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ABSTRACT The adoption of third-party machine learning (ML) cloud services is highly dependent on the
security guarantees and the performance penalty they incur on workloads for model training and inference.
This paper explores security/performance trade-offs for the distributed Apache Spark framework and its ML
library. Concretely, we build upon a key insight: in specific deployment settings, one can reveal carefully
chosen non-sensitive operations (e.g. statistical calculations). This allows us to considerably improve the
performance of privacy-preserving solutions without exposing the protocol to pervasive ML attacks.
In more detail, we propose Soteria, a system for distributed privacy-preserving ML that leverages Trusted
Execution Environments (e.g. Intel SGX) to run computations over sensitive information in isolated
containers (enclaves). Unlike previous work, where all ML-related computation is performed at trusted
enclaves, we introduce a hybrid scheme, combining computation done inside and outside these enclaves.
The experimental evaluation validates that our approach reduces the runtime of ML algorithms by up to
41% compared to previous related work. Our protocol is accompanied by a security proof and a discussion
regarding resilience against a wide spectrum of ML attacks.

INDEX TERMS Privacy-preserving, Machine Learning, Distributed Systems, Apache Spark, Trusted
Execution Environments, Intel SGX.

I. INTRODUCTION

The ubiquitous environment provided by cloud computing
providers offers a scalable, reliable, and performant environ-
ment to deploy compute-intensive Machine Learning (ML)
workloads. However, outsourcing ML data storage and com-
putation to third-party services leaves users vulnerable to
attacks that may compromise the integrity and confidentiality
of their data. Indeed, the ML pipeline encompasses several
stages, both for model training and inference, in which users’
data is known to be susceptible to different attacks such
as adversarial attacks, model extraction, and inversion, and
reconstruction attacks [2]–[4].

Recent works have addressed these attacks with solutions
based on homomorphic encryption or secure multi-party
computation schemes [5], [6]. However, these cryptographic
schemes impose a significant performance toll that restricts
their applicability to practical scenarios [7]. To circumvent

this performance penalty, another line of research is that
of exploring hardware technologies enabling Trusted Exe-
cution Environments (TEEs), such as Intel SGX [8]. These
technologies allow the execution of code within isolated
processing environments (i.e., enclaves) where data can be
securely handled in its original form (i.e., plaintext) at un-
trusted servers.

The latter approach typically deploys full ML workloads
inside TEEs [9]–[11]. However, as the amount of computa-
tional and I/O operations performed at the enclaves increases,
the performance of ML training and inference is noticeably
affected by hardware limitations, limiting the design’s appli-
cability in practice [12].

This paper builds upon the idea that ML runtime per-
formance could be improved by reducing the number of
operations done at enclaves. In fact, this insight is backed
up by previous work [13]–[15] exploring the partitioning of
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computation across trusted and untrusted environments, but
in contexts (e.g., SQL processing, MapReduce, distributed
coordination) with different security requirements and pro-
cessing logic than the ones found for ML workloads.

Therefore, the key challenge addressed by this paper is
to understand and define the set of ML operations to run
inside/outside TEEs. Ideally, these operations should signif-
icantly reduce the enclaves’ overall computational and I/O
load for different ML workloads; and doing so should not
leak critical sensitive information during the execution of ML
workloads.

Our reasoning is twofold: i.) the majority of current attacks
on the ML pipeline is only successful if the attacker has
some knowledge about the datasets and/or models being
used [3], [16]; and ii.) studies show that such knowledge
cannot be inferred from the information leaked by statistical
operations, such as the calculation of confidence results, table
summaries, ROC/AUC curves, and probability distributions
for classes [17]. As a result, these operations are ideal candi-
dates to be offloaded from enclaves. We support these claims
by analyzing the security and performance implications of
different ML workloads and attacks.

A. CONTRIBUTIONS
Thus, we propose Soteria, an open-source system for dis-
tributed privacy-preserving ML that leverages the scalability
and reliability provided by Apache Spark and its ML library
(MLlib). Unlike previous solutions [18], [19], Soteria sup-
ports a wide variety of ML algorithms without changing how
users build and run these within Spark. Further, it ensures that
critical operations, which enable existing attacks to reveal
sensitive information from ML datasets and models, are
exclusively performed in secure enclaves. This means that
the sensitive data being processed only exists in plaintext
inside the enclave and is encrypted in the remainder dataflow
(e.g., network, storage). This solution enables robust security
guarantees, ensuring data privacy during ML training and
inference.

Soteria introduces a new computation partitioning scheme
for Apache Spark’s MLlib, Soteria-P, that offloads non-
critical statistical operations from the trusted enclaves to
untrusted environments. Soteria-P is accompanied by a for-
mal security proof for how data remains private during ML
workloads and an analysis of how this guarantee ensures
resilience against various ML attacks. Furthermore, Soteria
offers a baseline scheme, Soteria-B, where all ML opera-
tions are done inside trusted enclaves without a fine-grained
differentiation between critical and non-critical operations.
Soteria-B provides a performance and security baseline for
comparison against our new partitioned scheme.

We compare experimentally both approaches with a non-
secure deployment of Apache Spark and a state-of-the-art so-
lution, namely SGX-Spark [18]. Our experiments, resorting
to the HiBench benchmark [20] and including four different
ML algorithms, show that Soteria-P, while considering a
more significant subset of ML attacks, reduces training time

by up to 41% for Gradient Boosted Trees workloads and up
to 4.3 hours for Linear Regression workloads, when com-
pared to SGX-Spark. Also, compared to Soteria-B, Soteria-
P reduces execution time by up to 37% for the Gradient
Boosted Trees workloads and up to 3.3 hours for the Linear
Regression workloads.

B. OUTLINE
The remainder of this paper is organized as follows. Section
II gives brief background information on Apache Spark,
MLlib, and Intel SGX. Then, Section III presents the threat
model of Soteria and a description of current ML attacks.
Next, we concretely define the design goals of Soteria and
the architecture and flow of Apache Spark. This section
also encompasses the architecture of Soteria, its building
blocks, the novel partitioning scheme, and the security rea-
soning. Section V depicts the testbed performed, the main
observations, and its analysis and discussion. Next, Section
VI presents the state-of-the-art approaches over the past
years, emphasizing the main differences with Soteria. Finally,
Section VII concludes and highlights the main contributions
proposed in this paper.

II. BACKGROUND
A. APACHE SPARK AND MLLIB
Apache Spark is a distributed cluster computing framework
that supports ETL, analytical, ML, and graph processing
over large volumes of data. Spark follows a Master/Workers
distributed architecture and can be deployed on a cluster of
servers in the cloud that may access several data sources
(e.g., HBase, HDFS) for reading the data to be processed and
storing the corresponding output and logs. Spark performs
most of the computation in-memory, thus promoting better
performance for data-intensive applications when compared
to Hadoop’s MapReduce [21].

Trusted Site Untrusted Site

Data Source Data Treatment Training Dataset Model Trained Model Inference

!
Adversarial Samples

!
Model Extraction 
Model Inversion 

!
Reconstruction Attacks

!
Membership Inference 

1st stage 2nd stage 3rd stage 4th stage 5th stage

FIGURE 1. ML pipeline and known attack vectors.

The MLlib library [22] enables Spark users to build end-
to-end ML workflows. These workflows are divided into five
stages (Figure 1). The first stage goes from the collection of
data to its treatment. In the second stage, data is split into
train and test datasets, and a given ML algorithm is chosen.
The third stage is the training stage, where data is iterated
to deliver an optimized trained model at the fourth stage. In
the fifth stage, the trained model can be saved (persisted) and
loaded (accessed) for inference.
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B. INTEL SOFTWARE GUARD EXTENSIONS
Intel SGX provides a set of new instructions available on Intel
processors that applications can use to create trusted memory
regions. These regions (enclaves) are isolated from any other
code on the host system, preventing other processes, includ-
ing those with higher privilege levels (such as the host OS,
hypervisor, and BIOS), from accessing their content [8], [23].

Since SGX protects code and data from privileged ac-
cess, sensitive plaintext data can be processed at the enclave
without compromising its privacy. Thus, TEEs outperform
typical traditional cryptographic computational techniques
(e.g., searchable encryption, homomorphic encryption) [23].
Nonetheless, even though the second generation of SGX
has improved the size of the protected memory region, it
still defines the Enclave Page Cache (EPC) to 128MB per
CPU [24]. Memory swapping occurs when such a limitation
is met, which is a performance-costing mechanism [12].
Thus, SGX-based solutions must balance the number of I/O
operations, the amount of data handled by enclaves, and the
Trusted Computing Base (TCB) to optimize performance.

In this paper, we chose Intel SGX over other TEE’s (e.g.,
ARM TrustZone [25]) due to its general use in academia [11],
[13], [14] and industry [26], availability, as well as its security
guarantees and computing reliability. However, our solution
is generic and can be applied to other TEE technology that
follows similar design principles to SGX.

III. THREAT MODEL AND ATTACKS
A. SOTERIA THREAT MODEL
Soteria enables the secure outsourcing of ML training and
inference workloads. These are scenarios where the data
owner holds sensitive information (a private dataset and/or
model) and wants to perform some ML workload on it using
an external cloud provider.

Our deployment model is depicted in Figure 2 and is as
follows. The client (data owner) will be trusted and will
provide input for ML tasks. Then, a Spark Master node and N
Worker nodes will be deployed in an untrusted environment
(cloud provider) equipped with Intel SGX technology. Exter-
nally, we also consider a distributed data storage backend.
The protocol assumes an implicit setup where the client
securely stores its input data within this backend, which is
also considered untrusted throughout the protocol execution.

Client

ML Tasks Master N Workers

Private
Datasets Distributed

Storage

Trusted Untrusted

SGX-enabled servers

FIGURE 2. SOTERIA deployment model.

