
White-Box Implementations for Hash-Based
Signatures and One-Time Passwords

Kemal Bicakci1,3, Kemal Ulker2,3, and Yusuf Uzunay3

1 Informatics Institute, Istanbul Technical University, Istanbul, Turkey,
kemalbicakci@itu.edu.tr

2 Department of Computer Engineering, TOBB University of Economics and
Technology, Ankara, Turkey, kemal.lkr@gmail.com

3 Securify Information Tech. and Security Training Consulting Ltd., Ankara, Turkey,
yusuf.uzunay@securify.com.tr

Abstract. White-box cryptography aims at providing protection against
a powerful adversary which is in complete control of the execution en-
vironment of the cryptographic operation. Most existing white-box im-
plementations focus on symmetric encryption. In particular, we are not
aware of any previous work on general-purpose digital signature schemes
secure against white-box attackers. We present white-box implementa-
tions for hash-based signatures so that the security against white-box
attackers depends not on the availability of a white-box secure pseudo-
random function (in addition to a general one-way function). We also
present a hash tree-based solution for one-time passwords secure in a
white-box attacker context.

Keywords: white-box cryptography · digital signature · white-box sig-
nature · hash chain · one-time password · hash tree.

1 Introduction

The standard cryptographic model (black-box model) assumes the end points
are trusted hence the secret keys in cryptographic implementations cannot be
observed while they are in use. The first work that challenged this assumption
is by Chow et al. [1] in 2002. The authors proposed an implementation of AES
algorithm to prevent secret key extraction even when an attacker has a full access
to the execution environment. Although their specific implementation was later
broken, their core idea of building up a key-dependent lookup table(s) from
which the encryption (and decryption) could be performed without a need for
the cryptographic key remains highly relevant. Later, some dedicated white-box
ciphers have been designed with the same philosophy, which are not broken till
now e.g., SPACE algorithm [2].

White-box implementations have a modest objective i.e., preventing extrac-
tion of cryptographic keys useful on a different platform. By accepting that there
are natural limits for achievable security in such an extreme environment, us-
ing directly the cryptographic software on the targeted device is not of concern.

2 K. Bicakci et al.

Additionally, instead of using keys directly, an attacker may attempt to isolate
the complete implementation code from the environment, carry it to his own de-
vice and directly use it like a larger key. These so-called code lifting attacks are
assumed to be addressed by additional software protection techniques, such as
device binding and code obfuscation, so that the use of software is not possible
in other hardware devices.

Up to now, white-box cryptography is mostly studied in symmetric encryp-
tion context. As detailed in Related Work section, proposals for white-box imple-
mentation of digital signature algorithms are rare and not sufficiently analyzed
from security point of view. In our work, we present simple and elegant designs
for white-box implementation of hash-based signatures and cryptographic prim-
itives desirable in authentication protocols. Although known for a long time,
hash-based signatures have received a new surge of interest due to their ability
to remain post-quantum safe [3]. We contribute to the literature by present-
ing implementations for hash-based digital signatures where the security against
white-box attacker depends not more than the availability of a white-box secure
pseudo-random function (in addition to a general one-way function). We also
show a hash tree based alternative to the hash chain primitive (useful for entity
authentication) to remain secure against white-box attackers on an untrusted
environment.

2 Lamport’s Signature Scheme

Lamport’s construction of one-time signature is the first scheme which relies
solely on one-way (hash) functions for its security. Although the efficiency of
this scheme has been improved in subsequent studies, for pedagogical reasons,
we prefer to use it to explain our core idea to make hash-based signatures strong
against white-box attackers. As always, there are three algorithms defining Lam-
port’s one-time signature scheme:

Let f be a one-way hash function with an output length of N .

