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Abstract—We propose SOTERIA, a system for distributed privacy-preserving Machine Learning (ML) that leverages Trusted Execution
Environments (e.g. Intel SGX) to run code in isolated containers (enclaves). Unlike previous work, where all ML-related computation is
performed at trusted enclaves, we introduce a hybrid scheme, combining computation done inside and outside these enclaves. The
conducted experimental evaluation validates that our approach reduces the runtime of ML algorithms by up to 41%, when compared to
previous related work. Our protocol is accompanied by a security proof, as well as a discussion regarding resilience against a wide
spectrum of ML attacks.
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1 INTRODUCTION

Outsourcing Machine Learning (ML) data storage and com-
putation to third-party services (e.g., cloud computing)
leaves users vulnerable to attacks that may compromise
the integrity and confidentiality of their data. Indeed, the
ML pipeline encompasses several stages, both for model
training and inference, in which users’ data is known to
be susceptible to different attacks such as adversarial attacks,
model extraction, and inversion, and reconstruction attacks [1],
[2].

Recent works have addressed these attacks with solu-
tions based on homomorphic encryption or secure multi-
party computation schemes. However, these cryptographic
schemes impose a significant performance toll that restricts
their applicability to practical scenarios [3]. To circumvent
this performance penalty, another line of research is that
of exploring hardware technologies enabling Trusted Exe-
cution Environments (TEEs), such as Intel SGX [4]. These
technologies allow the execution of code within isolated
processing environments (i.e., enclaves) where data can
be securely handled in its original form (i.e., plaintext) at
untrusted servers.

The latter approach typically deploys full ML workloads
inside TEEs [5], [6]. However, as the amount of computa-
tional and I/O operations performed at the enclaves in-
creases, the performance of ML training and inference is
noticeably affected by hardware limitations, limiting the
design’s applicability in practice [7].

This paper builds upon the idea that ML runtime per-
formance could be improved by reducing the number of
operations done at enclaves. In fact, this insight is backed up
by previous work [8], [9] exploring the partitioning of com-
putation across trusted and untrusted environments, but
in contexts (e.g., SQL processing, MapReduce, distributed
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coordination) with different security requirements and pro-
cessing logic than the ones found for ML workloads.

Therefore, the key challenge addressed by this paper
is to understand and define the set of ML operations to
run inside/outside TEEs. Ideally, these operations should
significantly reduce the enclaves’ overall computational and
I/O load for different ML workloads; and doing so should
not leak critical sensitive information during the execution
of ML workloads.

Our reasoning is twofold: i.) the majority of current
attacks on the ML pipeline is only successful if the attacker
has some knowledge about the datasets and/or models
being used [2], [10]; and ii.) studies show that such knowl-
edge cannot be inferred from the information leaked by
statistical operations, such as the calculation of confidence
results, table summaries, ROC/AUC curves, and probability
distributions for classes [11]. As a result, these operations are
ideal candidates to be offloaded from enclaves. We support
these claims by analyzing the security and performance
implications of different ML workloads and attacks.

Thus, we propose SOTERIA, an open-source system for
distributed privacy-preserving ML 1 that leverages the scal-
ability and reliability provided by Apache Spark and its
ML library (MLlib). Unlike previous solutions [12], [13],
SOTERIA supports a wide variety of ML algorithms without
changing how users build and run these within Spark.
It ensures that critical operations, which enable existing
attacks to reveal sensitive information from ML datasets and
models, are exclusively performed in secure enclaves. This
means that the sensitive information being processed only
exists in plaintext when inside the enclave, being encrypted
in the remainder data flow (e.g., network, storage). This
solution enables robust security guarantees, ensuring data
privacy during ML training and inference.

SOTERIA introduces a new computation partitioning
scheme for Apache Spark’s MLlib, SOTERIA-P, that offloads
non-critical statistical operations from the trusted enclaves

1. https://github.com/claudiavmbrito/soteria
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to untrusted environments. SOTERIA-P is accompanied by
a formal security proof for how data remains private dur-
ing ML workloads and an analysis of how this guarantee
ensures resilience against various ML attacks. Furthermore,
SOTERIA offers a baseline scheme, SOTERIA-B, where all
ML operations are done inside trusted enclaves without a
fine-grained differentiation between critical and non-critical
operations. SOTERIA-B provides a performance and secu-
rity baseline for comparison against our new partitioned
scheme.

We compare experimentally both approaches with a
non-secure deployment of Apache Spark and a state-of-
the-art solution, namely SGX-Spark [12]. Our experiments,
resorting to the HiBench benchmark [14] and including
four different ML algorithms, show that SOTERIA-P, while
considering a larger subset of ML attacks, reduces training
time by up to 41% for Gradient Boosted Trees workloads
and up to 4.3 hours for Linear Regression workloads, when
compared to SGX-Spark. Also, when compared to SOTERIA-
B, SOTERIA-P reduces execution time by up to 37% for the
Gradient Boosted Trees workloads and up to 3.3 hours for
the Linear Regression workloads.

2 BACKGROUND

2.1 Apache Spark and MLlib

Apache Spark is a distributed cluster computing framework
that supports ETL, analytical, ML, and graph processing
over large volumes of data. Spark follows a Master/Workers
distributed architecture and can be deployed on a cluster of
servers in the cloud that may access several data sources
(e.g., HBase, HDFS) for reading the data to be processed and
storing the corresponding output and logs [15]. Spark is able
to perform most of the computation in-memory, thus pro-
moting better performance for data-intensive applications
when compared to Hadoop’s MapReduce.

The MLlib library [16] enables Spark users to build end-
to-end ML workflows. These workflows are divided into 5
stages (Figure 1). The first stage goes from the collection
of data to its treatment. In the second stage, data is split
into train and test datasets, and a given ML algorithm is
chosen. The third stage is the training stage, where data is
iterated to deliver an optimized trained model at the fourth
stage. In the fifth stage, the trained model can then be saved
(persisted) and loaded (accessed) for inference purposes.

2.2 Intel Software Guard Extensions

Intel SGX provides a set of new instructions, available on
Intel processors, that applications can use to create trusted
memory regions. These regions (enclaves) are isolated from
any other code on the host system, preventing other pro-
cesses, including those with higher privilege levels (such
as the host OS, hypervisor, and BIOS), from accessing their
content [4], [17].

Since SGX protects code and data from privileged access,
sensitive plaintext data can be processed at the enclave
without compromising its privacy. Thus, TEEs outperform
typical traditional cryptographic computational techniques
(e.g., searchable encryption, homomorphic encryption) [17].
Even though the second generation of SGX has improved
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Fig. 1: ML pipeline and known attack vectors.

the size of the protected memory region, it still defines the
Enclave Page Cache (EPC) to 128MB per CPU [18]. When
such limitation is met, memory swapping occurs, which
is a performance-costing mechanism [7]. Thus, SGX-based
solutions must balance the number of I/O operations and
the amount of data handled by enclaves as well as the
Trusted Computing Base (TCB) to optimize performance.

We chose SGX over other TEEs in this paper because
of its broad availability and use in academia [8], [9] and
industry [19].

3 APPLICATIONS AND SECURITY MODEL

3.1 SOTERIA Threat Model

SOTERIA enables the secure outsourcing of ML training and
inference workloads. These are scenarios where the data
owner holds sensitive information (a private dataset and/or
model) and wants to perform some ML workload on it using
an external cloud provider.

Our deployment model is depicted in Figure 2 and is as
follows. The client (data owner) will be trusted and will
provide input for ML tasks Then, a Spark Master node
and N Worker nodes will be deployed in an untrusted
environment (cloud provider), equipped with Intel SGX
technology. Externally, we also consider a distributed data
storage backend. The protocol assumes an implicit setup
where the client stores its input data securely within this
backend, which is also considered untrusted throughout the
protocol execution.

We consider semi-honest adversaries, which means that
security is defined according to a threat that attempts to
break the confidentiality of data and model, but that will
not actively deviate from the protocol specification. This is
a good fit for cloud-based systems, where data breaches are
common and malicious entities can read internal processing
data temporarily [20]. In brief, our security goal is to allow
clients to provide input data for training and inference in a
way that is not vulnerable to breaches in confidentiality.

3.2 ML Workflow Attacks

Throughout the paper, we follow the black-box setting
of [21]. Essentially, when we state that an adversary has
black-box access to a model, it can query any input x and
receive the predicted class probabilities P (y|x) for all classes
y. This allows the adversary to interact with the trained
model without retrieving additional information, e.g. com-
puting the gradients. Ensuring security against attacks on
this pipeline entails including countermeasures against a
wide array of attack vectors, as depicted in Figure 1.
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TABLE 1: Comparison between state-of-the-art solutions
and SOTERIA regarding the safety against ML attacks.

