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Abstract

This paper presents a key recovery attack on the cryptosystem proposed by Lau and Tan
in a talk at ACISP 2018. The Lau-Tan cryptosystem uses Gabidulin codes as the underlying
decodable code. To hide the algebraic structure of Gabidulin codes, the authors chose a matrix
of column rank n to mix with a generator matrix of the secret Gabidulin code. The other part
of the public key, however, reveals crucial information about the private key. Our analysis
shows that the problem of recovering the private key can be reduced to solving a multivariate
linear system over the base field, rather than solving a multivariate quadratic system as claimed
by the authors. Solving the linear system for any nonzero solution permits us to recover the
private key. Apparently, this attack costs polynomial time, and therefore completely breaks the
cryptosystem.

Keywords Post-quantum cryptography · Code-based cryptography · Gabidulin codes · Key
recovery attack

1 Introduction
In post-quantum era, most public key cryptosystems based on number theoretic problems will suffer
serious security threat. To resist quantum computer attacks, people have paid much attention to
seeking alternatives in the future. Among these alternatives, code-based cryptography is one of the
most promissing candidates. The security of these cryptosystems rely on the difficulty of decoding
general linear codes. The first code-based cryptosystemwas the one proposed byMcEliece in 1978,
which is now called the McEliece cryptosystem [8]. Although this scheme still remains secure, it
had never been used in practical situations due to the drawback of large key size. To tackle this
problem, various improvements for McEliece’s original scheme were proposed one after another.
Generally these improvements can be divided into two categories: one is to substitute Goppa codes
used in the McEliece system with other families of codes endowed with special structures, the other
is to use codes endowed with the rank metric.

In 1991, Gabidulin et al. proposed an encryption scheme based on rank metric codes, which
is now known as the GPT cryptosystem [1]. An important advantage of rank-based cryptosystems
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lies in their compact representation of public keys. Some representative variants based on the rank
metric Gabidulin codes can be found in [2–6]. Unfortunately, most of these variants, including the
original GPT cryptosystem, have been completely broken due to the inherent structural weakness
of Gabidulin codes. Specifically, Gabidulin codes contain a large subspace invariant under the
Frobenius transformation, which provides the feasibility for one to distinguishGabidulin codes from
general ones. Based on this observation, various structural attacks [9–13] on the GPT cryptosystem
and some of their variants were designed.

In [7], Lau and Tan proposed a public key encryption scheme based on Gabidulin codes. In their
cryptosystem, the published information consists of a generator matrix of the disturbed Gabidulin
code by a random code that admits maximum rank weight n and a random vector of column rank n.
This technique of masking the structure of Gabidulin codes, as claimed by Lau and Tan, can prevent
some existing attacks [9–12]. Additionally, the recent Coggia-Couvreur attack [13] and Ghatak’s
attack [15] do not work on this cryptosystem either.

Our contributions. This paper mainly investigates the security of the Lau-Tan cryptosystem
and presents a simple yet efficient key recovery attack on this encryption scheme. Additionally, our
analysis shows that all the generating vectors of a Gabidulin code, together with the zero vector,
form a 1-dimensional linear space. In other words, for a fixed generating vector g of a Gabidulin
code G ⊆ Fn

qm , any other generating vector of G must be of the form γg for some γ ∈ F∗
qm . This

suggests that there are totally qm−1 generating vectors for a Gabidulin code over Fqm . Meanwhile,
we also introduce a different approach from the one proposed in [10] to compute the generating
vector of Gabidulin codes when an arbitrary generator matrix is given.

The rest of this paper is organized as follows. Section 2 introduces some basic notations used
throughout this paper, as well as the concept ofMoorematrices andGabidulin codes. Section 3 gives
a simple description of the Lau-Tan cryptosystem. In Section 4, we mainly describe the principle
of our attack. To do this, we first introduce some further results about Gabidulin codes that will be
helpful for explaining why this attack works. Following this, we present this attack in two steps.
Additionally we also give a complexity analysis of this attack and some experimental results using
Magma. In Section 5, we will make a few concluding remarks.

