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Abstract. Broadcast Encryption allows a sender to send a message to more than one receiver. In a
typical broadcast encryption, the broadcaster decides the privileged set as in who all can decrypt a
particular ciphertext. Gritti et al. (IJIS’16) introduced a new primitive called Broadcast Encryption
with Dealership (BED), where the dealer/wholesaler decides the privileged set. This rather recently
introduced primitive allows a wholesaler to buy content from the broadcaster and sell it to users.
Following their construction, to date, three more constructions of broadcast encryption with dealership
have been proposed. Among them, the first showed the BED construction of Gritti et al. (IJIS’16) to
be insecure.
All the state-of-the-arts works were unable to fully identify the requirements of a BED scheme. We first
identify and propose a new security requirement that has not been considered before. After formally
defining a BED scheme, we show simple pairing-based attacks on all previous constructions rendering
all of them useless. We then give the first secure BED construction in the composite-order pairing
groups. This construction achieves constant-size ciphertext and secret keys but achieves selectively
secure message hiding only. We then give our second construction from Li and Gong’s (PKC’18)
anonymous broadcast encryption. This construction achieves adaptively secure message hiding but
has ciphertext size dependent on the size of the privileged set. Following that, we propose our third and
final construction that achieves constant size ciphertext in the standard model and achieves adaptive
message hiding security.

1 Introduction

Public key encryption (PKE) allows two parties (say Alice and Bob) to communicate securely without any
shared secret key. In this setting, the receiver Alice publishes her public key which the sender Bob uses to
encrypt his message. The security of a PKE ensures none, but Alice decrypts the message. Now consider the
scenario where Bob wants to send a message to a set of users. Broadcast Encryption (BE) [FN94,BGW05]
addresses this problem in the literature. In broadcast encryption (BE) a message is encrypted for a set S
called privileged set. Any user from the privileged set (so-called privileged user) can decrypt the ciphertext.
A broadcast encryption (BE) scheme is considered to be secure if all the users outside S together can not
decrypt the message. A BE scheme is called fully secure if an adversary chooses S adaptively in the security
game. BE is selective secure if the adversary has to submit the set S at the beginning before even seeing
the parameters. The major setback of BE is that it can not accommodate any number of new users joining
the system without changing the public parameters. This problem was alleviated by the introduction of
Identity-Based Broadcast Encryption (IBBE) [Del07,RS16]. IBBE brings a lot more dynamism in the sense
it supports adding new users to the system without changing the system public key.

Along with security, privacy has always been at the center of cryptography. In broadcast encryption, the
usual practice is to publish the privileged set description along with the ciphertext. This naturally brings
about an obvious question if a broadcast encryption can also hide the privileged set? This finds application
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in protocols that requires the privacy of receivers. To answer this question the notion of Anonymous
Broadcast Encryption (anon-BE) [BBW06,LPQ12,LG18] was introduced. As discussed above, the privileged
set description for which the ciphertext has been constructed is hidden in an anon-BE.

Consider a related scenario where an organization like Pay TV wants to broadcast digital content to a
large group of people. It’s often become challenging for a single organization to maintain such a user base.
One solution for this is that the main organization sells its digital content to some sub-distributor (we call
them dealer in our work). Users register with a dealer and purchase their subscription. The dealer then
buys digital content in bulk and broadcasts the encrypted content to the subscribed users. In literature,
this variant of BE was introduced by Gritti et al. [GSP+16] and was named the Broadcast Encryption with
Dealership (BED).

As motivated above, there are three major entities in a typical BED scheme: broadcaster, dealers, and
end-users. Users who want to get digital content from a particular broadcaster get themselves registered
with the respective dealers. Among the registered users, those who purchase a subscription, we call them
privileged users. The dealer buys digital content for the privileged user set S. The broadcaster encrypts
its digital content for users in S, which the dealer broadcasts. Being a variant of BE, a BED introduces
several new concerns about security. Firstly, a BED needs the unprivileged end-users (who are not part of
the privileged set) cannot decrypt the ciphertext. Since the BED accommodates more entities than a typical
BE scheme, Gritti et al. in [GSP+16] introduced some more security requirements. To name a few, a typical
BED scheme needs to be secure according to so-called group privacy, maximum user accountability etc. In
this work, we notice a gap in the security requirements and introduce another security requirement called
message indistinguishability from dealer. Next, we discuss all the security notions informally.

Recall that, in the BED scheme, a dealer decides a privileged set S, and the broadcaster encrypts the
message for the set S. Therefore, it is necessary to keep the privileged set S hidden from the broadcaster;
otherwise, the broadcaster can serve the users in S directly (whenever possible), thereby destroying the
dealer’s business. Thus the dealer, instead of giving the whole set S gives a some-what proof of the set S.
The dealer does that by providing a group token ΓS it computed for the privileged set S. We need this group
token to achieve the following properties:

(1) It hides the set S.
(2) Cardinality of S can be verified from ΓS .
(3) Given ΓS , the broadcaster can produce ciphertext CTS for S without explicitly knowing S.
(4) Dealer cannot infer any information about the underlying message from the ciphertext CTS the

broadcaster generates using ΓS .

Other than the above, we also need that (5) in a BED unprivileged users (i.e., u /∈ S) cannot infer any
information about the underlying message from the ciphertext CTS . The existing literature already has
formulated security games capturing some of these requirements. Precisely, in the literature, (1) is called
the group privacy security, (2) is formulated as maximum user accountability security and (5) is called the
message indistinguishability from unprivileged users. Furthermore, the existing literature implicitly assumes
(3) as a functionality requirement. In this work, we introduce (4) as the message indistinguishability from
dealer security.

To keep the presentation simpler, we summarize the security requirements informally in Table 1. At the
same time, we use the table to justify the motivation of this work given the related works. Looking ahead,
the following table shows the inadequacy of the existing works, which we will elaborate on while discussing
our related work section. For the time being, we state that we could mount concrete attacks on the group
privacy of all the existing works and could also find inaccuracies in the security argument of maximum
user accountability in all of them. Furthermore, the message indistinguishability from dealer which was not
considered any of the existing works, is marked in Table 1 as “Undefined”. The table, therefore, indicates
that none of the existing works achieve the security guarantees a BED should possess.

We now motivate the requirement of message indistinguishability from the dealer informally. Suppose a
BED scheme where the broadcaster gets a group token ΓS from the dealer for the set S. Broadcaster multiplies
the message to one of the components of ΓS and returns it to the dealer. Precisely, let ΓS = (HdrS , κS) due to

2



Security Model Informal Description
Existing Works

[AD16,AD17,KLEL18]

Group Privacy
Adversary cannot distinguish
between two privileged sets
of equal size.

Insecure.

Maximum User
Accountability

Adversary cannot pass
verification for a privileged set
larger than committed size.

Incorrect
Proof.

Message Indistinguishability
from Dealer

Dealer cannot distinguish
between two ciphertext generated
for the same privileged set.

Undefined.

Message Indistinguishability
from Unprivileged Users

Any unprivileged user
cannot distinguish between two
ciphertext generated for the same
privileged set.

Secure.

Table 1. Broadcast Encryption with Dealership State-of-the-Art.

the underlying broadcast encryption. The broadcaster returns CTS = (HdrS ,M · κS). Note that the view of
dealer (who provides the group token ΓS and gets CTS) and the view of an unprivileged user is quite different.
Going by the security models considered in the existing schemes [AD16,AD17,KLEL18], this scheme should
be regarded as secure. However, the dealer can simply cancel κS to get the message M and sell it to any
number of users it likes. This is why critical consideration of message indistinguishability from dealer is
necessary. Thus we introduce the message indistinguishability from the dealer security model to bridge this
gap.

1.1 Related Works

We give a brief overview of the claimed achievements of the existing works next. Being a newly introduced
primitive, the literature for BED is not very vast. There have been a few works available on this primitive,
[GSP+16,AD16,AD17,KLEL18] to name a few. Gritti et al. [GSP+16] was first to introduce the notion of
BED. The idea of BED was very much influenced by the idea of “membership encryption” of [GMSV13].
The authors of [GSP+16] argued group privacy security of their construction to be “unconditionally secure”.
To which Acharya and Dutta found an attack and provided the first “secure” construction of BED in
[AD16]. The construction of [AD16] and following constructions [AD17,KLEL18] claimed to have achieved
group privacy security under the standard discrete-log assumption. Coming to maximum user accountability
security, construction of [GSP+16] depends on an honest user to report a dishonest dealer. The work
of [AD16] overcame this limitation injecting a computationally hard problem i.e. if a dealer can break
maximum user accountability, we can solve a computationally hard problem. As a result, [AD16] and the
following works [AD17,KLEL18], the broadcaster can detect a dishonest dealer without any assistance from
a user. All three works [AD16,AD17,KLEL18] achieved maximum user accountability under parameterized
DHE assumption of [GSP+16], and [Cam13]. Message indistinguishability from unprivileged users security
of [GSP+16] achieved was in “semi-static” model, introduced by Gentry and Waters [GW09]. Gentry and
Waters in [GW09] provide a generic technique to convert a semi-static scheme to an adaptive secure scheme.
Gritti et al. mentioned that the conversion of [GW09] applies for their construction also. The construction
of [AD16] was heavily influenced by the broadcast encryption of [Del07]. The Message indistinguishability
from unprivileged users security of [AD16] was achieved in selective security model under the parameterized
GDDHE assumption [Del07]. To improve upon the message indistinguishability from unprivileged users
security the same group of authors proposes an adaptive secure BED in [AD17] based on [RWZ12] under
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the parameterized DABDHE assumption. Kim et al. [KLEL18] modified the construction of [AD17] to
support recipient revocation without compromising upon security. All the above constructions achieved
their respective property keeping the ciphertext size constant.

1.2 Our Contributions

Our contributions in this paper are many-fold. Firstly, none of the previous works on BED (to the best of our
knowledge) considered the dealer’s presence with sufficient formalization. This paper first puts forward the
security definition of Broadcast Encryption with Dealership addressing the presence of a dealer with sufficient
formalization. Our definition, therefore, generalizes all the earlier works [GSP+16,AD16,AD17,KLEL18]. The
introduction of a new security game is justified as we observed the view of a dealer and that of an unprivileged
user are different. Hence, we consider message indistinguishability from the dealer separately. This bridges
a gap that was not considered earlier.

We then present concrete attacks on the group privacy of the existing schemes [AD16][AD17][KLEL18]. As
we mentioned above, all the above works claimed that their constructions achieve the group privacy security
under the standard discrete-log problem. However, we mount simple pairing-based attacks rendering all those
schemes insecure in the said security model. Moreover, we also identify the errors in the maximum users
accountability security proof of all the existing schemes.

Then, we propose three constructions that achieve all the desired security guarantees. Our first construction
of BED is based on the broadcast encryption of Ramanna et al. proposed in [GLR18]. This construction
achieves constant-size ciphertext, which essentially follows from the efficient BE construction of [GLR18].
The main point of interest being BE of [GLR18] does not have anonymous security. Our novelty in our
first construction is primarily that we still manage to get group privacy (priv) security under the standard
assumption DDH.

The above construction, however, is constructed in composite-order pairings and achieves only selective
message indistinguishability from unprivileged users. We, therefore, propose a new BED from the anonymous
broadcast encryption of Li and Gong [LG18] along with a key-binding [Fis99] symmetric encryption. Our
intuition here was, an anonymous BE hides the privileged set. So we can get the group privacy security
and message indistinguishability from unprivileged users for free while using an anon-BE. On top of that,
anon-BE of [LG18] is cardinality-revealing i.e., the ciphertext size gives away the cardinality of S. We show
that this BED construction also achieves message indistinguishability from dealers.

Here we note that the above construction outputs large ciphertext, namely, the ciphertext size depends
on the privileged set size. To improve upon this, we propose a new BED from the broadcast encryption of
Ren et al. [RWZ12]. This construction achieves constant size ciphertext and still achieves adaptive message
indistinguishability from unprivileged users. Again, we note that BE of [RWZ12] does not have anonymous
security, but we still manage to get group privacy (priv) security under the standard assumption DDH.

To summarize, below, we provide a concise list of our contributions toward making the first secure BED
scheme.

1. Firstly, we have formalized the existing definition by bridging a gap in the security requirements.

2. Then we have shown simple pairing-based attacks on all the existing schemes [AD16,AD17,KLEL18]
rendering them insecure in the group privacy game.

3. We further have shown that the security proof for maximum user accountability is incorrect.

4. This is when we propose our first secure construction that is achieved from [GLR18]. This construction
uses composite order bilinear pairing to achieves only selective message indistinguishability from unprivileged
users.

5. To improve upon the security, we propose our second construction from the anonymous broadcast
encryption of [LG18].

6. Our second construction results in a larger ciphertext size. We, therefore, propose our final construction
that achieves constant-size ciphertext and adaptive message indistinguishability from unprivileged users
that too in the prime-order bilinear pairing groups.
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1.3 Our Techniques

In this section, we informally discuss our techniques. Firstly, as we pointed out above, we could mount simple
pairing-based attacks on the group privacy all the existing schemes. Informally speaking, these attacks verifies
if the public key and the group token result in a DDH instance. To alleviate this, we take inspiration from
[Duc10] and resort to the asymmetric bilinear groups. More precisely, we introduce extra randomness to
prove the group privacy security under the standard DDH assumption in the asymmetric bilinear group.

For the maximum user accountability security, however, we could not find any measure to give a standard
assumption-based security proof. We give a maximum user accountability security proof in the generic group
model. Intuitively, the challenger gets to know all the group-based computations an adversary evaluates in
the generic group model. Therefore, we can extract certain knowledge that we could not manage in the
standard model.

Notice that the message indistinguishability from dealer security, although looks very similar to blindness
security of blind signature [FHS15], there is a small difference which turns out to be quite complex for
security reduction to go through. In message indistinguishability from dealer, the adversary computes a
group token completely on its own and hands it over to the challenger along with two messages of its choice;
the challenger, in turn, returns encryption of one message. As the adversary chooses the privileged set and
the randomness used in the group token generation, simulation even using interactive assumptions turns
out to be quite complicated. We again choose the generic group model to justify our constructions achieve
message indistinguishability from dealer.

Along with these, we also have modified the security proof of [GLR18] to work in composite-order
asymmetric bilinear groups for two primes. Earlier, the security proof of [GLR18] needed symmetric pairing
composite-order groups of three primes.

1.4 Organization of Our Paper

In Section 2, we present the definitions and mathematical preliminaries. In Section 3, we present a formal
definition of Broadcast Encryption with Dealership (BED). In Section 4, we then show that all the available
BED schemes are insecure. This is followed by Section 5 where we give the first concrete construction of BED
with constant-size ciphertext but in a composite-order pairing setting. Then in Section 6, we give a prime-
order BED construction achieving stronger security. We give our final construction of BED in Section 7 which
also is instantiated in the prime-order pairing groups, achieves stronger security, and still has constant-size
ciphertext. Then, we conclude this paper in Section 8. As, in this paper, we introduced an asymmetric version
of weaker augmented bilinear Diffie-Hellman exponent assumption (wABDHE) from [RWZ12], we argue it’s
security in Appendix A.

2 Definitions and Preliminaries

We start by defining some necessary tools that would be required for our construction.

2.1 Notation

For a, b ∈ N such that a ≤ b, we often use [a, b] to denote {a, . . . , b}. For a set X, we write x
$←− X to

say that x is a uniformly random element of X. The ppt abbreviation stands for probabilistic polynomial
time. For any algorithm A, oracle O and problem instance problem, Aproblem ⇒ 1 denotes that A given the
problem instance problem outputs 1 and AO ⇒ 1 denotes that A given the oracle access O outputs 1. Let
neg : Zp → R+ is called a negligible function if for all positive polynomial p(·) and for sufficiently large values
of x, neg(x) < 1/p(x).

2.2 Groups and Hardness Assumptions

This section presents a discussion about different types of elliptic curve groups and hardness assumptions
that we will require in this work.
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2.2.1 Prime Order Groups and Hardness Assumptions Let G = (p, g,G)← PGen be the output of
prime order group generator where G = 〈g〉 is a cyclic group of order p where p is a large prime number.

DDH Assumption (DDH). The decisional Diffie-Hellman problem (DDH) in the group G is defined as
follows.

Definition 1. Given G = (p, g,G)← PGen(1λ) and X = (G, g, ga, gb, gc) we say that the Decisional Diffie-
Hellman assumption (DDH) holds in G if for all ppt adversary A the advantage AdvDDH

A,G (λ) defined below is
neg(λ). ∣∣Pr

[
A(g, h, ga, gb, gab) = 1

]
− Pr

[
A(g, h, ga, gb, gc) = 1

]∣∣
where the probability is taken over G $←− PGen(1λ), a, b, c

$←− Zp and the random coin consumed by A.

We next consider a set of elliptic curve groups where bilinear pairing function is efficiently evaluated.

Bilinear Pairing. Let G, H, GT be three commutative multiplicative groups. A map e : G×H → GT is
called an admissible bilinear pairing if,

– (Bilinear) For all g ∈ G and all h ∈ H, e(ga, hb) = e(g, h)ab for any a, b ∈ N.
– (Non-degenerate) e(g, h) = 1 only if g = 1 or h = 1.
– (Computable) For all g ∈ G and all h ∈ H, there is a ppt algorithm that computes e(g, h).

Bilinear pairings are of three kinds. A bilinear pairing is called a Type-1 pairing when G = H. Now if we
have G 6= H but there is a known isomorphism between G and H it is regarded as Type-2 pairing. In this
work, we used so-called Type-3 pairing where G and H have no known isomorphism.

2.2.2 Prime Order Asymmetric Bilinear Pairing The prime order asymmetric bilinear group generator
PBGen, takes security parameter 1λ as input and outputs a septenary tuple (p, g, h,G,H,GT , e) where all
of G, H and GT are cyclic groups of order large prime p, G = 〈g〉, H = 〈h〉 and e : G × H → GT is an
admissible, non-degenerate asymmetric bilinear pairing. In this work, we make use of the following hardness
assumptions.

