from QLWE (we will not consider unlevelled QFHE in this work, which requires circular-security
assumptions).

Multi-key. We will also make use of a quantum multi-key fully-homomorphic encryption scheme (QMFHE.Gen,
QMFHE.KeyGen,QMFHE.Enc,QMFHE.Eval,QMFHE.Dec), which was constructed in [ABG+21]. In such a
scheme, the evaluation algorithm QMFHE.Eval now may take as input some 𝑛-input circuit 𝑄 along with
𝑛 ciphertexts (ct1, . . . , ct𝑛), each encrypted under independently sampled public keys (assume that each
ct𝑖 contains a description of the public key pk𝑖 it is encrypted under). Likewise, QMFHE.Dec can decrypt a
ciphertext ct that is the result of evaluating ciphertexts encrypted under public keys pk1, . . . , pk𝑛, given the
corresponding secret keys sk1, . . . , sk𝑛. We require the same evaluation correctness (Definition 2.5) to hold,
except over 𝑛-input pseudo-deterministic functionalities 𝑄. We have also added a QMFHE.Gen algorithm
which samples a common random string crs, to be used by each KeyGen algorithm.

2.3 Multi-party quantum computation

Below we give a definition of maliciously-secure multi-party quantum computation for pseudo-deterministic
quantum functionalities, following the standard real/ideal world paradigm for defining secure computa-
tion [Gol04]. We assume that parties have access to a (classical) broadcast channel, and we aim for security
with unanimous abort.

Consider an 𝑛-party quantum functionality specified by a family of pseudo-deterministic quantum cir-
cuits 𝒬 = {𝑄𝜆}𝜆∈N where 𝑄𝜆 has classical input of size 𝑚1(𝜆) + · · · + 𝑚𝑛(𝜆) and classical output of size
ℓ1(𝜆) + · · · + ℓ𝑛(𝜆). We will consider a QPT adversary Adv = {Adv𝜆}𝜆∈N that corrupts any subset 𝑀 ⊂ [𝑛]
of parties. Let 𝐻 := [𝑛] ∖𝑀 .

Let Π be an 𝑛-party protocol for computing 𝒬. Consider any collection (𝑥1, . . . , 𝑥𝑛, |𝜓⟩Adv,𝒟), where
𝑥1, . . . , 𝑥𝑛 are classical bitstrings and |𝜓⟩Adv,𝒟 is a polynomial-size quantum state on two registers Adv and
𝒟. Abusing notation, we let |𝜓⟩Adv be the part of the state on register Adv and likewise for |𝜓⟩𝒟. Now define
quantum random variable REALΠ,Q(Adv𝜆, {𝑥𝑖}𝑖∈[𝑛], |𝜓⟩Adv) as follows. Adv𝜆({𝑥𝑖}𝑖∈𝑀 , |𝜓⟩Adv) interacts with
honest party algorithms on inputs {𝑥𝑖}𝑖∈𝐻 participating in protocol Π, after which the honest parties output
{𝑦𝑖}𝑖∈𝐻 and Adv outputs a final state |𝜓out⟩ (an arbitrary function computed on an arbitrary subset of the
registers that comprise its view). The random variable REALΠ,Q(Adv𝜆, {𝑥𝑖}𝑖∈[𝑛], |𝜓⟩Adv) then consists of
{𝑦𝑖}𝑖∈𝐻 along with |𝜓out⟩.

For any Adv, we require the existence of a simulator Sim = {Sim𝜆}𝜆∈N that takes as input ({𝑥𝑖}𝑖∈𝑀 , |𝜓⟩Adv),
has access to an ideal functionality ℐ[{𝑥𝑖}𝑖∈𝐻](·), and outputs a state |𝜓out⟩. The ideal functionality accepts
an input {𝑥𝑖}𝑖∈𝑀 , applies 𝑄𝜆 to (𝑥1, . . . , 𝑥𝑛) to recover (𝑦1, . . . , 𝑦𝑛), and returns {𝑦𝑖}𝑖∈𝑀 to Sim𝜆. Then, it
waits for either an abort or ok message from Sim𝜆. In the case of ok it includes {𝑦𝑖}𝑖∈𝐻 in its output and in the
case of abort it includes {⊥}𝑖∈𝐻 . Now, we define the quantum random variable IDEALΠ,Q(Sim𝜆, {𝑥𝑖}𝑖∈[𝑛], |𝜓⟩Adv)
to consist of the output of ℐ[{𝑥𝑖}𝑖∈𝐻](·) and the final state |𝜓out⟩ of Simℐ[{𝑥𝑖}𝑖∈𝐻](·)

𝜆 ({𝑥𝑖}𝑖∈𝑀 , |𝜓⟩Adv).

Definition 2.6 (Secure Multi-Party Quantum Computation). A protocol Π securely computes 𝑄 if for all QPT
Adv = {Adv𝜆}𝜆∈N corrupting subset of parties 𝑀 ⊂ [𝑛], there exists a QPT Sim = {Sim𝜆}𝜆∈N such that for all
{𝑥1,𝜆, . . . , 𝑥𝑛,𝜆, |𝜓𝜆⟩Adv,𝒟}𝜆∈N and all QPT 𝒟 = {𝒟𝜆}𝜆∈N, there exists a negligible function 𝜈(·) such that

10

⃒⃒⃒⃒
Pr
[︀
𝒟𝜆

(︀
|𝜓𝜆⟩𝒟 ,REALΠ,Q(Adv𝜆, {𝑥𝑖,𝜆}𝑖∈[𝑛], |𝜓𝜆⟩Adv)

)︀
= 1
]︀

− Pr
[︀
𝒟𝜆

(︀
|𝜓𝜆⟩𝒟 , IDEALΠ,Q(Sim𝜆, {𝑥𝑖,𝜆}𝑖∈[𝑛], |𝜓𝜆⟩Adv)

)︀
= 1
]︀ ⃒⃒⃒⃒
≤ 𝜈(𝜆).

2.4 Classical non-interactive secure computation

In Section 5.3, we will make use of a particular type of classical two-party computation protocol, called
non-interactive secure computation (NISC). A NISC protocol is a two-message protocol between sender 𝒮
with input 𝑥𝒮 and receiverℛwith input 𝑥ℛ. The protocol consists of two total messages, and is defined by
four algorithms (NISCGen,NISC1,NISC2,NISCout). We require that the receiver’s message can be computed
independently of the functionality 𝐶 to be computed. The syntax of these algorithms is as follows.

• crs← NISCGen(1
𝜆). The gen algorithm generates the crs.

• (𝑚ℛ, st)← NISC1(crs, 𝑥ℛ). The first message algorithm takes as input crs and the receiver’s input 𝑥ℛ,
and outputs the receiver’s message 𝑚ℛ and private state st.

• 𝑚𝒮 ← NISC2(crs, 𝐶,𝑚ℛ, 𝑥𝒮). The second message algorithm takes as input crs, a circuit 𝐶, the re-
ceiver’s message 𝑚ℛ, and the sender’s input 𝑥𝒮 , and outputs the sender’s message 𝑚𝒮 .

• 𝑦 ← NISCout(st, 𝐶,𝑚𝒮). The output algorithm takes as input the receiver’s private state st, the circuit
𝐶, and the sender’s message 𝑚𝒮 , and outputs the receiver’s output 𝑦.

A NISC protocol should satisfy standard simulation-based security against arbitrarily malicious ad-
versaries. We note that post-quantum NISC protocols are known assuming simulation-secure two-message
oblivious transfer [IPS08]. Post-quantum two-message oblivious transfer (with a reusable common random
string) can be obtained from QLWE by combining a semi-malicious oblivious transfer (such as [BD18]) with
non-interactive zero-knowledge [PS19]. Alternatively, such an oblivious transfer can be obtained directly
from QLWE with subexponential modulus-to-noise ratio [Qua20].

3 Generalizing the [ACGH20] Parallel Repetition Theorem

Consider the following outline for a four-message protocol between a classical verifier 𝒱 and a quantum
prover 𝒫 . For concreteness, one can think of the public key pk as encoding some computation that the
verifier would like the prover to perform. However, for the purposes of this section, we will only need to
consider a few generic properties of such a protocol.

• 𝒱(1𝜆) → (pk, sk) : the verifier, on input the security parameter, generates a public/secret key pair
(pk, sk) and sends pk to 𝒫 .

• 𝒫(pk) → (𝑦, |st⟩) : the prover, on input the public key, generates a classical string 𝑦 and a quantum
private state |st⟩, and sends 𝑦 to 𝒱 .

• 𝒱 samples a random challenge bit 𝑐← {0, 1} and sends 𝑐 to 𝒫 .

• 𝒫(|st⟩ , 𝑐) → 𝜋 : the prover, on input its quantum state and the verifier’s challenge bit, generates a
classical proof 𝜋 and sends 𝜋 to 𝒱 .

• 𝒱(pk, sk, 𝑦, 𝑐, 𝜋)→ 𝑏 : the verifier, on input the transcript and its secret key, outputs a bit 𝑏 where 𝑏 = 1
indicates that it accepts and 𝑏 = 0 indicates that it rejects.

11

If the verifier sampled 𝑐 = 0, we refer to the execution as a “test round”, and if the verifier sampled 𝑐 = 1,
we refer to the execution as a “Hadamard round”. Now consider a generic prover strategy (|𝜓init⟩ , 𝑈, 𝑉0, 𝑉1),
where

• |𝜓init⟩ is some initial state on three registers X,Y,Z,

• 𝑈 is a unitary on registers X,Y,Z,K, classically controlled on K,

• and 𝑉0, 𝑉1 are unitaries on registers X,Y,Z,K, classically controlled on Y and K.

Given this generic strategy, the protocol proceeds as follows. The pair (pk, sk) is sampled by the verifier,
and then 𝑈 is applied to |𝜓init⟩ |pk⟩ to produce private state |𝜓pk⟩. Then, 𝑐 is sampled and sent to the prover,
who applies 𝑉𝑐 to |𝜓pk⟩, and then measures Y,X to produce 𝑦, 𝜋.6 For any choice of (pk, sk, 𝑐), let Πpk,sk,𝑐 be
the binary-valued projector that, when applied to 𝑉𝑐 |𝜓pk⟩, corresponds to measuring 𝑦, 𝜋 and then applying
the verifier’s verdict function on (pk, sk, 𝑦, 𝑐, 𝜋).

Now suppose that the following two conditions hold(these are used in the proof of Lemma 3.2). When-
ever we take an expectation over (pk, sk), we mean over (pk, sk)← 𝒱(1𝜆).

1. Πpk,sk,0 does not depend on sk (in the protocols we are interested in, it simply checks whether 𝜋 is in
some set of classical strings determined by pk and 𝑦).

2. For any efficient prover strategy (|𝜓init⟩ , 𝑈, 𝑉0, 𝑉1)7 such that

E
pk,sk

[⟨𝜓pk|𝑉 †
0 Πpk,sk,0𝑉0 |𝜓pk⟩] = 1− negl(𝜆),

it holds that Epk,sk[⟨𝜓pk|𝑉 †
1 Πpk,sk,1𝑉1 |𝜓pk⟩] = negl(𝜆).

Consider now an (𝑛, 𝜆)-parallel repeated version of the protocol, with a challenge string 𝑑 that is chosen
uniformly at random from the set ℋ𝒲𝑛,𝜆 of 𝑛-bit strings with Hamming weight exactly 𝜆. That is, the
protocol is repeated 𝑛 times in parallel, except that a Hadamard round is performed in exactly 𝜆 of the
𝑛 protocols. The following theorem shows that any efficient cheating prover in this multi-copy protocol
cannot make the verifier accept all test rounds and more than half of the Hadamard rounds.

Theorem 3.1. Let 𝑛(𝜆) ≥ 𝜆1+𝜖 for some constant 𝜖 > 0. Then in the (𝑛, 𝜆)-parallel repeated protocol, the probability
that the verifier accepts every test round (𝑖 such that 𝑑𝑖 = 0) and ≥ 𝜆/2 of the Hadamard rounds (𝑖 such that 𝑑𝑖 = 1)
is negl(𝜆).8

Proof. We can write any prover strategy in the multi-copy protocol as (|𝜓init⟩ , 𝑈, {𝑉𝑑}𝑑∈ℋ𝒲𝑛,𝜆
). For any

𝑑 ∈ ℋ𝒲𝑛,𝜆, let Πpk,sk,𝑑 be the projector that applies the single-copy verifier’s projector Πpk,sk,𝑑𝑖
to each

corresponding part of the prover’s final state, and then accepts if all the 𝑑𝑖 = 0 positions accept and if≥ 𝜆/2
of the 𝑑𝑖 = 1 positions accept. Then define Π𝑉𝑑

pk,sk,𝑑 := 𝑉 †
𝑑 Πpk,sk,𝑑𝑉𝑑.

Now we state the following lemma, which is proven below.

Lemma 3.2. For any 𝑑1, 𝑑2 ∈ ℋ𝒲𝑛,𝜆 with Hamming distance at least 𝜆+ 1, it holds that

E
pk,sk

[︁
⟨𝜓pk|Π

𝑉𝑑2

pk,sk,𝑑2
Π

𝑉𝑑1

pk,sk,𝑑1
+ Π

𝑉𝑑1

pk,sk,𝑑1
Π

𝑉𝑑2

pk,sk,𝑑2
|𝜓pk⟩

]︁
= negl(𝜆).

6Note that, since 𝑉𝑐 must be classically controlled on Y, we can indeed consider Y to measured after applying 𝑉𝑐 rather than before.
7By efficient, we mean that 𝑈, 𝑉0, 𝑉1 are unitaries that can be implemented in quantum polynomial-time, while |𝜓init⟩ is any

(potentially inefficiently preparable) state on a polynomial number of registers.
8In fact, it is straightforward to adjust the proof to show that for any constant 𝑐, the verifier will only accept all test rounds and at

least 𝜆/𝑐 Hadamard rounds with negl(𝜆) probability.

12

Given this lemma we can complete the proof of Theorem 3.1. Let 𝐷far be the set of pairs of strings
{𝑑1, 𝑑2} ∈ (ℋ𝒲𝑛,𝜆)2 with Hamming distance at least 𝜆 + 1, and let 𝐷close be the set of pairs of strings
{𝑑1, 𝑑2} ∈ (ℋ𝒲𝑛,𝜆)2 with Hamming distance at most 𝜆. The success probability of the prover can be
written as follows. Recall that |𝜓pk⟩ is defined to be the prover’s state that results from applying the unitary
𝑈 to its initial state |𝜓init⟩ and the public key pk sampled by the verifier.