We consider semi-honest adversaries, meaning that secu-
rity is defined according to a threat that attempts to break
the confidentiality of data and model but will not actively
deviate from the protocol specification. This is a good fit
for cloud-based systems, where data breaches are common
and malicious entities can read internal processing data tem-
porarily [27]. In brief, our security goal is to allow clients to
provide input data for training and inference in a way that is
not vulnerable to breaches in confidentiality.

B. ML WORKFLOW ATTACKS
Throughout the paper, we consider the black-box setting
proposed by [28], which is as follows. When an adversary
is given black-box access to a model, it means that it can
query any input x and receive the predicted class probabil-
ities P (y|x) for all classes y. This allows the adversary to
interact with the trained model without retrieving additional
information, e.g., computing the gradients. Ensuring security
against attacks under this threat model entails including
countermeasures against a wide array of attack vectors. Given
this context, we now further detail pervasive attacks on the
ML pipeline and establish their adversarial assumptions. A
scheme summarizing these attacks is depicted in Figure 1.

Adversarial attacks
These attacks are characterized by injecting malicious data
samples to manipulate the model and disclose information
about the original data being used for training or inference
purposes. Successful attacks in the literature require the
attacker to have direct access to the training dataset (data
poisoning, transfer-based, and gradient-based attacks), the
model and gradients (gradient-based attacks), or the full
results (i.e., the output of inference) and class probabilities
(score-based attacks) [16], [29].

Model Extraction
These attacks aim at learning a close approximation to an
objective function of the trained model. This approxima-
tion is based on the exact confidence values and response
labels obtained by inference. To obtain the desired result,
the attacker must know the dimension of the original train-
ing dataset (equation-solving attacks), the dimension of the
decision trees, the data features, and the final confidence
values (path-finding attacks), or hold real samples from the
training dataset (class-only attacks and data-free knowledge
distillation (DFKD)) [2], [17], [30].

Model Inversion and Membership Inference
These attacks target the recovery of values from the train-
ing dataset. Both consider an adversary that queries the
ML system in a black-box fashion, and both are currently
based on ML services, which publicly disclose their trained
models and confidence values. In model inversion attacks,
the adversary must have partial knowledge of the training
dataset’s features to infer and query the model with specific
queries [2], [3]. Membership inference aims to test whether
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TABLE 1. Comparison between state-of-the-art solutions and SOTERIA
regarding the safety against ML attacks.

Attacks Systems
[9] [10] [19] [18]* SOTERIA

Adversarial

Gradient-based ✗ ✗ ✓ ✗ ✓
Score-based ✗ ✗ ✓ ✗ ✓

Transfer-based ✗ ✗ ✓ ✗ ✓
Decision-based ✗ ✗ ✓ ✗ ✓

Model Extraction

Equation-solving ✓ ✓ ✗ ✓ ✓
Path-finding ✓ ✓ ✗ ✗ ✓
Class-only ✓ ✓ ✗ ✗ ✓

DFKD ✓ ✓ ✗ ✓ ✓
Model Inversion ✓ ✓ ? ✓ ✓

Reconstruction Attacks ✓ ✓ ✓ ✓ ✓
Membership Inference ✗ ✗ ✗ ✗ ✓

*Data encryption is not provided on the open-source version.
✓ - Protected; ✗ - Non-protected; ? - Not disclosed.

a specific data point d was used as training data and requires
the adversary to know a subset of samples used to train the
model (that does not contain d) [31].

Reconstruction attacks
The goal of this attack is similar to that of membership
inference, but instead of testing for the existence of a specific
data point, the adversary intends to reconstruct raw data used
for training the model. To be successful, some attacks require
the adversary to have model-specific information, namely
feature vectors (e.g., Support Vector Machines or K-Nearest
Neighbor) [32], others only require black-box access to the
model [33]. Nonetheless, in this setting, the attacker needs
to have access to another dataset with the same distribution
as the original training dataset (i.e., local dataset and training
dataset are subsets from a larger dataset).

Summary
Unlike previous works [9], [10], [18], [19], which typically
consider a small subset of ML attacks, our proposal aims at
providing mechanisms that cover the full range of the above-
mentioned exploits. Table 1 presents relevant state-of-the-
art solutions, the security attacks covered by these, and the
attacks addressed by Soteria. Intuitively, the resilience of our
system is the result of combining several mechanisms, which
are only partially ensured by other systems: i) authenticity
verification of inputs excludes injections necessary for adver-
sarial attacks; ii) isolation guarantees of our protocol ensure
that malicious workers gather no additional information other
than statistical data, an essential aspect for preventing most
attacks, and iii) query input via a secure channel prevents the
adversary from performing arbitrary queries to our system,
which is also a central requirement for model inversion or
reconstruction attacks. This is analyzed in detail in Sec-
tion IV-F.

TEE-related security issues such as side-channel and
memory access pattern attacks are considered orthogonal
and complementary to our design goals. Indeed, mechanisms

such as ObliviousRAM [34] can be layered over Soteria to
address these at the cost of additional performance over-
head [35].

IV. SOTERIA

A. DESIGN GOALS
SOTERIA is a distributed privacy-preserving machine learn-
ing system that avoids changing the architecture and process-
ing flow of Apache Spark and MLlib, retaining its usability,
scalability, and fault tolerance properties. It is built under the
assumption that ML runtime performance can be improved if
one can diminish the number of operations done inside secure
enclaves. Thus, Soteria proposes a partitioning scheme to
split the computation to be performed inside and outside
these.
Soteria builds upon four core principles:
General Applicability for ML workloads. Soteria aims to
offer an encompassing solution for several ML algorithms by
relying on Apache Spark’s MLlib.
Privacy-by-design. In Soteria, sensitive data is only on
plaintext inside the enclaves, being encrypted in the remain-
ing workflow. This is achieved by resorting to trusted execu-
tion environments and encryption mechanisms that safeguard
data privacy.
Balanced overhead. Soteria offers a partitioning scheme that
balances the imposed performance overhead of the privacy
measures and the leakage of such a solution.
Low intrusiveness. Both the processing flow of Apache
Spark and the user’s interaction with the system remain
unchanged or require minor changes.

B. ARCHITECTURE AND FLOW
As depicted in Figure 3, Apache Spark’s operational flow is
as follows. Before submitting ML tasks (e.g., model train-
ing, and/or inference operations) to the Spark cluster, users
must load their local datasets and models to a distributed
storage backend. Users can then submit ML processing tasks,
specified as ML task scripts, to the Spark client, which is
responsible for forwarding these scripts to the master node.
At the master node, tasks are forwarded to the Spark Driver,
which generates a Spark Context that then distributes the
tasks to a set of worker nodes.

As workers may be executing different steps of a given
task, they need to be able to transfer information (e.g., model
parameters) among each other through the network. After
finishing the desired computational steps, workers send back
their outputs to the master node, which merges the outputs
and replies back to the client.

Similar to the regular flow of Apache Spark, Soteria can
be divided into two main environments or sides: the Soteria
Client, trusted side, and the Soteria Cluster, untrusted side,
(e.g., cloud environment). Next, we describe the main mod-
ifications required by Soteria to the original Apache Spark’s
design, depicted in Figure 3 by the white dashed and solid
line boxes.
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FIGURE 3. SOTERIA architecture and flow of operations.

C. CLIENT
Users use Soteria’s client module for three main operations: i)
loading data into the distributed storage backend, ii) sending
ML training tasks to the Spark cluster, and iii) sending
ML inference tasks to the Spark cluster. Soteria does not
change how users typically specify and perform the previous
operations. The only exception is that users need to provide
additional information in a Manifest configuration file, as
described next.

Data Loading. First, the user must specify the data to be
loaded to the storage backend for the first operation. How-
ever, such data has to be encrypted before leaving the trusted
user premises. This step is done by extending Spark’s data-
loading component with a transparent encryption module
(Figure 3-①). This module encrypts the data being loaded
into the distributed storage backend with a symmetric-key
encryption scheme (Figure 3-②).

Tasks submission. ML training and inference operations in-
clude two main files: the ML task script and the Manifest file.
The transparent encryption module, also integrated within
MLlib, is used to encrypt the ML task script (Figure 3-➊),
which contains sensitive arguments (i.e., model parameters)
and the ML’s workload processing logic, and to decrypt the
outputs (e.g., trained model or inference result) returned by
Spark’s master node to the client.

The Manifest file contains the libraries to be used by the
ML task script, as well as the path at the storage backend
where the training or inference data for that specific task
is kept (Figure 3-➋). Briefly, and as explained in the next
sections, this file ensures that different Spark components can
attest to the integrity of libraries and data being used/read by
them and, moreover, cannot access other libraries or data that
these are not supposed to.

The encryption module is in charge of securely exchanging
the Manifest file and the user’s symmetric encryption key
with the SGX enclave on the master node (Figure 3-➊➋).
This is done once, at the ML task’s bootstrapping phase, and
requires establishing a secure channel between the client and
master’s enclave. This channel guarantees the security and
integrity of the user’s encryption key and the Manifest file,
while the encrypted ML task scripts can be safely sent via an
unprotected channel.

With the previous design, sensitive data is only accessed
in its plaintext format at trusted user premises or inside
trusted enclaves. This includes users’ encryption keys, the
information in the Manifest file and ML task scripts, as well
as the final output.

D. CLUSTER
Training and inference ML task scripts are sent encrypted
to Spark’s master node to avoid revealing sensitive infor-
mation. However, the node requires access to the plaintext
information contained in these cryptograms to distribute the
required computational load across workers. So, the Spark
Driver and Context modules must be deployed in a secure
SGX enclave where the cryptograms can be decrypted and
the plaintext information can be securely accessed. The cryp-
tograms, however, can only be decrypted if the secure enclave
has access to the user’s encryption key, thus explaining why
the key must be sent through a secure channel established
between the client module and the enclave.