Decisional Diffie-Hellman Assumption (DDH).

Definition 2. Given PG = (p, g, h,G,H,GT , e) ← PBGen(1λ) and X = (PG, g, h, ga, gb, gc) we say that
the Decisional Diffie-Hellman assumption (DDH) holds in PG if for all ppt adversary A the advantage
AdvDDH

A,PG(λ) defined below is neg(λ).∣∣Pr
[
A(g, h, ga, gb, gab) = 1

]
− Pr

[
A(g, h, ga, gb, gc) = 1

]∣∣
where the probability is taken over PG $←− PBGen(1λ), a, b, c

$←− Zp and the random coin consumed by A.

Weaker asymmetric augmented bilinear Diffie-Hellman exponent assumption (waABDHE). Here
we introduce an asymmetric version of weaker augmented bilinear Diffie-Hellman exponent assumption
(wABDHE) introduced in [RWZ12].

Definition 3. We say that the waABDHE assumption holds relative to PG = (p, g, h,G,H, GT , e) ←
PBGen(1λ) given κg,h,g′,h′,α,q = (g′, h′, gα, . . . , gα

q

, hα, . . . , hα
q

, g′α
q+2

, . . . , g′α
2q

, h′α
q+2

, . . . , h′α
2q

, Z) ∈ G2q+1

×H2q+1 ×GT , if for all ppt adversaries A, the advantage AdvwaABDHE
A,PG (λ) defined below is neg(λ),

|Pr [A(g, h, κg,h,g′,h′,α,q, Z) = 1]− Pr [A(g, h, κg,h,g′,h′,α,q, T ) = 1]|

where the probabilities are taken over PG $←− PBGen(1λ), α, λ
$←− Zp, g′ = gλ, h′ = hλ, Z = e(g′, h)α

q+1

or

e(g, h′)α
q+1

and T ∈ GT and the random coin consumed by A.
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2.2.3 Composite Order Asymmetric Bilinear Pairing A composite order asymmetric bilinear group
generator CBGen, takes the security parameter 1λ as input and returns a 10-tuple CG = (p, q, gp, gq, hp, hq,G,
H,GT , e) where both G,H are cyclic groups of order N = pq where both p and q are large primes, gp, hp are
elements of order p, gq, hq are elements of order q, and e : G × H → GT is an admissible, non-degenerate
bilinear map. Note that G has two subgroups Gp and Gq. Similarly, H has two subgroups Hp and Hq.

DDH Assumption in Subgroup Gp.
Definition 4. Given CG = (p, q, gp, gq, hp, hq,G,H,GT , e)← CBGen(1λ) and X = (gp, gq, hp, hq, g

a
p , g

ab
p , g

c
p)

we say that the Decisional Diffie-Hellman assumption holds in CG if for all ppt adversary A the advantage
AdvDDHC

A,CG (λ) defined below is neg(λ).∣∣Pr
[
A(gp, gq, hp, hq, g

a
p , g

ab
p , g

b
p) = 1

]
− Pr

[
A(gp, gq, hp, hq, g

a
p , g

ab
p , g

c
p) = 1

]∣∣
where the probability is taken over CG $←− CBGen(1λ), a, b, c

$←− Zp and the random coin consumed by A.

Subgroup Decision Assumptions.

Definition 5. Given CG = (p, q, gp, gq, hp, hq,G,H,GT , e) ← CBGen(1λ) and W = (gp, hp, Z) we say that

the AS1 assumption holds in CG if for all ppt adversary A the advantage AdvAS1

A,CG(λ) defined below is neg(λ).∣∣Pr
[
A(gp, hp, g

a
p) = 1

]
− Pr

[
A(gp, hp, g

a
pg
b
q) = 1

]∣∣
where the probability is taken over CG $←− CBGen(1λ), gap

$←− Gp, gapg
b
q

$←− G and the random coin consumed
by A.

Definition 6. Given CG = (p, q, gp, gq, hp, hq,G,H,GT , e) ← CBGen(1λ) and W = (gp, hp, X, Y, Z) we say

that the AS2 assumption holds in CG if for all ppt adversary A the advantage AdvAS2

A,CG(λ) defined below is
neg(λ). ∣∣Pr

[
A(gp, hp, hq, g

a
pg
b
q, h

c
p) = 1

]
− Pr

[
A(gp, hp, hq, g

a
pg
b
q, h

c
ph
d
q) = 1

]∣∣
where the probability is taken over CG $←− CBGen(1λ), gapg

b
q

$←− G, hcp
$←− Hp, hcph

d
q

$←− H and the random coin
consumed by A.

2.2.4 Generic Group Model Generic group model was explored formally first by Shoup [Sho97]. This
technique is used to prove the lower bounds of certain computational and decisional problems. This is
explored in terms of the computational power of any generic algorithm against the targeted problems. A
generic algorithm only assumes that each group element is uniquely encoded and does not exploit any other
properties of the underlying group structure.

2.3 Symmetric Key Encryption

A symmetric encryption scheme SE with keyspace K consists of two algorithms (E,D)

– E(κ,M): It takes the secret key κ ∈ K and a message M . Outputs the ciphertext ct.
– D(κ, ct): It takes the secret key κ ∈ K and a ciphertext ct. Outputs the message M or ⊥ if the decryption

fails.

The correctness can be stated as follows: for all κ ∈ K and all message M , we have D(κ,E(κ,M)) = M with
overwhelming probability.

We reproduce the security definition from [LG18]. A symmetric encryption scheme SE satisfies indistinguishability
under chosen plaintext attack (ind-cpa) if for all ppt adversaries A,

Advind-cpa
A,SE (λ) = Pr

[
Expind-cpa

SE (1λ,A) = 1
]
≤ neg(λ),

where Expind-cpa
SE (1λ,A) is defined in Figure 1.

In this work, we require the symmetric encryption SE to be key-binding [Fis99]. For any message M and
any two distinct secret keys κ, κ′ ∈ K, SE.D(κ′, SE.E(κ,M)) = ⊥. See [Fis99] for details.
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Game Description

Expind-cpaSE (1λ,A)

G ← GGen(1λ)

(M0,M1)← A(1λ,K)

β
$←− {0, 1}, κ $←− K

ctβ ← E(κ,Mβ)
Return 1 if β = β′ where β′ ← A(ctβ)

Fig. 1. IND-CPA for SE

3 Broadcast Encryption with Dealership

The introductory discussion of this paper shows that in none of the previous works [GSP+16,AD16,AD17]
[KLEL18] the notion of BED was considered with much detail. It is a necessity to formalize any primitive
before diving into construction. This section aims to scrutinize the requirements of a BED scheme, its system
requirements, and corresponding security requirements.

We start by informally describing what should be the requirements of a BED scheme. We follow it
up with, discussion on the entities of a BED algorithm and the interaction between them. Finally, we
formalize the security requirements of a BED scheme. As we mentioned earlier, all the previous works have
considered only three types of security for BED, namely “Group Privacy”, “Maximum User Accountability”
and “Message Indistinguishability from Unprivileged Users”. We also have justified in the Introduction that
hiding the message from the dealer is also important for a BED. Thus a separate security guarantee of
message indistinguishability from the dealer is also necessary. Notice that the dealer does not have an initial
state (like users have a user secret key). Moreover, the dealer is never a part of the privileged set. However,
the dealer has a significant role in the system. The dealer is the one who selects the privileged set S. The
dealer also computes the group token (ΓS) for S. Later this ΓS is used by the broadcaster in ciphertext
generation. More precisely, the broadcaster re-randomizes elements of ΓS before encrypting the message.
The dealer, therefore, gets a ciphertext which is a re-randomized version of what it has generated. Therefore,
it is crucial to argue that the dealer can not infer any information from the ciphertext. This discussion shows
that the view of a dealer is quite different from an unprivileged user and needs to be considered separately.

As a possible way to deal with this newly introduced entity, i.e., the dealer, we have introduced a new
notion of security in this work, that is “Message Indistinguishability from Dealer”. This security notion
guarantees that a dealer can not distinguish between two ciphertexts generated from the same group token.
This new notion of security guarantees that the dealer can not re-broadcast the content.

3.1 System Model

Entities of a BED system are key generation center (KGC), broadcaster(s), dealer(s), and end-users. KGC
generates a public key (pk), master secret key (msk), and user secret key (ski). KGC publishes the public
key, keeps the master secret key to itself, and distributes the user secret keys when invoked with a join
request. The broadcaster is the one with the digital content (message) that it wants to broadcast. Usually, a
broadcaster is a large organization that wants to sell digital content, and dealers are some sub-distributors
who in turn sell the digital content for some incentive. A dealer buys ciphertext from the broadcaster for a
privileged set of its choice. Broadcaster produces the ciphertext.

In the following section, we mention the roles of every entity of a BED model. Our considered model for
this work assumes no collusion between broadcaster-users or dealer-user. Whereas users (more specifically,
unprivileged users) can collude between themselves. Whenever a dealer buys ciphertext, it also commits to
a value k for the maximum size of the set S. The dealer in our model of BED is “semi-honest but curious”3.
Below, we give a complete run of the protocol in terms of the interaction between the entities.

3 A semi-honest but curious adversary computes the group token honestly by following the protocol. An adversary
can try to be dishonest about the committed set size k.
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1. At the beginning, a key generation center runs BED.Setup taking as input the security parameter λ and
the maximal size of the set of users n and produces (pk,msk). It publishes the public parameters pk and
keeps the master secret key msk to itself.

2. When invoked with a join request for a user i, KGC computes the user’s secret key ski using BED.KeyGen
for user i ∈ [n] and send the user’s secret key via a secure channel.

3. The dealer selects a group of the user S ⊆ [n] of size k′.
4. The dealer generates a group token ΓS using BED.GroupGen and gives it to the broadcaster along with

the value k such that k′ = |S| ≤ k ≤ n. The dealer sends S to every user in the privileged set via a
secure channel.

5. The broadcaster verifies the group token with BED.Verify and upon verification generates ciphertext CTS
using ΓS for the set S and broadcast CTS .

6. Any end-user can decrypt the message M using their secret key ski if i ∈ S.

3.2 Definition

A broadcast encryption with dealership framework is a three-party4 protocol where a dealer acts as a
middleman in between broadcaster and end-users. Precisely, a dealer buys digital content for a privileged
set to serve the end-users. We give a formal definition of BED next refurbished from the earlier works
[GSP+16,AD16,AD17,KLEL18]. A BED is a tuple of six ppt algorithms BED = (BED.Setup,BED.KeyGen,
BED.GroupGen, BED.Verify,BED.Encrypt,BED.Decrypt)

– (pk,msk)← BED.Setup(1λ, n): It takes input the maximal size of the set of receivers n and the security
parameter λ and outputs public parameter pk and a master secret key msk.

– (ski)← BED.KeyGen(msk, i): On invocation with pk,msk and a user identity i, it outputs secret key ski
for user i.

– (ΓS , k)← BED.GroupGen(pk, k, S): It takes input a set of users S ⊆ [n] of size k′ and a threshold value k
such that |S| = k′ ≤ k where k is the (maximum) number of users the dealer wishes to serve. It returns
a tuple (ΓS , k) where ΓS is a group token for the set S.

– (0 ∨ 1) ← BED.Verify(pk, ΓS , k): On input pk, a group token ΓS and a number k ∈ [n] which is the
(maximum) number of users for which this token is created, it verifies whether |S| ≤ k or not.

BED.Verify(ΓS , pk, k) =

{
1, if |S| ≤ k
0, otherwise.

– (CTS)← BED.Encrypt(pk, ΓS ,M): It takes the public key pk and a verified group token ΓS and a message
M and outputs ciphertext CTS .

– (M)← BED.Decrypt(pk, ski, (S,CTS)): On input pk, ski and a cipher text CTS for a set S, BED.Decrypt
outputs message M if i ∈ S.

Correctness. A BED scheme is said to be correct if (pk,msk) ← BED.Setup(1λ, n), for all S ⊂ [n],
(ΓS , k) ← BED.GroupGen(pk, k, S), and CTS ← BED.Encrypt(pk, ΓS ,M) then for all i ∈ S, the following
condition holds:

BED.Decrypt(pk,BED.KeyGen(msk, i), (S,CTS)) = M.

3.3 Security Definition

So far, we have discussed the security requirements of BED informally. The following section formalizes those
security notions. To an extent, we would follow the definition given by [AD16]. We would modify or add to
their definition as required.

4 Precisely, BED accommodates three different entities.
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3.3.1 Group Privacy This security model captures the requirement that from a group token ΓS , the
broadcaster does not get any information but the cardinality of the underlying set S ⊆ [n]. A BED scheme
BED satisfies group privacy (priv) if for all ppt adversaries A,

Advpriv
A,BED(λ) = Pr

[
Exppriv

BED(1λ,A) = 1
]
≤ neg(λ),

where Exppriv
BED(1λ,A) is defined in Figure 2.

Game Description

ExpprivBED(1λ,A)

G ← GGen(1λ)

(pk,msk)← BED.Setup(1λ, n)
(S0, S1)← A(pk) s.t. |S0| = |S1| = k ≤ n
Sample β

$←− {0, 1}, ΓSβ ← BED.GroupGen(pk, k, Sβ)
β′ ← A(pk, ΓSβ )
Return 1 if β = β′.

Fig. 2. Group Privacy for BED

3.3.2 Maximum User of Accountability This security model captures the requirement that a group
token ΓS can not encode a privileged set S of size bigger than its claimed size k. A BED scheme BED satisfies
maximum user of accountability (mua) if for all ppt adversaries A,

Advmua
A,BED(λ) = Pr

[
Expmua

BED(1λ,A) = 1
]
≤ neg(λ),

where Expmua
BED(1λ,A) is defined in Figure 3.

Game Description

Expmua
BED(1λ,A)

G ← GGen(1λ)

(pk,msk)← BED.Setup(1λ, n)
(ΓS∗ , k)← A(pk)
Return 1 if the following holds:
BED.Verify(pk, ΓS∗ , k)→ 1 and |S∗| > k

Fig. 3. Maximum User Accountability for BED

3.3.3 Message Indistinguishability for Dealer under CPA This security model captures the requirement
that given a ciphertext CTS , the dealer can not get any information about the underlying message M . A
BED scheme BED satisfies message indistinguishability for dealer (cpaD) if for all ppt adversaries A,

AdvcpaD
A,BED(λ) = Pr

[
ExpcpaD

BED (1λ,A) = 1
]
≤ neg(λ),

where ExpcpaD
BED (1λ,A) is defined in Figure 4.

3.3.4 Message Indistinguishability for Unprivileged Users under CPA This security model captures
the requirement that given a ciphertext CTS , no unprivileged user can get any information about the
underlying messageM even if they collude together. A BED scheme BED satisfies message indistinguishability
for unprivileged user (cpaU ) if for all ppt adversaries A,

AdvcpaU
A,BED(λ) = Pr

[
ExpcpaU

BED (1λ,A) = 1
]
≤ neg(λ),

where ExpcpaU
BED (1λ,A) is defined in Figure 5.
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Game Description

ExpcpaDBED (1λ,A)

G ← GGen(1λ)

(pk,msk)← BED.Setup(1λ, n)
(ΓS ,M0,M1)← A(pk) for |S| ≤ k ≤ n
where ΓS ← BED.GroupGen(pk, k, S)

Sample β
$←− {0, 1}, CTS,β ← BED.Enc(pk, ΓS ,Mβ)

β′ ← A(pk,CTS,β)
Return 1 if β = β′.

Fig. 4. Message Indistinguishability from Dealer for BED

Game Description Oracle Description

ExpcpaUBED (1λ,A) Osk(i)

G ← GGen(1λ) Qsk ← Qsk ∪ {i}
(pk,msk)← BED.Setup(1λ, n) Run ski ← BED.KeyGen(msk, i)
Qsk ← φ Return ski
(S,M0,M1)← AOsk(·)(pk) such that |S| ≤ k ≤ n
ΓS ← BED.GroupGen(pk, k, S)

Sample β
$←− {0, 1}, CTS,β ← BED.Enc(pk, ΓS ,Mβ)

β′ ← AOsk(·)(pk,CTS,β)
Return 1 if β = β′ and Qsk ∩ S = φ.

Fig. 5. Message Indistinguishability from Unprivileged Users for BED

4 Inadequacy of Existing Schemes

The introduction of this paper claimed all the existing schemes are insufficient. Given the formal definition
and security models in the last section, we justify our above claim in this section. For the sake of completeness,
we first recall the constructions of all the existing schemes [AD16,AD17,KLEL18]. This is then followed by
critical discussions of the proofs of the respective papers. More precisely, we then analyze the security
arguments for group privacy and the maximum user accountability of all the papers and argue that the
proofs are incorrect. We found concrete attacks on the group privacy of all those constructions. We conclude
this section with descriptions of the attacks in detail.

4.1 Overview of Existing Works

We describe all the constructions briefly as per our discussion above. All the papers [AD16,AD17,KLEL18]
did not follow a consistent notation. In the following, we bring them into a common notation that we will
follow throughout the paper. Firstly, recall that all the existing papers [AD16,AD17,KLEL18] instantiates in

the bilinear pairing group system. Therefore, we assume existence of BG = (p,G,GT , e)
$←− BGen be a prime

order symmetric bilinear pairing group system throughout this section, where G,GT are groups of prime
order p and e : G × G → GT is the bilinear mapping. Let n denote the maximal number of receivers. Let
ID = {ID1, . . . , IDn} be the set of identifiers where IDi ∈ Z+ and λ is the security parameter. The privileged
user set S ⊆ ID is of size k′. Let k ≤ n be the maximum allowed size of S. Let R be the revoked user set and
v is maximum number of revocation possible. We have omitted the decryption function from the description
as that is not necessary for our discussion. For a more detailed description, readers are recommended to take
a look at [AD16,AD17,KLEL18].

4.1.1 Brief Description of BED Scheme of [AD16] Authors of [AD16] presented their construction
from a key encapsulation mechanism with dealership (KEMD). The construction is as follows.