Key Generation:
Input: Parameters L, 2N

L: the length of random numbers
2N : total number of random numbers

Output:
For one-time private key, generate:
2N L-bit random numbers r1, r2, . . . , r2N
As one-time public key, compute:
pk = f(rk) for 1 ≤ k ≤ 2N (Distribute public key securely as usual).
As another more useful notation, random numbers (pre-images) and
hash values (hash-images) could be indexed as follows, respectively:
ri,j(1 ≤ i ≤ N and 1 ≤ j ≤ 2) and pi,j(1 ≤ i ≤ N and 1 ≤ j ≤ 2)

White-Box Implementations of Hash-Based Signatures and OTPs 3

Signing:
Input: Parameters M,h

M : message to be signed
h = f(m) (h has an output length of N)

Output:
for 1 ≤ s ≤ N /* index value for bits of h */

if hs = 0 reveal rs,1
else reveal rs,2

as part of the signature

Verifying:
Input: Parameters M ′, r′s,j , pi,j , h

′

M ′: message received
r′s,j : signature received (1 ≤ s ≤ N)
pi,j : public key (1 ≤ i ≤ N and 1 ≤ j ≤ 2)
h′ = f(M ′)

Output:
”Accept” if for each 1 ≤ s ≤ N

if h′s = 0 h(r′s,1) = ps,1
else h(r′s,2) = ps,2

”Reject” otherwise

3 White-Box Implementation of Lamport’s Scheme

Instead of storing all the random numbers constituting the one-time prıvate
key, one can use a cryptographically secure pseudo random function (PRF) to
generate all the random numbers using a single secret (private) key. Instead
of using a general-purpose PRF (practically implemented using standard block
ciphers such as AES), we now introduce an implementation of Lamport’s scheme
secure in a white-box attack context [1] assuming that there is a white-box attack
resistant (secure) block cipher which also behaves as a PRF.

Let f be a one-way hash function with an output length of N .
Let EK be a white-box secure block cipher (e.g., SPACE [2]). EK is repre-

sented as one big key-dependent lookup table denoted as WBT -EK . We assume
key K is securely erased after WBT -EK is ready. For simplicity, we assume the
block length of EK is also L.

Key Generation:
Input: Parameters L, 2N, IP

L: the length of random numbers (as well as block length of EK)
2N : total number of random numbers
IP : (randomly generated and stored) initial plaintext for WBT -EK

Output:
For one-time private key, generate 2N L-bit pseudo-random numbers:

4 K. Bicakci et al.

for 1 ≤ k ≤ 2N rk = WBT -EK (IP + k)
As the one-time public key, compute:
pk = f(rk) for 1 ≤ k ≤ 2N (distribute public key securely as usual).
For a more useful notation, random numbers (pre-images)
and hash values (hash-images) could be indexed as follows, respectively:
ri,j(1 ≤ i ≤ N and 1 ≤ j ≤ 2) and pi,j(1 ≤ i ≤ N and 1 ≤ j ≤ 2)
After the public key is generated, rk values are securely erased.

Signing:
Input: Parameters M,h

M : message to be signed
h = f(m) (h has an output length of N)

Output:
for 1 ≤ s ≤ N /* index value for bits of h */

if hs = 0 compute and reveal rs,1 = WBT -Ek(IP + 2s− 1)
else compute and reveal rs,2 = WBT -Ek(IP + 2s)

as part of the signature.

Verifying:
Same as the original case (nothing changed).

4 Informal Security Analysis and Extensions for Multiple
Messages

Specifically, a white-box attacker’s goal against the implementation of Lamport’s
scheme described above is to obtain the private key (or part of it) to generate a
signature for a message not intended to be signed by the legitimate user. This
corresponds to any rk values not revealed as part of the signature. The attacker
has two options for achieving this:

– He could try to invert at least one of the hash images (the hash values in
the public key).

– He could try to generate at least one of the unrevealed pseudo-random num-
bers using the stored IP value.

The first option is not possible due to the one-way property of the hash
function used. Similarly, the second option is out of reach if a secure white-box
block cipher is available which prevents to extract the key K from the lookup
table (code lifting attacks and other side concerns outside the threat model is
no different than the common white-box assumptions in a symmetric encryption
setting). We leave the formal proof as a future work.