For inference operations, the master node also needs to
access the distributed storage backend to retrieve the stored
ML model. The user’s encryption key is necessary so the
encrypted model is only decrypted and processed at the se-
cure enclave. The Manifest file ensures that only the storage
locations specified in the file are accessible to the master
Node (Figure 3-➋).

After processing the ML task scripts, the master’s enclave
establishes secure channels with the enclaves of a set of
workers to send the necessary computational instructions1

along with the user’s encryption key and Manifest file (Figure
3-➌). The user’s encryption key is needed at the worker
nodes so that these can read encrypted data (e.g., train dataset
or data to be inferred) from the storage backend while de-
crypting and processing it in a secure enclave environment
(Figure 3-➍). Once again, the Manifest file prevents un-
wanted access to stored data. Furthermore, the enclaves at the
worker nodes establish secure channels between themselves
to transfer sensitive metadata information such as model
training parameters (Figure 3-➎).

Finally, after completing the desired computational tasks,
the workers send the corresponding inference or training
outputs to the master node through the established secure
channel (Figure 3-➏). The master node then merges the
partial outputs into the final result, which is done inside
a trusted enclave, and sends it encrypted, with the user’s
encryption key, to the trusted client module (Figure 3-➐). At
the latter, the result (i.e., trained model or inference output) is
decrypted by the transparent encryption module and returned
to the user in plaintext.

E. PARTITIONED DESIGN
Soteria proposes a novel partitioning scheme, Soteria-P, that
does fine-grained partitioning, of which operations execute

1The same metadata sent by a vanilla Spark deployment so that workers
know the computational operations to perform.
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inside and outside secure enclaves. Note that this partitioning
is only done for ML operations executed at Spark worker
nodes. The remaining operations performed at other Spark
components (i.e., master) are always executed inside trusted
enclaves.

To better understand the novelty of our partitioning
scheme, we first introduce a common state-of-the-art ap-
proach, Soteria-B, which is also supported by our system and
is used in this paper as a security and performance baseline.
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FIGURE 4. Comparison between SOTERIA-B and SOTERIA-P schemes.

SOTERIA Baseline (SOTERIA-B). In Soteria-B, all com-
putation done by Spark workers is included in a trusted
environment. Namely, the executor processes launched by
each worker node are deployed inside an enclave, as depicted
in Figure 4. Outside the enclave, data is always encrypted in
an authenticated fashion, allowing the worker to decrypt and
validate data integrity within the enclave.

SOTERIA Partitioning Scheme (SOTERIA-P). Our novel
scheme is based on the observation that ML workloads
are composed of different computational steps. Some must
operate directly over sensitive plaintext information (e.g.,
train and inference data and model), while others do not
require access to this type of data and are just calculating
and collecting general statistics about the operations being
made. For instance, in a multiclass ML task, where the user
may want to predict multiple classes, the evaluation of such
an algorithm would need to measure the precision and the
probability of each individual class. These measurements
can be performed independently of other operations over
sensitive information.

Therefore, Soteria-P decouples statistical processing, used
for assessing the performance of inference and training tasks,
from the actual computation of the ML algorithms done
over sensitive plaintext information. This decoupling builds
directly upon MLlib and refactors its implementation without
requiring changes to how users submit ML tasks. As de-
picted in Figure 4, statistical processing is done by executor
processes in the untrusted environment, while the remaining
processing endeavors are done by another set of executors
inside a trusted enclave (SGX-executors).

This decoupled scheme leads Soteria-P to reveal the fol-
lowing statistical information during the execution of ML
workloads: the calculation of confidence results (loss, ac-
curacy, precision, recall, and F1-scores), table summaries,
ROC/AUC curves, and probability distributions for classes.

To provide a more concrete example, Algorithm 1 depicts
the pseudo-code of a Linear Regression algorithm under the
Soteria-P scheme and behaves as follows. The goal is to
minimize the loss function, in this particular example, the
Root Mean Squared Error. First, in the SGX-executor, an
instance of Spark loads the dataset, creating a dataframe
(X, y). This dataframe is further split into train and test data,
(Xtrain, ytrain, Xtest, ytest). After this first pre-processing,
an instance of a Linear Regression algorithm (lrM ) is trained
with the training data, and with the testing data, the first
predicted values are inferred (P ).

With these values, the Root Mean Squared Error (RMSE)
is calculated at the non-secure executor (rmse). This com-
putation is depicted in Algorithm 2, which intends to find
the minimum error value. If no initial error is available, the
algorithm returns the calculated RMSE. Otherwise, it returns
the newly calculated RMSE (newRMSE). This is the only
part of the computation within Soteria-P that is done outside
trusted hardware, and thus, it is highlighted in orange.

After receiving the result, the SGX-executor continues
the model training according to the number of maximum
iterations (maxIter) defined by the user. In each iteration,
it trains a new model (lrM ′) and predicts new values (P ′),
which are iteratively used to calculate a new RMSE. If the
new RMSE is lower than the previous, the worker keeps
the newly trained model. The master node then collects
the results from the workers, maps and reduces the model
parameters, and returns the encrypted final model to the
client.

Algorithm 1 LinearRegression(DS, prms, lrM ):
1: (X, y) = Spark.load(DS)
2: (Xtrain, ytrain), (Xtest, ytest) = (X, y).split()
3: lrM.fit(Xtrain, ytrain, prms)
4: P ← lrM.transform(Xtest, ytest)
5: rmse← Untrusted(ytest, P, ϵ)
6: for i = 1 to maxIter do
7: lrM ′ ← lrM.fit(Xtrain, ytrain, prms)
8: P ′ ← lrM ′.transform(Xtest, ytest)
9: rmse′ ← Untrusted(ytest, P

′, rmse)
10: if rmse′ < rmse then
11: lrM ← lrM ′

12: rmse← rmse′

13: end if
14: end for
15: return lrM, rmse

F. SECURITY
Our security goal is formally defined using the real-versus-
ideal world paradigm, similar to the Universal Composability
framework [36]. Succinctly, we prove that Soteria is indistin-
guishable from an idealized service for running ML scripts
in an arbitrary external environment that can collude with
a malicious insider adversary. We then use that abstraction
to demonstrate how Soteria is resilient to real-world ML
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Algorithm 2 Untrusted(ytest, ynew, rmse):
1: n← len(ytest)

2: newRMSE←
√

1
n

∑n
i=1(ytesti − ynewi)

2

3: if rmse = ϵ then
4: return newRMSE
5: else
6: return min(rmse, newRMSE)
7: end if

attacks. This idealized service is specified as a functionality
parameterized with the input data, which simply executes the
tasks described in the ML task script and returns the output
to the client via a secure channel.

The full proof of Soteria-P and Soteria-B schemes can be
found in Appendix A. The outline is as follows. The role
played by the master node can be seen as an extension of
the client, establishing secure channels, providing storage en-
cryption keys, and receiving outputs. We follow the reasoning
of [37] and replace the master node with a reactive func-
tionality performing the same tasks. Similarly, each Soteria
worker behaves simultaneously as a processing node and as
a client node, providing inputs to the computation of other
workers (e.g., model training parameters). This enables us to
do a hybrid argument, where worker nodes are sequentially
replaced by idealized reactive functionalities executing their
roles in the task script.

Finally, all processing is done in ideal functionalities, and
all access to external storage is fixed by the ML task script
and the Manifest file, so we can refactor the functionalities
to process over hard-coded client data and replace the se-
cure data storage with dummy encryptions. We have now
reached the ideal world, where all ML computation is done
in an isolated service, and all other protocol interactions are
simulated, given the ML task script and Manifest files. Our
analysis refers to Soteria-B and thus establishes the baseline
security result when no computation is done outside the
enclave (no leakage). The reasoning for Soteria-P is identical,
with the caveat that statistical data is explicitly revealed as
leakage in the ideal world.

1) Security implications of statistical leakage
To show that our system is resilient against ML attacks, we
must consider a common prerequisite for such attacks to
be successful: the adversary must have black-box access to
the model (as per definition on Section III-B). Our result
implies that adversaries cannot infer internal data from the
workers, and the secure channel between the client and
master prevents adversaries from injecting queries into the
system. This would intuitively suggest that our adversary
is unable to perform queries in a black-box fashion to the
model. However, Soteria-P has the aforementioned additional
leakage of statistical information.

As such, a crucial security question to answer is: how
does statistical information relate to black-box model access,

i.e., does the first imply the second in any way? Specifi-
cally, our argument is by reduction: if an attack based on
black-box access to the model occurs in Soteria-P, then the
adversary must have been able to extract such black-box
access from the statistical information revealed. Given how
statistical data depends on the underlying ML script, consider
the concrete example provided in Algorithm 1. Here, the
leakage can be defined as the sum of all data revealed to
the untrusted execution, namely the set of predictive labels
ytest, and the results of maxIter number of predictions after
lrM.fit(Xtrain, ytrain, prms). Concretely, the leakage l of an
execution of Algorithm 1 can be defined as:

l = (ytest,

maxIter∑
lrM.transform(Xtest, ytest))

This quantifies the amount of information explicitly re-
vealed to the adversary of Soteria. As such, attacks requiring
black-box access to the model can only occur if there exists
an efficient algorithm that can take l and produce a sufficient
approximation to lrM for black-box attacks to be conducted.

For the general case, extracting model access from statis-
tical data is an ongoing area of research. However, current
attacks suggest one is unable to do this in any successful
way [17]. This supports our thesis that statistical values are
not sensitive information, in the sense that their leakage does
not expose our system to these types of attacks. From this,
it follows that Soteria-P scheme is resilient to any attack
requiring black-box access to the model to succeed.

2) Relation to ML Attacks
We now overview the four types of attacks referred to in
Section III-B on a case-by-case basis. Appendix B contains a
more in-depth analysis of these attacks.

