
1

SOTERIA: Privacy-Preserving Machine Learning
for Apache Spark

Cláudia Brito, Pedro Ferreira, Bernardo Portela, Rui Oliveira, and João Paulo

Abstract—The adoption of third-party secure machine learning (ML) cloud services is highly dependent on the security guarantees
provided, and on the performance penalty they incur on workloads for model training and inference. In this paper, we explore security /
performance trade-offs for the distributed Apache Spark framework and its ML library. Concretely, we build upon a key insight: in
specific deployment settings, one can reveal carefully chosen non-sensitive operations (e.g. statistical calculations). In turn, this allows
us to considerably improve performance of privacy-preserving solutions, without exposing the protocol to pervasive ML attacks.
We propose SOTERIA, a system for distributed privacy-preserving ML that leverages Trusted Execution Environments (e.g. Intel SGX).
Unlike in previous work, where all ML-related computation is performed at trusted enclaves, we follow this insight to have a hybrid
deployment, combining computation done inside and outside these enclaves. The conducted experimental evaluation validates that our
approach improves the runtime performance of distinct ML algorithms by up to 1.7x, when compared to previous related work. Our
protocol is accompanied by a security proof, as well as a discussion regarding resilience against a wide spectrum of ML attacks.

Index Terms—Privacy-preserving, Machine Learning, Apache Spark, SGX, Outsourcing

✦

1 INTRODUCTION

The ubiquitous environment provided by cloud computing
providers offers a scalable, reliable, and performant solution
to deploy machine learning (ML) workloads, which typi-
cally requires a considerable amount of computational ca-
pabilities to provide timely results. However, many of these
workloads operate over users’ sensitive information (e.g.,
medical records). Therefore, outsourcing ML data storage
and computation to third-party cloud services leaves users
vulnerable to attacks that may compromise the integrity and
confidentiality of their data. This exposes the users of this
paradigm to critical ethical concerns, and is not compliant
with regulations such as HIPAA and GDPR [1].

The common machine learning workflow includes two
main phases: data training and data inference. During such
phases, users’ data is susceptible to several attacks, such as
adversarial attacks, model extraction and inversion, and recon-
struction attacks [2], [3], [4]. Many of these attacks can be pre-
vented by using cryptographic schemes that enable privacy-
preserving computation over sensitive data, such as homo-
morphic encryption or secure multi-party computation [5],
[6]. However, these impose a significant performance toll
that restricts their applicability to practical scenarios [7].

Trusted Execution Environments (TEEs) (e.g., Intel SGX
(SGX) [8], AMD-SEV [9], ARM TrustZone [10]) present
an hardware-based alternative solution to deliver a secure
processing environment where data can be handled in its

• C. Brito, R. Oliveira and J. Paulo are with INESC TEC & University
of Minho. E-mail: claudia.v.brito@inesctec.pt, joao.t.paulo@inesctec.pt,
rcmo@inesctec.pt

• P. Ferreira and B. Portela are with INESC TEC & Fac-
ulty of Sciences, University of Porto.E-mail: pferreira@ipatimup.pt,
bernardo.portela@fc.up.pt.

This work has been submitted to the IEEE for possible publication. Copyright
may be transferred without notice, after which this version may no longer be
accessible.

original form (i.e., plaintext) at untrusted servers. State-of-
the-art solutions follow a straightforward design where ML
workloads are fully deployed inside TEE enclaves [11], [12],
[13]. However, as the amount of computational and I/O
operations done at the enclaves increases, the performance
of ML training and inference is affected negatively, thus
limiting, once again, the applicability of these solutions to
practical scenarios [14].

This paper builds upon the insight that such ML perfor-
mance could be improved if one can reduce the amount of
operations done at enclaves. However, choosing the correct
set of operations to run outside of TEEs is a very complex
task. Ideally, these operations: i) should significantly reduce
the enclaves’ computational and I/O load for different ML
workloads; and ii) must not leak critical information during
the execution of the aforementioned ML attacks. We argue
that statistical operations (i.e., the calculation of confidence
results, table summaries, ROC/AUC curves, and probability
distributions for classes) are good candidates to be offloaded
from enclaves. We support this claim by analyzing and
detailing its security and performance implications for dif-
ferent ML workloads and attacks.

To demonstrate the feasibility of our approach, we pro-
pose SOTERIA, a system for distributed privacy-preserving
machine learning, that leverages the scalability and reliabil-
ity provided by Apache Spark and its ML library (MLlib).
Unlike previous solutions [15], [16], SOTERIA supports a
wide variety of ML algorithms without changing how users
build and run these within Apache Spark. It is also the
first TEE-based design to facilitate the exploration of this
security/performance interplay, by enabling fine-grained
configurations regarding which operations and information
are to be processed within protected enclaves.

SOTERIA ensures that critical operations, which enable
existing attacks to reveal sensitive information from ML
datasets and models, are only performed on secure enclaves.

2

This means that the sensitive information only exists in
plaintext form when inside the enclave, while being en-
crypted in the remainder data flow (e.g., network, storage).
This design enables robust security guarantees, protecting
the confidentiality of ML training and inference workloads
while covering a larger spectrum of attacks than in current
related work [11], [12], [15].

In order to showcase the performance benefits of dif-
ferentiating the ML operations done at secure enclaves,
SOTERIA also supports an alternative design, similar to the
ones proposed in previous work, where the full set of ML
operations are deployed at enclaves. Furthermore, we com-
pare our solution with a non-secure deployment of Apache
Spark and the state-of-the-art SGX-Spark solution [15]. Our
experiments, resorting to the HiBench benchmark [17] and
including seven different ML algorithms, show that SOTE-
RIA outperforms SGX-Spark by up to 1.7x, while offering
stronger security guarantees.

In summary, we present the following contributions:
• SOTERIA, a provably secure privacy-preserving system

based on Apache Spark that leverages TEEs for the
secure execution of ML workloads.

• An open-source prototype1 that resorts to the
Graphene-SGX Library OS [18] to ease the integration
of Intel SGX within Apache Spark’s workflow.

• An extensive evaluation comparing the performance of
SOTERIA with a baseline (non-secure) deployment of
Apache Spark and state-of-the-art SGX-based solutions.

2 BACKGROUND

2.1 Apache Spark and MLlib

Apache Spark is a distributed cluster computing framework,
which uses in-memory data processing engines that support
Extraction, Treatment, and Loading (ETL), analytical, ma-
chine learning, and graph processing over large volumes of
data. Spark can be deployed on a cluster of servers that
may access several data sources (e.g., HBase, HDFS) for
reading the data to be processed and store the correspond-
ing output and logs [19]. Spark is commonly compared to
Hadoop’s two-stage disk-based MapReduce computation
engine. However, it is able to perform most of the com-
putation in-memory, thus promoting better performance for
data-intensive applications such as machine learning ones
[19]. Spark follows a distributed architecture composed of a
Master and several Worker nodes, typically deployed across
distinct cluster servers.

The MLlib library [20] enables Spark users to build end-
to-end machine learning workflows. This is depicted in
Figure 1, which divides the two main phases of ML into
5 stages. The first stage goes from the collection of data to
its treatment. In the second stage, while transforming data
into train and test datasets, it is chosen or developed a new
or pre-defined (e.g., Logistic Regression, Random Forest) ML
algorithm. The third stage is the training stage, where data is
iterated to deliver an optimized trained model, in the fourth
stage. In the fifth stage, the trained model can then be saved
(persisted) and loaded (accessed) for inference purposes.

1. https://github.com/claudiavmbrito/Soteria

Fig. 1: Machine learning pipeline and attacks defined within
our security and threat model.

2.2 Intel Software Guard Extensions

Intel SGX provides a set of new instructions, available on
Intel processors, that applications can use to create protected
and trusted memory regions. These regions (enclaves) are
isolated from any other code at the host system, thus not
allowing other processes, even the ones running at higher
privilege levels, to access their content [8], [21]. To ensure
that the desired computation was correctly executed in a
secure enclave, the integrity of computational results, as
well as the identity of the enclave, can be verified remotely
via the remote attestation mechanism provided by SGX [22].

Since SGX protects code and data from privileged access
(i.e, host OS, hypervisor, BIOS), sensitive plaintext infor-
mation can be processed at the enclave without compro-
mising its privacy. Therefore, TEEs enable better perfor-
mance than traditional cryptographic computational tech-
niques (e.g., searchable encryption, homomorphic encryp-
tion) [23]. Nonetheless, the enclave has limited memory
capacity (128MB per CPU) before requiring memory swap-
ping, which is a costly mechanism in terms of performance
[14]. Thus, solutions resorting to SGX must balance the
number of I/O operations and the amount of data handled
by enclaves as well as the Trusted Computing Base (TCB) in
order to optimize performance.

In this paper, we chose Intel SGX over other TEE’s (e.g.,
ARM TrustZone [10]) due to its broad use in academia [13],
[24], [25] and industry [26], availability, as well as its security
guarantees and computing reliability. However, our solution
is generic and can be applied to other TEE technology that
follows similar design principles to SGX. Similarly, novel
research and optimizations for SGX, which are orthogonal
to the work discussed in this paper and that solve issues
such as Denial of Service (DoS), side-channel attacks, or memory
access patterns, can be applied to SOTERIA [27], [28].

3 APPLICATIONS AND SECURITY MODEL

SOTERIA is designed to enable the secure outsourcing of ML
training and inference workloads. These are scenarios where
the data owner holds sensitive information (e.g., a private
dataset, model), and wants to perform some ML workload
on it, using an external cloud provider.

This is a very common setting in health-related contexts,
such as rare disease identification [29]. Hospitals and clinics
are unwilling to (or outright unable to) offload patient
data to a potentially malicious cloud service, even if such
service provides computational resources to feasibly process
large quantities of data. Alternatively, insurance companies
also collect large quantities of data and leverage it for the

3

forecasting of traffic accidents [30]. The company would
also significantly benefit from using the resources of third-
party cloud infrastructures, but risking the leakage of said
predictive model entails losing valuable market advantage.

Therefore, this paper addresses the scenario where the
data owner (client) must be protected against a malicious
adversary at the cloud provider (server), which is targeting
its data, the generated model, and the queries performed
over it. Crucially, we assume that the data owner will
not actively compromise the protocol, either by inputting
false data to the model training, or performing malicious
queries to the model on behalf of the adversary. Essentially,
we assume that the data owner is responsible to enforce
standard mechanisms for data access and control over its
own machine. These kind of access control mechanisms are
orthogonal to this work, as they are widely used, and are
adequately documented by previous research [31].

3.1 Security

Many applications have demonstrated how Intel SGX can
be used to design provably secure solutions for secure
outsourced computation. Our work builds upon the work
of Bahmani et. al. [32], where Intel SGX behaves as a
trusted anchor in untrusted environments for general se-
cure computation. Fundamentally, their guarantees rely on
building protocols for secure computation following a very
specific construction: a bootstrapping stage, where the client
establishes a secure channel with the remote enclave, and an
online stage, where the client provides inputs and receives
outputs via this secure channel. Here, the enclave is simply
executing a pre-determined, arbitrary function. In this work,
we extend this notion by considering the access of enclave
workers to external untrusted storage. This is achieved via
standard mechanisms for authenticated encryption, using a
key provided by the client via secure channels. We demon-
strate that this entails the same level of security.

SOTERIA is designed to behave as a service for privacy-
preserving machine learning. As such, we assume the fol-
lowing deployment model. The client (data owner) will be
trusted. It will provide the input for processing, and submit-
ting queries for machine learning tasks. Then, we will have a
Master node, and N Worker nodes. These will be deployed
in an untrusted environment (cloud provider), equipped
with Intel SGX technology. Externally, we also consider a
distributed data storage backend. The protocol assumes an
implicit setup where the client has stored its input data
securely within this backend, which is also considered to
be untrusted throughout the protocol execution.

The main security goal is to ensure that clients can
provide input data for training and inference in a way that
is not vulnerable to breaches in confidentiality, for both
Master and Worker nodes. Concretely, we want our system
to behave as a black-box for executing ML scripts according
to Apache Spark specifications.

Our model considers semi-honest adversaries, which
means that security is discussed considering an adversary
that attempts to break the confidentiality of data and model,
but that will not actively deviate from the protocol specifi-
cation. This is a common setting for cloud-based systems,
where vulnerability data breaches allow for malicious en-

tities to temporarily read internal processing data. Nev-
ertheless, we provide additional counter-measures against
adversarial queries and the injection of data samples into
the storage backend or the model being trained.

However, we assume that the number and duration of
computation steps, and the size of output data, are explicit
leakage. This is because, despite using secure channels, all of
these parameters can be inferred by an adversary observing
network communication between Spark Nodes and their
storage accesses. Ensuring the privacy of such data would
entail additional steps to enforce constant-round execution
and fixed-size outputs, which would significantly reduce
the performance of ML workloads [33]. We consider this
relevant future work but outside the scope of this paper.

