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Abstract. Lattice-based blind signature schemes have been receiving
some recent attention lately. Earlier efficient 3-round schemes (Asiacrypt
2010, Financial Cryptography 2020) were recently shown to have mis-
takes in their proofs, and fixing them turned out to be extremely ineffi-
cient and limited the number of signatures that a signer could send to less
than a dozen (Crypto 2020). In this work we propose a round-optimal,
2-round lattice-based blind signature scheme which produces signatures
of length 150KB. The running time of the signing protocol is linear in
the maximum number signatures that can be given out, and this limits
the number of signatures that can be signed per public key. Nevertheless,
the scheme is still quite efficient when the number of signatures is limited
to a few dozen thousand, and appears to currently be the most efficient
lattice-based candidate.
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1 Introduction

Recent years have seen an influx of efficient lattice-based constructions of var-
ious cryptographic primitives. From zero-knowledge proofs [BLS19, YAZ`19,
ESLL19, LNS20], to group signatures [dPLS18], and even Monero-like private
payment systems [EZS`19, LNS21b], it now appears that a lot of fairly ad-
vanced privacy-enhancing constructions can be instantiated based on the poten-
tial quantum-safety of lattice problems. Somewhat surprisingly, though, there
aren’t any practical proposals of blind signatures.

Blind signatures, originally proposed by Chaum [Cha82] consist of an inter-
active procedure between a user and a signer in which the user would like to
obtain the signature of a message µ under the public key of the signer, but not
reveal the µ to the signer. Furthermore, after producing some certificate that he
indeed has a signature of µ, the signer should not be able to figure out during
which interaction this certificate was obtained. And of course, it is also required
that the user cannot produce signatures by himself – that is, after interacting k
times with the signer, the user should not be able to produce k ` 1 signatures.

A candidate for a 3-round lattice-based blind signature has been proposed
by Ruckert [Rüc10], and then improved upon in [ABB20]. The proofs of these
schemes have, however, recently been shown to be incorrect [HKLN20]. At a
high level, the difficulty that was incorrectly overcome was what prevented



Pointcheval and Stern [PS00] from giving stronger proofs for Schnorr’s blind
signature. It recently turned out that the obstacle blocking the proof was real,
and the full Schnorr blind signature has been completely broken [BLL`21]. It is
thus quite possible that the errors in [Rüc10, ABB20] are not just mistakes in
the proof.

There have since been other constructions of blind signatures, such as [HKLN20],
which result in signatures being several (dozen) megabytes long and, more im-
portantly, only allow one to securely sign less than a dozen messages per public
key. Another recent proposal [ASY21] produces signatures that are almost as
short as in regular lattice-based signatures (i.e. a few kilobytes); but the scheme
has a few major downsides. The idea behind the scheme is for the user to en-
crypt his message µ, and then for the signer to run a (modified version of) the
Dilithium lattice-based signature scheme [DKL`18] homomorphically by em-
ploying a fully-homomorphic encryption scheme. The user would then decrypt
and reveal the signature. This approach entails evaluating cryptographic hash
functions homomorphically. Furthermore, as it is, the scheme is only blind with
respect to an honest signer. To protect against a malicious signer, the signer
would be required to give a zero-knowledge proof that the homomorphic eval-
uation of the signing procedure was done correctly. The extremely heavy tools
required for communication between the user and signer almost certainly put
this scheme into the theoretical category.

1.1 Our results

We propose a practical two-round lattice-based blind signature scheme with two
restrictions. The first is that the signer is required to keep a counter as a state.
Secondly, the running time of signature generation and verification is linear in
the total number of signatures allowed by the scheme, and so it seems reasonable
to put a limit of the total number of signatures to somewhere under 220.3

The signature size is around 150KB, and the interaction between the user
and the signer is approximately 16MB. The size of the public key is a little over
a megabyte. The 150KB signatures are about 50X longer than the signature
size of regular lattice signatures (e.g. [DKL`18, PFH`17], but as far as we’re
aware these are the shortest (instantiable and having a security proof) blind
signatures which are potentially quantum-safe. Even though the communication
between the user and the signer is large, all operations are efficient operations
on polynomials which have been extensively optimized in recent works on lattice
cryptography, and so time-wise, it should be rather efficient. We should mention
that the running time of the interaction between the user and the signer is
independent of the total number of signatures, and it’s only the user’s offline time
after interacting with the signer that is linear in the total number of signatures.

3 If one is content with a relaxed definition of blindness where a signature is hidden
among T user-signer interactions, then the running time of the scheme can be kept
to OpT q. This is not a standard definition of a blind signature, but we just mention
this possibility in case it’s good enough for an application.
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A part of our construction requires the use of lattice-based one-time signa-
tures, and we employ ideas from the scheme in [LM18]. In the current paper,
we need to use Gaussian-generated secret keys (because in the scheme, they will
be sampled using a trapdoor, and the most efficient such algorithm produces
Gaussians) unlike the uniform ones used in that paper, and so we develop a
different, and arguably easier, security proof for the one-time signature scheme.
The developed techniques for analyzing the security of the one-time signature
are then extended to prove security of our blind signature and we believe that
they can sometimes be used in lieu of analysis that employs Renyi techniques.
We believe that this contribution could be potentially of interest in other works.

1.2 Scheme Overview

Let N be the maximum number of messages that can be signed. For each N , we
will create a public key and secret key pair for a one-time signature scheme. The
N public key pairs are polynomial vectors pvi,wiq, and the corresponding secret
keys are polynomial vectors psi,yiq with small coefficients satisfying Asi “ vi

and Ayi “ wi. All the polynomials are in the polynomial ring ZqrXs{pXd ` 1q.
The matrix A, which is also part of the public key, is generated by the signer
together with a trapdoor which allows him to produce the aforementioned short
polynomial vectors si and yi. The public keys pvi,wiq are uniformly-random
and therefore do not need to be stored, as they can simply be defined as Hpiq “

pvi,wiq, where H is some cryptographic hash function such as SHAKE. Thus
the public key size is dominated by A and is not dependent on N .

The message µ is a polynomial with very small, i.e. -1/0/1 coefficients, and
the signing process begins by the user sending an encryption c “ encpµq. The
signer’s goal is to apply a function f to c such that decpfpcqq “ siµ ` yi. The
signer thus sends fpcq to the user, and the latter obtains z “ siµ`yi by applying
dec. The vector z has small coefficients and satisfies the relation

Az “ viµ ` wi. (1)

The vector z is a signature of µ, but the user cannot reveal it in the clear because
that would allow the signer to link the message to the instance during which it
was signed. Instead, the user outputs a zero-knowledge proof of knowledge of
a z with small coefficients satisfying (1) for some pvi,wiq from a set. Such a
compact proof, whose size is logarithmic in N , was given in [LNS21b]. Since this
proof does not reveal the z nor the specific pvi,wiq from the set of public keys,
the blindness property is preserved.