Resistance against input forgery is achieved by Soteria
through authenticated data encryption. This means that the
input dataset is authenticated by the data owner and explicitly
defined in the Manifest file, allowing the SGX-executors to
check the authenticity of all input data. Thus, no forged data
is accepted for processing, which is necessary for performing
any type of adversarial attack.

The secure channels between the TEE at the master node
and the client ensure that an external adversary cannot ob-
serve legitimate query input/outputs and cannot submit arbi-
trary queries to Soteria. This query privacy feature is crucial
to block illegitimate model access, which allows us to pro-
tect against model extraction, model inversion, membership
inference as well as instances of reconstruction attacks that
require black-box access to the model.

Finally, reconstruction attacks require additional knowl-
edge about internal ML model data. Our security result shows
that Soteria is indistinguishable from an idealized ML ser-
vice, which does not reveal the trained model. This includes
the important feature vectors required for this attack, which
cannot be inferred from confidence values and class proba-
bilities alone. Alternatively, reconstruction attacks requiring
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black-box access to the model are strictly stronger, but this,
as we have argued, is not possible only with knowledge of
confidence values, class probabilities, ROC/AUC curves, and
table summaries (the explicit leakage of Soteria-P, as defined
in Appendix A).

G. IMPLEMENTATION
Soteria’s prototype is built on top of Apache Spark 2.3.0
and implemented using both Java and Scala. Spark’s data
loading library was extended to include Soteria’s transparent
encryption module. The latter uses the AES-GCM-128 au-
thenticated encryption cipher mode, providing data privacy
and integrity guarantees.

Both Soteria-B and Soteria-P schemes are supported by
our prototype. For Soteria-P’s implementation, Spark’s ML-
lib implementation was decoupled into two sub-libraries, one
with the statistical processing (to be executed outside SGX)
and another with the remaining ML computational logic (to
be executed inside SGX).

Graphene-SGX 1.0 was used for the overall management
of Intel SGX enclaves’ life cycle, for specifying the compu-
tation (i.e., internal Spark and MLlib libraries) to run at each
enclave, and for establishing secure channels (i.e., with the
TLS-PSK protocol) between the enclaves at the master and
worker nodes [38]. Soteria’s Manifest file was also provided
by Graphene.

V. EVALUATION
Our evaluation answers three main questions:

i) How does Soteria impacts the execution time of ML
workloads?

ii) How does the Soteria-P scheme compares, in terms
of performance, with state-of-the-art approaches (i.e.,
Soteria-B and SGX-Spark)?

iii) Can Soteria efficiently handle different algorithms and
dataset sizes?

A. METHODOLOGY

Environment. The experiments use a cluster with eight
servers, with a 6-core 3.00 GHz Intel Core i5-9500 CPU,
16 GB RAM, and a 256GB NVMe. The host OS is Ubuntu
18.04.4 LTS, with Linux kernel 4.15.0. Each machine uses
a 10Gbps Ethernet card connected to a dedicated local net-
work. We use Apache Spark 2.3.0 and version 2.6 of the Intel
SGX Linux SDK (driver 1.8). The client and Spark Master
run in one server, while Spark Workers are deployed in the
remaining seven servers. SGX memory is configured to use
4GB.
Workloads. We resort to the HiBench benchmark [20] for
evaluating seven ML algorithms (Table 2) that are broadly
used and natively implemented on top of MLlib, namely: Al-
ternating Least Squares (ALS), Principal Component Analy-
sis (PCA), Gradient Boosted Trees (GBT) and Linear Regres-
sion (LR), Sparse Naive Bayes (Naive Bayes), Latent Dirich-
let Allocation (LDA) and K-means clustering (K-means).

The benchmark suite offers different workload sizes for each
algorithm ranging from Tiny to Gigantic configurations.
Setups and metrics. To validate Soteria’s performance and
the benefits of fine-grained differentiation of secure ML
operations, we compare the implementations of our system
with the Soteria-B and Soteria-P schemes. These setups are
compared with a deployment of Apache Spark that does not
offer privacy guarantees (Vanilla).

Moreover, we test SGX-Spark [18], a state-of-the-art
SGX-based solution that protects both analytical and ML
computation done with Apache Spark. It is designed to
process sensitive information inside SGX enclaves, so it can
be considered the most similar system to Soteria. However,
SGX-Spark can only guarantee that User Defined Functions
(UDFs) are processed in secure enclaves. This decision
leaves a large codebase of Spark outside the protected mem-
ory region and, consequently, limits the users to only being
able to execute privacy-preserving ML algorithms based on
UDFs.

For each experiment discussed in the next section, we
include the average algorithm execution time and standard
deviation for three independent runs. The dstat monitoring
tool was used to collect the CPU, RAM, and network con-
sumption at each cluster node.

B. PERFORMANCE OVERVIEW
Figure 5 shows the execution time of all the setups for
the seven algorithms when using a huge-sized workload
configuration. Moreover, Figures 6a, 6b, 6c and 6d present
the performance evaluation for PCA, GBT, ALS and LR
algorithms for different workload sizes. Next, we list our
main observations to aid in the characterization of these
results. Unless stated otherwise, the performance overhead
values discussed in this section correspond to the number
of times that the algorithm’s execution time increases for a
given setup when compared to the Vanilla Spark deployment
results. Observations 1 to 8 correspond to Figure 5, whilst
Observations 9 to 12 refer to Figure 6.

0

50

100
150

200

250

E
xe
cu
ti
on

 T
im
e 
(s
ec
on
d
s) ALS LDA Kmeans PCA

Bayes LR GBT

52
 s
ec
.

40
1 
se
c.

15
5 
se
c.

65
5 
se
c.

33
 s
ec
.

13
 s
ec
.

18
9 
se
c.

0

1500

3000
4500

6000

7500

E
xe
cu
ti
on

 T
im
e 
(s
ec
on
d
s) ALS LDA Kmeans PCA

Bayes LR GBT

52
 s
ec
.

40
1 
se
c.

65
5 
se
c.

33
 s
ec
.

13
 s
ec
.

18
9 
se
c.

0

340

680
1020

1360

1700

E
xe
cu
ti
on

 T
im
e 
(s
ec
on
d
s) ALS LDA Kmeans PCA

Bayes LR GBT

52
 s
ec
.

40
1 
se
c.

65
5 
se
c.

33
 s
ec
.

13
 s
ec
.

18
9 
se
c.

0

540

1080
1620

2160

2700

E
xe
cu
ti
on

 T
im
e 
(s
ec
on
d
s) ALS LDA Kmeans PCA

Bayes LR GBT

52
 s
ec
.

40
1 
se
c.

65
5 
se
c.

33
 s
ec
.

13
 s
ec
.

18
9 
se
c.

0

50

100
150

200

250

E
xe
cu
ti
on

 T
im
e 
(s
ec
on
d
s) ALS LDA Kmeans PCA

Bayes LR GBT

52
 s
ec
.

40
1 
se
c.

65
5 
se
c.

33
 s
ec
.

13
 s
ec
.

18
9 
se
c.

0

5000

10000

15000

20000

E
xe
cu
ti
on

 T
im
e 
(s
ec
on
d
s) ALS LDA Kmeans PCA

Bayes LR GBT

52
 s
ec
.

40
1 
se
c.

65
5 
se
c.

33
 s
ec
.

13
 s
ec
.

18
9 
se
c.

0

300

600
900

1200

1500

E
xe
cu
ti
on

 T
im
e 
(s
ec
on
d
s) ALS LDA Kmeans PCA

Bayes LR GBT

52
 s
ec
.

40
1 
se
c.

65
5 
se
c.

33
 s
ec
.

13
 s
ec
.

18
9 
se
c.

FIGURE 5. Execution time for each algorithm with Huge workload. The legend
is as follows: Vanilla Spark; SOTERIA-B; SOTERIA-P; SGX-Spark.

Observation 1. Vanilla Spark’s execution times for ALS,
PCA, LR, and GBT algorithms are 55, 655, 657, and 189
seconds.
Observation 2. The execution time for ALS increases by
3.62x and 4.35x for Soteria-P and Soteria-B, respectively.
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TABLE 2. Representation of each ML algorithm’s tasks, time complexity, and data sizes for different workloads.

Algorithms Tasks Time Complexity Workloads
Tiny Large Huge Gigantic

ALS RS O((m+ n)k3 +mnk2) [39] 193KB 345MB 2GB 4GB
PCA DR O(nm ∗min(n,m) +m3) [40] 256KB 92MB 550MB 688MB
GBT P O(n ∗ y ∗ ntrees) [41] 36KB 46MB 92MB 183MB
LR C + P O(m ∗ n2 + n3) [42] 11GB 134GB 335GB 894GB
Naive Bayes MC O(nm) [43] - - 5GB -
LDA DR O(mnt+ t3) [44] - - 2GB -
Kmeans Cl O(n2) [45] - - 56GB -

RS: Recommendation Systems; DR: Dimensionality Reduction; P: Prediction; C: Classification; MC: Multi-class Classification Cl: Clustering.