2 Preliminaries
In this section, we first introduce some notations in finite field and coding theory used throughout
this paper. After that, we will recall some basic concepts about Gabidulin codes and some related
results.

2.1 Notations and basic concepts
For a prime power q, we denote by Fq the finite field with q elements, and Fqm an extension field
of Fq of degree m. Note that Fqm can be seen as a linear space over Fq of dimension m. A vector
a ∈ Fm

qm is called a basis vector if components of a form a basis of Fqm over Fq. In particular, we
call a a normal basis vector if a is of the form (αqm−1

, αqm−2
, . . . , α) for some α ∈ F∗

qm = Fqm\{0}.
For two positive integers k and n, denote byMk,n(Fq) the space of all k× n matrices over Fq, and
by GLn(Fq) the set of all invertible matrices inMn,n(Fq). For a matrixM ∈ Mk,n(Fq), denote by
⟨M⟩q the linear space spanned by rows ofM over Fq.
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An [n, k] linear code C over Fqm is a k-dimensional subspace of Fn
qm . The dual code of C,

denoted by C⊥, is the orthogonal space of C under the usual inner product over Fn
qm . A k×nmatrix

G is called a generator matrix of C if its row vectors form a basis of C over Fqm . A generator matrix
H of C⊥ is called a parity-check matrix of C. For a codeword c ∈ C, the rank support of c, denoted
by Supp(c), is the linear space spanned by components of c over Fq. The rank weight of c with
respect to Fq, denoted by rk(c), is defined to be the dimension of Supp(c) over Fq. The minimum
rank distance of C, denoted by rk(C), is defined to be the minimum rank weight of all nonzero
codewords in C. For a matrix M ∈ Mk,n(Fqm), the rank support of M , denoted by Supp(M), is
defined to be the linear space spanned by entries of M over Fq. Similarly, the rank weight of M
with respect to Fq, denoted by rk(M), is defined as the dimension of Supp(M) over Fq.

2.2 Gabidulin codes
In this section, we will recall the concept of Gabidulin codes. Before doing this, we first introduce
of the definition of Moore matrices and some related results.
Definition 1 (Moore matrices). For an integer i and α ∈ Fqm , we define α[i] = αqi to be the i-th
Frobenius power ofα. For a vectora = (α1, α2, . . . , αn) ∈ Fn

qm , we definea[i] = (α
[i]
1 , α

[i]
2 , . . . , α

[i]
n )

to be the i-th Frobenius power of a. For positive integers k ⩽ n, a k× nMoore matrix induced by
a is defined as

Mrk(a) =


α1 α2 · · · αn

α
[1]
1 α

[1]
2 · · · α

[1]
n

... ... ...
α
[k−1]
1 α

[k−1]
2 · · · α

[k−1]
n

 .

For a positive integer l and a matrix M = (Mij) ∈ Mk,n(Fqm), we denote by M [l] = (M
[l]
ij )

the l-th Frobenius power of M . For a set V ⊆ Fn
qm , we denote by V [l] = {v[l] : v ∈ V} the l-th

Frobenius power of V . Particularly, for a linear code C ⊆ Fn
qm , it is easy to verify that C[l] is also a

linear code over Fqm .
The following proposition presents simple properties about Moore matrices.

Proposition 1. (1) For two k × n Moore matrices A,B ∈ Mk,n(Fqm), the sum A+B is also a
k × n Moore matrix.

(2) For a Moore matrix M ∈ Mk,n(Fqm) and a matrix Q ∈ Mn,l(Fq), the productMQ forms a
k × l Moore matrix.

(3) For a vector a ∈ Fn
qm with rk(a) = l, there exist a′ ∈ Fl

qm with rk(a′) = l andQ ∈ GLn(Fq)
such that a = (a′,0)Q. Furthermore, letA = Mrk(a) andA′ = Mrk(a′), thenA = [A′|0]Q.

(4) For positive integers k ⩽ n ⩽ m, let a ∈ Fn
qm be a vector such that rk(a) = n, then the

Moore matrixMrk(a) has rank k.

Proof. Statements (1), (2) and (3) are trivial and therefore the proof is omitted here.

