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Abstract. We present a polynomial-time adaptive attack on the genus-2 variant of the SIDH protocol
(G2SIDH) and describe an improvement to its secret selection procedure. G2SIDH is a generalisation
of the Supersingular Isogeny Diffie–Hellman key exchange into the genus-2 setting which was proposed
by Flynn and Ti. G2SIDH is able to achieve the same security as SIDH while using fields a third of the
size.
We analyze the keyspace of G2SIDH and achieve an improvement to the secret selection by using sym-
plectic bases for the torsion subgroups. This allows for the near uniform sampling of secrets without
needing to solve multiple linear congruences as suggested by Flynn–Ti. More generally, using symplec-
tic bases enables us to classify and enumerate isogeny kernel subgroups and thus simplify the secret
sampling step for general genus-2 SIDH-style constructions.
The proposed adaptive attack on G2SIDH is able to recover the secret when furnished with an oracle
that returns a single bit of information. We ensure that the maliciously generated information provided
by the attacker cannot be detected by implementing simple countermeasures, forcing the use of the
Fujisaki–Okamoto transform for CCA2-security. We demonstrate this attack and show that it is able to
recover the secret isogeny in all cases of G2SIDH using a symplectic basis before extending the strategy
to arbitrary bases.
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The Supersingular Isogeny Diffie–Hellman (SIDH) protocol is a key exchange protocol which is the basis
of a third round alternative candidate in the NIST post-quantum cryptographic standardisation process
[NIS17]. The SIDH protocol was first described in 2011 by Jao and De Feo [JF11]. The G2SIDH key exchange
[FT19] is a natural generalisation of SIDH to a higher-dimensional setting. In this variant, the supersingular
elliptic curves of SIDH are substituted with principally polarised superspecial abelian surfaces (PPSSAS)
and `-isogenies are replaced by (`, `)-isogenies. Due to the increased number of neighboring isogenies, the
security of G2SIDH can be maintained while using primes a third of the size when compared with SIDH.

In the original description of G2SIDH, the secret keys were encoded by multiple secret scalars that need
to fulfil a certain linear congruence property and it required the user to solve these linear congruences during
the selection of secrets. This is cumbersome and increases the computational cost of key exchange during
run time. Moreover, random sampling of keys was left as an open problem in [FT19].

We propose a simplification of the methods in [FT19] which makes the sampling procedure more straight-
forward. This is achieved by introducing specific conditions on the torsion basis points. In particular, we
require the users to choose torsion generators which form a symplectic basis. The use of a symplectic torsion
basis enables us to classify general genus-2 isogeny kernel subgroups and find canonical expressions for their
generators in terms of the suggested basis points. It allows both parties of the G2SIDH key exchange protocol
to choose secrets uniformly from a large keyspace simply by choosing 3 to 4 scalars, and furthermore provides
a framework in which to present the adaptive attack.

In most aspects, G2SIDH closely resembles SIDH. This leads to natural generalisations of attacks on
SIDH to G2SIDH, and also the concept of equivalences of secret keys. In [FT19], the authors noted that
they expected attacks on SIDH to generalise naturally to G2SIDH. One of the contributions of this paper is
to demonstrate an adaptive attack on G2SIDH which is similar, but not the same as the Galbraith–Petit–
Shani–Ti (GPST) attack on SIDH [GPST16] since a straightforward adaptation thereof fails due to the
difference in types of kernel subgroups for SIDH-isogenies and those in G2SIDH.



Adaptive chosen ciphertext attacks work by recovering the secret key from a decryption oracle by sending
the oracle adaptively chosen inputs. Such an attack on isogeny-based cryptosystems was first introduced by
Galbraith et al. in 2016 [GPST16]. This attack only requires that a decryption oracle returns a single bit
of information at a time. In fact, the decryption oracle can be viewed as a decisional Diffie–Hellman oracle,
and the adaptive attack can be seen as the reduction of the computational Diffie–Hellman problem to the
decisional Diffie–Hellman problem.

More practically, the use of a weaker oracle demonstrates the strength of the attack. The GPST attack
meant that non-interactive key exchange implementations of SIDH are no longer secure and can only be safely
used with CCA2-protections. As noted in [DGL+20], a different cryptosystem will necessitate modifications
in the adaptive attack. This continues to hold true in the adaptive attack on G2SIDH.

The authors of [FT19] claimed that an adaptive attack which can break a static-key implementation of
G2SIDH should exist. The implications of the existence of such an attack on G2SIDH would be the same as
the GPST attack had on SIDH. Namely the reduction of the computational Diffie–Hellman problem to the
decisional Diffie–Hellman problem, and that static keys are insecure without CCA2-protections. However,
such an attack is not found in the state-of-the-art.

The main difference between our adaptive attack and the SIDH attack lies in the number of secret scalars
and the number of kernel generators associated with each cryptosystem. This required a thorough analysis
of the keyspace.

Contributions In this paper we present the two results:

– Use of symplectic bases enabling a classification of the isogeny kernel subgroups appearing in the genus-
2 SIDH protocol. This allows us to generate secret keys without needing to solve cumbersome linear
modular equations. Moreover, we propose a simplified version of secret selection that allows for the
uniform selection of keys from a restricted (but large enough) keyspace. This was not addressed in the
original paper [FT19]. Furthermore, the classification provides a framework for the G2SIDH attack to
be carried out.

– An adaptive attack on G2SIDH that recovers the secret kernel when provided with an oracle that returns
a single bit of information. This attack will be presented with the assumption that the users are using a
symplectic basis. However, we will also show how this attack can be extended to users using an arbitrary
basis by recovering equivalent keys in a symplectic basis. Finally, this adaptive attack is able to bypass
simple countermeasures such as Weil pairing and order checking.
The only countermeasure that we are aware of is to implement CCA2-protections such as the Fujisaki–
Okamoto transformation [FO13].

Outline This paper is organised as follows. We give a brief introduction to principally polarised supersingular
and superspecial abelian surfaces and the genus-2 variant of SIDH utilising these varieties in Section 1. In
Section 2, we analyze the G2SIDH keyspace and suggest a slight restriction thereof to allow for easier uniform
sampling. The adaptive attack is then presented in Section 3 where we first sketch an algorithm to determine
the type of secret subgroup Alice is using, and then give a detailed description of the strategy for recovering
secret keys corresponding to a certain form of kernel subgroup. We then generalise our findings. For a
discussion of parallels to SIDH and an examination of the GPST attack on elliptic curve SIDH [GPST16]
with respect to our attack framework, we refer to Appendix A. More details on the type distinction algorithm
for valid secret subgroups can be found in Appendix C, while Appendix D presents a first approach for an
adaptive attack. While the malformed points do not pass the Weil pairing countermeasure, it serves as a
good motivation for the attack presented in Section 3.

Note that this is the full version of the paper accepted to SAC 2021. In this version, we provide a
contextualisation of our methods and results in the elliptic curve setting as well as supplementary material
to the adaptive attack presented in this paper in the appendix.

An implementation of the attack can be found in https://github.com/yanboti/G2SIDHAdaptiveAttack.
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1 Preliminaries

Traditionally, isogeny-based cryptography considers isogenies between (certain types) of elliptic curves. El-
liptic curves are abelian varieties of dimension one which are principally polarised, though the polarisation is
not usually of concern when cryptography is instantiated with elliptic curves. It is thus natural to consider
generalising isogeny-based cryptography by broadening the scope to isogenies between principally polarised
abelian varieties of higher dimensions. In particular, G2SIDH is a protocol which adapts SIDH to using
principally polarised abelian surfaces.

In this section, we will first give a brief introduction to PPSSAS following [Mil86], and isogeny-based
cryptography using principally polarised abelian varieties of dimension two instead of elliptic curves when
describing G2SIDH as in [FT19]. We assume that the reader is familiar with the general concept of elliptic
curves, but refer to [Sil09], for example, for an in-depth discussion of this topic.

1.1 PPSSAS

Let p and ` be distinct primes, let n be a positive integer. Further, let A be an abelian surface defined
over some finite field Fq of characteristic p, i.e. an abelian variety of dimension two. Then an isogeny is a
homomorphism between two abelian surfaces which is surjective and has a finite kernel.

In order to obtain a higher-dimensional analogue of an elliptic curve, we need to consider principally
polarised abelian surfaces (PPAS). A polarisation of A is an isogeny λ : A → A∨, where A∨ is the dual
variety of A, derived from some ample divisor of A. This polarisation is called principal if the isogeny is
an isomorphism of varieties. If a principally polarised abelian surface A/Fq is isogenous to a product of
supersingular elliptic curves over Fq, we consider A to be supersingular. If A is isomorphic to a product of
supersingular elliptic curves, we call A a principally polarised superspecial abelian surface (PPSSAS).

As shown in [FT19, Thm. 1], any PPSSAS A defined over Fp is either isomorphic to the Jacobian of a
smooth hyperelliptic curve of genus two, or to the product of two elliptic curves. This implies that A can
be explicitly represented either by the equation y2 = f(x) for some polynomial f ∈ Fp[x] of degree 5 or 6
representing a genus-2 curve, or as the product of two elliptic curves defined by the equations y2 = g(x) and
y2 = h(x) for some degree-3 polynomials g and h. We represent the Fq-isomorphism class of some PPSSAS
A in the genus-2 setting by any valid isomorphism invariant.

As with elliptic curves, there exists a non-degenerate, alternating pairing on any abelian surface A/Fq,
the Weil pairing

e`n : A[`n](Fq)×A∨[`n](Fq)→ µµµ`n

where A[`n](Fq) denotes the `n-torsion group of A and µµµ`n denotes the group of `n-th roots of unity. If A
is a PPAS, we can use the isomorphism A ' A∨ to obtain the pairing e`n : A[`n](Fq)2 → µµµ`n . This pairing
allows us to examine the correspondence between subgroups and isogenies of abelian surfaces which preserve
the principal polarisation.

Definition 1 (Maximal `n-isotropic subgroup). Let A be an abelian variety and K a proper subgroup
of A[`n]. Then we call G a maximal `n-isotropic subgroup if

(i) the `n-Weil pairing (on A[`n]) restricts trivially to G, and
(ii) G is a maximal subgroup with respect to Property (i).

As shown by Flynn and Ti, principal polarisations of PPAS are preserved under isogenies whose kernel is a
maximal `n-isotropic subgroup, hence any maximal `n-isotropic subgroup of A defines an isogeny between
PPAS.
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Remark 1. An isogeny φ : A → A′ defined by an `n-isotropic subgroup G can be represented as a sequence
φ1, . . . , φn of (`, `)-isogenies between PPAS, each defined by a kernel generated by two order-` elements. In
this paper, we are only interested in non-backtracking isogenies, more precisely, we exclude sequences of
isogenies that contain both an (`, `)-isogeny φi and its dual φj = φ̂i. This is equivalent to the condition

G 6⊂ A[m] for any m < `n.

1.2 G2SIDH

The G2SIDH key exchange scheme is a natural generalisation of SIDH to dimension two. The key exchange
scheme requires the selection of a prime of the form p = 2eA · 3eB · f − 1 where 2eA ≈ 3eB and f is a small
cofactor not divisible by 2 or 3. A principally polarised superspecial abelian surface is then chosen to be the
base abelian variety. This is achieved by first considering the hyperelliptic curve

H : y2 = x6 + 1 .

The curve H is a double cover of the elliptic curve E : y2 = x3 + 1, given by

φ1 : E → H and φ2 : E → H

(x, y) 7→ (x2, y), (x, y) 7→ (x−2, yx−3).

These maps induce a (2, 2)-isogeny from E × E to JH := Jac(H) [CF96, p. 155].
Also, we have that E is supersingular and #E(Fp2) = (p + 1)2 since p ≡ 2 (mod 3) by computing the

criterion in [Sil09, Thm. V.4.1(a)]. Hence the Jacobian JH = Jac(H) is indeed a PPSSAS. As a consequence
#JH(Fp2) = (p + 1)4 using the theorem of Tate [Tat66, Thm. 1]. Furthermore, we have that JH(Fp2) =
JH [2eA ]× JH [3eB ]× JH [f ] as a group.

Then a short random walk is taken from JH in the (2, 2)-isogeny graph to obtain a random PPSSAS J . It
follows from the above that we can fix torsion-bases 〈P1, P2, P3, P4〉 = J [2eA ] and 〈R1, R2, R3, R4〉 = J [3eB ]
with all points Pi and Ri defined over Fp2 .

To perform the key exchange, Alice chooses a secret maximal 2eA -isotropic subgroup GA of J [2eA ] cor-
responding to an isogeny φA with kernel GA and codomain JA. This kernel can be determined by three
generators (one of which may be O), given as linear combinations of the Pi known only to Alice. In particu-
lar, each generator is determined by the four coefficients of the Pi and thus, Alice’s secret can be described
explicitly by a collection of secret scalars that is dependent on the basis.4 She sends the tuple(

JA, φA(R1), φA(R2), φA(R3), φA(R4)
)

to Bob. He analogously completes his side of the computation so that Alice receives the tuple(
JB , φB(P1), φB(P2), φB(P3), φB(P4)

)
.