Attacks Systems
[5] [6] [13] [12]* SOTERIA

Adversarial

Gradient-based ✗ ✗ ✓ ✗ ✓
Score-based ✗ ✗ ✓ ✗ ✓

Transfer-based ✗ ✗ ✓ ✗ ✓
Decision-based ✗ ✗ ✓ ✗ ✓

Model Extraction

Equation-solving ✓ ✓ ✗ ✓ ✓
Path-finding ✓ ✓ ✗ ✗ ✓
Class-only ✓ ✓ ✗ ✗ ✓

DFKD ✓ ✓ ✗ ✓ ✓
Model Inversion ✓ ✓ ? ✓ ✓

Reconstruction Attacks ✓ ✓ ✓ ✓ ✓
Membership Inference ✗ ✗ ✗ ✗ ✓

*Data encryption is not provided on the open-source version.
✓ - Protected; ✗ - Non-protected; ? - Not disclosed.

Adversarial attacks. These attacks are characterized by
the injection of malicious data samples, to manipulate the
model and to disclose information about the original data
being used for training or inference purposes. Successful
attacks in the literature require the attacker to have direct
access to the training dataset (data poisoning, transfer-
based, and gradient-based attacks), the model and gradients
(gradient-based attacks), or the full results and class proba-
bilities (score-based attacks) [10], [22].

Model Extraction. These attacks aim at learning a close
approximation to an objective function of the trained model.
This approximation is based on the exact confidence val-
ues and response labels obtained by inference. To attain
the desired output, the attacker must know the dimension
of the original training dataset (equation-solving attacks),
the dimension of the decision trees, data features and the
final confidence values (path-finding attacks), or hold real
samples from the training dataset (class-only attacks and
data-free knowledge distillation (DFKD)) [1], [23].

Model Inversion and Membership Inference. These at-
tacks target the recovery of values from the training dataset.
Both consider an adversary that queries the ML system in
a black-box fashion and both are currently based on ML
services, which define publicly their trained models and the
confidence values. In model inversion, the adversary must
have partial knowledge of the training dataset’s features
to infer and query the model with specific queries [2].
Membership inference aims to test if a specific data point
d was used as training data and requires the adversary to
know a subset of samples used for training the model (that
does not contain d) [24].

Reconstruction attacks. The goal of this attack is similar
to that of membership inference, but instead of testing
for the existence of a specific data point, the adversary
intends to reconstruct raw data used for training the model.
To be successful, some attacks require the adversary to
have model-specific information, namely feature vectors
(e.g., Support Vector Machines or K-Nearest Neighbor) [25],
others only require black-box access to the model [26].

Summary. Unlike previous works [5], [6], [12], [13],
which typically consider a small subset of ML attacks, our
proposal aims at providing mechanisms that cover the full
range of the above-mentioned exploits. Table 1 presents rel-

evant state-of-the-art solutions, the security attacks covered
by these, and the attacks addressed by SOTERIA. Intuitively,
the resilience of our system is the result of combining several
mechanisms, which are only partially ensured by other
systems: i.) authenticity verification of inputs excludes injec-
tions necessary for adversarial attacks; ii.) isolation guarantees
of our protocol ensure that malicious workers gather no
additional information other than statistical data, an essen-
tial aspect for preventing most attacks, and iii.) query input
via secure channel prevents the adversary from performing
arbitrary queries to our system, which is also a central
requirement for model inversion or reconstruction attacks. This
is analysed in detail in Section 4.5.

TEE-related security issues such as side-channel and mem-
ory access pattern attacks are considered orthogonal and com-
plementary to our design goals. Indeed, mechanisms such
as ObliviousRAM [27] can be layered over Soteria to address
these, at the cost of additional performance overhead.

4 SOTERIA

SOTERIA is a privacy-preserving ML solution that avoids
changing Apache Spark’s main architecture and processing
flow while retaining its usability, scalability, and fault toler-
ance properties.

4.1 Apache Spark: Architecture and Flow
As depicted in Figure 2, Apache Spark’s operational flow is
as follows. Before submitting ML tasks (e.g., model training,
and/or inference operations) to the Spark cluster, users
must load their local datasets and models to a distributed
storage backend. Users can then submit ML processing
tasks, specified as ML task scripts, to the Spark client, which
is responsible for forwarding these scripts to the Master
node. At the Master node, tasks are forwarded to the
Spark Driver, which generates a Spark Context that then
distributes the tasks to a set of Worker nodes.

As Workers may be executing different steps of a given
task, they need to be able to transfer information (e.g., model
parameters) among each other through the network. After
finishing the desired computational steps, Workers send
back their outputs to the Master node, which merges the
outputs and replies back to the client.

Similar to the regular flow of Apache Spark, SOTERIA
can be divided into two main environments or sides: the
SOTERIA Client, trusted side, and the SOTERIA Cluster,
untrusted side, (e.g., cloud environment). Next, we describe
the main modifications required by SOTERIA to the original
Apache Spark’s design, depicted in Figure 2 by the white
dashed and solid line boxes.

4.2 SOTERIA Client
SOTERIA’s client module is used by users for three main
operations: i) loading data into the distributed storage back-
end, ii) sending ML training tasks to the Spark cluster,
and iii) sending ML inference tasks to the Spark cluster.
SOTERIA does not change the way users typically specify
and perform the previous operations. The only exception
is that users need to provide additional information in a
Manifest configuration file, as described next.
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Fig. 2: SOTERIA architecture and operations flow.

Data Loading. For the first operation, the user must specify
the data to be loaded to the storage backend. However,
such data has to be encrypted before leaving the trusted
user premises. This step is done by extending Spark’s data
loading component with a transparent encryption module
(Figure 2- a ), This module encrypts the data being loaded
into the distributed storage backend with a symmetric-key
encryption scheme (Figure 2- b ).
Tasks submission. ML training and inference operations in-
clude two main files: the ML task script and the Manifest file.
The transparent encryption module, also integrated within
MLlib, is used to encrypt the ML task script (Figure 2- 1 ),
which contains sensitive arguments (i.e, model parameters)
and the ML’s workload processing logic, and to decrypt the
outputs (e.g., trained model or inference result) returned by
Spark’s Master node to the client.

The Manifest file contains the libraries to be used by the
ML task script, as well as the path at the storage backend
where the training or inference data, for that specific task,
is kept (Figure 2- 2 ). Briefly, and as explained in the next
sections, this file ensures that different Spark components
can attest the integrity of libraries and data being used/read
by them and, moreover, cannot access other libraries or data
that these are not supposed to.

The encryption module is in charge of securely exchang-
ing the Manifest file, and the user’s symmetric encryption
key with the SGX enclave on the Master node (Figure 2-
1 2 ). This is done once, at the ML task’s bootstrapping
phase, and requires establishing a secure channel between
the client and Master’s enclave. This channel guarantees the
security and integrity of the user’s encryption key and the
Manifest file, while the encrypted ML task scripts can be
safely sent via an unprotected channel.

With the previous design, sensitive data is only accessed
in its plaintext format at trusted user premises or inside
trusted enclaves. This includes users’ encryption keys, the
information in the Manifest file and ML task scripts, as well
as the final output.

4.3 SOTERIA Cluster

Training and inference ML task scripts are sent encrypted
to Spark’s Master node to avoid revealing sensitive infor-
mation. However, the node requires access to the plaintext
information contained in these cryptograms to distribute the
required computational load across Workers. So, the Spark
Driver and Context modules must be deployed in a secure
SGX enclave where the cryptograms can be decrypted and

the plaintext information can be securely accessed. The
cryptograms, however, can only be decrypted if the secure
enclave has access to the user’s encryption key, thus ex-
plaining why the key must be sent through a secure channel
established between the client module and the enclave.

For inference operations, the Master node also needs to
access the distributed storage backend to retrieve the stored
ML model. The user’s encryption key is necessary so that
the encrypted model is only decrypted and processed at
the secure enclave. The Manifest file ensures that only the
storage locations specified in the file are accessible to the
Master Node (Figure 2- 2 ).

