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Abstract

The influence of a set of variables on a Boolean function has three separate definitions in the
literature, the first due to Ben-Or and Linial (1989), the second due to Fischer et al. (2002) and Blais
(2009) and the third due to Tal (2017). The goal of the present work is to carry out a comprehensive
study of the notion of influence of a set of variables on a Boolean function. To this end, we introduce
a definition of this notion using the auto-correlation function. A modification of the definition leads
to the notion of pseudo-influence. Somewhat surprisingly, it turns out that the auto-correlation based
definition of influence is equivalent to the definition introduced by Fischer et al. (2002) and Blais
(2009) and the notion of pseudo-influence is equivalent to the definition of influence considered by
Tal (2017). Extensive analysis of influence and pseduo-influence as well as the Ben-Or and Linial
notion of influence is carried out and the relations between these notions are established.
Keywords: Boolean function, influence, Fourier transform, resilient functions.

1 Introduction

The influence of a variable on a Boolean function is a well studied concept, particularly due to the
Fourier Entropy/Influence (FEI) conjecture [6]. Extension from the influence of a single variable to the
influence of a set of variables has been proposed in the literature. We have found three such extensions.
The first definition was given by Ben-Or and Linial [1] in 1989. A different definition due to Fischer et
al. [5] appeared in 2002 and the same definition was considered in 2009 by Blais [2]. A third definition
appears in Tal [10] in 2017. All of these definitions agree with each other in the case of a single variable,
but if the set contains more than one variable, then in general the values provided by the three notions
of influence are different. This raises the questions of what is the correct notion of influence of a set
of variables on a Boolean function, what should be the basic properties that one should expect from a
notion of influence and also what are the relationships between the various definitions of influence. To
the best of our knowledge, the literature does not contain any study along these lines.

We put forward a definition of influence of a set of variables on a Boolean function using the auto-
correlation function. The notion is systematically studied and several characterisations are obtained
in terms of the Fourier transform. The basic properties of influence are establised. In particular, it
is shown that the influence is zero if and only if the function is degenerate on the set of variables, it
satisfies sub-additivity, it is monotone increasing with the size of the set of variables, and the condition
under which the influence attains its maximum value of one is characterised. For t in the range 1 to n,
the total influence of all subsets of size t is considered. We prove that the total influence is maximum
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if and only if the function is (n − t)-resilient. Further, it is shown that the total influence increases
monotonically with t.

A modification of the auto-correlation based definition of influence gives rise to another concept
which we term as pseudo-influence. The pseudo-influence has a nice Fourier transform based charac-
terisation. Our reasons for terming this concept pseudo-influence is that it is possible for the pseudo-
influence to be zero even if the function is not degenerate on the set of variables in question; also, it
is monotone decreasing on the size of the set of variables. We show that for any set of variables, the
pseudo-influence is always at most the influence.

The auto-correlation based definitions of influence and pseudo-influence turns out to be same as the
notions of influence introduced in [5, 2] and [10] respectively. This is demonstrated by the equivalence of
the Fourier transform based characterisations of influence and pseudo-influence to the Fourier transform
based characterisations obtained in [5, 2] and [10] respectively. Such equivalence is surprising, since the
auto-correlation based definitions and the definitions given in [5, 2, 10] are quite different.

We make a systematic study of the Ben-Or and Linial (BL) notion of influence. We show that similar
to the notion of influence, the BL-influence is zero if and only the function is degenerate on the set of
variables and it is monotone increasing with the size of the set of variables. The BL-influence, however,
does not satisfy sub-additivity. We prove that the value of the BL-influence is always at least the value
of the influence and the condition under which equality holds is precisely characterised. Based on our
analysis, we argue that the auto-correlation based definition may be considered to be the “correct”
notion of influence.

Section 2 introduces the background and the notation. The notions of influence and pseudo-influence,
their properties and equivalence to the notions of influence introduced by Fischer et al. and Tal are
described in Section 3. The BL-influence is studied in Section 4.

2 Background and Notation

Let F2 = {0, 1} denote the finite field consisting of two elements with addition represented by ⊕ and
multiplication by ·; often, for x, y ∈ F2, the product x · y will be written as xy.

By [n] we will denote the set {1, . . . , n}. For x = (x1, . . . , xn) ∈ Fn2 , the support of x will be denoted
by supp(x) which is the set {i : xi = 1}; the weight of x will be denoted as wt(x) and is equal to
#supp(x). For i ∈ [n], ei denotes the vector in Fn2 whose i-th component is 1 and all other components
are 0. For x = (x1, . . . , x2),y = (y1, . . . , yn) ∈ Fn2 , we write x ≤ y if xi = 1 implies yi = 1 for
i = 1, . . . , n. For x = (x1, . . . , xn),y = (y1, . . . , yn) ∈ Fn2 , the inner product 〈x,y〉 of x and y is defined
to be 〈x,y〉 = x1y1 ⊕ · · · ⊕ xnyn. For T ⊆ [n], χT denotes the vector in Fn2 where the i-th component
of χT is 1 if and only if i ∈ T ; further, T will denote the set [n] \ T .

An n-variable Boolean function f is a map f : Fn2 → F2. Variables will be written in upper case and
vector of variables in bold upper case. For X = (X1, . . . , Xn), an n-variable Boolean function f will
be written as f(X). The support of a Boolean function f will be denoted by supp(f) which is the set
{x : f(x) = 1}; the weight of f will be denoted as wt(f) and is equal to #supp(f).