1(︀
𝑛
𝜆

)︀ E
pk,sk

⎡⎣⟨𝜓pk|
∑︁

𝑑∈ℋ𝒲𝑛,𝜆

Π𝑉𝑑

pk,sk,𝑑 |𝜓pk⟩

⎤⎦

≤ 1(︀
𝑛
𝜆

)︀ E
pk,sk

⎡⎢⎢⎣
⎛⎜⎝⟨𝜓pk|

⎛⎝ ∑︁
𝑑∈ℋ𝒲𝑛,𝜆

Π𝑉𝑑

pk,sk,𝑑

⎞⎠2

|𝜓pk⟩

⎞⎟⎠
1/2
⎤⎥⎥⎦

≤ 1(︀
𝑛
𝜆

)︀ E
pk,sk

⎡⎢⎣
⎛⎝ ∑︁

𝑑∈ℋ𝒲𝑛,𝜆

⟨𝜓pk|Π𝑉𝑑

pk,sk,𝑑 |𝜓pk⟩

⎞⎠1/2
⎤⎥⎦

+
1(︀
𝑛
𝜆

)︀ E
pk,sk

⎡⎢⎣
⎛⎝ ∑︁

{𝑑1,𝑑2}∈(ℋ𝒲𝑛,𝜆)2

⟨𝜓pk|Π
𝑉𝑑2

pk,sk,𝑑2
Π

𝑉𝑑1

pk,sk,𝑑1
+ Π

𝑉𝑑1

pk,sk,𝑑1
Π

𝑉𝑑2

pk,sk,𝑑2
|𝜓pk⟩

⎞⎠1/2
⎤⎥⎦

≤ 1(︀
𝑛
𝜆

)︀1/2 +
1(︀
𝑛
𝜆

)︀
⎛⎝ ∑︁

{𝑑1,𝑑2}∈(ℋ𝒲𝑛,𝜆)2

E
pk,sk

[︁
⟨𝜓pk|Π

𝑉𝑑2

pk,sk,𝑑2
Π

𝑉𝑑1

pk,sk,𝑑1
+ Π

𝑉𝑑1

pk,sk,𝑑1
Π

𝑉𝑑2

pk,sk,𝑑2
|𝜓pk⟩

]︁⎞⎠1/2

≤negl(𝜆) +
1(︀
𝑛
𝜆

)︀
⎛⎝ ∑︁

{𝑑1,𝑑2}∈𝐷far

negl(𝜆)

⎞⎠1/2

+
1(︀
𝑛
𝜆

)︀
⎛⎝ ∑︁

{𝑑1,𝑑2}∈𝐷close

E
pk,sk

[︁
⟨𝜓pk|Π

𝑉𝑑2

pk,sk,𝑑2
Π

𝑉𝑑1

pk,sk,𝑑1
+ Π

𝑉𝑑1

pk,sk,𝑑1
Π

𝑉𝑑2

pk,sk,𝑑2
|𝜓pk⟩

]︁⎞⎠1/2

≤negl(𝜆) +
1(︀
𝑛
𝜆

)︀ (2|𝐷close|)1/2 ,

where the first inequality follows because |𝜓pk⟩ ⟨𝜓pk| ⪯ I, the second inequality follows because each
projector is idempotent, the third inequality uses Jensen’s inequality, and the fourth inequality follows
from Lemma 3.2. Now we bound the size of 𝐷close. Observe that for each 𝑑 ∈ ℋ𝒲𝑛,𝜆, one can count the
number of 𝑑′ ∈ ℋ𝒲𝑛,𝜆 at Hamming distance at most 𝜆 from 𝑑 by flipping any 𝑖 of the 0 positions in 𝑑 to 1
and any 𝑖 of the 1 positions in 𝑑 to 0, for each 𝑖 ∈ [𝜆/2]. This means that

|𝐷close| <
(︂
𝑛

𝜆

)︂ 𝜆/2∑︁
𝑖=1

(︂
𝑛− 𝜆
𝑖

)︂(︂
𝜆

𝑖

)︂
.

Thus, the above expression can be bounded by

negl(𝜆) +

(︃
2
∑︀𝜆/2

𝑖=1

(︀
𝑛−𝜆
𝑖

)︀(︀
𝜆
𝑖

)︀(︀
𝑛
𝜆

)︀)︃1/2

≤ negl(𝜆) +

(︃
2𝜆+1

∑︀𝜆/2
𝑖=1

(︀
𝑛−𝜆
𝑖

)︀(︀
𝑛
𝜆

)︀)︃1/2

negl(𝜆) +

(︃
𝜆2𝜆

(︀
𝑛−𝜆
𝜆/2

)︀(︀
𝑛
𝜆

)︀)︃1/2

≤ negl(𝜆) +

(︃
𝜆2𝜆

(︂
𝜆

𝑛

)︂𝜆/2
)︃1/2

= negl(𝜆),

13

for 𝑛 ≥ 𝜆1+𝜖.

Now we prove Lemma 3.2.

Proof. (of Lemma 3.2) This proof follows the outline of [ACGH20, Lemma 4.2], with adjustments to handle
the fact that the multi-copy verifier accepts if some large enough subset of the Hadamard round positions
accept (rather than all). Thus the lemma is only true for two projectors that correspond to challenges with
large Hamming distance.

First, since for any quantum state |𝜓⟩ and two projectors Π1,Π2,

⟨𝜓|Π2Π1 + Π1Π2 |𝜓⟩ ≤ 2| ⟨𝜓|Π2Π1 |𝜓⟩ | ≤ 2 ⟨𝜓|Π2Π1Π2 |𝜓⟩1/2 ,

it holds that (see also the end of the proof of [ACGH20, Lemma 4.2])

E
pk,sk

[︁
⟨𝜓pk|Π

𝑉𝑑2

pk,sk,𝑑2
Π

𝑉𝑑1

pk,sk,𝑑1
+ Π

𝑉𝑑1

pk,sk,𝑑1
Π

𝑉𝑑2

pk,sk,𝑑2
|𝜓pk⟩

]︁
≤ 2 E

pk,sk

[︁
⟨𝜓pk|Π

𝑉𝑑2

pk,sk,𝑑2
Π

𝑉𝑑1

pk,sk,𝑑1
Π

𝑉𝑑2

pk,sk,𝑑2
|𝜓pk⟩

]︁1/2
.

So, it suffices to show that

E
pk,sk

[︁
⟨𝜓pk|Π

𝑉𝑑2

pk,sk,𝑑2
Π

𝑉𝑑1

pk,sk,𝑑1
Π

𝑉𝑑2

pk,sk,𝑑2
|𝜓pk⟩

]︁
= negl(𝜆).

For a contradiction, suppose there exists a polynomial 𝑝(·) such that the infinitely many 𝜆,

E
pk,sk

[︁
⟨𝜓pk|Π

𝑉𝑑2

pk,sk,𝑑2
Π

𝑉𝑑1

pk,sk,𝑑1
Π

𝑉𝑑2

pk,sk,𝑑2
|𝜓pk⟩

]︁
≥ 1/𝑝(𝜆).

Consider any such 𝜆 and assume for simplicity that 𝜆 is even. Note that since 𝑑1 and 𝑑2 each have
Hamming weight 𝜆 and are at Hamming distance at least 𝜆+ 1 from each other, there exists at most 𝜆/2− 1
indices 𝑖 such that 𝑑1,𝑖 = 𝑑2,𝑖 = 1. Let 𝑆 be the set of at least 𝜆/2 + 1 indices 𝑖 such that 𝑑1,𝑖 = 1 and 𝑑2,𝑖 = 0.
Define

Π
(𝑖)
pk,sk := I⊗ · · · ⊗Πpk,sk,1 ⊗ · · · ⊗ I,

where the Πpk,sk,1 is applied on the 𝑖’th part of the state. This corresponds to the verifier’s projector on the
𝑖’th single-copy state in the case of a Hadamard round. Now Π

𝑉𝑑1

pk,sk,𝑑1
can be expressed as applying 𝑉𝑑1

,

checking that at least 𝜆/2 + 1 of the Π
(𝑖)
pk,sk projectors accept for 𝑖 such that 𝑑1,𝑖 = 1 (as well as checking that

all test rounds accept), and applying 𝑉 †
𝑑1

. Since |𝑆| ≥ 𝜆/2 + 1, it follows that

E
pk,sk

[︁
⟨𝜓pk|Π

𝑉𝑑2

pk,sk,𝑑2
Π

𝑉𝑑1

pk,sk,𝑑1
Π

𝑉𝑑2

pk,sk,𝑑2
|𝜓pk⟩

]︁
≤ E

pk,sk

[︃
⟨𝜓pk|Π

𝑉𝑑2

pk,sk,𝑑2
𝑉 †
𝑑1

(︃
I−

∏︁
𝑖∈𝑆

(︁
I−Π

(𝑖)
pk,sk

)︁)︃
𝑉𝑑1

Π
𝑉𝑑2

pk,sk,𝑑2
|𝜓pk⟩

]︃
≤
∑︁
𝑖∈𝑆

E
pk,sk

[︁
⟨𝜓pk|Π

𝑉𝑑2

pk,sk,𝑑2
𝑉 †
𝑑1

Π
(𝑖)
pk,sk𝑉𝑑1Π

𝑉𝑑2

pk,sk,𝑑2
|𝜓pk⟩

]︁
,

where the second inequality is a union bound, using the fact that the Π
(𝑖)
pk,sk commute. Thus, there must

exist an 𝑖 ∈ 𝑆 and a polynomial 𝑞(·) such that for infinitely many 𝜆,

E
pk,sk

[︁
⟨𝜓pk|Π

𝑉𝑑2

pk,sk,𝑑2
𝑉 †
𝑑1

Π
(𝑖)
pk,sk𝑉𝑑1

Π
𝑉𝑑2

pk,sk,𝑑2
|𝜓pk⟩

]︁
≥ 1/𝑞(𝜆).

At this point, we have essentially established that the prover must be passing both the test round and
the Hadamard round on the 𝑖’th index with noticeable probability. To complete the proof, we show that
such a prover can be used to contradict condition 2 on the CVQC protocol. This follows the proof given in
[ACGH20], so we defer the remainder of this proof to Appendix B.

14

4 Composable Blind CVQC

In this section, we show how to construct (constant-round) composable blind classical verification of quan-
tum computation. The main property we need to achieve composability (other than standard blindness and
soundness) is that the prover cannot obtain information about the verifier’s input even if it gets to observe
whether or not the verifier accepted its proof.

In fact, we will first construct a more general notion that we call CVQC for quantum-classical circuits,
which allows for delegation of pseudo-deterministic quantum-classical circuits𝐶(𝑄(·)), where the verifier’s
decision to accept or reject does not depend on the description of 𝐶. We will eventually make use of such
a protocol in multiple ways, using the classical circuit 𝐶 to compute various functionalities, such as QFHE
decryption or the NISC receiver’s output algorithm.

In Section 4.1, we give a formal definition of this primitive. In Section 4.2, we use [CLLW20]’s sampBQP
protocol to show how to delegate quantum-classical circuits with a quantum verifier that only performs
single qubit measurements. In Section 4.3, we compile the protocol with [Mah18b]’s measurement protocol
to make the verifier classical, and then apply the parallel repetition theorem from last section to obtain neg-
ligible soundness error, satisfying our definition in Section 4.1. In Section 4.4, we formally define the notion
of composable blind CVQC, and show how to construct it from CVQC for quantum-classical circuits plus
quantum fully-homomorphic encryption. Finally, in Section 4.5, we give an alternative CVQC protocol that
satisfies various extra properties that will be useful later for obtaining round-optimized secure computation
protocols.

4.1 CVQC for quantum-classical circuits

Below we define CVQC for quantum-classical circuits. We crucially split the final verification into two
parts, requiring that the classical part of the circuit is not needed to determine whether or not the verifier
will accept the prover’s proof.

We require the protocol to satisfy the standard completeness and soundness properties, along with
semi-malicious correctness, which will be useful when building secure computation from this primitive. This
property guarantees that even if the verifier’s initial keys are computed honestly, but with a malicious
choice of random coins, the output of the honest verification procedure applied to an honest proof must
still be correct (if it doesn’t abort). Below we present the two-message syntax, but such a definition easily
extends to more general interactive protocols.

Definition 4.1 (CVQC for Quantum-Classical Circuits). A two-message CVQC protocol for a quantum-classical
pseudo-deterministic circuit 𝐷(·) = 𝐶(𝑄(·)) has the following syntax.

• 𝒱setup
QC (1𝜆, 𝑄, 𝑥) → (pk, sk): the verifier takes the security parameter 1𝜆, a quantum circuit 𝑄, and a classical

input 𝑥, and outputs a public key secret key pair (pk, sk).

• 𝒫QC(pk, 𝑄, 𝑥)→ 𝜋: the prover takes the public key pk, a quantum circuit𝑄, and classical input 𝑥, and outputs
a classical proof 𝜋.

• 𝒱QC(𝑄,𝐶, 𝑥, pk, sk, 𝜋)→ (𝑣, 𝑧): the final verification circuit is split up into the following two parts.

– 𝒱vrfy
QC (𝑄, 𝑥, pk, sk, 𝜋) → (𝑣, ̃︀𝑧): the first part of the final verification circuit takes the quantum circuit 𝑄,

the input 𝑥, public key secret key pair (pk, sk), and proof 𝜋, and outputs (𝑣, ̃︀𝑧), where 𝑣 ∈ {acc, rej}, and̃︀𝑧 ∈ {0, 1}*. If 𝑣 = acc, then the second part of the verification is invoked on ̃︀𝑧 to produce 𝑧, and the final
output is (acc, 𝑧). Otherwise, the final output is (rej,⊥).

– 𝒱out
QC (𝐶, ̃︀𝑧)→ 𝑧: the second part of the verification takes as input a classical circuit 𝐶 and a string ̃︀𝑧, and

outputs a string 𝑧.

Crucially, both the prover and the first part of the final verification circuit do not depend on the classical circuit 𝐶.
This protocol should satisfy the following standard completeness and soundness properties.

15

• Completeness: For any quantum-classical circuit𝐷(·) = 𝐶(𝑄(·)), input 𝑥, and output 𝑧 such that Pr[𝐷(𝑥) =
𝑧] = 1− negl(𝜆), it holds that

Pr

⎡⎣𝑣 = acc ∧ 𝑧′ = 𝑧 :
(pk, sk)← 𝒱setup

QC (1𝜆, 𝑄, 𝑥)
𝜋 ← 𝒫QC(pk, 𝑄, 𝑥)

(𝑣, 𝑧′)← 𝒱QC(𝑄,𝐶, 𝑥, pk, sk, 𝜋)

⎤⎦ = 1− negl(𝜆).

• Soundness: For any quantum-classical circuit 𝐷(·) = 𝐶(𝑄(·)), input 𝑥, output 𝑧 such that Pr[𝐷(𝑥) = 𝑧] =
1− negl(𝜆), and cheating prover 𝒫*

QC with advice |𝜓⟩, it holds that

Pr

⎡⎣𝑣 = acc ∧ 𝑧′ ̸= 𝑧 :
(pk, sk)← 𝒱setup

QC (1𝜆, 𝑄, 𝑥)
𝜋 ← 𝒫*

QC(|𝜓⟩ , pk)
(𝑣, 𝑧′)← 𝒱QC(𝑄,𝐶, 𝑥, pk, sk, 𝜋)

⎤⎦ = negl(𝜆).

In addition, we may want the protocol to satisfy the following property.