What if the attacker accesses the implementation environment before or while
the key-dependent look-up table is built? Since the encryption key K is available
in memory at that time, access to this key brings the ability to generate the whole
one-time private key itself. We remind that this is also a legitimate concern
for the symmetric encryption case but with a subtle difference. For encryption,

White-Box Implementations of Hash-Based Signatures and OTPs 5

the cryptographic key (therefore the key-dependent lookup table) is prepared
to encrypt potentially infinite amount of plaintext messages. Hence the time
window of vulnerability against a white-box attacker is short and acceptable
(other precautions such as building the tables while the untrusted device is
offline could be considered). On the other hand, if the lookup table is only used
for signing a single message and building a second table is required thereafter,
the risk against white-box attacker is significantly increased. Below, we show
that a single look-up table could be used to sign multiple messages, but there
are some caveats that implementations should take into account.

4.1 Implementing Merkle’s One-Time Signatures Secure against
White-Box Attackers

The problem of extending Lamport’s one-time signatures for multiple messages
has already been extensively studied in the literature. Most of the proposed
schemes are variations of the early work by Merkle [4].

Fig. 1. Merkle tree to sign 8 messages.

In Merkle’s original scheme, the tree is built for certification of additional
OTS public keys i.e., every node has three public keys, one for the message it-

6 K. Bicakci et al.

self, one for the left child node, and one for right child node. With this scheme,
an infinite number of messages could be signed using a single root one-time pub-
lic key. Another, more popular implementation of Merkle’s scheme is adopting
a bottom-up approach rather than top-to-bottom one to sign multiple but finite
pre-determined number of messages. Here, first, the leaf N nodes (one-time pri-
vate keys and corresponding public keys) are prepared. Then, using hash values
of public keys, a binary tree is built. The final public key is the root of the node.
See Fig. 1 for an example of Merkle three with 8 leaf nodes.

Below, we first describe an insecure implementation of Merkle’s scheme and
then show how to make it secure in a white-box attacker context.

Let f be a one-way hash function with an output length of N . Let EK be a
white-box secure block cipher (e.g., SPACE [2]). EK is represented as one big
key-dependent lookup table denoted as WBT -EK . We assume key K is securely
erased after WBT -EK is ready. We assume the block length of EK is also L.

Key Generation:
Input: Parameters L, 2N, IP, T

L: the length of random numbers (as well as block length of EK)
2N : total number of random numbers
IP : (randomly generated and stored) initial plaintext for WBT -EK

T : number of messages to be signed (T = 2n) (n is the height of the tree)
Output:

a. for 0 ≤ t ≤ T − 1
for 1 ≤ k ≤ 2N

generate 2N L-bit pseudo-random numbers:
rk,t = WBT -EK(IP + t ∗ 2N + k)
compute pk,t = f(rk,t)

For a more useful notation, random numbers (pre-images)
and hash values (hash-images) could be indexed as follows, respectively:
ri,j,t(1 ≤ i ≤ N and 1 ≤ j ≤ 2 and 0 ≤ t ≤ T − 1)
pi,j,t(1 ≤ i ≤ N and 1 ≤ j ≤ 2 and 0 ≤ t ≤ T − 1)

b. Generate hashes of public keys as follows:
for 0 ≤ t ≤ T − 1: a(0, t) = f(p1,1,t||p1,2,t|| . . . ||pN,1,t||pN,2,t)

c. Generate the root public key and distribute it securely (note that only
a single hash value constitutes the public key here):
As an example, consider the case given in Figure 1:
a(3, 0) = f(f(f(a(0, 0)||a(0, 1))||f(a(0, 2)||a(0, 3)))||f(f(a(0, 4)||a(0, 5))||f(a(0, 6)||a(0, 7))))

We note that a naive implementation either requires the random numbers
to be stored for later use or erase all data (except IP) for later generation
once needed (soon, we will show why both of these are insecure options).