SGX-Spark incurs an execution overhead of 4x. Thus, the
three setups have similar results, requiring approximately 150
seconds more of processing time than the vanilla deploy-
ment. Nevertheless, Soteria-P performs slightly better than
the other two approaches.
Observation 3. For PCA, Soteria-B and Soteria-P have an
execution overhead of 3.67x and 2.85x, while SGX-Spark
increases the computational time by 3.95x. When compared
to SGX-Spark, Soteria-P decreases the execution time by 12
minutes (27.8%).
Observation 4. For LR, Soteria-B and SGX-Spark exhibit
an overhead of 27.31x, while Soteria-P reduces this value to
18.2x. This reduction of 29.6% allows Soteria-P to complete
this workload 1.4 hours earlier.
Observation 5. With the GBT algorithm, Soteria-B shows
similar execution times compared to SGX-Spark, with a
7.04x and 6.64x increase, respectively. Soteria-P outperforms
both approaches, with an overhead of 4.79x, 27.8% less than
SGX-Spark.
Observation 6. The LDA algorithm exhibits higher exe-
cution overhead of 17.40x, 8.89x, and 15.08x for Soteria-
B, Soteria-P, and SGX-Spark setups, respectively. Soteria-P
outperforms SGX-Spark by a difference of 41.5 minutes (i.e.,
reduces execution time by 41%).
Observation 7. When compared with the vanilla deploy-
ment, Soteria-B increases execution time of KMeans by
9.37x and Soteria-P by 6.68x. SGX-Spark has an overhead
of 9.7x, which means that, in comparison with Soteria-P, it
requires additional 468 seconds (7.8 minutes) to execute, i.e.,
Soteria-P is 31% faster.
Observation 8. With Huge workload and Naive Bayes, So-
teria exhibits an overhead of 6.24x for Soteria-B, which is
higher than the 5.33x observed for SGX-Spark. Also, Soteria-
P continues to present a lower overhead (3.58x) compared
to SGX-Spark. The absolute difference in execution time
between Soteria-P and Soteria-B is 88 seconds, whilst, with
SGX-Spark, Soteria-P decreases execution time by 61 sec-
onds (34%).
Observation 9. For Tiny and Large workloads with the
PCA algorithm, Soteria performs similarly for our two
schemes while outperforming SGX-Spark. With larger work-
load sizes, the overhead imposed by our solutions increases.

However, Soteria continues to show better performance than
SGX-Spark. Soteria-B has an overhead of 1.96x to 5.15x
for Tiny and Gigantic workloads, whilst Soteria-P incurs
an overhead of 1.72x to 3.79x. When compared with SGX-
Spark, the results show an absolute difference of 4 seconds
and 7 minutes (7%) for Soteria-B and 7 seconds and 33
minutes (19% and 31%), respectively, for Soteria-P.

Observation 10. Regarding the GBT algorithm, and the Tiny
workload, the overhead of Soteria-B, Soteria-P, and SGX-
Spark are similar. However, the difference between the three
approaches is more visible when increasing the workload
size. Soteria-P (Tiny-2.13x and Gigantic-5.88x) outperforms
both approaches, while Soteria-B (Tiny-2.18x, Gigantic-
9.35x) and SGX-Spark (Tiny-2.3x, Gigantic-10.34x) have
similar results. Soteria-P surpasses SGX-Spark’s execution
time in the Gigantic workload by up to 41%.

Observation 11. With ALS, Soteria-P shows an execution
time overhead of 2.04x and 3.28x, for the Tiny and Gigantic
workloads, respectively. Soteria-P achieves lower overhead
than Soteria-B and SGX-Spark for all dataset sizes, with the
execution time decreasing by 8 seconds (9%) for the Tiny and
191 seconds (27%) for the Gigantic workloads.

Observation 12. For LR, with the Tiny workload, Soteria-B
and Soteria-P increase execution time by 14.39x and 12.95x,
respectively. As for the Gigantic workload, Soteria-B incurs
an overhead of 30.04x and Soteria-P of 23.89x. Compared
to SGX-Spark, Soteria-P decreases the execution time by 43
seconds for the Tiny workload and by 4.31 hours for the
Gigantic workload (22.6%).

Observation 13. Overall, the resource consumption (CPU,
RAM, and network usage) for both Soteria schemes is similar
to the vanilla Spark baseline. In more detail, Soteria-B with
LR presents the upper-bound limit for both memory and
CPU, showing an increase of 9% in both when compared
with vanilla Spark (20% CPU usage). Whilst the network
shows an upper-bound increase of 10% (vanilla Spark shows
an upper-bound network of 135MB) in Soteria-B with PCA
due to extra encrypted data paddings being sent between
Spark Workers.

Observation 14. Soteria does not impact the accuracy of ML
workloads. For all experiments, we measured the correspond-
ing accuracy metrics (e.g., accuracy, root mean square error,
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(a) PCA.
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(b) GBT.
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(c) ALS.
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(d) LR.

FIGURE 6. Runtime execution for PCA, GBT, ALS, and Linear Regression for Tiny, Large, Huge and Gigantic workloads. The legend is as follows: Vanilla Spark;
SOTERIA-B; SOTERIA-P; SGX-Spark.

or ROC). The results corroborate that both Soteria-B and
Soteria-P show accuracy values similar to the vanilla Spark
version.

C. ANALYSIS
We now further analyze the experimental observations ac-
cording to three topics, i) dataset size; ii) algorithm complex-
ity; iii) size of trusted computing base (TCB).

1) Dataset size
Figure 6 shows the performance degradation for the PCA,
GBT, ALS, and Linear Regression algorithms with increas-
ing dataset sizes. Results show that, for PCA, GBT, and
ALS workloads with smaller datasets, Soteria-B and Soteria-
P perform similarly. However, as the size of the datasets
increases, more operations and data must be transferred to
the SGX enclave, thus having a more noticeable toll on the
overall performance. Indeed, the page swapping mechanism
of SGX, which occurs due to its memory limitations, incurs
a significant performance penalty [12], [46]. For example,
when compared to the vanilla setup, the PCA algorithm
overhead for Soteria-B varies between 1.96x for Tiny work-
load and 5.15x for Gigantic workload. While for Soteria-P,
the execution time increases by 1.78x in the Tiny workload
and 3.79x in the Gigantic workload. Linear Regression is
the most expensive algorithm in terms of performance as it
processes more data for the distinct workload sizes (Table
2). Compared with SGX-Spark, Soteria-P deals better with
the data volume increase. Indeed, as seen in Observations 9-
12, we reduce the execution time from 9% up to 41% when
compared to SGX-Spark. Also, compared with our baseline,
Soteria-P achieves up to 33% less execution time.

2) Algorithm Complexity
The execution times of ALS and LDA algorithms are very
different even though their dataset size is similar. These re-
sults are explained by the computational complexity of each
algorithm. For ALS, the synthetic workload data generated
by the benchmark has a low hidden k dimension with a low
ranking of 10, simplifying the required computation and de-
creasing execution time. For the LDA algorithm, the compu-
tational complexity, and consequently the execution time, are

increased due to the higher number of dependencies between
values at the generated synthetic workload data. Observations
2 and 6 emphasize the performance of these two algorithms
for a similar workload size. Like LDA, Observations 3 and
9 show that PCA complexity and performance overhead in-
crease with the processed data volume. Commonly classified
as regression and classification algorithms, Bayes and GBT
have similar performance, as seen in Observation 8 and
Observation 5. The data sizes of these two algorithms are
completely different, where GBT uses 91.7MB, and Bayes
has 5.2GB. However, the Bayes algorithm iterates only once
over the data, while GBT iterates over several decision trees
to find its best model. Kmeans’ performance is highly depen-
dent on the chosen dataset size. This is also true for the Linear
Regression algorithm (Observations 4 and 12).

3) Size of TCB
The results discussed in Section V-B show that SGX-Spark
outperforms Soteria-B for some of the evaluated algorithms
(Observation 2, 4-6, 8). As SGX-Spark only protects UDFs,
the performance overhead imposed by our solution’s larger
trusted computing base is naturally higher. Nevertheless,
when compared to SGX-Spark, Soteria-B covers a wider
range of machine learning attacks while keeping performance
overhead below 1.59x. Indeed, for algorithms such as PCA,
and Kmeans, Soteria-B has a similar or slightly inferior
execution time (Observations 3 and 7). This happens because,
for these algorithms, both SGX-Spark and Soteria-B perform
similar computations at the secure enclaves, while the UDF
mechanism is not the most optimized choice for running
some of these workloads.

Finally, due to the TCB reduction by our second scheme,
Soteria-P always outperforms SGX-Spark and Soteria-B
(Observations 2-12). The results show that this solution can
reduce the training time by up to 41%, namely for the LDA
algorithm with the Huge workload (Observation 6).

4) Discussion
The results show that Soteria-P outperforms other state-of-
the-art approaches, namely SGX-Spark, for all the consid-
ered ML algorithms. Also, Soteria-P achieves better per-
formance than the Soteria-B setup while offering similar
security guarantees when considering distinct ML attacks
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(Section IV-F). This is made possible by filtering key oper-
ations to be done outside enclaves.

In detail, when compared to Soteria-B, Soteria-P reduces
ML workloads’ execution time by up to 37%. When com-
pared with SGX-Spark, the execution time is reduced by up
to 41%. Interestingly, for the LR algorithm using a Gigantic
workload (894GB), Soteria-P decreases computation time by
4.3 hours and 3.3 hours when compared with SGX-Spark
and Soteria-B, respectively. The performance overhead of
Soteria-P for the four different algorithms ranges from 1.7x
to 23.8x when compared to Vanilla Spark.

VI. RELATED WORK
Secure ML solutions can be classified into four main groups
based on the privacy-preserving techniques being used: i)
encryption-based [5]–[7], ii) secure multi-party computation
[47], [48], iii) differential privacy [49], [50] and, iv) trusted
execution environments (TEEs) [9], [10], [23], [51]. This
paper is included in group iv).

A. PRIVACY-PRESERVING ML WITH TEES
Chiron [9] enables training ML models on a cloud service
without revealing information about the training dataset.
Myelin [10] offers a similar solution to Chiron while adding
differential privacy and data oblivious protocols to the al-
gorithms to mitigate the exploits from side-channels and
the information leaked by the model parameters. Soteria
differs from these works as it can cover both the training
and inference phases while providing additional protection
against adversarial samples, reconstruction, and membership
inference attacks (Table 1).
In [23], five ML algorithms are re-implemented with data
oblivious protocols. Combined with TEEs, these protocols
ensure strong privacy guarantees while preventing exploiting
side-channel attacks that observe memory, disk, and network
access patterns to infer private information. Unlike this so-
lution, Soteria aims to support all ML algorithms built with
MLlib transparently.