3.2 Machine Learning Workflow Attacks
SOTERIA is aimed at scenarios where machine learning
pipelines are outsourced to untrusted environments. By
default, ML datasets and models are stored and processed in
plaintext, which leads to the leakage of sensitive information
to adversaries at untrusted premises. However, even if this
information is encrypted, there are other attacks that may
compromise the security of ML at different stages, namely
Adversarial Attacks, Model Extraction, Model Inversion
and Membership Inference and, Reconstruction Attacks, as
depicted in Figure 1.

Adversarial Attacks. These attacks can be decomposed
into five categories, where the main goal is to inject ad-
versarial samples. Data poisoning relies on the injection
of adversarial samples directly on the training dataset, to
intentionally control the model and make it incorrectly label
samples. This requires direct access to the training dataset
[34]. Gradient-based attacks require an adversary to have
detailed information of the models, including input data
and model gradients. Score-based attacks rely on adversarial
knowledge of the predicted results and class probabilities
(i.e, inferring the probabilities of each class label). Transfer-
based attacks require the attacker to know the full training
dataset, which is then used to train a similar model able to
replace the original one. Finally, decision-based attacks rely
on the adversary observing the final output obtained by the
model, e.g., the top-1 class label [35].

Model Extraction. In this attack, the adversary learns a
close approximation of the objective function of the trained
model (f), finding f’(x) = f(x). This close approximation is
based on the exact confidence values and response labels
obtained by inference [2]. Briefly, an adversary queries the
system in a black-box manner, and must achieve its goal
with as few queries as possible.

This class of attacks can be decomposed in four types.
Equation-solving attacks are based on class probabilities
and confidence values and require to know the dimension
of the original training dataset2, and are performed by
running d + 1 queries on the d-dimensional input vector
x. Equation-solving is not applicable to decision trees. Path-
finding attacks are focused on decision trees, and are per-
formed by querying the tree to recreate the path of each
leaf, requiring the adversary to have knowledge on the tree

2. State-of-the-art attacks rely on publicly available datasets to which
adversaries have full access to.

4

and data features, and confidence values. Class-only attacks
target binary models, and require an adversary with con-
crete samples from the training dataset [2]. Recently, data-
free knowledge distillation (DFKD) has been proposed for
performing model extraction attacks. This attack has shown
to be effective with only knowledge of publicly available in-
formation from training data, namely statistics information
(e.g., gender and/or demographic statistics) [36].

Model Inversion and Membership Inference. While
model extraction aims to retrieve an approximation of the
model, model inversion and membership inference target
the recovery of values from the training dataset. Both attacks
consider an adversary that queries the ML system in a black-
box fashion. Model inversion attacks are currently based
on ML services, which define publicly their trained models
(e.g., BigML explains its trained models on their website3)
and the confidence values. Alongside the use of ML services,
to accomplish the attack proposed by [3], the attacker must
have partial knowledge of the training dataset’s features to
infer and query the model with specific queries. Unfortu-
nately, these features tend to be considered as non-sensitive
(e.g., age, gender) and may be public, which facilitates their
access to a potential adversary [2].
Membership inference aims to test if a specific data point d
was used as training data. These attacks are also based on
publicly accessible ML services and require the adversary
to know a subset of samples used for training the model
(that does not contain d). The adversary then compares the
predictions between these data points and others that the
model might have not encountered during training, to infer
if d was in the original training dataset [37].

Reconstruction Attacks. In this attack, the adversary
intends to reconstruct raw data used for training the model.
Most works claim that the main difference from model
inversion is that the adversary must have white-box ac-
cess to the model since it requires access to model-specific
information such as feature vectors. The reconstruction at-
tack is most common for ML algorithms that use feature
vectors, such as Support Vector Machines or K-Nearest
Neighbor [38]. Nevertheless, [39] has recently proposed a
black-box approach to reconstruction attacks. In this setting,
the attacker has access to another dataset with the same
distribution as the original training dataset (i.e., local dataset
and training dataset are subsets from a larger dataset). Also,
even though the attacker has black-box access to the model,
it needs additional information about the model architecture
and its hyperparameters (e.g., learning rate, loss function)
which can be obtained by resorting to attacks similar to [4].

Unlike previous works [11], [12], [15], [16], which typi-
cally consider a small subset of these attacks, our proposal
aims at providing mechanisms that cover the full range of
mentioned exploits. Table 1 presents relevant state-of-the-
art solutions, the security attacks covered by these, and
the attacks addressed by SOTERIA. Our system implements
authentication mechanisms to prevent the execution of non-
client queries. As such, we assume that the adversary is
not given public (black-box) access to the systems, which
would make these security mechanisms redundant. Indeed,
the other solutions presented at the table also rely on such

3. https://bigml.com/api/models

assumption to deter black-box attacks. Furthermore, attacks
that rely on knowing network and storage I/O patterns,
or based on the number of computation steps or output
sizes, are not covered by SOTERIA. These issues are con-
sidered to be orthogonal, as they are common to all systems
performing secure computation in untrusted servers. It is
possible to remove access pattern leakage from SOTERIA
by overlaying mechanisms such as Oblivious RAM [40],
however these techniques impose a performance toll that
is usually prohibitive for practical deployment.

TABLE 1: Comparison between state-of-the-art solutions
and SOTERIA regarding the safety against ML attacks.

Attacks Systems
[11] [12] [16] [15]* SOTERIA

Adversarial

Gradient-based ✗ ✗ ✓ ✗ ✓
Score-based ✗ ✗ ✓ ✗ ✓

Transfer-based ✗ ✗ ✓ ✗ ✓
Decision-based ✗ ✗ ✓ ✗ ✓

Model Extraction

Equation-solving ✓ ✓ ✗ ✓ ✓
Path-finding ✓ ✓ ✗ ✗ ✓
Class-only ✓ ✓ ✗ ✗ ✓

DFKD ✓ ✓ ✗ ✓ ✓
Model Inversion ✓ ✓ ? ✓ ✓

Reconstruction Attacks ✓ ✓ ✓ ✓ ✓
Membership Inference ✗ ✗ ✗ ✗ ✓

*Data encryption is not provided on the open-source version.

4 SOTERIA

SOTERIA is a system for distributed privacy-preserving
machine learning that avoids changing the architecture and
processing flow of Apache Spark and MLlib, keeping their
usability, scalability and fault tolerance properties.

4.1 Apache Spark - Architecture and Flow

As depicted in Figure 2 by the gray boxes, a Spark cluster
is composed of a Master and several Worker nodes. Before
submitting ML tasks (e.g., machine learning training and
inference operations) to the Spark cluster, the user must
load its local datasets and models to a distributed storage
backend supported by Apache Spark. The user can then
submit ML processing tasks to the Spark client that is
responsible for forwarding these tasks (scripts) to the Master
node. Namely, tasks are submitted to the Spark Driver
that generates a Spark Context which enables accessing the
resource manager and then distributing the tasks to a set of
Worker nodes according to their computational resources. A
task can be divided into smaller processing steps, each done
by an independent Worker in parallel. Also, each Worker
launches one or more executors (JVM processes) that do
local processing concurrently (e.g., training the ML model
and collecting train statistics).

When the Worker nodes require accessing data at the
storage backend (e.g., for reading and training an ML
dataset, for loading a stored model and data for inference)
they usually use an abstraction called Resilient Distributed
Datasets (RDD) [41]. This representation eases the partition-
ing of data into shards that, ideally, are collocated with
the Worker nodes requesting them, thus improving storage
I/O latency. To improve storage performance, data is also

5

Vanilla Apache Spark

Untrusted SideTrusted Side

b

1

2

Enclave New Components

3

6

4Client
Task ScriptManifest

1

Data
a

2

Encryption Module

Data Loading

Encryption Module

MLlib Distributed
Data

Storage6

Master

Spark Context
Spark Driver ...

5

5

E
xe

cu
to

r

C
ac

heTasks

Worker N

Encryption Module
Data Loading

E
xe

cu
to

r

C
ac

heTasks

Worker 1

Encryption Module
Data Loading

Fig. 2: SOTERIA architecture and operations flow.

kept at an in-memory cache at each executor process. As
Workers may be executing different steps of a given task,
these need to be able to transfer information (e.g., model
parameters), through the network, among each other. After
finishing the desired computational steps, the workers send
back their outputs to the Master node, which is responsible
for merging the outputs and replying to the client.

Similar to the regular flow of Apache Spark, also SOTE-
RIA can be divided into two main environments or sides,
the SOTERIA Client trusted side and the SOTERIA Cluster
untrusted side (e.g., cloud environment). Next, we describe
the main modifications required by SOTERIA to the original
Apache Spark’s design, depicted in Figure 2 by the white
dashed and solid line boxes.

4.2 SOTERIA Client
SOTERIA’s client module is used by users for three main
operations: i) loading data into the distributed storage back-
end, ii) sending ML training tasks to the Spark cluster, and
iii) sending ML inference tasks to the Spark cluster. Al-
though SOTERIA provides an extended version of the Spark
client module and MLlib, it does not change the way users
typically specify and perform the previous operations. The
only exception is that users specify additional information
in a Manifest configuration file, as described next.

4.2.1 Data Loading
For the first operation, the user must specify the data to
be loaded to the storage backend. However, this data has
to be encrypted before leaving the trusted user premises.
This step is done by extending Spark’s data loading module,
which is responsible for this operation, with a transparent
encryption module (Figure 2- a). This module is responsible
for encrypting the data being loaded into the distributed
storage backend with a symmetric-key encryption scheme
(Figure 2- b). Note that the data to be loaded may be the
train and validation dataset, for training purposes, or the
model and data to be inferred, for inference purposes.

4.2.2 Tasks submission
The task submission phase includes two main files, namely,
the ML task script and the Manifest file. For this phase,
the transparent encryption module is also integrated with
MLlib. This module is used to encrypt the ML task script
(Figure 2- 1), which may contain sensitive arguments (i.e,
model parameters) and processing logic, and to decrypt the

outputs (e.g., trained model or inference result) returned
by Spark’s Master node after completing the corresponding
tasks. The Manifest file, which requires user input, contains
the location (e.g., directory) at the storage backend where
the corresponding training or inference data is kept (Figure
2- 2). Also, and as further discussed below, the encryption
module is responsible for exchanging the user’s symmetric
encryption key, task’s scripts, and Manifest file with the Mas-
ter node’s SGX enclave (Figure 2- 1 2). This is done once, at
the task’s bootstrapping phase, and requires establishing a
secure channel between the client and Master’s enclave. This
secure channel guarantees the secure exchange of the user’s
encryption key and the Manifest file whilst the encrypted
tasks scripts can be safely sent via a regular channel.

With the previous design, we ensure that sensitive data
is only accessed in its plaintext format at the trusted user
premises or inside trusted enclaves. This includes users’ en-
cryption keys, the information contained in ML task scripts,
and the output of executing these tasks.

4.3 SOTERIA Cluster

As aforementioned, the training and inference ML task
scripts are sent encrypted to Spark’s Master node to avoid
revealing sensitive information. However, the node re-
quires access to the plaintext information contained in these
cryptograms to distribute the required computational load
across several Worker nodes. Therefore, the Spark Driver
and Context modules must be deployed in a secure SGX
enclave where the cryptograms can be decrypted and the
plaintext information can be securely accessed. The cryp-
tograms, however, can only be decrypted if the secure
enclave has access to the user’s encryption key, thus ex-
plaining why the key must be sent through a secure channel
established between the client module and the enclave.

For inference operations, the Master node needs to access
the distributed storage backend to retrieve the stored ML
model. The user’s encryption key is again necessary so that
the encrypted model is only decrypted and processed at
the secure enclave. Moreover, the Manifest file, also sent by
the trusted client through the established secure channel,
ensures that the Master node only has access to the storage
locations specified at the file (Figure 2- 2). This is important
to prevent malicious attackers from accessing stored data
(e.g, datasets, models) that these should not have access to.

After processing the ML task scripts, the Master’s en-
clave establishes secure channels with the enclaves of a set
of Workers to send the necessary computational instruc-
tions4 along with the user’s encryption key and Manifest
file (Figure 2- 3). The user’s encryption key is needed at the
Worker nodes so that these can read encrypted data (e.g.,
train dataset or data to be inferred) from the storage backend
while decrypting and processing it in a secure enclave en-
vironment (Figure 2- 4). The Manifest file is used to prevent
unwanted accesses to stored data. Furthermore, the enclaves
at the Worker nodes also establish secure channels across
each other for transferring sensitive metadata information
such as model training parameters (Figure 2- 5).

4. The same metadata sent by a vanilla Spark deployment so that
Workers know the computational operations to perform.

6

SML-2SML-1

Worker

SG
X

-E
xe

cu
to

r

C
ac

he1
Tasks

Encryption Module
Data Loading

Enclave New ComponentsVanilla Apache Spark

Worker
E

xe
cu

to
r

C
ac

he

Tasks

Encryption
Module

Data Loading

Executor

C
ac

he

Statistics

Fig. 3: Comparison between SML-1 and SML-2 designs.