– (pk,msk)← KEMD.Setup(1λ, n): Generate the public and private key as follows,
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1. Let g, h be generators of the group G and let H : {0, 1}∗ → Z∗p be a cryptographically secure hash
function.

2. Sample α
$←− Zp and set master key msk = (α, h) and publish

pk =
(
BG, g, gα, . . . , gα

n

, e(g, h), hα, H, ID
)
.

– (ski)← KEMD.KeyGen(pk,msk, i) : Set user secret key as

ski = h
1

α+H(IDi)

and send it to user i via a secure channel.
– (ΓS , k) ← KEMD.GroupGen(pk, S) : For a group of users S = {ID1, ID2, . . . , IDk′} ⊆ [n], generate the

group token ΓS = (ω1, ω2, ω3, ω4) as,

1. Define PS(x) =
∏

IDj∈S
(x+H(IDj)) =

k′∑
i=0

Pix
i. Pi’s are functions of H(IDj) for IDj ∈ S.

2. Sample s
$←− Zp and generate ΓS = (ω1, ω2, ω3, ω4) as,

ω1 = h−sα

ω2 = g
sPS(α)
n−k

ω3 = gsPS(α)

ω4 = e(g, h)s
.

3. Set a group threshold k for group size S where k ≥ k′ = |S|.
4. Send S to users and publish (ΓS , k).

– (0 ∨ 1)← KEMD.Verify(ΓS , pk, k): The verification work as following,

KEMD.Verify(ΓS , pk, k) =

{
1, if e(ω2, g

αk) = e(ω3, g
αn)

0, otherwise.

– (Hdr,K) ← KEMD.Encrypt(ΓS, pk): Extract (ω1, ω3, ω4) from ΓS , sample r
$←− Zp and set K = ωr4 and

Hdr = (C1, C2) = (ωr1, ω
r
3), and then publish Hdr and keep K secret.

4.1.2 Brief Description of BED Scheme of [AD17] This follow-up work by the same authors did not
use a KEMD. The BED construction of [AD17] is the following.

– (pk,msk)← BED.Setup(n, 1λ) :

1. Sample α
$←− Zp and set,

pk = (BG, l0, lα0 , . . . , lα
n

0 , g, gα, . . . , gα
n+1

, e(g, g), e(g, l0), ID); msk = (α),

where g is generator of G and l0 is a random non-identity element of G.
2. Keep msk secret and publish pk.

– (ski) ← BED.KeyGen(pk,msk, i) : Sample hi
$←− G and ri

$←− Zp and generate ski = (d1,i, d2,i, d3,i, labeli)
as,

d1,i = (hi · gri)
1

α(α+IDi)

d3,i =
(
hi · l

d2,i
0

) 1
α

d2,i = ri

labeli =
(
hi, h

α
i . . . , h

αn

i

)
.

Send ski to user i through a secure channel.
– (ΓS , k) ← BED.GroupGen(pk, S): Select a threshold value k and a group S = {IDi1 , . . . , IDik′} ⊆ [n] of
k′ many users where k′ ≤ k and generate group token (ΓS) as following,
1. Define PS(x) :=

∏
IDij∈S

(x+ IDij ).

2. Sample s
$←− Zp and generate group token ΓS = (ω1, ω2, ω3, ω4, ω5) as following,

ω1 = gsαPS(α)

ω4 = e(g, g)−s
ω2 = gsα

n−k+1PS(α)

ω5 = e(g, l0)s
ω3 = g−sα.
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Send S to subscribed users via a secure channel and publish (ΓS , k).
– (0 ∨ 1)← BED.Verify(ΓS , pk, k): Parse ΓS = (ω1, ω2, ω3, ω4, ω5) and checks,

BED.Verify(ΓS , pk, k) =

{
1, if e(ω1, g

αn) = e(ω2, g
αk)

0, otherwise.

– (ct) ← BED.Encrypt(ΓS , pk,M): Parse ΓS = (ω1, ω2, ω3, ω4, ω5), sample r
$←− Zp and compute ciphertext

as
ct = (ct1, ct2, ct3, ct4) = ((ωr1, ω

r
3, ω

r
4,M · ωr5)).

4.1.3 Brief Description of BED Scheme of [KLEL18] The construction of [KLEL18] the acronym
RR was used for recipient revocation. They referred to their scheme as RR-BED.

– (pk,msk)← RR-BED.Setup(1λ, n): Choose α, β
$←− Zp, h

$←− G and compute,

pk =(BG, h, hα, . . . , hα
n

, g, gα, . . . , gα
n

,

gαβ , . . . , gα
n+1β , e(g, g), e(g, h), ID)

msk =(α, β).

Keep msk secret and publish pk.

– (ski)← RR-BED.KeyGen(pk,msk, i): Sample li
$←− G and ri

$←− Zp and generate ski = (d1,i, d2,i, d3,i, labeli)
as,

d1,i = (li · gri)
1

αβ(α+IDi)

d3,i =
(
lih

d2,i
i

) 1
αβ

d2,i = ri

labeli =
(
li, l

α
i . . . , l

αn

i

)
.

Send ski to user i through a secure channel.
– (ΓS)← RR-BED.GroupGen(pk, S, k, v): Select a threshold value k and a group S = {IDi1 , . . . , IDik′} ⊆ [n]

of k′ many users where k′ ≤ k and generate group token (ΓS) as following,
1. Define PS(x) :=

∏
IDij∈S

(x+ IDij ).

2. Sample s
$←− Zp and set ΓS = (ω1, ω2, ω3, ω4, ω5) as,

ω1 = gsαβPS(α)

ω4 = e(g, g)−s
ω2 = gsα

n−v+1βPS(α)

ω5 = e(g, h)s ω3 = [ω̂i] = [g−sα
i

]1≤i≤k+1.

Send S to subscribed users via a secure channel and publish (ΓS , k).
– (0 ∨ 1)← RR-BED.Verify(ΓS , pk, k): Parse ΓS = (ω1, ω2, ω3, ω4, ω5) and check,

BED.Verify(ΓS , pk, k) =

{
1, if e(ω1, g

αn) = e(ω2, g
αk)

0, otherwise.

– (ct)← RR-BED.Encrypt(ΓS , pk,M): Parse ΓS = (ω1, ω2, ω3, ω4, ω5), sample r
$←− Zp and compute ciphertext

as
ct = (ct1, ct2, ĉt1, . . . , ĉtk+1, ct4) = ((ωr1, ω

r
3, ω̂1

r
, . . . , , ω̂k+1

r
,M · ωr5)).

– (ct′)← RR-BED.Revoke(ct, R, pk): Parse ct as (ct1, ct2, ĉt1, . . . , ĉtk+1, ct4). Let R = {IDi1 , . . . , IDil} ⊆ S
where l ≤ v. Generate ct′ = (ct′1, ct

′
2, ĉt

′
1, ct

′
3) as,

1. If R = φ, ct′ = (ct′1, ct
′
2, ĉt

′
1, ct

′
3) = (ct1, ct2, ĉt1, ct4).

2. If R 6= φ, it compute

∏
IDj∈R

(x+IDj)∏
IDj∈R

(IDj)
=

l∑
i=0

fiα
i where f0 = 1. and H =

l∏
i=2

ĉt
fi
i = g

−t
l∑
i=2

fiα
i

. Set

y = t
l∑
i=0

fiα
i where t = rs (the random coin chosen by dealer and broadcaster) and compute,
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ct1 =g
αβy

 ∏
IDj∈G

(α+IDi)


ĉt1 =g−αy

ct2 =e(g, g)−y

ct3 =M · e(g, h)y.

4.2 Flaws in Security Argument of Previous Works

All three constructions [AD16,AD17,KLEL18] followed a similar path to argue the security of group privacy
and maximum user accountability. To keep our presentation concise and straightforward, we discuss the flaw
in the security argument of [AD16]. We omit the discussion of flaws in [AD17,KLEL18] as the flaws are
exactly the same as in [AD16].

4.2.1 Issue with Group Privacy Recall from Section 3.3.1, the group privacy security game of BED
allows an adversary to submit two privileged sets of the same size S0 and S1. The challenger chooses a

bit b
$←− {0, 1} and returns a group token for Sb. The adversary wins if it correctly guesses b. All three

constructions [AD16,AD17,KLEL18] argued that any adversary could predict b if and only if it can compute
the randomness used in the challenge group token. They also argued that computing the group token ΓSb by
any adversary is the equivalent to computing the randomness s from ω−s where it knows ω from the public
parameter. This is equivalent to solving the discrete logarithm problem in G.

We think this argument of security is incorrect. If one follows the argument above carefully, [AD16]
argued that if an adversary can break the discrete logarithm problems, then we can also break their scheme.
In provable security, we usually do the opposite. Precisely, the argument should be the converse, i.e., if an
adversary can break the group privacy security of [AD16] then we can also break the discrete logarithm
problem.

Looking ahead, it is, in fact, easy to check [AD16] is not secure. We have described a concrete attack
on [AD16] in the security settings of group privacy in Section 4.3.1. The attack idea is simply the public
parameters, and the group token forms a DDH instance for any adversarially chosen S ⊆ [n]. This attack
also works on the later works [AD17,KLEL18] as we will see in Section 4.3.

4.2.2 Issue with Maximum User Accountability Recall, we denote S as the privileged set and k be
the maximum allowed size for S. Maximum user accountability security ensures that a group token ΓS can
not pass the verification stage if |S| > k. To argue this security, existing works [AD16,AD17,KLEL18] used
the standard (f, n)-DHE assumption defined in [GSP+16]. Informally, the (f, n)-DHE problem is as following,

The (f, n)-Diffie-Hellman Exponent Assumption: Says, given an instance
(
G, g, gα, . . . , gαn

)
where

G = (e,G,GT , p)
$←− BGen is a symmetric bilinear pairing group system and g be a random generator

of G and α
$←− Zp. The problem is to find a pair (f(x), gf(α)) where f(x) is a polynomial of degree

n′ > n.

We discuss the security flaw in the security proof of [AD16] and reiterate that the other two constructions
[AD17,KLEL18] also use a similar argument. To explain the problem in the proof of [AD16], we present a
gist of their proof. Let A, an adversary, trying to break the maximum user accountability of [AD16]. Let B
be another adversary trying to solve the (f, n)-DHE problem. Adversary B uses A as a subroutine. Given the
(f, n)-DHE problem instance, B simulates the required public parameters for A (description of simulation is
not required here). B also submits challenge value k as the maximum size of the privileged set. A compute
a privileged set S∗ such that |S∗| = k′ > k and generate the group token,

ΓS∗ = (ω̂1, ω̂2, ω̂3, ω̂4) =
(
h−sα, gsα

n−kP̂ (α), gsP̂ (α), e(g, h)s
)

where s ∈ Zp, P̂S∗(x) =
∏

ID∈S∗
(x + H(ID)). A sends (ΓS∗ , S

∗) to B 5. Now the argument they provided

was, set f(x) = sxn−kP̂S∗(x). Notice P̂S∗(x) is a polynomial of degree k′. So, f(x) is a polynomial of degree
n− k + k′ > n as k′ > k. So they claimed

(
(f(x), ω̂2 = gf(α)

)
is the (f,N)-DHE solution for B.

5 Note that, BED does not allow dealer to send the description of privileged set S∗ for which the token is generated.
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The following section discusses the inconsistencies in their security arguments,

– Note that A can generate a valid gP̂S∗ (α) from the pk as long as |S∗| = k′ ≤ n. A samples s
$←− Zp and

computes ΓS∗ . But the problem is A which models the dealer in a BED system can not submit s used
in generating ΓS∗ . So, B can not compute f(x) = sxn−kP̂S∗(x).

– Also observe that, A in all the security arguments of [AD16,AD17,KLEL18] submits (ΓS∗ , S
∗) as a

challenge. Submitting S∗ is not consistent/permitted in the security definition of maximum user accountability
in Section 3.3.2. In fact, the group privacy security model (Section 3.3.1) dictates that A which models
the dealer here, should not reveal the set description of S∗. Also giving (ΓS∗ , S

∗) together does not have
any significance.

Now if we consider A does not submit S∗ (the privileged user set) and/or s (the randomness) with it’s

challenge, then the security proof does not hold. As B can not construct P̂S∗(x) as well as f(x) without
knowing S∗ and/or s. Hence the simulation they provided is incorrect.

4.3 Attacks on the Group Privacy of Existing Works

4.3.1 Description of Attack on [AD16] We are all set to show [AD16] is not secure in the “group
privacy” security model as described in Section 3.3.1.

Remember from Section 4.1.1, the public parameter of [AD16] contains pk =
(
G, g, gα, . . . , gαn , hα, H, ID

)
where g and h are random generator of G. Let adversary choose any S ⊆ [n]. The adversary can easily
compute gPS(α) using pk as PS(x) =

∏
IDj∈S

(x + H(IDj)). Also recall, group token ΓS for set S contains

ΓS = (ω1, ω2, ω3, ω4) where,

ω1 = h−sα

ω2 = g
sPS(α)
n−k

ω3 = gsPS(α)

ω4 = e(g, h)s
.

The security game in Section 3.3.1 allows an adversary to choose any two sets S0 and S1 of size k′ ≤ n.

Challenger generates group token for Sb where b
$←− {0, 1}, to which adversary has to guess b.

Note that, gPSb (α) and ΓSb together forms a DDH tuple and therefore evaluating symmetric bilinear
pairing breaks the group privacy security for b ∈ {0, 1}. The concrete attack is as follows.

Assume the adversary has chosen any S0, S1 ⊆ [n] with |S0| = |S1| = k′ ≤ n. The challenger chooses a

s and a random bit b
$←− {0, 1} and publishes the group token (ΓSb , k), where k′ ≤ k. Adversary computes

gPS0 (α) using pk. Adversary can do so as k′ ≤ n. Now the adversary evaluate the following pairings,

(
gPS0 (α), ω1

)
= e (g, h)

−sαPS0 (α)

e (ω3, h
α) = e(g, h)sαPSb (α)

From the above two pairings adversary can easily compute b as,

b =

{
0 if e(gPS0 (α), ω1)× e(ω3, h

α) = 1

1 otherwise.
. (1)

Note that, if the random bit b chosen by the challenger is 0, e(ω3, h
α) would indeed be e(g, h)sαPS0 (α), and

the product e
(
gPS0 (α), ω1

)
×e(ω3, h

α) would be 1. Thus the adversary guesses b correctly with overwhelming
probability.
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4.3.2 Description of attack on [AD17] The construction of [AD17] suffer from similar vulnerability.
Precisely, the pk in [AD17] contains (g, gα, . . . , gα

n

). Here also adversary can easily compute gPS(α) using pk
as PS(x) =

∏
IDij∈S

(x+ IDij ). Description of group token in this case is ΓS = (ω1, ω2, ω3, ω4, ω5) as following,

ω1 = gsαPS(α)

ω4 = e(g, g)−s
ω2 = gsα

n−k+1PS(α)

ω5 = e(g, l0)s
ω3 = g−sα.

Proceeding similar to the previous attack, the adversary chooses two privileged sets of equal size, S0, S1 and

submits those to challenger. The challenger chooses b
$←− {0, 1} and returns group token for Sb. The group

token Sb contains ω1 = g−sα and ω3 = gsPSb (α). The adversary generates gPS0 (α) from the public parameters.
Adversary proceeds by computing the following pairings e

(
gPS0 (α), ω3

)
and e(ω1, g).

e
(
gPS0 (α), ω3

)
= e(g, g)−sαPS0 (α)

e(ω1, g) = e(g, g)sαPSb (α)

With this adversary guesses b as,

b =

{
0 if e

(
gPS0 (α), ω3

)
× e(ω1, g) = 1

1 otherwise.
. (2)

That is, if the random bit b chosen by the challenger is 0, then the product e
(
gPS0 (α), ω3

)
× e(ω1, g) indeed

be 1. Thus the adversary can guess b correctly with overwhelming probability.

4.3.3 Description of Attack on [KLEL18] This construction uses a similar kind of idea used in [AD17]
to hide the set information in the group token. So a similar type of attack is possible for this construction
as well. The public parameters in [KLEL18] contains

pk = (G, h, hα, . . . , hαn , g, gα, . . . , gαn , gαβ , . . . , gαn+1β , e(g, g), e(g, h), ID). Like previous two constructions
here also adversary can compute gαβPSb (α) as PS(x) =

∏
IDij∈S

(x+ IDij ). Group token in their construction

ΓS = (ω1, ω2, ω3, ω4, ω5) as following,

ω1 = gsαβPS(α)

ω4 = e(g, g)−s
ω2 = gsα

n−v+1βPS(α)

ω5 = e(g, h)s ω3 = [ω̂i] = [g−sα
i

]1≤i≤k+1.

Our attack here would be, the adversary generates gαβPS0 (α) from the public parameters. Adversary proceeds
by computing the pairings e

(
gαβPS0 (α), ω̂1

)
and e(ω1, g

α).

e
(
gαβPS0 (α), ω̂1

)
= e(g, g)−sα

2βPS0 (α)

e(ω1, g
α) = e(g, g)sα

2βPSb (α)

With this adversary guesses b as,

b =

{
0 if e

(
gαβPS0 (α), ω̂1

)
× e(ω1, g

α) = 1

1 otherwise.
. (3)

Here also, if the random bit b chosen by the challenger is 0, then the product e
(
gαβPS0 (α), ω̂1

)
× e(ω1, g

α)
indeed be 1. Thus the adversary can guess b correctly with overwhelming probability.

5 BED with Constant-size Ciphertext and Key (bedC)

Here we present our first broadcast encryption with dealership (bedC) construction. Recall that, in a BED,
a message is encrypted for a set of users. Our first BED construction here achieves constant-size ciphertext
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i.e., the ciphertext size is independent of the size of the set. This construction is heavily influenced by the
broadcast encryption of [GLR18]. Note that, the broadcast encryption of [GLR18] does not have anonymous
security. Our novelty in this construction is primarily that we still manage to get the group privacy security
(priv).