(4) Let a = (α1, · · · , αn) ∈ Fn
qm . If Rank(Mrk(a)) < k, then there exists λ = (λ0, · · · , λk−1) ∈

Fk
qm\{0} such that λMrk(a) = 0. Let f(x) =

∑k−1
j=0 λjx

[j] ∈ Fqm [x], then f(αi) = 0 holds
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for any 1 ⩽ i ⩽ n. It follows that f(α) = 0 for any α ∈ ⟨α1, · · · , αn⟩q, which conflicts with
the fact that f(x) = 0 admits at most qk−1 roots.

The following proposition states a fact that a Moore matrix can be decomposed as the product of
a specific Moore matrix and a matrix over the base field. This fact was once exploited by Loidreau
in [14] to cryptanalyze an encryption scheme [3] based on Gabidulin codes.

Proposition 2 (Moore matrix decomposition). Let a be a basis vector of Fqm over Fq. For positive
integers k ⩽ m, letM ∈ Mk,m(Fqm) be a Moore matrix generated by a. Then for any k×nMoore
matrix M ′ ∈ Mk,n(Fqm), there exists Q ∈ Mm,n(Fq) such that M ′ = MQ.

Now we formally introduce the definition of Gabidulin codes.
Definition 2 (Gabidulin codes). For positive integers k ⩽ n ⩽ m, let a ∈ Fn

qm such that rk(a) = n.
The [n, k] Gabidulin code generated by a, denoted by Gabn,k(a), is defined as the linear space
spanned by rows of Mrk(a) over Fqm . Mrk(a) is called a standard generator matrix of Gabn,k(a),
and a a generating vector respectively.
Remark 1. Gabidulin codes can be seen as a rank metric counterpart of generalized Reed-Solomon
(GRS) codes, both of which admit good algebraic properties. The dual of an [n, k] Gabidulin code
is an [n, n−k]Gabidulin code [12]. An [n, k]Gabidulin code has minimum rank distance n−k+1
[16] and can therefore correct up to

⌊
n−k
2

⌋
rank errors in theory. Efficient decoding algorithms for

Gabidulin codes can be found in [17–19].
To reduce the public key size, Lau and Tan exploited a so-called partial circulant matrix in the

cryptosystem, as defined in the following.
Definition 3 (Partial circulant matrices). For a vector a = (α1, α2, . . . , αn) ∈ Fn

qm , the circulant
matrix induced by a, denoted by Cirn(a), is defined to be a matrix whose first row is a and i-th row
is obtained by cyclically right shifting the i − 1-th row for 2 ⩽ i ⩽ n. The k × n partial circulant
matrix induced by a, denoted by Cirk(a), is defined to be the first k rows of Cirn(a).
Remark 2. For a normal basis vector a of Fqm over Fq, it is easy to verify that the k × n partial
circulant matrix induced by a is exactly the k × n Moore matrix generated by a. In other words,
mathematically we have Cirk(a) = Mrk(a).

3 Lau-Tan cryptosystem
In this section, wemainly give a simple description of the Lau-Tan cryptosystem that uses Gabidulin
codes as the underlying decodable code. For a given security level, choose positive integers m >
n > k > k′ ⩾ 1 and r such that k′ = ⌊k

2
⌋ and r ⩽ ⌊n−k

2
⌋. The Lau-Tan cryptosystem consists of

the following three algorithms.

• Key Generation

Let G be an [n, k] Gabidulin code over Fqm , and G ∈ Mk,n(Fqm) be a generator matrix of G
of standard form. Randomly choose matrices S ∈ GLk(Fqm) and T ∈ GLn(Fq). Randomly
choose u ∈ Fn

qm such that rk(u) = n and set U = Cirk(u). Let Gpub = SG + UT , then we
publish (Gpub,u) as the public key, and keep (S,G, T ) as the private key.
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• Encryption

For a plaintextm ∈ Fk′
qm , randomly choosems ∈ Fk−k′

qm such that rk((m,ms)U) > ⌈3
4
(n−

k)⌉. Randomly choose e1, e2 ∈ Fn
qm such that rk(e1) = r1 ⩽ r

2
and rk(e2) = r2 ⩽ r

2
.