The Fourier transform of f is the map f̂ : Fn2 → [−1, 1] defined as follows. For α ∈ Fn2 ,

f̂(α) =
1

2n

∑
x∈Fn

2

(−1)f(x)⊕〈x,α〉 (1)

= 1− wt(f(X)⊕ 〈α,X〉)
2n−1

. (2)
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The function f is said to be balanced if wt(f) = 2n−1 and so f̂(α) = 0 if and only if the function
f(X)⊕ 〈α,X〉 is balanced. From Parseval’s theorem, it follows that∑

α∈Fn
2

(
f̂(α)

)2
= 1. (3)

So, the values

{(
f̂(α)

)2}
can be considered to be a probability distribution on Fn2 , which assigns to

α ∈ Fn2 , the probability
(
f̂(α)

)2
. For k ∈ {0, . . . , n}, let

p̂f (k) =
∑

{u∈Fn
2 :wt(u)=k}

(
f̂(u)

)2
(4)

be the probability assigned by the Fourier transform of f to the integer k.
Let X = (X1, . . . , Xn) be a vector of variables and suppose ∅ 6= T = {i1, . . . , it} ⊆ [n], where

i1 ≤ · · · ≤ it. By XT we denote the vector of variables (Xi1 , . . . , Xit). Suppose f(X) is an n-variable
Boolean function. For α ∈ Ft2, by fXT←α(XT ) we denote the Boolean function on n − t variables
obtained by setting the variables in XT to the respective values in α. The function f is said to be
degenerate on the set of variables {Xi1 , . . . , Xit} if these variables do not influence the output of the
function f , i.e., for α,β ∈ Ft2 if we set fα = fXT←α(XT ) and fβ = fXT←β(XT ), then the functions fα
and fβ are equal.

The (normalised) auto-correlation function of f is a map Cf : Fn2 → [−1, 1] defined as follows. For
α ∈ Fn2 ,

Cf (α) =
1

2n

∑
x∈Fn

2

(−1)f(x)⊕f(x⊕α) (5)

= 1− wt(f(X)⊕ f(X⊕α))

2n−1
. (6)

Note that Cf (0) = 1.
For a Boolean function f , the following connection between the Fourier transform of f and the

auto-correlation function of f is well known (See Page 62 of [4]). For α ∈ Fn2 ,(
f̂(α)

)2
=

1

2n

∑
x∈Fn

2

(−1)〈α,x〉Cf (x). (7)

Conversely, for x ∈ Fn2 ,

Cf (x) =
∑
α∈Fn

2

(
f̂(α)

)2
(−1)〈α,x〉. (8)

For a subspace E of Fn2 , the following result has been proved in Proposition 5 of [3].∑
w∈E

(
f̂(w)

)2
=

#E

2n

∑
u∈E⊥

Cf (u). (9)
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Influence of a variable on a Boolean function. Let f(X) be an n-variable Boolean function where
X = (X1, . . . , Xn). For i ∈ [n], the influence of Xi on f is denoted as infi(f) and is defined to be the
probability (over a uniform random choice of x ∈ Fn2 ) that f(x) is not equal to f(x⊕ ei), i.e.,

infi(f) = Pr
x∈Fn

2

[f(x) 6= f(x⊕ ei)]. (10)

It is easy to see that

infi(f) =
1

2
(1− Cf (ei)) = 1− 1

2
(Cf (0) + Cf (ei)) . (11)

Some Boolean function classes. Let f be an n-variable Boolean function.

• The function f is said to be bent if f̂(α) = 2−n/2 for all α ∈ Fn2 [7]. Bent functions exist only if
n is even. It is known that if f is bent, then Cf (u) = 0 for all non-zero u ∈ Fn2 .

• The function f is said to be m-resilient [9, 11] if f̂(α) = 0 for all α ∈ Fn2 with 0 ≤ wt(α) ≤ m.

3 Influence of a Set of Variables on a Boolean Function

Let f(X1, . . . , Xn) be an n-variable Boolean function and ∅ 6= T = {i1, . . . , it} ⊆ [n]. We denote the
influence of the set of variables {Xi1 , . . . , Xin} corresponding to T = {i1, . . . , it} on the Boolean function
f by inff (T ). Following the auto-correlation based characterisation of the influence of a single variable
on a Boolean function given by (11), we put forward the following definition of inff (T ).

inff (T ) = 1− 1

2#T

 ∑
α≤χT

Cf (α)

 . (12)

It is easy to note that for a singleton set T = {i}, inff (T ) = infi(f).
Let f be an n-variable function and t be an integer with 1 ≤ t ≤ n. Then the t-influence of f is

the total influence (scaled by
(
n
t

)
) obtained by summing the influence of every set of t variables on the

function f , i.e.,

t-inf(f) =

∑
{T⊆[n]:#T=t} inff (T )(

n
t

) . (13)

Note that if f is bent, then inff (T ) = 1−2−#T for any non-empty subset T of [n] and t-inf(f) = 1−2−t

for any t ∈ [n].
The following result provides the characterisation of the influence in terms of the Fourier transform.

Theorem 1 Let f be an n-variable Boolean function and ∅ 6= T ⊆ [n]. Then

inff (T ) =
∑

{u∈Fn
2 :supp(u)∩T 6=∅}

(
f̂(u)

)2
. (14)

Consequently, for an integer t with 1 ≤ t ≤ n,

t-inf(f) = 1−
n−t∑
k=0

(
n−k
t

)(
n
t

) p̂f (k). (15)
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Proof: Let #T = t. Let E be the subspace {x ∈ Fn2 : x ≤ χT }. Then #E = 2n−t and E⊥ = {y ∈
Fn2 : y ≤ χT }. Using (9), we have∑

x≤χT

(
f̂(x)

)2
=

2n−t

2n

∑
y≤χT

Cf (y) =
1

2#T

∑
y≤χT

Cf (y).