The main technical part of this work is showing that for our specific functions
enc, dec, and f , the message µ is hidden, and that fpcq does not leak enough
information about the signer’s keys si,yi. In particular, the user who obtains
fpcq should not be able to produce two different pz, µq, pz1, µ1q satisfying (1).

An easy solution for hiding the µ and not having fpcq leak anything would
be to use a circuit-private homomorphic encryption scheme; but this would be
overkill. We instead show a solution, which is similar in intuition to the one-time
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signature proof idea in [LM18], which does not require the secrets si and yi to
be completely hidden either by drowning them with noise or applying a Renyi
entropy argument. Instead, it’s enough to show that z does not leak the exact si
and yi. And in this case, coming up with another signature is as hard as solving
the SIS problem.

We now give some more details. To improve readability, we will drop the
subscripts i from the secret and public keys. Because all the keys are indepen-
dent, we can prove things about individual public/secret key pairs. The encpµq

procedure is essentially an LWE public key encryption scheme in which the
user both does the encrypting and decrypting. So the public key consists of a
random matrix B and a polynomial vector bT “ xTB, where x is a polyno-
mial vector with small coefficients. The encpµq function samples random small-
coefficient polynomial vectors r, e and a polynomial e1, and outputs the cipher-
text pt, t1q “ pBr ` pe,bT r ` pe1 ` µq, where p is a “large-enough” prime.
This ciphertext, along with a zero-knowledge proof that it was properly com-
puted (i.e. that r, e, e1, µ have small coefficients) is sent to the signer. The zero-
knowledge proof can be created using the fairly-efficient recent techniques from
[ALS20, ENS20, LNS21a].

The signer now needs to create an encryption of z “ sµ ` y. He does this
by creating an encryption of each coefficient comprising z independently. In

particular, if s “

»

–

s1
. . .
sα

fi

fl and y “

»

–

y1
. . .
yα

fi

fl, then for each 1 ď j ď α, the signer

computes

sjt “ Brsj ` pesj (2)

yj ` sjt
1 “ bT rsj ` pe1sj ` pµsj ` yjq. (3)

Because r, e, e1, and sj have small coefficients, and assuming that all the coef-
ficients of pµsj ` yjq are less than p, the above is an encryption of pµsj ` yjq.
That is, one would decrypt in the usual way by computing

pyj ` sjt
1q ´ xT sjt mod p “ µsj ` yj .

It’s unclear however, whether sending (2) and (3) is secure on the signer’s part.
That is, he is possibly leaking too much information about s and y. Instead of
(2) and (3), he therefore sends the “masked” equations

sjt ` By1
j ` py2

j “ Bprsj ` y1
jq ` ppesj ` y2

j q (4)

yj ` sjt
1 ` bTy1

j ` py3 “ bT prsj ` y1
jq ` ppe1sj ` y3

j q ` pµsj ` yjq, (5)

where y1
j ,y

2
j , and y3

j are (vectors of) polynomials with small coefficients. As
long as these coefficients are small enough, one should still be able to decrypt
µsj `yj as before. We will now outline the proof showing that an adversary who
is able to produce a signature other than µs ` y for the public key pv,wq and
message µ can solve the SIS problem.
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In the real scheme, the public key is set as pv,wq “ Hpiq, and then the s,y
are sampled using a trapdoor for A. In the security proof, we will instead get a
random A from the challenger, sample the s,y, and then program the random
oracle Hpiq “ pv “ As,w “ Ayq. Because the trap-doored matrix is indistin-
guishable from uniform [MP12] and the standard deviation of s,y is above the
smoothing parameter [MR07], the two distributions are indistinguishable. The
reduction’s goal is to now solve SIS for the matrix A.

Because the reduction knows the secret keys s,y, it can produce the responses
in (4) and (5). Now, suppose that an adversary who sees (4) and (5) is able to
create two valid signatures z, z1 (with small coefficients) for two messages µ ‰ µ1

satisfying4

Az “ vµ ` w (6)

Az1 “ vµ1 ` w. (7)

Plugging in pv “ As,w “ Ayq and subtracting, the reduction obtains

Apz ´ z1q “ Appspµ ´ µ1qq. (8)

Thus, if

z ´ z1 ‰ spµ ´ µ1q, (9)

the reduction extracted a solution to SIS. The crucial part is now proving that
the signatures produced by the forger will indeed satisfy this inequality with
some non-negligible probability. Notice that if z ´ z1 “ spµ ´ µ1q, then one has
also has extracted s (because the coefficients of spµ ´ µ1q are small-enough that
no reduction modulo q takes place and so the ring ZrXs{pXd ` 1q is an integral
domain, and so one can simply divide by µ´µ1). In other words, the reduction can
either extract a solution to SIS from the adversary, or the adversary “knows”
the value s that was used by the reduction. The former is the computational
assumption upon which the scheme is based, while the latter, we will show, is
information-theoretically impossible except with probability at most 1 ´ δ. It’s
important to point out that the latter holds for all views that contain the public
key and equations (4) and (5). Therefore, it is impossible for an adversary to
always extract the correct s, and so (9) will be satisfied with probability at least
δ. So if an adversary succeeds in a forgery with probability ϵ,the reduction will
solve SIS with probability ϵδ.

We now need to show that that despite knowing the public keys and having
access to (4) and (5), the adversary still cannot information-theoretically deter-
mine the exact value s. Consider the possibility that instead of the vector s, we
sampled the vector s̃ “ s`u, where u satisfies Au “ 0. This is a valid pre-image
for the public key v “ As “ Aps ` uq, and in order to also satisfy (4),(5), we

4 The first signature z on a message µ is already given to the adversary in (4) and (5),
so he really just has to produce a second one
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would need to have sampled, instead of y,y1,y2, and y3,

ỹ “ y ´ µu (10)

ỹ1
j “ y1

j ´ ujr (11)

ỹ2
j “ y2

j ´ uje (12)

ỹ3
j “ y3

j ´ uje
1. (13)

To complete the proof, we need to show that the event that s,y,y1
j ,y

2
j , y

3
j

are sampled, conditioned on the view of the adversary, is not overly dominant.
For simplicity, let’s just look at s and the alternative s̃ “ s ` u; incorporating
the ỹ, ỹ1, ỹ2, ỹ3 in the analysis is done in a similar manner.

If s is sampled from Zm according to a Gaussian distribution with standard

deviation σ – that is the distribution is proportional to
´

1?
2πσ

¯m

¨ ρσpxq, where

ρσpxq “ e´}x}
2

{2σ2

, then the conditional probability that s is some s˚ satisfying
v “ As˚ is

Pr
s˚

rs˚ “ s|As “ vs “
ρσpsq

ř

uPΛ

ρσps ´ uq
ď

1
ř

uPΛ

ρσpuq
, (14)

where the last inequality is implicit in the proof of [AR04, Lemma 3.2]. In The-
orem 3.3, we then show that when σ « qn{m, the above inequality is less than
1
2 , and so even an all-powerful adversary cannot know the exact s˚.