Compute c1 = (m,ms)U + e1 and c2 = (m,ms)Gpub + e2. Then the ciphertext is c =
(c1, c2).

• Decryption

For a ciphertext c = (c1, c2) ∈ F2n
qm , compute c′ = c2 − c1T = (m,ms)SG + e2 − e1T .

Note that rk(e2 − e1T ) ⩽ rk(e2) + rk(e1T ) ⩽ r, decoding c′ with the existing decoder of G
will lead tom′ = (m,ms)S, then by computingm′S−1 one can recover the plaintextm.

4 Key recovery attack
In this section, we will describe a method of efficiently recovering an equivalent private key of the
Lau-Tan cryptosystem. We point out that the privacy of T is of great importance for the security of
the whole cryptosystem. Specifically, if one can find the secret T , then one can recover everything
he needs to decrypt an arbitrary ciphertext in polynomial time. Before describing this attack, we
first introduce some further results about Gabidulin codes.

4.1 Further results about Gabidulin codes
Similar to GRS codes in the Hamming metric, Gabidulin codes have good algebraic structure. For
instance, if G is a Gabidulin code over Fqm , then its l-th Frobenius power is still a Gabidulin code.
Formally, we introduce the following lemma.

Lemma 4. Let G be an [n, k]Gabidulin code over Fqm , withG ∈ Mk,n(Fqm) as a generator matrix.
For any positive integer l, G [l] is also an [n, k] Gabidulin code and has G[l] as a generator matrix.

Proof. Trivial from a straightforward verification.

For a proper positive integer l, the intersection of a Gabidulin code and its l-th Frobenius power
is still a Gabidulin code, as described in the following proposition.

Proposition 3. For an [n, k] Gabidulin code G over Fqm , let g ∈ Fn
qm be a generating vector of G.

For a positive integer l ⩽ min{k − 1, n− k}, the intersection of G and its l-th Frobenius power is
an [n, k− l] Gabidulin code with g[l] as a generating vector. In other words, we have the following
equality

G ∩ G [l] = Gabn,k−l(g
[l]).

Proof. By the definition of Gabidulin codes, G is a linear space spanned by g, . . . , g[k−1] over Fqm ,
i.e. G = ⟨g, . . . , g[k−1]⟩qm . By Lemma 4, we have G [l] = ⟨g[l], . . . , g[k+l−1]⟩qm . Note that l ⩽
min{k− 1, n−k}, then k+ l ⩽ n and g, . . . , g[k+l−1] are linearly independent over Fqm . It follows
that G ∩ G [l] = ⟨g[l], . . . , g[k−l−1]⟩qm forms an [n, k − l] Gabidulin code, having g[l] as a generating
vector. This completes the proof.
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Lemma 5. For positive integers k < n, let G ⊂ Fn
qm be an [n, k] Gabidulin code, and A ∈

Mk,n(Fqm) be a nonzero Moore matrix. If all the row vectors ofA are codewords in G, thenAmust
be a generator matrix of G.

Proof. It suffices to prove Rank(A) = k. Suppose that A is generated by a ∈ Fn
qm , i.e. A =

Mrk(a). Let l = rk(a), then there exist a′ ∈ Fl
qm with rk(a′) = l and Q ∈ GLn(Fq) such that

a = (a′,0)Q. LetA′ ∈ Mk,l(Fqm) be a Moore matrix generated by a′, then it follows immediately
that A = [A′|0]Q. If l > k, then Rank(A) = Rank(A′) = k due to Proposition 1 and therefore the
conclusion is proved. Otherwise, there will be ⟨A′⟩qm = Fl

qm . From this we can deduce that the
minimum rank distance of G will be 1, which conflicts with the fact that rk(G) = n − k + 1 ⩾ 2.
Hence l > k and Rank(A) = k. This completes the proof.

By Definition 2, a Gabidulin code is uniquely determined by its generating vector. Naturally, it
is important to make clear what all these vectors look like and how many generating vectors there
exist for a Gabidulin code.

Proposition 4. Let G be an [n, k] Gabidulin code over Fqm , with g ∈ Fn
qm as a generating vector.