So, from (12), we have

inff (T ) = 1−
∑
x≤χT

(
f̂(x)

)2
=

∑
w∈Fn

2

(
f̂(w)

)2
−
∑
x≤χT

(
f̂(x)

)2
(from Parseval’s theorem (3))

=
∑
u 6≤χT

(
f̂(u)

)2
.

For u ∈ Fn2 , the condition u 6≤ χT is equivalent to supp(u) ∩ T 6= ∅.
We next consider the expression for t-influence. Consider u ∈ Fn2 with #supp(u) = k. For 1 ≤ i ≤

min(k, t), the number of subsets T of [n] of cardinality t whose intersection with supp(u) is of size i is(
k
i

)(
n−k
t−i
)
. Summing over i provides the number of subsets T of [n] of cardinality t with which supp(u)

has a non-empty intersection.

t-inf(f) =
1(
n
t

) n∑
k=1

∑
{u∈Fn

2 :wt(u)=k}

min(k,t)∑
i=1

(
k

i

)(
n− k
t− i

)(
f̂(u)

)2

=
1(
n
t

) n∑
k=1

min(k,t)∑
i=1

(
k

i

)(
n− k
t− i

) ∑
{u∈Fn

2 :wt(u)=k}

(
f̂(u)

)2

=

n∑
k=1

(∑min(k,t)
i=1

(
k
i

)(
n−k
t−i
)(

n
t

) )
p̂f (k). (16)

Note that
(
k
i

)(
n−k
t−i
)
/
(
n
t

)
is the probability that a random variable X takes the value i following the hy-

pergeometric distribution. So,
∑min(k,t)

i=1

(
k
i

)(
n−k
t−i
)
/
(
n
t

)
= 1−

(
n−k
t

)
/
(
n
t

)
. Also, using Parseval’s theorem,∑n

k=1 p̂f (k) = 1− p̂f (0). Using these two relations in (16), we obtain the desired expression for t-inf(f).
�
Suppose t = 1. Then using (15), we have

1-inf(f) =
1

n

(
n−

n−1∑
k=0

(n− k)p̂f (k)

)

=
1

n

(
n

(
1−

n−1∑
k=0

p̂f (k)

)
+
n−1∑
k=0

kp̂f (k)

)

=
1

n

(
np̂f (n) +

n−1∑
k=0

kp̂f (k)

)
(using Parseval’s theorem)

=
1

n

(
n∑
k=0

kp̂f (k)

)
. (17)
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From (17), 1-inf(f) is the expected value (scaled by n) of a random variable which takes the value k
with probability p̂f (k). Since inff ({i}) = infi(f), for i ∈ [n], it follows that (

∑
i∈[n] infi(f))/n = 1-inf.

An alternative expression for influence is given in the following result.

Theorem 2 Let f be an n-variable function and ∅ 6= T ⊆ [n]. Then

inff (T ) = 1− 1

2n−t

∑
α∈Fn−t

2

(
f̂α(0)

)2
, (here 0 is in Ft2) (18)

where fα denotes fXT←α.

Proof: Let T = {i1, . . . , it}. Suppose π is a permutation of [n] and define g(X) to be the function
f(Xπ(1), . . . , Xπ(n)) and S = {π(i1), . . . , π(it)}. Then inff (T ) = infg(S). In view of this, for the sake

of notational convenience, we assume that T = {n − t + 1, . . . , n} so that T = {1, . . . , n − t}. This is
without loss of generality, since one may apply an appropriate permutation to the variables to ensure
this condition.

For a Boolean condition Φ, let [[Φ]] denote the value 1 if Φ is true and 0, otherwise. We perform an
algebraic manipulation of the expression for the influence of T on f as follows.

inff (T ) = 1− 1

2t

∑
{u∈Fn

2 :u≤χT }

Cf (u)

= 1− 1

2t

∑
v∈Ft

2

Cf ((0,v)) (here 0 is in Fn−t2 )

= 1− 1

2n+t

∑
v∈Ft

2

(2n − 2wt(f(X)⊕ f(X⊕ (0,v)))) (from (6))

=
1

2n+t

∑
v∈Ft

2

2wt(f(X)⊕ f(X⊕ (0,v))) (19)

=
1

2n+t

∑
v∈Ft

2

∑
α∈Fn−t

2

∑
σ∈Ft

2

2[[f((α,σ)) 6= f((α,σ ⊕ v))]]

=
1

2n+t

∑
α∈Fn−t

2

∑
σ∈Ft

2

∑
v∈Ft

2

2[[fα(σ) 6= fα(σ ⊕ v)]]. (20)

Let xα =
∑
σ∈Ft

2

∑
v∈Ft

2
[[fα(σ) 6= fα(σ⊕v)]]. A pair (σ,v) contributes 1 to xα if and only if exactly one

of σ or σ⊕v is in supp(fα). So, if σ ∈ supp(fα), then σ⊕v /∈ supp(fα); for each choice of σ ∈ supp(fα),
v can be chosen in 2t−wt(fα) ways and the number of such (σ,v) pairs is wt(fα)(2t−wt(fα)). Similarly,
if σ /∈ supp(fα), then σ⊕v ∈ supp(fα) and the number of such (σ,v) pairs is (2t−wt(fα))wt(fα). So,
xα = 2wt(fα)(2t − wt(fα)). Using this in (20), we have

inff (T ) =
1

2n+t

∑
α∈Fn−t

2

4wt(fα)(2t − wt(fα))

=
1

2n+t

∑
α∈Fn−t

2

4
(

22t−2 −
(
2t−1 − wt(fα)

)2)
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=
1

2n−t

∑
α∈Fn−t

2

(
1−

(
1− wt(fα)

2t−1

)2
)

= 1− 1

2n−t

∑
α∈Fn−t

2

(
f̂α(0)

)2
.