Signing:

White-Box Implementations of Hash-Based Signatures and OTPs 7

Input: Parameters M,h, t
M : message to be signed
h = f(m) (h has an output length of N)
t = index of the leaf nodes (0 ≤ t ≤ T − 1)

Output:
for 1 ≤ s ≤ N /* index value for bits of h */

compute (if not already stored):
rs,1,t = WBT -EK(IP + t ∗ 2N + 2s− 1)
rs,2,t = WBT -EK(IP + t ∗ 2N + 2s)

if hs = 0
reveal rs,1,t and f(rs,2,t)

else
reveal f(rs,1,t) and rs,2,t

as part of the signature (also additional nodes (hash values) up to the
root node should be sent as auxiliary information to make it possible to
compute and verify the root public key) (for instance a(0, 1), a(1, 1) and
a(2, 1) should be sent for t = 0 in the example shown in Figure 1).

Verifying:
Input:

M ′: message received
Signature received: r′s,j,t or f ′(rs,j,t)(1 ≤ s ≤ N)(0 ≤ t ≤ T − 1) and
auxiliary information aux1, aux2 and aux3 e.g., a(0, 1), a(1, 1), a(2, 1)
Public key: a(3, 0)
h′ = f(M ′)

Output:
for each 1 ≤ s ≤ N

if h′s = 0
compute f ′(r′s,1,t) = ps,1,t

else
compute f ′(r′s,2,t) = ps,2,t

compute a′(0, t) = f(p1,1,t||p1,2,t|| . . . ||pN,1,t||pN,2,t)
Accept if a(3, 0) = f(f(f(a′(0, t)||aux1)||aux2)||aux3)
“Reject” otherwise

Now, we will show that the above scheme is not secure in a white-box attacker
context. The underlying reason is that all the random numbers are computed (or
already stored) during signature generation although not revealed as part of the
signature. This is required in order to compute the hash values for the random
numbers not revealed. Hash values are sent as part of the signature to let the
verifier to compute the value of a′(0, t) and ultimately to verify the signature.
However, a white-box attacker having the ability to observe the internal state

8 K. Bicakci et al.

information could identify and extract all the random numbers and use them to
forge a signature for any message he wants. Below, we show a slight change in
the implementation to make it secure against white-box attacker.

The change we require is to prepare all the auxiliary data required to build
the signature once the message is ready, without a need to generate the random
numbers not required as part of the signature itself. For this purpose, after
all the component of one-time public key are computed by pk,t = f(rk,t) for
1 ≤ k ≤ 2N and 0 ≤ t ≤ T − 1, the values of pk,t are stored on the client side.
Once a signature is required, signature generation algorithm is changed slightly
as follows:

for 1 ≤ s ≤ N /* index value for bits of h */
if h′s = 0

compute rs,1,t = WBT -EK(IP + t ∗ 2N + 2s− 1)
reveal rs,1,t and f(rs,2,t) /* f(rs,2,t) has been previously stored */

else
compute rs,2,t = WBT -EK(IP + t ∗ 2N + 2s)
reveal f(rs,1,t) and rs,2,t /* f(rs,1,t) has been previously stored */

With this change, a white-attacker could not observe a random number re-
quired to forge a signature for any message different than the message legitimate
user has already signed.

To summarize, an implementation of hash-based signatures is not secure for
our purposes if any pre-image(s) not used in the signature itself is generated dur-
ing signature generation or it is already stored after key generation is completed.
While this might be just an implementation choice in some of the schemes (e.g.,
the above Merkle’s scheme) (without any white-box security concern, one might
still prefer different variations of the basic scheme for leveraging different storage-
computation tradeoffs), in some others secure implementations are not possible
at all (e.g., Winternitz scheme and other hash-chain based approaches [8]). Leav-
ing the analysis of every scheme in the rich literature of hash-based signatures in
this context as a future work, we provide the underlying reason using a generic
crypto primitive (i.e., Lamport’s hash chain) in the next section.