• Semi-malicious correctness: For any quantum-classical circuit 𝐷(·) = 𝐶(𝑄(·)), input 𝑥, output 𝑧 such that
Pr[𝐷(𝑥) = 𝑧] = 1− negl(𝜆), and (pk, sk) ∈ 𝒱setup

QC (1𝜆, 𝑄, 𝑥), it holds that

Pr

[︂
𝑣 = acc ∧ 𝑧′ ̸= 𝑧 :

𝜋 ← 𝒫QC(pk, 𝑄, 𝑥)
(𝑣, 𝑧′)← 𝒱QC(𝑄,𝐶, 𝑥, pk, sk, 𝜋)

]︂
= negl(𝜆).

4.2 Delegation of quantum-classical circuits with quantum verifier

Quantum sampling protocol. Recently, [CLLW20] constructed a one-message protocol ΠSamp = (𝒫Samp,𝒱Samp)
for delegating the computation of a quantum circuit 𝑄 on classical input 𝑥. The soundness of their protocol
stipulates that if the verifier accepts an output 𝑧, then 𝑧 is 𝜖-close to a sample from the classical distribution
induced by running 𝑄 on 𝑥 and then measuring the output.

• 𝒫Samp(1
𝜆, 11/𝜖, 𝑄, 𝑥)→ |𝜓⟩: the prover takes the security parameter 1𝜆, the accuracy parameter 11/𝜖, a

quantum circuit 𝑄, and a classical input 𝑥, and samples a quantum proof |𝜓⟩.

• 𝒱Samp(1
𝜆, 11/𝜖, 𝑄, 𝑥, |𝜓⟩) → (𝑣, 𝑧): the verifier samples a binary string ℎ independently of |𝜓⟩ (where

each position indicates a computational basis or Hadamard basis measurement), samples 𝑒←𝑀𝑋𝑍(|𝜓⟩ , ℎ)
(see Definition 2.2), and applies a classical circuit 𝒱out(𝑄, 𝑥, ℎ, 𝑒) to obtain output (𝑣, 𝑧) where 𝑣 ∈
{acc, rej} and 𝑧 ∈ {0, 1}*.

[CLLW20] show that the protocol satisfies the following.

• Completeness: For any 𝜖(𝜆) = 1/poly(𝜆) and quantum circuit 𝑄 with input 𝑥,

Pr[(rej,⊥)← 𝒱Samp(1
𝜆, 11/𝜖, 𝑄, 𝑥, |𝜓⟩) : |𝜓⟩ ← 𝒫Samp(1

𝜆, 11/𝜖, 𝑄, 𝑥)] = negl(𝜆).

• Soundness: For any circuit 𝑄, input 𝑥, cheating prover 𝒫*
Samp, 𝜖(𝜆) = 1/poly(𝜆), and sufficiently large

𝜆 ∈ N,

– let (𝑣, 𝑧)← 𝒱Samp(1
𝜆, 11/𝜖, 𝑄, 𝑥,𝒫*

Samp(1
𝜆, 11/𝜖, 𝑄, 𝑥)),

– and define 𝑧ideal = ⊥ if 𝑣 = rej and 𝑧ideal ← 𝑄(𝑥) if 𝑣 = acc.

Then it holds that ‖(𝑣, 𝑧)− (𝑣, 𝑧ideal)‖1 ≤ 𝜖(𝜆).

16

Quantum-classical circuits. Now consider any pseudo-deterministic quantum circuit 𝐷 that can be split
into two parts 𝑄,𝐶, where 𝑄 is quantum and 𝐶 is classical. That is, 𝐷(𝑥) = 𝐶(𝑄(𝑥)), where 𝑄(𝑥) out-
puts a classical string ̂︀𝑧, and then 𝐶(̂︀𝑧) outputs 𝑧. Since 𝐷 is pseudo-deterministic, each input 𝑥 results in
some fixed 𝑧 with overwhelming probability. However, 𝑥 still may induce an arbitrary distribution over
intermediate values ̂︀𝑧.

We now show that parallel repetition of ΠSamp gives a one-message protocol for delegating computation
of 𝐷(𝑥) with negligible soundness, and where the prover’s algorithm depends only on 𝑄. In particular,
consider the following protocol ΠQVer = (𝒫QVer,𝒱QVer) for delegating the computation of 𝐷(·) = 𝐶(𝑄(·)).

• 𝒫QVer(1
𝜆, 𝑄, 𝑥) → |𝜓⟩ : the prover obtains a description of 𝑄 and an input x, sets 𝜖 = 1/4, and runs 𝜆

copies of 𝒫Samp(1
𝜆, 11/𝜖, 𝑄, 𝑥) to produce a proof |𝜓⟩ := (|𝜓1⟩ , . . . , |𝜓𝜆⟩).

• 𝒱QVer(𝑄,𝐶, 𝑥, |𝜓⟩)→ (𝑣, 𝑧) : we split this verifier into three parts (𝒱meas
QC ,𝒱 test

QC ,𝒱out
QC).

– 𝒱meas
QVer(𝑄, 𝑥, |𝜓⟩) samples ℎ𝑖 according to the distribution defined by 𝒱Samp and obtains 𝑒𝑖 ←
𝑀𝑋,𝑍(|𝜓𝑖⟩ , ℎ𝑖) for each 𝑖 ∈ [𝜆]. Set ℎ := (ℎ1, . . . , ℎ𝜆) and 𝑒 := (𝑒1, . . . , 𝑒𝜆).

– 𝒱 test
QVer(𝑄, 𝑥, ℎ, 𝑒) applies 𝒱out(𝑄, 𝑥, ℎ𝑖, 𝑒𝑖) for each 𝑖 ∈ 𝜆 to obtain (𝑣𝑖, ̂︀𝑧𝑖). If any 𝑣𝑖 = rej, then

output (rej,⊥) (and do not proceed to 𝒱out
QVer), and otherwise set ̂︀𝑧 := (̂︀𝑧1, . . . , ̂︀𝑧𝜆) and continue.

– 𝒱out
QVer(𝐶, ̂︀𝑧) computes 𝑧𝑖 := 𝐶(̂︀𝑧𝑖) for each 𝑖 ∈ [𝜆], determines the most frequently occuring 𝑧 in
{𝑧𝑖}𝑖∈[𝜆], and outputs (acc, 𝑧).

Lemma 4.2. ΠQVer satisfies completeness and statistical soundness as defined in Definition 2.3 for delegating the
computation of a pseudo-deterministic circuit 𝐷(·) = 𝐶(𝑄(·)).

Proof. Fix an 𝑥 and let 𝑧 be such that 𝐶(𝑄(𝑥)) = 𝑧 with probability 1 − negl(𝜆). Consider the projector
𝑃 that corresponds to running the single-copy verifier 𝒱Samp on some part |𝜓𝑖⟩ of the prover’s proof and
accepting if the output is (acc, 𝑧′) for some 𝑧′ ̸= 𝑧. By the soundness of ΠSamp, this projector will accept with
probability at most 1/4 + negl(𝜆) on any prover state |𝜓𝑖⟩.

Note that soundness of ΠQVer is violated only if the following procedure accepts. Partition the prover’s
proof |𝜓⟩ into 𝜆 registers |𝜓1⟩ , . . . , |𝜓𝜆⟩, apply 𝑃 to each, and accept if at least 𝜆/2 of the projectors accept.
Even though |𝜓1⟩ , . . . , |𝜓𝜆⟩ may be entangled, it still holds that 𝑃 accepts on each |𝜓𝑖⟩ individually with
probability at most 1/4 + negl(𝜆), since the registers are disjoint. That is, conditioned on any sequence of
previous results of measuring |𝜓1⟩ , . . . , |𝜓𝑖⟩, applying 𝑃 to |𝜓𝑖+1⟩will accept with probability at most 1/4+
negl(𝜆). Thus, the distribution on number of acceptances is stochastically dominated by the distribution
arising from independent Bernoulli trials that each output 1 with probability 1/4 + negl(𝜆). Applying
Chernoff to this distribution, we see that the probability that at least 𝜆/2 projectors accept is negl(𝜆).

To show completeness, we know from the completeness of ΠSamp and a union bound that 𝒱QVer will
accept all parts |𝜓𝑖⟩ of the honest prover’s proof, except with negligible probability. Conditioned on this,
soundness of ΠSamp implies that for each 𝑖, the verifier will obtain 𝑧′ ̸= 𝑧 with probability at most 1/4 +
negl(𝜆), and so again by Chernoff, the verifier will output (acc, 𝑧) except with negligible probability.

4.3 Making the verifier classical

Measurement protocol. [Mah18b] constructed a four-message protocol Πmeas = (𝒫meas,𝒱meas) between a
quantum prover and a classical verifier, with the following syntax.

• 𝒱meas(1
𝜆, ℎ) → (pk, sk) : the verifier, on input a string of basis choices ℎ, samples a public key pk and

a secret key sk, and sends pk to the prover.

• 𝒫meas(pk, |𝜓⟩)→ (𝑦, |st⟩) : the prover generates a classical commitment 𝑦, which it sends to the verifier,
and a quantum internal state |st⟩.

17

• The verifier samples 𝑐 ← {0, 1} and sends 𝑐 to the prover, where 𝑐 = 0 indicates a test round, and
𝑐 = 1 indicates a Hadamard round.

• 𝒫meas(|st⟩ , 𝑐)→ 𝜋 : The prover generates a classical proof 𝜋 and sends it to the verifier.

• 𝒱meas(pk, sk, 𝑦, 𝑐, 𝜋)→ out : If 𝑐 = 0, the verifier computes some classical circuit 𝒱meas,𝑇 (pk, 𝑦, 𝜋)→ out,
where out ∈ {acc, rej}, and if 𝑐 = 1, the verifier computes some classical circuit 𝒱meas,𝐻(sk, 𝑦, 𝜋)→ out,
where out ∈ {0, 1}*.

This protocol satisfies the following property.

Lemma 4.3 ([Mah18b]). Let (𝒫*
meas, |𝜓init⟩) be any polynomial-size cheating prover for Πmeas, and suppose that

there exists an ℎ such that the probability that the verifier accepts if their basis choice was ℎ and 𝑐 = 0 is 1− negl(𝜆).
Then there exists a state 𝜌 such that for all ℎ, the verifier’s output if 𝑐 = 1 is computationally indistinguishable from
𝑀𝑋𝑍(𝜌, ℎ).

As observed in [ACGH20], a similar lemma follows by combining the claims [Mah18b, Claim 5.7] and
[Mah18b, Claim 7.3]. The lemma stated above is potentially stronger in that (i) it considers non-uniform
cheating provers with advice |𝜓init⟩, and (ii) in the premise, it is only required that 𝒫*

meas is accepted in the
test round with probability 1−negl(𝜆) for a single basis choice ℎ rather than all. However, it is easy to see that
(i) follows from the (standard) assumption that LWE is hard against non-uniform QPT adversaries. Next, (ii)
follows due to properties of the extended trapdoor claw-free function used in [Mah18b]’s protocol. Indeed,
[Mah18b] shows that for any two basis choices ℎ0, ℎ1, no QPT prover will be able to distinguish between
pk sampled by 𝒱(1𝜆, ℎ0) and pk sampled by 𝒱(1𝜆, ℎ1), assuming QLWE. Then since the circuit 𝒱meas,𝑇 does
not depend on sk, it follows that the probability that 𝒫*

meas is accepted in a test round is negligibly close for
all values of ℎ. Thus, if 𝒫*

meas passes the test round with 1 − negl(𝜆) probability for any ℎ, it will pass with
1− negl(𝜆) for all ℎ.

A single repetition. We now combine the measurement protocol with ΠQVer to obtain Πsingle, which is
a delegation protocol for 𝐷(·) = 𝐶(𝑄(·)) with a classical verifier and a non-trivial soundness property
(though not negligibly sound).

• 𝒱single(1𝜆, 𝑄, 𝑥) → (pk, sk) : the verifier samples ℎ according to the distribution defined by 𝒱QVer,
samples (pk, sk)← 𝒱meas(1

𝜆, ℎ), and sends (pk, 𝑄, 𝑥) to the prover.

• 𝒫single(pk, 𝑄, 𝑥)→ (𝑦, |st⟩) : the prover samples |𝜓⟩ ← 𝒫QVer(1
𝜆, 𝑄, 𝑥), computes (𝑦, |st⟩)← 𝒫meas(pk, |𝜓⟩),

and sends 𝑦 to the verifier.

• The verifer samples 𝑐← {0, 1} and sends 𝑐 to the prover.

• 𝒫single(|st⟩ , 𝑐)→ 𝜋 : the prover samples 𝜋 ← 𝒫meas(|st⟩ , 𝑐) and sends 𝜋 to the verifier.

• 𝒱single(𝑄,𝐶, 𝑥, pk, sk, 𝑦, 𝑐, 𝜋)→ (𝑣, 𝑧) : we split the verifier into two parts 𝒱vrfy
single and 𝒱out

single.

– 𝒱vrfy
single(𝑄, 𝑥, pk, sk, 𝑦, 𝑐, 𝜋) does the following. If 𝑐 = 0, compute out ← 𝒱meas,𝑇 (pk, 𝑦, 𝜋), where

out ∈ {acc, rej}, and output (out,⊥). If 𝑐 = 1, compute 𝑒← 𝒱meas,𝐻(sk, 𝑦, 𝜋) and run 𝒱 test
QVer(𝑄, 𝑥, ℎ, 𝑒)

to obtain either rej or ̂︀𝑧. In the first case, output (rej,⊥), and in the second case, continue.

– 𝒱out
single(𝐶, ̂︀𝑧) computes and outputs (acc, 𝑧) := 𝒱out

QVer(𝐶, ̂︀𝑧).

We show that this protocol satisfies the following.

Lemma 4.4. Let (𝒫*
single, |𝜓init⟩) be any polynomial-size cheating prover for Πsingle, and let 𝑄,𝐶, 𝑥, 𝑧 be such that

𝐶(𝑄(𝑥)) = 𝑧 with probability 1 − negl(𝜆). Suppose that the verifier outputs (acc,⊥) when 𝑐 = 0 with probability
1 − negl(𝜆). Then assuming QLWE, the probability that the verifier outputs (acc, 𝑧′) for 𝑧′ ̸= 𝑧 when 𝑐 = 1 is
negl(𝜆).

18

Proof. Fix 𝑄,𝐶, 𝑥, 𝑧. Consider the predicate 𝐹 that has 𝑄,𝐶, 𝑥, 𝑧 hard-coded, and on input basis choice
ℎ and measurement results 𝑒, checks whether 𝒱single outputs (acc, 𝑧′) for 𝑧′ ̸= 𝑧. That is, 𝐹 first runs
𝒱 test
QVer(𝑄, 𝑥, ℎ, 𝑒). If this procedure accepted and output ̂︀𝑧, 𝐹 computes (acc, 𝑧′) := 𝒱out

QVer(𝐶, ̂︀𝑧) and out-
puts 1 if 𝑧′ ̸= 𝑧. Let 𝑝(ℎ) be the probability that basis choice ℎ is sampled by 𝒱single. Then we want to show
that ∑︁

ℎ

𝑝(ℎ)𝐹 (ℎ, 𝑒) = negl(𝜆),

where 𝑒 is obtained by running the protocol with basis choice ℎ and 𝑐 = 1. Now since 𝒫*
single is accepted

with overwhelming probability in the test round, it satisfies the premise in Lemma 4.3. So by Lemma 4.3,
the above expression is negligibly close to∑︁

ℎ

𝑝(ℎ)𝐹 (ℎ,𝑀𝑋,𝑍(𝜌, ℎ)),

since 𝐹 is an efficient function outputting a single bit. Finally, this expression is negligible due to the
soundness of the underlying information-theoretic protocol given by Lemma 4.2.