5.1 Construction

It is defined by the following ppt algorithms.

– Setup(1λ, n):

1. CG = (p, q,G,H,GT , gp, gq, hp, hq, e)← CBGen(1λ) where G,H,GT are cyclic groups of order N = pq
and e is an admissible type-3 bilinear map. Gr (resp. Hr) is a subgroup of G (resp. H) of order r.
Further, e(gp, hq) = e(gq, hp) = 1.

2. Sample α, γ
$←− ZN .

3. Set msk = (α, γ, hp, gq, hq).
4. Set pk = (gp, g

α
p , . . . , g

αn

p , gγp , u1 = hαp , . . . , un = hα
n

p , e(gp, hp)
γ ,H) where H : GT → K is a universal

hash function for encapsulation key space K = {0, 1}m where m = poly(λ).

– KeyGen(msk, xi): Set skxi = h
γ

(α+xi)
p .

– GroupGen(pk, S, k):

1. Suppose S = {ID1, . . . , IDk′} where k′ ≤ k ≤ n.
2. Set PS(z) =

∏
y∈S

(z + y) = b0 + b1z + . . .+ bkz
k′ where |S| = k′.

3. Sample s
$←− ZN .

4. Output (k, ΓS) = (k, ω1, ω2, ω3, ω4) where

ω1 = gγsp

ω3 = gα
n−ksPS(α)

p

ω2 = gsPS(α)p

ω4 = e(gp, hp)
γs
.

– Verify(pk, ΓS , k): If e(ω2, h
αn

p ) = e(ω3, h
αk

p ), output 1 else 0.
– Enc(pk, ΓS ,M):

1. Sample r
$←− ZN .

2. Output CTS = (ct1, ct2, ct0) = (ωr1, ω
r
2,M ⊕ H(ωr4))

– Dec(pk, (sk, x), (CTS , S)):

1. Parse CTS = (ct1, ct2, ct0) = (gγtp , g
tPS(α)
p ,M ⊕ H(e(gp, hp)

γt)).

2. Compute PS\{x}(z) =
∏

y∈S\{x}
(z + y) = a0 + a1z + . . .+ ak−1z

k−1.

3. Compute A = e(ct2, sk) · e

(
ct1,

∏
i∈[1,k]

haiα
i

p

)−1
.

4. Output ct0 ⊕ H(Aa
−1
0 ).

Correctness. e(ct2, sk) = e(g
tPS(α)
p , h

γ
(α+x)
p ) = e(gp, hp)

γtPS\{x}(α).

e(ct1,
∏

i∈[1,k]
haiα

i

p ) = e(gγtp , h
PS\{x}(α)−a0
p ) = e(gp, hp)

γtPS\{x}(α)e(gp, hp)
−a0γt.

Thus, H(Aa
−1
0 ) = H(e(gp, hp)

γt) and the correctness holds naturally.

5.2 Security

We prove the above construction achieves security in all four security models.
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5.2.1 Group Privacy

Theorem 1. Let there exist a ppt adversary A breaking the group privacy of bedC with a non-negligible
advantage. Then, there is a ppt adversary B which has a non-negligible advantage in solving the Decisional
Diffie-Hellman problem in Gp where CG = (p, q, gp, gq, hp, hq,G,H,GT , e)← CBGen(1λ) such that Gp = 〈gp〉.

Proof. We are given a ppt adversary A of priv security, and we want to construct a ppt adversary B for DDH

that uses A as a subroutine. Given a DDHC problem instance (gp, gq, hp, hq, g
a
p , g

ab
p , Z) for a, b

$←− Zp, B does
the following:

– Sample α
$←− Zp.

– Implicitly set γ = a and s = b.
– Publish the public key pk = (gp, g

α
p , . . . , g

αn

p , gap , h
α
p , . . . , h

αn

p , e(gp, hp)
γ ,H).

– Given pk, A outputs two sets (S0, S1) such that |S0| = |S1| = k′ < n.

– B then chooses β
$←− {0, 1}, and return the token ΓSβ = (ω1, ω2, ω3, ω4) as following:

ω1 = gabp

ω3 = Zα
n−kPSβ (α)

ω2 = ZPSβ (α)

ω4 = e(ω1, hp)
.

– A outputs β′.
– If β′ = β, then B outputs 1 else 0.

As α is chosen uniformly at random, the public key pk is properly distributed. If Z = gbp then ΓSβ is a valid
group token to A, and if Z is chosen uniformly random then both ω2 and ω3 are just two random elements
of Gp.

Then, the advantage of B in the DDH game is same as the adversary A guessing β with probability
anything other than guessing randomly. So,

Pr
[
BDDHC ⇒ 1

]
≥ Pr

[
Apriv

bedC
⇒ 1

]
Pr
[
BDDHC ⇒ 1

]
≥ Pr

[
Apriv

bedC
⇒ 1|Z = gbp

]
Pr
[
Z = gbp

]
+
∑
p−1

Pr
[
Apriv

bedC
⇒ 1|Z $←− Gp

]
Pr
[
Z

$←− Gp
]

1

p
Pr
[
Apriv

bedC
⇒ 1|Z = gbp

]
≤
∣∣∣∣Pr
[
BDDHC ⇒ 1

]
− p− 1

p
Pr
[
Apriv

bedC
⇒ 1|Z $←− Gp

]∣∣∣∣
1

p
Pr
[
Apriv

bedC
⇒ 1|Z = gbp

]
≤
∣∣∣∣Pr
[
BDDHC ⇒ 1

]
− p− 1

2p

∣∣∣∣
1

p
Pr
[
Apriv

bedC
⇒ 1|Z = gbp

]
≤
∣∣Pr
[
BDDHC ⇒ 1|Z = gbp

]
Pr
[
Z = gbp

]
+
∑
p−1

Pr
[
BDDHC ⇒ 1|Z $←− Gp

]
Pr
[
Z

$←− Gp
]
− p− 1

2p

∣∣∣∣∣
Pr
[
Apriv

bedC
⇒ 1|Z = gbp

]
≤
∣∣∣∣Pr
[
BDDHC ⇒ 1|Z = gbp

]
+ (p− 1)

(
1

2
− 1

2

)∣∣∣∣
AdvprivA,bedC ≤ AdvDDHC

B

5.2.2 Maximum Users Accountability Let us consider three random encoding function σG : G →
{0, 1}mG , σH : H→ {0, 1}mH and σT : GT → {0, 1}mT w.l.o.g. mG ≤ mH ≤ mT .

18



Theorem 2. Let A be a ppt algorithm act as an adversary for the maximum user accountability security of
bedC in the generic group model. Let m be a bound on the total number of group elements A receives from
queries it makes to the oracles computing the group actions in G, H, GT and the bilinear map e. Then we
have that the advantage of A in the maximum user accountability security game of bedC is at most O(m2/p).

Proof. Let C denote an algorithm that simulates the generic bilinear group for A. To answer to oracle queries,
C maintains three lists,

LG = {(fG,i, σG,i) : i ∈ [0, ψG − 1]}
LH = {(fH,i, σH,i) : i ∈ [0, ψH − 1]}
LT = {(fT,i, σT,i) : i ∈ [0, ψT − 1]}

such that at each step ψ of the game, the relation ψG + ψH + ψT = ψ + 2n + 3 holds. Here f∗,∗ are
multivariate polynomials over 4 variables α, γ, r, s and σb,i are strings from {0, 1}mb , where b ∈ {G,H, T}.
In the course of this proof we use b ∈ {G,H, T} in the subscript to denote a representative of a general
groups if not mentioned otherwise. At the beginning of the game i.e., ψ = 0, the lists are initialized by
setting ψG = (n + 2), ψH = n and ψT = 1. The polynomials 1, α, . . ., αn and γ are assigned to fG,0, fG,1,
. . ., fG,n, fG,n+1; α, . . ., αn, are assigned to fH,1, fH,2, . . ., fH,n; and γ is assigned to fT,0.

These encodings for these polynomials are strings uniformly chosen from {0, 1}mb without repetition for
polynomials fb,∗. We assume that A queries the oracles on strings previously obtained from C and naturally
C can obtain the index of a given string σb,i in the list Lb. The oracles are simulated as follows.

Group Actions in G, H and GT . We describe this for the group G. We note that the group actions in
H and GT are simulated similarly. If A submits two strings σG,i and σG,j and a sign bit indicating addition
or subtraction. C first finds fG,i and fG,j corresponding to σG,i and σG,j respectively in LG and computes
fG,ψG = fG,i ± fG,j . If there exists an index k ∈ [0, ψG − 1], such that fG,ψG = fG,k, C sets σG,ψG = σG,k;

otherwise C sets σG,ψG
$←− {0, 1}mG \ {σG,0, σG,1, . . . , σG,ψG−1}, add (fG,ψG , σG,ψG) to LG, returns σG,ψG to

A and increment ψG by one.

Bilinear Map. If A submits two strings σG,i and σH,j , C first finds fG,i in LG corresponding to σG,i
and fH,j in LH corresponding to σH,j respectively and computes fT,ψT = fG,i ± fH,j . If there exists an

index k ∈ [0, ψT − 1], such that fT,ψT = fT,k, C sets σT,ψT = σT,k; otherwise C sets σT,ψT
$←− {0, 1}mT \

{σT,0, σT,1, . . . , σT,ψT−1}, add (fT,ψT , σT,ψT ) to LT , returns σT,ψT to A and increment ψT by one.
At this point, A produces a challenge (k, σ′G, σ

′′
G, σ

′′′
G , σ

′
T ) such that (f ′G, σ

′
G), (f ′′G, σ

′′
G), (f ′′′G , σ

′′′
G ) ∈ LG,

and (f ′T , σ
′
T ) ∈ LT and abort. Observe that, (f ′G, f

′′
G, f

′′′
G , f

′
T ) are polynomials of α, γ and s where α, γ will

be sampled by C and s by A. The generic group model ensures that C can verify f ′T = f ′G, f ′′′G = f ′′G · αn−k
and f ′′G · γ−1 · f ′T

−1 ∈ Span(fG,1, fG,2, . . . , fG,n).
Let v = (α, γ, r) denote the vector consisting of variables over which the polynomials are defined. Now

the simulator chooses at random α∗, γ∗, r∗
$←− Zp. Let v∗ = (α∗, γ∗, r∗). C assigns v∗ to the variables v. The

simulation provided by C is perfect unless for some i, j any of the following holds.

1. fG,i(v
∗)− fG,j(v∗) = 0 or some i 6= j but fG,i 6= fG,j .

2. fH,i(v
∗)− fH,j(v∗) = 0 or some i 6= j but fH,i 6= fH,j .

3. fT,i(v
∗)− fT,j(v∗) = 0 or some i 6= j but fT,i 6= fT,j .

We use Bad to denote the event that at least one of the above holds, and we’ll try to bound the probability
of Bad. If Bad does not happen, then the simulation was perfect. Let assume A has generated his challenge
for the set S, with |S| > k. So if Bad, does not happen A has no advantage in guessing ΓS over a random
guess. Now in the polynomial f ′′′G the highest possible degree of α is n if |S| ≤ k. If A tries to simulate any
group token where |S| > k then in the polynomial f ′′′G the highest degree of α is greater than n. Notice that

αn+i for some i ≥ 1 is independent of (1, α, . . . , αn). Also A does not have access to gα
n+i

, which is outside
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the span of pk. Thus, it has one and only option: do it itself. Probability that it guesses f ′′′G having no info

about gα
n+i

is negligible.
Now, we would like to bound the probability of Bad. This is where we utilize the result on random

assignment of polynomial due to Schwartz [Sch80]. Roughly speaking, the result states that for an n-variate

polynomial F (x1, . . . , xn) ∈ Zp[X1, . . . , Xn] of degree d, a random assignment x1, . . . , xn
$←− Zp make the

polynomial F evaluate to zero with probability at most d/p. For fixed i, j, (fG,i − fG,j) is a polynomial of
degree at most n+ 1, hence zero at random v∗ with probability at most (n+ 2)/p. For fixed i, j, fH,i− fH,j
is a polynomial of degree at most n, hence zero at random v∗ with probability at most n/p. For fixed i, j,
fT,i − fT,j is a polynomial of degree at most n(n + 1), hence zero at random v∗ with probability at most
n(n + 2)/p. There are totally

(
ψG
2

)
,
(
ψH
2

)
,
(
ψT
2

)
pairs of polynomials from LG, LH and LT respectively.

Note that, A is allowed to make at most m queries we have. Thus, ψG + ψH + ψT ≤ m+ 2n+ 3.
There are totally

(
ψG
2

)
,
(
ψH
2

)
,
(
ψT
2

)
pairs of polynomials from LG, LH and LT respectively. Note that,

A is allowed to make at most m queries we have. Thus, ψG + ψH + ψT ≤ m+ 2n+ 3. Then,

Pr[Bad] ≤
(
ψG
2

)
(n+ 2)/p+

(
ψH
2

)
n/p+

(
ψT
2

)
n(n+ 2)/p ≤ (m+ 2n+ 3)2 · n

2 + 4n+ 2

2p
.

So Pr [¬Bad] = 1− (m+ 2n+ 3)2 · n
2+4n+2

2p and Pr [A wins|¬Bad] = 2
2p−(m+2n+3)2·(n2+4n+2) .

Now

Pr [A wins] = Pr [A wins|¬Bad] Pr [¬Bad] + Pr [A wins|Bad] Pr [Bad] .

So if Bad does not happen then A “knows” nothing about those possible values where any two fb,i(x) =
fb,j(x) happen for 1 ≤ i < j ≤ ψb. Considering all this together probability that A wins is at most
O(m2/p).

5.2.3 Message Indistinguishability from Dealer Let us consider three random encoding functions
σG : G→ {0, 1}mG , σH : H→ {0, 1}mH and σT : GT → {0, 1}mT where w.l.o.g. mG ≤ mH ≤ mT .

Theorem 3. Let A be a ppt adversary against the message indistinguishability from dealer security game
of bedC in the generic group model. Let n be any natural number and m be a bound on the total number of
group elements A receives from queries it makes to the oracles computing the group actions in G, H, GT
and the bilinear map e. Then we have the advantage of A in the message indistinguishability from dealer
security game of bedC is at most

(m+ 2n+ 3)2 · n
2 + 4n+ 2

4p
.

Proof. Let C denote an algorithm that simulates the generic bilinear group for A. To answer oracle queries,
C maintains three lists,

LG = {(fG,i, σG,i) : i ∈ [0, ψG − 1]}
LH = {(fH,i, σH,i) : i ∈ [0, ψH − 1]}
LT = {(fT,i, σT,i) : i ∈ [0, ψT − 1]}

such that at each step ψ of the game, the relation ψG+ψH+ψT = ψ+2n+3 holds. Here f∗,∗ are multivariate
polynomials over 5 variables α, γ, s, y0, y1 and σb,i are strings from {0, 1}mb , where b ∈ {G,H, T}. In the
course of this proof we use b ∈ {G,H, T} in the subscript to denote a representative of a general groups
if not mentioned otherwise. At the beginning of the game i.e., ψ = 0, the lists are initialized by setting
ψG = (n+ 2), ψH = n and ψT = 1. The polynomials 1, α, . . ., αn and γ are assigned to fG,0, fG,1, . . ., fG,n,
fG,n+1; α, . . ., αn, are assigned to fH,1, fH,2, . . ., fH,n; and γ is assigned to fT,0.

These encodings for these polynomials are strings uniformly chosen from {0, 1}mb without repetition for
polynomials fb,∗. We assume that A queries the oracles on strings previously obtained from C and naturally
C can obtain the index of a given string σb,i in the list Lb. The oracles are simulated as follows.
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Group Actions in G, H and GT . We describe this for the group G. We note that the group actions in
H and GT are simulated similarly. If A submits two strings σG,i and σG,j and a sign bit indicating addition
or subtraction. C first finds fG,i and fG,j corresponding to σG,i and σG,j respectively in LG and computes
fG,ψG = fG,i ± fG,j . If there exists an index k ∈ [0, ψG − 1], such that fG,ψG = fG,k, C sets σG,ψG = σG,k;

otherwise C sets σG,ψG
$←− {0, 1}mG \ {σG,0, σG,1, . . . , σG,ψG−1}, add (fG,ψG , σG,ψG) to LG, returns σG,ψG to

A and increment ψG by one.

Bilinear Map. If A submits two strings σG,i and σH,j , C first finds fG,i in LG corresponding to σG,i
and fH,j in LH corresponding to σH,j respectively and computes fT,ψT = fG,i ± fH,j . If there exists an

index k ∈ [0, ψT − 1], such that fT,ψT = fT,k, C sets σT,ψT = σT,k; otherwise C sets σT,ψT
$←− {0, 1}mT \

{σT,0, σT,1, . . . , σT,ψT−1}, add (fT,ψT , σT,ψT ) to LT , returns σT,ψT to A and increment ψT by one.
At this point, A produces a challenge (k, σ′G, σ

′′
G, σ

′′′
G , σ

′
T ) such that (f ′G, σ

′
G), (f ′′G, σ

′′
G), (f ′′′G , σ

′′′
G ) ∈ LG,

and (f ′T , σ
′
T ) ∈ LT . Observe that, (f ′G, f

′′
G, f

′′′
G , f

′
T ) are polynomials of α, γ and s where α, γ will be sampled

by C and s by A. The generic group model ensures that C can verify f ′T = f ′G, f ′′′G = f ′′G · αn−k and

f ′′G · γ−1 · f ′T
−1 ∈ Span(fG,1, fG,2, . . . , fG,n). Finally, C sample β

$←− {0, 1} and computes f̂ ′G = f ′G · y0,

f̂ ′′G = f ′′G · y0 and f̂T = f ′T · yβ . C then adds (f̂ ′G, σ̂
′
G), (f̂ ′′G, σ̂

′′
G) ∈ LG, and (f̂T , σ̂T ) ∈ LT following the above

rules on group actions. At this point, C returns (σ̂′G, σ̂
′′
G, σ̂T ) to A who returns β′.