In Section 3, as an interlude, we also use the same techniques to give an
instantiation of the one-time signature from [LM18] where the secret keys are
Gaussians. In particular, the one-time signatures are just the blind signatures
without the blinding part and without the user needing to hide the public key
that was used to sign the message. That is, there is no user and no equations (4)
and (5). The signer simply sends z “ sµ`y as his signature of µ, and the verifier
checks that }z} is small and Az “ vµ ` w. This is exactly the template from
[LM18], but with a different security proof which crucially uses the fact that the
secret keys are Gaussian instead of uniform. It seems that both instantiations
are about equally efficient, but we include this instantiation in case a Gaussian-
based scheme is useful for some application, similarly to how it was extended in
this paper.

As a side note, we would like to draw attention to the advantage of our
proof over a more “generic” one that would use Renyi entropy arguments (e.g.
[BLL`15]) to show that not enough information about s is leaked in (4) and
(5)). Using such arguments would require to set the standard deviations of y,y1,
etc. to be at least as large as }sµ}, }rsj}, etc. Our proof technique, on the other
hand, only needs the standard deviation to be approximately qn{m, which is
siginficantly smaller because just s has standard deviation at least that. In fact,
somewhat counter-intuitively, one does not even need the “mask” y to have
larger standard deviation than }sµ}. This is a rather different situation than
in signature schemes where the role of y is to make the distribution of y ` sµ
independent of s.
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We remark, however, that our technique cannot replace the Renyi argument
everywhere. For our technique to be applicable, the reduction needs to know the
secret values when performing the simulation, because we do do not make any
claims about what the output distribution looks like. Renyi proofs, on the other
hand, argue that the resulting distribution is “close-enough” to some distribution
which can be sampled without knowing the secret.

2 Preliminaries

2.1 Notation

Let q be an odd prime and λ be a security parameter. In this paper we aim
for 128-bit security. Unless stated otherwise, all algorithms are implicitly given
a security parameter in unary. The joint execution of two algorithms A and
B in an interactive protocol with private inputs x to A and y to B is written
as pa, bq Ð xApxq,Bpyqy where a and b are the private outputs of A and B
respectively.

We write x Ð S when x P S is sampled uniformly at random from the
finite set S and similarly x Ð D when x is sampled according to the discrete
distribution D. The statistical distance between two probability distributions X
and Y over a countable set D is defined as ∆pX,Y q “

ř

dPD |Xpdq ´ Y pdq|. For
integer n P N, we define rns :“ t1, 2, . . . , nu. Given two functions f, g : N Ñ r0, 1s,
we write fpµq « gpµq if |fpµq´gpµq| ă µ´ωp1q. A function f is negligible if f « 0.
We write neglpnq to denote an unspecified negligible function in n.

2.2 Lattices

LetB “ tb1, . . . ,bnu consist of n linearly independent vectors. The n-dimensional
lattice generated by B is defined as

Λ “ LpBq “

#

n
ÿ

i“1

cibi : c1, . . . , cn P Z

+

.

The dual lattice of Λ is defined as Λ˚ “ tx P Rn : @v P Λ, xx,vy P Zu. We
denote B̃ to be the Gram-Schmidt orthogonalization of B.

For a power of two d, denoteR andRq respectively to be the rings ZrXs{pXd`

1q and ZqrXs{pXd ` 1q. Unless stated otherwise, lower-case letters denote ele-
ments inR orRq and bold lower-case (resp. upper-case) letters represent column
vectors (resp. matrices) with coefficients in R or Rq.

For an element w P Zq, we write }w}8 to mean |w mod˘ q|. Define the ℓ8

and ℓp norms for w “ w0 ` w1X ` . . . ` wd´1X
d´1 P R as follows:

}w}8 “ max
j

}wj}8, }w}p “
p

b

}w0}
p
8 ` . . . ` }wd´1}

p
8.
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If w “ pw1, . . . , wmq P Rk, then

}w}8 “ max
j

}wj}8, }w}p “
p
a

}w1}p ` . . . ` }wk}p.

By default, }w} :“ }w}2. Similarly, we define the norms for vectors over Zq.
Denote Sγ “ tx P Rq : }x}8 ď γu.

For a matrix A P Znˆm
q , we define the module q-ary lattice as:

ΛK
q pAq :“ tx P Zm : Ax “ 0 mod qu.

Similarly, when A P Rnˆm
q then:

ΛK
Rq

pAq :“ tx P Rm : Ax “ 0 over Rqu.

For a polynomial f “ f0 ` f1X ` . . .` fd´1X
d´1 P R, we define the rotation

matrix Rotpfq P Zdˆd as:

Rotpfq “

»

—

—

—

–

f0 ´fd´1 . . . ´f1
f1 f0 . . . ´f2
...

... . . .
...

fd´1 fd´2 . . . f0

fi

ffi

ffi

ffi

fl

.

Similarly, for a matrix F “ pfi,jq P Rnˆm
q , we define

RotpFq “

»

—

–

Rotpf1,1q Rotpf1,2q . . . Rotpf1,mq

...
...

...
...

Rotpfn,1q Rotpfn,2q . . . Rotpfn,mq

fi

ffi

fl

P Zndˆmd.

2.3 Discrete Gaussian Distribution on Lattices

For any σ ą 0, we define the Gaussian function on Rn centered at c P Rn with
parameter σ as:

@x P Rn, ρσ,cpxq :“ exp
`

´}x ´ c}2{2σ2
˘

.

More generally, if σ “ pσ1, . . . , σ
nq P Rn

ą0 then we define ρσ,cpxq “
śn

i“1 ρσi,cipxiq
5.

When we omit the subscript c, we set c “ 0 by default.
Let c P Rn, σ ą 0 and Λ be a n-dimensional lattice. We now define the

discrete Gaussian distribution over a lattice Λ as

@x P Λ, DΛ,σ,cpxq :“
ρσ,cpxq

ρσ,cpΛq
.

As above, we may omit the subscript c. Also, we drop the subscript Λ when
Λ “ Zn and denote it as Dn

σ,c.
We recall the definition of a smoothing parameter [MR07].

5 One could define the Gaussian function more generally using a covariance matrix.
However, we will not need such a general case and thus we omit it for presentation
purposes.
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Definition 2.1. Let Λ be an n-dimensional lattice and ε ą 0. Then, the smooth-
ing parameter ηεpΛq is the smallest real s ą 0 such that ρ 1?

2πs
pΛ˚zt0uq ď ε.

We will use the following upper-bound on the smoothing parameter.

Lemma 2.2 ([GPV08]). For any n-dimensional lattice Λ with basis B and
ε ą 0, we have:

ηεpΛq ď }B̃} ¨
a

lnp2n{p1 ` 1{εqq{π.

The next fact states that the total Gaussian measure on any translation of
the lattice is essentially the same.