Parallel repetition. Now we repeat the above protocol in parallel to obtain a CVQC protocol ΠQC that
satisfies Definition 4.1.

• 𝒱setup
QC (1𝜆, 𝑄, 𝑥) → (pk, sk) : set 𝑛 ≥ 𝜆1+𝜖 and for each 𝑖 ∈ [𝑛], sample (pk𝑖, sk𝑖) ← 𝒱single(1𝜆, 𝑄, 𝑥). Set

pk := (pk1, . . . , pk𝑛) and sk := (sk1, . . . , sk𝑛), and send (pk, 𝑄, 𝑥) to the prover.

• 𝒫QC(pk, 𝑄, 𝑥) → (𝑦, |st⟩) : for each 𝑖 ∈ [𝑛], the prover samples (𝑦𝑖, |st𝑖⟩) ← 𝒫single(pk𝑖, 𝑄, 𝑥), sets
𝑦 := (𝑦1, . . . , 𝑦𝑛) and |st⟩ := (|st1⟩ , . . . , |st𝑛⟩), and sends 𝑦 to the verifier.

• The verifier samples 𝑑← ℋ𝒲𝑛,𝜆 and sends 𝑑 to the prover.

• 𝒫QC(|st⟩ , 𝑑)→ 𝜋 : for each 𝑖 ∈ [𝑛], the prover samples 𝜋𝑖 ← 𝒫single(|st𝑖⟩ , 𝑑𝑖) and sends 𝜋 := (𝜋1, . . . , 𝜋𝑛)
to the verifier.

• 𝒱QC(𝑄,𝐶, 𝑥, pk, sk, 𝑦, 𝑑, 𝜋)→ out : we split the verifier into two parts 𝒱vrfy
QC and 𝒱out

QC .

– 𝒱vrfy
QC (𝑄, 𝑥, pk, sk, 𝑦, 𝑑, 𝜋) runs 𝒱vrfy

single(𝑄, 𝑥, pk𝑖, sk𝑖, 𝑦𝑖, 𝑑𝑖, 𝜋𝑖) for each 𝑖 ∈ [𝑛]. If any outputs (rej,⊥)
then output (rej,⊥). Otherwise, obtain strings {̂︀𝑧𝑖}𝑖:𝑑𝑖=1.

– 𝒱out
QC (𝐶, {̂︀𝑧𝑖}𝑖:𝑑𝑖=1) computes the 𝜆 outputs (acc, 𝑧𝑖) := 𝒱out

single(𝐶, ̂︀𝑧𝑖). Then determine the most
frequently occurring 𝑧 in the resulting set and output (acc, 𝑧).

Lemma 4.5. Assuming QLWE, ΠQC satisfies Definition 4.1

Proof. First, we show soundness. Fix 𝐶,𝑄, 𝑥, 𝑧 such that 𝐶(𝑄(𝑥)) = 𝑧 with probability 1 − negl(𝜆). Define
a Hadamard-round verification projector for Πsingle that checks whether 𝒱single outputs (acc, 𝑧′) for 𝑧′ ̸= 𝑧.
Lemma 4.4 and Theorem 3.1 imply that, conditioned on all test rounds (𝑖 such that 𝑑𝑖 = 0) accepting in ΠQC,
this verifier only accepts at most ⌈𝜆/2⌉−1 of the indices for which 𝑑𝑖 = 1, except with negligible probability.
Thus, conditioned on 𝒱vrfy

QC accepting, a strict majority of the Hadamard rounds will result in the outcome 𝑧,
except with negligible probability.

It remains to argue semi-malicious correctness. We observe that the strings {̂︀𝑧𝑖}𝑖:𝑑𝑖=1 are obtained via
computational basis measurements (which follows from the description of [CLLW20]’s sampBQP protocol).
Since we are considering an honest prover, it suffices to argue that computational basis measurements
are always performed correctly under (pk, sk). The parts of (pk, sk) that are used for computational basis
measurements are injective trapdoor keys, and the measurements will be correct if the keys are indeed
injective. The sampling procedure for injective keys given in [Mah18b, Section 9.2] can be made to produce
an injective key with probability 1 over its random coins, by outputting a fixed injective key in the case that
the initial sampling failed to produce an injective key.

19

4.4 Four-message CVQC

In this section, we use CVQC for quantum-classical circuits in combination with quantum fully-homomorphic
encryption to construct a four-message blind CVQC protocol that enjoys composability. That is, the pro-
tocol that we construct satisfies an ideal functionality that either delivers the correct output 𝐷(𝑥) or a ⊥
symbol to the verifier, depending on a bit 𝑏 input by the prover. Security is argued in the simulation sense
according to Definition 2.6, which in particular implies that the prover’s bit 𝑏 cannot depend on the veri-
fier’s input 𝑥. We first give our definition of composable blind CVQC, which is essentially the same as the
notion of blind and verifiable delegated quantum computation studied by [DFPR14], but adapted to the classical
verifier setting.

Definition 4.6 (Composable Blind CVQC). Consider the two-party functionality ℱ𝐷 between classical verifier
and quantum prover defined by a psuedo-determistic circuit 𝐷(·). It takes an input string 𝑥 from the verifier and an
input bit 𝑏 from the prover (which is always 0 if the prover is honest). If 𝑏 = 0, it delivers 𝐷(𝑥) to the verifier (and
no output to the prover), and if 𝑏 = 1, it delivers ⊥ to the verifier (and no output to the prover). Protocol Π is a
composable blind CVQC protocol if for any pseudo-deterministic𝐷, it satisfies Definition 2.6 for functionality ℱ𝐷.

To construct such a protocol, we use the following ingredients.

• A four-message CVQC protocol for quantum-classical circuits ΠQC (Definition 4.1).

• Quantum fully-homomorphic encryption with classical keys (QFHE.Gen,QFHE.EncQFHE.Eval,QFHE.Dec)
(Definition 2.4).

The construction is given in Protocol 1.

Theorem 4.7. Assuming QLWE, Protocol 1 is a composable blind CVQC protocol satisfying definition Definition 4.6.

Proof. First, we argue that in case neither party is corrupted, the verifier’s output is correct with overwhelm-
ing probability. This follows from the completeness of ΠQC, since for any psuedo-deterministic circuit 𝐷,
input 𝑥, (pkQFHE, skQFHE) ∈ QFHE.Gen(1𝜆), and ct ∈ QFHE.Enc(pkQFHE, 𝑥), it holds that QFHE.Dec(skQFHE,
QFHE.Eval(pkQFHE, 𝐷, ·)) applied to ct outputs 𝐷(𝑥) with overwhelming probability, so the computation
performed by ΠQC is pseudo-deterministic. Next, note that simulation in case the verifier is corrupted is
trivial, since the honest prover has no input or output.

It remains to argue security when the prover is corrupted, for which we define the following simulator.
The simulator samples a QFHE encryption of 0, and then interacts with the prover as the honest verifier
delegating the circuit QFHE.Eval(𝐷, ·). At the end of the protocol, the simulator first runs 𝒱vrfy

QC . If this
results in rej, send 𝑏 = 1 to the ideal functionality, and otherwise send 𝑏 = 0 to the ideal functionality. Now
consider the following sequence of hybrids.

• ℋ0 : This is the real interaction between honest verifier and malicious prover, resulting in a verifier
output in {0, 1}* ∪ {⊥} and a final prover state.

• ℋ1 : In this hybrid, we change how the final verifier output is computed. In particular, in the case
that 𝒱vrfy

QC does not reject, compute the output 𝑧 = 𝐷(𝑥). This is computationally indistinguishable
from ℋ0 due to the soundness of ΠQC, which guarantees that, conditioned on the verifier accepting,
the output will be equal to 𝐷(𝑥) except with negligble probability.

• ℋ2 : In this hybrid, we change how the verifier’s first message is computed. In particular, set ct to be
a QFHE encryption of 0 rather than 𝑥. This is computationally indistinguishable from ℋ1 due to the
semantic security of QFHE, since the QFHE secret key is no longer needed to compute the output of
the experiment.

• ℋ3 : In this hybrid, if 𝒱vrfy
QC rejects, then send 𝑏 = 1 to the ideal functionality, and otherwise send

𝑏 = 0. This is identical to ℋ2, since we have just moved the computation of 𝑧 = 𝐷(𝑥) to the ideal
functionality. This is the simulator, completing the proof.

20

Protocol 1: Composable Blind CVQC

• 𝒱setup
blind (1𝜆, 𝐷, 𝑥) : the verifier samples

(pkQFHE, skQFHE)← QFHE.Gen(1𝜆), ct← QFHE.Enc(pkQFHE, 𝑥),

then it samples (pkeval, skeval)← 𝒱
setup
QC (1𝜆,QFHE.Eval(𝐷, ·), ct), sets

pk := (pkeval,QFHE.Eval(𝐷, ·), ct), sk := (skeval, skQFHE),

and sends pk to the prover.

• 𝒫blind(pk) : the prover samples (𝑦, |st⟩) ← 𝒫QC(pkeval,QFHE.Eval(𝐷, ·), ct), and sends 𝑦 to the
verifier.

• The verifier samples 𝑑 according to ΠQC.

• 𝒫blind(|st⟩ , 𝑑): the prover samples 𝜋 ← 𝒫QC(|st⟩ , 𝑑), and sends 𝜋 to the verifier.

• 𝒱blind(pk, sk, 𝑦, 𝑑, 𝜋) : the verifier first runs

𝒱vrfy
QC (QFHE.Eval(𝐷, ·), ct, pkeval, skeval, 𝑦, 𝑑, 𝜋)

to obtain either rej or ̃︀𝑧. In the first case, it outputs ⊥. In the second case, it computes

𝑧 := 𝒱out
QC (QFHE.Dec(skQFHE, ·), ̃︀𝑧),

and outputs 𝑧.

Figure 1: A four-message composable blind CVQC from QLWE.

4.5 Two-message CVQC with extra properties

As we show in Section 5.1, it is straightforward to compose the above CVQC protocol with multi-party
computation for classical circuits to obtain multi-party quantum computation with classical communica-
tion. However, we would also like to optimize the round complexity of the resulting MPQC. Towards this
goal, we define and construct an alternative CVQC protocol with various extra properties that will be useful
in constructing round-efficient protocols in Section 5.2 and Section 5.3.

Definition 4.8 (Two-message semi-malicious CVQC with malicious blindness and distributed setup). A
two-message semi-malicious CVQC with malicious blindness and distributed setup for 𝑛-input pseudo-deterministic
circuit 𝐷(·, . . . , ·) has the following syntax.

• Gen(1𝜆)→ crs : the generation algorithm outputs a common random string crs.

• 𝒱params
blind (1𝜆, 𝐷)→ (pp, sp): the params part of the setup takes the security parameter 1𝜆 and a quantum circuit
𝐷, and outputs public parameters pp and secret parameters sp.

• 𝒱 inp
blind(1

𝜆, crs, 𝑥𝑖)→ (ct𝑖, sk𝑖): for each 𝑖 ∈ [𝑛], the inp part of the setup takes the security parameter 1𝜆, the crs
crs, and an input 𝑥𝑖, and outputs a ciphertext ct𝑖 and secret key sk𝑖.

• 𝒫blind(pp, ct1, . . . , ct𝑛)→ 𝜋: the prover takes as input the public parameters pp and 𝑛 ciphertexts ct1, . . . , ct𝑛,
and outputs a proof 𝜋.

21

• 𝒱blind(pp, ct1, . . . , ct𝑛, sp, sk1, . . . , sk𝑛, 𝜋) → (𝑣, 𝑧): the verifier takes as input the public parameters pp, 𝑛
ciphertexts ct1, . . . , ct𝑛, the secret parameters sp, 𝑛 secret keys sk1, . . . , sk𝑛, and a proof 𝜋, and outputs 𝑣 ∈
{acc, rej} and 𝑧 ∈ {0, 1}*.

We require that the protocol satisfies the standard notion of completeness, along with semi-malicious versions of
correctness, soundness, and malicious blindness.

• Completeness: For any 𝑛-input circuit𝐷(·, . . . , ·), inputs 𝑥1, . . . , 𝑥𝑛, and output 𝑧 such that Pr[𝐷(𝑥1, . . . , 𝑥𝑛) =
𝑧] = 1− negl(𝜆), it holds that

Pr

⎡⎢⎢⎢⎢⎣𝑣 = acc ∧ 𝑧′ = 𝑧 :

crs← Gen(1𝜆)
(pp, sp)← 𝒱params

blind (1𝜆, 𝐷)

∀𝑖 ∈ [𝑛], (ct𝑖, sk𝑖)← 𝒱 inp
blind(1

𝜆, crs, 𝑥𝑖)
𝜋 ← 𝒫blind(pp, ct1, . . . , ct𝑛)

(𝑣, 𝑧′)← 𝒱blind(pp, ct1, . . . , ct𝑛, sp, sk1, . . . , sk𝑛, 𝜋)

⎤⎥⎥⎥⎥⎦ = 1− negl(𝜆).

• Semi-malicious correctness: For any 𝑛-input circuit 𝐷(·, . . . , ·), inputs 𝑥1, . . . , 𝑥𝑛, output 𝑧 such that
Pr[𝐷(𝑥1, . . . , 𝑥𝑛) = 𝑧] = 1−negl(𝜆), crs← Gen(1𝜆), (pp, sp) ∈ 𝒱params

blind (1𝜆, 𝐷), and (ct𝑖, sk𝑖) ∈ 𝒱 inp
blind(1

𝜆, crs, 𝑥𝑖)
for all 𝑖 ∈ [𝑛], it holds that

Pr

[︂
𝑣 = acc ∧ 𝑧′ ̸= 𝑧 :

𝜋 ← 𝒫blind(pp, ct1, . . . , ct𝑛)
(𝑣, 𝑧′)← 𝒱blind(pp, ct1, . . . , ct𝑛, sp, sk1, . . . , sk𝑛, 𝜋)

]︂
= negl(𝜆).

• Semi-malicious soundness: For any 𝑛-input circuit 𝐷(·, . . . , ·), inputs 𝑥1, . . . , 𝑥𝑛, output 𝑧 such that
Pr[𝐷(𝑥1, . . . , 𝑥𝑛) = 𝑧] = 1 − negl(𝜆), crs ← Gen(1𝜆), (ct𝑖, sk𝑖) ∈ 𝒱 inp

blind(1
𝜆, crs, 𝑥𝑖) for each 𝑖 ∈ [𝑛],

and cheating prover 𝒫*
blind with advice |𝜓⟩, it holds that

Pr

⎡⎣𝑣 = acc ∧ 𝑧′ ̸= 𝑧 :
(pp, sp)← 𝒱params

blind (1𝜆, 𝐷)
𝜋 ← 𝒫*

blind(|𝜓⟩ , pp, ct1, . . . , ct𝑛)
(𝑣, 𝑧′)← 𝒱blind(pp, ct1, . . . , ct𝑛, sp, sk1, . . . , sk𝑛, 𝜋)

⎤⎦ = negl(𝜆).