Finally, after completing the desired computational
tasks, the Workers send the corresponding inference or
training outputs to the Master node, through the established
secure channel (Figure 2- 6). The Master node then merges
the partial outputs into the final result and sends it en-
crypted, with the user’s encryption key, to the trusted client
module (Figure 2- 7). At the latter, the result (i.e., trained
model or inference output) is decrypted by the transparent
encryption module and returned to the user in plaintext.

4.4 SOTERIA Twofold Design

SOTERIA is fundamentally designed considering two main
designs. The first (SML-1) is a straightforward approach,
where all ML operations are done within secure enclaves.
This is a useful general-purpose solution, and presents a
relevant baseline to compare with the novel design in terms
of security and performance. The second (SML-2) enables
the aforementioned fine-grained configuration of which ML
operations are processed within protected enclaves. We
stress that SML-1 and SML-2 only differ on the amount
of operations done at the enclaves of Spark Worker nodes,
while for enclaves deployed at other Spark components (i.e.,
Master node), the operations are identical.

Secure ML Design 1 (SML-1). In the first design, all
computation done by Spark Workers is included in a trusted
environment. The executor processes launched by each
Worker node are deployed inside an enclave, as depicted in
Figure 3. Outside the enclave, data is always encrypted in an
authenticated fashion, which allows the Worker to decrypt
and validate data integrity within the enclave.

Secure ML Design 2 (SML-2). Our novel design is based
on the observation that ML workloads are composed of
different computational steps. Some must operate directly
over sensitive plaintext information (e.g., train and inference
datasets and model), while others do not require access
to this type of data and are just calculating and collecting
general statistics about the operations being done. SML-
2 decouples statistical processing, used for assessing the
performance of inference and training tasks, from the actual
computation of the ML algorithms done over plaintext
information. Concretely, SML-2 reveals the calculation of
confidence results (accuracy, precision, recall and F1-scores),
table summaries and ROC/AUC curves, and probability
distributions for classes. This decoupling builds directly
upon MLlib and refactors the needed classes without re-
quiring any changes to the way users submit ML tasks.
As depicted in Figure 3, statistical processing is done by
executor processes at the untrusted environment, while the

remaining processing endeavors are done by another set of
executors inside a trusted enclave (Figure 3- 1).

4.5 Security

Formally, our security goal is defined using the real-versus-
ideal world paradigm, similarly to the Universal Compos-
ability [42] framework. Succinctly, we prove that SOTERIA
is indistinguishable from an idealized service for running
ML scripts to an arbitrary external environment that can
collude with a malicious insider adversary. We then use
that abstraction to demonstrate how it prevents real-world
attacks. This idealized service is specified as a black-box
functionality parametrized with the input data, which sim-
ply executes the tasks described in the ML task script, and
returns the output to the client via a secure channel. We first
discuss the main security argument, and then demonstrate
how this idealized black-box ensures effective mitigation of
the attacks specified in Section 3.2.

In the real-world, we run SOTERIA as specified in Section
4, and the adversary can observe all messages exchanged
between participants, as well as requests to external storage
done by Workers. In the ideal world, we instead run the
idealized service, and the adversary is presented with a
simulated view of the world. The security reasoning is that,
if the views provided to the adversary in both worlds are
indistinguishable, then SOTERIA reveals nothing more than
what would be revealed if we were to use such an idealized
service. This entails revealing network and storage I/O
patterns, number of computation steps, and output sizes.

Our security proof is dependent on an intermediate
result that follows naturally from [32], which states that
if a functionality can be securely computed via SGX, then
the same functionality using inputs from external storage
can also be securely computed. The full security proof of
SOTERIA can be found in A. We now outline the intuition
for the proof.

The role played by SOTERIA ’s Master node can be seen
as an extension of the client, establishing secure channels,
providing storage encryption keys, and receiving outputs.
Given that this follows the methodology described in [32],
the Master node can be replaced by a reactive functionality
performing the same tasks. Following the same reasoning
for the ML processing stage, each SOTERIA Worker behaves
simultaneously as a processing node, and as a client node
providing inputs to the computation of other Workers (e.g.,
model training parameters). This enables us to do a hybrid
argument, where Worker nodes are sequentially replaced by
idealized reactive functionalities executing their respective
role within the ML task script. At this stage, we have a client
interacting with a functionality that forwards encryption
keys to other functionalities performing ML processing.

Given that all processing is done in ideal functionalities,
and that all access to external storage is fixed by the ML
Task Script and the Manifest, we can have the functionalities
processing over hard-coded client data, and replace the
secure data storage with dummy encryptions. Finally, we
can collapse the Master node functionality as part of the
Client, since it is simply forwarding client requests. We have
now reached the ideal world, where all ML computation is
performed in an ideal black-box functionality, and all other

7

protocol interactions are simulated given the Task Script and
Manifest files.

For simplicity, our analysis refers to SML-1. The rea-
soning for SML-2 is identical, with the caveat that non-
sensitive statistical data is explicitly revealed as leakage by
the functionality to the simulator in the ideal world. Thus,
the proof for SML-2 is analogous, but instead considers an
ideal functionality that reveals the confidence results and
class probabilities associated with the ML task, which are
then used by the simulator to emulate the real-world view.

4.5.1 Relation to ML Attacks and Applications

The previous discussion allows us to reason over ML work-
flow attacks in a very concrete way. The security of SOTERIA
ensures that the adversary’s interaction with our system is
analogous to observing the idealized service interact with
the client via secure channels, with the only additional
information received being confidence values and class
probabilities. Considering the pervasive pre-requisite for
many attacks of having black-box access to the models,
a crucial security question to answer is: how do confidence
values and class probabilities relate to black-box model access,
i.e. are these equivalent in any way? Extracting model access
from only confidence values is an on-going area of research.
However, current attacks suggest one is unable to do this
in any efficient way [43], which supports our assumption
that revealing these statistical values is insufficient to enable
attacks relying on black-box model access.

We now overview the four types of attacks referred in
Section 3.2 in a case-by-case basis. An in-depth security anal-
ysis considering alternative adversary assumptions in SML-
1 and SML-2 can be found in B. The adversary considered
in the security proof is semi-honest, which does not allow
input forgery. However, this possibility must be considered
if SOTERIA is to be resistant against the cloud provider itself.
This is achieved by relying on authenticated data encryp-
tion. This means that the input dataset is authenticated by
the data owner and explicitly defined in the Manifest file,
allowing enclave Worker nodes to check the authenticity of
all input data. Thus, no forged data is accepted for pro-
cessing, a necessary pre-requisite for performing any type
of adversarial attack. By relying on secure channels between
the TEE at the Master node and the client, an external
adversary is prevented from observing legitimate query
input/outputs, or submitting forged queries to SOTERIA.
This query privacy feature is crucial to block illegitimate
model access, which allows us to protect against model
extraction, model inversion, membership inference as well as
some instances of reconstruction attacks that require black-
box access to the model.

Finally, the most common reconstruction attacks require
white-box access to the model. The previous security result
demonstrates that our system does not reveal the trained
model, which includes the important feature vectors re-
quired for this attack to occur. Alternatively, reconstruction
attacks requiring black-box access to the model are strictly
stronger. However, since only confidence values and class
probabilities are revealed by SOTERIA, these are insufficient
to emulate black-box access to the model, which excludes
the prerequisites for such attacks.

4.6 Implementation

SOTERIA’s prototype is implemented using Java and Scala,
and is based on Apache Spark 2.3.0. The current implemen-
tation requires modifying Spark’s data loading and MLlib,
while not changing any core modules of the framework.

Spark’s data loading library was extended to include
transparent encryption and decryption. This library is used
by the Client when loading data into the distributed storage
backend, submitting ML task scripts to the Master node, and
receiving the corresponding inference and training results.
Data encryption and decryption are done by resorting to
the AES-GCM-128 authenticated encryption cipher mode,
which is standardized by NIST and provides both privacy
and integrity guarantees [44].

We recall that our current prototype assumes a boot-
strapping phase for establishing a secure channel between
the trusted Client module and the Master’s node SGX en-
clave, which is used to securely exchange messages between
these nodes. The establishment of this secure channel is not
currently supported by our prototype, as the main goal of
this paper is to analyze the extra performance overhead of
doing server-side ML computations with the aid of Intel
SGX enclaves. Nevertheless, this channel could be imple-
mented with one of many key exchange protocols for SGX,
with minimal performance overhead [32], [45].

However, it is important to note that the remaining
secure channels used by the Master node enclave to com-
municate with the Workers’ enclaves, and for Workers’
enclaves to exchange information among each other, are
fully supported by our prototype and their overhead is
considered in our experimental evaluation. Indeed, these
secure channels are provided by Graphene-SGX [18].

Graphene-SGX. SOTERIA uses version 1.0 of Graphene-
SGX, which is an open-source library OS that facilitates
the portability of native applications and libraries to run
inside SGX enclaves. Briefly, the Graphene-SGX library
works similarly to a paravirtualization environment, en-
abling native applications and libraries to run unmodified
on an isolated enclave space. I/O and other system calls
from the application are replaced by Graphene-SGX to
ensure their security. For instance, I/O operations to the
storage backend are encrypted transparently by Graphene-
SGX, while also enabling the creation of secure encrypted
channels to communicate with other enclaves. One of the
main components of Graphene-SGX is its Manifest file. It
ensures that applications, running within Graphene-SGX,
can attest the integrity of libraries and data being used/read
by them and, moreover, cannot access other libraries or data
that are not specified in this file.

Applying Graphene-SGX to SOTERIA’s prototype. The
Manifest file, discussed at Section 4.2, is directly mapped to
a Graphene-SGX file in our prototype. For SML-1’s imple-
mentation, besides the path to the data and ML task scripts
inputted by the users, this file also has the necessary MLlib
and core Spark libraries that must run on a secure SGX
enclave at the untrusted cluster deployment. Briefly, these
libraries are the ones that are used by the Spark Master
and Worker nodes to perform ML tasks, including statistical
computation. Note that these are already included in the
file and the user does not need to add them manually.

8

Furthermore, by using Graphene-SGX, SOTERIA does not
change any of the implementation code at the Spark li-
braries. The only exception is on our modified data loading
package, used at the Master and Worker nodes. Here, we
will transparently decrypt data read from the distributed
storage backend, and encrypt inference and training results
before sending them back to the client.

For SML-2, a distinct Manifest file is used which does not
include the MLlib statistical libraries. To accomplish this,
we needed to be intrusive and change the original MLlib’s
implementation, decoupling it into two sub-libraries, one
that contains the statistical logic, and another with the
remaining ML computational logic.

Both designs leverage Graphene-SGX to ensure the es-
tablishment of secure channels between the enclaves at the
Master and Worker nodes. This is attained by resorting to
the TLS-PSK with AES-GCM cryptographic protocols [46].

5 METHODOLOGY

Our evaluation aims at answering three main questions:
1) How does SOTERIA impact the execution time of ML

workloads?
2) How does SOTERIA’s novel optimization (SML-2) com-

pares, in terms of performance, with standard state-of-
the-art approaches (i.e., SML-1 and SGX-Spark)?

3) Can SOTERIA handle different algorithms and dataset
sizes efficiently?

Environment. The experiments use a Cloudera 6.3 clus-
ter with eight Dell OptiPlex 3070 Small-Form Desktops, with
a 6-core 3.00 GHz Intel Core i5-9500 CPU, 16 GB RAM, and
a 256GB NVMe. The host OS is Ubuntu 18.04.4 LTS, with
Linux kernel 4.15.0. Each machine uses a 10Gbps Ethernet
card connected to a dedicated local network. We use Apache
Spark 2.3.0 and version 2.6 of the Intel SGX Linux SDK and
driver 1.8. The client and Spark Master run in one server
while Spark Workers are deployed in the remaining seven
servers. Also, SGX memory is configured to use 4GB.

Workloads. We resort to the HiBench benchmark [17],
which allows evaluating different ML algorithms broadly
used and natively implemented on top of MLlib. Our eval-
uation considers seven algorithms, which are detailed in Ta-
ble 2. We do not consider the use deep neural networks since
MLlib does not natively support them. For each algorithm,
the benchmark suite offers different workload sizes ranging
from Tiny to Gigantic configurations.

Setups and metrics. To validate SOTERIA’s perfor-
mance, and the benefits of fine-grained differentiation of
secure ML operations, we compare both our architectures,
namely SML-1 and SML-2, with a baseline deployment of
Apache Spark that does not provide any privacy guarantees
(Vanilla). Moreover, we compare our solution with SGX-
Spark [15], a state-of-the-art SGX-based secure Spark solu-
tion that shares similar goals with SOTERIA.