B. PRIVACY-PRESERVING ANALYTICS WITH TEES
TEEs have also been used to ensure privacy-preserving com-
putation for general-purpose analytical frameworks [19]. In
comparison to SGX-Spark [18], detailed in Section V-A, So-
teria supports a broader set of algorithms (i.e., any algorithm
that can be built with the MLlib API), while protecting users
from a more complete set of ML attacks (Table 1).
Opaque [13], and Uranus [14] resort to SGX to provide
secure general-purpose analytical operations while only sup-
porting a restricted set of ML algorithms. Opaque com-
bines SGX with oblivious protocols and requires the re-
implementation of the default Apache Spark UDF operators.
Uranus is also based on porting UDF processing to SGX
enclaves but includes a single ML workload. Differently, So-
teria is targeted at ML workloads and is not limited by UDF-
based algorithms that, compared with MLlib-based ones,
exhibit lower performance for some ML workloads [52].

Therefore, the design, implementation, and security require-
ments are distinct compared to Soteria.

C. PRIVACY-PRESERVING DEEP LEARNING WITH TEES
TEEs have also been applied to the training and inference
of deep neural networks [51], [53]. However, there is a
substantial difference between the internals of ML and DL
frameworks and algorithms, thus, requiring significantly dif-
ferent privacy-preserving designs for each scenario. Since
MLlib does not natively support DL workloads, the focus of
Soteria is solely on ML algorithms.

D. COMPUTATION PARTITIONING WITH TEES
Recent solutions have been proposed to address the challenge
of partitioning and selecting specific code from applications
that should run at trusted execution environments.
Glamdring [54] proposes a static analysis tool that infers
a partition between trusted and untrusted code in an appli-
cation. It tries to achieve a balanced distribution of parti-
tions to minimize the number of edges crossing between
components. Another approach, Civet [55], focuses solely
on partitioning Java applications. It provides an annotation-
based approach for partitioning Java applications and ensures
inter-object communication and consistent garbage collec-
tion across the partitioned components. Finally, Uranus [14]
and Montsalvat [56] propose two automatic partitioning
tools. Uranus [14] addresses the challenges of automatic
partitioning between trusted and untrusted code in Intel SGX
enclaves. However, unlike Glamdring, Uranus tries to enforce
the trusted and untrusted code partition at runtime. Con-
versely, Montsalvat [56] provides an automatic partitioning
tool for GraalVM images that automatically annotates trusted
and untrusted code to be computed inside trusted execution
environments.
Soteria is different from these solutions as it does not try
to propose a partitioning tool. Namely, Soteria proposes a
specific partitioning scheme for Apache Spark’s MLlib.
Summary. To the best of our knowledge, Soteria is the first
privacy-preserving ML framework that proposes an alterna-
tive TEE-based scheme (Soteria-P), which can improve the
performance of training and inference workloads by reducing
the number of operations done at secure enclaves. Also, it is
the first solution that covers a large spectrum of ML exploits
(Table 1) and supports various ML algorithms while not
changing how users build and run their algorithms within
Spark MLlib.

VII. CONCLUSION
We propose Soteria, a system for distributed privacy-
preserving ML. Our solution builds upon the combination
of Apache Spark and TEEs to protect sensitive information
being processed at third-party infrastructures during the ML
training and inference phases.

The innovation of Soteria stems from a novel partitioning
scheme (Soteria-P) that allows specific ML operations to be
deployed outside trusted enclaves. Namely, we show that it
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is possible to offload non-sensitive operations (i.e., statisti-
cal calculations) from enclaves while still covering a larger
spectrum of ML attacks than in previous related work. Also,
this decision enables Soteria to perform better than existing
solutions, such as SGX-Spark, while reducing ML workloads
execution time by up to 41%.
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APPENDIX A SOTERIA SECURITY PROOF
We now discuss the privacy-preserving security of the Soteria
protocol. The goal is to reduce the security of our system to
the security of the underlying security mechanisms, namely
the isolation guarantees of Intel SGX and the bootstrapped
secure channels, and the indistinguishability properties of
encryption.

The security goal consists in demonstrating that Soteria en-
sures privacy-preserving machine learning. Concretely, this
means that the real-world behavior displayed by Soteria is
indistinguishable from the one displayed by an idealized
functionality in the ideal-world, which simply computes over
the task script and provides an output via a secure channel.
The only information revealed during this process is the
length of I/O, the number of computation steps, and the
access patterns to the external storage where data is kept.

Formally, this security goal is defined using the real-
versus-ideal world paradigm, similar to the Universal Com-
posability [36] framework.

We begin with a more formal description of our security
model. Then, we present an intermediate result for ensuring
the security of enclaves relying on external storage. We
can finally specify the behavior of the Client, Master and
Workers, and present the full proof.

A. FORMAL SECURITY MODEL
Our model considers external environment Z and internal
adversary A. Π denotes the protocol running in the real
world, and S and F denote the simulator and functionality,
respectively, running in the ideal-world. The real-world con-
siders a Client C, a Master node M , and 2 Worker nodes W1

and W2. This is for simplicity, as the definition and proof

can be easily generalized to consider any number of Worker
nodes. We also consider global storage G, which is initialized
by Z before starting the protocol. The Ideal functionality is
parametrised by this external storage F<G>, and will reveal
the access patterns via leakage function L.2

In the real-world, Z begins by providing public inputs
to C in the form of (s,m), where s is the task script and
m is the manifest detailing data in G to be retrieved.3 The
Client will then execute protocol Π, sending messages to
M , W1 and W2. When the script is concluded, the output
is provided to C, finally being returned to Z . A can observe
all communication between C,M,W1,W2 and G.

In the ideal world, (s,m) are provided to dummy Client C,
which in turn forwards them toF<G>. The functionality will
simply run the protocol and forward the output to C, which
in turn is returned to Z . All the communication observed by
A must be emulated by simulator S, which receives (s,m),
leakage L produced from the functionality interaction with
storage G, and the output size.

Security is predicated on ensuring that S does not require
any sensitive information (contained in G) to emulate the
communication to A. Given that we consider a semi-honest
adversary, we can simplify the interaction with the system
and instead discuss equality of views, as Z and A are unable
to deviate the system from its expected execution. This is
captured by the following definition.
Definition 1: Let Real denote the view ofZ in the real-world,
and let Ideal denote the view ofZ in the ideal-world. Protocol
Π securely realises F for storage G if, for all environments
Z and all adversaries A,

RealZ,A,Π(G) ≈ IdealZ,A,S,F (G)

B. INTERMEDIATE RESULT
For convenience, Soteria does not require the Client to
provide input data at the time of the ML processing, and
instead, the Workers are given access to external storage from
which they retrieve the data. When discussing the security
in the context of secure outsourced computation for SGX,
this is functionally equivalent to classical scenarios where the
Client provides these inputs via a secure channel (Theorem 3
in [57]). The reasoning is simply that if a protocol securely
realizes a functionality with a given input provided via a
secure channel, then the same functionality can be securely
realized with the same input fixed in an external storage,
securely accessed by the enclave.

Consider a protocol Π1 that securely realises some func-
tionalityF with simulator S1 according to Theorem 3 of [36].
We construct protocol Π2 built on top of this secure protocol
Π1, where input data is pre-established and provided to the
enclave via an initial Setup stage where inputs are stored in

2Reasoning for the security of SOTERIA-P instead would only require
this function to also reveal statistical data to the simulator, which we consider
to be non-sensitive.

3SOTERIA Clients are trusted. As such, we assume (s,m) to both be
valid, in the sense that they are correct ML scripts and data sets in G, and
thus can be interpreted by ideal functionality F .
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Algorithm Setup(i,m)<G>:
k←$ Θ.Gen()
c←$ Θ.Enc(k, i)
G[m]← c
Return (m, k)

FIGURE 7. Secure external storage setup.

an encrypted fashion (Figure 7 describes a simplified version
of the process for a single entry). Inputs to Π2 are exactly
the same as those for Π1, but instead of being transmitted via
the secure channel established with Attested Computation,
they are retrieved from storage using a key sent via the same
channel. The Client-server communication increases by a
constant (the key length), which can be trivially simulated,
and the rest of the input can be simulated in a similar way
using the IND-CPA properties of Θ. This protocol behavior
will be key for all Soteria Workers. Our theorem is as follows.
Theorem 1: Let Π1 be a protocol that securely realises
functionality F according to Theorem 3 in [57]. Then Π2,
constructed as discussed above, securely realises F accord-
ing to Definition 1.

PROOF. To demonstrate this result, we construct simulator S2
using S1, then argue that, given that S1 is a valid simulator
for the view of Π1, then the simulated view must be indistin-
guishable from the one of the real world of Π2.

We begin by deconstructing S1 in two parts: S1.AC() will
produce the view for establishing a secure channel, while
S1.Send(l) will produce a simulated view of Client inputs,
given their length. In turn, our simulator will share the same
functions, but also include a third S2.Get(l) to simulate
information being retrieved from G, given its length. Our
simulator is depicted in Figure 8.

Algorithm AC()
k←$ Θ.Gen()
Return S1.AC()

Algorithm Send(l)
Return S1.Send(l)

Algorithm Get(l)

i← {0}l
c←$ Θ.Enc(k, i)
Return c

FIGURE 8. Simulator for Π2.

The view presented to A is composed of three different
types of messages:

• Messages exchanged during the secure channel estab-
lishment are exactly the same as in Π1. Thus they remain
indistinguishable from Π2.

• Outputs received via the secure channel follow the exact
same simulation strategy than Π1, and thus are indistin-
guishable from Π2.

• Messages produced from G in Π2 are encryption of data
in G[m], while the values presented by S2 are dummy
encryptions with the same length. We can thus reduce
the advantage of A to distinguish these views to the
advantage of the same adversary to attack the IND-CPA
guarantees of encryption scheme Θ, which is negligible.