• Malicious blindness: For any 𝑛-input circuit 𝐷(·, . . . , ·), index 𝑖* ∈ [𝑛], inputs {𝑥𝑖}𝑖 ̸=𝑖* , crs ← Gen(1𝜆),
(pp, sp) ∈ 𝒱params

blind (1𝜆, 𝐷), (ct𝑖, sk𝑖) ∈ 𝒱 inp
blind(1

𝜆, crs, 𝑥𝑖) for each 𝑖 ̸= 𝑖*, inputs 𝑥(0)𝑖* , 𝑥
(1)
𝑖* , and two-part non-

uniform cheating prover 𝒫*
1 ,𝒫*

2 , |𝜓⟩, it holds that

⃒⃒⃒⃒
⃒Pr

⎡⎣𝒫*
2 (|st⟩ , 𝑣) = 1 :

(ct𝑖* , sk𝑖*)← 𝒱 inp
blind(1

𝜆, crs, 𝑥
(0)
𝑖*)

(𝜋, |st⟩)← 𝒫*
1 (|𝜓⟩ , pp, ct1, . . . , ct𝑛)

(𝑣, 𝑧′)← 𝒱blind(pp, ct1, . . . , ct𝑛, sp, sk1, . . . , sk𝑛, 𝜋)

⎤⎦
− Pr

⎡⎣𝒫*
2 (|st⟩ , 𝑣) = 1 :

(ct𝑖* , sk𝑖*)← 𝒱 inp
blind(1

𝜆, crs, 𝑥
(1)
𝑖*)

(𝜋, |st⟩)← 𝒫*
1 (|𝜓⟩ , pp, ct1, . . . , ct𝑛)

(𝑣, 𝑧′)← 𝒱blind(pp, ct1, . . . , ct𝑛, sp, sk1, . . . , sk𝑛, 𝜋)

⎤⎦ ⃒⃒⃒⃒⃒ = negl(𝜆).

We now construct a protocol satisfying Definition 4.8 using the following ingredients.

• A four-message CVQC protocol for quantum classical circuits ΠQC (see Section 4.3).

• Quantum multi-key fully-homomorphic encryption with classical keys (QMFHE.Gen,QMFHE.Enc,
QMFHE.Eval,QMFHE.Dec) (Definition 2.4).

Theorem 4.9. Assuming QLWE, Protocol 2 satisfies Definition 4.8 in the QROM.

22

Protocol 2: Semi-malicious CVQC with malicious blindness and distributed setup

• Gen(1𝜆) : sample crs← QMFHE.Gen(1𝜆). Also letℋ be a random oracle.

• 𝒱params
blind (1𝜆, 𝐷) : the parameter generation algorithm samples

(pp, sp)← 𝒱setup
QC (1𝜆,QMFHE.Eval(𝐷, ·)).

• 𝒱 inp
blind(1

𝜆, crs, 𝑥𝑖) : the input generation algorithm samples

(pk𝑖, sk𝑖)← QMFHE.KeyGen(1𝜆, crs), ct𝑖 ← QMFHE.Enc(pk𝑖, 𝑥𝑖).

• 𝒫blind(pp, ct1, . . . , ct𝑛) : the prover computes

(𝑦, |st⟩)← 𝒫QC(pp,QMFHE.Eval(𝐷, ·), (ct1, . . . , ct𝑛)), 𝑑 := ℋ(𝑦)a, 𝜋 ← 𝒫QC(|st⟩ , 𝑑),

and returns (𝑦, 𝑑, 𝜋).

• 𝒱blind(pp, ct1, . . . , ct𝑛, sp, sk1, . . . , sk𝑛, 𝑦, 𝑑, 𝜋) : the verifier first checks that ℋ(𝑦) = 𝑑 and if not
outputs (rej,⊥). Otherwise, it computes

𝒱vrfy
QC (QMFHE.Eval(𝐷, ·), (ct1, . . . , ct𝑛), pp, sp, 𝑦, 𝑑, 𝜋)

to obtain either rej or ̃︀𝑧. In the first case, it outputs (rej,⊥). In the second case, it computes

𝑧 := 𝒱out
QC (QMFHE.Dec(sk1, . . . , sk𝑛, ·), ̃︀𝑧)

and outputs (acc, 𝑧).

aTechnically, the string 𝑑 in ΠQC is not a uniformly random string, rather, it is uniform over all binary strings with a particular
Hamming weight. However, this is still a public-coin message, and we can generate these coins with ℋ. We simplify notation
by writing ℋ(𝑦) = 𝑑 even though ℋ(𝑦) actually outputs the uniformly random coins used to determine 𝑑.

Figure 2: A two-message semi-malicious CVQC with malicious blindness and distributed setup from
QLWE in the QROM.

Proof. First, note that we changed the syntax of 𝒱setup
QC to not depend on the input (ct1, . . . , ct𝑛) of the compu-

tation that will be performed by ΠQC. This is possible due to the observation from [ACGH20, Section 3] that
the first message in CVQC can be made instance-independent, since the sampling of the measurement bases
in the underlying information-theoretic protocol [FHM18, CLLW20] can be made instance-independent.

Now we prove security of the protocol. First, by the statistical correctness of QMFHE, the computation
performed by ΠQC will always be pseudo-deterministic for inputs (ct𝑖, sk𝑖) ∈ 𝒱 inp

blind(1
𝜆, crs, 𝑥𝑖). Next, note

that we have actually collapsed the second and third messages of ΠQC using the random oracle ℋ. This
clearly does not affect completeness or semi-malicious correctness, so these properties follow directly from
the corresponding properties of ΠQC, which were shown in Lemma 4.5. For semi-malicious soundness, we
appeal to ”Fiat-Shamir for generalized Σ-protocols” [ACGH20, Theorem 6.3]. Since ΠQC satisfies the syntax
of a generalized Σ-protocol, this theorem shows that, assuming ΠQC is sound, the two-message collapsed
protocol is sound in the QROM. It was shown in Lemma 4.5 that ΠQC is sound for the delegation of any
pseudo-deterministic circuit, and thus semi-malicious soundness of Protocol 2 follows. Finally, malicious
blindness follows from the semantic security of QMFHE, since sk𝑖* is not needed to determine whether the
verifier accepts or rejects.

23

5 Secure Quantum Computation

In this section, we show applications of the CVQC protocols constructed in Section 4 to secure quantum
computation with classical communication (where only a single party requires quantum capabilities).

In Section 5.1, we give a generic compiler from composable blind CVQC to multi-party quantum com-
putation with classical computation, assuming the existence of post-quantum oblivious transfer. In fact,
assuming two-message post-quantum oblivious transfer, the compiler only adds two rounds of interaction
to the composable blind CVQC protocol.

Next, in Section 5.2, we show how to optimize the round complexity of multi-party quantum compu-
tation, achieving a three-round protocol. This protocol requires a (succinct and reusable) PKI setup and
security follows from QLWE in the quantum random oracle model. Finally, in Section 5.3, we show how
to construct a two-message two-party protocol between quantum sender and classical receiver (a quantum
NISC protocol). Security of this protocol follows from QLWE in the quantum random oracle model.

5.1 A generic construction of multi-party quantum computation

In this section, we show that, assuming post-quantum two-message oblivious transfer, 𝑘-message compos-
able blind CVQC implies 𝑘 + 2-round multi-party quantum computation between any 𝑛 classical clients
and a single quantum server. The protocol (in fact, all protocols in this section) is described for functional-
ities with a single public output, but this is easy to generalize to multiple private outputs using secret-key
encryption.

Ingredients.

• A post-quantum round-optimal MPC protocol for classical reactive functionalities in the CRS model,
to be treated as an oracle called MPC. Such a protocol is known from post-quantum two-message
oblivious transfer, which is known from QLWE. See Appendix C for more discussion, and a precise
description of the ideal functionality implemented by the oracle MPC.

• A 𝑘-message composable blind CVQC protocol (Definition 4.6). We assume without loss of generality
that 𝑘 is even and the verifier sends the first message. The transcript of messages between verifier
and prover are denoted msg

(𝑉)
1 ,msg

(𝑃)
2 , . . . ,msg

(𝑉)
𝑘−1,msg

(𝑃)
𝑘 .

Theorem 5.1. Protocol 3 satisfies Definition 2.6.

Proof. First consider any adversary {Adv𝜆}𝜆∈N that corrupts a set of parties 𝑀 such that 𝑆 ∈ 𝑀 , and let
𝐻 := [𝑛] ∖𝑀 . The simulator is defined below. We allow Sim to maintain the MPC oracle, intercepting the
adversary’s inputs and computing the outputs.

Sim({𝑥𝑖}𝑖∈𝑀 , |𝜓⟩Adv):

• Obtain {𝑥𝑖}𝑖∈𝑀 from Adv’s initial query to MPC.

• Invoke the malicious prover simulator for the composable blind CVQC protocol, which computes
messages on behalf of MPC, and interacts with Adv (controlling the server) until after Round 𝑘 + 1.
The simulator outputs a bit 𝑏.

• If 𝑏 = 0, query the ideal functionality with {𝑥𝑖}𝑖∈𝑀 to obtain 𝑧 and deliver 𝑧 to Adv. Otherwise, if
𝑏 = 1, send abort to the ideal functionality and deliver ⊥ to Adv.

Now consider the following hybrids.

• ℋ0 : This is the real distribution REALΠ,Q(Adv𝜆, {𝑥𝑖}𝑖∈[𝑛], |𝜓⟩Adv), where MPC is implemented hon-
estly as the CVQC verifier with input 𝑥1, . . . , 𝑥𝑛.

24

Protocol 3: Multi-Party Quantum Computation with Classical Communication

Public Information: An 𝑛-party pseudo-deterministic quantum functionality 𝐷(·, . . . , ·), security pa-
rameter 𝜆, 𝑛 classical client parties 𝑃1, . . . , 𝑃𝑛, and a designated server 𝑆 with quantum capabilities.

• Round 1: Each party 𝑃𝑖 sends their input 𝑥𝑖 to MPC.

• Round 2: MPC computes msg
(𝑉)
1 and sends it to 𝑆.

• Round 3: 𝑆 computes and broadcasts msg
(𝑃)
2 .

...

• Round 𝑘: MPC computes msg
(𝑉)
𝑘−1 and sends it to 𝑆.

• Round 𝑘 + 1: 𝑆 computes and broadcasts msg
(𝑃)
𝑘 .

• Round 𝑘 + 2: MPC computes the output 𝑧 ∈ {0, 1}* ∪ {⊥} of the CVQC protocol and delivers 𝑧
to each 𝑃𝑖.

Figure 3: An MPQC protocol with classical communication.

• ℋ1 : Invoke the malicious prover simulator for the composable blind CVQC protocol to simulate the
interaction between Adv and MPC through Round 𝑘 + 1. Also, change how the final message from
MPC is computed. That is, if the CVQC simulator output 𝑏 = 0, compute 𝑧 = 𝐷(𝑥1, . . . , 𝑥𝑛) (where
{𝑥𝑖}𝑖∈𝑀 were obtained from Adv’s first query to MPC, and {𝑥𝑖}𝑖∈𝐻 are the honest party inputs) and
deliver 𝑧 to Adv, and otherwise, deliver⊥ to Adv. This is indistinguishable fromℋ0 due to the security
of the CVQC protocol.

• ℋ2 : Obtain the output 𝑧 by querying the ideal functionality with {𝑥𝑖}𝑖∈𝑀 , which is perfectly indis-
tinguishable fromℋ1. This is the simulator.

Now consider any adversary {Adv𝜆}𝜆∈N that corrupts a set of parties 𝑀 ⊂ {𝑃1, . . . , 𝑃𝑛}. Security in this
case is almost immediate. Indeed, the simulator will obtain {𝑥𝑖}𝑖∈𝑀 from Adv’s query to MPC in Round 1,
query the ideal functionality to obtain 𝑧 and then deliver 𝑧 to Adv in Round 𝑘 + 2. This is indistinguishable
from the real distribution due to the correctness of the CVQC protocol, that is, the requirement that the
correct output is generated when neither of the parties in corrupted.

Combining with our four-message composable blind CVQC protocol from Section 4.4, we obtain the
following corollary.

Corollary 5.2. Assuming QLWE, there exists a six-round multi-party quantum computation protocol in the CRS
model between 𝑛 classical clients and one quantum server for computing any 𝑛-party pseudo-deterministic function-
ality 𝐷(·, . . . , ·).

5.2 Three-round multi-party quantum computation

Our next protocol will make use of a special type of two-round MPC, which has recently been referred to as
multi-party reusable non-interactive secure computation (mrNISC) [BL20]. Such a protocol consists of four
algorithms (mrNISC.Gen,mrNISC.Com,mrNISC.Encode,mrNISC.Eval), and proceeds in three phases, after crs
is sampled by mrNISC.Gen(1𝜆).

25

• Input Encoding: A party𝑃𝑖 encodes their private input 𝑥𝑖 by running (̂︀𝑥𝑖, st𝑖)← mrNISC.Com(1𝜆, crs, 𝑥𝑖).
They broadcast ̂︀𝑥𝑖 and keep their secret state st𝑖.

• Computation: Given a public 𝑛-party functionality 𝐶, a set 𝐼 of 𝑛 parties {𝑃𝑖}𝑖∈𝐼 generates an encod-
ing of the output 𝑦 := 𝐶(𝑥1, . . . , 𝑥𝑛) by running ̂︀𝑦𝑖 ← mrNISC.Encode(𝐶, {̂︀𝑥𝑖}𝑖∈𝐼 , st𝑖).

• Output: An evaluator can publicly reconstruct the output 𝑦 := mrNISC.Eval(𝐶, {̂︀𝑥𝑖, ̂︀𝑦𝑖}𝑖∈𝐼).

The protocol should satisfy standard malicious security against a dishonest majority of parties (in the
CRS model). Moreover, the input encodings should be reusable across any number of computations per-
formed by arbitrary subsets of the parties, and security should be maintained in this setting. Such a pro-
tocol has recently been constructed from QLWE [AJJM21, BJKL21], and these protocols are post-quantum
secure since the simulators and reductions are straight-line.9

We now give a three-round MPQC protocol in the PKI + QRO model, assuming QLWE.

Ingredients.

• A post-quantum mrNISC protocol mrNISC = (mrNISC.Gen,mrNISC.Com,mrNISC.Encode,mrNISC.Eval).

• A two-message semi-malicious CVQC protocol with malicious blindness and distributed setup Πblind =

(Gen,𝒫blind,𝒱params
blind ,𝒱 inp

blind,𝒱blind) (Protocol 2). Let 𝒱*
blind be the circuit 𝒱blind with the random oracle check

ℋ(𝑦) = 𝑑 removed.