SGX-Spark aims at protecting both analytical and ML
computation done at Apache Spark. Implemented with
SGX-LKL5, this solution is designed to process sensitive
information inside SGX enclaves. Therefore, this design can
be considered as the most similar to the one proposed

5. https://github.com/lsds/sgx-lkl

in this paper. However, SGX-Spark can only ensure that
User Defined Functions (UDFs) [54] processing is done at
a secure enclave. This decision leaves a large codebase of
Spark outside the protected memory region and, conse-
quently, limits the users to only be able to execute privacy-
preserving machine learning algorithms that leverage the
UDF mechanism. Also, similarly to our threat model, SGX-
Spark does not consider traffic analysis attacks [55], side-
channel attacks [27] or speculative attacks [28].

For each experiment discussed in the next section, we
include the average algorithm execution time and standard
deviation for 3 independent runs. Moreover, the dstat moni-
toring tool was used to collect the CPU, RAM, and network
consumption at each cluster node.

6 EVALUATION

We split our evaluation into two different stages to present
our results more clearly. Section 6.1 summarizes the main
evaluation observations, while Section 6.2 analyzes these
observations and provides key insights.

6.1 Performance Overview
Figure 4 shows the execution time of all the setups for
the 7 algorithms when using a huge-sized workload con-
figuration. Moreover, Figures 5a, 5b, 5c and 5d present the
performance evaluation for PCA, GBT, ALS and Linear algo-
rithms for different workload sizes. Next, we list our main
observations to aid in the characterization of these results.
Unless stated otherwise, the performance overhead values
discussed in this section correspond to the number of times
that the algorithm’s execution time increases for a given
setup, when compared to the Vanilla Spark deployment
results. Observations 1 to 8 correspond to Figure 4, whilst
Observations 9 to 12 refer to Figure 5.

Observation 1. Vanilla Spark’s execution times for ALS,
LDA, Kmeans, PCA, Bayes, Linear, and GBT algorithms, are,
respectively, 55, 401, 155, 655, 33, 657, and 189 seconds.

Observation 2. The execution time for the ALS algo-
rithm increases by 3.62x and 4.35x for SML-2 and SML-1,
respectively. SGX-Spark incurs an execution overhead of 4x.
Thus, the three setups have similar results while requiring
approximately more 150 seconds of processing time than the
vanilla deployment. Nevertheless, SML-2 performs slightly
better than the other two approaches.

Observation 3. The LDA algorithm exhibits higher ex-
ecution overhead of 17.40x, 8.89x, and 15.08x for SML-1,
SML-2, and SGX-Spark setups, respectively. SML-2 outper-
forms SGX-Spark by a difference of 41.5 minutes.

Observation 4. When compared with the vanilla deploy-
ment, SML-1 increases execution time by 9.37x and SML-
2 by 6.68x. SGX-Spark has an overhead of 9.7x, which, in
comparison with SML-2, requires more 468 seconds (7.8
minutes) to execute.

Observation 5. For PCA, SML-1 and SML-2 have an
execution overhead of 3.67x and 2.85x, respectively, over
the vanilla results, while SGX-Spark increases the computa-
tional time by 3.95x. Thus, both SML-1 and SML-2 surpass
SGX-Spark. Moreover, when comparing SML-2 with SGX-
Spark, we observe a decrease of 768 seconds, nearly 12
minutes, in execution time.

9

TABLE 2: Representation of the tasks and time complexity of each ML algorithm and the data sizes for different workloads.

Algorithms Tasks Time Complexity Workloads
Tiny Large Huge Gigantic

Alternating Least Squares (ALS) RS O((m+ n)k3 +mnk2) [47] 193KB 345MB 2GB 4GB
Principal Compt. Analysis (PCA) DR O(nm ∗min(n,m) +m3) [48] 256KB 92MB 550MB 688MB
Gradient Boosted Trees (GBT) P O(n ∗ y ∗ ntrees) [49] 36KB 46MB 92MB 183MB
Linear Regression (LR) C + P O(m ∗ n2 + n3) [50] 11GB 134GB 335GB 894GB
Sparse Naive Bayes (Naive Bayes) MC O(nm) [51] - - 5GB -
Latent Dirichlet Allocation (LDA) DR O(mnt+ t3) [52] - - 2GB -
K-means clustering (K-means) Cl O(n2) [53] - - 56GB -

RS: Recommendation Systems; DR: Dimensionality Reduction; P: Prediction; C: Classification; MC: Multi-class Classification Cl: Clustering.

0

50

100
150

200

250

E
xe
cu
ti
on

 T
im
e
(s
ec
on
d
s) ALS LDA Kmeans PCA

Bayes LR GBT

52
 s
ec
.

40
1

 s
ec
.

1
55

 s
ec
.

6
5
5
se
c.

33
 s
ec
.

13
 s
ec
.

18
9
se
c.

0

1500

3000
4500

6000

7500

E
xe
cu
ti
on

 T
im
e
(s
ec
on
d
s) ALS LDA Kmeans PCA

Bayes LR GBT

52
 s
ec
.

40
1

 s
ec
.

6
5
5
se
c.

33
 s
ec
.

1
3

 s
ec
.

18
9

 s
ec
.

0

340

680
1020

1360

1700

E
xe
cu
ti
on

 T
im
e
(s
ec
on
d
s) ALS LDA Kmeans PCA

Bayes LR GBT

52
 s
ec
.

40
1

 s
ec
.

6
5
5
se
c.

33
 s
ec
.

1
3

 s
ec
.

18
9

 s
ec
.

0

540

1080
1620

2160

2700

E
xe
cu
ti
on

 T
im
e
(s
ec
on
d
s) ALS LDA Kmeans PCA

Bayes LR GBT

52
 s
ec
.

40
1

 s
ec
.

6
5
5
se
c.

33
 s
ec
.

1
3

 s
ec
.

18
9

 s
ec
.

0

50

100
150

200

250

E
xe
cu
ti
on

 T
im
e
(s
ec
on
d
s) ALS LDA Kmeans PCA

Bayes LR GBT

52
 s
ec
.

40
1

 s
ec
.

6
5
5
se
c.

33
 s
ec
.

1
3

 s
ec
.

18
9

 s
ec
.

0

5000

10000

15000

20000

E
xe
cu
ti
on

 T
im
e
(s
ec
on
d
s) ALS LDA Kmeans PCA

Bayes LR GBT

52
 s
ec
.

40
1

 s
ec
.

6
5
5
se
c.

33
 s
ec
.

1
3

 s
ec
.

18
9

 s
ec
.

0

300

600
900

1200

1500

E
xe
cu
ti
on

 T
im
e
(s
ec
on
d
s) ALS LDA Kmeans PCA

Bayes LR GBT

52
 s
ec
.

40
1

 s
ec
.

6
5
5
se
c.

33
 s
ec
.

1
3

 s
ec
.

18
9

 s
ec
.

Fig. 4: Execution time for each algorithm with Huge work-
load. The legend is as follows: Vanilla Spark; SML-1;
SML-2; SGX-Spark.

Observation 6. With Huge workload and Naive Bayes,
SOTERIA exhibits an overhead of 6.24x for SML-1, which is
higher than the 5.33x observed for SGX-Spark. Also, SML-2
continues to present lower overhead (3.58x) when compared
with SGX-Spark. The absolute difference of execution time
between SML-2 and SML-1 is 88 seconds, whilst with SGX-
Spark, SML-2 decreases execution time by 61 seconds.

Observation 7. For the Linear Regression algorithm,
SML-1 shows an average overhead of 27.31x and SML-2
lowers this execution time to 18.2x, whilst SGX-Spark shows
an overhead similar with SML-1. These results portray the
greatest decrease in execution time when comparing SML-2
and the SGX-Spark state-of-the-art solution, corresponding
to 1.4 hours of execution time.

Observation 8. With the GBT algorithm, SML-1 shows
similar execution times when compared with SGX-Spark,
with a 7.04x and 6.64x increase, respectively. SML-2 out-
performs both approaches, presenting an overhead of 4.79x,
about 248 seconds less than SGX-Spark.

Observation 9. For Tiny and Large workloads with the
PCA algorithm, SOTERIA performs similarly for our two
designs, while outperforming SGX-Spark. With larger work-
load sizes, the overhead imposed by our solutions increases,
however, it continues to show better performance than SGX-
Spark. SML-1 has an overhead of 1.96x to 5.15x, for Tiny
and Gigantic workloads, whilst SML-2 incurs an overhead of
1.72x to 3.79x. When compared with SGX-Spark, the results
show an absolute difference of 4 and 436 seconds, for SML-1,
and 7 seconds and 33 minutes, for SML-2.

Observation 10. Regarding the GBT algorithm, SOTE-
RIA shows significant variance in terms of execution time
when dealing with different workload sizes. For the Tiny
workload, the overhead of SML-1, SML-2, and SGX-Spark
are similar. However, when increasing the workload size,

the difference between the three approaches is more visible.
SML-2 (Tiny-2.13x and Gigantic-5.88x) outperforms both ap-
proaches, while SML-1 (Tiny-2.18x, Gigantic-9.35x) and SGX-
Spark (Tiny-2.3x, Gigantic-10.34x) have similar overheads.

Observation 11. With the ALS algorithm, SOTERIA main-
tains a more constant increase of the execution time be-
tween the four workload size configurations. SML-2 shows
an execution time for the Tiny and Gigantic workloads of
2.04x and 3.28x when compared with vanilla Spark. SML-2
achieves lower overhead than SML-1 and SGX-Spark for all
the workloads, with the execution time decreasing 8 seconds
for the Tiny and 191 seconds for the Gigantic workloads.

Observation 12. For the linear regression algorithm,
SOTERIA exhibits more overhead for increasing data sizes.
With the Tiny workload, SML-1 has an overhead of 14.39x
and SML-2 shows an overhead of 12.95x. As for the Gigantic
workload, SML-1 incurs an overhead of 30.04x and SML-
2 of 23.89x. If one compares with SGX-Spark, our second
design decreases the execution time in 43 seconds for the
Tiny workload and 4.31 hours for the Gigantic workload.

Observation 13. Overall, the resource consumption
(CPU and memory) and network traffic for both SOTERIA
designs are similar to the vanilla Spark baseline. In more
detail, the SML-1 design with Linear Regression presents
the upper-bound limit for both memory and CPU, showing
an increase of 9% in both when compared with vanilla Spark
(20%). Whilst the network shows an upper-bound increase
of 15% (vanilla Spark shows an upper-bound network of
135MB) in SML-1 with LDA due to the extra encrypted data
paddings being sent between Worker nodes.

Observation 14. SOTERIA does not impact the accuracy
of ML workloads. For all experiments, we measured the
corresponding accuracy metrics (e.g., accuracy, root mean
square error, ROC). The results corroborate that both SML-
1 and SML-2 show accuracy values similar to the vanilla
Spark version.

6.2 Analysis
We now further analyze the experimental observations ac-
cording to three topics, i) dataset size; ii) algorithm complex-
ity; iii) size of trusted computing base (TCB).

6.2.1 Dataset size
Figure 5 shows the performance degradation for the PCA,
GBT, ALS, and Linear Regression algorithms with increas-
ing dataset sizes. Results show that, for PCA, GBT, and ALS
workloads with smaller datasets, SML-1 and SML-2 perform

10

0
10
20
30
40
50
60

E
x
ec
u
ti
o
n

 T
im
e
(s
ec
o
n
d
s)

Tiny Large

Huge Gigantic

11
5

 s
ec
.

6
5
5

 s
ec
.

11
2
8

 s
ec
.

0

100

200

300

400

500
Tiny Large

Huge Gigantic

11
5

 s
ec
.

6
5
5

 s
ec
.

11
2
8

 s
ec
.

0

600

1200

1800

2400

3000

Tiny Large

Huge Gigantic

11
5

 s
ec
.

6
5
5

 s
ec
.

11
2
8

 s
ec
.

0

1500

3000

4500

6000

7500

Tiny Large

Huge Gigantic

11
5

 s
ec
.

6
5
5

 s
ec
.

11
2
8

 s
ec
.

(a) PCA

0

10

20

30

40

50

E
x
ec
u
ti
o
n

 T
im
e
(s
ec
o
n
d
s)

Tiny Large

Huge Gigantic

11
0

 s
ec
.

1
8
9

 s
ec
.

2
6
6

 s
ec
.

0

100

200

300

400

500
Tiny Large

Huge Gigantic

11
0

 s
ec
.

1
8
9

 s
ec
.

2
6
6

 s
ec
.

0
200
400
600
800
1000
1200
1400

Tiny Large

Huge Gigantic

11
0

 s
ec
.

1
8
9

 s
ec
.

2
6
6

 s
ec
.

0
500
1000
1500
2000
2500
3000

Tiny Large

Huge Gigantic

11
0

 s
ec
.

1
8
9

 s
ec
.

2
6
6

 s
ec
.