Lemma 2.3 ([MR07]). Let Λ be an n-dimensional lattice. Then, for any
ε P p0, 1q, σ ě ηεpΛq and c P Rn, we have

ρσ,cpΛq P

„

1 ´ ε

1 ` ε
, 1

ȷ

¨ ρσpΛq.

In this paper we will apply the following simple corollary and provide the
proof in Appendix A.

Corollary 2.4. Let Λ,Λ1 be n-dimensional lattices and Λ1 Ď Λ. Then, for any
ε P p0, 1

2 s, σ ě ηεpΛ1q, define the following probability distributions D1, D2:

– D1: first sample x Ð DΛ,σ and output px, t :“ x mod Λ1q,
– D2: first generate t uniformly at random from ΛzΛ1 and then sample x Ð

DΛ,σ conditioned on t “ x mod Λ1. Output px, tq.

Then, ∆pD1, D2q ď 4ε.

We will use the following tail bound from [Ban93, Lyu12].

Lemma 2.5. Let m, k ą 1,Λ be m-dimensional lattice and c P Zm. Then

1. PrzÐDσ
r|z| ą kσs ď 2e

´k2

2 .

2. PrzÐDm
σ

r∥z∥2 ą kσ
?
ms ď kme

m
2 p1´k2

q.

3. PrzÐDm
Λ,σ,c

r∥z∥2 ą kσ
?
ms ď 2kme

m
2 p1´k2

q.

2.4 Module-SIS and Module-LWE Problems

Security of our blind signature scheme relies on the well-known computational
lattice problems, namely Module-LWE (MLWE) and Module-SIS (MSIS) [LS15].
Both problems are defined over Rq.

Definition 2.6 (MSISn,m,B). Given A Ð Rnˆm
q , the Module-SIS problem with

parameters n,m ą 0 and 0 ă B ă q asks to find z P Rm
q such that Az “ 0 over

Rq and 0 ă }z} ď B. An algorithm A is said to have advantage ϵ in solving
MSISn,m,B if

Pr
“

0 ă }z} ď B ^ Az “ 0
ˇ

ˇA Ð Rnˆm
q ; z Ð ApAq

‰

ě ϵ.
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Definition 2.7 (MLWEn,m,χ). The Module-LWE problem with parameters n,m ą

0 and an error distribution χ over R asks the adversary A to distinguish between
the following two cases: 1) pA,As ` eq for A Ð Rnˆm

q , a secret vector s Ð χm

and error vector e Ð χn, and 2) pA,bq Ð Rnˆm
q ˆRm

q . Then, A is said to have
advantage ϵ in solving MLWEn,m,χ if

ˇ

ˇPr
“

b “ 1
ˇ

ˇA Ð Rnˆm
q ; s Ð χm; e Ð χn; b Ð ApA,As ` eq

‰

(15)

´ Pr
“

b “ 1
ˇ

ˇA Ð Rnˆm
q ; b Ð Rn

q ; b Ð ApA,bq
‰
ˇ

ˇ ě ϵ.

2.5 Blind Signatures

We present a definition of a blind signature where the signer is stateful and a
user is allowed to make at most k “ polypλq queries.

Definition 2.8. A k-time stateful blind signature scheme BS consists of PPT
algorithms BS.KeyGen, BS.Ver along with two interactive PPT algorithms S and
U such that

– BS.KeyGenp1λ, 1kq: given a security parameter λ and maximum number of
signing queries k, it outputs a private/verification key pair psk, pkq,

– For i P rks, the joint execution of Spsk, iq and Uppk,mq, where m P t0, 1u˚,
generates an output σi for the user U and no output for S, i.e.

pK, σq Ð xSpsk, iq,Uppk,mqy

– BS.Verppk,m, σq: given a verification key pk, message m and signature σ, it
outputs a bit b.

The main difference from previous works is the fact that S has the additional
input i which can be seen as a state. Indeed, if the messagem and random coins in
the system are fixed, then it might still be the case that for i ‰ j, the interaction
between Spsk, iq and Uppk,mq would be different than the interaction between
Spsk, jq and Uppk,mq.

In general, blind signatures must satisfy three properties: (i) correctness, (ii)
blindness and (iii) one-more unforgeability. We adapt these standard properties
to k-time stateful blind signatures in an intuitive way.

Definition 2.9 (Correctness). A k-time stateful blind signature scheme BS is
correct if for any k messages m1, . . . ,mk P t0, 1u˚, psk, pkq Ð BS.KeyGenp1λq,
and σi output by U in the joint execution between Spsk, iq and Uppk,miq for
i P rks, it holds that @i P rks,BS.Verppk,mi, σiq “ 1 with probability 1 ´ neglpλq.

Definition 2.10 (Blindness). A k-time stateful blind signature scheme BS is
blind every PPT algorithm S˚ wins the following blindness game with negligible
probability:

1. psk, pkq Ð S˚.
2. S˚ provides two distinct messages m0,m1.
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3. b Ð t0, 1u.
4. S˚ interacts concurrently with U0 “ Uppk,mbq and U1 “ Uppk,m1´bq.
5. If either U0 or U1 abort, then pσ0, σ1q “ pK,Kq. Otherwise, denote σb and

σ1´b to be the outputs of U0 and U1 respectively. Then, S˚ is given pσ0, σ1q.
6. S˚ returns a bit b1. It wins the blindness game if b “ b1.

In this paper we consider blindness in the malicious signer model i.e. an
adversary gets to choose its own keys.

Definition 2.11 (One-More Unforgeability). A k-time stateful blind sig-
nature scheme BS is one-more unforgeable if every PPT algorithm U˚ wins the
following one-more unforgeability game with negligible probability:

1. psk, pkq Ð BS.KeyGenp1λq and U˚ is given pk.
2. U˚ interacts with ℓ signers Spsk, 1q, . . . ,Spsk, ℓq where ℓ ď k.
3. U˚ outputs ℓ ` 1 pairs pmi, σiq where i P rℓ ` 1s.
4. Algorithm U˚ wins the one-more unforgeability game if @i P rℓ ` 1s, it holds

that BS.Verppk,mi, σiq “ 1.

2.6 Lattice-Based NIZKs

We will use the LANES framework for efficient (non-interactive) arguments of
knowledge for proving linear and multiplicative relations between committed
messages developed in [ALS20, ENS20, LNS21a]6. In this paper we are interested
in the following two relations.

Verifiable Encryption. We want to prove that a ciphertext was constructed
correctly. More concretely, let µ be a binary polynomial, p be prime, r P Sm

γ and
e P Sn`1

γ be randomness and error vectors respectively. Then, given public keys
B P Rnˆm

q ,b P Rm
q and valid ciphertext t P Rn`1

q , we want to prove that

(i) µ is a binary polynomial,
(ii) r and e have coefficients between ´γ and γ,

(iii)

ˆ

B
bT

˙

r ` pe `

ˆ

0
µ

˙

“ t.

One observes that (i) and (ii) are multiplicative relations and (iii) is a linear re-
lation. These statements can be efficiently proven using protocols from [ENS20,
LNS21a]. We will denote the verifiable encryption proof as πenc ppB,b, tq, pr, e, µqq.