Theorem 5.3. Protocol 4 satisfies Definition 2.6 in the PKI model.

Proof. Consider any adversary {Adv𝜆}𝜆∈N that corrupts a set of parties 𝑀 such that 𝑆 ∈ 𝑀 , and let 𝐻 =
[𝑛] ∖𝑀 . Like in the previous protocol, security against adversaries that don’t corrupt 𝑀 is the simpler case,
and the proof is omitted.

We demonstrate simulation for a single invocation of the protocol on circuit𝐷, but note that the PKI can
be reused across any number of invocations due to the reusability of mrNISC.

Sim({𝑥𝑖}𝑖∈𝑀 , |𝜓⟩Adv) :

• Setup: invoke the mrNISC simulator to obtain honest party commitments {pk𝑖}𝑖∈𝐻 , and send them
to Adv. Adv sends a circuit 𝐷 to be computed.

• Input Round: for each 𝑖 ∈ 𝐻 , compute (ct𝑖, sk𝑖)← 𝒱 inp
blind(1

𝜆, 0). Invoke the mrNISC simulator to obtain
honest party commitments {(̂𝑥𝑖, 𝑟𝑖)}𝑖∈𝐻 . Compute (pp, sp) ← 𝒱params

blind (1𝜆, 𝐷) and invoke the mrNISC
simulator on pp to obtain {̂︁pp𝑖}𝑖∈𝐻 . Send {(ct𝑖, (̂𝑥𝑖, 𝑟𝑖),̂︁pp𝑖)}𝑖∈𝐻 to Adv. Receive from the adversary
{(ct𝑖, (̂𝑥𝑖, 𝑟𝑖),̂︁pp𝑖)}𝑖∈𝑀 and invoke the mrNISC simulator on {(̂𝑥𝑖, 𝑟𝑖)}𝑖∈𝑀 to obtain {(𝑥𝑖, 𝑟𝑖)}𝑖∈𝑀 . In-
voke the mrNISC simulator on {̂︁pp𝑖}𝑖∈𝑀 and in the case of abort send ⊥ to the ideal functionality.
Otherwise, continue.

• Server Round: receive (𝑦, 𝑑, 𝜋) from Adv.

• Output Round: first, check that ℋ(𝑦) = 𝑑. If not, then abort (send nothing to Adv), and send ⊥
to the ideal functionality. Otherwise, for each 𝑖 ∈ 𝑀 , verify that each ct𝑖 matches (ct𝑖, sk𝑖) :=

𝒱 inp
blind(1

𝜆, 𝑥𝑖; 𝑟𝑖). If not, let out = ⊥ and send ⊥ to the ideal functionality. Otherwise, compute
(𝑣, 𝑧) ← 𝒱*

blind(pp, ct1, . . . , ct𝑛, sp, sk1, . . . , sk𝑛, 𝑦, 𝑑, 𝜋) and discard 𝑧. If 𝑣 = rej, let out = ⊥ and send
⊥ to the ideal functionality. Otherwise, if 𝑣 = acc, then query the ideal functionality with {𝑥𝑖}𝑖∈𝑀

to obtain 𝑧 and let out = 𝑧. Finally, invoke the mrNISC simulator on out to obtain {̂︀𝑧𝑖,1, ̂︀𝑧𝑖,2}𝑖∈𝐻 and
forward these to Adv.

9Technically, these works only show semi-malicious security, but such protocols can be compiled (in a post-quantum manner) to
maliciously-secure protocols via UC-secure NIZKs from QLWE [AJL+12, PS19].

26

Protocol 4: Three-Round MPQC

Public Information: Security parameter 𝜆, crs ← Gen(1𝜆),mrNISC.crs ← mrNISC.Gen(1𝜆). Let ℋ be a
random oracle, used in Πblind.
PKI Setup: Party 𝑃𝑖 samples PRF key 𝑘𝑖, runs (pk𝑖, st𝑖,key) ← mrNISC.Com(1𝜆,mrNISC.crs, 𝑘𝑖), and
broadcasts pk𝑖.

• Input Round: Let {𝑃𝑖}𝑖∈[𝑛] be a set of 𝑛 parties with inputs {𝑥𝑖}𝑖∈[𝑛] that wish to compute some
circuit 𝐷(𝑥1, . . . , 𝑥𝑛). Let ̃︀𝐷(·, . . . , ·) be the circuit that takes as input 𝑛 PRF keys 𝑘1, . . . , 𝑘𝑛 and
computes 𝒱params

blind (1𝜆, 𝐷;
⨁︀

𝑖 PRF𝑘𝑖
(𝐷)). Each 𝑖 ∈ [𝑛] will

– sample random coins 𝑟𝑖 ← {0, 1}𝜆, compute (ct𝑖, sk𝑖) := 𝒱 inp
blind(1

𝜆, crs, 𝑥𝑖; 𝑟𝑖),

– compute ((̂𝑥𝑖, 𝑟𝑖), st𝑖,inp)← mrNISC.Com(1𝜆,mrNISC.crs, (𝑥𝑖, 𝑟𝑖)),

– compute ̂︁pp𝑖 ← mrNISC.Encode(̃︀𝐷, {pk𝑖}𝑖∈[𝑛], st𝑖,key),

– and broadcast (ct𝑖, (̂𝑥𝑖, 𝑟𝑖),̂︁pp𝑖).
• Server Round: The server 𝑆 computes

– pp := mrNISC.Eval(̃︀𝐷, {pk𝑖,̂︁pp𝑖}𝑖∈[𝑛]),

– (𝑦, 𝑑, 𝜋)← 𝒫blind(pp, ct1, . . . , ct𝑛),

– and broadcasts (𝑦, 𝑑, 𝜋).

• Output Round: Let 𝐸[ct1, . . . , ct𝑛, 𝑦, 𝑑, 𝜋](·, . . . , ·) be the circuit that

– takes as input (𝑘1, 𝑥1, 𝑟1), . . . , (𝑘𝑛, 𝑥𝑛, 𝑟𝑛),

– verifies that each ct𝑖 matches (ct𝑖, sk𝑖) := 𝒱 inp
blind(1

𝜆, crs, 𝑥𝑖; 𝑟𝑖),

– and if so runs (pp, sp) := 𝒱params
blind (1𝜆, 𝐷;

⨁︀
𝑖 PRF𝑘𝑖

(𝐷)),

– and (𝑣, 𝑧)← 𝒱*
blind(pp, ct1, . . . , ct𝑛, sp, sk1, . . . , sk𝑛, 𝑦, 𝑑, 𝜋), and outputs 𝑧.

Each 𝑃𝑖 then checks ifℋ(𝑦) = 𝑑 and if so computes

– ̂︀𝑧𝑖,1 ← mrNISC.Encode(𝐸[ct1, . . . , ct𝑛, 𝑦, 𝑑, 𝜋], {pk𝑖, (̂𝑥𝑖, 𝑟𝑖)}𝑖∈[𝑛], st𝑖,key)

– ̂︀𝑧𝑖,2 ← mrNISC.Encode(𝐸[ct1, . . . , ct𝑛, 𝑦, 𝑑, 𝜋], {pk𝑖, (̂𝑥𝑖, 𝑟𝑖)}𝑖∈[𝑛], st𝑖,inp),

– and broadcasts ̂︀𝑧𝑖,1, ̂︀𝑧𝑖,2.

• Output Reconstruction: Any party 𝑃𝑖 can reconstruct the output by running

𝑧 ← mrNISC.Eval(𝐸[ct1, . . . , ct𝑛, 𝑦, 𝑑, 𝜋], {̂︀𝑧𝑖,1, ̂︀𝑧𝑖,2}𝑖∈[𝑛]).

Figure 4: Three-Round MPQC with classical communication from QLWE, in the PKI + QRO model.

Consider the following hybrids.

• ℋ0 : The real distribution REALΠ,Q(Adv𝜆, {𝑥𝑖}𝑖∈𝑀 , |𝜓⟩Adv).

• ℋ1 : Simulate the mrNISC. In particular:

– During Setup, simulate the honest party commitments pk𝑖, and extract 𝑘𝑖 from adversary com-

27

mitments pk𝑖.

– During Server Round, simulate the honest party commitments (̂𝑥𝑖, 𝑟𝑖), simulate the honest party
second round messages ̂︁pp𝑖 using output ̃︀𝐷(𝑘1, . . . , 𝑘𝑛), and extract (𝑥𝑖, 𝑟𝑖) from adversary com-
mitments (̂𝑥𝑖, 𝑟𝑖).

– During Output Round, simulate the honest party second round messages ̂︀𝑧𝑖,1, ̂︀𝑧𝑖,2 using output
𝐸[ct1, . . . , ct𝑛, 𝑦, 𝑑, 𝜋](𝑘1, 𝑥1, 𝑟1, . . . , 𝑘𝑛, 𝑥𝑛, 𝑟𝑛).

This is computationally indistinguishable fromℋ0 due to the security of mrNISC.

• ℋ2 : Replace ̃︀𝐷(𝑘1, . . . , 𝑘𝑛) with pp computed as (pp, sp) ← 𝒱params
blind (1𝜆, 𝐷). This is computationally

indistinguishable fromℋ1 due to the security of the PRF.

• ℋ3 : Alter the computation 𝐸[ct1, . . . , ct𝑛, 𝑦, 𝑑, 𝜋](𝑘1, 𝑥1, 𝑟1, . . . , 𝑘𝑛, 𝑥𝑛, 𝑟𝑛) as follows. Compute (𝑣, 𝑧)
(or ⊥) as before but discard 𝑧. Then, in the case that ℋ(𝑦) = 𝑑 and 𝑣 = acc, directly compute
𝑧 ← 𝐷(𝑥1, . . . , 𝑥𝑛). This is computationally indistinguishable from ℋ2 due to the semi-malicious
soundness of Πblind.

• ℋ4 : During Input Round, compute honest party ct𝑖 as (ct𝑖, sk𝑖) ← 𝒱 inp
blind(1

𝜆, 0). This is computation-
ally indistinguishable from ℋ3 due to the malicious blindness of Πblind. Indeed, the computation of
the output 𝑧 is unchanged, so the adversary could only possibly notice a difference in the ct𝑖 and
𝑣 ∈ {acc, rej}.

• ℋ5 : Obtain the output 𝑧 by querying the ideal functionality on {𝑥𝑖}𝑖∈𝑀 . In the case of an abort
(either ℋ(𝑦) ̸= 𝑑, some ct𝑖 is malformed, or 𝒱*

blind outputs rej), send ⊥ to the ideal functionality. This
just moves the computation to the ideal functionality, so is perfectly indistinguishable from ℋ4. This
is the simulator.

5.3 Quantum non-interactive secure computation

In this section, we consider a quantum sender 𝒮 with classical input 𝑥𝒮 and a classical receiver ℛ with
classical input 𝑥ℛ. The receiver would like to learn the value 𝐷(𝑥𝒮 , 𝑥ℛ) for some pseudo-deterministic
quantum functionality 𝐷.

Note first that the protocol from last section can be used to accomplish this in three rounds, by having
the sender implement both the server and one of the clients. However, in this section we show how to
accomplish this in just two messages, satisfying the syntax of a (non-reusable) NISC (non-interactive secure
computation) protocol.

Ingredients.

• A post-quantum NISC protocol NISC = (NISCGen,NISC1,NISC2,NISCout) (Section 2.4).

• A two-message semi-malicious CVQC protocol with malicious blindness and distributed setup Πblind =

(Gen,𝒫blind,𝒱params
blind ,𝒱 inp

blind,𝒱blind) (Protocol 2). Let 𝒱*
blind be the circuit 𝒱blind with the random oracle check

ℋ(𝑦) = 𝑑 removed.

Theorem 5.4. Protocol 5 satisfies Definition 2.6.

Proof. First consider the case where the adversary Adv is corrupting the sender. We define the simulator
Sim below.

28

Protocol 5: Quantum NISC

Public Information: A two-party pseudo-deterministic quantum functionality𝐷(·, ·), security param-
eter 𝜆, crs← Gen(1𝜆), NISC.crs← NISCGen(1

𝜆). Letℋ be a random oracle, used in Πblind.

• The receiver ℛ has input 𝑥ℛ. It uses random coins 𝑟ℛ to sample outputs in the first two steps
below.

– Sample (pp, sp)← 𝒱params
blind (1𝜆, 𝐷).

– Sample (ctℛ, skℛ)← 𝒱 inp
blind(1

𝜆, crs, 𝑥ℛ).

– Compute (𝑚ℛ, st)← NISC1(NISC.crs, (𝑥ℛ, 𝑟ℛ)).

– Send (pp, ctℛ,𝑚ℛ) to the sender 𝒮.

• The sender 𝒮 has input 𝑥𝒮 . It uses random coins 𝑟𝒮 to sample output in the first step below.

– Sample (ct𝒮 , sk𝒮)← 𝒱 inp
blind(1

𝜆, crs, 𝑥𝒮).

– Compute (𝑦, 𝑑, 𝜋)← 𝒫blind(pp, ctℛ, ct𝒮).

– Compute 𝑚𝒮 ← NISC2(NISC.crs, 𝐶[pp, ctℛ, ct𝒮 , 𝑦, 𝑑, 𝜋],𝑚ℛ, (𝑥𝒮 , 𝑟𝒮)), where the circuit
𝐶[pp, ctℛ, ct𝒮 , 𝑦, 𝑑, 𝜋] does the following.

* Take as input strings (𝑥ℛ, 𝑥𝒮) and random coins (𝑟ℛ, 𝑟𝒮) and first verify that
(pp, ctℛ, ct𝒮) are well-formed.

* If so, output 𝒱*
blind (pp, ctℛ, ct𝒮 , sp, skℛ, sk𝒮 , 𝑦, 𝑑, 𝜋) , and otherwise output (rej,⊥).

– Send (ct𝒮 , 𝑦, 𝑑, 𝜋,𝑚𝒮) to the receiver.

• The receiver ℛ first checks that ℋ(𝑦) = 𝑑 and if so computes and outputs
NISCout(st, 𝐶[pp, ctℛ, ct𝒮 , 𝑦, 𝑑, 𝜋],𝑚𝒮), and otherwise outputs ⊥.

Figure 5: Quantum NISC with a classical receiver, from QLWE in the QROM.

Sim(|𝜓⟩Adv):

• Invoke the NISC simulator to sample crs.

• Compute an honest receiver’s message (pp, ctℛ,𝑚ℛ) except that ctℛ is sampled as 𝒱 inp
blind(1

𝜆, 0), and
𝑚ℛ is computed by the classical NISC simulator. Send this message to Adv.

• When Adv returns (ct𝒮 , 𝑦, 𝑑, 𝜋,𝑚𝒮), use the classical NISC simulator to extract input (𝑥𝒮 , 𝑟𝒮) from
𝑚𝒮 . Check that ℋ(𝑦) = 𝑑 and if not, send ⊥ to the ideal functionality. Otherwise, check that ct𝒮 is
well-formed with respect to 𝑥𝒮 , 𝑟𝒮 and if the check does not pass, send ⊥ to the ideal functionality.
Otherwise, compute (𝑣, 𝑧)← 𝒱*

blind(pp, ctℛ, ct𝒮 , sp, skℛ, sk𝒮 , 𝑦, 𝑑, 𝜋) and discard 𝑧. If 𝑣 = rej, send ⊥ to
the ideal functionality. Otherwise, if 𝑣 = acc, then query the ideal functionality with 𝑥𝒮 .