(b) GBT

0

10

20

30

40

50

E
xe
cu
ti
on

 T
im
e
(s
ec
on
d
s)

Tiny Large

Huge Gigantic

3
1

 s
ec
.

5
2

 s
ec
.

1
4
8

 s
ec
.

0

50

100

150

200
Tiny Large

Huge Gigantic

3
1

 s
ec
.

5
2

 s
ec
.

1
4
8

 s
ec
.

0

50

100

150

200

250

Tiny Large

Huge Gigantic

3
1

 s
ec
.

5
2

 s
ec
.

1
4
8

 s
ec
.

0

200

400

600

800

Tiny Large

Huge Gigantic

3
1

 s
ec
.

5
2

 s
ec
.

1
4
8

 s
ec
.

(c) ALS

0

50

100

150

200

250

E
x
ec
u
ti
o
n

 T
im
e
(s
ec
o
n
d
s)

Tiny Large

Huge Gigantic

1
3

 s
ec
.

1
4
1

 s
ec
.

6
5
7

 s
ec
.

1
9
3
6

 s
ec
.

0

500

1000

1500

2000

2500
Tiny Large

Huge Gigantic

1
3

 s
ec
.

1
4
1

 s
ec
.

6
5
7

 s
ec
.

1
9
3
6

 s
ec
.

0

5000

10000

15000

20000

Tiny Large

Huge Gigantic

1
3

 s
ec
.

1
4
1

 s
ec
.

6
5
7

 s
ec
.

1
9
3
6

 s
ec
.

0

13000

26000

39000

52000

65000

Tiny Large

Huge Gigantic

1
3

 s
ec
.

1
4
1

 s
ec
.

6
5
7

 s
ec
.

1
9
3
6

 s
ec
.

(d) LR

Fig. 5: Runtime execution for PCA, GBT, ALS and Linear Regression for Tiny, Large, Huge and Gigantic workloads. The
legend is as follows: Vanilla Spark; SML-1; SML-2; SGX-Spark.

similarly. However, as the size of the datasets increases,
more operations and data must be transferred to the SGX
enclave, thus having a more noticeable toll on the overall
performance. Indeed, the page swapping mechanism of
SGX, which occurs due to its memory limitations, incurs
a significant performance penalty [14], [56]. For example,
when compared to the vanilla setup, the PCA algorithm
overhead for SML-1 varies between 1.96x, for Tiny work-
load, and 5.15x, for Gigantic workload. While for SML-2,
the execution time increases 1.78x in the Tiny workload and
3.79x in the Gigantic workload. Linear Regression is the most
expensive algorithm in terms of performance as it processes
more data for the distinct workload sizes (Table 2). When
compared with SGX-Spark, SML-2 deals better with the
increase of data volume. Indeed, as seen in Observations 9-12,
we are able to reduce the execution time from a few seconds
to more than 4 hours when compared to SGX-Spark.

6.2.2 Algorithm Complexity
The execution times of ALS and LDA algorithms are very
different even though their dataset size is similar. These
results are explained by the computational complexity of
each algorithm. For ALS, the synthetic workload data gen-
erated by the benchmark has a low hidden k dimension
with a low ranking of 10, simplifying the required compu-
tation and decreasing execution time. Whilst, for the LDA
algorithm, the computational complexity, and consequently
the execution time, are increased due to the higher number
of dependencies between values at the generated synthetic
workload data. Observations 2 and 3 emphasize the perfor-
mance of these two algorithms for a similar workload size.
Similar to LDA, Observations 5 and 9 show that PCA com-
plexity and performance overhead also increase with the
processed data volume. Commonly classified as regression
and classification algorithms, Bayes and GBT have similar
performance, as seen in Observation 6 and Observation 8. The
data sizes of these two algorithms are completely different,
where GBT uses 91.7MB and Bayes has 5.2GB. However,
the Bayes algorithm iterates only one time over the data,
while GBT iterates over several decision trees to find its
best model. Kmeans’ performance is highly dependent on
the chosen dataset size. This is also true for the Linear
Regression algorithm (Observations 4 and 7).

6.2.3 Size of TCB
The results discussed at Section 6.1 show that SGX-Spark
outperforms SML-1 for some of the evaluated algorithms

(Observation 2, 3, 6-8). As SGX-Spark only protects UDFs,
the performance overhead imposed by the larger trusted
computing base of our solution is naturally higher. Ne-
vertheless, when compared to SGX-Spark, SML-1 covers
a wider range of machine learning attacks, while keeping
performance overhead below 1.59x. Indeed, for algorithms
such as PCA, and Kmeans, SML-1 has a similar or slightly
inferior execution time (Observations 4 and 5). This happens
because, for these algorithms, both SGX-Spark and SML-1
perform similar computations at the secure enclaves, while
the UDF mechanism is not the most optimized choice for
running some of these workloads.

Finally, SML-2 always outperforms SGX-Spark and SML-
1 (Observations 2-8). This is due to the TCB reduction present
in our second design. The results show that this solution can
outperform SGX-Spark by up to 41%, namely for the LDA
algorithm with the Huge workload (Observation 3).

6.3 Discussion

The experimental results show that SML-2 outperforms
state-of-the-art approaches, namely SGX-Spark, for all the
considered ML algorithms. Also, SML-2 achieves better
performance than the more standard SML-1 design, while
offering similar security guarantees when considering the
most prevalent ML attacks (Section 4.5). This is made possi-
ble by filtering key operations to be done outside enclaves.

In more detail, when compared to SML-1, our new
design (SML-2) reduces ML workloads’ execution time by
up to 1.6x. When compared with SGX-Spark, the execution
time is reduced by up to 1.7x. Interestingly, for the Linear Re-
gression algorithm using a Gigantic workload (894GB), SML-
2 decreases computation time by 3.8 hours and 3.3 hours,
when compared with SGX-Spark and SML-1, respectively.

Finally, the performance overhead of SML-2 for the
seven different algorithms ranges from 1.7x to 23.8x when
compared to Vanilla Spark.

7 RELATED WORK

Secure ML solutions can be classified into four main groups
based on the privacy-preserving techniques being used: i)
encryption-based [7], [57], [58], ii) secure multi-party com-
putation [59], [60], iii) differential privacy [61], [62] and, iv)
trusted execution environments (TEEs) [11], [12], [21], [22].
This paper is included in group iv).
Privacy-preserving machine learning with TEEs. Chiron
[11] enables training ML models on a cloud service without

11

revealing information about the training dataset. Also, once
the model is trained, only the data owners can query it.
Myelin [12] offers a similar solution to Chiron while adding
differential privacy and data oblivious protocols to the
algorithms to mitigate the exploits from side-channels and
the information leaked by the model parameters. SOTERIA
differs from these works as it is able to cover both training
and inference phases while providing additional protection
against adversarial samples, reconstruction, and membership
inference attacks (Table 1). In [21], five machine learning al-
gorithms are re-implemented with data oblivious protocols.
These protocols are combined with TEEs to ensure strong
privacy guarantees while preventing the exploitation of side-
channel attacks that observe memory, disk, and network
access patterns to infer private information. Unlike this
solution, SOTERIA aims at transparently supporting all ma-
chine learning algorithms built with the MLlib Spark’s API.
Also, we underline that side-channel attacks are currently
considered orthogonal to our work. Nevertheless, solutions
have been proposed as countermeasures to such attacks [63].
Privacy-preserving analytics with TEEs. TEEs have also
been used to ensure privacy-preserving computation for
general-purpose analytical frameworks [13], [16]. In com-
parison to SGX-Spark [15], detailed in Section 5, SOTERIA
supports a broader set of algorithms (i.e., any algorithm
that users can build with the MLlib API) while protecting
users from a more complete set of attacks to the machine
learning pipeline, as shown in Table 1. Opaque [24] and
Uranus [25] also resort to SGX to provide secure analytics
but only support a very restricted set of ML algorithms. The
first solution combines SGX with oblivious protocols while
requiring the re-implementation of default Apache Spark
UDF operators. The second solution aims at simplifying the
combination of Big Data applications with SGX enclaves.
Namely, it addresses an Apache Spark use-case where it
shows that UDF processing can be ported to secure enclaves.
However, the proposed use-case only includes a single
machine learning workload. SOTERIA aims at supporting
a broader spectrum of ML algorithms (i.e., it is not limited
to algorithms built on top of Spark UDFs) while avoiding
changing internal Spark operators to achieve privacy.
Privacy-preserving deep learning with TEEs. TEEs have
also been applied to the training and inference of deep neu-
ral networks [22], [64]. However, there is a substantial differ-
ence between the internals of ML and DL frameworks and
algorithms thus, requiring significantly different privacy-
preserving designs for each scenario. Since MLlib does not
natively support DL workloads, the focus of SOTERIA is on
ML algorithms.

8 CONCLUSION

This paper presents SOTERIA, a system for distributed
privacy-preserving machine learning. Our solution builds
upon the combination of Apache Spark and TEEs to protect
sensitive information being processed at third-party infras-
tructures during the ML training and inference phases.

The innovation of SOTERIA stems from a novel design
(SML-2) that allows fine-grained differentiation of which
ML operations can be deployed outside of trusted enclaves,
maintaining the security guarantees of the protocol. Namely,

we show that it is possible to offload non-sensitive op-
erations (i.e., statistical calculations) from enclaves, while
still covering a larger spectrum of attacks than in previous
related work. Furthermore, this decision enables SOTERIA to
perform better than existing solutions, such as SGX-Spark,
while reducing ML workloads execution time by up to 41%.

ACKNOWLEDGMENT

This work was supported by the Portuguese Foundation for
Science and Technology through a PhD Fellowship (SFRH/-
BD/146528/2019 – Cláudia Brito) and the project AIDA -
Adaptive, Intelligent and Distributed Assurance Platform
(reference POCI-01-0247-FEDER-045907 - João Paulo), co-
financed by the ERDF - European Regional Development
Fund through the Operacional Program for Competitive-
ness and Internationalisation - COMPETE 2020 and by the
Portuguese Foundation for Science and Technology - FCT
under CMU Portugal. Also, it was also funded by the
European Structural and Investment Funds in the FEDER
component, through the Operational Competitiveness and
Internationalization Programme (COMPETE 2020) [Project
nº 047264; Funding Reference: POCI-01-0247-FEDER-047264
- Bernardo Portela].

REFERENCES

[1] Lun Wang, Joseph P Near, Neel Somani, Peng Gao, Andrew Low,
David Dao, and Dawn Song. Data capsule: A new paradigm for
automatic compliance with data privacy regulations. In Hetero-
geneous Data Management, Polystores, and Analytics for Healthcare.
Springer, 2019.

[2] Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter, and
Thomas Ristenpart. Stealing machine learning models via pre-
diction apis. In 25th USENIX Security Symposium, 2016.

[3] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model
inversion attacks that exploit confidence information and basic
countermeasures. In Proceedings of the 22nd ACM SIGSAC Confer-
ence on Computer and Communications Security. ACM, 2015.

[4] Binghui Wang and Neil Zhenqiang Gong. Stealing hyperparame-
ters in machine learning. In 2018 IEEE Symposium on Security and
Privacy (SP). IEEE, 2018.

[5] Abbas Acar, Hidayet Aksu, A. Selcuk Uluagac, and Mauro Conti.
A survey on homomorphic encryption schemes: Theory and im-
plementation. ACM Comput. Surv.

[6] Claudio Orlandi. Is multiparty computation any good in practice?
In ICASSP, IEEE International Conference on Acoustics, Speech and
Signal Processing - Proceedings, 2011.

[7] Yoshinori Aono, Takuya Hayashi, Lihua Wang, Shiho Moriai, et al.
Privacy-preserving deep learning via additively homomorphic
encryption. IEEE Transactions on Information Forensics and Security,
2017.

[8] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V
Rozas, Hisham Shafi, Vedvyas Shanbhogue, and Uday R Sava-
gaonkar. Innovative instructions and software model for isolated
execution. Hasp@ isca, 2013.

[9] AMD. Amd secure encrypted virtualization (sev). https://
developer.amd.com/sev/. (Accessed on 24/02/2021).

[10] Tiago Alves. Trustzone: Integrated hardware and software secu-
rity. White paper, 2004.

[11] Tyler Hunt, Congzheng Song, Reza Shokri, Vitaly Shmatikov, and
Emmett Witchel. Chiron: Privacy-preserving machine learning as
a service. arXiv preprint arXiv:1803.05961, 2018.

[12] Nick Hynes, Raymond Cheng, and Dawn Song. Efficient
deep learning on multi-source private data. arXiv preprint
arXiv:1807.06689, 2018.