After processing the ML task scripts, the Master’s en-
clave establishes secure channels with the enclaves of a set
of Workers to send the necessary computational instruc-
tions2 along with the user’s encryption key and Manifest
file (Figure 2- 3 ). The user’s encryption key is needed at
the Worker nodes so that these can read encrypted data
(e.g., train dataset or data to be inferred) from the storage
backend while decrypting and processing it in a secure
enclave environment (Figure 2- 4 ). The Manifest file is used,
once again, to prevent unwanted access to stored data.
Furthermore, the enclaves at the worker nodes establish
secure channels between themselves to transfer sensitive
metadata information such as model training parameters
(Figure 2- 5 ).

Finally, after completing the desired computational
tasks, the Workers send the corresponding inference or
training outputs to the Master node, through the established
secure channel (Figure 2- 6 ). The Master node then merges
the partial outputs into the final result and sends it en-
crypted, with the user’s encryption key, to the trusted client
module (Figure 2- 7 ). At the latter, the result (i.e., trained
model or inference output) is decrypted by the transparent
encryption module and returned to the user in plaintext.

4.4 SOTERIA Design
SOTERIA proposes a novel partitioning scheme, SOTERIA-
P, that does fine-grained partitioning of which operations
execute inside and outside secure enclaves. Note that this
partitioning is only done for ML operations executed at
Spark Worker nodes. The remaining operations done at
other Spark components (i.e., Master) are always executed
inside trusted enclaves.

To better understand the novelty of our partitioning
scheme, we first introduce a common state-of-the-art ap-
proach, SOTERIA-B, which is also supported by our system
and is used in this paper as a security and performance
baseline.
SOTERIA Baseline (SOTERIA-B). In SOTERIA-B, all com-
putation done by Spark Workers is included in a trusted
environment. The executor processes launched by each
Worker node are deployed inside an enclave, as depicted in
Figure 3. Outside the enclave, data is always encrypted in an
authenticated fashion, which allows the Worker to decrypt
and validate data integrity within the enclave.
SOTERIA Partitioning Scheme (SOTERIA-P). Our novel
scheme is based on the observation that ML workloads

2. The same metadata sent by a vanilla Spark deployment so that
Workers know the computational operations to perform.
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Fig. 3: Comparison between SOTERIA-B and SOTERIA-P
schemes.

are composed of different computational steps. Some must
operate directly over sensitive plaintext information (e.g.,
train and inference data and model), while others do not
require access to this type of data and are just calculating
and collecting general statistics about the operations being
made. For instance, in a multiclass ML task, where the user
may want to predict multiple classes, the evaluation of such
an algorithm would need to measure the precision and the
probability of each individual class. These measurements
can be performed independently of other operations over
sensitive information.

Therefore, SOTERIA-P decouples statistical processing,
used for assessing the performance of inference and training
tasks, from the actual computation of the ML algorithms
done over sensitive plaintext information. This decoupling
builds directly upon MLlib and refactors its implementation
without requiring any changes to the way users submit ML
tasks. As depicted in Figure 3, statistical processing is done
by executor processes in the untrusted environment, while
the remaining processing endeavors are done by another set
of executors inside a trusted enclave.

This decoupled scheme leads SOTERIA-P to reveal the
following statistical information during the execution of
ML workloads: the calculation of confidence results (accu-
racy, precision, recall and F1-scores), table summaries and
ROC/AUC curves, and probability distributions for classes.

4.5 Security
Formally, our security goal is defined using the real-versus-
ideal world paradigm, similarly to the Universal Compos-
ability [28] framework. Succinctly, we prove that SOTERIA
is indistinguishable from an idealized service for running
ML scripts in an arbitrary external environment that can
collude with a malicious insider adversary. We then use
that abstraction to demonstrate how SOTERIA is resilient
to real-world ML attacks. This idealized service is specified
as a functionality parametrized with the input data, which
simply executes the tasks described in the ML task script,
and returns the output to the client via a secure channel.

The full proof of SOTERIA can be found in Appendix
A. The outline is as follows. The role played by SOTERIA
’s Master node can be seen as an extension of the client,
establishing secure channels, providing storage encryption
keys, and receiving outputs. We follow the reasoning of [29]
and replace the Master node with a reactive functionality
performing the same tasks. Similarly, each SOTERIA Worker
behaves simultaneously as a processing node and as a client
node, providing inputs to the computation of other Workers
(e.g., model training parameters). This enables us to do

a hybrid argument, where Worker nodes are sequentially
replaced by idealized reactive functionalities executing their
roles in the task script.

Finally, all processing is done in ideal functionalities, and
all access to external storage is fixed by the ML task script
and the Manifest file, so we can refactor the functionalities
to process over hard-coded client data, and replace the
secure data storage with dummy encryptions. We have now
reached the ideal world, where all ML computation is done
in an isolated service, and all other protocol interactions are
simulated given the ML task script and Manifest files. Our
analysis refers to SOTERIA-B, and thus establishes the base-
line security result when no computation is done outside
the enclave (no leakage). The reasoning for SOTERIA-P is
identical, with the caveat that statistical data is explicitly
revealed as leakage in the ideal world.

4.5.1 Security implications of statistical leakage
To show that our system is resilient against ML attacks,
we must consider a common prerequisite for such attacks
to be successful: the adversary must have black-box ac-
cess to the model (Section 3.2). Our result implies that
adversaries cannot infer internal data from the workers,
and the secure channel between client and Master prevents
adversaries from injecting queries into the system. This
would intuitively suggest that our adversary is unable to
perform queries in a black-box fashion to the model, how-
ever, SOTERIA-P has the aforementioned additional leakage
of statistical information.

As such, a crucial security question to answer is: how
does statistical information relate to black-box model access, i.e.
does the first imply the second in any way? Extracting model
access from statistical data is an ongoing area of research.
However, current attacks suggest one is unable to do this
in any successful way [11]. This supports our thesis that
statistical values are not sensitive information, in the sense that
their leakage does not expose our system to these types of
attacks. It follows that SOTERIA-P scheme is resilient to any
attack that requires black-box access to the model to succeed.

4.5.2 Relation to ML Attacks
We now overview the four types of attacks referred to in
Section 3.2 on a case-by-case basis. Appendix B contains a
more in-depth analysis of these attacks.

Resistance against input forgery is achieved by SOTERIA
through authenticated data encryption. This means that the
input dataset is authenticated by the data owner and ex-
plicitly defined in the Manifest file, allowing enclave Worker
nodes to check the authenticity of all input data. Thus, no
forged data is accepted for processing, which is necessary
for performing any type of adversarial attack.

The secure channels between the TEE at the Master node
and the client ensure that an external adversary cannot
observe legitimate query input/outputs, and cannot submit
arbitrary queries to SOTERIA. This query privacy feature is
crucial to block illegitimate model access, which allows us to
protect against model extraction, model inversion, membership
inference as well as instances of reconstruction attacks that
require black-box access to the model.

Finally, reconstruction attacks require additional knowl-
edge about internal ML model data. Our security result
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shows that SOTERIA is indistinguishable from an idealized
ML service, which does not reveal the trained model. This
includes the important feature vectors required for this
attack to occur, which cannot be inferred from confidence
values and class probabilities alone. Alternatively, recon-
struction attacks requiring black-box access to the model
are strictly stronger, but this, as we have argued, is not
possible only with knowledge of confidence values, class
probabilities, ROC/AUC curves, and table summaries (the
explicit leakage of SOTERIA-P) (refer to Appendix A and B).

4.6 Implementation
SOTERIA’s prototype is built on top of Apache Spark 2.3.0
and implemented using both Java and Scala. Spark’s data
loading library was extended to include SOTERIA’s trans-
parent encryption module. The latter uses the AES-GCM-
128 authenticated encryption cypher mode, which provides
both data privacy and integrity guarantees.

Both SOTERIA-B and SOTERIA-P schemes are sup-
ported by our prototype. For SOTERIA-P’s implementation,
Spark’s MLlib implementation was decoupled into two sub-
libraries, one with the statistical processing (to be executed
outside SGX), and another with the remaining ML compu-
tational logic (to be executed inside SGX).

Graphene-SGX 1.0 was used for the overall management
of Intel SGX enclaves’ life cycle, for specifying the com-
putation (i.e., internal Spark and MLlib libraries) to run at
each enclave, and for establishing secure channels (i.e., with
the TLS-PSK protocol) between the enclaves at the Master
and Worker nodes [30]. SOTERIA’s Manifest file was also
provided by Graphene.