She can then use her linear combination of torsion points with the secret scalars as coefficients which generate
the kernel of her secret isogeny φA to compute an isogeny from JB using φB(Pi) as the basis instead of Pi.
Denote the codomain of this isogeny by JAB . Bob will complete his side of the protocol and obtain the
abelian surface JBA. By construction, JAB and JBA are isomorphic as principally polarised abelian surfaces.
This allows for the use of isomorphism invariants as the shared key.

Flynn and Ti outline a procedure to select Alice’s scalars αi,1, . . . , αi,4 ∈ Z/2eAZ,1 ≤ i ≤ 3, such that
the points

A1 =

4∑
i=1

[α1,i]Pi, A2 =

4∑
i=1

[α2,i]Pi, and A3 =

4∑
i=1

[α3,i]Pi

generate a maximal 2eA -Weil isotropic subgroup of J [2eA ] which can be used as her secret GA = 〈A1, A2, A3〉.
For details, specifically which congruences need to be satisfied to obtain a trivial Weil pairing on the Ai,
we refer to [FT19]. We discuss a more efficient method of secret selection in §2.3 and also address random
sampling from the keyspace, which was left as an open problem.

4 Throughout the remainder of this work, we will use different encodings of Alice’s secret subgroup GA, such as a
description in terms of scalars or as an isogeny.
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2 Keyspace

A secret key of Alice can be expressed as an isogeny of principally polarised abelian varieties φA : J → JA.
We have seen in §1.1 that this isogeny corresponds to a maximal 2eA -isotropic subgroup of J . In the same
way, Bob’s secret key corresponds to a maximal 3eB -isotropic subgroup of J . Moreover, we require that the
isogeny is non-backtracking (cf. Remark 1). This allows us to identify the keyspace with the set

K` = {G ⊂ J | G maximal `n-isotropic and G 6⊂ J [m] for any m < `n},

for ` ∈ {2, 3} and n = eA or eB , respectively. The groups in K` can be specified as follows.

Proposition 1 ([FT19, Prop. 2]). Let G ∈ K`, then G is isomorphic to

C`n × C`n or C`n × C`n−k × C`k

for some 1 ≤ k ≤ bn2 c.

Note in particular that, in comparison to kernels usually considered for elliptic curve isogenies, the groups
in K` are not cyclic.

In this section we analyze the set K` and show how to (almost) uniformly sample from the entire keyspace.
Moreover, we introduce the subset Kres

` ⊂ K`. This subset is of the same order of magnitude as the entire
keyspace, and allows for very simple and truly random sampling. An important step in the analysis is the
normalisation of secret keys that allows us to classify the groups in K` and define canonical generators. This
is achieved by considering so-called symplectic bases of the `n-torsion of J .

2.1 Symplectic basis

Let m be an integer not divisible by p. The m-torsion of J is a finitely generated group of rank 4, more
precisely

J [m]
∼−→ (Z/mZ)4.

Definition 2. We say that a tuple (P1, P2, Q1, Q2) is a basis for J [m] if it generates J [m] as a group. We
say that the basis (P1, P2, Q1, Q2) for J [m] is symplectic with respect to the Weil pairing if

em(Pi, Qj) = ζδij , em(P1, P2) = em(Q1, Q2) = ζ0 = 1,

where ζ is some primitive m-th root of unity and δij =

{
1 if i = j,

0 otherwise.

Note that em(Qj , Pi) = ζ−δij for a symplectic basis (P1, P2, Q1, Q2) since the Weil-pairing is alternating.
There always exists a symplectic basis for J [m]. Indeed, given any basis for J [m] it can be easily trans-

formed into a symplectic basis using Algorithm 1 which is presented in Appendix B.
Finally, symplectic bases are preserved under isogenies as shown in the lemma to come. This allows us

to use symplectic bases in G2SIDH.

Lemma 1. Let (P1, P2, Q1, Q2) be a symplectic basis of J [m] with respect to some primitive root ζ, and let
φ : J → J ′ be an isogeny whose degree is coprime to m. Then

(
φ(P1), φ(P2), φ(Q1), φ(Q2)

)
is a symplectic

basis of J ′[m] with respect to ζdeg(φ).

Proof. Observe that we have

em(φ(Pi), φ(Qj)) = em(Pi, Qj)
deg φ = 1 and em(φ(Qi), φ(Pj)) = em(Pj , Qi)

− deg φ = 1

for all i 6= j. Likewise, we have that

em(φ(Pi), φ(Qi)) = em(Pi, Qi)
deg φ = ζdeg φ

for i = 1, 2. Finally, since 〈φ(P1), φ(P2), φ(Q1), φ(Q2)〉 = J ′[m] and the torsion subgroup is of rank 4, we can
conclude that

(
φ(P1), φ(P2), φ(Q1), φ(Q2)

)
is a symplectic basis of J ′[m]. ut
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2.2 Classification of secret keys

In this section we suggest a normalisation algorithm that produces canonical generators for each group
G ∈ K`. For this purpose, we let

(P ∗1 , P
∗
2 , P

∗
3 , P

∗
4 ) := (P1, P2, Q1, Q2)

be a symplectic basis for J [`n].5 Of course, one can adapt the procedure to general bases by performing a
basis change to a symplectic basis before applying the algorithm.

Let (α1,1, . . . , α3,4) be the secret scalars defining the group G = 〈G1, G2, G3〉 ∈ K`, where

G1 =

4∑
i=1

[α1,i]P
∗
i , G2 =

4∑
i=1

[α2,i]P
∗
i , and G3 =

4∑
i=1

[α3,i]P
∗
i .

By definitionG is maximal `n-isotropic. This property imposes different conditions on the scalars (α1,1, . . . , α3,4).
The idea for the normalisation is similar to Gaussian elimination. We set

A =

α1,1 α1,2 α1,3 α1,4

α2,1 α2,2 α2,3 α2,4

α3,1 α3,2 α3,3 α3,4

 ∈M3,4(Z/`nZ).

Using elementary row operations and permuting columns if necessary, we can obtain a matrix of the form

A ∼σ

1 0 ∗ ∗
0 1 ∗ ∗
0 0 0 0

 if G ' C`n × C`n or A ∼σ

1 ∗ ∗ ∗
0 `k ∗ ∗
0 0 ∗ `n−k

 if G ' C`n × C`n−k × C`k . (1)

Here σ denotes the permutation σ ∈ S4 corresponding to the permutation of the columns, and ∗ is meant as
a placeholder respecting certain divisibility conditions. The first case is obtained from the second by setting
k = 0, hence this will not appear explicitly in the discussion below.

Note that this normalisation procedure does not affect the corresponding group. More precisely, let

A′ =

α′1,1 α′1,2 α′1,3 α′1,4α′2,1 α
′
2,2 α

′
2,3 α

′
2,4

α′3,1 α
′
3,2 α

′
3,3 α

′
3,4


be obtained from A by applying elementary row operations and potentially swapping columns. Let σ ∈ S4

denote the corresponding permutation of the columns. Then G = 〈G′1, G′2, G′3〉, where

G′1 =

4∑
i=1

[α′1,i]P
∗
σ(i), G′2 =

4∑
i=1

[α′2,i]P
∗
σ(i), G′3 =

4∑
i=1

[α′3,i]P
∗
σ(i) .

We only used the knowledge of the group structure of G to obtain a presentation as an upper triangular
matrix as in (1). Additionally, we also know that the Weil pairing e`n(Gi, Gj) = 1 for all i, j ∈ {1, 2, 3}.
Using this property, we can work out the relations between the non-zero entries of the matrices. The result
is captured in the following proposition.

Proposition 2. Let A be a matrix corresponding to a maximal `n-isotropic subgroup of the form C`n ×
C`n−k × C`k for some integer 0 ≤ k ≤ bn2 c. Then there exist a permutation σ ∈ D8 = 〈(1234), (13)〉 and
scalars a ∈ {0, . . . , `n − 1}, b ∈ {0, . . . , `n−k − 1}, c ∈ {0, . . . , `n−2k − 1}, d ∈ {0, . . . , `k − 1} such that

A ∼σ A′ =

1 d a b
0 `k sσ `

k (b− cd) `k c
0 0 −sσ `n−k d `n−k

 ∈M3,4(Z/`nZ),

5 The notation (P ∗1 , P
∗
2 , P

∗
3 , P

∗
4 ) is necessary because we are going to work with permutations of the basis elements.

It is only used in this part of the notes.
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where sσ = sgn(σ) denotes the sign of the permutation σ.
On the other hand, if A′ is as above and G′ = 〈G′1, G′2, G′3〉, where

G′1 =

4∑
i=1

[α′1,i]P
∗
σ(i), G′2 =

4∑
i=1

[α′2,i]P
∗
σ(i), G′3 =

4∑
i=1

[α′3,i]P
∗
σ(i)

for some σ ∈ D8, then G
′ is maximal `n-isotropic.

Proof. Following the Gaussian elimination process one obtains a matrix A′ of the form given in Equation
(1). Note that the rank-2 case is just the special case obtained by setting k = 0. Examining this process
more closely, one sees that σ can be chosen to lie in the dihedral group D8 = 〈(1234), (13)〉.6

Let us write

A′ =

1 d a b
0 `k `kx `k c
0 0 `n−k y `n−k


for some a, b, c, d, x, y ∈ {0, . . . , `n − 1}, now including the divisibility by `-powers which was omitted in
(1). First, note that after adding a multiple of the second line to the first line of A′, we may assume that
d ∈ {0, . . . , `k − 1}. Similarly, we can achieve b ∈ {0, . . . , `n−k − 1} and c ∈ {0, . . . , `n−2k − 1}. It remains
to show that x and y are determined by the scalars a, b, c, d. This is done using the Weil pairing. For the
following computation, it is important to note that

e`n(P ∗σ(1), P
∗
σ(3)) = e`n(P ∗σ(2), P

∗
σ(4))

sσ (2)

for all σ ∈ D8.
Let G′1, G

′
2, G

′
3 be the generators corresponding to the matrix A′. Then

e`n(G′1, G
′
2) = e`n(P ∗σ(1) + [d]P ∗σ(2) + [a]P ∗σ(3) + [b]P ∗σ(4), `

k · (P ∗σ(2) + [x]P ∗σ(3) + [c]P ∗σ(4)))

= e`n(P ∗σ(1), P
∗
σ(3))

`kx · e`n(P ∗σ(2), P
∗
σ(4))

`k(cd−b).

Using property (2), we obtain the condition `kx = sσ`
k(b− cd). Computing the Weil pairing on G′2 and G′3

shows that `n−ky = −sσ`n−kd.
For the other direction, it remains to show that the group G′ = 〈G′1, G′2, G′3〉 is maximal `n-isotropic.

This can be done by verifying that G′ meets the criteria from Definition 1.
ut

The following consequence of the proposition will be helpful for determining the type of a group in the
adaptive attack (cf. §3.3).

Corollary 1. Let (P ∗1 , P
∗
2 , P

∗
3 , P

∗
4 ) be a symplectic basis for J [`n] and let G ⊂ J be an isotropic group

isomorphic to C`n × C`n−k × C`k . Assume that G1 = P ∗σ(1) + [d]P ∗σ(2) + [a]P ∗σ(3) + [b]P ∗σ(4) ∈ G for some
permutation σ ∈ D8 and scalars a, b, d. Then

C`k × C`k ' `n−k
〈
P ∗σ(2) + [sσ · b]P ∗σ(3), [−sσ · d]P ∗σ(3) + P ∗σ(4)

〉
⊂ G.

Proposition 2 shows that each group G ∈ K` may be represented by a tuple of the form (a, b, c, d, k, σ),
where

a ∈ {0, . . . , `n−1}, b ∈ {0, . . . , `n−k−1}, c ∈ {0, . . . , `n−2k}, d ∈ {0, . . . , `k−1}, 0 ≤ k ≤
⌊n

2

⌋
and σ ∈ D8.

Clearly, such a representation is not unique in most cases. However, it is possible to make the elimination
algorithm deterministic by imposing conditions on the choice of the permutation σ ∈ D8. In that way, it is
possible to obtain canonical representatives of the form (a, b, c, d, k, σ), where each σ 6= id comes with some
additional constraints on the parameters a, b, c, d.

6 In the rank-2 case, we moreover have σ ∈ V4 = 〈(13), (24)〉 ⊂ D8.
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Definition 3 (Classification). Let (P ∗1 , P
∗
2 , P

∗
3 , P

∗
4 ) be a symplectic basis for J [`n] and denote by P∗ the

column vector
(
P ∗1 P

∗
2 P

∗
3 P

∗
4

)T
. For a group G = 〈G1, G2〉 ' C`n × C`n in K`, we say that G1, G2 are the

canonical generators if one of the following is true for some a, b, c ∈ Z/`nZ.