[13] Do Le Quoc, Franz Gregor, Jatinder Singh, and Christof Fetzer.
Sgx-pyspark: Secure distributed data analytics. In The World Wide
Web Conference, 2019.

https://developer.amd.com/sev/
https://developer.amd.com/sev/

12

[14] Tu Dinh Ngoc, Bao Bui, Stella Bitchebe, Alain Tchana, Valerio
Schiavoni, Pascal Felber, and Daniel Hagimont. Everything you
should know about intel sgx performance on virtualized systems.
Proceedings of the ACM on Measurement and Analysis of Computing
Systems, 2019.

[15] Large-Scale Data & Systems (LSDS) Group. Sgx-spark. https://
github.com/lsds/sgx-spark. (Accessed on 15/02/2021).

[16] Fahad Shaon, Murat Kantarcioglu, Zhiqiang Lin, and Latifur
Khan. Sgx-bigmatrix: A practical encrypted data analytic frame-
work with trusted processors. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, 2017.

[17] Intel. Hibench is a big data benchmark suite. https://github.com/
Intel-bigdata/HiBench. (Accessed on 21/02/2021).

[18] Chia-Che Tsai, Donald E Porter, and Mona Vij. Graphene-sgx: A
practical library os for unmodified applications on sgx. In 2017
USENIX Annual Technical Conference (USENIX ATC 17), 2017.

[19] Matei Zaharia, Reynold S Xin, Patrick Wendell, Tathagata Das,
Michael Armbrust, Ankur Dave, Xiangrui Meng, Josh Rosen,
Shivaram Venkataraman, Michael J Franklin, et al. Apache spark:
a unified engine for big data processing. Communications of the
ACM, 2016.

[20] Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shiv-
aram Venkataraman, Davies Liu, Jeremy Freeman, DB Tsai, Man-
ish Amde, Sean Owen, et al. Mllib: Machine learning in apache
spark. The Journal of Machine Learning Research, 2016.

[21] Olga Ohrimenko, Felix Schuster, Cédric Fournet, Aastha Mehta,
Sebastian Nowozin, Kapil Vaswani, and Manuel Costa. Oblivious
multi-party machine learning on trusted processors. In 25th
USENIX Security Symposium (USENIX Security 16), 2016.

[22] Florian Tramer and Dan Boneh. Slalom: Fast, verifiable and private
execution of neural networks in trusted hardware. arXiv preprint
arXiv:1806.03287, 2018.

[23] Joseph I Choi and Kevin RB Butler. Secure multiparty compu-
tation and trusted hardware: Examining adoption challenges and
opportunities. Security and Communication Networks, 2019, 2019.

[24] Wenting Zheng, Ankur Dave, Jethro G Beekman, Raluca Ada
Popa, Joseph E Gonzalez, and Ion Stoica. Opaque: An oblivious
and encrypted distributed analytics platform. In 14th USENIX
Symposium on Networked Systems Design and Implementation, 2017.

[25] XC Jianyu Jiang, CW Tzs, On Li, T Shen, and S Zhao. Uranus: Sim-
ple, efficient sgx programming and its applications. In Proceedings
of the 15th ACM ASIA Conference on Computer and Communications
Security (ASIACCS ‘20), 2020.

[26] Microsoft Azure. Azure confidential computing. https://azure.
microsoft.com/en-us/solutions/confidential-compute/. (Ac-
cessed on 05/01/2021).

[27] Oleksii Oleksenko, Bohdan Trach, Robert Krahn, Mark Silberstein,
and Christof Fetzer. Varys: Protecting sgx enclaves from practical
side-channel attacks. In USENIX Annual Technical Conference, 2018.

[28] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Thomas F Wenisch,
Yuval Yarom, and Raoul Strackx. Foreshadow: Extracting the keys
to the intel sgx kingdom with transient out-of-order execution. In
27th USENIX Security Symposium (USENIX Security 18), 2018.

[29] Jinmeng Jia, Ruiyuan Wang, Zhongxin An, Yongli Guo, Xi Ni, and
Tieliu Shi. Rdad: a machine learning system to support phenotype-
based rare disease diagnosis. Frontiers in genetics, 2018.

[30] Seema Rawat, Aakankshu Rawat, Deepak Kumar, and A Sai
Sabitha. Application of machine learning and data visualization
techniques for decision support in the insurance sector. Interna-
tional Journal of Information Management Data Insights, 2021.

[31] Ravi S Sandhu and Pierangela Samarati. Access control: principle
and practice. IEEE communications magazine, 1994.

[32] Raad Bahmani, Manuel Barbosa, Ferdinand Brasser, Bernardo
Portela, Ahmad-Reza Sadeghi, Guillaume Scerri, and Bogdan
Warinschi. Secure multiparty computation from sgx. In Inter-
national Conference on Financial Cryptography and Data Security.
Springer, 2017.

[33] Jonas Bushart and Christian Rossow. Padding ain’t enough: As-
sessing the privacy guarantees of encrypted dns. In 10th USENIX
Workshop on Free and Open Communications on the Internet, 2020.

[34] Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. Adversarial
machine learning at scale. In 5th International Conference on Learn-
ing Representations, ICLR 2017, Toulon, France, April 24-26, 2017,
Conference Track Proceedings, 2017.

[35] Wieland Brendel, Jonas Rauber, and Matthias Bethge. Decision-
based adversarial attacks: Reliable attacks against black-box ma-

chine learning models. In International Conference on Learning
Representations, 2018.

[36] Jean-Baptiste Truong, Pratyush Maini, Robert J Walls, and Nicolas
Papernot. Data-free model extraction. In Proceedings of IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2021.

[37] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly
Shmatikov. Membership inference attacks against machine learn-
ing models. In Symposium on Security and Privacy (SP). IEEE, 2017.

[38] Mohammad Al-Rubaie and J Morris Chang. Privacy-preserving
machine learning: Threats and solutions. IEEE Security & Privacy,
2019.

[39] Ahmed Salem, Apratim Bhattacharya, Michael Backes, Mario
Fritz, and Yang Zhang. Updates-leak: Data set inference and
reconstruction attacks in online learning. In 29th USENIX Security
Symposium, 2020.

[40] Emil Stefanov, Marten Van Dijk, Elaine Shi, Christopher Fletcher,
Ling Ren, Xiangyao Yu, and Srinivas Devadas. Path oram: an
extremely simple oblivious ram protocol. In Proceedings of ACM
SIGSAC conference on Computer & communications security, 2013.

[41] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave,
Justin Ma, Murphy McCauly, Michael J. Franklin, Scott Shenker,
and Ion Stoica. Resilient distributed datasets: A fault-tolerant
abstraction for in-memory cluster computing. In Presented as part
of the 9th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 12), San Jose, CA, 2012. USENIX.

[42] R. Canetti. Universally composable security: a new paradigm for
cryptographic protocols. In Proceedings 42nd IEEE Symposium on
Foundations of Computer Science, 2001.

[43] Varun Chandrasekaran, Kamalika Chaudhuri, Irene Giacomelli,
Somesh Jha, and Songbai Yan. Exploring connections between
active learning and model extraction. In 29th USENIX Security
Symposium, 2020.

[44] Morris J Dworkin. Recommendation for block cipher modes of op-
eration: Galois/counter mode (gcm) and gmac. National Institute of
Standards & Technology, 2007.

[45] Takanori Machida, Dai Yamamoto, Ikuya Morikawa, Hirotaka
Kokubo, and Hisashi Kojima. Poster: A novel framework for user-
key provisioning to secure enclaves on intel sgx. 2018.

[46] Graphene-SGX. Performance tuning and analysis — graphene
documentation. https://graphene.readthedocs.io/en/latest/
devel/performance.htmls. (Accessed on 07/02/2021).

[47] Xiangnan He, Hanwang Zhang, Min-Yen Kan, and Tat-Seng Chua.
Fast matrix factorization for online recommendation with implicit
feedback. In Proceedings of the 39th International ACM SIGIR
conference on Research and Development in Information Retrieval, 2016.

[48] Tarek Elgamal and Mohamed Hefeeda. Analysis of pca algorithms
in distributed environments. arXiv preprint arXiv:1503.05214, 2015.

[49] Si Si, Huan Zhang, Sathiya Keerthi, Druv Mahajan, Inderjit
Dhillon, and Cho-Jui Hsieh. Gradient boosted decision trees for
high dimensional sparse output. In International conference on
machine learning, 2017.

[50] Jim Dowling. Distributed ml and linear regression.
https://www.kth.se/social/files/5a040fe156be5be5f93667e9/
ID2223-02-ml-pipelines-linear-regression.pdf, november 2017.
(Accessed on 01/12/2020).

[51] Charles Elkan. Boosting and naive bayesian learning. In Proceed-
ings of the International Conference on Knowledge Discovery and Data
Mining, 1997.

[52] Deng Cai, Xiaofei He, and Jiawei Han. Training linear discriminant
analysis in linear time. In 2008 IEEE 24th International Conference
on Data Engineering. IEEE, 2008.

[53] Malay K Pakhira. A linear time-complexity k-means algorithm
using cluster shifting. In 2014 International Conference on Computa-
tional Intelligence and Communication Networks. IEEE, 2014.

[54] Scalar User Defined Functions (UDFs). Apache spark. https://
spark.apache.org/docs/latest/sql-ref-functions-udf-scalar.html.
(Accessed on 03/02/2021).

[55] Shay Gueron. A memory encryption engine suitable for general
purpose processors. IACR Cryptol. ePrint Arch., 2016, 2016.

[56] ChongChong Zhao, Daniyaer Saifuding, Hongliang Tian, Yong
Zhang, and ChunXiao Xing. On the performance of intel sgx. In
13th web information systems and applications conference. IEEE, 2016.

[57] Raphael Bost, Raluca Ada Popa, Stephen Tu, and Shafi Gold-
wasser. Machine learning classification over encrypted data. In
NDSS, 2015.

[58] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter,
Michael Naehrig, and John Wernsing. Cryptonets: Applying

https://github.com/lsds/sgx-spark
https://github.com/lsds/sgx-spark
https://github.com/Intel-bigdata/HiBench
https://github.com/Intel-bigdata/HiBench
https://azure.microsoft.com/en-us/solutions/confidential-compute/
https://azure.microsoft.com/en-us/solutions/confidential-compute/
https://graphene.readthedocs.io/en/latest/devel/performance.htmls
https://graphene.readthedocs.io/en/latest/devel/performance.htmls
https://www.kth.se/social/files/5a040fe156be5be5f93667e9/ID2223-02-ml-pipelines-linear-regression.pdf
https://www.kth.se/social/files/5a040fe156be5be5f93667e9/ID2223-02-ml-pipelines-linear-regression.pdf
https://spark.apache.org/docs/latest/sql-ref-functions-udf-scalar.html
https://spark.apache.org/docs/latest/sql-ref-functions-udf-scalar.html

13

neural networks to encrypted data with high throughput and
accuracy. In International Conference on Machine Learning, 2016.

[59] Payman Mohassel and Yupeng Zhang. Secureml: A system for
scalable privacy-preserving machine learning. In Symposium on
Security and Privacy. IEEE, 2017.

[60] Jian Liu, Mika Juuti, Yao Lu, and Nadarajah Asokan. Oblivi-
ous neural network predictions via minionn transformations. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, 2017.

[61] Reza Shokri and Vitaly Shmatikov. Privacy-preserving deep learn-
ing. In Proceedings of the 22nd ACM SIGSAC conference on computer
and communications security, 2015.

[62] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan,
Ilya Mironov, Kunal Talwar, and Li Zhang. Deep learning with
differential privacy. In Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security, 2016.

[63] Tânia Esteves, Ricardo Macedo, Alberto Faria, Bernardo Portela,
João Paulo, José Pereira, and Danny Harnik. Trustfs: An sgx-
enabled stackable file system framework. In 38th International
Symposium on Reliable Distributed Systems Workshops. IEEE, 2019.

[64] Roland Kunkel, Do Le Quoc, Franz Gregor, Sergei Arnautov,
Pramod Bhatotia, and Christof Fetzer. Tensorscone: a secure
tensorflow framework using intel sgx. arXiv:1902.04413, 2019.

[65] Raad Bahmani, Manuel Barbosa, Ferdinand Brasser, Bernardo
Portela, Ahmad-Reza Sadeghi, Guillaume Scerri, and Bogdan
Warinschi. Secure multiparty computation from sgx. Springer
International Publishing.

APPENDIX A
SOTERIA PROOF

We now discuss the privacy-preserving security of the SO-
TERIA protocol. The goal is to reduce the security of our
system to the security of the underlying security mecha-
nisms, namely the isolation guarantees of Intel SGX and the
bootstrapped secure channels, and the indistinguishability
properties of encryption.

The security goal consists in demonstrating that SO-
TERIA ensures privacy-preserving machine learning. Con-
cretely, this means that the behavior displayed by SOTERIA
in the real-world is indistinguishable from the one displayed
by an idealized functionality in the ideal-world, that simply
computes over the task script and provides an output via
secure channel. The only information revealed during this
process is the length of I/O, the number of computation
steps, and the access patterns to the external storage where
data is kept

Formally, this security goal is defined using the real-
versus-ideal world paradigm, similarly to the Universal
Composability [42] framework.