5 METHODOLOGY

Environment. The experiments use a cluster with eight
servers, with a 6-core 3.00 GHz Intel Core i5-9500 CPU,
16 GB RAM, and a 256GB NVMe. The host OS is Ubuntu
18.04.4 LTS, with Linux kernel 4.15.0. Each machine uses
a 10Gbps Ethernet card connected to a dedicated local
network. We use Apache Spark 2.3.0 and version 2.6 of
the Intel SGX Linux SDK (driver 1.8). The client and Spark
Master run in one server while Spark Workers are deployed
in the remaining seven servers. SGX memory is configured
to use 4GB.
Workloads. We resort to the HiBench benchmark [14] for
evaluating four ML algorithms (Table 3), that are broadly
used and natively implemented on top of MLlib, namely:
Alternating Least Squares (ALS), Principal Component
Analysis (PCA), Gradient Boosted Trees (GBT) and Linear
Regression (LR). For each algorithm, the benchmark suite
offers different workload sizes ranging from Tiny to Gigantic
configurations.
Setups and metrics. To validate SOTERIA’s performance,
and the benefits of fine-grained differentiation of secure ML
operations, we compare the implementations of our system
with the SOTERIA-B and SOTERIA-P schemes. These setups
are compared with a deployment of Apache Spark that does
not offer privacy guarantees (Vanilla).

Moreover, we test SGX-Spark [12], a state-of-the-art SGX-
based solution that protects both analytical and ML compu-
tation done with Apache Spark. It is designed to process

TABLE 2: Representation of the tasks of each ML algorithm
and the data sizes for different workloads.

Algorithms Tasks Workloads
Tiny Large Huge Gigantic

ALS RS 193KB 345MB 2GB 4GB
PCA DR 256KB 92MB 550MB 688MB
GBT P 36KB 46MB 92MB 183MB
LR C + P 11GB 134GB 335GB 894GB

RS: Recommendation Systems; DR: Dimensionality Reduction; P: Pre-
diction; C: Classification.

sensitive information inside SGX enclaves, so it can be
considered the most similar to SOTERIA. However, SGX-
Spark can only guarantee that User Defined Functions (UDFs)
are processed in secure enclaves. This decision leaves a large
codebase of Spark outside the protected memory region
and, consequently, limits the users to only being able to
execute privacy-preserving ML algorithms based on UDFs.

For each experiment discussed in the next section, we
include the average algorithm execution time and standard
deviation for 3 independent runs. The dstat monitoring tool
was used to collect the CPU, RAM, and network consump-
tion at each cluster node.

6 EVALUATION

Our evaluation answers three main questions: i) How does
SOTERIA impacts the execution time of ML workloads? ii) How
does the SOTERIA-P scheme compares, in terms of performance,
with state-of-the-art approaches (i.e., SOTERIA-B and SGX-
Spark)? iii) Can SOTERIA efficiently handle different algorithms
and dataset sizes?

6.1 Methodology
Environment. The experiments use a cluster with eight
servers, with a 6-core 3.00 GHz Intel Core i5-9500 CPU,
16 GB RAM, and a 256GB NVMe. The host OS is Ubuntu
18.04.4 LTS, with Linux kernel 4.15.0. Each machine uses
a 10Gbps Ethernet card connected to a dedicated local
network. We use Apache Spark 2.3.0 and version 2.6 of
the Intel SGX Linux SDK (driver 1.8). The client and Spark
Master run in one server while Spark Workers are deployed
in the remaining seven servers. SGX memory is configured
to use 4GB.
Workloads. We resort to the HiBench benchmark [14] for
evaluating four ML algorithms (Table 3), that are broadly
used and natively implemented on top of MLlib, namely:
Alternating Least Squares (ALS), Principal Component
Analysis (PCA), Gradient Boosted Trees (GBT) and Linear
Regression (LR). For each algorithm, the benchmark suite
offers different workload sizes ranging from Tiny to Gigantic
configurations.
Setups and metrics. To validate SOTERIA’s performance,
and the benefits of fine-grained differentiation of secure ML
operations, we compare the implementations of our system
with the SOTERIA-B and SOTERIA-P schemes. These setups
are compared with a deployment of Apache Spark that does
not offer privacy guarantees (Vanilla).

Moreover, we test SGX-Spark [12], a state-of-the-art SGX-
based solution that protects both analytical and ML compu-
tation done with Apache Spark. It is designed to process
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TABLE 3: Representation of the tasks of each ML algorithm
and the data sizes for different workloads.

Algorithms Tasks Workloads
Tiny Large Huge Gigantic

ALS RS 193KB 345MB 2GB 4GB
PCA DR 256KB 92MB 550MB 688MB
GBT P 36KB 46MB 92MB 183MB
LR C + P 11GB 134GB 335GB 894GB

RS: Recommendation Systems; DR: Dimensionality Reduction; P: Pre-
diction; C: Classification.

sensitive information inside SGX enclaves, so it can be
considered the most similar to SOTERIA. However, SGX-
Spark can only guarantee that User Defined Functions (UDFs)
are processed in secure enclaves. This decision leaves a large
codebase of Spark outside the protected memory region
and, consequently, limits the users to only being able to
execute privacy-preserving ML algorithms based on UDFs.

For each experiment discussed in the next section, we
include the average algorithm execution time and standard
deviation for 3 independent runs. The dstat monitoring tool
was used to collect the CPU, RAM, and network consump-
tion at each cluster node.

6.2 Performance Overview

Figures 4a, 4b, 4c and 4d present the performance evaluation
for PCA, GBT, ALS and LR algorithms for different workload
sizes. Next, we list our main observations to aid in the
characterization of these results. Unless stated otherwise,
the performance overhead values discussed in this section
correspond to the number of times that the algorithm’s ex-
ecution time increases for a given setup when compared to
the Vanilla Spark deployment results. Obs. 1 to 5 correspond
to the Huge workload for the defined algorithms, whilst Obs.
6 to 9 refer to the overall results in Figure 4.
Observation 1. Vanilla Spark’s execution times for ALS,
PCA, LR, and GBT algorithms are, respectively, 55, 655, 657,
and 189 seconds.
Observation 2. The execution time for ALS increases by
3.62x and 4.35x for SOTERIA-P and SOTERIA-B, respectively.
SGX-Spark incurs an execution overhead of 4x. Thus, the
three setups have similar results while requiring approxi-
mately 150 seconds more processing time than the vanilla
deployment. Nevertheless, SOTERIA-P performs slightly
better than the other two approaches.
Observation 3. For PCA, SOTERIA-B and SOTERIA-P have
an execution overhead of 3.67x and 2.85x, while SGX-Spark
increases the computational time by 3.95x. When compared
to SGX-Spark, SOTERIA-P decreases the execution time by
12 minutes (27.8%).
Observation 4. For LR, SOTERIA-B and SGX-Spark exhibit
an overhead of 27.31x, while SOTERIA-P reduces this value
to 18.2x. This reduction of 29.6% allows SOTERIA-P to com-
plete this workload 1.4 hours earlier.
Observation 5. With the GBT algorithm, SOTERIA-B shows
similar execution times when compared to SGX-Spark, with
a 7.04x and 6.64x increase, respectively. SOTERIA-P outper-
forms both approaches, with an overhead of 4.79x, 27.8%
less than SGX-Spark.

Observation 6. For Tiny and Large workloads with the PCA
algorithm, SOTERIA performs similarly for our two schemes,
while outperforming SGX-Spark. With larger workload
sizes, the overhead imposed by our solutions increases,
however, it continues to show better performance than SGX-
Spark. SOTERIA-B has an overhead of 1.96x to 5.15x for
Tiny and Gigantic workloads, whilst SOTERIA-P incurs an
overhead of 1.72x to 3.79x. When compared with SGX-
Spark, the results show an absolute difference of 4 seconds
and 7 minutes (7%), for SOTERIA-B, and 7 seconds and 33
minutes (19% and 31%) respectively, for SOTERIA-P.
Observation 7. Regarding the GBT algorithm, and the
Tiny workload, the overhead of SOTERIA-B, SOTERIA-P, and
SGX-Spark are similar. However, the difference between
the three approaches is more visible when increasing the
workload size. SOTERIA-P (Tiny-2.13x and Gigantic-5.88x)
outperforms both approaches, while SOTERIA-B (Tiny-2.18x,
Gigantic-9.35x) and SGX-Spark (Tiny-2.3x, Gigantic-10.34x)
have similar results. SOTERIA-P is able to surpass SGX-
Spark’s execution time in the Gigantic workload by up to
41%.
Observation 8. With ALS, SOTERIA-P shows an execution
time overhead of 2.04x and 3.28x, for the Tiny and Gigantic
workloads, respectively. SOTERIA-P achieves lower over-
head than SOTERIA-B and SGX-Spark for all dataset sizes,
with the execution time decreasing by 8 seconds (9%) for
the Tiny and 191 seconds (27%) for the Gigantic workloads.
Observation 9. For LR, with the Tiny workload, SOTERIA-
B and SOTERIA-P increase execution time by 14.39x and
12.95x, respectively. As for the Gigantic workload, SOTERIA-
B incurs an overhead of 30.04x and SOTERIA-P of 23.89x.
Compared to SGX-Spark, our SOTERIA-P decreases the exe-
cution time by 43 seconds for the Tiny workload and by 4.31
hours for the Gigantic workload (22.6%).
Observation 10. Overall, the CPU, RAM, and network usage
for both SOTERIA schemes is similar to the vanilla Spark
baseline. In more detail, SOTERIA-B with LR presents the
upper-bound limit for both memory and CPU, showing an
increase of 9% in both when compared with vanilla Spark
(20%). Whilst the network shows an upper-bound increase
of 10% (vanilla Spark shows an upper-bound network of
135MB) in SOTERIA-B with PCA due to extra encrypted data
paddings being sent between Spark Workers.
Observation 11. SOTERIA does not impact the accuracy
of ML workloads. For all experiments, we measured the
corresponding accuracy metrics (e.g., accuracy, root mean
square error, or ROC). The results corroborate that both
SOTERIA-B and SOTERIA-P show accuracy values similar to
the vanilla Spark version.