2.1

(
G1

G2

)
=

(
1 0 a b
0 1 b c

)
P∗.

2.2

(
G1

G2

)
=

(
1 b a 0
0 c −b 1

)
P∗, and ` | c.

2.3

(
G1

G2

)
=

(
a 0 1 b
−b 1 0 c

)
P∗, and ` | a, b.

2.4

(
G1

G2

)
=

(
a b 1 0
b c 0 1

)
P∗, and ` | a, b, c.

For a group G = 〈G1, G2, G3〉 ' C`n × C`n−k × C`k with 0 < k < n
2 in K`, we say that G1, G2, G3 are the

canonical generators if one of the following is true for some a ∈ {0, . . . , `n − 1}, b ∈ {0, . . . , `n−k − 1}, c ∈
{0, . . . , `n−2k − 1}, d ∈ {0, . . . , `k − 1}.

3.1

G1

G2

G3

 =

1 d a b

0 `k `k(b− cd) `kc

0 0 −`n−kd `n−k

P∗.

3.2

G1

G2

G3

 =

1 b a d

0 `kc −`k(b− cd) `k

0 `n−k `n−kd 0

P∗,

and ` | c.

3.3

G1

G2

G3

 =

 a d 1 b

−`k(b− cd) `k 0 `kc

`n−kd 0 0 `n−k

P∗,

and ` | a.

3.4

G1

G2

G3

 =

 a b 1 d

`k(b− cd) `kc 0 `k

−`n−kd `n−k 0 0

P∗,

and ` | a, c.

3.5

G1

G2

G3

 =

 d 1 b a

`k 0 `kc `k(b− cd)

0 0 `n−k −`n−kd

P∗,

and ` | b, d.

3.6

G1

G2

G3

 =

 b 1 d a

`kc 0 `k −`k(b− cd)

`n−k 0 0 `n−kd

P∗,

and ` | b, c, d.

3.7

G1

G2

G3

 =

 d a b 1

`k −`k(b− cd) `kc 0

0 `n−kd `n−k 0

P∗,

and ` | a, b, d.

3.8

G1

G2

G3

 =

 b a d 1

`kc `k(b− cd) `k 0

`n−k −`n−kd 0 0

P∗,

and ` | a, b, c, d.

For a group G = 〈G1, G2, G3〉 ' C`n×C`k×C`k with k = n
2 in K`, we say that G1, G2, G3 are the canonical

generators if one of the following is true for some a ∈ {0, . . . , `n − 1}, b, d ∈ {0, . . . , `k − 1}.

4.1

G1

G2

G3

 =

1 d a b

0 `k `kb 0

0 0 −`kd `k

P∗.

4.2

G1

G2

G3

 =

 a d 1 b

−`kb `k 0 0

`kd 0 0 `k

P∗, and ` | a.

4.3

G1

G2

G3

 =

 d 1 b a

`k 0 0 `kb

0 0 `k −`kd

P∗, and ` | b, d.

4.4

G1

G2

G3

 =

 d a b 1

`k −`kb 0 0

0 `kd `k 0

P∗, and ` | a, b, d.

Moreover we say that a group G ∈ K` is of Type 2.i, 3.i or 4.i for i ∈ {1, . . . , 8} depending on which of
the cases above applies.

Table 1 summarizes the classification of the groups in K` defined above. The classification of the groups
in K` also allows us to determine the cardinality of K`. The number of groups of a given type can be directly
read off from the description and is provided in the last column of Table 1. Adding up the numbers for
Types 2.1, 2.2, 2.3, 2.4, we obtain `3n−3(`2 + 1)(`+ 1), the number of maximal isotropic subgroups of rank 2.
Adding up the numbers for Types 3.1−3.8, we find that there are `3n−2k−4(`2 +1)(`+1)2 groups isomorphic
to C`n × C`n−k × C`k , where 0 < k < n

2 . Finally the sum over the numbers for Types 4.1 − 4.4 is equal to
`2n−3(`2 + 1)(`+ 1), the number of groups isomorphic to C`n × C`k × C`k , where 2k = n. These cardinalities
coincide with the numbers provided in [FT19, Prop. 3].
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type σ condition on (a, b, c, d) cardinality

k = 0 2.1 id - `3n

2.2 (24) ` | c `3n−1

2.3 (13) ` | a, b `3n−2

2.4 (13)(24) ` | a, b, c `3n−3

0 < k < n
2

3.1 id - `3n−2k

3.2 (24) ` | c `3n−2k−1

3.3 (13) ` | a `3n−2k−1

3.4 (13)(24) ` | a, c `3n−2k−2

3.5 (12)(34) ` | b, d `3n−2k−2

3.6 (1234) ` | b, c, d `3n−2k−3

3.7 (1432) ` | a, b, d `3n−2k−3

3.8 (14)(23) ` | a, b, c, d `3n−2k−4

2k = n 4.1 id - `2n

4.2 (13) ` | a `2n−1

4.3 (12)(34) ` | b, d `2n−2

4.4 (1432) ` | a, b, d `2n−3

Table 1. Classification of maximal `n-isotropic subgroups.

2.3 New uniform sampling from the keyspace

In the previous section we described a classification of the groups in K`. This can be used to sample uniformly
from the entire keyspace. Here, we introduce a slightly restricted keyspace Kres

` that allows a particularly
easy way of sampling from the keyspace which chooses elements uniformly at random. For the convenience
of the reader, Figure 1 provides an explicit description of the G2SIDH protocol in this setting.

Setup

– prime p = 2eA · 3eB · f − 1.
– superspecial hyperelliptic curve H/Fp2 with Jacobian J .
– symplectic bases (PA,1, PA,2, QA,1, QA,2) for J [2eA ] and (PB,1, PB,2, QB,1, QB,2) for J [3eB ].

Key Generation

– a1, a2, a3
$←− {0, . . . , 2eA − 1}

– A1 = PA,1+[a1]QA,1+[a2]QA,2

A2 = PA,2+[a2]QA,1+[a3]QA,2

– φA : J → JA = J/〈A1, A2〉

JA, φA(PB,i), φA(QB,i)
for i ∈ {1, 2}

−−−−−−−−−−−−−−−−−−−−−→

JB , φB(PA,i), φB(QA,i)
for i ∈ {1, 2}

←−−−−−−−−−−−−−−−−−−−−−

– b1, b2, b3
$←− {0, . . . , 3eB − 1}

– B1 = PB,1+[b1]QB,1+[b2]QB,2

B2 = PB,2+[b2]QB,1+[b3]QB,2

– φB : J → JB = J/〈B1, B2〉

Shared Key

JB/〈φB(A1), φB(A2)〉 = J/〈A1, A2, B1, B2〉 = JA/〈φA(B1), φA(B2)〉

Fig. 1. G2SIDH with restricted keyspace Kres
` .

For some fixed symplectic basis (P1, P2, Q1, Q2) of J [`n], we define the restricted keyspace as

Kres
` = {〈P1 + [a]Q1 + [b]Q2, P2 + [b]Q1 + [c]Q2〉 | a, b, c ∈ Z/`nZ} .
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In the terminology of the previous section this means that Kres
` is the set of all groups of Type 2.1 (cf. Def.

3 and Table 1).
First of all, note that every secret key sk ∈ Kres

` is indeed a maximal `n-isotropic subgroup as per
Proposition 2. A very beneficial feature of the new keyspace is that every secret key sk ∈ Kres

` is uniquely
encoded by a tuple (a, b, c) ∈ (Z/`nZ)3. This means that a secret key can be sampled by choosing three
random integers a, b, c ∈ Z/`nZ.

Moreover, the restricted keyspace still has the same order of magnitude as the original keyspace. To see
this recall the number of maximal `n-isotropic subgroups from [FT19, Thm. 2]:

#K` = `2n−3(`2 + 1)(`+ 1)

(
`n +

`n−1 − 1

`− 1

)
= `3n · (`2 + 1)(`+ 1)

`3

(
1 +

`n−1 − 1

`n(`− 1)

)
︸ ︷︷ ︸

α`

.

Evaluating the expression on the right, one finds α2 ≈ 45
16 and α3 ≈ 140

81 for large n.
We would like to point out that a similar restriction of the keyspace is made in the SIDH protocol for

elliptic curves. While the space of all `n-isogenies from a fixed starting curve is of size (` + 1)`n−1, the
keyspace used in the optimised implementation is only of size `n.

Remark 2. We can also obtain uniform sampling on the entire keyspace K` by taking into consideration the
canonical generators and the distribution of the possible subgroup structures in the keyspace.

Suppose ` = 2. The formulae of [FT19, Thm. 2] and [FT19, Prop. 3] then show that the proportion of
rank-2 subgroups among all admissible subgroups is

2n

2n + 2n−1 − 1
≈ 2

3

if n is large.
Performing the same computation on rank-3 subgroups, for large n we have

3 · 2n−2k

3 · 2n − 2
≈ 1

22k
,

where k is the parameter determining the subgroup structure.
Therefore, we obtain a method to almost uniformly sample the keyspace. First, 0 ≤ k ≤ N is determined

for some bound N ≤ bn2 c, weighted according to the proportion stated above. Next, one has to make a
choice of canonical generators based on the distribution of the different types presented in Table 1. Finally,
uniformly selecting the required scalars will ensure the near-uniform sampling from the keyspace.

3 Adaptive attack on G2SIDH

The attack as presented in this section is able to recover Alice’s secret kernel when she uses a static secret
kernel which is maximal 2n-isotropic. In particular, we will describe a method that can recover secret ker-
nels of various group structures. In the exposition to come, the scalars θi are used to ensure Weil pairing
countermeasures are unable to detect our attack. This method is employed in tandem with the symplectic
transformations that are primarily used to isolate the bit under attack. The adaptive attack on G2SIDH is
similar to adaptive attacks on SIDH [GPST16], 2-SIDH [DGL+20], and Jao–Urbanik’s variant [BKM+20].
It interacts with an oracle by sending points on some starting variety that correspond to the auxiliary points
provided in the protocol. The oracle is “weak” in the sense that only one bit is returned per query. By
sending malformed points, the adaptive attack is able to recover scalars that determine the secret kernels.

The first step of the adaptive attack is to recover the kernel structure used by Alice and is presented in
§3.3. The next step then recovers the scalars associated with the kernel structure recovered in the first step
and is divided into two parts depending on the rank of the kernel structure (§3.4 for rank 2 and §3.5 for rank
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3). In each case, we will recover the first bit of the secret scalars before iteratively recovering the remaining
bits.

Note that a first approach to recovering the secret scalars is included in Appendix D. The malformed
points used in this alternative version can be detected by checking the Weil pairing values of the received
points are correct. However, we hope that the accompanying kernel computations may be useful in future
cryptanalytic attempts.

In the following, we will assume that all users of the G2SIDH protocol (or at least Alice, the honest party
whose key we want to recover) are using a symplectic basis as described in §2.1. This attack will still work
on users not using a symplectic basis as one can perform a linear transformation from an arbitrary torsion
basis into a symplectic basis. For clarity, we present the attack directly on a symplectic torsion basis here
and describe the extension to arbitrary bases in §3.6.

Notations and set-up

Let us fix some notation. Let J be the starting variety, and let JA be the codomain of the secret isogeny
with kernel 〈A1, A2, A3〉, where the orders of the points are 2n, 2n−k, 2k respectively.

Furthermore, suppose 〈P1, P2, Q1, Q2〉 = J [2n] is a symplectic basis such that e2n(Pi, Qj) = ζδij , where
ζ is a primitive 2n-th root of unity, and e2n(P1, P2) = e2n(Q1, Q2) = ζ0 = 1.

We write φB : J → JB for Bob’s isogeny. Then (φB(P1), φB(P2), φB(Q1), φB(Q2)) is a symplectic basis
for JB [2n] as per Proposition 1. To ease notation, we set

R1 = φB(P1), R2 = φB(P2), S1 = φB(Q1), S2 = φB(Q2).

We will assume that Alice is the party under attack, and that she is using secret scalars α1,1, . . . , α3,4

which define a maximal 2n-isotropic subgroup of J [2n]. We can write any of the secret scalars, say a, as

a =
∑n−1
i=0 2iai for bits ai ∈ {0, 1}. For i = 1, . . . , n− 1, let us then denote the partial key consisting of the

first i bits of a as Ka
i =

∑i−1
j=0 2jaj so that a = Ka

i + 2iai + 2i+1a′ for some a′. This convention will help us
keep track of the known information at each step of the attack below.

3.1 Attack model and oracle

The attack we present in the following assumes that an honest Alice uses a static key which a malicious Bob
is trying to learn through repeatedly providing malformed torsion point information during the G2SIDH
protocol execution. Bob’s overall goal is to recover Alice’s full key or a valid tuple of scalars forming an
equivalent key. While this means we explicitly work with elements of J [2n] and focus on recovering a kernel
corresponding to a sequence of Richelot isogenies, this strategy can be translated to recover a key for more
general small primes ` and therefore `e` -torsions of J due to Proposition 2. The resulting attack on different
` may not return a bit of information with every single query, but may require a small number of additional
queries to determine a bit of information. The attack can still be carried out successfully.