We begin with a more formal description of our security
model. Then, we present an intermediate result for ensuring
the security of enclaves relying on external storage. We
can finally specify the behavior of the Client, Master and
Workers, and present the full proof.

A.1 Formal Security Model
Our model considers external environment Z and internal
adversary A. Π denotes the protocol running in the real
world, and S and F denote the simulator and functionality,
respectively, running in the ideal-world. The real-world
considers a Client C , a Master node M and 2 Worker nodes
W1 and W2. This is for simplicity, as the definition and
proof can be easily generalized to consider any number of
Worker nodes. We also consider a global storage G, which
is initialized by Z before starting the protocol. The Ideal

Algorithm Setup(i,m)<G>:
k←$ Θ.Gen()
c←$ Θ.Enc(k, i)
G[m]← c
Return (m, k)

Fig. 6: Secure external storage setup.

functionality is parametrised by this external storage F ¡G¿,
and will reveal the access patterns via leakage function L.6

In the real-world, Z begins by providing public inputs
to C in the form of (s,m), where s is the task script, and
m is the manifest detailing data in G to be retrieved.7 The
Client will then execute protocol Π, sending messages to
M , W1 and W2. When the script is concluded, output is
provided to C , finally being returned to Z . A can observe
all communication between C,M,W1,W2 and G.

In the ideal world, (s,m) are provided to dummy Client
C , which in turn forwards them to F ¡G¿. The functionality
will simply run the protocol and forward the output to
C , which in turn is returned to Z . All the communication
observed by A must be emulated by simulator S , which
receives (s,m), leakage L produced from the functionality
interaction with storage G, and the size of the output.

Security is predicated on ensuring that S does not re-
quire any sensitive information (contained in G) to emulate
the communication to A. Given that we consider a semi-
honest adversary, we can simplify the interaction with the
system and instead discuss equality of views, as Z and A
are unable to deviate the system from its expected execution.
This is captured by the following definition.
Definition 1. Let Real denote the view ofZ in the real-world,

and let Ideal denote the view of Z in the ideal-world.
Protocol Π securely realises F for storage G if, for all
environments Z and all adversaries A,

RealZ,A,Π(G) ≈ IdealZ,A,S,F (G)

A.2 Intermediate Result
For convenience, SOTERIA does not require the Client to pro-
vide input data at the time of the ML processing, and instead
the Workers are given access to an external storage from
which to retrieve this data. When discussing the security in
the context of secure outsourced computation for SGX, this
is functionally equivalent to classical scenarios where the
Client provides these inputs via secure channel (Theorem 3
in [65]). The reasoning is simply that, if a protocol securely
realises a functionality with a given input provided via
secure channel, then the same functionality can be securely
realised with the same input fixed in an external storage,
securely accessed by the enclave.

Consider a protocol Π1 that securely realises some
functionality F with simulator S1 according to Theorem
3 of [42]. We construct protocol Π2 built on top of this
secure protocol Π1, where input data is pre-established and

6. Reasoning for the security of SML-2 instead would only require
this function to also reveal statistical data to the simulator, which we
consider to be non-sensitive.

7. SOTERIA Clients are trusted. As such, we assume (s,m) to both be
valid, in the sense that they are correct ML scripts and data sets in G,
and thus can be interpreted by ideal functionality F .

14

Algorithm AC()
k←$ Θ.Gen()
Return S1.AC()

Algorithm Send(l)
Return S1.Send(l)

Algorithm Get(l)

i← {0}l
c←$ Θ.Enc(k, i)
Return c

Fig. 7: Simulator for Π2.

provided to the enclave via an initial Setup stage where
inputs are stored in encrypted fashion (Figure 6 describes a
simplified version of the process for a single entry). Inputs to
Π2 are exactly the same as those for Π1, but instead of being
transmitted via the secure channel established with Attested
Computation, they are retrieved from storage using a key
sent via the same channel. The Client-server communication
increases by a constant (the key length), which can be triv-
ially simulated, and the rest of the input can be simulated
in a similar way using the IND-CPA properties of Θ. This
protocol behavior will be key for all SOTERIA Workers. Our
theorem is as follows.
Theorem 1. Let Π1 be a protocol that securely realises

functionality F according to Theorem 3 in [65]. Then
Π2, constructed as discussed above, securely realises F
according to Definition 1.

PROOF. To demonstrate this result, we construct simulator
S2 using S1, then argue that, given that S1 is a valid
simulator for the view of Π1, then the simulated view must
be indistinguishable from the one of the real world of Π2.

We begin by deconstructing S1 in two parts: S1.AC() will
produce the view for the establishment of secure channel,
while S1.Send(l) will produce a simulated view of Client
inputs, given their length. In turn, our simulator will share
the same functions, but also include a third S2.Get(l) to sim-
ulate information being retrieved from G, given its length.
Our simulator is depicted in Figure 7.

The view presented to A is composed of three different
types of messages:
• Messages exchanged during the secure channel estab-

lishment are exactly the same as in Π1. Thus they
remain indistinguishable from Π2.

• Outputs received via the secure channel follow the
exact same simulation strategy than Π1, and thus are
indistinguishable from Π2.

• Messages produced from G in Π2 are encryption of data
in G[m], while the values presented by S2 are dummy
encryptions with the same length. We can thus reduce
the advantage of A to distinguish these views to the
advantage of the same adversary to attack the IND-CPA
guarantees of encryption scheme Θ, which is negligible.

As such, if S1 is a valid simulator for Π1 to A, then the view
presented by S2 must also be indistinguishable for Π2 to A.

Let

AdvDist
Z,A,Π,S,F (G) =

|Pr[RealGZ,A,Π2
⇒ T]− Pr[IdealGZ,A,S2,F ⇒ T]|

To conclude, we have that, for negligible function µ,

AdvDist
Z,A,Π2,S2,F (G) = AdvDist

Z,A,Π1,S1,F () + AdvIND-CPA
Θ,A ()

≤ µ()

and Theorem 1 follows.

Algorithm C(m, s, k)

sc← init(M)
sc.send(m, s, k)
o← sc.receive()
Return o

Algorithm M()

scc ← init(C)
(m, s, k)←
scc.receive()
sc1 ← init(W1)
sc1.send(m, s, k)
sc2 ← init(W2)
sc2.send(m, s, k)
o1 ← sc1.receive()
o2 ← sc2.receive()
scc.send((o1, o2))

Algorithm W1()
m← ϵ
scm ← init(M)
(m, s, k)← scm.receive()
scw ← init(W2)
While !s.Complete:
c← uGet(G,m)
i← Θ.Dec(k, c)
(o,m)←$ s.Run(W1, i, ϵ)
scw.send(m)
m← scw.receive()

scm.send(o)

Fig. 8: SOTERIA Components. Client C (left), Master node
M (middle) and Worker node 1 W (right).

A.3 SOTERIA Client, Master and Workers

The SOTERIA components follow standard methodologies
for ensuring secure outsourced computation using SGX. As
such, and given the complexity of ML tasks described in the
script, we consider the following set of functions.

Secure channels are established with enclaves. We define
init(P) as the bootstrapping process, establishing a channel
with participant P . This produces an object that can be
used to send and receive data via send and receive. Un-
trusted storage is not protected with secure channels, and
can be accessed using the call uGet(G,m), which retrieves
data from G considering manifest file m. Concretely, this
is achieved using the open-source library Graphene-SGX,
which we assume to correctly implement this mechanism.
Finally, the script s defines the actual computation that must
be performed by the system, and will be executed collabora-
tively with both Workers. As such, we define s as a stateful
object with the main method Run(id, i1, i2), where input id
is the identifier of the Worker, i1 is input from storage and
i2 is intermediate input (e.g. model parameters), returning
(o1, o2), where o1 is the (possibly) final output, and o2 is
the (optional) intermediate output for dissemination. For
simplicity, we also define method Complete that returns T if
the task is complete, or F otherwise.

The SOTERIA components can be analysed in Figure 8
and are as follows. The Client C (left of Figure 8) sim-
ply establishes the channel with M , sends the parameters
(manifest file, task script and storage key), and awaits
computation output. Observe that we assume that the key
k has been previously initialized, and that the actual data
has been previously encrypted in G using it. The Master
M (middle of Figure 8) will receive the parameters from C
and establish channels with W1 and W2, forwarding them
the same parameters and awaiting computation output.
When it arrives, it is forwarded to the Client.8 Worker W1

(right of Figure 8) receives the parameters from M and
starts processing the script: retrieves encrypted data from G,
decrypts, processes and exchanges intermediate results with
the other Worker. When the script is concluded, it returns its
output to M . The behavior of W2 is the same, but connection
is established instead with W1.

8. In the actual protocol, the Master has additional steps to process
the output. We describe it like this for simplicity, as it does not change
the proof.

15

Algorithm W1()
m← ϵ
scm ← init(M)
(m, s, k)← scm.receive()
scw ← init(W2)
While !s.Complete:

c← uGet(G1,m)
i← Θ.Dec(k, c)
(o,m)←$ s.Run(W1, i, ϵ)
scw.send(m)
m← scw.receive()

scm.send(o)

Algorithm W2()
m← ϵ
scm ← init(M)
(m, s, k)← scm.receive()
scw ← init(W1)
While !s.Complete:

c← uGet(G2,m)
i← Θ.Dec(k, c)
(o,m)←$ s.Run(W1, i, ϵ)
scw.send(m)
m← scw.receive()

scm.send(o)

Fig. 9: SOTERIA Workers with split storage.

A.4 Full Proof

Given the description of SOTERIA components in Figure 8,
the SOTERIA protocol Πxyz is straightforward to describe.
Considering a pre-encrypted storage G, the Client C , Master
M and Workers W1,W2 execute following their respective
specifications. Our theorem for the security of SOTERIA is as
follows.

Theorem 2. Πxyz, assuming the setup of Figure 6 and con-
structed as discussed above, securely realises F accord-
ing to Definition 1.

The proof is presented as a sequence of four games. We
begin in the real-world, and sequentially adapt our setting
until we arrive in the ideal world. We then argue that all
steps up to that point are of negligible advantage to A, and
thus the views must be indistinguishable to Z .

The first is a simplification step, where, instead of using
a single storage G, we slice the storage to consider G1 and
G2. Figure 9 represents this change. This enables us to split
the execution environment of W1 and W2 seamlessly, and
can be done trivially since manifest file m by construction
will never require different Workers to access the same parts
of G. Since these two games are functionally equal, the
adversarial advantage is exactly 0.

The second step is a hybrid argument, where we se-
quentially replace both Workers by ideal functionalities
performing partial steps of the ML script. Concretely, we
argue as follows. Replace W1 with a functionality for its
part of the ML script FW1, according to Definition 1. From
Theorem 1 we can establish that this adaptation entails neg-
ligible advantage to A provided that the protocol without
external access realises the same functionality. However this
is necessarily the case, as it follows the exact structure as
the constructions in [65]. We can repeat this process for
W2.9 As such, using the intermediate result, we can thus
upper bound the advantage adversary to distinguish these
two scenarios by applying twice the result of Theorem 1.

The third step replaces the Master by an ideal function-
ality FM that simply forwards requests to the Worker func-
tionalities. This one follows the same logic as the previous
one, without requiring the external storage, as the protocol
also follows the exact structure as the constructions in [65].

In the final step, we have 3 functionalities
(FM ,FW1,FW2) playing the roles of (M,W1,W2),
respectively. We finalize by combining them to a single

9. Again, this technique extends for an arbitrary number of Workers.
N number of Workers would just require us to adapt the multiplication
factor in the final formula, which would still be negligible.

functionality F for ML script processing. This can be done
by constructing a big simulator S that builds upon the
simulators for the individual components (SM , SW1, SW2).
The simulator S behaves as follows:
• Run SM to construct the communication trace that

emulates the first part of F .
• Run the initial step of SW1 and SW2 to construct the

communication trace for establishing secure channels
between Workers and Master.

• Call leakage function L to retrieve the access patterns
to G. Use the result to infer which part of the storage
is being accessed, and run SW1 or SW2 to emulate the
computation stage.

Given that the view produced by S is exactly the same as
the one provided by the combination of SM , SW1 and SW2,
the adversarial advantage is exactly 0.

We are now exactly in the ideal world specified for
Definition 1.

Let

AdvDist
Z,A,Π,S,F (G) =

|Pr[RealGZ,A,Πxyz
⇒ T]− Pr[IdealGZ,A,S,F ⇒ T]|

To conclude, we have that, for negligible function µ,

AdvDist
Z,A,Π,S,F (G) = 2 · AdvDist

Z,A,ΠW1,SW1,FW1
(G)

+ AdvDist
Z,A,ΠM ,SM ,FM

()

≤ µ()

and Theorem 2 follows.