Let v = (α, γ, y0, y1) denote the vector consisting of variables over which the polynomials are defined.

Now the simulator chooses at random α∗, γ∗, y∗0 , y
∗
1

$←− Zp. Let v∗ = (α∗, γ∗, y∗0 , y
∗
1). C assigns v∗ to the

variables v. The simulation provided by C is perfect unless for some i, j any of the following holds.

1. fG,i(v
∗)− fG,j(v∗) = 0 or some i 6= j but fG,i 6= fG,j .

2. fH,i(v
∗)− fH,j(v∗) = 0 or some i 6= j but fH,i 6= fH,j .

3. fT,i(v
∗)− fT,j(v∗) = 0 or some i 6= j but fT,i 6= fT,j .

We use Bad to denote the event that at least one of the above holds and give the argument for the security
proof in steps. First, we show that if Bad does not happen, the adversary A will have no advantage in winning

the game over a random guess. Precisely, for a β
$←− {0, 1}, if A produces β′ then Pr[β = β′ : ¬Bad] = 1/2. To

see this, observe that all variables except yβ and y1−β are independent of the bit β. Assume yβ = r and recall

A has access to all the lists (LG, LH , LT ) and gets (σ̂′G, σ̂
′′
G, σ̂T ) as its challenge where (f̂ ′G, σ̂

′
G), (f̂ ′′G, σ̂

′′
G) ∈ LG,

and (f̂T , σ̂T ) ∈ LT . Observe that, f̂ ′G, f̂
′′
G, f̂T are respectively y∗0s, γ

∗y∗0sPS(α∗) and y∗βs. Where PS(α) is a

polynomial of degree at most n. It is clear that f̂T is a two-degree polynomial defined in the group GT . To
compute such f̂T , we mention that A can not use the polynomial lists LG and LH and challenge polynomials
f̂ ′G and f̂ ′′G. The only two-degree polynomials that can be constructed combining one polynomial from LG and
one from LH are α2 and αγ. Thus, the best A can do is to output its guess β′ at random and subsequently
Pr[β = β′ : ¬Bad] = 1/2.

Now, we would like to bound the probability of Bad. This is where we utilize the result on random
assignment of polynomial due to Schwartz [Sch80]. Roughly speaking, the result states that for an n-variate

polynomial F (x1, . . . , xn) ∈ Zp[X1, . . . , Xn] of degree d, a random assignment x1, . . . , xn
$←− Zp make the

polynomial F evaluate to zero with probability at most d/p. For fixed i, j, fG,i − fG,j is a polynomial of
degree at most n+ 1, hence zero at random v∗ with probability at most (n+ 2)/p . For fixed i, j, fH,i− fH,j
is a polynomial of degree at most n, hence zero at random v∗ with probability at most n/p . For fixed i, j,
fT,i − fT,j is a polynomial of degree at most n(n + 1), hence zero at random v∗ with probability at most
n(n + 2)/p . There are totally

(
ψG
2

)
,
(
ψH
2

)
,
(
ψT
2

)
pairs of polynomials from LG, LH and LT respectively.

Note that, A is allowed to make at most m queries we have. Thus, ψG + ψH + ψT ≤ m+ 2n+ 3. Then,

Pr[Bad] ≤
(
ψG
2

)
(n+ 1)/p+

(
ψH
2

)
n/p+

(
ψT
2

)
n(n+ 1)/p ≤ (m+ 2n+ 3)2 · n

2 + 4n+ 2

2p
.

Now, a simple argument shows that,
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Pr [β = β′] = Pr [β = β′|¬Bad] Pr [¬Bad] + Pr [β = β′|Bad] Pr [Bad]

≤ Pr [β = β′|¬Bad] (1− Pr [Bad]) + Pr [Bad]

=
1

2
+

1

2
Pr [Bad]

Also,

Pr [β = β′] ≥ Pr [β = β′|¬Bad] (1− Pr [Bad]) =
1

2
− 1

2
Pr [Bad] .

This two results were combined together to gives us

AdvcpaDA,bedC =

∣∣∣∣Pr [β = β′]− 1

2

∣∣∣∣ ≤ Pr [Bad]

2
≤ (m+ 2n+ 3)2 · n

2 + 4n+ 2

4p
.

5.2.4 Message Indistinguishability from Unprivileged Users

Theorem 4. Let there exist a ppt adversary A who can break the selective message indistinguishability
from unprivileged users of bedC with the non-negligible advantage, then it is possible to construct an efficient
adversary B that has a non-negligible advantage in breaking AS1 and AS2 in CG = (p, q, gp, gq, hp, hq,G,H,GT , e)←
CBGen(1λ).

Proof. This proof is done via a sequence of games. Precisely, we follow [GLR18] to apply Deja Q framework
[CM14,Wee16] to prove the security of BED in the standard model. Let us use S∗ to denote the target user
set and x1, . . . , xQ to denote the corrupted users.

Game0. This is same as the real game.

Game1. The following natural assumptions are made on the game.

– For all z ∈ S∗ ∪ {x1} ∪ . . . ∪ {xQ}, (α + z) is not divisible by p. Otherwise, B can easily solve the
subgroup decision problem AS1 by computing gcd((α+ z), N).

– For all i, j ∈ [q] and i 6= j, if xi 6= xj mod N then xi 6= xj mod q. Otherwise, B can easily solve the
subgroup decision problem AS2 by computing gcd((xi − xj), N).

Therefore, |Pr[X1]− Pr[X0]| ≤ AdvAS1

B (λ) + AdvAS2

B (λ).

Game2. We perform a conceptual change to Game1 here. Given the challenge user set S∗ of size k, pick

α, γ̃, hp
$←− Z2

N ×Hp. Define polynomial FS∗(z) =
∏
y∈S∗

(z + y) and set γ = γ̃ · FS∗(α) mod N . In pk, this

affects only gγp . The rest of the public parameters in pk are defined exactly the same as in Game1. The

secret keys corresponding to xi is skxi = h
γ̃·FS∗ (α)

(α+xi)
p for i ∈ [Q]. The challenge ciphertext is CTS∗ where

CTS∗ = (ct1, ct2, ct0) such that

ct1 = gtγ̃FS∗ (α)p , ct2 = gtFS∗ (α)p = ct
1/γ̃
1 , ct0 = M ⊕ H(e(ct1, hp)).

Note that, the replacement γ = γ̃ · FS∗(α) mod N doesn’t change the ciphertext distribution as γ̃ is
uniformly random and FS∗(α) 6= 0 mod p. Therefore, Pr[X2] = Pr[X1].

Game3. Another conceptual change to Game2 is performed here. Choose ct1
$←− Gp. The rest of the ciphertext

is defined the same as in Game2. As both ct0 and ct2 are functions of ct1, namely ct0 = M ⊕H(e(ct1, hp))

and ct2 = ct
1/γ̃
1 , such a replacement doesn’t change the distribution of the challenge ciphertext or the

challenge encapsulation key. Therefore, Pr[X3] = Pr[X2].

22



Game4. Here the subgroup decision assumption AS1 is used to choose ct1 from the group G uniformly
at random. Other ciphertext components and secret keys are generated similar to Game3. Therefore,
|Pr[X4]−Pr[X3]| ≤ AdvAS1

B (λ). We provide an informal argument here. Given the problem instance AS1,

B chooses α, γ̃
$←− ZN . This allows B to compute all of pk similar to Game3. As B holds both α and

γ̃, it can answer any key extraction query. In the challenge phase, it uses the target T of AS1 problem
instance to simulate CTS∗ . If T was from Gp, ct1 is normal whereas if T was from G, then ct1 is semi-
functional. Since ct1 determines the challenge ciphertext completely, the distribution from which T was
chosen determines if the challenge ciphertext is normal or semi-functional.

Game5. Here we change the distribution of a few public parameters u1 = hαp , . . . , un = hα
n

p and the secret keys
skx1

, . . . , skxQ . We modify u0 = hp as well. This is done via intermediate games {Game5,k,0,Game5,k,1}k∈[n+Q+1].
Note that, we define Game5,k,0 = Game4 and Game5,n+Q+1,1 = Game5.

– In Game5,k,0 we make following changes to ui for i ∈ [0, n].

hα
i

p · h
∑
j∈[k−1] rjα

i
j

q → hα
i

p · hrα
i

q · h
∑
j∈[k−1] rjα

i
j

q (4)

Then we also make changes to skxi for i ∈ [Q]

h
γ̃·FS∗ (α)

(α+xi)
p · h

∑
j∈[k−1]

rj ·γ̃·FS∗ (αj)
(α+xi)

q → h
γ̃·FS∗ (α)

(α+xi)
p · h

r·γ̃·FS∗ (α)

(α+xi)
q · h

∑
j∈[k−1]

rj ·γ̃·FS∗ (αj)
(α+xi)

q (5)

The boxed parts denote the modification Game5,k,0 introduces. We now show that this modification
is invisible to the adversary A via the following lemma.

Lemma 1. There exists a ppt adversary such that |Pr[XGame5,k,0 ]− Pr[XGame5,k−1,1
]| ≤ AdvAS2

B (λ).

Proof. The solver B is given the problem instance D = (gp, hp, g
a
pg
b
q, h

z
p) and the target T .

Setup. The adversary A sends the challenger target set S∗. B chooses α, γ̃
$←− Z2

N to generate
the public parameters gαp , . . . , g

αn

p , gγp efficiently where γ = γ̃ · FS∗(α) mod N . It then chooses

r1, α1, . . . , rk−1, αk−1
$←− ZN . The public parameters u1, . . . , un are generated as follows along

with u0 = hp which is used to compute e(gp, hp)
γ = e(gp, u0)γ . For

ui = Tα
i

h
∑
j∈[k−1] rjα

i
j

q .

B then outputs public parameter

pk = (gp, g
α
p , . . . , g

αn

p , gγp , u1, . . . , une(gp, u0)γ ,H),

where H is randomly chosen universal hash function.
Phase-I Queries. On a secret key query on xi, B sets

skxi = T
γ̃·FS∗ (α)

α+xi · h
∑
j∈[k−1]

rj ·γ̃·FS∗ (αj)
(αj+xi)

q .

Challenge. B here computes CTS∗ = (ct1, ct2, ct0) where ct1 = gapg
b
q, ct2 = ct

1/γ̃
1 and ct

(0)
0 =

M ⊕ H(e(ct1, u0)). B chooses ct
(1)
0

$←− K and outputs (ct1, ct2, ct
(β)
0 ) for β

$←− {0, 1}.
Phase-II Queries. Same as Phase-I queries.
Guess. B outputs 1 if Adv’s guess β′ is same as B’s choice β.

If T ∈ Hp, then the game distribution is same as Game5,k−1,1. On the other hand, if T ∈ H, then the
game distribution is same as Game5,k,0.
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– In Game5,k,1 we make following changes to to ui for i ∈ [0, n].

hα
i

p · hrα
i

q · h
∑
j∈[k−1] rjα

i
j

q → hα
i

p · h
∑
j∈[k] rjα

i
j

q (6)

Then we also make changes to skxi for i ∈ [Q]

h
γ̃·FS∗ (α)

(α+xi)
p · h

r·γ̃·FS∗ (α)

(α+xi)
q · h

∑
j∈[k−1]

rj ·γ̃·FS∗ (αj)
(α+xi)

q → h
γ̃·FS∗ (α)

(α+xi)
p · h

∑
j∈[k]

rj ·γ̃·FS∗ (αj)
(α+xi)

q (7)

The boxed parts above denote the components where Game5,k,1 makes the modification. Precisely,
we replace α and r in the exponent of hq with αk mod q and rk respectively. This does not affect the
view of the adversary as none of the public parameters or the ciphertext reveals α mod q. Indeed due
to the replacement in Game3, the ciphertext does reveal α mod p which by the Chinese Remainder
Theorem (CRT) is independent of α mod q. We thus replace α and r in the exponent of hq with αk
mod q and rk respectively without the adversary noticing it and this is a conceptual change.

Game6. Here we replace Hq components of {ui}i∈[0,n] and the secret keys {skxi}i∈[Q] modified above. Namely,
we now define them as following:

ui = hα
i

p · htiq ,∀i ∈ [0, n] skxi = h
γ̃·FS∗ (α)

(α+xi)
p · htn+i

q ,∀i ∈ [Q]

We then argue that Game5 and Game6 are statistically close. This can be seen from the Hq components
of {ui}i∈[0,n] and {skxi}i∈[Q]. Precisely, the exponents of the said elements in the Hq group can be
represented by the following linear system of equations:

t0
t1
...
tn
tn+1

...
zn+Q


=



1 1 · · · 1
α1 α2 · · · αn+Q+1

...
...

. . .
...

αn1 αn2 · · · αnn+Q+1
γ̃·FS∗ (α1)
α1+x1

γ̃·FS∗ (α2)
α2+x1

· · · γ̃·FS∗ (αn+Q+1)
αn+Q+1+x1

...
...

. . .
...

γ̃·FS∗ (α1)
α1+xn

γ̃·FS∗ (α2)
α2+xn

· · · γ̃·FS∗ (αn+Q+1)
αn+Q+1+xn


︸ ︷︷ ︸

A

·


r1
r2
...

rn+Q+1

 . (8)

Since, xi /∈ S∗ for all i ∈ [Q], following [GLR18] the above matrix A can be transformed into B defined
below such that det(A) = γ̃q · det(B).

B =



1 1 · · · 1
α1 α2 · · · αn+Q+1

...
...

. . .
...

αn1 αn2 · · · αnn+Q+1
1

α1+x1

1
α2+x1

· · · 1
αn+Q+1+x1

...
...

. . .
...

1
α1+xn

1
α2+xn

· · · 1
αn+Q+1+xn


. (9)

Note that, det(B) = δ ·
∏

1≤`<j≤Q(x`−xj)
∏

1≤i<k≤(n+Q+1)(αi−αk)∏(n+Q+1)
k=1

∏Q
`=1(αk+xt)

6= 0 due to [GLR18,CM19]. Naturally

det(B) = 0 if αi = αk for distinct i, k ∈ [n+Q+ 1]. Thus, Pr[det(B) = 0] ≤ (n+Q+ 1)2/q. Therefore,
|Pr[X6]− Pr[X5]| ≤ (n+Q+ 1)2/q.
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Game7. Now we replace ct0 = M⊕H(e(ct1, u0)) by a uniform random choice from K. The reason behind this
is u0 now is hp · ht0q . As we saw in the last game, t0 is a uniformly random quantity independent of all
t1, . . . , t(n+Q). Thus e(ct1, u0) = e(ct1, hp) ·e(ct1, h

t0
q ) has log q bits of min-entropy due to t0 mod q. Due

to left-over hash lemma [HILL99], H is a strong extractor [AB09] and therefore, ct0 = M ⊕H(e(ct1, u0))
is at most 2−λ distance from the uniform distribution on K provided Gq component in ct1 is not 1. The
probability that the Gq component of ct1 is 1 is 1/q. Therefore, |Pr[X7] − Pr[X6]| ≤ 1/q + 2−λ. The
encapsulation key H(e(ct1, u0)) now is a randomly distributed element from K and it hides β completely
i.e. Pr[X7] = 1/2.

6 Adaptively Secure BED (bedanon)

The previous construction achieved only selective message indistinguishability from unprivileged users. To
improve upon the result, we start from a rather obvious observation that anonymous broadcast encryption
hides the privileged set completely. Therefore, if one constructs a BED from anon-BE, the group privacy
holds for free. Observe that, the message hiding from unprivileged users is essentially the ind-cpa security
of the anon-BE. Based on these observations, we give our second BED construction (bedanon) from the
efficient anon-BE protocol of Li and Gong [LG18] that achieved adaptive anonymity in the standard model.
In particular, we modify their construction for our purpose and argue the necessary security properties. We
here mention that similar to [LG18], we also assume that there is an efficient symmetric-key encryption SE
which is key-binding [Fis99].

6.1 Construction

It is defined by the following ppt algorithms.

– Setup(1λ, n):

1. Run G = (p, g,G)
$←− Ggen(1λ).

2. Choose α, ui, vi ← Zp for i ∈ [n].

3. Set msk =
(
{(ui, vi)}i∈[n]

)
.

4. Publish pk = (g, gα, gu1+αv1 , gu2+αv2 , . . . , gun+αvn).
– KeyGen(msk, i): Output ski = (ui, vi).
– GroupGen(pk, k, S):

1. Suppose S = {i1, . . . , ik′} where k′ ≤ k ≤ n.
2. Define a random permutation τ on S such that τ(ij) = i′j ∈ S for j ∈ [k′].

3. Choose s
$←− Zp and κ

$←− K.
4. Set ΓS =

(
h0, h1, {ωi}i∈[k′], κ

)
for

h0 = gs; h1 = gsα; ωi = gs(ui+αvi) · κ,∀i ∈ [k′].

– Verify(pk, ΓS , k): If |ΓS | ≤ k − 2, output 1. Otherwise, output 0.
– Enc(pk, ΓS ,M):

1. Parse ΓS = (h0, h1, ω1, . . . , ωk′ , κ).

2. Sample r
$←− Zp. Compute ct = SE.E(κr,M), for M ∈M.

3. Output ctS = (ct, H0, H1, c1 . . . , ck′) = (SE.E(κr,M), hr0, h
r
1, ω

r
1, . . . , ω

r
k′). Note that ωri also changes

κ to κr.
– Dec(pk, ski, ctS):

1. Parse ctS = (ct, H0, H1, c1 . . . , ck′).
2. For j ∈ [|S|], compute

cj
H
ui
0 ·H

vi
1

to get back κj .

3. Let M ′ = SE.D(κj , ct). If M ′ 6= ⊥, output M ′.
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Correctness. The correctness of the construction follows due to the key-binding property of the symmetric-
key encryption SE. Precisely, if κj 6= κ, the key-binding property ensures that SE.D(κj , ct) = ⊥.

6.2 Security

We prove the above construction achieves security in all four security models.