It is customary in similar attacks to consider two distinct oracles which can model the information
obtained by the attacker which differ in their inherent strength. One which, on input of a variety J and
four points R′1, . . . , R

′
4 ∈ J [2n], provides the isomorphism invariants of the codomain variety J/GA of the

isogeny corresponding to the kernel subgroup GA = 〈
∑4
i=1[α1,i]R

′
i,
∑4
i=1[α2,i]R

′
i,
∑4
i=1[α3,i]R

′
i〉. The second,

less powerful oracle is the one we will utilise to model our attack in the following, as is done in [GPST16].
Our oracle, which replaces Alice in an honest execution of the protocol,

O (J, J ′, (R′1, R
′
2, R

′
3, R

′
4))

returns 1 whenever the subgroup GA = 〈
∑4
i=1[α1,i]R

′
i,
∑4
i=1[α2,i]R

′
i,
∑4
i=1[α3,i]R

′
i〉 is isotropic and the va-

riety J/GA has the same isomorphism invariants as the second input variety J ′. Otherwise, it returns 0.
Moreover we assume that the oracle checks whether an input is valid and returns ⊥ if this is not the case.
Here, we say that a tuple (J, J ′, (R′1, R

′
2, S
′
1, S
′
2)) is a valid input if (R′1, R

′
2, S
′
1, S
′
2) is a symplectic basis for
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J [2n] and e2n(R′i, S
′
i) = e2n(Pi, Qi)

3eB . Note that an honest run of the protocol generates the valid input
(JB , JAB , (R1, R2, S1, S2)).

For ease of reading, we will represent malformed points to be queried as linear combinations ofR1, R2, S1, S2

and laid out in a 4× 4 matrix. That is, for any points R′1, R′2, S′1, S′2 that the adversary sends to the oracle,
we can write 

R′1
R′2
S′1
S′2

 =


a1 a2 a3 a4
b1 b2 b3 b4
c1 c2 c3 c4
d1 d2 d3 d4



R1

R2

S1

S2

 ,

and we will represent the queries R′1, R′2, S′1, S′2 by the 4× 4 matrix.

3.2 Symplectic transformations

When constructing malformed torsion points for the oracle queries, we need to make sure that the input is
still valid. In our setting, an oracle query

O (JB , JAB , (R
′
1, R

′
2, S
′
1, S
′
2))

is valid if and only if (R′1, R
′
2, S
′
1, S
′
2) is a symplectic basis and

e2n(R′i, S
′
j) = e2n(Ri, Sj) for i, j ∈ {1, 2}.

A change of basis t : (R′1, R
′
2, S
′
1, S
′
2)← (R1, R2, S1, S2) with this property is called a symplectic transforma-

tion. The matrices corresponding to symplectic transformations are called symplectic matrices. We are going
to write Mt for the matrix corresponding to the transformation t.

Using symplectic transformations has yet another advantage. Let G = 〈G1, G2, G3〉 ⊂ J be maximal
2n-isotropic and t : J [2n] → J [2n] a symplectic transformation, then G′ = 〈t(G1), t(G2), t(G3)〉 is maximal
2n-isotropic as well. Note that this is not true for general isomorphisms of J [2n].

One can easily verify that the following matrices are symplectic. We will use different combinations of
these to construct the transformations for the oracle queries.

Mt0 =


1 0 0 0
0 1 0 0
1 0 1 0
0 0 0 1

 , Mt1 =


1 0 1 0
0 1 0 0
0 0 1 0
0 0 0 1

 , Mt2 =


1 0 0 0
0 1 0 0
0 0 1 0
0 1 0 1

 ,

Mt3 =


1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 1

 , Mt4 =


1 0 0 0
0 1 0 0
0 1 1 0
1 0 0 1

 , Mt5 =


1 0 0 1
0 1 1 0
0 0 1 0
0 0 0 1

 .

Proposition 3. The following matrices are symplectic for any values x, x0, x1, x2, x3, x4, x5 and ivertible
elements θ1, θ2 ∈ Z/2nZ.

M1 =


θ1 θ2x 0 0
0 θ2 0 0
0 0 θ−11 0
0 0 −θ−11 x θ−12

 and M2 =


1 0 x1 x5
0 1 x5 x3
0 0 1 0
0 0 0 1

 ,

M3 =


θ1(1 + x0x1 − x4x5(1 + x0x1)) θ2x2x5 θ−11 x1(1 + x4x5) θ−12 x5

θ1x0x5 θ2(1 + x2x3 + x4x5(1 + x2x3)) θ−11 x5 θ−12 x3(1 + x4x5)
θ1x0 θ2x4(1 + x2x3) θ−11 θ−12 x3x4

θ1x4(1 + x0x1) θ2x2 θ−11 x1x4 θ−12

 .
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Proof. It is easy to check that M1 is symplectic since the scalars satisfy θ1θ
−1
1 = θ2θ

−1
2 = 1. The matrix M2

can be easily written in terms of the transformations ti, namely M2 = Mx1
t1 ·M

x3
t3 ·M

x5
t5 . Finally, M3 can be

written as

M3 = M1 ·Mx0
t0 ·M

x1
t1 ·M

x2
t2 ·M

x3
t3 ·M

x4
t4 ·M

x5
t5 .

ut
All our queries to the oracle are obtained by combining the transformations in the proposition above.

In order to choose a transformation, it is necessary to examine the effect of a transformation on a secret
subgroup. To illustrate this, assume that Alice uses a group 〈A1, A2, A3〉 of Type 3.1. This means A1 =
R1 + [d]R2 + [a]S1 + [b]S2, A2 = 2k(R2 + [b − cd]S1 + [c]S2) A3 = 2n−k([−d]S1 + S2). As in §2.2, we let A
be the associated matrix, i.e. here

A =

1 d a b
0 2k 2k(b− cd) 2kc
0 0 −2n−kd 2n−k

 .

Applying a basis transformation t corresponds to computing A′ = A ·Mt. As an example, consider the
second basis transformation from the above proposition.

A′ = A ·M2 =

1 d a+ x1 + dx5 b+ x5 + dx3
0 2k 2k(b− cd) + 2kx5 2kc+ 2kx3
0 0 −2n−kd 2n−k

 = A+

0 0 x1 + dx5 x5 + dx3
0 0 2kx5 2kx3
0 0 0 0

 .

This means that the matrices A and A′ correspond to the same group GA if and only if 〈[x1 +dx5]S1 + [x5 +
dx3]S2, [2

k]([x5]S1 + [x3]S2)〉 ⊂ GA.

3.3 Case distinction

Recall that in [FT19], Alice’s secret can be described by (α1,1, . . . , α3,4). A priori we do not know, if the group
GA defined by these scalars has rank 2 or 3. Moreover we do not know which canonical form is obtained
when normalising the generators (cf. Def. 3, Table 1). In total, when k = 0 there are 4 types of maximal
2n-isotropic groups, 8 different types when 0 < k < n

2 and 4 different types when k = n
2 . The type can

be recovered by sending at most 4k + 4 queries that mimic the normalisation process outlined in §2.2. The
approach is illustrated in the decision tree in Figure 2, where each node is labelled with the condition we
want to test for. Note that at most two queries have to be made per “equivalence” node while at most four
queries are necessary to test for divisibility by a power of 2. We provide details for one of the paths in the
decision tree in Appendix C.

Assuming that the key (α1,1, . . . , α3,4) is drawn uniformly at random from the entire key space K2, the
algorithm illustrated by the decision tree will in many cases terminate at an early stage.

Recall from §2.3 that roughly one third of the key space consists of groups of Type 2.1. In that case the
algorithm terminates after three queries; one to find that one of α1,1, α2,1, α3,1 is odd, and another two to
determine that one of α2,2, α3,2 is odd. In total, the rank-2 subgroups constitute two thirds of the key space,
in which case the algorithm terminates after having made at most six queries. Finally, if we encounter a
rank-3 group, it will usually not be necessary to perform many iterations to find k because the probability
that k > k0 for some fixed k0 is less than 1

3·22k0 .
Observe that an attacker obtains some information about the value of certain bits during the course

of the type distinction. In particular for rank-3 groups, we recover normalised scalars b (mod 2k) and d
(mod 2k) = d via the iterative queries. At each step of the iteration, we aim to find out whether 2k0+1

divides the coefficients of Pσ−1(2) and Pσ−1(4) in the canonical generators of 〈A2〉 and 〈A3〉. In order to
achieve this, we need to eliminate the possibility that an oracle query returns 0 because 〈A′1〉 6= 〈A1〉. Hence,
we need to query twice for each possible further bit of the coefficients of Pσ−1(2) and Pσ−1(4) in 〈A1〉. Therefore
we recover the first k bits of b and d fully while we determine the type of GA. This information can then
be used to drastically reduce the number of queries in the main attack algorithm presented in §3.5, and we
thus assume knowledge of b (mod 2k) and d for any rank-3 kernel subgroups.
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(α1,1, . . . , α3,4)

α1,1 ≡ α2,1 ≡ α3,1 ≡ 0

α1,3 ≡ α2,3 ≡ α3,3 ≡ 0 α′2,2 ≡ α′3,2 ≡ 0

α1,2 ≡ α2,2 ≡ α3,2 ≡ 0

v2(α′2,1), v2(α′3,1) > k0

v2(α′2,3), v2(α′3,3) > k0

k0 + 1 < n
2

4.4, n
2

3.7, k0

3.8, k0

v2(α′2,1), v2(α′3,1) > k0

v2(α′2,3), v2(α′3,3) > k0

k0 + 1 < n
2

4.3, n
2

3.5, k0

3.6, k0

α′2,2 ≡ α′3,2 ≡ 0

α′2,4 ≡ α′3,4 ≡ 0

v2(α′2,2), v2(α′3,2) > k0

v2(α′2,4), v2(α′3,4) > k0

k0 + 1 < n
2

2.3, 0

2.4, 0

3.3, k0

3.4, k0

4.2, n
2

α′2,4 ≡ α′3,4 ≡ 0

v2(α′2,2), v2(α′3,2) > k0

v2(α′2,4), v2(α′3,4) > k0

k0 + 1 < n
2

2.1, 0

2.2, 0

3.1, 0

3.2, k0

4.1, n
2

Set k0 = 1 Set k0 = 1

Set k0 = 1

Set k0 = 1

inc. k0 inc. k0

inc. k0

inc. k0

Fig. 2. Strategy for type distinction of normalised kernel generators as in Table 1. We begin with Alice’s scalars
(α1,1, . . . , α3,4). Each node below represents one or multiple malformed queries which determine whether the displayed
condition holds. All equivalence conditions are viewed modulo 2 here. For example, the first query node corresponds

to checking whether α1,1 ≡ α2,1 ≡ α3,1 ≡ 0 (mod 2) which can be done with the transformation t1
2n−1

.
At each node, a true response indicates that the next query can be found along the blue and solid arrow, while the red
and dotted path is taken when the condition is not fulfilled. Note that when an odd scalar is found, the subsequent
conditions use further normalised scalars denoted by α′i,j . Leaves show which type of normalised generators define
the secret subgroup Alice uses (as classified in Table 1), followed by k which indicates the order of the generators of
the subgroup.
For distinguishing types of rank-3 subgroups, it is necessary to use iterative queries to find the correct type and
determine the value of k. At each step, we test whether k = k0 for increasing values of 0 < k0 <

n
2
− 1 by checking

if certain scalars are divisible by 2k0+1. We use that for any integer x, v2(x) denotes the largest integer such that
2v2(x) divides x. If a scalar is found to not satisfy the divisibility condition, we can again normalise at this position
and deduce the type of the subgroup along with k indicating the order of its generators.

3.4 Kernels of rank 2

As discussed above, there are multiple canonical forms for rank-2 kernels. In this section, we assume that we
have applied the method from §3.3 to find the correct canonical form of the kernel generators. We illustrate
the attack for Type 2.1, where (

A1

A2

)
=

(
1 0 a b
0 1 b c

)
·


R1

R2

S1

S2

 .

Should the generators be of a different canonical form, slight alterations to the malformed points in the
exposition of the attack below will suffice to still recover the correct scalars.