One-out-of-many Proof. Our blind signature will consist of the one-out-of-
many proof [GK15], i.e. a proof that one of the elements of a public set is a
commitment to zero. In our setting, we want to prove that, given a matrix
A P Rnˆm

q and a public finite set U of vectors in Rn
q , we know a vector s P Rm

q

6 We refer to [ENS20, LNS21a] for more details on the protocol.
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which has small coefficients and As P U . As shown in [GK15], this concept is
closely related to ring signatures.

Very recently, Lyubashevsky et al. [LNS21b] proposed an efficient one-out-
of-many proof based on the LANES framework where the communication size
is logarithmic in the size of U . We will apply the non-interactive protocol from
[LNS21b, Section 3.2] and denote this proof as πP ppA, Uq, sq.

3 Lattice Based One-Time Signature Revisited

An important building block of our blind signature is the lattice-based one-time
signature construction by Lyubashevsky and Micciancio [LM18] using modules
lattices. However, we modify the original scheme so that the secret keys are
chosen from a discrete Gaussian distribution rather than picked uniformly at
random. The main motivation for such a change is that it mixes well with other
building blocks (e.g. trapdoor sampling [MP12]) described in the next section.

The one-time signature is defined by the following algorithms:

– Key Generation: sample matrix A Ð Rnˆm
q uniformly at random and a

secret key y Ð Dmd
σy

, s Ð Dmd
σs

. Then, the public key is a pair pk “ pA,w :“
Ay,v :“ Asq and its corresponding secret key is sk “ py, sq.

– Signing: given a binary polynomial µ P t0, 1ud Ă Rq as a message and a
secret key py, sq, it outputs z “ y ` µs.

– Verification: given a binary polynomial µ P Rq, public key pA,w,vq and a

signature z, it checks whether }z} ď pσy ` dσsq
?
2md and Az “ w ` µv.

Correctness and security of the one-time signature can be summarised with the
following theorem. We provide the full proof in Appendix B.

Theorem 3.1. Let m ě 6pλ`1q{d. Then, the one-time signature scheme above
is correct. Concretely, the verification algorithm always accepts signatures pro-
duced by the legitimate signer with an overwhelming probability.

For unforgeability, suppose that σy ě qn{m
?
2ed ` 2, σs ě qn{m

?
2e ` 2 and

q ą 4dσs

?
2md. If there is an adversary A which succeeds in breaking the strong

unforgeability game of the one-time signature scheme with probability γ, then
there exists an algorithm that can solve MSISn,m,2pσy`dσsq

?
2md with probability

at least γ{3´ neglpλq in essentially the same running time as the forgery attack.

For readability, we first provide a sketch for the unforgeability proof. Namely,
assume there is an adversary A which succeeds in breaking the strong unforge-
ability game of the one-time signature scheme. We can then construct an algo-
rithm B for solving MSIS as follows. Given a uniformly random matrix A, the
algorithm samples y Ð Dmd

σy
, s Ð Dmd

σs
and sets w “ Ay and v “ As. Next,

B outputs pA,w,vq. When A asks a signing query on input µ, B answers with
z “ y ` µs. Finally, A outputs a forgery pµ1, z1q. Assuming that it is valid, B
outputs a potential solution z1 ´py`µ1sq. Now, given A,w,v, µ, z, the adversary
A does not know which py, sq from the following set was used:

S “ tpy1, s1q : Ay1
“ w,As1

“ v, z “ y1 ` µs1u.

12



To this end, we will prove that the probability of picking py, sq when sampling
from a discrete Gaussian distribution restricted to S (which is a coset of a lattice
as shown below) is sufficiently small, e.g. 1/2 when standard deviations σy, σs

are chosen properly.

Let us fix A,y, s, µ. We provide tools to compute an upper-bound on the
following probability:

Pr
”

y˚ “ y ^ s˚ “ s : py˚, s˚q Ð DΛK
Rq

pXq,σ,c

ı

(16)

where σ “ pσy, . . . , σy, σs, . . . , σsq P R2m
ą0 ,

X “

¨

˝

A 0
0 A

1 ¨ Im µ ¨ Im

˛

‚P Rp2n`mqˆ2m
q and c “ ´

ˆ

y
s

˙

P R2m
q .

These techniques will be crucial for proving not only unforgeability for the one-
time signature but also for one-more unforgeability of the blind signature pre-
sented in the next section.

We start with the following technical lemma.

Lemma 3.2. Let M P Zmˆn and Λ be an n-dimensional lattice. Then, for any
σ P Rm

ą0,s P Rm we have:

ρσpsq
ř

zPΛ ρσpMzq
ď

ρσpsq
ř

zPΛ ρσps ` Mzq
ď

1
ř

zPΛ ρσpMzq
.

Proof. Inequality on the left follows directly from [MR07, Lemma 2.9] and the
fact that MΛ is an m-dimensional lattice. The inequality on the right is essen-
tially implicit in the proof of [AR04, Lemma 3.2], but for completeness, we give
a proof of a slightly generalized statement needed in this work. Let us partition
Λzt0u into two sets Λ1 and Λ2, such that x P Λ1 if and only ´x P Λ2. Clearly,
|Λ1| “ |Λ2|. Then, for z P Λ1 we have:

ρσps ` Mzq ` ρσps ´ Mzq “ e
´

řm
i“1

s2i `xmi,zy2

2σ2
i ¨

ˆ

e

řm
i“1

2xmi,zy

2σ2
i ` e

´
řm

i“1
2xmi,zy

2σ2
i

˙

ě 2e
´

řm
i“1

s2i `xmi,zy2

2σ2
i

ě 2ρσpsqρσpMzq

ě ρσpsq ¨ pρσpMzq ` ρσp´Mzqq

13



where for the first inequality we used the fact that x ` x´1 ě 2 for any x ą 0.
Hence,

ÿ

zPΛ

ρσps ` Mzq “ ρσpsq `
ÿ

zPΛ1

pρσps ` Mzq ` ρσps ´ Mzqq

ě ρσpsq `
ÿ

zPΛ1

ρσpsq ¨ pρσpMzq ` ρσp´Mzqq

ě ρσpsq

˜

1 `
ÿ

zPΛ1

pρσpMzq ` ρσp´Mzqq

¸

ě ρσpsq
ÿ

zPΛ

ρσpMzq.

Thus, the statement holds.

We are ready to present a theorem that says for which parameters the prob-
ability in (16) is upper-bounded by 1{2.

Theorem 3.3. Let A P Znˆm
q and M P Zkˆm be arbitrary matrices and denote

mi P Zm to be the i-th row of M. Furthermore, suppose σ “ pσ1, . . . , σkq satisfies

σi ě qn{m
b

ek
m }mi}1 ` 2 for i P rks. Then, for any s P Rk, we have:

ρσpsq
ř

zPΛK
q pAq ρσps ` Mzq

ď
1

2
.