�
Some basic properties of influence are given by the following result.

Theorem 3 Let f be an n-variable Boolean function and ∅ 6= T, S ⊆ [n]. Then

1. 0 ≤ inff (T ) ≤ 1.

2. inff (T ) = 0 if and only if the function f is degenerate on the variables indexed by T .

3. inff (T ) = 1 if and only if fα is balanced for each α ∈ Fn−t2 , where fα denotes fXT←α.

4. inff (S ∪ T ) ≥ inff (T ).

5. inff (S ∪ T ) = inff (S) + inff (T ) −
∑

u∈U

(
f̂(u)

)2
, where U = {u ∈ Fn2 : supp(u) ∩ S 6= ∅ 6=

supp(u) ∩ T}. Consequently, inff (S ∪ T ) ≤ inff (S) + inff (T ).

Proof: The first point follows from Theorem 1 and Parseval’s theorem. The fourth and fifth points
also follow from Theorem 1. The third point follows from Theorem 2.

Consider the second point. Suppose π is any permutation of [n] and define g(X) to be the function
f(Xπ(1), . . . , Xπ(n)). Then f is degenerate on the variables indexed by a set U = {i1, . . . , it} if and only
if g is degenerate on the variables indexed by the set V = {π(i1), . . . , π(it)}. Also, inff (U) = infg(V ).
In view of this, we consider the set T to be {1, . . . , t}.

For α ∈ Ft2 and Y = (Xt+1, . . . , Xn), let fα(Y) = f(α,Y). The function f is degenerate on the
variables indexed by T , if and only if fα(Y) = fβ(Y) for any α,β ∈ Ft2. We show that the latter
condition is equivalent to f(X) = f(X⊕γ) for any γ ≤ χT . Note that by the choice of T , we have that
for γ ≤ χT , γ = (δ,0) for some δ ∈ Ft2. So, it is sufficient to show that f(α,Y) = f((α,Y) ⊕ (δ,0))
for all α ∈ Ft2. The last condition is equivalent to fα(Y) = fα⊕δ(Y) = fβ(Y) where β = α⊕ δ. This
completes the proof that f is degenerate on the variables indexed by T if and only if f(X) = f(X⊕ γ)
for all γ ≤ χT .

The condition f(X) = f(X ⊕ γ) for all γ ≤ χT is equivalent to Cf (γ) = 1 for all γ ≤ χT . So, f
is degenerate on the set of variables indexed by T if and only if Cf (γ) = 1 for all γ ≤ χT . From (12),
inff (T ) = 0 if and only if

∑
u≤χT

Cf (u) = 2t. Since 0 ≤ Cf (u) ≤ 1, the previous condition holds if and
only if Cf (u) = 1 for all u ≤ χT . This shows that f is degenerate on the set of variables indexed by T
if and only if inff (T ) = 0. �

Theorem 3 shows five properties of influence. The first point shows that influence is bounded
between 0 and 1; the second point shows that the influence is 0 if and only if f is degenerate on the set
of variables indexed by T ; the third point characterises the condition under which the influence attains
its maximum value; the fourth point shows that influence is monotone increasing with the size of the
indexing set; and the fifth property shows that influence satisfies sub-additivity.

Theorem 4 Let f be an n-variable Boolean function and t be an integer with 1 ≤ t ≤ n.

1. t-inf(f) takes its maximum value of 1 if and only if f is (n− t)-resilient.
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2. t-inf(f) takes its minimum value of 0 if and only if f is a constant function.

Proof: From (15), t-inf(f) takes its maximum value of 1 if and only if

n−t∑
k=0

(
n−k
t

)(
n
t

) p̂f (k) = 0

which holds if and only if p̂f (k) = 0 for k = 0, . . . , n − t, i.e., if and only if f is (n − t)-resilient. This
shows the first point.

For the second point, from (15), t-inf(f) = 0 if and only if(
n

t

)
p̂f (0) +

(
n− 1

t

)
p̂f (1) + · · ·+

(
t

t

)
p̂f (t) =

(
n

t

)
. (21)

If f is a constant function, then p̂f (0) = 1 and p̂f (k) = 0 for k ∈ [n]. So, (21) holds. On the other hand,
if f is not a constant function, then p̂f (0) < 1. In this case,(

n

t

)
p̂f (0) +

(
n− 1

t

)
p̂f (1) + · · ·+

(
t

t

)
p̂f (t)

≤
(
n

t

)
p̂f (0) +

(
n− 1

t

)
(p̂f (1) + · · ·+ p̂f (n))

=

(
n

t

)
p̂f (0) +

(
n− 1

t

)
(1− p̂f (0)) <

(
n

t

)
.

So, (21) holds if and only if f is a constant function. �
The next result shows that as t increases, the value of t-inf(f) also increases.

Theorem 5 Let f be an n-variable Boolean function. For t ∈ [n], t-inf(f) increases monotonically with
t.