Parity bits. We want to employ symplectic transformations so that the Weil pairing countermeasure
is unable to detect that malformed points have been sent. Table 2 presents transformations that return
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information about the parity bits, and Figure 3 illustrates how one can use the transformations to get an
optimal adaptive attack.

transformation same j-invariant iff

t0
2n−1

a ≡ b ≡ 0

t2
2n−1

b ≡ c ≡ 0

t4
2n−1

b ≡ ac
t0

2n−1

t1
2n−1

a+ 1 ≡ b ≡ 0

t0
2n−1

t3
2n−1

a ≡ b+ 1 ≡ 0

t2
2n−1

t1
2n−1

b+ 1 ≡ c ≡ 0

t2
2n−1

t3
2n−1

b ≡ c+ 1 ≡ 0
Table 2. Table of symplectic transformations and how parity bits affect the codomain. The equivalences in the second
column are all modulo 2.

t4
2n−1

t0
2n−1

t2
2n−1

t1
2n−1

t2
2n−1

t2
2n−1

t0
2n−1

t3
2n−1

t0
2n−1

t3
2n−1

0 1 4 7 2 6 3 5

Fig. 3. Optimal strategy for recovering parity bits. The top node represents the first malformed query which will use
the t4 transformation to determine whether b ≡ ac (mod 2), as shown in Table 2. A true response indicates that the
next query can be found along the blue and solid arrow, while the red and dotted path is taken when the condition
is false. Leaves are decimal representations of the parity bits a0, b0, c0, i.e. 6 corresponds to [a0, b0, c0] = [1, 1, 0].

As an example, we examine how the first transformation, t4
2n−1

, affects the kernel generators. This step
corresponds to sending malformed points obtained via the matrix

M =


1 0 0 0
0 1 0 0
0 2n−1 1 0

2n−1 0 0 1


and leads to Alice using

A′ =

(
1 0 a b
0 1 b c

)
·M =

(
1 + 2n−1b 2n−1a a b

2n−1c 1 + 2n−1b b c

)
∼ A+

(
0 0 0 2n−1(b2 + ac)
0 0 2n−1(b2 + ac) 0.

)
during her internal computations. Note that in the last step, Gaussian elimination is used to normalize
A′. We can observe that O (JB , JAB , (R

′
1, R

′
2, S
′
1, S
′
2)) = 1 if and only if 2n−1(b2 + ac) ≡ 0 (mod 2n). This

occurs whenever b ≡ ac (mod 2), as displayed in Table 2, and from the response we can determine whether
[a0, b0, c0] is among {[0, 0, 0], [0, 0, 1], [1, 0, 0], [1, 1, 1]} or {[0, 1, 0], [0, 1, 1], [1, 0, 1], [1, 1, 0]}.
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Iterative step. The recovery of subsequent bits will not follow the optimal strategy from the recovery of
the parity bits. However, it will still recover a bit of information per query on average.

Suppose now that we have learned the first i bits of each key scalar. Then we know Ka
i ,K

b
i and Kc

i ,

where a =
∑n−1
j=0 2jaj = Ka

i +
∑n−1
j=i 2jaj (and similarly for b and c).

Now assume that i < n− 3 and set ei := n− i− 1. By the lemma below, the element Ti = 1− 2ei is thus
a quadratic residue modulo 2n.

Lemma 2 ([GPST16, Lem. 4]). Let n ≥ 5 and i ∈ {1, . . . , n− 4}. Then Ti := 1− 2n−i−1 is a quadratic
residue modulo 2n.

In the following, θi ∈ {0, . . . , 2n − 1} denotes one of the square roots of Ti, i.e. θ2i ≡ Ti (mod 2n). Note
that θi is necessarily odd, hence there exists an inverse θ−1i modulo 2n. Intuitively, θi is a masking scalar
that allows us to defeat the Weil pairing countermeasure.

We use three different sets of malformed points to determine ai and ci, and then learn bi with one further
query.

First, we send the malformed points obtained from

θ−1i


Ti 0 −2eiKa

i 0
0 1 0 2eiKc

i

0 0 1 0
0 0 0 Ti

 .

Upon which, the subgroup computation7 will entail

A′ = θ−1
(
Ti 0 −2eiKa

i + a Tib
0 1 b 2eiKc

i + Tic

)
∼
(

1 0 a+ T−1i 2ei(Ka
i − a) b

0 1 b c+ 2ei(Kc
i − c)

)
= A+

(
0 0 T−1i 2n−1ai 0
0 0 0 2n−1ci

)
.

Hence A′ defines the same group as A, exactly when both ai and ci are zero.
If we have not yet recovered the two bits in question, we proceed with sending malformed points corre-

sponding to the transformation matrix

θ−1i


Ti 0 −2ei(Ka

i + 2i) 0
0 1 0 2eiKc

i

0 0 1 0
0 0 0 Ti

 .

In this case

A′ ∼ A+

(
0 0 T−1i 2n−1(ai + 1) 0
0 0 0 2n−1ci

)
.

The groups associated to A and A′ coincide exactly when ai = 1 and ci = 0.
If both queries fail to recover the bits ai and ci, i.e. (ai, ci) /∈ {(0, 0), (1, 0)}, then we can conclude that

ci = 1. To find the bit ai, we then send the third set of malformed points obtained from

θ−1i


Ti 0 −2eiKa

i 0
0 1 0 2eiKc

i+1

0 0 1 0
0 0 0 Ti

 .

Here, the oracle will return 1 exactly when ai = 0. If this is not the case, then ai = 1.

7 To verify the computation below note that T−1
i ≡ 1 + 2eiT−1

i (mod 2n).
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After these series of queries, we have recovered the bits ai and ci, hence we know Ka
i+1 and Kc

i+1. It
remains to recover the bit bi. This is done by querying the oracle on the points corresponding to the matrix

θ−1i


1 0 2eiKa

i+1 2eiKb
i

0 1 2eiKb
i 2eiKc

i+1

0 0 Ti 0
0 0 0 Ti

 .

Here,

A′ ∼ A+

(
0 0 2ei(Ka

i+1 − a) 2ei(Kb
i − b)

0 0 2ei(Kb
i − b) 2ei(Kc

i+1 − c)

)
= A+

(
0 0 0 2n−1bi
0 0 2n−1bi 0

)
.

The oracle returns 1 exactly when bi = 0. Otherwise, we know that bi = 1.
It follows from Proposition 3 that all of the transformations used in these queries are symplectic. Therefore

they constitute valid queries in our oracle model. As a consequence the attack is not detectable by the Weil
pairing.

Note that we are not able to use these transformation for i ∈ {n− 3, n− 2, n− 1}. We suggest to use a
brute force method to deduce the last three bits of each scalar. This is consistent with the adaptive attack
described in [GPST16].

Complexity. Taking into account that the case distinction strategy outlined in §3.3 requires at most 6 queries
to determine any type of rank-2 kernel subgroup as well as the information we learn about the parity of
Alice’s scalars throughout the process, we find that this attack requires at most 6 + 4(n − 4) = 4n − 10
queries, each corresponding to one isogeny computation. This leaves 3 bits per secret scalar, hence 9 bits in
total, to be recovered through brute force.

3.5 Kernels of rank 3

Now suppose Alice’s secret kernel subgroup has rank 3, i.e. k > 0. Let 1 ≤ k ≤ bn2 c be fixed. We assume that
the attacker has determined the type of Alice’s secret subgroup as outlined in §3.3, and therefore knows k.
We present the attack for a kernel of Type 3.1, hence the generators are of the form

A1

A2

A3

 =

1 d a b
0 2k 2k(b− cd) c
0 0 −2n−kd 2n−k

 ·

R1

R2

S1

S2


for some (a, b, c, d) ∈ {0, . . . , 2n − 1} × {0, . . . , 2n−k − 1} × {0, . . . , 2n−2k − 1} × {0, . . . , 2k − 1}, where b
(mod 2k) and d are known from the case distinction algorithm. As usual, we denote the resulting variety
JB/〈A1, A2, A3〉 by JAB .

We again fix
ei = n− i− 1, Ti = 1− 2ei ∈ Z/`nZ, θ2i = Ti ∈ Z/`nZ

for 1 ≤ i ≤ n− 4, where θi is any one of the two square roots. Recall that θi exists since Ti ≡ 1 (mod 8).

Recovering a (mod 2k−1). We first recover the parity of the secret scalar a by sending the malformed
points obtained from the transformation matrix

1 0 0 0
0 1 0 0

2n−1 0 1 0
0 0 0 1

 .
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These allow us to recover the bit a0 since

A′ =

1 + 2n−1a d a b
0 2k 2k(b− cd) 2kc
0 0 −2n−kd 2n−k

 ∼ A+

0 0 2n−1a2 0
0 0 0 0
0 0 0 0


This means that A and A′ correspond to the same group if and only if a0 = 0, hence we can deduce a0 from
the oracle response.

Now, we iteratively recover the bit ai for i = 1, . . . , k−2 using the knowledge of Ka
i =

∑i−1
j=0 2jaj obtained

from the previous steps. Fix
α = −2ei(dKb

k +Ka
i ), δ = −2eid.

and send the malformed points obtained from the transformation

θ−1i


Ti δ α 0
0 1 0 0
0 0 1 0
0 0 −δ Ti

 .

This transformation applied to A yields

A′ = θ−1

Ti δ + d α+ a− δb Tib
0 2k 2k(b− cd− δc) 2kTic
0 0 2n−k(−d− δ) 2n−kTi

 ∼
1 d a+ 2ei(a−Ka

i ) b
0 2k 2k(b− cd) 2kc
0 0 −2n−kd 2n−k


∼ A+

0 0 2n−1ai 0
0 0 0 0
0 0 0 0

 .

To verify the above simplifications, note that T−1i = 1 + 2ei (when k ≥ 1 and i ≤ k − 1 as is the case here).
Hence, we can determine the desired bit from the oracle response since O(JB , JAB , (R

′
1, R

′
2, S
′
1, S
′
2)) = 1

implies ai = 0, and ai = 1 otherwise.

Recovering a (mod 2n−k−1) and c. We recover the bits ai and ci−k+1 for i = k − 1, . . . , n − k − 2
simultaneously. Recall that we know the first k bits of b, i.e. Kb

k, as well as d from the type distinction of
kernel subgroups. In the following we assume that d is an odd integer. The queries can be easily adapted to
the case where d is even by shifting the indices of c accordingly.

In the first query we send the malformed points obtained from the transformation

θ−1i


Ti δ α β
0 1 β γ
0 0 1 0
0 0 −δ Ti


where

α = −2eiKa
i , β = −2ei−1Kc

i−k+1d, γ = 2eiKc
i−k+1, δ = −2ei−1d.

Then we obtain

A′ ∼ A+

0 0 2n−1ai − 2n−k−1d2ci−k+1 2n−k−1dci−k+1

0 0 2n−1dci−k+1 0
0 0 0 0


This means that A and A′ define the same group if both [2n−1ai]S1 + [2n−k−1dci−k+1]([−d]S1 +S2) and

[2n−1dci−k+1]S1 are in GA. Recall that we assume d odd and note that [2n−k]([−d]S1 + S2) ∈ GA. Hence
the oracle returns 1 if and only if ai = ci−k+1 = 0.

If the oracle returns 0, we proceed with a query to test if ai = 1 and ci−k+1 = 0. This is achieved by
setting α = −2ei(Ka

i + 2i)T−1i in the query above. Similarly, we test for ai = 0 and ci−k+1 = 1 by setting
β = −2ei−1(Kc

i−k+1 − 2i−k+1)dT−1i and γ = 2ei(Kc
i−k+1 + 2i−k+1).
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Recovering b. Recall that Ka
n−k−1,K

b
k, c and d are known from previous oracle queries. We now utilise

this knowledge to find the remaining bits of b. Again, assuming d to be odd here allows us to perform the
queries below for any k ≤ i < n−max{k, 3} which can be adapted via some shift in indices to accommodate
even d. Let

α = 2ei(Ka
n−k−1 +Kb

i d− cd2), β = 2eicd, γ = 2eic, δ = 2eid.

We then send malformed points obtained via

θ−1i


1 δ α β
0 Ti β −γ
0 0 Ti 0
0 0 −δ 1


to the oracle resulting in

A′ ∼

1 δ + Tid α+ βd− δb+ Tiα β − γd+ b
0 2k 2k(T−1i β + b− dc− T−1i δc) 2kT−1i (c− γ)
0 0 2n−k(−Tid− δ) 2n−k

 = A+

0 0 2eid(Kb
i − b) 0

0 0 0 0
0 0 0 0


so that the oracle returns 1 if bi = 0, and 0 if bi = 1.

Recovering a. It remains to recover the last bits of a, given Ka
n−k−1 as well as b, c and d. Let i =

n− k − 1, . . . , n− 3. We again fix

α = 2ei(Ka
i + bd− cd2), β = 2eicd, γ = 2eic, δ = 2eid

and query the oracle with the symplectic transformation

θ−1i


1 δ α β
0 Ti β −γ
0 0 Ti 0
0 0 −δ 1

 .

We obtain

A′ ∼ A+

0 0 2ei(Ka
i − a) 0

0 0 0 0
0 0 0 0

 .

Hence, we can deduce the bit ai from the response of the oracle whereby O(JB , JAB , (R
′
1, R

′
2, S
′
1, S
′
2)) = 1

implies ai = 0, and ai = 1 otherwise.