As such, if S1 is a valid simulator for Π1 to A, then the view
presented by S2 must also be indistinguishable for Π2 to A.

Let

AdvDist
Z,A,Π,S,F (G) = (1)

|Pr[RealGZ,A,Π2
⇒ T]− Pr[IdealGZ,A,S2,F ⇒ T]|

(2)

To conclude, we have that, for negligible function µ,

AdvDist
Z,A,Π2,S2,F (G) = AdvDist

Z,A,Π1,S1,F () + AdvIND-CPA
Θ,A ()

(3)
≤ µ() (4)

and Theorem 1 follows.

C. SOTERIA CLIENT, MASTER AND WORKERS
The Soteria components follow standard methodologies for
ensuring secure outsourced computation using SGX. As
such, and given the complexity of ML tasks described in the
script, we consider the following set of functions.

Secure channels are established with enclaves. We define
init(P ) as the bootstrapping process, establishing a channel
with participant P . This produces an object that can be used
to send and receive data via send and receive. Untrusted stor-
age is not protected with secure channels and can be accessed
using the call uGet(G,m), which retrieves data from G con-
sidering manifest file m. Concretely, this is achieved using
the open-source library Graphene-SGX, which we assume
to implement this mechanism correctly. Finally, the script s
defines the actual computation that must be performed by
the system and will be executed collaboratively with both
Workers. As such, we define s as a stateful object with the
main method Run(id, i1, i2), where input id is the identifier
of the Worker, i1 is input from storage and i2 is intermediate
input (e.g., model parameters), returning (o1, o2), where o1 is
the (possibly) final output, and o2 is the (optional) interme-
diate output for dissemination. For simplicity, we also define
method Complete that returns T if the task is complete, or F
otherwise.

The Soteria components can be analyzed in Figure 9 and
are as follows. The Client C (left of Figure 9) simply estab-
lishes the channel with M , sends the parameters (manifest
file, task script, and storage key), and awaits computation
output. Observe that we assume that the key k has been previ-
ously initialized and that the actual data has been previously
encrypted in G using it. The Master M (middle of Figure 9)
will receive the parameters from C and establish channels
with W1 and W2, forwarding them the same parameters and
awaiting computation output. When it arrives, it is forwarded
to the Client.4 Worker W1 (right of Figure 9) receives the
parameters from M and starts processing the script: retrieves
encrypted data from G, decrypts, processes and exchanges
intermediate results with the other Worker. When the script
is concluded, it returns its output to M . The behavior of W2

is the same, but the connection is established instead with
W1.

4In the actual protocol, the Master has additional steps to process the
output. We describe it like this for simplicity, as it does not change the proof.
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Algorithm C(m, s, k)
sc← init(M)
sc.send(m, s, k)
o← sc.receive()
Return o

Algorithm M()
scc ← init(C)
(m, s, k)←
scc.receive()
sc1 ← init(W1)
sc1.send(m, s, k)
sc2 ← init(W2)
sc2.send(m, s, k)
o1 ← sc1.receive()
o2 ← sc2.receive()
scc.send((o1, o2))

Algorithm W1()
m← ϵ
scm ← init(M)
(m, s, k)← scm.receive()
scw ← init(W2)
While !s.Complete:
c← uGet(G,m)
i← Θ.Dec(k, c)
(o,m)←$ s.Run(W1, i, ϵ)
scw.send(m)
m← scw.receive()

scm.send(o)

FIGURE 9. SOTERIA Components. Client C (left), Master node M (middle),
and Worker node 1 W (right).

D. FULL PROOF
Given the description of Soteria components in Figure 9, the
Soteria protocol Πxyz is straightforward to describe. Con-
sidering a pre-encrypted storage G, the Client C, Master
M , and Workers W1,W2 execute following their respective
specifications. Our theorem for the security of Soteria is as
follows.
Theorem 2: Πxyz, assuming the setup of Figure 7 and con-
structed as discussed above, securely realises F according to
Definition 1.

The proof is presented as a sequence of four games. We
begin in the real-world, and sequentially adapt our setting
until we arrive in the ideal world. We then argue that all steps
up to that point are of negligible advantage toA, and thus the
views must be indistinguishable to Z .

Algorithm W1()
m← ϵ
scm ← init(M)
(m, s, k)← scm.receive()
scw ← init(W2)
While !s.Complete:

c← uGet(G1,m)
i← Θ.Dec(k, c)
(o,m)←$ s.Run(W1, i, ϵ)
scw.send(m)
m← scw.receive()

scm.send(o)

Algorithm W2()
m← ϵ
scm ← init(M)
(m, s, k)← scm.receive()
scw ← init(W1)
While !s.Complete:

c← uGet(G2,m)
i← Θ.Dec(k, c)
(o,m)←$ s.Run(W1, i, ϵ)
scw.send(m)
m← scw.receive()

scm.send(o)

FIGURE 10. SOTERIA Workers with split storage.

The first is a simplification step, where, instead of using a
single storage G, we slice the storage to consider G1 and G2.
Figure 10 represents this change. This enables us to split the
execution environment of W1 and W2 seamlessly and can
be done trivially since manifest file m by construction will
never require different Workers to access the same parts of G.
Since these two games are functionally equal, the adversarial
advantage is exactly 0.

The second step is a hybrid argument, where we sequen-
tially replace both Workers by ideal functionalities perform-
ing partial steps of the ML script. Concretely, we argue
as follows. Replace W1 with a functionality for its part
of the ML script FW1, according to Definition 1. From
Theorem 1, we can establish that this adaptation entails
negligible advantage to A provided that the protocol without
external access realizes the same functionality. However, this
is necessarily the case, as it follows the exact structure as the

constructions in [57]. We can repeat this process for W2.5 As
such, using the intermediate result, we can thus upper bound
the advantage adversary to distinguish these two scenarios by
applying twice the result of Theorem 1.

The third step replaces the Master with an ideal function-
ality FM that simply forwards requests to the Worker func-
tionalities. This one follows the same logic as the previous
one, without requiring external storage, as the protocol also
follows the exact structure as the constructions in [57].

In the final step, we have 3 functionalities (FM ,FW1,FW2)
playing the roles of (M,W1,W2), respectively. We finalize
by combining them into a single functionality F for ML
script processing. This can be done by constructing a big
simulator S that builds upon the simulators for the individual
components (SM , SW1, SW2). The simulator S behaves as
follows:
• Run SM to construct the communication trace that

emulates the first part of F .
• Run the initial step of SW1 and SW2 to construct the

communication trace for establishing secure channels
between Workers and Master.

• Call leakage function L to retrieve the access patterns
to G. Use the result to infer which part of the storage
is being accessed, and run SW1 or SW2 to emulate the
computation stage.

Given that the view produced by S is exactly the same as the
one provided by the combination of SM , SW1, and SW2, the
adversarial advantage is exactly 0.

We are now exactly in the ideal world specified for Defini-
tion 1.

Let

AdvDist
Z,A,Π,S,F (G) = (5)

|Pr[RealGZ,A,Πxyz
⇒ T]− Pr[IdealGZ,A,S,F ⇒ T]|

(6)

To conclude, we have that, for the negligible function µ,

AdvDist
Z,A,Π,S,F (G) = 2 · AdvDist

Z,A,ΠW1,SW1,FW1
(G) (7)

+ AdvDist
Z,A,ΠM ,SM ,FM

() (8)

≤ µ() (9)

and Theorem 2 follows.

APPENDIX B ML WORKFLOW ATTACKS
This section presents the attacks in Section 3.2 in further
detail and argues in which circumstances Soteria is secure
against each attack. First, we will describe a general adversar-
ial model against Soteria that follows the security restrictions
justified in Appendix A. Then, we will present an experiment
that captures what constitutes a valid attack under each
definition, as described in Section 3.1. For each attack, we
consider our protocol to be secure if we can demonstrate that

5Again, this technique extends for an arbitrary number of Workers. N
number of Workers would just require us to adapt the multiplication factor
in the final formula, which would still be negligible.
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one cannot rely on a valid adversary against the experiment
of said attack under the constraints of Soteria. In some in-
stances, this will depend on known attack limitations, which
we detail case-by-case.

A. ATTACKER AGAINST SOTERIA

Our goal is to present a model that details the conditions in
which these attacks are possible. As such, it must be both
generic to capture the multiple success conditions of attacks,
as well as expressive, so that it can be easy to relate to each
specific attack.

In this definition, we will also consider an adversary that
can play the role of an honest client and thus will have black-
box access to the produced model. We stress that, in practice,
this will not be the case in many circumstances. In those
scenarios, since queries to the model are made via a secure
channel, an external adversary is unable to arbitrarily request
queries to the model without causing it to abort. This means
that any attack that requires black-box access to the model is
not possible if Soteria assumes external adversaries.

Game AdvXYZA,Πxyz (G, s):
(G′)←$ A1(G, s)
(m, l)← Πxyz(G

′, s)
r←$ Am

2 (l)
Return Success(G, s,m, r)

FIGURE 11. Adversary interacting with SOTERIA.

ff

Let Πxyz denote the full training protocol of Soteria. It
receives external storage G and task script s as inputs, and
produces a model m, which can then be queried. Based
on the security result of Appendix A, the interaction of an
adversary with our system can be described in Figure 11. The
adversary A = {A1,A2} can first try and manipulate the
input dataset G to G′. This is then used for Πxyz, which will
produce the model m and the additional leakage l (Soteria-B
has no additional leakage, so l = ϵ). Finally, the adversary
can interact black-box with the model until a conclusion r
is produced. This will be provided to a Success predicate,
which will state if the attack was successful. This predicate
is specific to the attack and allows us to generally describe
attacks such as adversarial samples, where the goal is to make
the resulting model deviate, as well as membership inference,
where the goal is to retrieve information from the original
dataset.
Remark Observe that A1 and A2 do not share state. This
is because they play different roles within this experiment:
the first influence the system by attempting to manipulate the
training dataset G, while the second interacts with the model
m and leakage l to try and extract information. Indeed, our
first step will be to show that A1 is unable to rely on G′

to meaningfully convey any additional knowledge gained by
observing (G, s).