Proof: For t ∈ [n− 1], the following calculations show that t-inf(f) is at most (t+ 1)-inf(f).

t-inf(f) ≤ (t+ 1)-inf(f)

⇐⇒ 1−
n−t∑
k=0

(
n−k
t

)(
n
t

) p̂f (k) ≤ 1−
n−t−1∑
k=0

(
n−k
t+1

)(
n
t+1

) p̂f (k)

⇐⇒
n−t∑
k=0

(
n−k
t

)(
n
t

) p̂f (k) ≥
n−t−1∑
k=0

(
n−k
t+1

)(
n
t+1

) p̂f (k)

⇐⇒ 1(
n
t

) p̂f (t) +

n−t−1∑
k=0

((
n−k
t

)(
n
t

) − (n−kt+1

)(
n
t+1

) ) p̂f (k) ≥ 0

⇐⇒ 1(
n
t

) p̂f (t) +

n−t−1∑
k=0

(
(n− k)!(n− t− 1)!

n!(n− k − t− 1)!

(
n− t

n− t− k
− 1

))
p̂f (k) ≥ 0. (22)

For k in the range 0 to n− t− 1, it follows that (n− t)/(n− t− k) ≥ 1. So, the relation in (22) holds
showing that t-inf(f) ≤ (t+ 1)-inf(f).

�
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Recall that if f is a bent function, then t-inf(f) = 1 − 2−t which provides an indication of how the
values of t-inf(f) can increase with t. In general, however, it seems difficult to characterise the growth
of the values of t-inf(f) with t.

The Fourier entropy H(f) of f is defined to be the entropy of the probability distribution {f̂2(α)}
and is equal to

H(f) = −
∑
α∈Fn

2

f̂2(α) log f̂2(α), (23)

where log denotes log2 and the expressions 0 log 0 and 0 log 1
0 are to be interpreted as 0. For t ∈ [n], let

ρt(f) =
H(f)/n

t-inf(f)
. (24)

The Fourier entropy/influence conjecture [6] states that there is a universal constant C, such that for all
Boolean functions f , ρ1(f) ≤ C. Since, t-inf(f) is monotonically increasing with t, it follows that ρt(f)
is monotonically decreasing in t. So, if the FEI conjecture holds, then ρt(f) ≤ C for t ∈ [n], where C is
the universal constant in the FEI conjecture. On the other hand, it is possible that the FEI conjecture
does not hold, but for some t0 ∈ {2, . . . , n}, there is a constant C0 such that ρt0(f) ≤ C0 for all Boolean
functions f .

3.1 Pseudo-Influence

Suppose f(X) is an n-variable Boolean function where X = (X1, . . . , Xn) and ∅ 6= T = {i1, . . . , it} ⊆ [n].
We define pseudo-influence PIf (T ) of the set of variables {Xi1 , . . . , Xit} indexed by T on f in the
following manner.

PIf (T ) =
1

2#T

 ∑
α≤χT

(−1)wt(α)Cf (α)

 . (25)

For a singleton set T = {i}, PIf (T ) = inff (T ) = infi(f).
Let f be an n-variable function and t be an integer with 1 ≤ t ≤ n. Then the t-pseudo-influence of

f is the total pseudo-influence (scaled by
(
n
t

)
) obtained by summing the pseudo-influence of every set

of t variables on the function f , i.e.,

t-PI(f) =

∑
{T⊆[n]:#T=t} PIf (T )(

n
t

) . (26)

The characterisation of pseudo-influence in terms of the Fourier transform is given by the following
result.

Theorem 6 Let f be an n-variable Boolean function and ∅ 6= T ⊆ [n]. Then

PIf (T ) =
∑
u≥χT

(
f̂(u)

)2
. (27)

Consequently, for an integer t with 1 ≤ t ≤ n,

t-PI(f) =
1(
n
t

) n∑
k=t

(
k

t

)
p̂f (k) (28)

9



Proof: Let t = #T . Using (8) in (25), we have the following.

PIf (T ) =
1

2t

∑
α≤χT

(−1)wt(α)Cf (α)

=
1

2t

∑
α≤χT

(−1)wt(α)
∑
ω

(
f̂(ω)

)2
(−1)〈ω,α〉

=
1

2t

∑
ω

(
f̂(ω)

)2 ∑
α≤χT

(−1)wt(α)(−1)〈ω,α〉

=
1

2t

∑
ω

(
f̂(ω)

)2 ∑
α≤χT

(−1)〈ω⊕1,α〉 (29)

Note that ∑
α≤χT

(−1)〈ω⊕1,α〉 =

{
0 if supp(ω ⊕ 1) ∩ T 6= ∅;
2t otherwise.

Using this in (29), we obtain

PIf (T ) =
∑

supp(ω⊕1)∩T=∅

(
f̂(ω)

)2
.

The proof follows by observing that the condition supp(ω ⊕ 1) ∩ T = ∅ is equivalent to the condition
ω ≥ χT .

The expression for t-PI(f) can be seen as follows.

t-PI(f) =
1(
n
t

) n∑
k=1

∑
{u:wt(u)=k}

(
k

t

)(
f̂(u)

)2
=

1(
n
t

) n∑
k=1

(
k

t

) ∑
{u:wt(u)=k}

(
f̂(u)

)2
=

1(
n
t

) n∑
k=1

(
k

t

)
p̂f (k)

=
1(
n
t

) n∑
k=t

(
k

t

)
p̂f (k). (30)

�
The following result states the basic properties of the pseudo-influence.

Theorem 7 Let f be an n-variable Boolean function and ∅ 6= T ⊆ S ⊆ [n]. Then

1. 0 ≤ PIf (T ) ≤ 1.

2. If the function f is degenerate on the variables indexed by T , then PIf (T ) = 0.

3. PIf (S) ≤ PIf (T ).

10



Proof: The first point follows from Theorem 6 and Parseval’s theorem. The third point also follows
from Theorem 1.