5 A White-Box Alternative for Hash Chains and T/Key

A hash chain (also proposed by Lamport [5]) is a useful cryptographic primitive
where a single shared (public) value is sufficient to verify securely the authenticity
of a finite (but potentially large) number of different values. Besides a number
of other applications, elements of hash chains could simply be used as one-time
passwords (OTPs) for authentication purposes.

For a better grasp of the advantage of using a hash chain, let us first consider
the case where a number of independent one-time passwords are generated on
the client side and the hash values of each is sent to the server as part of the
initialization. Each OTP is sent one by one during normal operation to be verified

White-Box Implementations of Hash-Based Signatures and OTPs 9

by the server using hash values stored. The disadvantage here ıs that the storage
requirement both on the server and client side increases linearly with the number
of OTPs. (Besides, the risk is evident on the client side, any (white-box) attacker
having access to the untrusted client machine could easily intercept all the OTPs
to be used for later impersonation.)

Could we eliminate some of these problems with hash chains? A hash chain
of length m is simply obtained by iteratively applying a one-way (hash) function
to a randomly generated seed value for m times:

fm(s) = f(f(f(s)) . . .)︸ ︷︷ ︸
m times

The final value fm(s) is sent to the server for initialization(registration).
The first OTP used for authentication is the element just before the final value:
fm−1(s). In this reverse order, in total m − 1 OTPs could be generated and
used while requiring only a single value on the server side for verification. On
the client side, there are two options for the storage:

– The client could choose to generate and store all the elements in the hash
chain. Later, once one of them is to be used, there will not be any need to
do any computation.

– The client chooses to store only the seed value and generates the required
OTP by iteratively doing the required number of hash computations (4).

It is evident that the first option is not secure against a white-box attacker. It
is also easy to see that the second option is similarly insecure simply because on
the untrusted machine either the seed value itself or (while one of the elements of
the hash chain is generated) other elements prior to a particular element could be
intercepted by the white box attacker for later use. We require a solution where
OTPs could be generated independently so that white-box attacker could not
gain any advantage even when he could fully observe the internal state of the
client-side software. Below, we illustrate an alternative solution for achieving
this. In fact, the white-box implementation of Merkle’s tree discussed in the
previous section could be tailored to serve for our purposes so that each leaf
node corresponds to the hash of a single random number rather than 2N random
numbers.

Below, we only show the initialization phase (generation and verification of
OTPs are skipped for the sake of brevity).

Initialization Phase:
Input: Parameters L, IP, T

L: the length of random numbers (as well as block length of EK)
IP : (randomly generated and stored) initial plaintext for WBT -EK

4 An amortization technique could also be used to reduce memory-times-computation
complexity of O(n) [9]

10 K. Bicakci et al.

T : number of OTPs (T = 2n) (n is the height of the tree)
Output:

a. for 0 ≤ t ≤ T − 1
rt = WBT -EK(IP + t) /*generate L-bit pseudo-random numbers*/
pt = f(rt) /* compute hash of the random numbers */

The values of pt also correspond to the leaf nodes of the tree (no need to
compute the hash of pt values) i.e., pt = a(0, t)

b. Generate the root node and distribute it securely.

Table 1. Comparison of schemes (for use of T OTPs).

Proposed Scheme w/ Hash Chains
Independent

OTPs

White-box resistant
√

No No

Client-side
computation per OTP

O(1) WBT -EK

+O(log T) hash
None

(if elements are stored) None

Storage on client O(T) O(T) O(T)

Storage on server O(1) O(1) O(T)

Communication cost
per authentication O(log T) O(1) O(1)

Initialization cost

O(T) WBT -EK

+O(T) hash O(T) hash O(T) hash

To summarize, a Merkle’s tree in which the leaf nodes are the hash values of
a single random number could be a viable alternative to hash chains if white-box
attackers are also of concern. Table 1 compares our proposed scheme with hash
chain based OTPs and independent OTPs.