6.3 Analysis
We analyze the results based on i) dataset size; and ii) size
of trusted computing base (TCB).
Dataset size. For PCA, GBT, and ALS with smaller datasets,
SOTERIA-B and SOTERIA-P perform similarly (Figure 4).
However, as the size of the datasets increases, more opera-
tions and data must be transferred to the SGX enclave, thus
taking a more noticeable toll on the overall performance.
The page swapping mechanism of SGX, which occurs due
to its memory limitations, incurs a significant performance
penalty [7], [18]. For example, when compared to the vanilla
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(d) LR
Fig. 4: Runtime execution for PCA, GBT, ALS and Linear Regression for Tiny, Large, Huge and Gigantic workloads. The
legend is as follows: Vanilla Spark; SOTERIA-B; SOTERIA-P; SGX-Spark.

setup, the PCA algorithm overhead for SOTERIA-B varies
between 1.96x for Tiny workload and 5.15x for Gigantic
workload. While for SOTERIA-P, the execution time in-
creases 1.78x in the Tiny workload and 3.79x in the Gigantic
workload.

SOTERIA-P is the setup that scales better as the amount
of data to be processed grows. Indeed, as seen in Obs. 6-9,
it is able to reduce execution time from 9% up to 31% when
compared to SGX-Spark.
Size of TCB. SGX-Spark outperforms SOTERIA-B for some
of the evaluated algorithms (Obs. 2, 4, and 5). As SGX-Spark
only protects UDFs, the performance overhead imposed by
the larger TCB of SOTERIA-B is higher. Nevertheless, when
compared to SGX-Spark, SOTERIA-B covers a wider range
of ML attacks, while keeping performance overhead below
1.59x. Indeed, for algorithms such as PCA, SOTERIA-B has
similar or slightly inferior execution times (Obs. 3) which is
due to both setups performing similar computations at the
enclaves while the UDF mechanism is not fully optimized.

On the other hand, SOTERIA-P always outperforms SGX-
Spark and SOTERIA-B (Obs. 2-5). This is due to the TCB
reduction present in our novel partitioning scheme. The
results show that this solution can reduce the training time
by up to 30%, namely for the LR algorithm with the Huge
workload (Obs. 4).

Discussion. The results show that SOTERIA-P outper-
forms other state-of-the-art approaches, namely SGX-Spark,
for all the considered ML algorithms. Also, SOTERIA-P
achieves better performance than the SOTERIA-B setup,
while offering similar security guarantees when considering
distinct ML attacks (Section 4.5). This is made possible by
filtering key operations to be done outside enclaves.

In detail, when compared to SOTERIA-B, SOTERIA-P re-
duces ML workloads’ execution time by up to 37%. When
compared with SGX-Spark, the execution time is reduced
by up to 41%. Interestingly, for the LR algorithm using a
Gigantic workload (894GB), SOTERIA-P decreases computa-
tion time by 4.3 hours and 3.3 hours, when compared with
SGX-Spark and SOTERIA-B, respectively. The performance
overhead of SOTERIA-P for the four different algorithms
ranges from 1.7x to 23.8x when compared to Vanilla Spark.

7 RELATED WORK

Privacy-preserving ML with TEEs. Chiron [5] enables train-
ing ML models on a cloud service without revealing infor-
mation about the training dataset. Myelin [6] offers a similar
solution to Chiron while adding differential privacy and

data oblivious protocols to the algorithms to mitigate the
exploits from side-channels and the information leaked by the
model parameters. SOTERIA differs from these works as it
is able to cover both the training and inference phases while
providing additional protection against adversarial samples,
reconstruction, and membership inference attacks (Table 1).
In [17], five ML algorithms are re-implemented with data
oblivious protocols. These protocols combined with TEEs
ensure strong privacy guarantees while preventing the ex-
ploitation of side-channel attacks that observe memory, disk,
and network access patterns to infer private information.
Unlike this solution, SOTERIA aims at transparently sup-
porting all ML algorithms built with MLlib.
Privacy-preserving analytics with TEEs. TEEs have also
been used to ensure privacy-preserving computation for
general-purpose analytical frameworks [13]. In comparison
to SGX-Spark [12], detailed in Section 6.1, SOTERIA supports
a broader set of algorithms (i.e., any algorithm that can be
built with the MLlib API), while protecting users from a
more complete set of ML attacks (Table 1).
Opaque [8] and Uranus [9] resort to SGX to provide secure
general-purpose analytical operations, while only support-
ing a restricted set of ML algorithms. Opaque combines SGX
with oblivious protocols and requires the re-implementation
of default Apache Spark UDF operators. Uranus is also
based on porting UDF processing to SGX enclaves but
includes a single ML workload. Differently, SOTERIA is
targeted at ML workloads and is not limited by UDF-based
algorithms that, when compared with MLlib-based ones,
exhibit lower performance for some ML workloads [31].
Therefore, the design, implementation, and security require-
ments to be considered are distinct when comparing with
SOTERIA.

8 CONCLUSION

We propose SOTERIA, a system for distributed privacy-
preserving ML. Our solution builds upon the combination
of Apache Spark and TEEs to protect sensitive information
being processed at third-party infrastructures during the ML
training and inference phases.

The innovation of SOTERIA stems from a novel partition-
ing scheme (SOTERIA-P) that allows specific ML operations
to be deployed outside trusted enclaves. Namely, we show
that it is possible to offload non-sensitive operations (i.e.,
statistical calculations) from enclaves, while still covering
a larger spectrum of black-box ML attacks than in previ-
ous related work. Also, this decision enables SOTERIA to
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perform better than existing solutions, such as SGX-Spark,
while reducing ML workloads execution time by up to 41%.
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APPENDIX A
SOTERIA PROOF

We now discuss the privacy-preserving security of the SO-
TERIA protocol. The goal is to reduce the security of our
system to the security of the underlying security mecha-
nisms, namely the isolation guarantees of Intel SGX and the
bootstrapped secure channels, and the indistinguishability
properties of encryption.

The security goal consists in demonstrating that SO-
TERIA ensures privacy-preserving machine learning. Con-
cretely, this means that the behavior displayed by SOTERIA
in the real-world is indistinguishable from the one displayed
by an idealized functionality in the ideal-world, which sim-
ply computes over the task script and provides an output
via a secure channel. The only information revealed during
this process is the length of I/O, the number of computation
steps, and the access patterns to the external storage where
data is kept

https://github.com/lsds/sgx-spark
https://github.com/lsds/sgx-spark
https://github.com/Intel-bigdata/HiBench
https://github.com/Intel-bigdata/HiBench
https://azure.microsoft.com/en-us/solutions/confidential-compute/
https://azure.microsoft.com/en-us/solutions/confidential-compute/
https://www.databricks.com/session_eu20/optimizing-apache-spark-udfs
https://www.databricks.com/session_eu20/optimizing-apache-spark-udfs
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Formally, this security goal is defined using the real-
versus-ideal world paradigm, similarly to the Universal
Composability [28] framework.

We begin with a more formal description of our security
model. Then, we present an intermediate result for ensuring
the security of enclaves relying on external storage. We
can finally specify the behavior of the Client, Master and
Workers, and present the full proof.