Consider the second point. As in the proof of Theorem 3, if f is degenerate on the variables indexed
by T , then Cf (α) = 1 for all α ≤ χT . Using this in the definition of pseudo-influence given by (25), we
obtain the the second point. �

Theorem 7 states that if f is degenerate on the variables indexed by T , then PIf (T ) = 0. The

converse, however, is not true. Suppose f is an n-variable function such that f̂(1) = 0 and let T = [n].
Then from (27), PIf (T ) = 0. This example can be generalised. Suppose g is an n-variable, m-resilient

function and let f(X) = 〈1,X〉 ⊕ g(X). Using (2), we have f̂(α) = ĝ(1 ⊕ α) for all α ∈ Fn2 . Since,

g is m-resilient, ĝ(ω) = 0 for all ω with wt(ω) ≤ m. So, f̂(α) = 0 for all α with wt(α) ≥ n − m.
Consequently, for any ∅ 6= T ⊆ [n], with #T ≥ n −m, it follows that PIf (T ) = 0. There are known
examples of non-degenerate resilient functions. See for example [8].

Theorem 7 provides the reasons for naming the definition in (25) to be pseudo-influence. For one
thing, as discussed above, it is possible that f is non-degenerate on the set of variables indexed by T and
yet PIf (T ) = 0. Secondly, as the cardinality of the indexing set T grows, the value of PIf (T ) decreases.
These properties of PIf (T ) are in sharp contrast to the more intuitive properties of inff (T ) stated in
Theorem 3.

For u ∈ Fn2 and ∅ 6= T ⊆ [n], u ≥ χT implies supp(u) ∩ T 6= ∅. So, from (14) and (27), we have the
following result which states that influence is always at least as large as the pseudo-influence.

Proposition 1 Let f be an n-variable Boolean function and ∅ 6= T ⊆ [n]. Then inff (T ) ≥ PIf (T ).

Theorem 8 Let f(X) be an n-variable Boolean function where X = (X1, . . . , Xn) and t be an integer
with 1 ≤ t ≤ n.

1. t-PI(f) takes its maximum value of 1 if and only if f is of the form f(X) = 〈1,X〉.

2. t-PI(f) takes its minimum value of 0 if and only if f is of the form f(X) = 〈1,X〉 ⊕ g(X), where
g(X) is (n− t)-resilient.

Proof: From (28), t-PI(f) takes its maximum value of 1 if and only if

n∑
k=t

(
k

t

)
p̂f (k) =

(
n

t

)
. (31)

If f(X) = 〈1,X〉, then p̂f (n) = 1 and p̂f (k) = 0 for 0 ≤ k ≤ n−1. On the other hand, if f(X) 6= 〈1,X〉,
then p̂f (n) < 1 and we have(

t

t

)
p̂f (t) +

(
t+ 1

t

)
p̂f (t+ 1) + · · ·+

(
n

t

)
p̂f (n)

≤
(
n− 1

t

)
(p̂f (0) + · · ·+ p̂f (n− 1)) +

(
n

t

)
p̂f (n)

=

(
n− 1

t

)
(1− p̂f (n)) +

(
n

t

)
p̂f (n) <

(
n

t

)
.

This completes the proof of the first point.
For the second point, from (28), one may note that the values p̂f (0), . . . , p̂f (t− 1) do not affect the

expression for t-PI(f). So, t-PI(f) = 0 if and only if p̂f (t) = · · · = p̂f (n) = 0. The last condition holds
if and only if f is of the stated form. �
From the second point of Theorem 8, it is possible to obtain examples of non-degenerate functions f
such that t-PI(f) is 0.

11



3.2 Alternative Approach

We have defined influence in terms of the auto-correlation function. Previous work in the literature has
defined influence using a different approach. In this section we briefly consider this approach.

A Boolean function can be represented as a map from {−1, 1}n to {−1, 1} with the underlying
intuition being that a bit b maps to (−1)b. We will use the following convention to distinguish between
the two representations. Boolean functions in the “bit representations” will be denoted in the usual
font as f, g, h and so on, while Boolean functions in the “±1” representations will be denoted using
the ‘mathfrak’ font as f, g, h and so on, respectively. The correspondence between f : Fn2 → F2 and
f : {−1, 1}n → {−1, 1} is the following: f ((−1)a) = (−1)f(a), where for a = (a1, . . . , an) ∈ Fn2 , (−1)a =
((−1)a1 , . . . , (−1)an).

The Fourier transform of f : {−1, 1}n → {−1, 1} is the map f̂ : {−1, 1}n → [−1, 1] where for
y ∈ {−1, 1}n,

f̂(y) =
1

2n

∑
x=(x1,...,xn)∈{−1,1}n

f(x)
∏

{i:yi=−1}

xi. (32)

It is easy to verify the following relation for a Boolean function f : Fn2 → F2 and its corresponding “±1”

representation f : {−1, 1}n → {−1, 1}. For α ∈ Fn2 , f̂(α) = f̂ ((−1)α).
For x = (x1, . . . , xn), b ∈ {−1, 1} and T ⊆ [n], the following notation will be required.

• wt(x) denotes the number of −1’s in x.

• x(i→b) = (x1, . . . , xi−1, b, xi+1, . . . , xn).

• xT ? yT = (z1, . . . , zn) is defined as follows: zi = xi if i ∈ T , and zi = yi, otherwise.

Definition of influence given by Fischer et al. [5] and Blais [2]. The same quantity has been
defined in two different ways in Fischer et al. [5] and Blais [2]. In [5], this quantity has been called
‘variation’ and in [2], it was termed ‘influence’. Here we provide the formulation as given in [2]. For
f : {−1, 1}n → {−1, 1} and ∅ 6= T ⊆ [n], the definition of influence given in [2] is the following.