Since the square root of Ti = 1− 2ei is not defined when i ≥ n− 3, we cannot scale the malformed points
in order to obtain a valid symplectic transformation. Therefore, the last three bits of a need to be recovered
by brute force.

Complexity. If Alice’s kernel has rank 3, we can learn the type of the subgroup as well as the scalar d and
b (mod 2k) following §3.3 with at most 4 + 4k queries. We further require k − 1 queries, one for each of the
first k − 1 bits of a, and then 3 queries for each step of the parallel recovery of ai and ci−k+1, summing to
4 + 4k + k − 1 + 3(n− 2k − 2) = 3n− k − 3 queries thus far. Each remaining bit of b and a, potentially bar
the last 4− k and 3 bits respectively, requires exactly one query to recover, adding n− 6 queries. This leads
to a total number of at most 4n− k− 9 queries to recover Alice’s secret key while leaving 3 bits of a as well
as 4− k bits of b and 3− k bits of c (if k < 4 and k < 3, respectively) to brute force.
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3.6 Adaptive attack on arbitrary basis

In the above, we were able to show that the adaptive attack is able to recover a static key when a symplectic
basis is used. In this section, we will present an extension of the attack to recover a static key when an
arbitrary basis is used (as originally described in [FT19]).

As shown in Algorithm 1 (cf. Appendix B), we are able to obtain a symplectic basis from an arbitrary
basis using a 4× 4 change of basis matrix. In particular, such a basis has the following form:

1 0 0 0
γ1 −γ2 1 0
0 1 0 0

µ−13 µ1 −µ−13 µ2 0 µ−13


up to swapping certain rows depending on the result of the if branch of Algorithm 1. This matrix, together
with its inverse, allows us to transform points in one basis to another. Each time we need to query the oracle
on a particular set of malformed points, we map these malformed points under the inverse of the matrix to
get the malformed corresponding points of the arbitrary basis. We still obtain the same bit of information
in return: either the oracle returns the reference variety, or it does not. This ultimately allows us to recover
the secret for a symplectic basis which is equivalent to knowing the secret isogeny. Note that the attack is
still not detectable by the Weil pairing if the transformations from the previous sections are applied.
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A Revisiting SIDH

In the main body of this paper we studied different aspects of the generalisation of the SIDH scheme to
abelian surfaces. For that purpose it was necessary to introduce different notions that did not appear in the
description of the SIDH protocol for elliptic curves. In order to give some intuition on the different terms,
we explain their meaning in the case of elliptic curves and demonstrate the analogies to our setting.

A.1 SIDH protocol

Let E be a supersingular elliptic curve. In the setup, one chooses two small primes `A and `B and a prime
p which is of the form p = `eAA `eBB f − 1, where f is a small cofactor and eA, eB are large integers. We follow
the suggestion from [JF11] to use `A = 2 and `B = 3. Let PA, QA be generators of the 2eA -torsion and let
PB , QB be generators of the 3eB -torsion of E. Then the protocol is as follows.

1. Alice chooses a random cyclic subgroup of E[2eA ] of order 2eA . As PA, QA form a basis of the 2eA-
torsion, there exist integers xA, yA such that A = [xA]PA + [yA]QA generates this subgroup. Similarly,
Bob chooses a random cyclic subgroup of E[3eB ] of order 3eB generated by B = [xB ]PB + [yB ]QB for
some xB , yB .

2. Alice computes the isogeny φA : E → E/〈A〉 and Bob computes the isogeny φB : E → E/〈B〉.
3. Alice sends the curve E/〈A〉 and the points φA(PB) and φA(QB) to Bob and Bob similarly sends (E/〈B〉,
φB(PA), φB(QA)) to Alice.

4. Alice and Bob both use the images of the torsion points to compute the shared secret which is the curve
E/〈A,B〉 (e.g. Alice can compute φB(A) = [xA]φB(PA) + [yA]φB(QA) and E/〈A,B〉 = EB/〈φB(A)〉).

A.2 Keyspace for SIDH

A secret key of Alice is a cyclic subgroup of E order 2eA , and similarly Bob’s secret key is a cyclic subgroup
of order 3eA . In analogy to the definition in §2, we denote

K` = {G ⊂ E | G cyclic and #G = `n},

for ` ∈ {2, 3} and n = eA or eB , respectively.
It is easy to see that a group G ∈ K` is maximal `n-isotropic with respect to the Weil-pairing on E.8

Moreover G 6⊂ E[m] for any m < `n, since a generator of G has order `n. In particular, we may use the
equivalent definition

K` = {G ⊂ E | G maximal `n-isotropic and G 6⊂ E[m] for any m < `n},

which resembles the definition in §2 more closely.
An important ingredient in the classification of secret keys for G2SIDH is the use of symplectic bases for

the torsion groups J [`n]. In the elliptic curve setting one automatically works with symplectic bases.

Lemma 3. Let ` 6= p be a prime and n > 0. Then every basis (P,Q) for E[`n] is symplectic with respect to
the Weil pairing.

It is well known that the keyspace of SIDH, K`, can be divided into two disjoint sets as follows

K` = {〈P + [a]Q〉 | a ∈ Z/`nZ} ∪ {〈[`a]P +Q〉 | a ∈ Z/`nZ}.

In the terminology of §2.2, this means that there are two types of groups in K` as opposed to the multitude
of types in the genus-2 setting (cf. Definition 3, Table 1). To make the analogy more explicit, we introduce
the following terminolgy.

Definition 4. Let (P,Q) be a basis for E[`n]. For a group G = 〈G1〉 ' C`n in K`, we say that G1 is the
canonical generator of G if one of the following is true for some a ∈ Z/`nZ.
8 Isotropy follows from the fact that G is cyclic. To see that G is maximal with this property, consider some R ∈ G

with G = 〈R〉 and note that for any R′ ∈ E \G, the Weil pairing e`n(R,R′) is non-trivial.
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1.1 G1 =
(
1 a
)
·
(
P
Q

)
. 1.2 G1 =

(
a 1
)
·
(
P
Q

)
and ` | a.

Moreover we say that a group G ∈ K` is of Type 1.i for i ∈ {1, 2} depending on which of the cases above
applies.

Note that the entire keyspace has cardinality `n−1(` + 1). However in practice one restricts to the groups
of Type 1.1. This restricted keyspace has cardinality `n [ACC+20, Sec. 1.3.9]. This is very similar to the
restriction suggested in §2.3. A sketch of the SIDH protocol using the restricted keyspace is provided in
Figure 4.

Setup

– prime p = 2eA · 3eB · f − 1.
– supersingular elliptic curve E.
– torsion bases (PA, QA) for E[2eA ] and (PB , QB) for E[3eB ].

Key Generation

– a
$←− {0, . . . , 2eA − 1}.

– A = PA + [a]QA.
– φA : E → EA = E/〈A〉

EA, φA(PB), φA(QB)
−−−−−−−−−−−−−−−−−−−−−→

EB , φB(PA), φB(QA)
←−−−−−−−−−−−−−−−−−−−−−

– b
$←− {0, . . . , 3eB − 1}.

– B = PB + [b]QB .
– φB : E → EB = E/〈B〉

Shared Key

EB/〈φB(PA) + [a]φB(QA)〉 = E/〈A,B〉 = EA/〈φA(PB) + [b]φA(QB)〉

Fig. 4. SIDH protocol with restricted keyspace.

A.3 Adaptive attack

In [GPST16], the authors present an adaptive attack on SIDH. Here, we will briefly present their strategy.
In order to illustrate the connection to our adaptive attack on G2SIDH, we use a different terminology for
this presentation.

A major obstruction when devising an attack strategy for G2SIDH was to avoid detection by the Weil
pairing. We overcame potential detection by only allowing symplectic transformations of the basis elements
for the oracle queries. Indeed this strategy is also followed in [GPST16] albeit not explicitly phrased in this
way.

Assume that Alice uses a fixed secret key xA, yA defining the group GA = 〈[xA]PA + [yA]QA〉 ∈ K2. Her
public key is of the form (EA, φA(PB), φA(QB)), where EA is the codomain of the isogeny φA : E → EA
with kernel GA. It is assumed that the attacker has access to the oracle

O(E1, E2, (R,S)) =


⊥ if e2n(R,S) 6= e2n(PA, QA)3

m

,

1 if E2 ' E1/〈[xA]R+ [yA]S〉,
0 otherwise.

Honestly running the protocol, the attacker first generates Bob’s ephemeral values (EB , R = φB(PA), S =
φB(QA)) and computes the elliptic curve EAB .9 Then they send different queries to the oracle with fixed

9 Note that by construction O(EB , EAB , (R,S)) = 1.
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curves EB and EAB , while the basis (R,S) is modified in each step. In order to create a valid query it
is necessary that the Weil pairing on the malformed basis elements (R′, S′) coincides with that on (R,S).
Phrased differently, the basis transformation

(R′ = [m1,1]R+ [m1,2]S, S′ = [m2,1]R+ [m2,2]S)← (R,S)

has to be a symplectic transformation. Note that this transformation can be represented by the 2× 2 matrix

M =

(
m1,1 m1,2

m2,1 m2,2

)
.

It is easy to see that this matrix is symplectic if and only if det(M) = 1. 10

Case distinction. The first step in the attack is to distinguish between groups of Type 1.1 and 1.2.
This is done by sending the malformed points (R + [2n−1]S, S) to the oracle. These malformed points are
obtained from the transformation

M =

(
1 2n−1

0 1

)
.

Note that
〈[xA](R+ [2n−1]S) + [yA]S〉 = 〈[xA]R+ [yA]S + [2n−1xA]R〉.

This coincides with 〈[xA]R+ [yA]S〉 if and only if xA is even. It follows that

O(EB , EAB , (R+ [2n−1]S, S)) =

{
1 if GA has Type 1.2,

0 if GA has Type 1.1.

In the following we assume that GA has Type 1.1 and denote the canonical generator by A1 = R+ [a]S.

In order to be consistent with the notation from §3, we set A =
(
1 a
)
, hence A1 = A ·

(
R S

)t
.

First bit recovery. In order to find the first bit of a, the attacker queries the oracle on the malformed
points (R′, S′)t = M0 · (R,S)t, where

M0 =

(
1 0

2n−1 1

)
.

Note that A · (R′, S′)t = A′ · (R,S)t, where

A′ = A ·M0 =
(
1 a
)
·
(

1 0
2n−1 1

)
=
(
1 + 2n−1a a

)
.

It follows that

O(EB , EAB , (R
′, S′)) =

{
1 if a is even,

0 if a is odd.

Iterative step. Assume the attacker has recovered the first i bits of a. Then we know Ka
i , where

a = Ka
i +

∑n−1
j=i aj2

j . If i < n − 3, there exists θ satisfying θ2 ≡ 1 + 2n−i−1 (mod 2n), [GPST16, Lemma

3.3]. Necessarily θ is an odd integer, hence invertible modulo 2n. Consider the transformation (R′, S′)t =
Mi · (R,S)t, where

Mi = θ−1 ·
(

1 −2n−i−1Ka
i

0 1 + 2n−i−1

)
.

Clearly Mi is symplectic, hence the tuple (EB , EAB , (R
′, S′)) defines a valid query. Here, we obtain

A′ = A ·Mi =
(
1 a
)
· θ−1 ·

(
1 −2n−i−1Ka

i

0 1 + 2n−i−1

)
= θ−1

(
1 a+ 2n−i−1a− 2n−i−1Ka

i

)
= θ−1

(
1 a+ 2n−1ai

)
.

10 Note that this criterion is unique to the case of 2 × 2 matrices. For 2n × 2n matrices with n > 1 the condition
det(M) = 1 is necessary but not sufficient.
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This shows that 〈A · (R,S)t〉 = 〈A′ · (R,S)t〉 if and only if ai is even. In conclusion

O(EB , EAB , (R
′, S′)) =

{
1 if ai is even,

0 if ai is odd.

This shows that the attacker can iteratively recover the first n− 2 bits of a. For the remaining two bits,
the authors suggest to use a brute force method.

Remark 3. It is a priori not obvious how to find symplectic transformations which can be used to recover
the parity of some bit ai of the secret scalar. In [GPST16], the authors use the following strategy.

First, they find a transformation (R′, S′)← (R,S) such that

〈R+ [a]S〉 = 〈R′ + [a]S′〉 ⇔ ai is even.

This can be achieved using some clever reverse engineering.
In the second step, the authors multiply R′ and S′ by a scalar to make the transformation symplectic.

This corresponds to multiplying the associated matrix by a scalar such that its determinant is 1. The latter
only works if the determinant is a square modulo 2n. This condition also prevents the use of the same attack
approach for recovering the last bits.

The first step could be translated directly to the G2SIDH-setting. This approach is developed in AppendixD.
However, the scaling in the second step is not possible in the genus-2 case. Let (R1, R2, S1, S2) be an arbitrary
basis for J [2n]. Then in general there will not exist an integer λ with the property that (λR1, λR2, λS1, λS2)
is symplectic. As a consequence, it was necessary to use a different strategy for finding suitable symplectic
transformations.