Now consider the following hybrids.

• ℋ0: The real distribution.

• ℋ1: Simulate the classical NISC. That is, simulate the crs, extract the adversary’s input (𝑥𝒮 , 𝑟𝒮) from
𝑚𝑆 , and set the receiver’s output by computing 𝐶[pp, ctℛ, ct𝒮 , 𝑦, 𝑑, 𝜋] on the extracted input. This is
indistinguishable fromℋ0 due to the security of classical NISC.

29

• ℋ2: Change how 𝐶[pp, ctℛ, ct𝒮 , 𝑦, 𝑑, 𝜋] is computed. First check that ℋ(𝑦) = 𝑑 and that ct𝒮 is well-
formed, and if so, compute (𝑣, 𝑧) ← 𝒱*

blind(pp, ctℛ, ct𝒮 , sp, skℛ, sk𝒮 , 𝑦, 𝑑, 𝜋) and discard 𝑧. If ℋ(𝑦) ̸= 𝑑,
ct𝒮 was not well-formed, or 𝑣 = rej, output (rej,⊥). Otherwise, compute 𝑧 ← 𝐷(𝑥ℛ, 𝑥𝒮) and output
(acc, 𝑧). This is indistinguishable fromℋ1 due to the semi-malicious soundness of Πblind.

• ℋ3: Switch ctℛ to be sampled as 𝒱 inp
blind(1

𝜆, 0). This is indistinguishable from ℋ2 due to the malicious
blindness of Πblind.

• ℋ4: Query the ideal functionality as described in the simulator. This is equivalent toℋ3.

Next, consider the case where the adversary Adv is corrupting the receiver. We define the simulator Sim
below.

Sim(|𝜓⟩Adv):

• Invoke the NISC simulator to sample crs.

• Receive (pp, ctℛ,𝑚ℛ) from Adv, and use the classical NISC simulator to extract input (𝑥ℛ, 𝑟ℛ).

• Sample ct𝒮 ← 𝒱 inp
blind(1

𝜆, 0).

• Check that pp and ctℛ are well-formed with respect to 𝑥ℛ, 𝑟ℛ. If the check does not pass, invoke
the classical NISC simulator on circuit 𝐶[pp, ctℛ, ct𝒮 , 𝑦, 𝑑, 𝜋] and output (rej,⊥) to obtain 𝑚𝒮 . Oth-
erwise compute (𝑣, 𝑧) ← 𝒱*

blind(pp, ctℛ, ct𝒮 , sp, skℛ, sk𝒮 , 𝑦, 𝑑, 𝜋) and discard 𝑧. If 𝑣 = rej, invoke the
classical NISC simulator on circuit 𝐶[pp, ctℛ, ct𝒮 , 𝑦, 𝑑, 𝜋] and output (rej,⊥) to obtain 𝑚𝒮 . Other-
wise, send 𝑥ℛ to the ideal functionality, receive 𝑧, and invoke the classical NISC simulator on circuit
𝐶[pp, ctℛ, ct𝒮 , 𝑦, 𝑑, 𝜋] and output (acc, 𝑧) to obtain 𝑚𝒮 . Send (ct𝒮 , 𝑦, 𝑑, 𝜋,𝑚𝒮) to Adv.

Now consider the following hybrids.

• ℋ0: The real distribution.

• ℋ1: Simulate the classical NISC. That is, simulate the crs, extract the adversary’s input (𝑥ℛ, 𝑟ℛ), and
simulate 𝑚𝑆 by computing the circuit 𝐶[pp, ctℛ, ct𝒮 , 𝑦, 𝑑, 𝜋] and feeding the output into the NISC
simulator. This is indistinguishable fromℋ0 due to the security of classical NISC.

• ℋ2: Change how 𝐶[pp, ctℛ, ct𝒮 , 𝑦, 𝑑, 𝜋] is computed. First check that pp and ctℛ are well-formed
with respect to 𝑥ℛ, 𝑟ℛ. If the check does not pass, feed (rej,⊥) into the NISC simulator. Otherwise
compute (𝑣, 𝑧) ← 𝒱*

blind(pp, ctℛ, ct𝒮 , sp, skℛ, sk𝒮 , 𝑦, 𝑑, 𝜋) and discard 𝑧. If 𝑣 = rej, feed (rej,⊥) into the
NISC simulator. Otherwise, compute 𝑧 ← 𝐷(𝑥ℛ, 𝑥𝒮) and feed (acc, 𝑧) into the NISC simulator. This
is indistinguishable fromℋ1 due to the semi-malicious correctness of Πblind.

• ℋ3: Switch ct𝒮 to be sampled as 𝒱 inp
blind(1

𝜆, 0). This is indistinguishable from ℋ2 due to the malicious
blindness of Πblind.

• ℋ4: Query the ideal functionality as described in the simulator. This is equivalent toℋ3.

Acknowledgements

Thank you to Dakshita Khurana and Giulio Malavolta for helpful discussions, and to anonymous reviewers
for comments and suggestions.

30

References

[ABG+21] Amit Agarwal, James Bartusek, Vipul Goyal, Dakshita Khurana, and Giulio Malavolta. Post-
quantum multi-party computation. Eurocrypt, 2021.

[ACC+20] Bar Alon, Hao Chung, Kai-Min Chung, Mi-Ying Huang, Yi Lee, and Yu-Ching Shen. Round
efficient secure multiparty quantum computation with identifiable abort. Cryptology ePrint
Archive, Report 2020/1464, 2020. https://eprint.iacr.org/2020/1464.

[ACGH20] Gorjan Alagic, Andrew M. Childs, Alex B. Grilo, and Shih-Han Hung. Non-interactive classi-
cal verification of quantum computation. LNCS, pages 153–180. Springer, Heidelberg, March
2020.

[AJJM21] Prabhanjan Ananth, Abhishek Jain, Zhengzhong Jin, and Giulio Malavolta. Unbounded multi-
party computation from learning with errors. Eurocrypt, 2021.

[AJL+12] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikuntanathan, and
Daniel Wichs. Multiparty computation with low communication, computation and interaction
via threshold FHE. In David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012,
volume 7237 of LNCS, pages 483–501. Springer, Heidelberg, April 2012.

[AMPR14] Arash Afshar, Payman Mohassel, Benny Pinkas, and Ben Riva. Non-interactive secure com-
putation based on cut-and-choose. In Phong Q. Nguyen and Elisabeth Oswald, editors, EU-
ROCRYPT 2014, volume 8441 of LNCS, pages 387–404. Springer, Heidelberg, May 2014.

[BCG+06] Michael Ben-Or, Claude Crépeau, Daniel Gottesman, Avinatan Hassidim, and Adam Smith.
Secure multiparty quantum computation with (only) a strict honest majority. In 47th FOCS,
pages 249–260. IEEE Computer Society Press, October 2006.

[BCKM21a] James Bartusek, Andrea Coladangelo, Dakshita Khurana, and Fermi Ma. On the round com-
plexity of secure quantum computation. CRYPTO, 2021.

[BCKM21b] James Bartusek, Andrea Coladangelo, Dakshita Khurana, and Fermi Ma. One-way functions
imply secure computation in a quantum world. CRYPTO, 2021.

[BCM+18] Zvika Brakerski, Paul Christiano, Urmila Mahadev, Umesh V. Vazirani, and Thomas Vidick. A
cryptographic test of quantumness and certifiable randomness from a single quantum device.
In Mikkel Thorup, editor, 59th FOCS, pages 320–331. IEEE Computer Society Press, October
2018.

[BD18] Zvika Brakerski and Nico Döttling. Two-message statistically sender-private OT from LWE.
In Amos Beimel and Stefan Dziembowski, editors, TCC 2018, Part II, volume 11240 of LNCS,
pages 370–390. Springer, Heidelberg, November 2018.

[BGI+17] Saikrishna Badrinarayanan, Sanjam Garg, Yuval Ishai, Amit Sahai, and Akshay Wadia. Two-
message witness indistinguishability and secure computation in the plain model from new
assumptions. In Tsuyoshi Takagi and Thomas Peyrin, editors, ASIACRYPT 2017, Part III, vol-
ume 10626 of LNCS, pages 275–303. Springer, Heidelberg, December 2017.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In 20th ACM STOC,
pages 1–10. ACM Press, May 1988.

[BJKL21] Fabrice Benhamouda, Aayush Jain, Ilan Komargodski, and Huijia Lin. Multi-party reusable
non-interactive secure computation from lwe. Eurocrypt, 2021.

31

https://eprint.iacr.org/2020/1464

[BL20] Fabrice Benhamouda and Huijia Lin. Mr NISC: Multiparty reusable non-interactive secure
computation. In TCC 2020, Part II, LNCS, pages 349–378. Springer, Heidelberg, March 2020.

[BM21] James Bartusek and Giulio Malavolta. Candidate obfuscation of null quantum circuits and
witness encryption for qma. Cryptology ePrint Archive, Report 2021/421, 2021. https:
//eprint.iacr.org/2021/421.

[Bra18] Zvika Brakerski. Quantum FHE (almost) as secure as classical. In Hovav Shacham and Alexan-
dra Boldyreva, editors, CRYPTO 2018, Part III, volume 10993 of LNCS, pages 67–95. Springer,
Heidelberg, August 2018.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty unconditionally secure pro-
tocols (abstract) (informal contribution). In Carl Pomerance, editor, CRYPTO’87, volume 293
of LNCS, page 462. Springer, Heidelberg, August 1988.

[CCKM20] Michele Ciampi, Alexandru Cojocaru, Elham Kashefi, and Atul Mantri. Secure quantum
two-party computation: Impossibility and constructions. Cryptology ePrint Archive, Report
2020/1286, 2020. https://eprint.iacr.org/2020/1286.

[CCY20] Nai-Hui Chia, Kai-Min Chung, and Takashi Yamakawa. Classical verification of quantum
computations with efficient verifier. LNCS, pages 181–206. Springer, Heidelberg, March 2020.

[CDI+19] Melissa Chase, Yevgeniy Dodis, Yuval Ishai, Daniel Kraschewski, Tianren Liu, Rafail Ostro-
vsky, and Vinod Vaikuntanathan. Reusable non-interactive secure computation. In Alexandra
Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part III, volume 11694 of LNCS,
pages 462–488. Springer, Heidelberg, August 2019.

[CDM20] Orestis Chardouvelis, Nico Doettling, and Giulio Malavolta. Rate-1 secure function evaluation
for bqp. Cryptology ePrint Archive, Report 2020/1454, 2020. https://eprint.iacr.org/
2020/1454.

[CGS02] Claude Crépeau, Daniel Gottesman, and Adam Smith. Secure multi-party quantum computa-
tion. In 34th ACM STOC, pages 643–652. ACM Press, May 2002.

[CLLW20] Kai-Min Chung, Yi Lee, Han-Hsuan Lin, and Xiaodi Wu. Constant-round blind classical veri-
fication of quantum sampling, 2020.

[CVZ20] Andrea Coladangelo, Thomas Vidick, and Tina Zhang. Non-interactive zero-knowledge ar-
guments for qma, with preprocessing. In Daniele Micciancio and Thomas Ristenpart, editors,
Advances in Cryptology – CRYPTO 2020, pages 799–828, Cham, 2020. Springer International
Publishing.

[DFMS19] Jelle Don, Serge Fehr, Christian Majenz, and Christian Schaffner. Security of the Fiat-Shamir
transformation in the quantum random-oracle model. In Alexandra Boldyreva and Daniele
Micciancio, editors, CRYPTO 2019, Part II, volume 11693 of LNCS, pages 356–383. Springer,
Heidelberg, August 2019.

[DFPR14] Vedran Dunjko, Joseph Fitzsimons, Christopher Portmann, and Renato Renner. Composable
security of delegated quantum computation. In Palash Sarkar and Tetsu Iwata, editors, ASI-
ACRYPT 2014, Part II, volume 8874 of LNCS, pages 406–425. Springer, Heidelberg, December
2014.

[DGJ+20] Yfke Dulek, Alex B. Grilo, Stacey Jeffery, Christian Majenz, and Christian Schaffner. Secure
multi-party quantum computation with a dishonest majority. In Anne Canteaut and Yuval
Ishai, editors, EUROCRYPT 2020, Part III, volume 12107 of LNCS, pages 729–758. Springer,
Heidelberg, May 2020.

32

https://eprint.iacr.org/2021/421
https://eprint.iacr.org/2021/421
https://eprint.iacr.org/2020/1286
https://eprint.iacr.org/2020/1454
https://eprint.iacr.org/2020/1454

[DNS12] Frédéric Dupuis, Jesper Buus Nielsen, and Louis Salvail. Actively secure two-party evaluation
of any quantum operation. In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012,
volume 7417 of LNCS, pages 794–811. Springer, Heidelberg, August 2012.

[FHM18] Joseph F. Fitzsimons, Michal Hajdusek, and Tomoyuki Morimae. Post hoc verification of quan-
tum computation. Phys. Rev. Lett., 120:040501, Jan 2018.

[FK17] Joseph F. Fitzsimons and Elham Kashefi. Unconditionally verifiable blind quantum computa-
tion. Phys. Rev. A, 96:012303, Jul 2017.

[GLSV21] Alex B. Grilo, Huijia Lin, Fang Song, and Vinod Vaikuntanathan. Oblivious transfer is in
miniqcrypt. Eurocrypt, 2021.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A com-
pleteness theorem for protocols with honest majority. In Alfred Aho, editor, 19th ACM STOC,
pages 218–229. ACM Press, May 1987.

[Gol04] Oded Goldreich. The Foundations of Cryptography - Volume 2, Basic Applications. Cambridge
University Press, 2004.

[Goy18] Rishab Goyal. Quantum multi-key homomorphic encryption for polynomial-sized circuits.
Cryptology ePrint Archive, Report 2018/443, 2018. https://eprint.iacr.org/2018/
443.

[GS18] Sanjam Garg and Akshayaram Srinivasan. Two-round multiparty secure computation from
minimal assumptions. In Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018,
Part II, volume 10821 of LNCS, pages 468–499. Springer, Heidelberg, April / May 2018.

[GV19] Alexandru Gheorghiu and Thomas Vidick. Computationally-secure and composable remote
state preparation. In David Zuckerman, editor, 60th FOCS, pages 1024–1033. IEEE Computer
Society Press, November 2019.

[IKO+11] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Manoj Prabhakaran, and Amit Sahai. Effi-
cient non-interactive secure computation. In Kenneth G. Paterson, editor, EUROCRYPT 2011,
volume 6632 of LNCS, pages 406–425. Springer, Heidelberg, May 2011.

[IPS08] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on oblivious trans-
fer - efficiently. In David Wagner, editor, CRYPTO 2008, volume 5157 of LNCS, pages 572–591.
Springer, Heidelberg, August 2008.