6.2.1 Group Privacy

Theorem 5. Let there exists a ppt adversary A breaking the group privacy of bedanon with a non-negligible
advantage then there exists a ppt adversary B which has a non-negligible advantage in solving DDH problem
in G where G = (p, g,G)← PGen(1λ) such that G = 〈g〉.

Proof. This proof is done via a sequence of games starting with the real construction Game0. We assume Xi

denotes the event the adversary winning Gamei.

Game0: The Game0 is the real construction. Here, the challenger samples α
$←− Zp and ui, vi

$←− Zp for i ∈ [n].
It sets pk = (g, gα, gu1+αv1 , gu2+αv2 , . . . , gun+αvn). When the adversary gives distinct sets S0, S1 ⊂
[n] of same cardinality k′, the game samples β

$←− {0, 1} and responds with the group token ΓSβ =(
h0, h1, {ωi}i∈[k′], κ

)
where

h0 = gs; h1 = gsα; ωi = gs(ui+αvi) · κ.

The adversary finally returns β′ ∈ {0, 1} as its guess.
Game1: This game is nothing but a conceptual change of Game0. We modify the way ciphertext is produced

here. Precisely, we use h0 and h1 to construct {ωi}i∈[k′]. When the adversary gives distinct sets S0, S1 ⊂
[n] of same cardinality k′, the game samples β

$←− {0, 1} and responds with the group token ΓSβ =(
h0, h1, {ωi}i∈[k′], κ

)
where

h0 = gs; h1 = gsα; ωi = hui0 h
vi
1 · κ.

Note that, Pr[X1] = Pr[X0].
Game2: In this game, we change the way h1 is sampled. Precisely, we sample h1 uniformly at random. When

the adversary gives distinct sets S0, S1 ⊂ [n] of same cardinality k′, the game samples β
$←− {0, 1} and

responds with the group token ΓS =
(
h0, h1, {ωi}i∈[k′], κ

)
where

h0 = gs; h1
$←− G; ωi = hui0 h

vi
1 · κ.

Note that, any adversary that can distinguish between Game1 and Game2, can be used to solve ddh
problem.

Lemma 2. There exists a ppt adversary such that |Pr[X2]− Pr[X1]| ≤ AdvDDH
B (λ).

Proof. Given the DDH problem instance (g, gα, gs, T ), we define B to choose α, u1, v1, . . . , un, vn
$←− Zp.

B then computes pk = (g, gα, gu1(gα)
v1 , . . . , gun(gα)

vn).

When the adversary gives distinct sets S0, S1 ⊂ [n] of same cardinality k′, B samples β
$←− {0, 1} and

responds with the group token ΓSβ =
(
h0, h1, {ωi}i∈[k′], κ

)
where

h0 = gs; h1 = gc; ωi = hui0 h
vi
1 · κ.

If T = gαs, B simulates Game1 whereas if T = gc for c
$←− Zp, then B simulates Game2.
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Game3: In this game, we change the way pk and ciphertext is computed. The challenger here samples

α
$←− Zp and ui, vi, µi

$←− Zp for i ∈ [n]. It defines u′i = ui − αµi and v′i = vi + µi; and outputs

pk = (g, gα, gu
′
1(gα)

v′1 , . . . , gu
′
n(gα)

v′n). Observe that pk is exactly same as in Game2. Precisely, {µi}i∈[n]
are not leaked from pk.

When the adversary gives distinct sets S0, S1 ⊂ [n] of same cardinality k′, the game samples β
$←− {0, 1}

and responds with the group token ΓSβ =
(
h0, h1, {ωi}i∈[k′], κ

)
where

h0 = gs; h1 = g(αs+δ); ωi = h
u′i
0 h

v′i
1 · κ.

This is simply a conceptual change of the way pk and ciphertext are computed. Thus Pr[X3]−Pr[X2] = 0.

Now observe that, ωi = h
u′i
0 h

v′i
1 · κ = hui0 h

vi
1 g
−αsµigδµi+αsµiκ = hui0 h

vi
1 g

δµiκ. Since, µi are uniformly
random element, gδµi are purely random element that hides ui and vi for all i ∈ Sβ . Thus, Pr[X3] = 1/2.

6.2.2 Maximum Users Accountability Observe that, ΓS leaks the cardinality of S. Therefore, maximum
users accountability follows trivially.

6.2.3 Message Indistinguishability from Dealer Let us consider a random encodings function σ :
G→ {0, 1}mG .

Theorem 6. Let A be a ppt adversary against the message indistinguishability from dealer security of bedanon

in the generic group model. Let n be any natural number and m be a bound on the total number of group
elements A receives from queries it makes to the oracles computing the group actions in G. Then we have
that the advantage of A in the message indistinguishability from dealer security game of bedanon is at most
(m+ n+ 2)2 · 3

4p .

Proof. Let C be the algorithm that simulates the generic bilinear group for A. To answer oracle queries, C
maintains a list

L = {(fi, σi) : i ∈ [0, ψG − 1]}

such that at each step ψ of the game, the relation ψG = ψ+n+2 holds. Here fi are multivariate polynomials

over (2n+ 3) variables α, k
(i)
1 , k

(i)
2 , s, y0, y1, for i ∈ [n] and σi are strings from {0, 1}mG . At the beginning of

the game i.e., ψ = 0, the lists are initialized by setting ψG = n+2. The polynomials 1, α, {(k(i)1 +αk
(i)
2 )i∈[n]}

are assigned to f0, f1, . . ., fn+1. These encodings for these polynomials are strings uniformly chosen from
{0, 1}mG without repetition for polynomials fi where i ∈ {0, . . . , n + 1}. We assume that A queries the
oracles on strings previously obtained from C and naturally C can obtain the index of a given string σi in
the list L. The oracles are simulated as follows.

Group Actions in G. We describe how the group action for G is simulated. If A submits two strings σi
and σj and a sign bit indicating addition or subtraction. C first finds fi and fj corresponding to σi and σj
respectively in L and computes fψG = fi ± fj . If there exists an index k ∈ [0, ψG − 1], such that fψG = fk,

C sets σψG = σk; otherwise C sets σψG
$←− {0, 1}mG \ {σ0, σ1, . . . , σψG−1} save (fψG , σG) to L, returns σψG to

A and increment ψG by one.
At this point, A produces a challenge (k, σ′0, σ

′
1, σ
′
1, . . . , σ

′
k′+1) such that (f ′0, σ

′
0), (f ′1, σ

′
1), (f ′2, σ

′
2), . . . ,

(f ′k′+1, σ
′
k′+1) ∈ L. Observe that, (f ′0, f

′
1, f
′
2, . . . , f

′
k′+1) are polynomials of α, k1, k2, and s where α, k1, k2

will be sampled by C and s by A The generic group model ensures that C can verify f ′0 = f ′1 · α−1, and

f ′i ∈ Span(f0, f1, f2, . . . , fn+1), ∀i ∈ [2, k′ + 1]. Finally, C samples β
$←− {0, 1}, computes f̂ ′0 = f ′0 · y0,

f̂ ′1 = f ′1 · y0, and f̂ ′i = f ′i · yβ , then adds (f̂ ′0, σ̂
′
0), (f̂ ′1, σ̂

′
1), . . . , (f̂ ′k′+1, σ̂

′
k′+1) ∈ L following the above rules on

group actions. At this point, C returns (σ̂′0, σ̂
′
1, σ̂
′
2, . . . , σ̂

′
k′+1) to A who returns β′ and abort.
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Let v =
(
α, k

(i)
1 , k

(i)
2 , y0, y1

)
denote the vector consisting of variables over which the polynomials are

defined. Now the simulator chooses at random α∗, k
(i)∗

1 , k
(i)∗

2 , y∗0 , y
∗
1

$←− Zp, for all i ∈ [n]. Let v =
(
α∗, k

(i)∗

1 , k
(i)∗

2 ,

y∗0 , y
∗
1). C assigns v∗ to the variables v. The simulation provided by C is perfect unless for some i, j ≤ ψb the

following holds.
fi(v

∗)− fj(v∗) = 0 for some i 6= j but fi 6= fj .

We use Bad to denote the above hold and we’ll try to bound the probability of Bad. If Bad does not
happen, then the simulation was perfect. So if Bad, does not happen A has no advantage in guessing β′ over
a random guess. Precisely, Pr [β = β′|¬Bad] = 1/2. To see this, observe that all variables except yβ and y1−β
are independent of the bit β. Assume yβ = r and recall A has access to L and gets (σ̂′0, σ̂

′
1, σ̂
′
2, . . . , σ̂

′
k′+1) as its

challenge. where (f̂ ′0, σ̂
′
0), (f̂ ′1, σ̂

′
1), . . . , (f̂ ′k′+1, σ̂

′
k′+1) ∈ L. Observe that, f̂ ′0, f̂

′
1, f̂
′
2, . . . , f̂

′
k′+1 are respectively

sy∗0 , sα∗y∗0 , sy∗β(k
(1)
1 + αk

(1)
2 ), . . . , sy∗β(k

(k′)
1 + αk

(k′)
2 ). It is clear that f̂ ′i for i ∈ [2, k′ + 1] is a degree

four polynomial but both f̂ ′0 and f̂ ′1 are polynomials of degree two and three. To compute such f̂ ′i , we
mention that A can use the polynomial lists L and challenge polynomials. Indeed, taking linear composition
of f̂ ′0 and f̂ ′1 with L results in polynomials of three. All the degree four polynomials that can only be
computed does involve only y∗β . Thus, the best A can do is to output its guess β′ at random and subsequently
Pr[β = β′ : ¬Bad] = 1/2.

Now, we show that the probability that Bad happens is negligible. This is where we utilize the result
on random assignment of polynomial due to Schwartz [Sch80]. Roughly speaking, the result states that for

an n-variate polynomial F (x1, . . . , xn) ∈ Zp[X1, . . . , Xn] of degree d, a random assignment x1, . . . , xn
$←− Zp

make the polynomial F evaluate to zero with probability at most d/p. For fixed i, j, fi − fj is a polynomial
of degree at most 3, hence zero at random v∗ with probability at most 3

p .

There are totally
(
ψG
2

)
, pairs of polynomials from L. Note that, A is allowed to make at most m queries

we have. Thus, ψG ≤ m+ n+ 2. Then,

Pr[Bad] ≤
(
ψG
2

) 3

p
≤ (m+ n+ 2)2 · 3

2p
.

Now, a simple argument shows that

Pr [β = β′] = Pr [β = β′|¬Bad] Pr [¬Bad] + Pr [β = β′|Bad] Pr [Bad]

≤ Pr [β = β′|¬Bad] (1− Pr [Bad]) + Pr [Bad]

=
1

2
+

1

2
Pr [Bad]

Also,

Pr [β = β′] ≥ Pr [β = β′|¬Bad] (1− Pr [Bad]) =
1

2
− 1

2
Pr [Bad]

. This two results were combined together to gives us

AdvcpaDA,bedanon =

∣∣∣∣Pr [β = β′]− 1

2

∣∣∣∣ ≤ Pr [Bad]

2
≤ (m+ n+ 2)2 · 3

4p
.

6.2.4 Message Indistinguishability from Unprivileged Users

Theorem 7. Let there exists a ppt adversary A who can break the message indistinguishability from unprivileged
users user of bedanon with the non-negligible advantage then it is possible to construct an efficient adversary
B that has a non-negligible advantage in breaking DDH in G where G = (p, g,G) ← PGen(1λ) such that
G = 〈g〉 or an efficient adversary C that has a non-negligible advantage in breaking the semantic security
symmetric-key encryption SE.
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Proof. This proof is done via a sequence of games starting with the real construction Game0. We assume Xi

denotes the event the adversary winning Gamei.

Game0: The Game0 is the real construction. Here, the challenger samples α
$←− Zp and ui, vi

$←− Zp for i ∈ [n].
It sets pk = (g, gα, gu1+αv1 , gu2+αv2 , . . . , gun+αvn). For all secret key queries on i ∈ [n], the adversary
responds with (ui, vi). When the adversary gives distinct sets S0, S1 ⊂ [n] of same cardinality k′, the

game samples β
$←− {0, 1}, κ $←− K and responds with the ciphertext CTS = (ct, H0, H1, c1, . . . , c

′
k) where

ct = E(κ,Mβ); H0 = gs; H1 = gαs; ci = gs(ui+αvi) · κ.

The adversary finally returns β′ ∈ {0, 1} as its guess.
Game1: This game is nothing but a conceptual change of Game0. We modify the way ciphertext is produced

here. Precisely, we use h0 and h1 to construct {ωi}i∈[k′]. When the adversary gives distinct sets S0, S1 ⊂
[n] of same cardinality k′, the game samples β

$←− {0, 1}, κ $←− K and responds with the ciphertext
CTS = (ct, H0, H1, c1, . . . , c

′
k) where

ct = E(κ,Mβ); H0 = gs; H1 = gαs; ci = Hui
0 Hvi

1 · κ.

Thus, Pr[X1] = Pr[X0].
Game2: In this game, we change the way h1 is sampled. Precisely, we sample h1 uniformly at random. When

the adversary gives distinct sets S0, S1 ⊂ [n] of same cardinality k′, the game samples β
$←− {0, 1}, κ $←− K

and responds with the ciphertext CTS = (ct, H0, H1, c1, . . . , c
′
k) where

ct = E(κ,Mβ); H0 = gs; H1
$←− G; ci = Hui

0 Hvi
1 · κ.

Note that, any adversary that can distinguish between Game1 and Game2, can be used to solve the DDH
problem.

Lemma 3. There exists a ppt adversary such that |Pr[X2]− Pr[X1]| ≤ AdvDDH
B (λ).

Proof. Given the DDH problem instance (g, gα, gs, T ), we define B to choose α, u1, v1, . . . , un, vn
$←− Zp. B

then computes pk = (g, gα, gu1(gα)
v1 , . . . , gun(gα)

vn). For all secret key queries on i ∈ [n], the adversary
responds with (ui, vi). When the adversary gives the target set S ⊂ [n] of cardinality k′, B samples

β
$←− {0, 1}, κ $←− K and responds with the ciphertext CTS = (ct, H0, H1, c1, . . . , c

′
k) where

ct = E(κ,Mβ); H0 = gs; H1 = gc; ci = Hui
0 Hvi

1 · κ.

If T = gαs, B simulates Game1 whereas if T = gc for c
$←− Zp, then B simulates Game2.

Game3: In this game, we change the way pk is computed and then show that Pr[X3]−Pr[X2] = 0. To do so,
first, consider the selective variant of these games, that is, Game2∗ and Game3∗ , which are as Game2 and
Game3 except that the adversary has to commit to the target set S of size k′ before it gets the public
key pk. We basically first show that Pr[X3∗ ] − Pr[X2∗ ] = 0 and then use the complexity leveraging we
argue Pr[X3]− Pr[X2] =

(
n
k′

)
(Pr[X3∗ ]− Pr[X2∗ ]) = 0.

We now argue Pr[X3∗ ] − Pr[X2∗ ] = 0. The challenger here samples α
$←− Zp and ui, vi, µi

$←− Zp for

i ∈ [n]. It defines u′i =

{
ui − αµi if i ∈ S
ui otherwise

and v′i =

{
vi + µi if i ∈ S
vi otherwise

and outputs pk =

(g, gα, gu
′
1(gα)

v′1 , . . . , gu
′
n(gα)

v′n). Observe that pk is exactly same as in Game2. Precisely, {µi}i∈[n] are
not leaked from pk. For all secret key queries on i ∈ [n], the adversary responds with (ui, vi).

When the adversary gives distinct messages M0,M1 of same size, the game samples β
$←− {0, 1}, κ $←− K

and responds with the ciphertext CTS on Mβ where CTS = (ct, H0, H1, c1, . . . , c
′
k) where

ct = E(κ,Mβ); H0 = gs; H1 = g(αs+δ); ci = H
u′i
0 H

v′i
1 · κ.
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This is simply a conceptual change of the way pk and the challenge ciphertext is computed. Thus,
Pr[X3∗ ]− Pr[X2∗ ] = 0.

Game4: Here, we replace ct in the challenge ciphertext CTS . Precisely, we return ct← E(κ, 0). Note that such
a change is indistinguishable from Game3 due to the semantic security of SE. Thus, Pr[X4] − Pr[X3] ≤
AdvSEC (λ).

Now observe that, the ciphertext components ci = H
u′i
0 H

v′i
1 ·κ = Hui

0 Hvi
1 g
−αsµigδµi+αsµiκ = Hui

0 Hvi
1 g

δµiκ
for all i ∈ S. Since, µi are uniformly random element, gδµi are purely random element that hides κ for
all i ∈ S. Thus, κ is a uniformly random element in the adversary’s view. Thus, Pr[X4] = 1/2.

7 Adaptively Secure BED with Constant-size Ciphertext (bedP)

Our second broadcast encryption with dealership protocol (bedanon) presented in the last section, achieves
adaptively secure message indistinguishability from unprivileged users. However, in bedanon ciphertext size
depends upon the privileged set size. This section presents our final construction of BED where we improve
upon ciphertext length of bedanon maintaining the same security guarantee. The final construction uses a
prime order bilinear pairing group. This construction would further be referred to as bedP . We adapt the
broadcast encryption technique of [RWZ12] for this construction. Note that, the broadcast encryption of
[RWZ12] does not have anonymous security. Like bedC , we also manage to achieve the group privacy security
(priv) under the standard DDH assumption.

7.1 Construction

It is defined by the following ppt algorithms.

– Setup(1λ, n):

1. Run PG = (p, g, h,G,H,GT, e)
$←− PBGen(1λ).

2. choose α, γ, δ, c
$←− Z∗p, and set f(x) = cx.

3. Set u = gδ and z = hδ, define ui = uα
i

for i ∈ [n].

4. Set v = gαγ , define vi = vα
i

for i ∈ [n].
5. Set msk = (α, γ, δ).