B Symplectic basis algorithm

Let J be a PPSSAS over some finite field Fp2 and m an integer not divisible by p. Given an arbitrary basis
(R1, R2, R3, R4) for J [m], Algorithm 1 can be used to construct a symplectic basis (P1, P2, Q1, Q2) for J [m]
(cf. §2.1). The algorithm resembles the Gram–Schmidt process for orthonormalisation.

Algorithm 1: Converting an arbitrary set of generators of the torsion subgroup to a symplectic
basis.

Data: Basis (R1, R2, R3, R4) for J [m]
Result: Symplectic basis (P1, P2, Q1, Q2) for J [m]
// P1 arbitrary

1 Set P1 ← R1;
// Q1 such that e(P1, Q1) = ζm

2 if ord(e(P1, R2)) = m then
3 Set Q1 ← R2;
4 else if ord(e(P1, R3)) = m then
5 Set Q1 ← R3;
6 Set R3 ← R2;

7 else
8 Set Q1 ← R4;
9 Set R4 ← R2;

10 Set ζ ← e(P1, Q1);
// P2, Q2 should be ‘‘orthogonal’’ to P1, Q1

11 Set λ1 ← log(ζ, e(Q1, R3)), λ2 ← log(ζ, e(P1, R3));
12 Set P2 ← R3 + [λ1]P1 − [λ2]Q1;
13 Set µ1 ← log(ζ, e(Q1, R4)), µ2 ← log(ζ, e(P1, R4)), µ3 ← log(ζ, e(P2, R4));

14 Set Q2 ← [µ−13 ](R4 + [µ1]P1 − [µ2]Q1);
15 Return (P1, P2, Q1, Q2);
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C Case distinction of kernel subgroups

In this section, we will give some more details on the case distinction strategy sketched in §3.3 to determine
the canonical form of normalised generators for an admissible kernel subgroup (cf. Def. 3, Table 1). We will
run through the explicit queries required for classifying one type of rank-3 subgroup as an example, i.e. we
will present the queries along one path in the decision tree of Figure 2. The queries required to check the
conditions along other paths are very similar and hence omitted.

Suppose Alice’s secret is of the form (α1,1, . . . , α3,4) and let A be the 3×4 matrix defined by these scalars.
We do not initially know the rank of the group GA defined by these scalars, which canonical form is obtained
when normalising the generators, nor their respective order. We proceed as follows to find the type of GA
according to our classification from §2.2.

Step 1. We start by testing whether α1,1 ≡ α2,1 ≡ α3,1 ≡ 0 (mod 2) with the query (R′1, R
′
2, S
′
1, S
′
2)

obtained from the transformation

Mt1
2n−1

=


1 0 2n−1 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

Applied to A this transformation yields

A′ = A ·Mt = A+ 2n−1 ·

0 0 α1,1 0
0 0 α2,1 0
0 0 α3,1 0

 .

The matrices A and A′ define the same groupGA if and only if [2n−1][α1,1]S1, [2n−1][α2,1]S1, [2n−1][α3,1]S1 ∈
GA. This is the case if and only if α1,1, α2,1 and α3,1 are all even. One direction is easy. For the other
direction, note that if [2n−1][αj,1]S1 ∈ GA, then isotropy implies 1 = e2n([αi,1]R1 + [αi,2]R2 + [αi,3]S1 +

[αi,4]S2, [2n−1αj,1]S1) = e2n(R1, S1)2
n−1αi,1·αj,1 for all i ∈ {1, 2, 3}. This leads to the first case distinction

depending on the output of the oracle which signifies whether the permutation σ ∈ D8 corresponding to the
normalisation of GA fixes the first basis point:

O(JB , JAB , (R
′
1, R

′
2, S
′
1, S
′
2)) =

{
1 : Types 2.3, 2.4, 3.3− 3.8, 4.2− 4.4.

0 : Types 2.1, 2.2, 3.1, 3.2, 4.1.

Assume that the answer is 0. This implies that at least one of the coefficients of R1 is invertible and we
can perform a first normalisation step. We obtain elements α′i,2, α

′
i,3, α

′
i,4 for i ∈ {1, 2, 3} such that

A ∼

1 α′1,2 α
′
1,3 α

′
1,4

0 α′2,2 α
′
2,3 α

′
2,4

0 α′3,2 α
′
3,3 α

′
3,4

 .

Step 2. Now we test whether one of α′2,2 or α′3,2 is invertible. This requires at most two queries. First, we
send the basis obtained from the transformation

M2n−1

t3 =


1 0 0 0
0 1 0 2n−1

0 0 1 0
0 0 0 1

 .

Similarly to the strategy above, O(J, J ′, (R′1, R
′
2, S
′
1, S
′
2)) = 1 if and only if all of α′1,2, α

′
2,2, α

′
3,2 are even. On

the other hand if O(J, J ′, (R′1, R
′
2, S
′
1, S
′
2)) = 0, we only know that at least one of the three coefficients of
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R2 is odd. We want to distinguish between the two cases where α′1,2 is odd and both α′2,2, α
′
3,2 are even, or

where at least one of α′2,2, α
′
3,2 is odd. Therefore, we also send the query obtained from

M2n−1

t1 M2n−1

t3 M2n−1

t5 =


1 0 2n−1 2n−1

0 1 2n−1 2n−1

0 0 1 0
0 0 0 1

 .

Taking into account that the output of the previous query was 0, the answer of this query is 1 if α′1,2 is odd
and both α′2,2, α

′
3,2 are even, and it is 0 otherwise.

Note that we are done with the case distinction if both of the previous queries returned 0. In that case
we can simply normalise the coefficient of R2 to 1 and find that

A ∼

1 0 α′′1,3 α
′′
1,4

0 1 α′′2,3 α
′′
2,4

0 0 α′′3,3 α
′′
3,4

 .

Using the fact that the group GA is isotropic, we see that α′′3,3 = α′′3,4 = 0, and GA is a rank-2 group of Type
2.1.

On the other hand if one of the queries returned 1, then none of α′2,2, α
′
3,2 are invertible. This leaves the

following possibilities for the group structure.

2.2

(
1 b a 0
0 c −b 1

)
where c is even, and the three rank-3 types

3.1

1 d a b
0 `k `k(b− cd) `kc
0 0 −`n−kd `n−k

 , 3.2

1 b a d
0 `kc `k(cd− b) `k
0 `n−k `n−kd 0

 , 4.1

1 d a b
0 `k `kb 0
0 0 −`kd `k

 .

Note that we can also deduce the parity of d (resp. b) for Type 3.1 and 4.1 (resp. Type 3.2) from the previous
queries.

Step 3. In this step we distinguish between Type 2.2 and the possible rank-3 types. For that purpose, we
check whether one of α′2,4 or α′3,4 is invertible using the transformations

M2n−1

t2 =


1 0 0 0
0 1 0 0
0 0 1 0
0 2n−1 0 1

 and Mt4 ·M2n−1

t1 ·M−1t4 =


1 2n−1 2n−1 0
0 1 0 0
0 0 1 0
0 2n−1 2n−1 1

 .

If the queries show that one (or both) of α′2,4 or α′3,4 is invertible, then GA has Type 2.2. Otherwise, if both
α′2,4 and α′3,4 are even we know that GA is a rank-3 group, and we continue with the next step.

Step 4. In order to distinguish between Types 3.1, 3.2 and Type 4.1, we have to compare the elements
α′2,2, α

′
3,2 and α′2,4, α

′
3,4. Recall that all of these scalars are necessarily even, hence we can find positive

integers k2,2, k2,4, k3,2, k3,4 and odd numbers β2,2, β2,4, β3,2, β3,4 such that α′i,j = 2ki,jβi,j for (i, j) ∈ I =
{(2, 2), (2, 4), (3, 2), (3, 4)}. Our goal is to determine

k = min{ki,j | (i, j) ∈ I}.

This minimum can be found iteratively. We start with k0 = 1 and increase k0 by one if the following
queries are not successful. Before describing the queries, note that

2n−k〈R2 + [α′1,4]S1, S2 − [α′1,2]S1〉 ⊂ GA (3)

26



as per Corollary 1. Property (3) will be used multiple times in this step.
The first query is to test whether GA is of Type 3.1 with k = k0. Recall that we know the parity

of α′1,2 and α′1,4 from the previous queries. For each iterative step, we have determined α′1,2 (mod 2k0)

and α′1,4 (mod 2k0) from the previous queries. We write α′1,2 = Kα′1,2
+ 2k0α′1,2,k0 + 2k0+1α′′1,2 and α′1,4 =

Kα′1,4
+ 2k0α′1,4,k0 + 2k0+1α′′1,4. We send the following query

(Mt3Mt1
xiMt5

yi)2
n−2k0−1

=


1 0 2n−2k0−1xi 2n−2k0−1yi
0 1 2n−2k0−1yi 2n−2k0−1

0 0 1 0
0 0 0 1


first with y1 = −Kα′1,2

and x1 = y21 . This transformation leaves the kernel unchanged if and only if

2n−k0−1α1,2,k0([−α1,2]S1 + S2) ∈ GA,
2n−2k0−1α2,2([−α1,2]S1 + S2) ∈ GA,
2n−2k0−1α3,2([−α1,2]S1 + S2) ∈ GA.

Using Property (3), this translates to the conditions α′1,2,k0 = 0 and 2k0+1 divides α′2,2 and α′3,2, i.e. k2,2 > k0
and k3,2 > k0. If the oracle query returns 0, we resend the query with y2 = −(Kα′1,2

+ 2k0) and x2 = y22 . If
these malformed points produce a group distinct from GA, we can deduce that one of k2,2, k3,2 equals k0.
Hence, the group must be of Type 3.1 with k = k0. Otherwise, O(J, J ′, (R′1, R

′
2, S
′
1, S
′
2)) = 1 implies that we

have determined the correct next bit of α′1,2 and that k2,2 > k0 and k3,2 > k0. We thus proceed with the
next set of queries to test whether the group is of Type 3.2. We send the two queries corresponding to the

transformation Mt = M2n−2k0−1xi
t1 M2n−2k0−1

t2 M
(2n−2k0−1yi)

2

t2 M−1t1 M2n−2k0−1yi
t4 Mt1M

−2n−2k0−1yi
t4 such that

Mt =


1 2n−2k0−1yi 2n−2k0−1xi 0
0 1 0 0
0 0 1 0
0 2n−2k0−1 −2n−2k0−1yi 1


with y1 = −Kα′1,4

, y2 = −(Kα′1,4
+ 2k0) and xi = −y2i . With analogous reasoning as before, we can deduce

from the oracle responses whether both k2,4 > k0 and k3,4 > k0, and learn the next bit of α′1,4 if any query
returns 1. Thus we can either determine the type of GA to be 3.2 with k = k0, or increase k0 by 1 and repeat
the queries in this step.

If we have not managed to determine that GA is of Type 3.1 or 3.2 with k0 <
n
2 , we conclude that indeed

GA must be of Type 4.1 with k = n
2 .

D A first adaptive attack on G2SIDH

In this section, we give a first set of malformed points to query the oracle with in order to recover secret
G2SIDH scalars. This version of the attack can be detected by the honest party, but we hope the details
given below will be useful for future efforts to cryptanalyze similar schemes.

It interacts with an oracle by sending the oracle points on some starting variety that correspond to the
auxiliary points provided in the protocol. By sending malformed points, the adaptive attack is able to recover
scalars that determine the secret kernels.

Again, we assume that all users of the G2SIDH protocol (or at least Alice) are using a symplectic basis
as this allows us to work with the canonical representations of kernel generators and refer to §3.6 for how to
translate the attack to a setting where Alice uses an arbitrary basis.

Remark 4. Note that Alice is able to detect the following attack easily if she checks the Weil pairing of the
points she receives from the other party. If Bob sends honestly generated points

(R1 = φB(P1), R2 = φB(P2), S1 = φB(Q1), S2 = φB(Q2))
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then the only non-trivial pairings should satisfy

e2n(R1, S1) = e2n(R2, S2) = ζdeg φB ,

where ζ = e2n(P1, Q1). Furthermore, some of the kernels obtained from the malformed points in the attack
on rank-3 kernels do not always generate maximal 2n-isotropic subgroups. In these cases, the honest party
will not be able to compute a valid variety from the points provided. Therefore, checking whether the points
received from the other party generate an admissible subgroup is a further means of detecting an attack such
as the one below.

D.1 Kernels of rank 2

If the kernel GA of Alice’s isogeny has rank 2 (i.e. when k = 0), we again assume that the kernel generators
A1 and A2 can be written as

A1 = R1 +[a]S1 +[b]S2,
A2 = R2 +[b]S1 +[c]S2,

or

(
1 0 a b
0 1 b c

)
for some (a, b, c) ∈ [2n]3 in accordance with the sampling of keys for symplectic bases as discussed in §2.3
and §3.4.