If(T ) = 2 Pr
x,y∈{−1,1}n

[
f(x) 6= f(xT ? yT )

]
. (33)

The following has been proved in [2, 5].

If(T ) =
∑

x∈{−1,1}n,wt(xT )>0

(̂
f(x)

)2
. (34)

It is easy to see that for u ∈ Fn2 , supp(u)∩T 6= ∅ if and only if for x = (−1)u, wt(xT ) > 0. Consequently,
using (14) and (34), for an n-variable function f : Fn2 → F2, and ∅ 6= T ⊆ [n], we have the following.

inff (T ) = If(T ). (35)

From (35), we obtain the result that the two definitions given by (12) and (33) are equivalent. This is
quite surprising, since the actual definitions in (12) and (33) are very different.

In [2, 5], it has been proved that If(T ) ≤ If(S ∪ T ) ≤ If(S) + If(T ), i.e., monotonicity and sub-
additivity properties hold for If. These properties for inff (T ) are covered by Points 4 and 5 of Theorem 3.
Other than the monotonicity and the sub-additivity properties, the extensive analysis and results on
influence obtained in this work do not appear in [2, 5] or in any other work in the literature.
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Definition of influence given by Tal [10]. We next show that there is another definition of influence
in the literature which turns out to be the same as the definition of pseudo-influence that we introduced
using the auto-correlation function.

For f : {−1, 1}n → {−1, 1} and i ∈ [n], the i-th discrete derivative operator is defined to be the
function Dif : {−1, 1}n → {−1, 0, 1} defined as follows [10]:

Dif(x) =
f(x(i→1))− f(x(i→−1))

2
. (36)

Let ∅ 6= T = {i1, . . . , it} ⊆ [n]. The operator DT acts on f to define the function DT f defined as
follows [10]:

DT f(x) = Di1Di2 · · ·Ditf(x). (37)

For f : {−1, 1}n → {−1, 1} and ∅ 6= T ⊆ [n], The notion of influence defined in [10] is the following.

Jf(T ) = Ex∈{−1,1}n
[
(DT f(x))2

]
. (38)

The following Fourier based characterisation of Jf(T ) has been obtained in [10].

Jf(T ) =
∑

x∈{−1,1}n,wt(xT )=#T

(
f̂(x)

)2
. (39)

It is easy to see that for u ∈ Fn2 , u ≥ χT if and only if for x = (−1)u, wt(xT ) = #T . Consequently,
using (27) and (39), for an n-variable function f : Fn2 → F2 and ∅ 6= T ⊆ [n], we have

PIf (T ) = Jf(T ). (40)

This again shows that though the two definitions given by (25) and (38) are different, through their
respective Fourier characterisations, it can be seen that the two definitions coincide. The quantity∑
{T :#T=t} Jf(T ) was considered in [10] and the relevant expression corresponding to (28) was also ob-

tained in [10]. Other than this, the analysis and results for the pseudo-influence presented in Section 3.1
do not appear in [10] or at any other place in the literature.

4 Ben-Or and Linial Definition of Influence

The first notion of influence of a set of variables on a Boolean function was proposed by Ben-Or and
Linial in [1]. In this section, we introduce this notion, prove some of its basic properties and show its
relationship with the notion of influence defined in Section 3.

For an n-variable function f and ∅ 6= T ⊆ [n], with t = #T , the notion of influence introduced in [1]
is the following.

If (T ) = Pr
α∈Fn−t

2

[
fXT←α(XT ) is not constant

]
. (41)

For t ∈ [n], we define

t-I(f) =

∑
{T⊆[n]:#T=t} If (T )(

n
t

) . (42)

The following result provides an alternative description of If (T ).
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Proposition 2 For an n-variable function f and ∅ 6= T ⊆ [n], with t = #T ,

If (T ) = 1−
#

{
α ∈ Fn−t2 :

(
f̂α(0)

)2
= 1

}
2n−t

(43)

=

#

{
α ∈ Fn−t2 :

(
f̂α(0)

)2
6= 1

}
2n−t

, (44)

where fα denotes fXT←α.

Proof: From (41), it clearly follows that

If (T ) = 1− #{α ∈ Fn−t2 : fα is constant}
2n−t

= 1− #{α ∈ Fn−t2 : wt(fα) = 0, or 2t}
2n−t

= 1− #{α ∈ Fn−t2 : f̂α(0) = ±1}
2n−t

.

This shows (43), and (44) follows directly from (43). �
Some basic properties of If (T ) are as follows.

Theorem 9 Let f be an n-variable function and ∅ 6= T ⊆ S ⊆ [n]. Let #T = t.

1. 0 ≤ If (T ) ≤ 1.

2. If (T ) = 0 if and only if f is degenerate on the variables indexed by T .

3. If (T ) = 1 if and only if fα is a non-constant function for every α ∈ Fn−t2 , where fα denotes
fXT←α. In particular, if T = [n], then If (T ) = 1.

4. If (T ) ≤ If (S).

Proof: The first point is obvious.
For the second point, using (43) note that If (T ) = 0 if and only if for every α ∈ Fn−t2 , f̂α(0) = ±1,

i.e., if and only if wt(fα) = 0, or 2t, i.e., if and only if fα is constant. The last condition holds if and
only if the variables indexed by T have no effect on the value of f , i.e., if and only if f is degenerate on
the variables indexed by T .