6 White-Box Resistant Time-based OTPs

The idea of using a hash chain for one-time passwords was developed and im-
plemented under the name of S/KEY [6]. As noted in [7], S/KEY has a number
of undesirable properties. In particular, the scheme is vulnerable to an attack
where the client reveals OTP(s) to attackers for future abuses by various means
such as social engineering or by impersonating the server. The need and diffi-
culty for synchronization of the chain between server and client (which element
is the next?) is another concern.

A widely used solution for OTPs is implemented in the TOTP standard. Here,
the server and the client shares a secret key. By using the current timestamp

White-Box Implementations of Hash-Based Signatures and OTPs 11

(usually in a granularity of 30 seconds) as an implicit challenge of the server, this
standard actually implements a simple challenge-response protocol. The client
computes the MAC of the challenge and transmits the output (actually part of
it) as the OTP response. The same computation could be done on the server
side if a loose time synchronization is present. On the down side, TOTP depends
on a secret stored both on the client and server, hence it is open to attacks on
both sides.

To solve this problem for the server side, Kogan et al. proposed T/Key, a
time-based OTP scheme [7]. The key idea in T/Key is to map each element of
a hash chain to a specific time period so that OTPs are now time dependent 5.
However although no secret is stored on the server side, T/Key is vulnerable to a
white-box attacker having a full access to the client side implementation. Below,
we will show that the scheme we proposed in previous section could easily be
made time-dependent just like TOTP and T/Key.

In fact, making our proposed scheme time-dependent requires no more than
a mapping of each OTP (leaf node of the tree) to a pre-determined specific
time period. We could either prefer a mapping from left to right or right to left.
Suppose we choose a left to right mapping in the example of Merkle three with
8 leaf nodes shown in Fig. 1. Suppose also the tree is already built and the root
node is shared with the server. Then, the time-dependent OTP is generated as
follows:

Time-dependent OTP Generation:
Input: Parameters I, tinit, t

I: time slot length
tinit: setup time t (measured in slots of length I)
t: current time (measured in slots of length I)

Output:
rt = WBT -EK(IP + t− tinit) /* generate time-based OTP */

(In addition, nodes (hash values) up to the root node should be computed
and sent as auxiliary information to make it possible to compute and
verify the root public key) (for instance a(0, 1), a(1, 1) and a(2, 1)
should be sent for t = tinit in the example shown in Figure 1).

On the down side, as compared to T/Key, one major efficiency drawback of
the proposed scheme is that for a binary tree with 2× 106 leaf nodes (valid for
the next two years), initialization (set up) requires 2×106 white-box encryption
operations besides the hash operations. This drawback might be addressed by
using a lightweight white-box encryption primitive.

On the other hand, we argue that additional communication cost for OTP
transmissions in our proposed scheme is less of a concern especially in a use case
where OTPs are sent to the online server without user involvement except a

5 Additionally, in order to make the chain birthday attack resistant, to generate each
of its element, independent hash functions from a single hash function is obtained
using the idea of domain separation.

12 K. Bicakci et al.

simple confirmation tap in a mobile authenticator application. Note that the use
of a digital signature in this use case might not be preferable due to a white-box
attacker threat. Even when a manual entry of OTP is performed using QR-codes
(the phone displays a QR code containing OTP and the user scans it using his
laptop camera) as proposed by T/Key inventors [7], our proposed scheme still
seems a viable approach. It requires an OTP length of 352 B (log2(2 × 106) +
1)× 16 B) for 128-bit security and 2 years of authentication period, which does
not exceed the maximum capacity of QR codes [10].

7 Related Work

Joye pointed out that one of the potential applications of white-box cryptography
is to transform a MAC into a digital signature [11]. Here, “MAC verification”
algorithm is assumed to have a ”certified” white-box implementation. Since the
cryptographic key could not be extracted and cannot be used for generation
of a MAC, the implementation is only useful for verification of (supposedly) a
digital signature. However, this implementation choice is restricted in the sense
that only those who have obtained a certified white-box implementation could
perform the signature verification.