Proof. By Lemma 3.2 we only need to show that
ř

zPΛK
q pAq ρσpMzq ě 2. Let us

set γ “
P

1
2

?
eqn{m

T

and define the set U as follows:

U “
␣

u P ΛK
q pAqzt0u : }u} ď 2γ

(

.

First, we lower-bound the cardinality of U . By the pigeonhole principle, there
exist at least ℓ ` 1 ě p2γqm{qn ` 1 vectors u1, . . . ,uℓ`1 such that for each
j P rℓ ` 1s, }uj}8 ď γ and Au1 “ Au2 “ . . . “ Auℓ. Hence, for all i P rℓs, we
have ui ´ ul`1 P U . Consequently, |U | ě ℓ “ p2γqm{qn and

ÿ

zPΛK
q pAq

ρσpMzq ě 1 `
ÿ

zPU

ρσpMzq

ě 1 `
ÿ

zPU

exp

˜

´

k
ÿ

i“1

xmi, zy2

2σ2
i

¸

ě 1 `
ÿ

zPU

exp

˜

´

k
ÿ

i“1

4γ2}mi}
2
1

2σ2
i

¸

ě 1 ` |U | ¨ exp

˜

´

k
ÿ

i“1

2γ2}mi}
2
1

σ2
i

¸

ě 1 `
p2γqm

qn
exp

˜

´

k
ÿ

i“1

2γ2}mi}
2
1

σ2
i

¸

.
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Since, we assumed that σi ě 2γ
a

k{m}mi}1 and γ ě 1
2

?
eqn{m, we obtain:

ÿ

zPΛK
q pAq

ρσpMzq ě 1 `
p2γqm

qn
exp

˜

´

k
ÿ

i“1

m

2k

¸

ě 1 `
p2γqm

qn
exp

´

´
m

2

¯

ě 1 ` exp
´m

2

¯

exp
´

´
m

2

¯

ě 2

which concludes the proof.

Finally, to compute the probability in (16), we note that:

Prry˚ “ y ^ s˚ “ ss “ DΛK
q pXq,σ,cp0,0q “

ρσpy, sq

ρσppy, sq ` ΛK
q pXqq

Note for every u P ΛK
Rq

pAq, we have pµu,´uq P ΛK
q pXq. Therefore,

ρσpy, sq

ρσppy, sq ` ΛK
q pXqq

ď
ρσpy, sq

ř

uPΛK
Rq

pAq ρσ

ˆ

py, sq `

„

µ ¨ Im
´Im

ȷ

u

˙ .

Since we set σy ě qn{m
?
2ed ` 2, σs ě qn{m

?
2e ` 2, we can apply Theorem 3.3

for σ “ pσy, . . . , σy, σs, . . . , σsq P R2md,

A :“ RotpAq P Zndˆmd
q and M :“ Rot

ˆ„

µ ¨ Im
´Im

ȷ˙

P Z2mdˆmd.

We refer to Appendix B for a more rigorous proof of Theorem 3.1.

4 The blind signature

In this section, we define our blind signature scheme. A blind signature scheme
has two parties interacting : a user and a server (or signer), so the user produces
a signature under the public key of the server. The security of a blind signa-
ture scheme is captured by two properties properly defined in Definitions 2.10
and 2.11 : Blindness and One-More Unforgeability. Blindness informally requires
that the server is unable to link a signature to the interaction during which
this signature was produced. One-More Unforgeability informally says that after
some number ℓ of interactions with the server, the user is not able to produce
ℓ ` 1 signatures.

The strategy of our blind signature scheme is as follows : the public key is
a collection of N public keys of the one-time signature scheme defined in the
previous Section 3. To keep the user/server interaction “blind”, the user sends
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an encryption of his message, together with a NIZK proof that the ciphertext is
well-formed. This encryption scheme is such that the server can homomorphically
compute (somewhat efficiently) an encryption of the one-time signature under
the i-th public key. This way, the user receives an encryption of a one-time
signature of his message, but the response from the server hides its i-th secret
key enough so the user can only produce one signature per interaction. Again,
to preserve blindness, instead of giving away directly his one-time signature, he
gives a NIZK proof of knowledge of a valid one-time signature to one of the
public keys.

4.1 Definition of the encryption scheme

In this subsection, we define the first building block of our blind signature scheme
: an encryption scheme. This encryption scheme shall be secure against Chosen
Plaintext Attacks (we prove in Lemma 4.2 that the distribution of the ciphertext
is indistinguishable from uniform) and allow the server to compute a one-time
signature of the message while masking his secret key. The proofs of the lat-
ter statement is postponed to Section 5. We also define a multi-dimensionnal
decryption algorithm Dec for better readability of the blind signature protocol
Figure 2.

Notations. Throughout this subsection, we use n,m for dimensions, prime mod-
ulus q1 and prime p. Please note that the modulus used in the encryption scheme
differs from the one we use in the remaining of the blind signature scheme.

Algorithm 1 KeyGenpq :

1: B Ð Rnˆm
q1

2: x Ð t´γ, . . . , γu
n

3: bT
“ xTB mod q1

4: pkenc “ pB,bq

5: skenc “ x
6: return ppkenc, skencq

Algorithm 2 encppkenc, µq :

1: pr, e, e1
q Ð t´γ, . . . , γu

m
ˆ t´γ, . . . , γu

n
ˆ t´γ, . . . , γu

2: t “ pBr ` pe mod q1

3: t1
“ pbT r ` pe1

` µ mod q1

4: return pt, t1
q
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Algorithm 3 decpskenc, t, t
1q :

1: z “ t1
´ xT t mod q1

2: return z mod p

Theorem 4.1. The encryption scheme defined through Algorithms 1 to 3 is
correct. More precisely, if }µ}8 ď tp{2u, ppkenc, skencq “ KeyGenpq and

pndγ ` 1qγ ď
q1

2p
´ 1{2, (17)

then decpskenc, t, t
1q “ µ.

Proof. We compute z “ t1 ´ xT t. We have :

z “ pbT r ` pe1 ` µ ´ xT ppBr ` peq (18)

“ µ ` ppe1 ´ xTeq. (19)

Since we assumed pndγ ` 1qγ ď
q1

2p ´ 1{2 and }µ}8 ď p{2, then }µ ` ppe1 ´

xTeq}8 ď q1{2, therefore there is no reduction modulo q1 in µ` ppe1 ´xTeq and
hence z “ µ ` ppe1 ´ xTeq mod p “ µ.

Algorithm 4 Decpskenc,T, t1q :

1: zT “ t1T
´ xTT mod q1

2: return z mod p

Lemma 4.2. Let µ be some message, ppk, skq Ð KeyGen, and pt, t1q “ encppk, µq.
Then t, t1 is indistinguishable from uniform under MLWEm,n´m,Sγ and MLWEn`1,m,Sγ

7.

Proof. We define a sequence of games.