To see the third point, note that If (T ) = 1 if and only if for every α ∈ Fn−t2 ,
(
f̂α(0)

)2
6= 1, which

holds if and only if fα is a non-constant function.
Let #S = s. For the fourth point, it is sufficient to consider s = t + 1, since otherwise, we may

define a sequence of sets T ⊂ S1 ⊂ S2 ⊂ · · · ⊂ S, with #T + 1 = #S1, #S1 + 1 = #S2, . . . , and argue
If (T ) ≤ If (S1) ≤ · · · ≤ If (S). Further, without loss of generality, we assume T = {n − t + 1, . . . , n}
and S = {n − t, . . . , n} as otherwise, we may apply an appropriate permutation on the variables to
ensure this condition. Then T = {1, . . . , n− t} and S = {1, . . . , n− t− 1}.

Let T = {α ∈ Fn−t2 : fα is constant} and S = {β ∈ Fn−t−12 : fβ is constant}, where fβ is a
shorthand for fXS←β. Note that if β ∈ S, then (β, 0), (β, 1) ∈ T . So, #T ≥ 2#S which implies

#T
2n−t

≥ 2#S
2n−t

≥ #S
2n−t−1

.
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Consequently,

If (T ) = 1− #T
2n−t

≤ 1− #S
2n−t−1

= If (S).

�
One may compare the properties of If (T ) given by Theorem 9 to the properties of inff (T ) given by
Theorem 3. We note that the sub-additivity property does not hold for If (T ). As an example, consider
a 6-variable function f which maps 0 to 1 and all other elements of F6

2 to 0; let S = {4, 5, 6} and
T = {2, 3, 6}. Then If (S ∪ T ) = 1/2 > 1/8 + 1/8 = If (S) + If (T ).

Next, we show that the Ben-Or and Linial notion of influence is always at least as much as the
notion of influence defined in (12).

Theorem 10 Let f be an n-variable function and ∅ 6= T ⊆ [n]. Then inff (T ) ≤ If (T ). Further,

equality holds if and only if
(
f̂α(0)

)2
= 0, 1 for each α ∈ Fn−t2 , where fα denotes fXT←α.

Proof: We rewrite (18) in the following form.

inff (T ) =
1

2n−t

∑
α∈Fn−t

2

(
1−

(
f̂α(0)

)2)
. (45)

Consider the expressions for inff (T ) and If (T ) given by (45) and (44) respectively. Both the expressions

are sums over α ∈ Fn−t2 . Suppose α is such that
(
f̂α(0)

)2
= 1. The contribution of such an α to

both (45) and (44) is 0. Next suppose
(
f̂α(0)

)2
6= 1; the contribution of such an α to (44) is 1 and the

contribution to (45) is at most 1, and the value 1 is achieved if and only if f̂α(0) = 0. �
The measure If (T ) satisfies some of the basic desirable properties expected of a measure of influence,

namely, it is between 0 and 1; takes the value 0 if and only if f is degenerate on the variables indexed
by T ; and it is monotone increasing with the size of T . On the other hand, as noted above, it does not
satisfy the sub-additivity property. Further, compared to inff (T ), the value of If (T ) rises quite sharply.
To see this, it is useful to view the following expressions for the two quantities.

2n−t × inff (T ) =
∑

α∈Fn−t
2

(
1−

(
f̂α(0)

)2)
, (46)

2n−t × If (T ) = #

{
α ∈ Fn−t2 :

(
f̂α(0)

)2
6= 1

}
. (47)

Suppose α ∈ Fn−t2 is such that fα is a non-constant function, so that
(
f̂α(0)

)2
6= 1. Then such an

α contributes 1 to (47), while it contributes a value which is at most 1 to (46). More generally, α
contributes either 0 or 1 to (47) according as fα is constant or non-constant; on the other hand, the
contribution of α to (46) is more granular. Consequently, the value of If (T ) rises more sharply than
the value of inff (T ). In particular, if f and g are two distinct functions such that for all α, both fα and
gα are non-constant functions, then both If (T ) and Ig(T ) will be necessarily be equal to 1, whereas the
values of inff (T ) and infg(T ) are neither necessarily 1 nor necessarily equal. So, while both inff (T ) and
If (T ) share some intuitive basic properties expected of a definition of influence, in our opinion, inff (T )
is a better measure compared to If (T ).

The following result characterises the minimum and maximum values of t-I(f).
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Theorem 11 Let f be an n-variable Boolean function and t be an integer with 1 ≤ t ≤ n.

1. t-I(f) takes its maximum value of 1 if and only if for every subset T of [n] of size t, and for every
α ∈ Fn−t2 , the function fXT←α

(XT ) is constant.

2. t-I(f) takes its minimum value of 0 if and only if f is a constant function.

Proof: The proof of the first point follows from the third point of Theorem 9.
For the second point, we note that if f is a constant function, then from (41), If (T ) = 0 for every

subset T of [n] and so t-I(f). On the other hand, if t-I(f) = 0, then from Theorem 10, it follows that
t-inf(f) = 0 and so from the second point of Theorem 4 we have that f is a constant function. �

5 Conclusion

In this paper, we have used the auto-correlation function to define the notions of influence and pseudo-
influence of a set of variables on a Boolean function. Several properties of these notions have been
derived and their characterisations in terms of the Fourier transform have been obtained. Through
the Fourier transform based characterisation, it is seen that the definition of auto-correlation based
influence is equivalent to the definition of influence introduced by Fischer et al. [5] and Blais [2] and
the definition of pseudo-influence is equivalent to the definition of influence introduced by Tal [10]. The
notion of influence introduced by Ben-Or and Linial [1] has been systematically studied and its relation
to the auto-correlation based notion of influence precisely characterised.
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