Let g′ ∈ Fn
qm be a codeword in G, then g′ forms a generating vector if and only if there exists

γ ∈ F∗
qm such that g′ = γg.

Proof. Assume that g = (α1, . . . , αn) and g′ = (α′
1, . . . , α

′
n), let G = Mrk(g) and G′ = Mrk(g′).

The conclusion is trivial if g = g′. Otherwise, without loss of generality we assume that α′
1 ̸= α1,

then there exists γ ∈ F∗
qm\{1} such that α′

1 = γα1. Let

S =


γ 0 · · · 0
0 γ[1] · · · 0
... ... ...
0 0 · · · γ[k−1]

 ,

then SG = Mrk(γg). Let g∗ = γg − g′ = (0, γα2 − α′
2, . . . , γαn − α′

n) and G∗ = Mrk(g∗), then
G∗ = SG − G′. Apparently all the row vectors of G∗ are codewords in G. If g∗ ̸= 0, then G∗

forms a generator matrix of G of standard form due to Lemma 5. Together with rk(g∗) ⩽ n − 1,
easily we can deduce that rk(c) ⩽ n − 1 for any c ∈ G, which clearly contradicts the fact that
rk(g) = n. Therefore there must be g∗ = 0, or equivalently g′ = γg. The opposite is obvious from
a straightforward verification.

The following corollary is drawn immediately from Proposition 4.

Corollary 1. An [n, k]Gabidulin code over Fqm admits qm−1 generator matrices of standard form,
or equivalently qm − 1 generating vectors.

4.2 Recovering the secret T
In this section, we mainly describe an efficient algorithm for recovering the secret T . In summary,
the technique we adopt here is to convert the problem of recovering T into solving a multivariate
linear system, which clearly costs polynomial time. Before doing this, we first introduce the so-
called subfield expanding transform.
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Subfield Expanding Transform. For β1, . . . , βn ∈ Fqm , we construct an equation as
n∑

j=1

xjβj = 0, (1)

where xj’s are underdetermined variables inFq. Leta be a basis vector ofFqm overFq. For each 1 ⩽
j ⩽ n, there exists bj ∈ Fm

q such that βj = bja
T . It follows that

∑n
j=1 xjβj =

∑n
j=1 xj(bja

T ) =

(
∑n

j=1 xjbj)a
T , and moreover, (1) holds if and only if

n∑
j=1

xjbj = 0. (2)

Obviously, the linear systems (1) and (2) share the same solution space. A transform that derives
(2) from (1) is called a subfield expanding transform.

In the Lau-Tan cryptosystem, let H ∈ Mn−k,n(Fqm) be a parity-check matrix of G of standard
form. LetM ∈ Mn−k,m(Fqm) be a Moore matrix generated by a basis vector of Fqm over Fq, then
there exists an underdetermined matrix X ∈ Mm,n(Fq) such that H = MX . Let T ∗ ∈ GLn(Fq)
be another underdetermined matrix such that Gpub − Cirk(u)T ∗ = Gpub − UT ∗ forms a generator
matrix of G, or equivalently

(Gpub − UT ∗)(MX)T = GpubX
TMT − UT ∗XTMT = 0. (3)

We therefore obtain a system of k(n−k)multivariate quadratic equations, with n(m+n) variables
inFq. This system admits at least qm solutions. Specifically, we introduce the following proposition.

Proposition 5. The linear system (3) has at least qm solutions.

Proof. If T ∗ = T , then we can deduce from (3) that

(Gpub − UT ∗)(MX)T = GpubX
TMT − UT ∗XTMT = SGXTMT = SG(MX)T = 0.

Note that SG ∈ Mk,n(Fqm) forms a generator matrix of G. By SG(MX)T = 0, we conclude that
all the row vectors of MX are contained in the dual code of G, which is an [n, n − k] Gabidulin
code. On the other hand, it is easy to see thatMX is an (n− k)× nMoore matrix. By Lemma 5,
MX forms a standard generator matrix of G⊥ for a nonzeroX . Then the conclusion is immediately
proved from Corollary 1. Furthermore, we have that X is anm× n matrix of full rank.