G0 : In this game, the adversary A wins if he distinguishes honest samples
ppk, skq Ð KeyGen, pt, t1q “ encppk, µq from ppk, skq Ð KeyGen, pt, t1q Ð Rn

q ˆRq.

G1 : This game is the same as the previous one, except in the key generation, b
is sampled uniformly random. This game is indistinguishable from the previous
one under MLWEm,n´m,Sγ .

G2 : This game is the same as the previous one, except Br and bT r are sampled
uniformly random. This game is indistinguishable from the previous one under
MLWEn`1,m,Sγ

.

7 We remind the reader that the encryption scheme’s variables and computations are
done over Rq, and therefore the MLWE problem is mod q, and Sγ here is those
r P Rq such that |r| ď γ.
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G3 : This game is the same as the previous one, except t, t1 are sampled uniformly
random. This game is identical to the previous one.

G4 : This game is the same as the previous one, except the public key is honestly
sampled from KeyGen. This game is indistinguishable from the previous one
under MLWEm,n,Sγ

.

The result follows from summing up the advantages.

4.2 Description of the scheme

We describe in Figure 1 the setup algorithm for the server, the setup algorithm
for the user is simply 1) Run KeyGen to generate a key pair for the encryption
scheme 2) Run the setup algorithm for the zero-knowledge proofs πenc, πP (notice
that the public parameters for πenc and πP must be independent so as to preserve
blindness), and finally in Figure 2 we describe our blind signature scheme. The
verification algorithm is the verification algorithm of the NIZK πP. The scheme
contains two verification steps : the verification of the well-formedness of the
ciphertext πenc by the server and the verification of valid one-time signature z
such that Az “ µvj ` wj by the user. A non-succeeding verification implies
abortion of the scheme.

Notations. We let q, q1 be a prime moduli (q1 is the modulus for the encryption,
which will be greater than q, the modulus for the blind signature), p be a prime
which shall be smaller than q1 but greater than the messages to be encrypted, and
N a real number corresponding to the number of blind signatures. We introduce
a dimension α which is the height of the public matrix A, and σs, σy, σ

1 which
are stardard deviations for the Gaussian distributions. One can think of σy as d
times greater than σs so that }µs} » }y}. For a matrix A P Rnˆm

q and a vector

u P Rn
q , we write ΛK

u pAq the lattice ts P Rm
q { As “ uu. We omit the subscript

u when u “ 0. For the sake of clarity, we write 3
?
q “ t 3

?
qu. We define a gadget

vector g “ p1 3
?
q 3

?
q2q, which we use to define the gadget matrix

G “

»

—

—

—

–

gT

gT

. . .

gT

fi

ffi

ffi

ffi

fl

.

5 Security proof

In this section, we prove the correctness and security of our blind signature.
In Section 5.1, we prove the correctness of the homomorphic computation of
the server on the user’s ciphertext, from which we infer the correctness of the
blind signature scheme. In Section 5.2, we prove the blindness and one-more
unforgeability of our blind signature scheme.
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Fig. 1. ServerKeyGenpq :

R Ð pSαˆα
1 q

2ˆ3

A1
Ð Rαˆ2α

q , A “
“

A1
|A1R ´ G

‰

P Rαˆ5α
q

seed Ð t0, 1u
λ, pvi,wiq1ďiďN “ PRNGpseedq (20)

pkServer “ pA, seedq, seed which expands through PRNG to pvi,wiq1ďiďN

skServer “ R

5.1 Blind computation on the ciphertext

We first prove in Lemma 5.1 that if both parties follow the protocol honestly,
then with overwhelming probability, the user successfully decrypts z “ µsi `yi.
Next, we prove in Theorem 5.2 that this yields the correctness of the blind
signature scheme.

Lemma 5.1. We use notations from Figure 2. If the user and the server follow
the protocol on Figure 2 honestly and if

24σ1 ` dγpn ` 1q ď
q1

2p
´

1

2
and 12dσs ` 12σy ď p{2,

then with overwhelming probability Decpskenc,F, f
1qT “ yi ` µsi.

Proof. First, we notice that

#

F “ pBprsTi ` Yq ` ppesTi ` Y1q

fT “ pbprsTi ` Yq ` ppe1sTi ` y2T q ` µsTi ` yT
i

Let us write sY “ rsTi ` Y, sY1 “ esTi ` Y1, sy “ e1sTi ` y2T and sµ “ µsTi ` yT
i .

Then, the decryption Decpskenc,F, fq is given by

Decpskenc,F, fq “ pbT
sY ` p sY1 ` sµ ´ xT ppB sY ` p sY1q mod p

“ sµ ` ppsy ´ xT
sY1q mod p.

Since we assumed 12dσs ` 12σy ď p{2, then with overwhelming probability we

have }µ̄}8 ď p{2. Moreover, we assumed 24σ1 ` dγpn ` 1q ď
q1

2p ´ 1
2 , hence

}µ̄ ` sy ´ xT
sY1}8 ď

q1

2p ´ 1
2 , and therefore Decpskenc,F, fq “ sµ.

Theorem 5.2. The blind signature scheme defined in Figure 2 is correct. More
precisely, if both parties follow the protocol honestly, then the produced signature
passes verification with overwhelming probability.

Proof. We only need to prove that the vector z recovered by the user verifies
Az P twi`µvi, 1 ď i ď Nu, so the non-interactive zero-knowledge proof πP that
the user computes as the blind signature passes verification. We chose parameters
such that it follows directly from Lemma 5.1 that we have z “ yi ` µsi, and
therefore Az “ wi ` µvi where i is the state of the server when he responded
to the user’s query.
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Fig. 2. Blind signature scheme

Server User

State i, skServer “ R message µ, skenc

pt, t1
q “ encppkenc, µq

πenc “ πencppB,b, pt, t1
q, pr, pe, e1

q, µqq

t,t1,πenc,pkenc
ÐÝ

Verify πenc

Λi “ ΛK
vi

pAq, Λ1
i “ ΛK

wi
pAq

psi,yiq Ð DΛi,σs ˆ DΛ1
i,σy

Y,Y1,y2
Ð Dmˆ5α

σ1 ˆ Dnˆ5α
σ1 ˆ D5α

σ1 (21)

F “ tsTi ` pBY ` pY1 (22)

f 1T
“ yT

i ` t1sTi ` pbTY ` py2 (23)

Update state i “ i ` 1 (24)

F,f 1

ÝÑ

z “ Decpskenc,F, f
1
q

(25)

Verify that Dj ď N, Az “ µvj ` wj

BlindSigpµq “ πPpA, pwj ` µvjq1ďjďN , zq
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5.2 Blindness and One-More Unforgeability of the blind signature
scheme

The main Theorem of this subsection is Theorem 5.4. We prove blindness directly
from a sequence of games, proving that the blindness game is indistinguishable
from a game that is independent of the messages. The proof of one-more unforge-
ability is broken down in 2 parts : first we reduce the one-more unforgeability
game to another game OMUF˚. Next, we prove that with rewindable access to
an adversary A with winning probability ϵ, one has probability Opϵq to solve
MSISα,5α,B for some short bound B.