B. DATASET MANIPULATION
Dataset manipulation attacks are defined by an adversary
with the capability of inserting, removing or manipulating
dataset information. These align with the setting considered
for attacks via adversarial samples. Figure 12 is an experi-
ment that describes what constitutes a successful attack for
dataset manipulation. The adversary A is given full knowl-
edge of G6, and must produce an alternative input dataset
G′. We then train the model (protocol Π) over that data to
produce model m, and the adversary is successful if said
model satisfies some attack success criteria T/F← Success.

Game DSetManA,Π(G, s):
G′←$ A(G, s)
m← Π(G′, s)
Return Success(G, s,m)

FIGURE 12. Model for dataset manipulation attack.

We now argue that the integrity guarantees of the authenti-
cated encryption used by our external storage G ensure that
these attacks do not occur for Πxyz. We do this by showing
that any adversary that performs an adversarial samples at-
tack on Πxyz can be used to construct a successful attack on
the security of the authenticated encryption scheme. First,
observe that no attack can be successful if the adversary
makes no changes on the input dataset, so if G = G′,
then F ← Success. Furthermore, if Πxyz aborts, then no
model is produced, so it naturally follows that the attack is
unsuccessful F← Success.7

As such, the only cases in which T ← Success are those in
which G′ ̸= G and Πxyz do not abort. But this means that the
adversary was able to forge an input that correctly decrypts,
breaking the integrity of the underlying encryption scheme.
Since the security guarantees of authenticated encryption
ensure that the probability of existing such an adversary is
negligible, the probability of such an attacker in Soteria will
also be negligible.

C. BLACK-BOX ATTACKS
All the remaining attacks, with the exception of some recon-
struction attacks, follow a similar setting, where the adver-
sary leverages a black-box access to the trained model, de-
picted in the experiment of Figure 13. We begin by running Π
to produce our model and leakage and then run an additional
procedure Extract to obtain additional information from the
original dataset, which cannot be retrieved by simply query-
ing the model. This procedure captures whatever knowledge
regarding the underlying ML training might be necessary
for the attack to be successful (e.g., information about data
features). We then provide this additional information to the
adversary and give it black-box access to the model. The

6Realistically, an attacker would have less information, but for our
purposes we can go for the worst case and give him all the information
regarding the computation and its input.

7The only circumstance in which this could be considered a successful
attack was if the goal was to perform a denial-of-service attack, which we
consider to fall outside the scope of an adversarial sample attack.
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success criteria depends on the specific attack and is validated
with respect to the original dataset, model, and the task script
being run. E.g., for model extraction attack, the goal might
be to present a model m′ that is similar to m, evaluated by
the Success predicate.
For simplicity, we first exclude all attacks for an external
adversary, which does not have black-box access to the model
of Soteria. This is true if we can show that one cannot
emulate black-box access to the model using confidence
values and class probabilities. Albeit an interesting research
topic, current attacks are still unable to do this in an efficient
way [17]. We now go case-by-case, assuming an adversary
can play the role of a genuine client in our system.
Our arguments for Πxyz depend on being able to rely on a
successful adversary A of Figure 13 to perform the same
attack in Figure 11. As such, the security of our system will
depend on the amount of additional information z, on how it
can be extracted from the view of the adversary of Soteria.
• For membership inference, reconstruction attacks based

on black-box access to the model, model inversion, and
model extraction via data-free knowledge distillation,
no additional information z is required. This means
that any successful adversary in Figure 13 will also be
successful in Figure 11, meaning that both for Soteria-B
and Soteria-P are vulnerable. Preventing these attacks
requires restricting access to the model to untrusted
participants.

• Class-only attacks for model extraction require addi-
tional knowledge from the dataset. Specifically, z must
contain concrete training dataset samples. This means
that to leverage such an adversary A, one must first
be able to use Am

2 (l) to extract such a z. This exactly
matches the setting of model inversion attacks. This
means that Soteria is vulnerable to class-only attacks
for model extraction in Soteria-B or Soteria-P if there
is also an efficient attack for model inversion in Soteria-
B or Soteria-P, respectively.

• Equation-solving model extraction requires knowledge
of the dimension of the training dataset G. This is addi-
tional information z that is not revealed by querying the
model, which means no adversary Am

2 (ϵ) can retrieve
z, and thus Soteria-B is secure against said attacks.
However, combining public data with confidence val-
ues might allow for Am

2 (l) to extract a sufficient z to
perform the attack, which makes Soteria-P vulnerable
to equation-solving model extraction.

• Path-finding model extraction attacks require informa-
tion regarding leaf count, tree depth and leaf ID. As
such, all this must be encapsulated in z. [2] suggests
that such information is not retrievable from only black-
box access to the model [2], which means no adversary
Am

2 (ϵ) can produce z and thus Soteria-B is secure.
However, this is information that can be extracted from
confidence values, which suggests that an efficient ad-
versary z←$ Am

2 (l) is likely to exist, and thus Soteria-P
is vulnerable to such attacks under these assumptions.

We can generalize the security of our system to these types of
attacks as follows. If no additional information z is required,
then Πxyz is vulnerable to an adversary that can play the role
of an honest client. If z can be extracted from black-box
access to the model, then we can still rely on said adversary to
attack Πxyz. Otherwise, Soteria-B is secure, as no additional
information is leaked. Furthermore, the security of Soteria-P
will depend on whether one can infer z from l and from the
black-box access to the model. Concretely, if we can show
that no (efficient) function F exists, such that z←$ Fm(l),
then Πxyz for leakage l is secure against attacks requiring
additional data z.

Game BlackBoxA,Πxyz (G, s):
m← Π(G, s)
z←$ Extract(G, s)
r←$ Am(z)
Return Success(G, s,m, r)

FIGURE 13. Model for black-box attacks.

D. WHITE-BOX ATTACKS
White-box attacks capture a scenario where an adversary
requires white-box access to the model. These align with the
setting of reconstruction attacks that explicitly require white-
box access to the model. Figure 14 is an experiment that
describes what constitutes a successful reconstruction attack
in this context. We begin by training the model (protocol
Π) over the original dataset to produce the model. We then
provide the trained model directly to the adversary, which
will reconstruct raw data r. Finally, the success of the attack
is validated with respect to the original dataset.

Game WhiteBoxA,Πxyz (G, s):
m← Π(G, s)
r←$ A(m)
Return Success(G, s,m, r)

FIGURE 14. Model for white-box attacks.

We now argue that these attacks do not occur for Πxyz, as
long as it is not possible to extract the model from the
confidence values and from black-box access to the model.
This is because the attacker of Figure 14 receives explicitly
the model m, whereas the adversaryA2 in Figure 11 receives
the confidence values in l, and black-box access to the model.
To rely on such an attacker, A2 must therefore be able to
produce input m from its own view of the system. As such,
relying on such an adversary implies there is an efficient
way m←$ Am

bb(l) to retrieve the model m from confidence
values l and black-box access to the model m, which is
exactly the setting of model extraction attacks in the previous
section. This adversary Abb can then be called by A2 to
produce input m, which is then forwarded to the adversary
of Figure 14 to produce a successful attack r. As such,
Soteria is vulnerable to white-box reconstruction attacks if
there exists an efficient adversary A′ that successfully wins
the experiment of Figure 13 for the model extraction attack.
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E. SUMMARY
Table 3 summarizes the attacks discussed. These are di-
vided between all the identified classes of attacks, as well
as whether the adversary is external or if it can query the
model as a client. In many instances, the security of our
system hinges on another argument over specific restrictions
assumed for the adversary.
We now list the arguments that propose the security of our
system in different contexts.

{1}: an adversary is unable to retrieve the (white-box) model
from confidence values {1a}, black-box access to the
model {1b}, or both {1c}.

{2}: an adversary is unable to emulate black-box access to
the model from confidence values.

{3}: an adversary is unable to retrieve the dimension of the
dataset from black-box access to the model {3a} and
confidence values {3b}.

{4}: an adversary is unable to retrieve information of leaf
count, depth, and ID from black-box access to the model
{4a} and confidence values {4b}.

{5}: no model inversion attack exists for retrieving dataset
samples for Soteria-B {5a} and Soteria-P {5b}.

White-box-based attacks explicitly require additional infor-
mation, such as feature vectors, over black-box access to the
model [33]. This is something that supports {1b} directly,
and since confidence values are not computed from feature
vectors, so would be {1a} and {1c}. Extracting model access
from only confidence values is an active area of research, but
current attacks [17] are still unable to do this in an efficient
way {2}. Typically, one cannot infer dimension from simply
querying the model, which suggests {3a} is true, but this is
unclear for confidence values, and thus one might consider
{3b} is false. [2] suggests {4a} is true, but {4b} is not. {5}
will fundamentally depend on the application [2], [17].
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External Client
SOTERIA-B SOTERIA-P SOTERIA-B SOTERIA-P

Adversarial samples ✓ ✓ ✓ ✓

Reconstruction WB ✓ {1a} {1b} {1c}
BB ✓ {2} ✗ ✗

Membership inference ✓ {2} ✗ ✗
Model inversion ✓ {2} ✗ ✗

Model extraction

Equation ✓ {2} {3a} {3b}
Path ✓ {2} {4a} {4b}
Class ✓ {2} {5a} {5b}

DF KD ✓ {2} ✗ ✗

TABLE 3. Summary of attacks against SOTERIA. ✓ means SOTERIA is resilient to the attacks, ✗ means SOTERIA is vulnerable to the attacks, and {X} means
SOTERIA is secure if argument {X} is also true.
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