A.1 Formal Security Model
Our model considers external environment Z and internal
adversary A. Π denotes the protocol running in the real
world, and S and F denote the simulator and functionality,
respectively, running in the ideal-world. The real-world
considers a Client C , a Master node M and 2 Worker nodes
W1 and W2. This is for simplicity, as the definition and
proof can be easily generalized to consider any number of
Worker nodes. We also consider a global storage G, which
is initialized by Z before starting the protocol. The Ideal
functionality is parametrised by this external storage F ¡G¿,
and will reveal the access patterns via leakage function L.3

In the real-world, Z begins by providing public inputs
to C in the form of (s,m), where s is the task script, and
m is the manifest detailing data in G to be retrieved.4 The
Client will then execute protocol Π, sending messages to
M , W1 and W2. When the script is concluded, output is
provided to C , finally being returned to Z . A can observe
all communication between C,M,W1,W2 and G.

In the ideal world, (s,m) are provided to dummy Client
C , which in turn forwards them to F ¡G¿. The functionality
will simply run the protocol and forward the output to
C , which in turn is returned to Z . All the communication
observed by A must be emulated by simulator S , which
receives (s,m), leakage L produced from the functionality
interaction with storage G, and the size of the output.

Security is predicated on ensuring that S does not re-
quire any sensitive information (contained in G) to emulate
the communication to A. Given that we consider a semi-
honest adversary, we can simplify the interaction with the
system and instead discuss equality of views, as Z and A
are unable to deviate the system from its expected execution.
This is captured by the following definition.
Definition 1. Let Real denote the view ofZ in the real-world,

and let Ideal denote the view of Z in the ideal-world.
Protocol Π securely realises F for storage G if, for all
environments Z and all adversaries A,

RealZ,A,Π(G) ≈ IdealZ,A,S,F (G)

A.2 Intermediate Result
For convenience, SOTERIA does not require the Client to pro-
vide input data at the time of the ML processing, and instead
the Workers are given access to an external storage from
which to retrieve this data. When discussing the security in

3. Reasoning for the security of SOTERIA-P instead would only re-
quire this function to also reveal statistical data to the simulator, which
we consider to be non-sensitive.

4. SOTERIA Clients are trusted. As such, we assume (s,m) to both be
valid, in the sense that they are correct ML scripts and data sets in G,
and thus can be interpreted by ideal functionality F .

Algorithm Setup(i,m)<G>:
k←$ Θ.Gen()
c←$ Θ.Enc(k, i)
G[m]← c
Return (m, k)

Fig. 5: Secure external storage setup.

Algorithm AC()
k←$ Θ.Gen()
Return S1.AC()

Algorithm Send(l)
Return S1.Send(l)

Algorithm Get(l)

i← {0}l
c←$ Θ.Enc(k, i)
Return c

Fig. 6: Simulator for Π2.

the context of secure outsourced computation for SGX, this
is functionally equivalent to classical scenarios where the
Client provides these inputs via secure channel (Theorem 3
in [32]). The reasoning is simply that, if a protocol securely
realises a functionality with a given input provided via
secure channel, then the same functionality can be securely
realised with the same input fixed in an external storage,
securely accessed by the enclave.

Consider a protocol Π1 that securely realises some
functionality F with simulator S1 according to Theorem
3 of [28]. We construct protocol Π2 built on top of this
secure protocol Π1, where input data is pre-established and
provided to the enclave via an initial Setup stage where
inputs are stored in encrypted fashion (Figure 5 describes a
simplified version of the process for a single entry). Inputs to
Π2 are exactly the same as those for Π1, but instead of being
transmitted via the secure channel established with Attested
Computation, they are retrieved from storage using a key
sent via the same channel. The Client-server communication
increases by a constant (the key length), which can be triv-
ially simulated, and the rest of the input can be simulated
in a similar way using the IND-CPA properties of Θ. This
protocol behavior will be key for all SOTERIA Workers. Our
theorem is as follows.

Theorem 1. Let Π1 be a protocol that securely realises
functionality F according to Theorem 3 in [32]. Then
Π2, constructed as discussed above, securely realises F
according to Definition 1.

PROOF. To demonstrate this result, we construct simulator
S2 using S1, then argue that, given that S1 is a valid
simulator for the view of Π1, then the simulated view must
be indistinguishable from the one of the real world of Π2.

We begin by deconstructing S1 in two parts: S1.AC() will
produce the view for the establishment of secure channel,
while S1.Send(l) will produce a simulated view of Client
inputs, given their length. In turn, our simulator will share
the same functions, but also include a third S2.Get(l) to sim-
ulate information being retrieved from G, given its length.
Our simulator is depicted in Figure 6.

The view presented to A is composed of three different
types of messages:

• Messages exchanged during the secure channel estab-
lishment are exactly the same as in Π1. Thus they
remain indistinguishable from Π2.
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• Outputs received via the secure channel follow the
exact same simulation strategy than Π1, and thus are
indistinguishable from Π2.

• Messages produced from G in Π2 are encryption of data
in G[m], while the values presented by S2 are dummy
encryptions with the same length. We can thus reduce
the advantage of A to distinguish these views to the
advantage of the same adversary to attack the IND-CPA
guarantees of encryption scheme Θ, which is negligible.

As such, if S1 is a valid simulator for Π1 to A, then the view
presented by S2 must also be indistinguishable for Π2 to A.

Let

AdvDist
Z,A,Π,S,F (G) =

|Pr[RealGZ,A,Π2
⇒ T]− Pr[IdealGZ,A,S2,F ⇒ T]|

To conclude, we have that, for negligible function µ,

AdvDist
Z,A,Π2,S2,F (G) = AdvDist

Z,A,Π1,S1,F () + AdvIND-CPA
Θ,A ()

≤ µ()

and Theorem 1 follows.

A.3 SOTERIA Client, Master and Workers
The SOTERIA components follow standard methodologies
for ensuring secure outsourced computation using SGX. As
such, and given the complexity of ML tasks described in the
script, we consider the following set of functions.

Secure channels are established with enclaves. We define
init(P ) as the bootstrapping process, establishing a channel
with participant P . This produces an object that can be
used to send and receive data via send and receive. Un-
trusted storage is not protected with secure channels, and
can be accessed using the call uGet(G,m), which retrieves
data from G considering manifest file m. Concretely, this
is achieved using the open-source library Graphene-SGX,
which we assume to correctly implement this mechanism.
Finally, the script s defines the actual computation that must
be performed by the system, and will be executed collabora-
tively with both Workers. As such, we define s as a stateful
object with the main method Run(id, i1, i2), where input id
is the identifier of the Worker, i1 is input from storage and
i2 is intermediate input (e.g. model parameters), returning
(o1, o2), where o1 is the (possibly) final output, and o2 is
the (optional) intermediate output for dissemination. For
simplicity, we also define method Complete that returns T if
the task is complete, or F otherwise.

The SOTERIA components can be analysed in Figure 7
and are as follows. The Client C (left of Figure 7) sim-
ply establishes the channel with M , sends the parameters
(manifest file, task script and storage key), and awaits
computation output. Observe that we assume that the key
k has been previously initialized, and that the actual data
has been previously encrypted in G using it. The Master
M (middle of Figure 7) will receive the parameters from C
and establish channels with W1 and W2, forwarding them
the same parameters and awaiting computation output.
When it arrives, it is forwarded to the Client.5 Worker W1

5. In the actual protocol, the Master has additional steps to process
the output. We describe it like this for simplicity, as it does not change
the proof.

Algorithm C(m, s, k)

sc← init(M)
sc.send(m, s, k)
o← sc.receive()
Return o

Algorithm M()

scc ← init(C)
(m, s, k)←
scc.receive()
sc1 ← init(W1)
sc1.send(m, s, k)
sc2 ← init(W2)
sc2.send(m, s, k)
o1 ← sc1.receive()
o2 ← sc2.receive()
scc.send((o1, o2))

Algorithm W1()
m← ϵ
scm ← init(M)
(m, s, k)← scm.receive()
scw ← init(W2)
While !s.Complete:
c← uGet(G,m)
i← Θ.Dec(k, c)
(o,m)←$ s.Run(W1, i, ϵ)
scw.send(m)
m← scw.receive()

scm.send(o)

Fig. 7: SOTERIA Components. Client C (left), Master node
M (middle) and Worker node 1 W (right).