APPENDIX B
ML WORKFLOW ATTACKS

This section presents the attacks in Section 3.1 in further
detail, and argues in which circumstances SOTERIA is se-
cure against each attack. First, we will describe a general
adversarial model against SOTERIA that follows the security
restrictions justified in Appendix A. Then, we will present
an experiment that captures what constitutes a valid attack
under each definition, as described in Section 3.1. For each
attack, we consider our protocol to be secure if we can
demonstrate that one cannot rely on a valid adversary
against the experiment of said attack under the constraints
of SOTERIA. In some instances, this will depend on known
attack limitations, which we detail case-by-case.

B.1 Attacker against SOTERIA

Our goal is to present a model that details the conditions
in which these attacks are possible. As such, it must be
both generic, to capture the multiple success conditions of
attacks, as well as expressive, so that it can be easy to relate
to each specific attack.

In this definition, we will also consider an adversary that
can play the role of an honest client, and thus will have
black-box access to the produced model. We stress that, in
practice, this will not be the case in many circumstances.
In those scenarios, since queries to the model are made via
secure channel, an external adversary is unable to arbitrarily
request queries to the model without causing it to abort.
This means that any attack that requires black-box access

16

Game AdvXYZA,Πxyz (G, s):
(G′)←$ A1(G, s)
(m, l)← Πxyz(G

′, s)
r←$ Am

2 (l)
Return Success(G, s,m, r)

Fig. 10: Adversary interacting with SOTERIA.

Game DSetManA,Π(G, s):
G′←$ A(G, s)
m← Π(G′, s)
Return Success(G, s,m)

Fig. 11: Model for dataset manipulation attack.

to the model is not possible if SOTERIA assumes external
adversaries.

Let Πxyz denote the full training protocol of SOTERIA.
It receives external storage G and task script s as inputs,
and produces a model m, which can then be queried. Based
on the security result of Appendix A, the interaction of an
adversary with our system can be described in Figure 10.
The adversary A = {A1,A2} can first try and manipulate
the input dataset G to G′. This is then used for Πxyz, which
will produce the model m and the additional leakage l
(SML-1 has no additional leakage, so l = ϵ). Finally, the
adversary can interact black-box with the model until a
conclusion r is produced. This will be provided to a Success
predicate, which will state if the attack was successful. This
predicate is specific to the attack, and allows us to generally
describe attacks such as adversarial samples, where the goal is
to make the resulting model deviate, as well as membership
inference, where the goal is to retrieve information from the
original dataset.
Remark Observe that A1 and A2 do not share state. This
is because they play different roles within this experiment:
the first influences the system by attempting to manipulate
the training dataset G, while the second interacts with the
model m and leakage l to try and extract information. In-
deed, our first step will be to show that A1 is unable to rely
on G′ to meaningfully convey any additional knowledge
gained by observing (G, s).

B.2 Dataset manipulation
Dataset manipulation attacks are defined by an adversary
with the capability of inserting, removing or manipulating
dataset information. These align with the setting considered
for attacks via adversarial samples. Figure 11 is an experi-
ment that describes what constitutes a successful attack for
dataset manipulation. The adversary A is given full knowl-
edge of G10, and must produce an alternative input dataset
G′. We then train the model (protocol Π) over that data to
produce model m, and the adversary is successful if said
model satisfies some attack success criteria T/F← Success.
We now argue that the integrity guarantees of the authen-
ticated encryption used by our external storage G ensure
that these attacks do not occur for Πxyz. We do this by
showing that any adversary that performs an adversarial

10. Realistically, an attacker would have less information, but for our
purposes we can go for the worst case and give him all the information
regarding the computation and its input.

samples attack on Πxyz can be used to construct a successful
attack on the the security of the authenticated encryption
scheme. First, observe that no attack can be successful if
the adversary makes no changes on the input dataset, so if
G = G′ then F← Success. Furthermore, if Πxyz aborts, then
no model is produced, so it naturally follows that the attack
is unsuccessful F← Success.11

As such, the only cases in which T ← Success are those
in which G′ ̸= G and Πxyz does not abort. But this means
that the adversary was able to forge an input that correctly
decrypts, breaking the integrity of the underlying encryp-
tion scheme. Since the security guarantees of authenticated
encryption ensure that the probability of existing such an
adversary is negligible, the probability of such an attacker
in SOTERIA will also been negligible.

B.3 Black-box Attacks
All the remaining attacks with the exception of some recon-
struction attacks follow a similar setting, where the adversary
leverages a black-box access to the trained model, depicted
in the experiment of Figure 12. We begin by running Π to
produce our model and leakage, and then run an additional
procedure Extract to obtain additional information from
the original dataset, which cannot be retrieved by simply
querying the model. This procedure captures whatever
knowledge regarding the underlying ML training might be
necessary for the attack to be successful (e.g. information
about data features). We then provide this additional infor-
mation to the adversary, and give it black-box access to the
model. The success criteria depends on the specific attack,
and is validated with respect to the original dataset, model,
and the task script being run. E.g. for model extraction attack,
the goal might be to present a model m′ that is similar to m,
evaluated by the Success predicate.
For simplicity, we first exclude all attacks for an external ad-
versary, which does not have black-box access to the model
of SOTERIA. This is true if we can show that one cannot
emulate black-box access to the model using confidence
values and class probabilities. Albeit an interesting research
topic, current attacks are still unable to do this in an efficient
way [43]. We now go case-by-case, assuming an adversary
can play the role of a genuine client to our system.
Our arguments for Πxyz depend on being able to rely on a
successful adversary A of Figure 12 to perform the same
attack in Figure 10. As such, the security of our system
will depend on the amount of additional information z, on
how it can be extracted from the view of the adversary of
SOTERIA.
• For membership inference, reconstruction attacks based on

black-box access to the model, model inversion, and
model extraction via data-free knowledge distillation, no
additional information z is required. This means that
any successful adversary in Figure 12 will also be suc-
cessful in Figure 10, meaning that both for SML-1 and
SML-2 are vulnerable. Preventing these attacks requires
restricting access to the model to untrusted participants.

11. The only circumstance in which this could be considered a suc-
cessful attack was if the goal was to perform a denial-of-service attack,
which we consider to fall outside the scope of an adversarial sample
attack.

17

Game BlackBoxA,Πxyz (G, s):
m← Π(G, s)
z←$ Extract(G, s)
r←$ Am(z)
Return Success(G, s,m, r)

Fig. 12: Model for black-box attacks.

• Class-only attacks for model extraction require additional
knowledge from the dataset. Specifically, z must con-
tain concrete training dataset samples. This means that,
to leverage such an adversary A, one must first be able
to use Am

2 (l) to extract such a z. This exactly matches
the setting of model inversion attacks. This means that
SOTERIA is vulnerable to class-only attacks for model
extraction in SML-1 or SML-2 if there is also an efficient
attack for model inversion in SML-1 or SML-2, respec-
tively.

• Equation-solving model extraction requires knowledge of
the dimension of the training dataset G. This is addi-
tional information z that is not revealed by querying the
model, which means no adversaryAm

2 (ϵ) can retrieve z,
and thus SML-1 is secure against said attacks. However,
combining public data with confidence values might
allow for Am

2 (l) to extract a sufficient z to perform
the attack, which makes SML-2 vulnerable to equation-
solving model extraction.

• Path-finding model extraction attacks require information
regarding leaf count, tree depth and leaf ID. As such, all
this must be encapsulated in z. [2] suggests that such in-
formation is not retrievable from only black-box access
to the model [2], which means no adversary Am

2 (ϵ) can
produce z and thus SML-1 is secure. However, this is in-
formation that can be extracted from confidence values,
which suggests that an efficient adversary z←$ Am

2 (l)
is likely to exist, and thus SML-2 is vulnerable to such
attacks under these assumptions.

We can generalize the security of our system to these types
of attacks as follows. If no additional information z is
required, then Πxyz is vulnerable to an adversary that can
play the role of an honest client. If z can be extracted from
black-box access to the model, then we can still rely on said
adversary to attack Πxyz. Otherwise, SML-1 is secure, as no
additional information is leaked. Furthermore, the security
of SML-2 will depend whether one can infer z from l and
from the black-box access to the model. Concretely, if we
can show that no (efficient) function F exists, such that
z←$ Fm(l), then Πxyz for leakage l is secure against attacks
requiring additional data z.

B.4 White-box Attacks
White-box attacks capture a scenario where an adversary
requires white-box access to the model. These align with the
setting of reconstruction attacks that explicitly requires white-
box access to the model. Figure 13 is an experiment that
describes what constitutes a successful reconstruction attack
in this context. We begin by training the model (protocol
Π) over the original dataset to produce the model. We then
provide the trained model directly to the adversary, which
will reconstruct raw data r. Finally, the success of the attack
is validated with respect to the original dataset.

Game WhiteBoxA,Πxyz (G, s):
m← Π(G, s)
r←$ A(m)
Return Success(G, s,m, r)

Fig. 13: Model for white-box attacks.

We now argue that these attacks do not occur for Πxyz,
as long as it is not possible to extract the model from the
confidence values and from black-box access to the model.
This is because the attacker of Figure 13 receives explicitly
the model m, whereas the adversary A2 in Figure 10 re-
ceives the confidence values in l, and black-box access to
the model. To rely on such an attacker, A2 must therefore be
able to produce input m from its own view of the system.
As such, relying on such an adversary implies there is an
efficient way m←$ Am

bb(l) to retrieve the model m from
confidence values l and black-box access to the model m,
which is exactly the setting of model extraction attacks in
the previous section. This adversary Abb can then be called
by A2 to produce input m, which is then forwarded to the
adversary of Figure 13 to produce a successful attack r. As
such, SOTERIA is vulnerable to white-box reconstruction at-
tacks if there exists an efficient adversaryA′ that successfully
wins the experiment of Figure 12 for the model extraction
attack.

B.5 Summary
Table 3 summarizes the attacks discussed. These are divided
between all the identified classes of attacks, as well as
whether the adversary is external or if it can query the
model as a client. In many instances, the security of our
system hinges on another argument over specific restrictions
assumed for the adversary.
We now list the arguments that propose the security of our
system in the different contexts.

{1}: an adversary is unable to retrieve the (white-box)
model from confidence values {1a}, black-box access
to the model {1b}, or both {1c}.

{2}: an adversary is unable to emulate black-box access to
the model from confidence values.

{3}: an adversary is unable to retrieve the dimension of the
dataset from black-box access to the model {3a} and
confidence values {3b}.

{4}: an adversary is unable to retrieve information of leaf
count, depth and ID from black-box access to the mode
{4a} and confidence values {4b}.

{5}: no model inversion attack exists for retrieving dataset
samples for SML-1 {5a} and SML-2 {5b}.

White-box based attacks explicitly require additional infor-
mation, such as feature vectors, over black-box access to the
model [39]. This is something that supports {1b} directly,
and since confidence values are not computed from feature
vectors, so would be {1a} and {1c}. Extracting model access
from only confidence values is an active area of research, but
current attacks [43] are still unable to do this in an efficient
way {2}. Typically, one cannot infer dimension from simply
querying the model, which suggests {3a} is true, but this is
unclear for confidence values, and thus one might consider

18

External Client
SML-1 SML-2 SML-1 SML-2

Adversarial samples ✓ ✓ ✓ ✓

Reconstruction WB ✓ {1a} {1b} {1c}
BB ✓ {2} ✗ ✗

Membership inference ✓ {2} ✗ ✗
Model inversion ✓ {2} ✗ ✗

Model extr Equation ✓ {2} {3a} {3b}
Path ✓ {2} {4a} {4b}
Class ✓ {2} {5a} {5b}

DF KD ✓ {2} ✗ ✗

TABLE 3: Summary of attacks against SOTERIA. ✓ means SOTERIA is resilient to the attacks, ✗ means SOTERIA is vulnerable
to the attacks, and {X} means SOTERIA is secure if argument {X} is also true.

{3b} is false. [2] suggests {4a} is true, but {4b} is not. {5}
will fundamentally depend on the application [2], [43].

	Introduction
	Background
	Apache Spark and MLlib
	Intel Software Guard Extensions

	Applications and Security Model
	Security
	Machine Learning Workflow Attacks

	Soteria
	Apache Spark - Architecture and Flow
	Soteria Client
	Data Loading
	Tasks submission

	Soteria Cluster
	Soteria Twofold Design
	Security
	Relation to ML Attacks and Applications

	Implementation

	Methodology
	Evaluation
	Performance Overview
	Analysis
	Dataset size
	Algorithm Complexity
	Size of TCB

	Discussion

	Related Work
	Conclusion
	References
	Appendix A: Soteria Proof
	Formal Security Model
	Intermediate Result
	Soteria Client, Master and Workers
	Full Proof

	Appendix B: ML Workflow attacks
	Attacker against Soteria
	Dataset manipulation
	Black-box Attacks
	White-box Attacks
	Summary