Note that solving a multivariate quadratic system generally requires exponential time. Instead
of solving the system (3) directly, the technique we exploit here is to consider each entry of T ∗XT

as a new variable in Fq and set Y = XT ∗T . In other words, we rewrite (3) into the following matrix
equation

GpubX
TMT − UY TMT = 0. (4)

This enables us to obtain a linear system of k(n− k) equations, with coefficients in Fqm and 2mn
variables in Fq. To solve the system (4), we usually convert this problem into an instance over the
base fieldFq. Applying the subfield expanding transform to (4) leads to a linear system ofmk(n−k)
equations over Fq, with 2mn variables to be determined. For a cryptographic use, generally we have
mk(n− k) ⩾ 2mn.
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Remark 3. For each solution (X,T ∗) of (3), one can easily obtain a solution of (4) by computing
Y = XT ∗T , which implies that there are also at least qm solutions for (4). Conversely, if (4) has
exactly qm solutions, then these solutions must correspond to solutions of (3) where T ∗ = T . In
this situation, for any nonzero solution (X,Y ) of (4), solving the matrix equation Y = XT ∗T will
lead to the secret T = T ∗.

As for whether or not the system (4) has other types of solutions, we make an Assumption that
the answer is negative. According to our experimental results on Magma, this assumption holds
with high probability. To make it easier, a simplified version of this problem is considered. Let G
be an arbitrary generator matrix of an [n, k] Gabidulin code and u ∈ Fn

qm such that rk(u) = n. We
then construct a matrix equation as

GXTMT + Cirk(u)Y TMT = 0,

whereM ∈ Mn−k,m(Fqm) is aMoore matrix generated by a basis vector of Fqm over Fq andX,Y ∈
Mm,n(Fq) are two underdetermined matrices. By applying the subfield expanding transform to this
system above, we obtain a new system over Fq. By Remark 3, if this newly obtained system admits
a solution space of dimension m, then there must be Y = 0. Eventually we ran 1000 random tests
for q = 2,m = 25, n = 23 and k = 10. It turns out that the assumption holds in all of these random
instances.

Algorithm 1 : T -recovering algorithm
Input: The public key (Gpub,u)
Output: The secret T
1: Let a be a basis vector of Fqm over Fq and setM = Mrn−k(a)
2: Let X,Y ∈ Mm,n(Fq) be two underdetermined matrices and construct a linear system

GpubX
TMT − Cirk(u)Y TMT = 0 (5)

3: Applying the subfield expanding transform to (5) to obtain a linear system over Fq

4: Solve this system for (X,Y )
5: For any nonzero (X,Y ), solve the matrix equation Y = XT ∗T for T ∗

6: return T = T ∗

4.3 Finding an equivalent (S ′, G′)

With the knowledge of a generating vector, we can deduce many characteristics of a Gabidulin code,
such as an efficient decoding algorithm. A natural question is how to derive the generating vector
of a Gabidulin code from an arbitrary generator matrix. In [10] the authors presented an iterative
method of computing the generating vector. Here in this paper we present a different approach to
do this, as described in the following.

An approach to compute the generating vector. For an [n, k] Gabidulin code G over Fqm , let
G ∈ Mk,n(Fqm) be an arbitrary generator matrix of G. We first compute a parity-check matrix of
G fromG, sayH . LetM ∈ Mk,m(Fqm) be a Moore matrix generated by a basis vector of Fqm over
Fq, then there exists an underdetermined matrix X ∈ Mm,n(Fq) such that MX forms a standard
generator matrix of G. By setting (MX)HT = 0 we obtain a linear system of k(n− k) equations,
with coefficients in Fqm and mn variables in Fq. Applying the subfield expanding transform to
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this system leads to a new linear system over the base field Fq, withmk(n− k) equations andmn
variables. For a cryptographic use, generally we havemk(n−k) ⩾ mn. By Corollary 1, this newly
obtained system admits qm − 1 nonzero solutions. And for any nonzero solution, say X , the first
row ofMX will be a generating vector of G.