Algorithm W1()
m← ϵ
scm ← init(M)
(m, s, k)← scm.receive()
scw ← init(W2)
While !s.Complete:

c← uGet(G1,m)
i← Θ.Dec(k, c)
(o,m)←$ s.Run(W1, i, ϵ)
scw.send(m)
m← scw.receive()

scm.send(o)

Algorithm W2()
m← ϵ
scm ← init(M)
(m, s, k)← scm.receive()
scw ← init(W1)
While !s.Complete:

c← uGet(G2,m)
i← Θ.Dec(k, c)
(o,m)←$ s.Run(W1, i, ϵ)
scw.send(m)
m← scw.receive()

scm.send(o)

Fig. 8: SOTERIA Workers with split storage.

(right of Figure 7) receives the parameters from M and
starts processing the script: retrieves encrypted data from G,
decrypts, processes and exchanges intermediate results with
the other Worker. When the script is concluded, it returns its
output to M . The behavior of W2 is the same, but connection
is established instead with W1.

A.4 Full Proof

Given the description of SOTERIA components in Figure 7,
the SOTERIA protocol Πxyz is straightforward to describe.
Considering a pre-encrypted storage G, the Client C , Master
M and Workers W1,W2 execute following their respective
specifications. Our theorem for the security of SOTERIA is as
follows.

Theorem 2. Πxyz, assuming the setup of Figure 5 and con-
structed as discussed above, securely realises F accord-
ing to Definition 1.

The proof is presented as a sequence of four games. We
begin in the real-world, and sequentially adapt our setting
until we arrive in the ideal world. We then argue that all
steps up to that point are of negligible advantage to A, and
thus the views must be indistinguishable to Z .

The first is a simplification step, where, instead of using
a single storage G, we slice the storage to consider G1 and
G2. Figure 8 represents this change. This enables us to split
the execution environment of W1 and W2 seamlessly, and
can be done trivially since manifest file m by construction
will never require different Workers to access the same parts
of G. Since these two games are functionally equal, the
adversarial advantage is exactly 0.

The second step is a hybrid argument, where we se-
quentially replace both Workers by ideal functionalities
performing partial steps of the ML script. Concretely, we
argue as follows. Replace W1 with a functionality for its
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part of the ML script FW1, according to Definition 1. From
Theorem 1 we can establish that this adaptation entails neg-
ligible advantage to A provided that the protocol without
external access realises the same functionality. However this
is necessarily the case, as it follows the exact structure as
the constructions in [32]. We can repeat this process for
W2.6 As such, using the intermediate result, we can thus
upper bound the advantage adversary to distinguish these
two scenarios by applying twice the result of Theorem 1.

The third step replaces the Master by an ideal function-
ality FM that simply forwards requests to the Worker func-
tionalities. This one follows the same logic as the previous
one, without requiring the external storage, as the protocol
also follows the exact structure as the constructions in [32].

In the final step, we have 3 functionalities
(FM ,FW1,FW2) playing the roles of (M,W1,W2),
respectively. We finalize by combining them to a single
functionality F for ML script processing. This can be done
by constructing a big simulator S that builds upon the
simulators for the individual components (SM , SW1, SW2).
The simulator S behaves as follows:
• Run SM to construct the communication trace that

emulates the first part of F .
• Run the initial step of SW1 and SW2 to construct the

communication trace for establishing secure channels
between Workers and Master.

• Call leakage function L to retrieve the access patterns
to G. Use the result to infer which part of the storage
is being accessed, and run SW1 or SW2 to emulate the
computation stage.

Given that the view produced by S is exactly the same as
the one provided by the combination of SM , SW1 and SW2,
the adversarial advantage is exactly 0.

We are now exactly in the ideal world specified for
Definition 1.

Let

AdvDist
Z,A,Π,S,F (G) =

|Pr[RealGZ,A,Πxyz
⇒ T]− Pr[IdealGZ,A,S,F ⇒ T]|

To conclude, we have that, for the negligible function µ,

AdvDist
Z,A,Π,S,F (G) = 2 · AdvDist

Z,A,ΠW1,SW1,FW1
(G)

+ AdvDist
Z,A,ΠM ,SM ,FM

()

≤ µ()

and Theorem 2 follows.

APPENDIX B
ML WORKFLOW ATTACKS

This section presents the attacks in Section 3.2 in further
detail and argues in which circumstances SOTERIA is se-
cure against each attack. First, we will describe a general
adversarial model against SOTERIA that follows the security
restrictions justified in Appendix A. Then, we will present
an experiment that captures what constitutes a valid attack
under each definition, as described in Section 3.1. For each

6. Again, this technique extends for an arbitrary number of Workers.
N number of Workers would just require us to adapt the multiplication
factor in the final formula, which would still be negligible.

Game AdvXYZA,Πxyz (G, s):
(G′)←$ A1(G, s)
(m, l)← Πxyz(G

′, s)
r←$ Am

2 (l)
Return Success(G, s,m, r)

Fig. 9: Adversary interacting with SOTERIA.
ff

attack, we consider our protocol to be secure if we can
demonstrate that one cannot rely on a valid adversary
against the experiment of said attack under the constraints
of SOTERIA. In some instances, this will depend on known
attack limitations, which we detail case-by-case.

B.1 Attacker against SOTERIA

Our goal is to present a model that details the conditions
in which these attacks are possible. As such, it must be
both generic, to capture the multiple success conditions of
attacks, as well as expressive, so that it can be easy to relate
to each specific attack.

In this definition, we will also consider an adversary that
can play the role of an honest client, and thus will have
black-box access to the produced model. We stress that, in
practice, this will not be the case in many circumstances.
In those scenarios, since queries to the model are made via
secure channel, an external adversary is unable to arbitrarily
request queries to the model without causing it to abort.
This means that any attack that requires black-box access
to the model is not possible if SOTERIA assumes external
adversaries.

Let Πxyz denote the full training protocol of SOTERIA.
It receives external storage G and task script s as inputs,
and produces a model m, which can then be queried. Based
on the security result of Appendix A, the interaction of an
adversary with our system can be described in Figure 9.
The adversary A = {A1,A2} can first try and manipulate
the input dataset G to G′. This is then used for Πxyz, which
will produce the model m and the additional leakage l
(SOTERIA-B has no additional leakage, so l = ϵ). Finally,
the adversary can interact black-box with the model until a
conclusion r is produced. This will be provided to a Success
predicate, which will state if the attack was successful. This
predicate is specific to the attack, and allows us to generally
describe attacks such as adversarial samples, where the goal is
to make the resulting model deviate, as well as membership
inference, where the goal is to retrieve information from the
original dataset.
Remark Observe that A1 and A2 do not share state. This
is because they play different roles within this experiment:
the first influences the system by attempting to manipulate
the training dataset G, while the second interacts with the
model m and leakage l to try and extract information. In-
deed, our first step will be to show that A1 is unable to rely
on G′ to meaningfully convey any additional knowledge
gained by observing (G, s).

B.2 Dataset manipulation

Dataset manipulation attacks are defined by an adversary
with the capability of inserting, removing or manipulating
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Game DSetManA,Π(G, s):
G′←$ A(G, s)
m← Π(G′, s)
Return Success(G, s,m)

Fig. 10: Model for dataset manipulation attack.

dataset information. These align with the setting considered
for attacks via adversarial samples. Figure 10 is an experi-
ment that describes what constitutes a successful attack for
dataset manipulation. The adversary A is given full knowl-
edge of G7, and must produce an alternative input dataset
G′. We then train the model (protocol Π) over that data to
produce model m, and the adversary is successful if said
model satisfies some attack success criteria T/F← Success.
We now argue that the integrity guarantees of the authen-
ticated encryption used by our external storage G ensure
that these attacks do not occur for Πxyz. We do this by
showing that any adversary that performs an adversarial
samples attack on Πxyz can be used to construct a successful
attack on the the security of the authenticated encryption
scheme. First, observe that no attack can be successful if
the adversary makes no changes on the input dataset, so if
G = G′ then F← Success. Furthermore, if Πxyz aborts, then
no model is produced, so it naturally follows that the attack
is unsuccessful F← Success.8

As such, the only cases in which T ← Success are those
in which G′ ̸= G and Πxyz does not abort. But this means
that the adversary was able to forge an input that correctly
decrypts, breaking the integrity of the underlying encryp-
tion scheme. Since the security guarantees of authenticated
encryption ensure that the probability of existing such an
adversary is negligible, the probability of such an attacker
in SOTERIA will also been negligible.