Zhang et. al. presented a white-box implementation of the identity-based
signature scheme in the IEEE P1363 standard [12]. Feng et. al. proposed white-
box implementation for the classical Shamir’s identity based signature scheme
[13]. Up to our best knowledge, our paper is the first study presenting a general-
purpose digital signature algorithm secure in a white-box attacker context.

8 Concluding Remarks

To motivate our research, we consider a mobile authenticator application sup-
porting multifactor user authentication. In this scenario, digital signatures and
hash chains are preferable constructions since no secret information is required
to be stored on the verification (server) side. On the other hand, a typical mobile
authenticator application is installed on an untrusted client device vulnerable to
attacks and therefore should also be considered in a more sophisticated yet real-
istic threat model. To protect software implementations in such an environment,
in this paper, as a white-box resistant digital signature solution, we presented a
tweak for hash-based signatures and as white-box resistant one-time passwords,
we presented a tweak for hash trees. The proposed simple and elegant tech-
niques address critical challenges and provides an important step in white-box
cryptography.

Acknowledgments

This research (patent pending) is funded by TUBITAK (The Scientific and Tech-
nological Research Council of Turkey) under the grant No: 3191520. We thank
Assoc. Prof. Dr. Murat CENK for helpful comments and discussion.

White-Box Implementations of Hash-Based Signatures and OTPs 13

References

1. Chow, S., Eisen, P., Johnson, H., & Van Oorschot, P. C. (2002, August). White-box
cryptography and an AES implementation. In International Workshop on Selected
Areas in Cryptography (pp. 250-270). Springer, Berlin, Heidelberg.

2. Bogdanov, A., & Isobe, T. (2015, October). White-box cryptography revisited:
Space-hard ciphers. In Proceedings of the 22nd ACM SIGSAC Conference on Com-
puter and Communications Security (pp. 1058-1069).

3. Cooper, D. A., Apon, D. C., Dang, Q. H., Davidson, M. S., Dworkin, M. J., & Miller,
C. A. (2020). Recommendation for stateful hash-based signature schemes. NIST
Special Publication, 800, 208.

4. Merkle, R. C. (1987, August). A digital signature based on a conventional encryption
function. In Conference on the theory and application of cryptographic techniques
(pp. 369-378). Springer, Berlin, Heidelberg.

5. Lamport, L. (1981). Password authentication with insecure communication. Com-
munications of the ACM, 24(11), 770-772.

6. N. Haller. 1995. The S/KEY One-Time Password System. RFC 1760. Internet En-
gineering Task Force. 1–12 pages. https://doi.org/10.17487/RFC1760.

7. Kogan, D., Manohar, N., & Boneh, D. (2017, October). T/key: second-factor au-
thentication from secure hash chains. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security (pp. 983-999).

8. Merkle, R. C. (1989, August). A certified digital signature. In Conference on the
Theory and Application of Cryptology (pp. 218-238). Springer, New York, NY.

9. Jakobsson, M. (2002, June). Fractal hash sequence representation and traversal. In
Proceedings IEEE International Symposium on Information Theory, (p. 437). IEEE.

10. QR Codes. (2020). https://github.com/ricmoo/QRCode/blob/master/README.md
11. Joye, M. (2008). On white-box cryptography. Security of Information and Net-

works, 7-12.
12. Zhang, Y., He, D., Huang, X., Wang, D., Choo, K. K. R., Wang, J. (2020). White-

box implementation of the identity-based signature scheme in the IEEE P1363 stan-
dard for public key cryptography. IEICE TRANSACTIONS on Information and
Systems, 103(2), 188-195.

13. Feng, Q., He, D., Wang, H., Kumar, N., Choo, K. K. R. (2019). White-box im-
plementation of Shamir’s identity-based signature scheme. IEEE Systems Journal,
14(2), 1820-1829.