[KKMO21] Theodoros Kapourniotis, Elham Kashefi, Luka Music, and Harold Ollivier. Delegating multi-
party quantum computations vs. dishonest majority in two quantum rounds, 2021.

[KP17] Elham Kashefi and Anna Pappa. Multiparty delegated quantum computing. Cryptography,
1:12, 07 2017.

[LZ19] Qipeng Liu and Mark Zhandry. Revisiting post-quantum Fiat-Shamir. In Alexandra Boldyreva
and Daniele Micciancio, editors, CRYPTO 2019, Part II, volume 11693 of LNCS, pages 326–355.
Springer, Heidelberg, August 2019.

[Mah18a] Urmila Mahadev. Classical homomorphic encryption for quantum circuits. In Mikkel Thorup,
editor, 59th FOCS, pages 332–338. IEEE Computer Society Press, October 2018.

[Mah18b] Urmila Mahadev. Classical verification of quantum computations. In Mikkel Thorup, editor,
59th FOCS, pages 259–267. IEEE Computer Society Press, October 2018.

[Mor14] Tomoyuki Morimae. Verification for measurement-only blind quantum computing. Phys. Rev.
A, 89:060302, Jun 2014.

33

https://eprint.iacr.org/2018/443
https://eprint.iacr.org/2018/443

[MPP20] Andrew Morgan, Rafael Pass, and Antigoni Polychroniadou. Succinct non-interactive secure
computation. In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part II, volume
12106 of LNCS, pages 216–245. Springer, Heidelberg, May 2020.

[MW16] Pratyay Mukherjee and Daniel Wichs. Two round multiparty computation via multi-key FHE.
In Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of
LNCS, pages 735–763. Springer, Heidelberg, May 2016.

[MY21] Tomoyuki Morimae and Takashi Yamakawa. Classically verifiable (dual-mode) nizk for qma
with preprocessing, 2021.

[PS19] Chris Peikert and Sina Shiehian. Noninteractive zero knowledge for NP from (plain) learning
with errors. In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part I,
volume 11692 of LNCS, pages 89–114. Springer, Heidelberg, August 2019.

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient and com-
posable oblivious transfer. In David Wagner, editor, CRYPTO 2008, volume 5157 of LNCS,
pages 554–571. Springer, Heidelberg, August 2008.

[Qua20] Willy Quach. Uc-secure ot from lwe, revisited. In Clemente Galdi and Vladimir Kolesnikov,
editors, Security and Cryptography for Networks, pages 192–211, Cham, 2020. Springer Interna-
tional Publishing.

[Shm20] Omri Shmueli. Multi-theorem (malicious) designated-verifier nizk for qma, 2020.

[Unr10] Dominique Unruh. Universally composable quantum multi-party computation. In Henri
Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages 486–505. Springer, Heidel-
berg, May / June 2010.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets. In FOCS, 1986.

A Recent Work on Two-Message Secure Quantum Computation

Many recent works have considered maliciously-secure quantum protocols that satisfy the following inter-
action pattern. First, a common random string (crs) is sampled by a trusted party. Then, one party (the
receiver or verifier) sends a message to the other party (the prover or sender), who responds with a message
of their own. Finally, the receiver/verifier computes some output.

If the functionality these parties are computing is some quantum circuit 𝑄 with single-bit output, and
only the prover has a (quantum) input |𝜓⟩, then this constitutes a malicious designated-verifier non-interactive
zero-knowledge protocol for QMA, which we call MDV-NIZK for QMA. More generally, if both parties have
an input, then this constitutes a quantum non-interactive secure computation protocol, or Q-NISC.

The following additional distinctions can also be drawn. First, the verifier/receiver’s message may
either be one-time or reusable. Reusability requires that a malicious prover cannot recover information about
the verifier’s inputs, or cause an incorrect output, even if they use the same first message across multiple
computations, while observing whether or not the verifier rejects their messages. Next, we can distinguish
between whether the verifier is quantum or fully classical. The following table outlines the eight settings
that one could consider along these lines.

10Here, OT refers to post-quantum fully-simulatable two-message OT.
11Technically, [ACGH20] present their protocol in a weaker model, where some trusted setup distributes secret parameters to both

the prover and verifier. However, their techniques can also be used to obtain a protocol in the malicious verifier setting.
12This would have implications to (heuristic) obfuscation of quantum circuits, though there appear to be significant barriers to

achieving this with known CVQC techniques (see discussion in [BM21]).

34

Table 1: Secure Two-Message Quantum Computation

Functionality Reusability Verifier First constructed by Weakest assumption
MDV-NIZK One-time Quantum [CVZ20] OT10 [BCKM21a]
MDV-NIZK One-time Classical [ACGH20]11 QLWE in QROM [ACGH20]
MDV-NIZK Reusable Quantum [Shm20] OT + MDV-NIZK for NP [BCKM21a]
MDV-NIZK Reusable Classical Open

Q-NISC One-time Quantum [BCKM21a] OT [BCKM21a]
Q-NISC One-time Classical This work QLWE in QROM
Q-NISC Reusable Quantum [BCKM21a] OT + MDV-NIZK for NP [BCKM21a]
Q-NISC Reusable Classical Open12

B Completing the Proof of Lemma 3.2

Consider the following single-copy prover 𝒫*, which is initialized with 𝑞(𝜆)4 copies of the multiple-copy
prover’s initial state |𝜓init⟩. 𝒫* interacts with the single-copy verifier 𝒱*. The following describes how 𝒫*

prepares its intermediate state |𝜑pk⟩.

1. 𝒫* receives pk* from its verifier and sets pk𝑖 := pk*. It also samples (pk𝑗 , sk𝑗) ← 𝒱*(1𝜆) for each
𝑗 ∈ [𝑛] ∖ {𝑖}, and sets pk := (pk1, . . . , pk𝑛).

2. It tries the following for at most 𝑞(𝜆)4 steps:

• Prepare the state |𝜓pk⟩ using a copy |𝜓init⟩ and the public keys pk, and then apply 𝑉𝑑2 .

• Apply the measurement determined by Πpk,sk,𝑑2
, which is possible because it does not require

sk𝑖 due to condition 1 on the CVQC protocol, and the fact that 𝑑2,𝑖 = 0.

• If the measurement rejects, go back to step 1. Otherwise apply 𝑉 †
𝑑2

, output the resulting state
|𝜑pk⟩, and terminate.

3. If 𝒫* has not terminated, then prepare and output a dummy state |𝜑*pk⟩ that always passes the test
round.

Note that if 𝒫* terminated during the second step, then its output state is

|𝜑pk⟩ :=
Π

𝑉𝑑2

pk,sk,𝑑2
|𝜓pk⟩

‖Π𝑉𝑑2

pk,sk,𝑑2
|𝜓pk⟩ ‖

.

𝒫* then measures its intermediate state to produce its commitment 𝑦 = (𝑦1, . . . , 𝑦𝑛), and sends 𝑦𝑖 to
the verifier 𝒱*. The verifier then samples a challenge 𝑐 ∈ {0, 1}. If 𝑐 = 0, the prover applies 𝑉𝑑2

(if its
intermediate state was |𝜑pk⟩) or I (if its intermediate state was the dummy state |𝜑*pk⟩). If 𝑐 = 1, the prover
applies 𝑉𝑑1 . In both cases the prover then measures to produce 𝜋 = (𝜋1, . . . , 𝜋𝑛) and returns 𝜋𝑖 to the
verifier.

Note that, by definition, 𝒫* always passes the test round. Now consider what happens in the Hadamard
round. Let Ω be a set of keys (pk, sk) for which 𝒫* has an overwhelming probability of terminating in step
2 above. That is, define

Ω := {(pk, sk) : ⟨𝜓pk|Π
𝑉𝑑2

pk,sk,𝑑2
|𝜓pk⟩} > 1/𝑞(𝜆)2,

and note that for any such key pair, the probability that 𝒫* does not terminate is (1 − 1/𝑞(𝜆)2)𝑞(𝜆)
4 ≤

𝑒−𝑞(𝜆)2 = negl(𝜆).

35

Now we can write

E
pk,sk

[︁
⟨𝜓pk|Π

𝑉𝑑2

pk,sk,𝑑2
𝑉 †
𝑑1

Π
(𝑖)
pk,sk𝑉𝑑1Π

𝑉𝑑2

pk,sk,𝑑2
|𝜓pk⟩

]︁
=

∑︁
(pk,sk)∈Ω

⟨𝜓pk|Π
𝑉𝑑2

pk,sk,𝑑2
𝑉 †
𝑑1

Π
(𝑖)
pk,sk𝑉𝑑1

Π
𝑉𝑑2

pk,sk,𝑑2
|𝜓pk⟩Pr[(pk, sk)]

+
∑︁

(pk,sk)/∈Ω

⟨𝜓pk|Π
𝑉𝑑2

pk,sk,𝑑2
𝑉 †
𝑑1

Π
(𝑖)
pk,sk𝑉𝑑1Π

𝑉𝑑2

pk,sk,𝑑2
|𝜓pk⟩Pr[(pk, sk)]

≤
∑︁

(pk,sk)∈Ω

⟨𝜓pk|Π
𝑉𝑑2

pk,sk,𝑑2
𝑉 †
𝑑1

Π
(𝑖)
pk,sk𝑉𝑑1

Π
𝑉𝑑2

pk,sk,𝑑2
|𝜓pk⟩Pr[(pk, sk)] + 1/𝑞(𝜆)2

for infinitely many 𝜆, which implies that∑︁
(pk,sk)∈Ω

⟨𝜓pk|Π
𝑉𝑑2

pk,sk,𝑑2
𝑉 †
𝑑1

Π
(𝑖)
pk,sk𝑉𝑑1

Π
𝑉𝑑2

pk,sk,𝑑2
|𝜓pk⟩Pr[(pk, sk)] ≥ 1/𝑞(𝜆)− 1/𝑞(𝜆)2 = 1/poly(𝜆).

However, the left-hand side is at most negl(𝜆) greater than 𝒫*’s probability of success in the Hadamard
round, since for each (pk, sk) ∈ Ω, the prover’s intermediate state is |𝜑pk⟩ defined above, except with negl(𝜆)
probability. This is a contradiction, since 𝒫*’s probability of success in the Hadamard round must be
negl(𝜆), due to the fact that it always passes the test round, and condition 2 on the CVQC protocol.

C MPC for Classical Reactive Functionalities

Define a 𝑑-level 𝑛-party randomized functionality ℱ = (ℱ1, . . . ,ℱ𝑑) as follows. Let 𝑟 be random coins.
Then each ℱ𝑗 can be defined as(︁

𝑦
(𝑗)
1 , . . . , 𝑦(𝑗)𝑛

)︁
:= ℱ𝑗

(︁(︁
𝑥
(1)
1 , . . . , 𝑥

(𝑗)
1

)︁
, . . . ,

(︁
𝑥(1)𝑛 , . . . , 𝑥(𝑗)𝑛

)︁
, 𝑤(𝑗), 𝑟

)︁
,

where
(︁
𝑥
(1)
𝑖 , . . . , 𝑥

(𝑑)
𝑖

)︁
are the set of party 𝑖’s private inputs, (𝑤(1), . . . , 𝑤(𝑑)) are some public inputs, and(︁

𝑦
(1)
𝑖 , . . . , 𝑦

(𝑑)
𝑖

)︁
are the set of party 𝑖’s outputs. We allow 𝑥

(𝑗)
𝑖 to be an arbitrary function of 𝑦(1)𝑖 , . . . , 𝑦

(𝑗−2)
𝑖 .

Define an ideal functionality ℐℱ for computing ℱ in 𝑑 + 1 rounds. Let ℋ ⊂ [𝑛] be a subset of honest
parties and ℳ := [𝑛] ∖ ℋ be the corresponding subset of malicious parties. ℐℱ is initialized with honest
party inputs

{︁
𝑥
(1)
𝑖

}︁
𝑖∈ℋ

.

• In round 1, accept and store private inputs
{︁
𝑥
(1)
𝑖

}︁
𝑖∈ℳ

.

• In round 𝑗, for 𝑗 ∈ {2, . . . , 𝑑}, do the following. Accept public input 𝑤(𝑗−1) and compute(︁
𝑦
(𝑗−1)
1 , . . . , 𝑦(𝑗−1)

𝑛

)︁
:= ℱ𝑗

(︁(︁
𝑥
(1)
1 , . . . , 𝑥

(𝑗−1)
1

)︁
, . . . ,

(︁
𝑥(1)𝑛 , . . . , 𝑥(𝑗−1)

𝑛

)︁
, 𝑤(𝑗−1), 𝑟

)︁
.

Output
{︁
𝑦
(𝑗−1)
𝑖

}︁
𝑖∈ℳ

. Accept either
(︂
ok,
{︁
𝑥
(𝑗)
𝑖

}︁
𝑖∈ℳ

)︂
or abort as input. If ok, set level 𝑗 − 1 honest

party outputs to
{︁
𝑦
(𝑗−1)
𝑖

}︁
𝑖∈ℋ

and compute the next set of honest party inputs
{︁
𝑥
(𝑗)
𝑖

}︁
𝑖∈ℋ

. If abort, set

honest party outputs to ⊥ for each level 𝑘 ≥ 𝑗 − 1.

• In round 𝑑+ 1, accept public input 𝑤(𝑑) and compute

36

(︁
𝑦
(𝑑)
1 , . . . , 𝑦(𝑑)𝑛

)︁
:= ℱ𝑗

(︁(︁
𝑥
(1)
1 , . . . , 𝑥

(𝑑)
1

)︁
, . . . ,

(︁
𝑥(1)𝑛 , . . . , 𝑥(𝑑)𝑛

)︁
, 𝑤(𝑑), 𝑟

)︁
.

Output
{︁
𝑦
(𝑑)
𝑖

}︁
𝑖∈ℳ

. Accept either ok or abort as input. If ok, set level 𝑑 honest party outputs to{︁
𝑦
(𝑑)
𝑖

}︁
𝑖∈ℋ

. If abort, set level 𝑑 honest party outputs to ⊥.

As observed in [BCKM21a], the protocol of [GS18] can be used to implement this ideal functionality for
any 𝑑-level 𝑛-party functionality (with post-quantum security), assuming post-quantum oblivious transfer.
The required post-quantum oblivious transfer protocol can be constructed from QLWE [PVW08].

37

	Introduction
	Results
	Technical overview
	Discussion and open problems
	Other related work

	Preliminaries
	Delegation of quantum computation
	Quantum fully-homomorphic encryption
	Multi-party quantum computation
	Classical non-interactive secure computation

	Generalizing the TCC:ACGH20 Parallel Repetition Theorem
	Composable Blind CVQC
	CVQC for quantum-classical circuits
	Delegation of quantum-classical circuits with quantum verifier
	Making the verifier classical
	Four-message CVQC
	Two-message CVQC with extra properties

	Secure Quantum Computation
	A generic construction of multi-party quantum computation
	Three-round multi-party quantum computation
	Quantum non-interactive secure computation

	Recent Work on Two-Message Secure Quantum Computation
	Completing the Proof of lemma:far
	MPC for Classical Reactive Functionalities