Recovering the first bits. With access to the oracle O, we at most need the following four queries:
To determine the parity of a and b, we send multiple queries.
First, we check whether a0 = b0 = 0 by sending points corresponding to

1 0 0 0
0 1 0 0
0 0 1 + 2n−1 0
0 0 0 1

 .

In this case

A′ = A+

(
0 0 2n−1a0 0
0 0 2n−1b0 0

)
defines the same torsion subgroup as A exactly when both scalars in question are even.

Second, we can check whether a0 = 1 and b0 = 0 by sending points
1 0 −2n−1 0
0 1 0 0
0 0 1 + 2n−1 0
0 0 0 1

 .

This results in Alice calculating with the subgroup given by

A′ = A+

(
0 0 2n−1(a0 − 1) 0
0 0 2n−1b0 0

)
.

This subgroup is equal to GA and corresponds to an isogeny with codomain variety JAB if and only if a is
odd while b is even.

Third, we send points obtained from the transformation
1 0 0 0
0 1 −2n−1 0
0 0 1 + 2n−1 0
0 0 0 1
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to check for a0 = 0 and b0 = 1, which produce the desired variety exactly when the scalar a is even and b is
odd.

If all three oracle queries output 0, we can conclude that both scalars in question are odd, so a0 = b0 = 1.
Once we have recovered a0 and b0, we can try the transformation

1 0 0 −2n−1b0
0 1 0 0
0 0 1 0
0 0 0 1 + 2n−1

 .

Then the first kernel generator A1 is unchanged and the second one will hold information about c0. Explicitly,
this means

A′ = A+

(
0 0 0 0
0 0 0 2n−1c0

)
.

Hence we can conclude that c0 = 0 when the oracle returns 1, and c0 = 1 otherwise.

Iterative step. Suppose now that we have learned the first i bits of each key scalar, so we know Ka
i ,K

b
i

and Kc
i , where a =

∑n−1
j=0 2jaj = Ka

i +
∑n−1
j=i 2jaj (and similarly for b and c).

Again, we can use three different sets of malformed points to determine ai and bi, and then learn ci with
one further query.

Sending malformed points corresponding to
1 0 −2n−i−1Ka

i 0
0 1 −2n−i−1Kb

i 0
0 0 1 + 2n−i−1 0
0 0 0 1


leads to Alice’s internal computation including

A′ = A+

(
0 0 2n−1ai 0
0 0 2n−1bi 0

)
.

For the oracle response to indicate a match between varieties, we require ai and bi both to be zero.
If the bits remain undetermined, we proceed with sending malformed points obtained from the transfor-

mations 
1 0 −2n−i−1(Ka

i + 2i) 0
0 1 −2n−i−1Kb

i 0
0 0 1 + 2n−i−1 0
0 0 0 1

 and


1 0 −2n−i−1Ka

i 0
0 1 2n−i−1(Kb

i + 2i) 0
0 0 1 + 2n−i−1 0
0 0 0 1


leading to the use of subgroups corresponding to

A′ = A+

(
0 0 2n−1(ai − 1) 0
0 0 2n−1bi 0

)
and A′ = A+

(
0 0 2n−1ai 0
0 0 2n−1(bi − 1) 0

)
,

respectively. These coincide with GA when we have ai = 1 and bi = 0, and ai = 0 and bi = 1, respectively.
Again, we conclude that ai = bi = 1 if the previous queries all returned 0.

Hence, we have recovered Ka
i+1 and Kb

i+1. To determine ci and therefore Kc
i+1, we can send points derived

from 
1 0 0 −2n−i−1Kb

i+1

0 1 0 −2n−i−1Kc
i

0 0 1 0
0 0 0 1 + 2n−i−1

 .
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This results in a subgroup determined by

A′ = A+

(
0 0 0 0
0 0 0 2n−1ci

)
which coincides with GA whenever ci = 0 and the oracle returns 1, otherwise we conclude ci = 1.

This way, we can recover the full key. However, additionally to being detectable by pairing checks, the
query for the last bit of each key scalar can be detected by checking all points are of the correct order.

Remark 5. Note that, for example, the queries recovering the first bits a0 and b0 can easily be made unde-
tectable. Instead of scaling a single point and hence altering the corresponding pairing values, the transfor-
mation t0 can be applied multiple times to the honestly generated points instead. It is not as straightforward
for all sets of malformed points to obtain Weil pairing-compatible versions thereof, but finding (compositions
of) symplectic transformations which produce kernel generators exposing the desired bits lead to the attack
outlined in Section 3.4.

D.2 Kernels of rank 3

Now suppose that Alice’s secret kernel subgroup GA has three generators, i.e. k > 0. Let 1 ≤ k ≤ bn2 c be
fixed. Then the generators can be represented by

A1 = R1 +[d]R2 +[a]S1 +[b]S2,
A2 = 2k( R2 +[b− dc]S1 +[c]S2),
A3 = 2n−k( −[d]S1 + S2)

or

1 d a b
0 2k 2k(b− dc) 2kc
0 0 −2n−kd 2n−k


for some (a, b, c, d) ∈ {0, . . . , 2n − 1} × {0, . . . , 2n−k − 1} × {0, . . . , 2n−2k − 1} × {0, . . . , 2k − 1}.

We assume here, like in the attack presented in §3, that we know the specific value of k for Alice’s
subgroup GA.

Recovering first bits of a, b and d. We first recover the parity of the secret scalars a, b and d by sending
the malformed points corresponding to the transformations

1 0 0 0
0 1 0 0
0 0 1 + 2n−1 0
0 0 0 1

 ,


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1 + 2n−1

 , and


1 0 0 0
0 1 + 2n−1 0 0
0 0 1 0
0 0 0 1


respectively. By sending the first set of malformed points, we can recover the bit a0 since Alice obtains a
subgroup determined by

A′ ∼ A+

0 0 2n−1a0 0
0 0 0 0
0 0 0 0


allowing her to recover a variety J ′AB . We know that this group coincides with GA if the oracle outputs 1,
and we can then deduce that a0 = 0.

Analogously, when sending the malformed points querying for b0 and d0, respectively, only the first kernel
generator might be affected which allows an attacker to read off the bit in question.

Iterative step for recovering partial keys of a, b and d while i < k. Assume we have so far recovered
the first i key bits of a, b and d, Ka

i ,K
b
i and Kd

i , where Kx
i + 2ix0 +

∑n−1
j=i+1 2jxj = x for any x ∈ {a, b, d},

for some i < k.
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Sending the malformed points given by the transformation
1 0 −2n−i−1Ka

i 0
0 1 0 0
0 0 1 + 2n−i−1 0
0 0 0 1


leads Alice to obtain a kernel subgroup

A′ = A+

0 0 2n−i−1(a−Ka
i ) 0

0 0 0 0
0 0 0 0

 = A+

0 0 2n−1ai 0
0 0 0 0
0 0 0 0


which she uses for her isogeny computations. Note here that i+ 1 ≤ k.

Similarly, we can send the points obtained from the transformations
1 0 0 −2n−i−1Kb

i

0 1 0 0
0 0 1 0
0 0 0 1 + 2n−i−1

 and


1 −2n−i−1Kd

i 0 0
0 1 + 2n−i−1 0 0
0 0 1 0
0 0 0 1


and producing the kernel subgroups

A′ = A+

0 0 0 2n−1bi
0 0 0 0
0 0 0 0

 and A′ = A+

0 2n−1di 0 0
0 0 0 0
0 0 0 0


respectively, to recover the bits bi and di.

Hence, this procedure allows an attacker to recover the partial keys Ka
k ,K

b
k as well as Kd

k = d.

Recovering remaining scalars if k = n
2
. Note first that if k = n/2, c = 0 since it is a value modulo

2n−2k = 20. Further, after recovering Ka
k ,K

b
k and Kd

k as above we have both b = Kb
k and d = Kd

k . Hence, it
only remains to recover the more significant bits of a, namely ak, . . . , an−1.

So for k ≤ i < n− 3, we can query iteratively with the malformed points given by
1 0 −2n−i−1Ka

i 0
0 1 −2n−i−1b 0
0 0 1 + 2n−i−1 0
0 0 2n−i−1d 1

 .

Then Alice uses as kernel subgroup

A′ = A+

0 0 2n−i−1(−Ka
i − bd+ a+ bd) 0

0 0 2n−i−12k(−b+ b− dc+ dc) 0
0 0 2n−i−12n−k(−d+ d) 0

 = A+

0 0 2n−1ai 0
0 0 0 0
0 0 0 0

 .

Hence, if Alice’s kernel is equal to GA as indicated by an oracle output of 1, we can conclude ai = 0.
Otherwise, we may deduce that ai = 1. This way, we can recover Ka

n−1 and brute-force the most significant
bit of a as the query for i = n− 1 is detectable by checking the order of the received points.

From now on, we assume that 0 < k < n
2 .
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Recovering c0, bk and ak. Sending queries with malformed points obtained from
1 0 0 −2n−k−1Kb

k

0 1 0 0
0 0 1 0
0 0 0 1 + 2n−k−1

 and


1 0 0 −2n−k−1(Kb

k + 2k)
0 1 0 0
0 0 1 0
0 0 0 1 + 2n−k−1


leads to the oracle computing varieties corresponding to the kernels determined by

A′ = A+

0 0 0 2n−1bk
0 0 0 2n−1c0
0 0 0 0

 and A′ = A+

0 0 0 2n−1(bk − 1)
0 0 0 2n−1c0
0 0 0 0


respectively. If c0 = 0, then one of the resulting varieties must equal JAB , depending on the value of bk. If
neither query results in 1, we can conclude c0 = 1, but do not learn bk straightaway as before.

However, we can send another query to the oracle with points
1 0 0 2n−k−1(dc0 −Kb

k)
0 1 0 −2n−k−1c0
0 0 1 0
0 0 0 1 + 2n−k−1


where c0 = 1 to prompt Alice to use the subgroup derived from

A′ = A+

0 0 0 2n−1bk
0 0 0 0
0 0 0 0


during her computation. Clearly, this results in computing the variety JAB exactly when bk = 0, and in a
different variety or a failure to compute otherwise.

The next bit of a can be recovered by sending malformed points given by
1 0 −2n−k−1(d(d0c0 − b0) +Ka

k ) 0
0 1 −2n−k−1(b0 − d0c0) 0
0 0 1 + 2n−k−1 0
0 0 0 1

 .

The kernel subgroup corresponding to these points is generated by

A′ = A+

0 0 2n−1ak 0
0 0 0 0
0 0 0 0


Again we can conclude that ak = 0 if and only if the oracle outputs 1.

Iterative step for recovering remaining scalars when i ≥ k + 1. (Here, we use different notation for

the partial scalar c: Kc
i =

∑i−k−1
j=0 2jcj , so that e.g. Kc

k+1 = c0.)
As before, the bits bi and ci−k have to be recovered simultaneously. We again send three queries to check

for distinct bit combinations for (bi, ci−k). We first try
1 0 0 2n−i−1(dKc

i −Kb
i )

0 1 0 −2n−i−1Kc
i

0 0 1 0
0 0 0 1 + 2n−i−1

 and


1 0 0 2n−i−1(dKc

i −Kb
i − 2i)

0 1 0 −2n−i−1Kc
i

0 0 1 0
0 0 0 1 + 2n−i−1
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which yield kernel subgroups defined by

A′ = A+

0 0 0 2n−1bi
0 0 0 2n−1ci−k
0 0 0 0

 and A′ = A+

0 0 0 2n−1(bi − 1)
0 0 0 2n−1ci−k
0 0 0 0


respectively. Hence, we can conclude (bi, ci−k) = (0, 0) or (bi, ci−k) = (1, 0) if one of the oracle queries returns
1.

From the previous queries, we have either determined that ci−k = 0 or can deduce that ci−k = 1.
Therefore, we now know Kc

i+1 and can send a last set of malformed points obtained from
1 0 0 2n−i−1(dKc

i+1 −Kb
i )

0 1 0 −2n−i−1Kc
i+1

0 0 1 0
0 0 0 1 + 2n−i−1


to determine the bit bi from the kernel subgroup corresponding to

A′ = A+

0 0 0 2n−1bi
0 0 0 0
0 0 0 0


which Alice uses in her computation.

For recovering ai for i ≤ n− 2, we again use the transformation
1 0 −2n−i−1Ka

i 0
0 1 −2n−i−1Kb

i+1 0
0 0 1 + 2n−i−1 0
0 0 2n−i−1d 1

 .

This query leads to the use of the kernel subgroup corresponding to

A′ = A+

0 0 2n−1ai 0
0 0 0 0
0 0 0 0


which is equal to GA and hence leads to an oracle output of 1 exactly when ai = 0. The remaining bit can
be brute-forced.

Note that we will have determined both b and c fully after the (n−k− 1)-th iterative step and only need
to iterate the single query for ai when i ≥ n− k using b = Kb

i+1 and c = Kc
i+1.
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