6. Publish pk = (g, h, u, v, g1, . . . , gn, h1, . . . , hn, u1, . . . , un, v1, . . . , vn, f(x)), where gi = gα
i

and hi =

hα
i

.
– KeyGen(msk, i):

1. choose r
$←− Z∗p, wi

$←− H.
2. Output ski = (ski,1, ski,2, ski,3, ski,4, ski,5) where,

ski,1 = (wi · hri)
1

αγ(α−IDi)

ski,3 = z

ski,4 = (zf(ri) · wi)
1
αγ

ski,2 = ri

ski,5 = (wi, w
α
i , . . . , w

αn

i )
.

– GroupGen(pk, k, S):
1. Suppose S is the set of users to who has enlisted to the dealer and let |S| = k′ ≤ k.
2. Define PS(z) =

∏
IDi∈S

(z − IDi).

3. choose s
$←− Z∗p and output ΓS = (ω1, ω2, ω3, ω4, ω5) where,

ω1 = e(g, h)−s

ω4 = vsPS(α)

ω2 = g−αs

ω5 = vα
n−k·sPS(α) ω3 = e(u, h)s.

– Verify(pk, ΓS , k): If e(ω5, h
αk) = e(ω4, h

αn), return 1. Otherwise, output 0.
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– Encrypt(pk, ΓS ,M): Parse ΓS = (ω1, ω2, ω3, ω4, ω5),

1. choose t
$←− Z∗p.

2. Output CTS = (ct1, ct2, ct3, ct4) where

ct1 = (ω1)t

ct3 = M · (ω3)t
ct2 = (ω2)t

ct4 = (ω4)t
.

– Decrypt(pk, ski, (S,CTS)): Parse CTS = (ct1, ct2, ct3, ct4) where,

ct1 = e(g, h)−t
′

ct3 = M · e(u, h)t
′

ct2 = g−αt
′

ct4 = vt
′PS(α).

Correctness. Here t′ = st.

(
e(ct4, ski,1) · e(ct2, wih

ski,2)Ai,S(α)
) 1
j 6=i∏
j∈S

(−IDj) · ct
ski,2
1 = e(g, wi)

st

(
e(ct4, ski,4) · e(ct2, z

ski,2wi)
Bi,S(α)

) 1∏
j∈S

(−IDj)
= e(g, zf(ri)hi)

st

(
e(g, zf(ri)wi)

st

e(g, wi)st

) 1
f(ski,2)

= e(g, z)st = e(g, h)δst = e(gδ, h)st = e(u, h)st

M =
ct3

e(u, h)st
.

Where, Ai,S(α) =
1

α

(
j 6=i∏
j∈S

(α− IDj)−
j 6=i∏
j∈S

(−IDj)

)
and Bi,S(α) =

1

α

(∏
i∈S

(α− IDi)−
∏
i∈S

(−IDi)

)
.

7.2 Security

We prove the above construction achieves security in all the four security models defined in section 3.3.

7.2.1 Group Privacy

Theorem 8. If there exists a ppt adversary A breaking the group privacy of bedP with a non-negligible
advantage, then there exists a ppt adversary B which has a non-negligible advantage in solving DDH problem
in G where PG = (p, g, h,G,H,GT )← PBGen(1λ) such that G = 〈g〉.

Proof. Let A be a ppt adversary breaking priv security of bedP , we want to construct a ppt adversary B for

DDH that uses A as a subroutine. Given a DDH problem instance (g, h, ga, gb, Z) for a, b
$←− Zp, simulate A

as following:

– Sample α, δ, c
$←− Zp.

– Implicitly set γ = a and s = b.
– Set u = gδ, z = hδ, v = (ga)α, and f(x) = cx and publish,

pk = (g, h, u, gα, . . . , gα
n

, hα, . . . , hα
n

, uα, . . . , uα
n

, vα, . . . , vα
n

, f(x)).

– A output two sets (S0, S1) such that |S0| = |S1| < n.

– Given S0 and S1 of same size k (say), choose β
$←− {0, 1}, and return the token ΓSβ = (ω1, ω2, ω3, ω4, ω5)

as following:
– ω1 = e(gb, h)−1 = e(g, h)−b = e(g, u)−s.
– ω2 = (gb)−α = g−αs.
– ω3 = e(ub, h) = e(u, h)b = e(u, h)s.

– ω4 = (Zα)PSβ (α) now if Z = gab then ω4 = (ga)α)bPSβ (α) = vsPSβ (α)

– ω5 = ((Zα)α)α
n−k.PSβ (α) now if Z = gab then ω5 = (ga)α)α

n−k·sPSβ (α) = vα
n−k·sPSβ (α).
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– A outputs β̂.
– If β̂ = β, then output 1 else 0.

As α, δ, c are chosen randomly, the public key provided by B has identical distribution to that of the
original construction. So when the input of B is gab then ΓSβ is a valid group token to A and if Z is a random
element of G then (ω4, ω5) are just two random elements of G.

Now, the advantage of B in the DDH game (we denote BDDH ⇒ 1 as B given the DDH instance outputs
1) is the same as the adversary of A guessing b in priv game other than guessing randomly. So,

Pr
[
BDDH ⇒ 1

]
≥ Pr

[
Apriv

bedP
⇒ 1

]
Pr
[
BDDH ⇒ 1

]
≥ Pr

[
Apriv

bedP
⇒ 1|Z = gab

]
Pr
[
Z = gab

]
+
∑
p−1

Pr
[
Apriv

bedP
⇒ 1|Z $←− G

]
Pr
[
Z

$←− G
]

1

p
Pr
[
Apriv

bedP
⇒ 1|Z = gab

]
≤
∣∣∣∣Pr
[
BDDH ⇒ 1

]
− p− 1

p
Pr
[
Apriv

bedP
⇒ 1|Z $←− G

]∣∣∣∣
1

p
Pr
[
Apriv

bedP
⇒ 1|Z = gab

]
≤
∣∣∣∣Pr
[
BDDH ⇒ 1

]
− p− 1

2p

∣∣∣∣
1

p
Pr
[
Apriv

bedP
⇒ 1|Z = gab

]
≤
∣∣Pr
[
BDDH ⇒ 1|Z = gab

]
Pr
[
Z = gab

]
+
∑
p−1

Pr
[
BDDH ⇒ 1|Z $←− G

]
Pr
[
Z

$←− G
]
− p− 1

2p

∣∣∣∣∣
Pr
[
Apriv

bedP
⇒ 1|Z = gab

]
≤
∣∣∣∣Pr
[
BDDH ⇒ 1|Z = gab

]
+ (p− 1)

(
1

2
− 1

2

)∣∣∣∣
AdvprivA,bedP ≤ AdvDDH

B

7.2.2 Maximum Users Accountability Let us consider three random encodings function σG : G →
{0, 1}mG , σH : H→ {0, 1}mH and σT : GT → {0, 1}mT , where w.l.o.g. mG ≤ mH ≤ mT .

Theorem 9. Let A be any generic group adversary for the maximum user accountability security of bedP .
A make queries to oracles computing the group actions in G, H, GT and the bilinear map e. Let m be a bound
on the total number of group elements A receives. Then we have that the advantage of A in the maximum
user accountability security game of bedP is bounded by O(m2/p).

Proof. Let C denote an algorithm that simulates the generic bilinear group for A. To answer queries from
A, C maintains three lists,

LG = {(fG,i, σG,i) : i ∈ [0, ψG − 1]}
LH = {(fH,i, σH,i) : i ∈ [0, ψH − 1]}
LT = {(fT,i, σT,i) : i ∈ [0, ψT − 1]}

such that at each step ψ of the game, the relation ψG+ψH+ψT = ψ+4n+4 holds. Here f∗,∗ are multivariate
polynomials over 5 variables α, γ, δ, r, s and σb,i are strings from {0, 1}mb where b ∈ {G,H, T}. At the
beginning of the game i.e., ψ = 0, the lists are initialized by setting ψG = 3(n + 1), ψH = (n + 1) and
ψT = 0. The polynomials 1, α, . . ., αn, δ, δα, . . ., δαn, γα, . . ., γαn+1 are assigned to fG,0, fG,1, . . ., fG,n,
fG,n+1, . . ., fG,2n+1, fG,2n+2, . . ., fG,3n+2; 1, α, . . ., αn are assigned to fH,0, fH,1, . . ., fH,n. For each of
these polynomials, the associated encodings are strings uniformly chosen from {0, 1}mb without repetition
for b ∈ {G,H, T}. We assume A has to query the oracles for any group element or pairing computation.
Naturally C can obtain the index of a given string σb,i in the list Lb. The oracles are simulated as follows.
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Group Actions in G, H and GT . We describe this for the group G. We note that the group actions in
H and GT are simulated similarly. If A submits two strings σG,i and σG,j and a sign bit indicating addition
or subtraction. C first finds fG,i and fG,j corresponding to σG,i and σG,j respectively in LG and computes
fG,ψG = fG,i ± fG,j . If there exists an index k ∈ [0, ψG − 1], such that fG,ψG = fG,k, C sets σG,ψG = σG,k;

otherwise C sets σG,ψG
$←− {0, 1}mG \ {σG,0, σG,1, . . . , σG,ψG−1}, add (fG,ψG , σG,ψG) to LG, returns σG,ψG to

A and increments ψG by one.

Bilinear Map. If A submits two strings σG,i and σH,j , C first finds fG,i in LG corresponding to σH,i
and fH,j in LH corresponding to σH,j respectively and computes fT,ψT = fG,i ± fH,j . If there exists an

index k ∈ [0, ψT − 1], such that fT,ψT = fT,k, C sets σT,ψT = σT,k; otherwise C sets σT,ψT
$←− {0, 1}mT \

{σT,0, σT,1, . . . , σT,ψT−1} and add (fT,ψT , σT,ψT ) to LT and returns σT,ψT to A and increments ψT by one.
At this point, A aborts by producing a challenge (k, σ′G, σ

′′
G, σ

′′′
G , σ

′
T , σ

′′
T ) such that (f ′G, σ

′
G), (f ′′G, σ

′′
G),

(f ′′′G , σ
′′′
G ) ∈ LG, and (f ′T , σ

′
T ), (f ′′T , σ

′′
T ) ∈ LT . Observe that, (f ′G, f

′′
G, f

′′′
G , f

′
T , f

′′
T ) are polynomials of α, γ, δ

and s where α, γ, δ will be sampled by C and s by A. The generic group model ensures that C can verify
f ′T = f ′G ·α−1, f ′′T = f ′G ·δ−1α, f ′′T = (f ′T )−1δ f ′′′G = f ′′G ·αn−k and f ′′G ·γ−1 ·f ′T

−1 ∈ Span(fG,0, fG,1, . . . , fG,n).
Let v = (α, γ, δ, r) denote the vector consisting of variables over which the polynomials are defined. Now

the simulator chooses at random α∗, γ∗, δ∗, r∗
$←− Zp. Let v∗ = (α∗, γ∗, δ∗, r∗). C assigns v∗ to the variables

of v. The simulation provided by C is perfect unless for some i, j ≤ ψb any of the following holds.

1. fG,i(v
∗)− fG,j(v∗) = 0 for some i 6= j but fG,i 6= fG,j .

2. fH,i(v
∗)− fH,j(v∗) = 0 for some i 6= j but fH,i 6= fH,j .

3. fT,i(v
∗)− fT,j(v∗) = 0 for some i 6= j but fT,i 6= fT,j .

We use Bad to denote the event that at least one of the above holds, and we shall try to bound the
probability of Bad. If Bad does not happen, then the simulation was perfect. Assume A has generated his
challenge for the set S, with |S| > k. Then in case Bad does not happen, A has no advantage in guessing ΓS
over a random guess. In the polynomial f ′′′G , the highest possible degree of α is n + 1 if |S| ≤ k. If A tries
to simulate any group token where |S| > k then in the polynomial f ′′′G the highest degree of α is greater
than n+ 1. Notice that αn+i for some i ≥ 1 is independent of (1, α, . . . , αn). Also A does not have access to

gα
n+1+i

, which is outside the span of pk. Thus, it has one and only option is to guess it. Probability that it
guesses f ′′′G having no info about gα

n+1+i

is negligible.
Now, we need to bound the probability of Bad. A result by Schwartz [Sch80] would be used here. The

result states, for an n-variate polynomial F (x1, . . . , xn) ∈ Zp[X1, . . . , Xn] of degree d, a random assignment

x1, . . . , xn
$←− Zp make the polynomial F evaluate to zero with probability at most d/p. For fixed i, j,

fG,i − fG,j is a polynomial of degree at most n+ 2, hence zero at random v∗ with probability at most n+2
p .

For fixed i, j, fH,i − fH,j is a polynomial of degree at most n, hence zero at random v∗ with probability at
most n

p . For fixed i, j, fT,i − fT,j is a polynomial of degree at most n(n+ 2), hence zero at random v∗ with

probability at most n(n+2)
p . There are totally

(
ψG
2

)
,
(
ψH
2

)
,
(
ψT
2

)
pairs of polynomials from LG, LH and LT

respectively. Note that, A is allowed to make at most m queries. Thus we have, ψG+ψH +ψT ≤ m+ 4n+ 4.
Then,

Pr[Bad] ≤
(
ψG
2

)
(n+ 2)/p+

(
ψH
2

)
n/p+

(
ψT
2

)
n(n+ 2)/p ≤ (m+ 4n+ 4)2 · n

2 + 4n+ 2

2p
.

So Pr [¬Bad] = 1− (m+ 4n+ 4)2 · n
2+4n+2

2p and Pr [A wins|¬Bad] = 2
2p−(m+4n+4)2·(n2+4n+2) .

Now
Pr [A wins] = Pr [A wins|¬Bad] Pr [¬Bad] + Pr [A wins|Bad] Pr [Bad] .

So if Bad does not happen then A “knows” nothing about those possible values where any two fb,i(x) =
fb,j(x) happen for 1 ≤ i < j ≤ ψb. Considering all this together probability that A wins is bounded by
O(m2/p).
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7.2.3 Message Indistinguishability from Dealer Let us consider three random encodings function
σG : G→ {0, 1}mG , σH : H→ {0, 1}mH and σT : GT → {0, 1}mT where w.l.o.g. mG ≤ mH ≤ mT .

Theorem 10. Let A be a ppt adversary against message indistinguishability from dealer security of bedP
in the generic group model. A make queries to the oracles computing the group actions in G, H, GT and the
bilinear map e. Let m be a bound on the total number of group elements A receives from queries and n be
any natural number. Then we have that the advantage of A in the message indistinguishability from dealer
security game of bedP is at most

AdvcpaDA,bedP ≤ (m+ 4n+ 4)2 · n
2 + 4n+ 2

4p
.

Proof. Let C be the algorithm that simulates the generic bilinear group for A. To answer oracle queries of
A, C maintains three lists,

LG = {(fG,i, σG,i) : i ∈ [0, ψG − 1]}
LH = {(fH,i, σH,i) : i ∈ [0, ψH − 1]}
LT = {(fT,i, σT,i) : i ∈ [0, ψT − 1]}

such that at each step ψ of the game, the relation ψG+ψH+ψT = ψ+4n+4 holds. Here f∗,∗ are multivariate
polynomials over 6 variables α, γ, δ, s, y0, y1 and σb,i are strings from {0, 1}mb where b ∈ {G,H, T}. At the
beginning of the game i.e., ψ = 0, the lists are initialized by setting ψG = 3(n+1), ψH = (n+1) and ψT = 0.
The polynomials 1, α, . . ., αn, δ, δα, . . ., δαn, γα, . . ., γαn+1 are assigned to fG,0, fG,1, . . ., fG,n, fG,n+1,
. . ., fG,2n+1, fG,2n+2, . . ., fG,3n+2; 1, α, . . ., αn are assigned to fH,0, fH,1, . . ., fH,n. For these polynomials,
the associated encodings are strings uniformly chosen from {0, 1}mb without repetition for b ∈ {G,H, T}.
We assume that A queries the oracles on strings previously obtained from C and naturally C can obtain the
index of a given string σb,i in the list Lb. The oracles are simulated as follows.

Group Actions in G, H and GT . We describe this for the group G. We note that the group actions in
H and GT are simulated similarly. If A submit two strings σG,i and σG,j and a sign bit indicating addition
or subtraction. C first finds fG,i and fG,j corresponding to σG,i and σG,j respectively in LG and computes
fG,ψG = fG,i ± fG,j . If there exists an index k ∈ [0, ψG − 1], such that fG,ψG = fG,k, C sets σG,ψG = σG,k;

otherwise C sets σG,ψG
$←− {0, 1}mG \ {σG,0, σG,1, . . . , σG,ψG−1} and add (fG,ψG , σG,ψG) to LG and returns

σG,ψG to A and increments ψG by one.

Bilinear Map. If A submit two strings σG,i and σH,j , C first finds fG,i in LG corresponding to σG,i
and fH,j in LH corresponding to σH,j respectively and computes fT,δT = fG,i ± fH,j . If there exists an

index k ∈ [0, ψT − 1], such that fT,ψT = fT,k, C sets σT,ψT = σT,k; otherwise C sets σT,ψT
$←− {0, 1}mT \

{σT,0, σT,1, . . . , σT,ψT−1} and add (fT,ψT , σT,ψT ) to LT and returns σT,ψT to A and increments ψT by one.
At this point, A produces a challenge (k, σ′G, σ

′′
G, σ

′′′
G , σ

′
T , σ

′′
T ) such that (f ′G, σ

′
G), (f ′′G, σ

′′
G), (f ′′′G , σ

′′′
G ) ∈ LG,

and (f ′T , σ
′
T ), (f ′′T , σ

′′
T ) ∈ LT . Precisely, (σ′G, σ

′′
G, σ

′′′
G , σ

′
T , σ

′′
T ) = (sα, sPS(α), αn−ksPS(α), s, sδ). Observe that,

(f ′G, f
′′
G, f

′′′
G , f

′
T , f

′′
T ) are polynomials of α, γ, δ and s where α, γ, δ will be sampled by C and s will be sampled

by A. The generic group model ensures that C can verify f ′T = f ′G ·α−1, f ′′T = f ′G · δ−1α, f ′′T = (f ′T )−αδ f ′′′G =

f ′′G ·αn−k and f ′′G ·γ−1 ·f ′T
−1 ∈ Span(fG,0, fG,1, . . . , fG,n). Finally, C samples β

$←− {0, 1} and sets f̂ ′G = f ′G ·y0,

f̂ ′′G = f ′′G ·y0, and f̂ ′T = f ′T ·yβ , f̂ ′′T = f ′′T ·y0. C then adds (f̂ ′G, σ̂
′
G), (f̂ ′′G, σ̂

′′
G) ∈ LG and (f̂ ′T , σ̂

′
T ), (f̂ ′′T , σ̂

′′
T ) ∈ LT

following the above rules on group actions. At this point, C returns (σ̂′G, σ̂
′′
G, σ̂

′
T , σ̂

′′
T ) to A who returns β′

and abort. Let v = (α, γ, δ, y0, y1) denotes the vector consisting of variables over which the polynomials are

defined. Now the simulator chooses at random α∗, γ∗, δ∗, y∗0 , y
∗
1

$←− Zp. Let v∗ = (α∗, γ∗, δ∗, y∗0 , y
∗
1). C assigns

v∗ to the variables of v. The simulation provided by C is perfect unless for some i, j ≤ ψb any of the following
holds.