Algorithm 2 : Finding an equivalent (S ′, G′)

Input: (Gpub,u, T )
Output: (S′, G′) such that G′ forms a standard generator matrix of G and S′G′ = SG

1: Let a be a basis vector of Fqm over Fq and construct a Moore matrixM = Mrk(a)
2: Compute SG = Gpub − Cirk(u)T and G = ⟨SG⟩qm
3: Let H ∈ Mn−k,n(Fqm) be a parity-check matrix of G
4: Let X ∈ Mm,n(Fq) be an underdetermined matrix and construct a linear system as

(MX)HT = 0 (6)

5: Applying the subfield expanding transform to (6) to obtain a new system over Fq

6: Solve this new system for a nonzero X and compute G′ = MX
7: Compute S′ ∈ GLk(Fqm) such that S′G′ = SG
8: return (S′, G′)

4.4 Complexity of the attack
Our attack consists of two phases: firstly, we manage to recover the secret T from the published
information, as described in Algorithm 1; secondly, with the knowledge of T and the public key, we
compute a standard generator matrixG′ of the secret Gabidulin code and an invertible matrix S ′, as
described in Algorithm 2. Hence the complexity analysis is done in the following two aspects.

Complexity of Algorithm 1. In Step 1 we construct a Moore matrix M ∈ Mn−k,m(Fqm)
whose first row vector forms a basis of Fqm over Fq. To avoid executing the Frobenius operation,
here we choose a to be a normal basis vector, then we setM = Cirn−k(a). In Step 2 we construct
a multivariate linear system by performing matrix multiplication, requiring O(mn3) operations in
Fqm . The subfield expanding transform performed to (5) requires O(m3n3) operations in Fqm .
Step 4 requires O(m3n3) operations to solve the linear system over Fq and Step 5 requires O(n3)
operations in Fq. The total complexity of Algorithm 1 consists of O(m3n3 + mn3) operations in
Fqm and O(m3n3 + n3) operations in Fq.

Complexity of Algorithm 2. In Step 1 we still choose a normal basis vector to constructM . To
compute SG, we perform matrix addition and multiplication with O(n3) operations in Fqm . Step 3
computes a parity-check H of G from SG, requiring O(n3) operations in Fqm . Then we construct
a linear system in Step 4, which costs O(mn3) operations in Fqm . In Step 5 we apply the subfield
expanding transform to (6) to obtain a new system over Fq, requiring O(m3n3) operations in Fqm .
Solving this new system in Step 6 costs O(m3n3) operations in Fq, and compute G′ = MX with
O(mn2) operations in Fqm . In Step 7, we shall compute S ′ from S ′G′ with O(n3) operations. The
total complexity of Algorithm 2 consists of O(m3n3 +mn3 + n3) operations in Fqm andO(m3n3)
operations in Fq.

Finally, the total complexity of the attack is O(m3n3 +mn3 + n3) in Fqm plus O(m3n3 + n3)
in Fq.
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4.5 Implementation
This attack has been implemented on Magma and permits to recover the secret T . We tested this
attack on a personal computer and succeeded for parameters as illustrated in Table 1. For each
parameter set, the attack has been run 100 times and the last column gives the average timing (in
seconds). Our implementation is just a proof of the feasibility of this attack and does not consider
the proposed parameters in [7] due to limited resources.

Table 1 These experiments were performed
using Magma V2.11-1 on an 11th Gen
Intel(R) Core(TM) i7-11700 @ 2.5GHz
processor with 16 GB of memory.

q m n k t

2 22 18 9 8.6
2 28 22 9 40.7
2 35 26 12 173.2

5 Conclusion
Our attack revealed the structural weakness of the Lau-Tan cryptosystem. Although the first part of
the public key hid the structure of Gabidulin codes perfectly, the second part did reveal important
information that can be used to design a key recovery attack. Specifically, we convert the problem
of recovering the private key into solving a multivariate linear system over the base field Fq. Even
though this system admits a solution space of dimensionm, we are able to recover the secret T and
then an equivalent (S ′, G′) from any nonzero solution. Extensive experiments have been performed
and the results show that our attack accords with the theoretical expectations. In summary, we found
a polynomial-time key recovery attack on the Lau-Tan cryptosystem under a reasonable assumption.
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