B.3 Black-box Attacks

All the remaining attacks with the exception of some recon-
struction attacks follow a similar setting, where the adversary
leverages a black-box access to the trained model, depicted
in the experiment of Figure 11. We begin by running Π to
produce our model and leakage, and then run an additional
procedure Extract to obtain additional information from
the original dataset, which cannot be retrieved by simply
querying the model. This procedure captures whatever
knowledge regarding the underlying ML training might be
necessary for the attack to be successful (e.g. information
about data features). We then provide this additional infor-
mation to the adversary, and give it black-box access to the
model. The success criteria depends on the specific attack,
and is validated with respect to the original dataset, model,
and the task script being run. E.g. for model extraction attack,
the goal might be to present a model m′ that is similar to m,
evaluated by the Success predicate.

7. Realistically, an attacker would have less information, but for our
purposes we can go for the worst case and give him all the information
regarding the computation and its input.

8. The only circumstance in which this could be considered a suc-
cessful attack was if the goal was to perform a denial-of-service attack,
which we consider to fall outside the scope of an adversarial sample
attack.

For simplicity, we first exclude all attacks for an external ad-
versary, which does not have black-box access to the model
of SOTERIA. This is true if we can show that one cannot
emulate black-box access to the model using confidence
values and class probabilities. Albeit an interesting research
topic, current attacks are still unable to do this in an efficient
way [11]. We now go case-by-case, assuming an adversary
can play the role of a genuine client to our system.
Our arguments for Πxyz depend on being able to rely on a
successful adversary A of Figure 11 to perform the same
attack in Figure 9. As such, the security of our system
will depend on the amount of additional information z, on
how it can be extracted from the view of the adversary of
SOTERIA.

• For membership inference, reconstruction attacks based on
black-box access to the model, model inversion, and
model extraction via data-free knowledge distillation, no
additional information z is required. This means that
any successful adversary in Figure 11 will also be
successful in Figure 9, meaning that both for SOTERIA-B
and SOTERIA-P are vulnerable. Preventing these attacks
requires restricting access to the model to untrusted
participants.

• Class-only attacks for model extraction require additional
knowledge from the dataset. Specifically, z must con-
tain concrete training dataset samples. This means that,
to leverage such an adversary A, one must first be able
to use Am

2 (l) to extract such a z. This exactly matches
the setting of model inversion attacks. This means that
SOTERIA is vulnerable to class-only attacks for model
extraction in SOTERIA-B or SOTERIA-P if there is also
an efficient attack for model inversion in SOTERIA-B or
SOTERIA-P, respectively.

• Equation-solving model extraction requires knowledge of
the dimension of the training dataset G. This is addi-
tional information z that is not revealed by querying the
model, which means no adversary Am

2 (ϵ) can retrieve
z, and thus SOTERIA-B is secure against said attacks.
However, combining public data with confidence val-
ues might allow for Am

2 (l) to extract a sufficient z to
perform the attack, which makes SOTERIA-P vulnerable
to equation-solving model extraction.

• Path-finding model extraction attacks require information
regarding leaf count, tree depth and leaf ID. As such,
all this must be encapsulated in z. [1] suggests that
such information is not retrievable from only black-
box access to the model [1], which means no adversary
Am

2 (ϵ) can produce z and thus SOTERIA-B is secure.
However, this is information that can be extracted from
confidence values, which suggests that an efficient ad-
versary z←$ Am

2 (l) is likely to exist, and thus SOTERIA-
P is vulnerable to such attacks under these assumptions.

We can generalize the security of our system to these types
of attacks as follows. If no additional information z is
required, then Πxyz is vulnerable to an adversary that can
play the role of an honest client. If z can be extracted
from black-box access to the model, then we can still rely
on said adversary to attack Πxyz. Otherwise, SOTERIA-B is
secure, as no additional information is leaked. Furthermore,
the security of SOTERIA-P will depend whether one can
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Game BlackBoxA,Πxyz (G, s):
m← Π(G, s)
z←$ Extract(G, s)
r←$ Am(z)
Return Success(G, s,m, r)

Fig. 11: Model for black-box attacks.

Game WhiteBoxA,Πxyz (G, s):
m← Π(G, s)
r←$ A(m)
Return Success(G, s,m, r)

Fig. 12: Model for white-box attacks.

infer z from l and from the black-box access to the model.
Concretely, if we can show that no (efficient) function F
exists, such that z←$ Fm(l), then Πxyz for leakage l is secure
against attacks requiring additional data z.

B.4 White-box Attacks

White-box attacks capture a scenario where an adversary
requires white-box access to the model. These align with the
setting of reconstruction attacks that explicitly requires white-
box access to the model. Figure 12 is an experiment that
describes what constitutes a successful reconstruction attack
in this context. We begin by training the model (protocol
Π) over the original dataset to produce the model. We then
provide the trained model directly to the adversary, which
will reconstruct raw data r. Finally, the success of the attack
is validated with respect to the original dataset.
We now argue that these attacks do not occur for Πxyz, as
long as it is not possible to extract the model from the con-
fidence values and from black-box access to the model. This
is because the attacker of Figure 12 receives explicitly the
model m, whereas the adversary A2 in Figure 9 receives the
confidence values in l, and black-box access to the model.
To rely on such an attacker, A2 must therefore be able to
produce input m from its own view of the system. As such,
relying on such an adversary implies there is an efficient
way m←$ Am

bb(l) to retrieve the model m from confidence
values l and black-box access to the model m, which is
exactly the setting of model extraction attacks in the previous
section. This adversary Abb can then be called by A2 to
produce input m, which is then forwarded to the adversary
of Figure 12 to produce a successful attack r. As such,
SOTERIA is vulnerable to white-box reconstruction attacks if
there exists an efficient adversary A′ that successfully wins
the experiment of Figure 11 for the model extraction attack.

B.5 Summary

Table 4 summarizes the attacks discussed. These are divided
between all the identified classes of attacks, as well as
whether the adversary is external or if it can query the
model as a client. In many instances, the security of our
system hinges on another argument over specific restrictions
assumed for the adversary.
We now list the arguments that propose the security of our
system in the different contexts.

{1}: an adversary is unable to retrieve the (white-box)
model from confidence values {1a}, black-box access
to the model {1b}, or both {1c}.

{2}: an adversary is unable to emulate black-box access to
the model from confidence values.

{3}: an adversary is unable to retrieve the dimension of the
dataset from black-box access to the model {3a} and
confidence values {3b}.

{4}: an adversary is unable to retrieve information of leaf
count, depth and ID from black-box access to the model
{4a} and confidence values {4b}.

{5}: no model inversion attack exists for retrieving dataset
samples for SOTERIA-B {5a} and SOTERIA-P {5b}.

White-box based attacks explicitly require additional infor-
mation, such as feature vectors, over black-box access to the
model [26]. This is something that supports {1b} directly,
and since confidence values are not computed from feature
vectors, so would be {1a} and {1c}. Extracting model access
from only confidence values is an active area of research, but
current attacks [11] are still unable to do this in an efficient
way {2}. Typically, one cannot infer dimension from simply
querying the model, which suggests {3a} is true, but this is
unclear for confidence values, and thus one might consider
{3b} is false. [1] suggests {4a} is true, but {4b} is not. {5}
will fundamentally depend on the application [1], [11].



15

External Client
SOTERIA-B SOTERIA-P SOTERIA-B SOTERIA-P

Adversarial samples ✓ ✓ ✓ ✓

Reconstruction WB ✓ {1a} {1b} {1c}
BB ✓ {2} ✗ ✗

Membership inference ✓ {2} ✗ ✗
Model inversion ✓ {2} ✗ ✗

Model extr Equation ✓ {2} {3a} {3b}
Path ✓ {2} {4a} {4b}
Class ✓ {2} {5a} {5b}

DF KD ✓ {2} ✗ ✗

TABLE 4: Summary of attacks against SOTERIA. ✓ means SOTERIA is resilient to the attacks, ✗ means SOTERIA is vulnerable
to the attacks, and {X} means SOTERIA is secure if argument {X} is also true.


	Introduction
	Background
	Apache Spark and MLlib
	Intel Software Guard Extensions

	Applications and Security Model
	Soteria Threat Model
	ML Workflow Attacks

	Soteria
	Apache Spark: Architecture and Flow
	Soteria Client
	Soteria Cluster
	Soteria Design
	Security
	Security implications of statistical leakage
	Relation to ML Attacks

	Implementation

	Methodology
	Evaluation
	Methodology
	Performance Overview
	Analysis

	Related Work
	Conclusion
	References
	Appendix A: Soteria Proof
	Formal Security Model
	Intermediate Result
	Soteria Client, Master and Workers
	Full Proof

	Appendix B: ML Workflow attacks
	Attacker against Soteria
	Dataset manipulation
	Black-box Attacks
	White-box Attacks
	Summary