1. fG,i(v
∗)− fG,j(v∗) = 0 for some i 6= j but fG,i 6= fG,j .
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2. fH,i(v
∗)− fH,j(v∗) = 0 for some i 6= j but fH,i 6= fH,j .

3. fT,i(v
∗)− fT,j(v∗) = 0 for some i 6= j but fT,i 6= fT,j .

We use Bad to denote the event that at least one of the above holds, and we’ll try to bound the probability
of Bad. If Bad does not happen, then the simulation was perfect. So if Bad, does not happen, A has no
advantage in guessing β′ over a random guess. Precisely, Pr[β = β′|¬Bad] = 1/2. To see this, observe that
all variables except yβ and y1−β are independent of the bit β. Assume yβ = r and recall A has access

to all the lists (LG, LH , LT ) and gets (σ̂′G, σ̂
′′
G, σ̂

′
T , σ̂

′′
T ) as its challenge where (f̂ ′G, σ̂

′
G), (f̂ ′′G, σ̂

′′
G) ∈ LG and

(f̂ ′T , σ̂
′
T ), (f̂ ′′T , σ̂

′′
T ) ∈ LT . Observe that, f̂ ′G, f̂

′′
G, f̂

′
T , f̂

′′
T are respectively α∗y∗0s, γ

∗y∗0sPS(α∗), y∗0s and δ∗y∗βs.

Where PS(α) is a polynomial of degree at most n. It is clear that f̂ ′T is a two-degree polynomial and f̂ ′′T
is a three-degree polynomial defined in the group GT but both f̂ ′G and f̂ ′′G are polynomials of degree three

or higher. To compute such f̂ ′T and f̂ ′′T , we mention that A can use the polynomial lists LG and LH and

challenge polynomials f̂ ′G and f̂ ′′G. Indeed, composing f̂ ′G and f̂ ′′G with LG and LH results in polynomials of
three or higher degree. Those three-degree polynomials which can only be computed does not involve δ∗y∗0s.
Thus, the best A can do is to output its guess β′ at random and subsequently Pr[β = β′ : ¬Bad] = 1/2.

Now, we show that the probability that Bad happens is negligible. This is where we utilize the result
on random assignment of polynomial due to Schwartz [Sch80]. Roughly speaking, the result states that for

an n-variate polynomial F (x1, . . . , xn) ∈ Zp[X1, . . . , Xn] of degree d, a random assignment x1, . . . , xn
$←− Zp

make the polynomial F evaluate to zero with probability at most d/p. For fixed i, j, fG,i−fG,j is a polynomial
of degree at most n + 2, hence zero at random v∗ with probability at most n+2

p . For fixed i, j, fH,i − fH,j
is a polynomial of degree at most n, hence zero at random v∗ with probability at most n

p . For fixed i, j,

fT,i − fT,j is a polynomial of degree at most n(n + 2), hence zero at random v∗ with probability at most
n(n+2)

p . There are totally
(
ψG
2

)
,
(
ψH
2

)
,
(
ψT
2

)
pairs of polynomials from LG, LH and LT respectively. Note

that, A is allowed to make at most m queries we have. Thus, ψG + ψH + ψT ≤ m+ 4n+ 4. Then,

Pr[Bad] ≤
(
ψG
2

)
(n+ 2)/p+

(
ψH
2

)
n/p+

(
ψT
2

)
n(n+ 2)/p ≤ (m+ 4n+ 4)2 · n

2 + 4n+ 2

2p
.

Now, a simple argument shows that,

Pr [β = β′] = Pr [β = β′|¬Bad] Pr [¬Bad] + Pr [β = β′|Bad] Pr [Bad]

≤ Pr [β = β′|¬Bad] (1− Pr [Bad]) + Pr [Bad]

=
1

2
+

1

2
Pr [Bad]

Also,

Pr [β = β′] ≥ Pr [β = β′|¬Bad] (1− Pr [Bad]) =
1

2
− 1

2
Pr [Bad]

. This two results were combined together to gives us

AdvcpaDA,bedP =

∣∣∣∣Pr [β = β′]− 1

2

∣∣∣∣ ≤ Pr [Bad]

2
≤ (m+ 4n+ 4)2 · n

2 + 4n+ 2

4p
.

7.2.4 Message Indistinguishability from Unprivileged Users The message indistinguishability from
an unprivileged user is the first and foremost security guarantee we need from any variant of BE. Below we
describe the cpaU security of our construction.

Theorem 11. Let A be a ppt adversary breaking the cpaU security of bedP with non-negligible advantage

then there exists a ppt adversary B that breaks the waABDHE assumption in PG = (p, g, h,G,H,GT , e)
$←−

PBGen with non-negligible advantage.
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Proof. Let A be a cpaU adversary as described in section 3.3.4 breaks the message indistinguishability from
an unprivileged user of bedP . We would argue that, if such an adversary A exists, then we can construct
another ppt adversary B which will solve q-waABDHE problem.
Let B has the problem instance,

(g, h, gλ, hλ, gα, . . . , gα
q

, hα, . . . , hα
q

, gλα
q+2

, . . . , gλα
2q

, hλα
q+2

, . . . , hλα
2q

, Z) ∈ G2q+1 ×H2q+1 ×GT

problem is to decide Z = e(gλ, h)α
q+1

or Z = e(g, hλ)α
q+1

or a random element from GT , where g
$←− G, h $←−

H, α, λ
$←− Z∗p.

For convenience we would refer gλ = g′ and hλ = h′. Simulation for A is as follows.
Setup: We would assume that in bedP , the maximal size of the set of receiver is n and q ≥ 2n.

– Sample γ
$←− Z∗p.

– Set P (x) =
n−1∑
i=0

β0,ix
i; Q(x) = xP (x) + β0 and f(x) = 1

β0
x where β0,i, β0

$←− Z∗p.

– Also set u = gQ(α), z = hQ(α), v = gαγ and uα
i

= gα
iQ(α), vα

i

= gα
i+1γ for i ∈ [n].

Publish pk = (g, h, u, v, gα, . . . , gα
n

, hα, . . . , hα
n

, uα, . . . , uα
n

, vα, . . . , vα
n

, f(x)). Note that B can compute

uα
i

= gβ0α
i
n−1∏
j=0

(gα
i+j+1

)β0,j = g

n−1∑
j=0

β0,jα
i+j+1

· gβ0α
i

= gα
iQ(α). As P (x), γ, β0 were chosen randomly so the

simulated pk and and the one in the original scheme follows the same distribution. Hence the simulation is
perfect.
Query phase 1: A adaptively issues key generation queries for the ID’s of his choice. Simulate the secret
key ski for IDi as follows.

– Set Ci(x) =
n−2∑
j=0

βi,jx
j and Di(x) = x(x− IDi)Ci(x) + βi where βi,j , βi

$←− Z∗p.

– Compute skIDi = (ski,1, ski,2, ski,3, ski,4) as,

ski,1 =
(
hCi(α)

) 1
γ

sk1,3 = hQ(α)

ski,4 =
(
h
βi
β0
P (α)+(α−IDi)Ci(α)

) 1
γ

ski,2 = −Di(IDi) = −βi

ski,5 =
(
wi = hDi(α), wαi = hαDi(α), . . . , wα

n

i = hα
nDi(α)

).
Two things are left to show that adversary can compute ski in this way and the computed ski is a valid

ski. The first condition can be verified as follows,

ski,1 =

n−2∏
j=0

hβi,jα
j

 1
γ

=

hn−2∑
j=0

βi,jα
j

 1
γ

=
(
hCi(α)

) 1
γ

ski,2 = −IDi(IDi − IDi)Ci(x)− βi = βi

ski,3 = hβ0

n−1∏
j=0

(hα
j+1

)β0,j = h

n−1∑
j=0

β0,jα
j+1+β0

= hαP (α)+β0 = hQ(α) = z

ski,4 =

n−1∏
j=0

h
βi
β0
β0,jα

j

·
n−2∏
j=0

hβi,j(α−IDi)α
j

 1
γ

=
(
h
βi
β0
P (α)+(α+IDi)Ci(α)

) 1
γ

wα
k

i = hβiα
k
n−2∏
j=0

(
hα

j+k+2
)βi,j (

hα
j+k+1

)IDiβi,j
= hα

kDi(α), where i ∈ [n] and 0 ≤ k ≤ n.
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It is easy to see that B can compute this using the values provided in the problem instance. The only thing
left to show is that the simulation is correct. This can be verified as follows,

ski,1 =
(
hCi(α)

) 1
γ

= h
Di(α)−βi
αγ(α−IDi) = h

Di(α)−Di(IDi)
αγ(α−IDi) =

(
wih

−Di(IDi)
) 1
αγ(α−IDi)

ski,2 = −Di(IDi) = −IDi(IDi − IDi)Ci(x)− βi = −βi
ski,3 = hQ(α)

ski,4 =
(
h
βi
β0

(Q(α)−β0)+Di(α)−βi
) 1
αγ

= h

βi
β0
Q(α)+Di(α)

αγ =
(
zf(ski,2)wi

) 1
αγ

ski,5 = {wi = hDi(α), wαi = hαDi(α), . . . , wα
n

i = hα
nDi(α)}.

Now the distribution of ski also follows the distribution of the original construction as P (x), β0, Ci(x), βi, γ
for i ∈ [n] are randomly chosen.

Challenge: A sends (S∗,M0,M1) to B where the identities of S∗ were never queried in phase 1. B choses

b
$←− {0, 1} and sets,

ct′1 = Z−1

ct′3 = Mb · Zβ0 · e(gP (α), h′α
q+2

)

ct′2 = (g′)−α
q+2

ct′4 =
(
g′α

q+2
)γ ∏

i∈S∗
(α−IDi).

It is easy to verify that B can simulate this from the problem instance it got. We need to verify that the
simulation is correct. Let s′ = logg g

′ · αq+1 now if Z = e(u, h)α
q+1

then,

ct′1 = e(g′, h)−α
q+1

= e(g, h)−s
′
; ct′2 = (g′)

−αq+2

ct′3 = Mb · e(gQ(α), h′α
q+1

) = Mb · e(u, h)s
′

ct′4 =
(
gs
′α
)γ ∏

i∈S∗
(α−IDi)

=
(
vs
′
) ∏
i∈S∗

(α−IDi)
.

Now as logg g
′, α were randomly chosen so s′ is also random and follows the same distribution as the original

scheme.

Query phase 2: A adaptively issues secret key query of IDi /∈ S∗ and B simulate and send ski same as
query phase 1.

Guess: A stops and outputs b′ ∈ {0, 1}. If b′ = b, B outputs 1 indicating Z = e(g′, h)α
q+1

else outputs 0.
Now, the advantage of B in the waABDHE game (we denote it by Pr

[
BwaABDHE ⇒ 1

]
, which means B given

the waABDHE instance outputs 1) is same as the adversary A guessing b with probability anything other
than guessing randomly. So,
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Pr
[
BwaABDHE ⇒ 1

]
≥ Pr

[
AcpaU

bedP
⇒ 1

]
Pr
[
BwaABDHE ⇒ 1

]
≥ Pr

[
AcpaU

bedP
⇒ 1|Z = gab

]
Pr
[
Z = gab

]
+
∑
p−1

Pr
[
AcpaU

bedP
⇒ 1|Z $←− G

]
Pr
[
Z

$←− G
]

1

p
Pr
[
AcpaU

bedP
⇒ 1|Z = gab

]
≤
∣∣∣∣Pr
[
BwaABDHE ⇒ 1

]
− p− 1

p
Pr
[
AcpaU

bedP
⇒ 1|Z $←− G

]∣∣∣∣
1

p
Pr
[
AcpaU

bedP
⇒ 1|Z = gab

]
≤
∣∣∣∣Pr
[
BwaABDHE ⇒ 1

]
− p− 1

2p

∣∣∣∣
1

p
Pr
[
AcpaU

bedP
⇒ 1|Z = gab

]
≤
∣∣Pr
[
BwaABDHE ⇒ 1|Z = gab

]
Pr
[
Z = gab

]
+
∑
p−1

Pr
[
BwaABDHE ⇒ 1|Z $←− G

]
Pr
[
Z

$←− G
]
− p− 1

2p

∣∣∣∣∣
Pr
[
AcpaU

bedP
⇒ 1|Z = gab

]
≤
∣∣∣∣Pr
[
BwaABDHE ⇒ 1|Z = gab

]
+ (p− 1)

(
1

2
− 1

2

)∣∣∣∣
AdvcpaUA,bedP ≤ AdvwaABDHE

B

8 Conclusion

In this paper, we have shown the limitations of the existing works. Precisely, we found security issues in
all of them. We formalized the definition of broadcast encryption with dealership and introduced a security
requirement necessary in the real world. We propose three new constructions that achieve security guarantees
required from a broadcast encryption with dealership to be deployed in real life. The three constructions,
in a way, suggest a trade-off in terms of parameter size, efficiency and security. In this work, we only
have considered semi-honest but curios adversaries without any collusion across entities. For possible future
work, we suggest removing these restrictions without hampering the efficiency. Moreover, due to the highly
interactive nature of BED, we could only achieve some of the proofs in the generic group model. We put
forward the suggestion of getting standard assumption-based proof as another possible future work.
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A Weaker asymmetric augmented bilinear Diffie-Hellman assumption

Weaker augmented bilinear Diffie-Hellman problem was introduced by [RWZ12]. It says, let BG = (p, g,G,GT , e)
$←−

BGen be a symmetric bilinear pairing where G and GT is cyclic group of prime order p, and e : G×G→ GT
is a Type-1 pairing. Then the wABDHE assumption is the following.

Definition 7. Given
(
p, g, gα, . . . , gα

n

, g′, (g′)α
q+2

, . . . , (g′)α
2q

, Z
)
∈ G2q+1 ×GT decide Z = e(g, g′)α

q+1

or

a random element from GT , where g an g′ are two random generators of G.
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For any adversary A the advantage of solving wABDHE is the following,

AdvwABDHE
A,BGen :=

∣∣∣Pr
[
A
(
g, gα, . . . , gα

n

, g′, (g′)α
q+2

, . . . , (g′)α
2q

, e(g, g′)α
q+1

⇒ 1
)]

− Pr
[
A
(
g, gα, . . . , gα

n

, g′, (g′)α
q+2

, . . . , (g′)α
2q

, Y ∈ GT
)
⇒ 1

]∣∣∣ ≤ ε
To justify the assumption, we give a formal proof in Theorem 12. The proof requires us to use a lemma

from [CM11]. We state the said lemma in Lemma 4 for completeness and omit the proof here. For a formal
proof of Lemma 4, the reader is requested to check [CM11].

Lemma 4. Let g, h′, h be generators of G, H′ and H where g = ψ(h′) and h = (ρ(h′))1/c for some c ∈ Z∗p,
then e′(g, h′) = ê(g, h)2c, where ψ and ρ are two efficiently computable isomorphism with ρ(h′) = hc.

Theorem 12. Let there exists a ppt adversary A that solves waABDHE problem in PG = (p, g, h,G,H,GT , e)
$←−

PBGen with non-negligible advantage then there exists an ppt algorithm B that can break wABDHE problem

in BG = (p, g,G,GT , e)
$←− BGen with non-negligible advantage.

Proof. An wABDHE adversary B would try to use waABDHE adversary A as subroutine. Given a problem

instance
(
g, gα, . . . , gα

n

, g′, (g′)α
q+2

, . . . , (g′)α
2q

, Z
)
∈ G2q+1 ×GT , B simulate A as follows. B finds a group

H′ isomorphic to G, where ψ : G→ H′ is the isomorphism. B can find such isomorphism is polynomial time.
Let h′ = ψ(g′). Now re-arranging the problem instance we get,(

g, gα, . . . , gα
n

, h′, (h′)α
q+2

, . . . , (h′)α
2q

, Z
)
∈ Gq+1 × (H′)q ×GT .

The map e induces e′ : G×H′ → GT in a natural way, e′(g, h′) = e(g, ψ−1(h′)) = gt, where h′ ∈ H′, gt ∈ GT .
The isomorphism ψ forces e′ to be onto. A trivial consequence of defining e′ this way makes e′ bilinear, non-

degenerate and computable. Now given A
(
g, gα, . . . , gα

n

, h′, (h′)α
q+2

, . . . , (h′)α
2q

, Z
)
∈ Gq+1 × (H′)q ×GT ,

B outputs the same as A outputs.
Now the problem instance for A, e′ is a Type-2 pairing. Only thing left to show that we can convert a

Type-2 instance to a Type-3 instance in a natural way. This part follows trivially from Lemma 4. Chatterjee
and Menzes in their paper [CM11] argued that any cryptographic protocol describe using a Type-2 pairing
and corrosponding hard problem instance can naturally be converted in to Type-3 pairing and the hardness
assumption in Type-3 is equivalent to the one used in Type-2.
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