Lemma 5.3. Let OMUF be the One-More Unforgeability game as described in
Definition 2.11. We define a variant of OMUF which we call OMUF˚. The chal-
lenger of OMUF˚ differs from the challenger of OMUF only in the key generation.
He executes instead the following instructions :

1. Generate A Ð Rαˆ5α
q uniformly random

2. For 1 ď i ď N , sample psi,yiq Ð D5α
σs

ˆ D5α
σy

3. For 1 ď i ď N , compute vi “ Asi and wi “ Awi

4. Generate a seed
5. Program the PRNG so PRNGpseedq expands to pvi,wiq1ďiďN

6. Set the public key of the blind signature scheme to be pA, seedq.

Then, for any adversary A and ϵ negligible, if σs, σy ě ηϵpΛ
KpAqq, then we have

ϵOMUF
A ď ϵOMUF˚

A ` ϵ
MLWEα,α,S1

A ` 4Nϵ.

Proof. We define a sequence of games :

G0 : This game is OMUF. The advantage of A is ϵOMUF
A .

G1 : This game is the same as the previous one, except psi,yiqi is sampled (from
a discrete Gaussian of the same standard deviations σs and σy as in G0) and
pvi,wiq is computed. The PRNG is programmed to expand seed onto pvi,wiqi.
Since σs, σy ě ηϵpΛ

KpAqq, it follows from Corollary 2.4 that the distribution of
each pvi,wiq in this game is at statistical distance at most 4ϵ from the distribu-
tion of pvi,wiq in the previous game, for all 1 ď i ď N . Therefore this game is
at distance at most 4Nϵ from G0.

G2 : This game is the same as the previous one, except the public matrix A is
sampled uniformly random A Ð Rαˆ5α

q . This game is indistinguishable from
G1 under MLWEα,α,S1 .

The last game G2 is OMUF˚, hence the adversary A has advantage ϵOMUF˚

A
against G2, and the result follows from summing up the advantages.

The strategy of the one-more unforgeability proof is roughly speaking to
rely on the security of our one-time signature from Section 3. More precisely,
the reduction B plays the OMUF˚ with A. Similarly as in the unforgeability
reduction of the one-time signature, B knows one preimage µs ` y of µv ` w,
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and extracts a second one z from A’s forgery8. We cannot argue straight away
that z ´ psµ ` yq is a non-zero solution to MSIS for the public matrix A, since
A may have learnt from the extra information - or hints that B gave away when
sending the ciphertext pF, fq. Indeed, we have

F “ tsTi ` pBY ` pY1 “ pBprsTi ` Yq ` ppesTi ` Y1q

fT “ yi ` t1sTi ` pbTY ` py2 “ pbprsTi ` Yq ` ppe1sTi ` y2T q ` z.

The masks Y,Y1,y2 hide the secret values rsTi , es
T
i , e

1sTi , but we need to take
into account the amount of leakage these hints represent. In other word, what
is the winning probability of the adversary to the one-time signature when the
signer provides hints ? We decided to write Theorem 3.3, which is the foundation
of the unforgeability proof of our one-time signature in a general fashion, which
encompasses the case with extra hints. The one-more unforgeability proof then
boils down to an application of Theorem 3.3.

Theorem 5.4. The blind signature scheme defined in Figure 2 verifies blindness
and one-more unforgeability.

For blindness, we have the following :

ϵblindA ď ϵ
ZKpπencq

A ` ϵ
ZKpπPq

A ` ϵ
MLWEm,n,Sγ

A ` ϵ
MLWEn`m,m,Sγ

A .

For One-More Unforgeability, if σs ě 2`q1{5
a

pm ` n ` 3q, σy ě 2`q1{5
a

pm ` n ` 3qd, σ1 ě

2`q1{5
a

pm ` n ` 3qγd and A is an adversary with winning probability ϵ against
OMUF˚, then there exists an algorithm B that with rewindable black-box ac-
cess to A can solve MSISα,5α,B with winning probability at least ϵ

2N , where
B “ 24κPpdσs ` σyq ` 2BP, BP is the bound on the norm verification of the
membership proof and δ “. This statement combined with Lemma 5.3 gives the
One-More Unforgeability of the scheme.

Proof. Blindness.
We define a sequence of games.

G0 : This game is the blindness game Definition 2.10. The adversary sends
pkServer to the challenger B. The challenger runs UserKeyGen twice. He sends
pk0, pk1 to the adversary A. Then, the adversary sends two messages m0,m1

of his choice to B, which picks a random bit b. The adversary and the chal-
lenger produce σ0 “ BlindSigpm0q (respectively σ1 “ BlindSigpm1q), and we write
t0, t

1
0, π

0
enc,F0, f0 (respectively t1, t1, π

1
enc,F1, f1) the transcript of their communi-

cations. The verification step from the user ensures that the decryption of F0, f0
(respectively F1, f1) is a valid z9. The users send pσb, σ1´bq to the adversary. The
adversary wins if he outputs b.

8 The forgery is one of the unexpected signatures, which exists since the adversary is
expected to produce at most ℓ signatures from ℓ interactions.

9 Notice that due to this verification step, our definition of blindness is stronger than
honest-signer blindness.
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G1 : This game is the same as the previous one, except the challengers runs the
simulator of the zero-knowledge proof πenc to produce π0

enc, π
1
enc. This game is

indistinguishable from G0 under the zero-knowledge property of πenc.

G2 : This game is the same as the previous one except t0, t
1
0, t1, t

1
1 are replaced

with uniformly random samples. This game is indistinguishable from G1 under
MLWEm,n,Sγ

and MLWEn`m,m,Sγ
by Lemma 4.2.

G3 : This game is the same as the previous one, except π0
P and π1

P are generated
using the simulator from the zero-knowledge proof of πP. This game is indis-
tinguishable from G2 under the zero-knowledge property of πP. This game is
independent of b, and therefore, the advantage of A against G4 is 0.

The result follows from summing up the advantages.

One-More Unforgeability.
Let A be an adversary to the OMUF˚ game with winning probability ϵ. We

describe an efficient algorithm B that with rewindable black-box access to A
solves MSISα,5α,B with B “ 24κPpdσs ` σyq ` 2BP.

First, B receives an MSISα,5α,B instance A P Rαˆ5α
q . Then, B will execute the

following instructions :

1. For 1 ď i ď N , generate si,yi Ð D5α
σs

ˆ D5α
σy
.

2. For 1 ď i ď N , set vi “ Asi, wi “ Ayi and set vj “ v.
3. Sample a random seed.
4. Program the PRNG on input seed such that PRNGpseedq “ pvi,wiq1ďiďN .
5. Send the public key pA, seedq to the adversary A.

Notice that sinceA is anMSISα,5α,B instance, it is uniformly random and the dis-
tribution of the public key that the adversary A receives is identical to OMUF˚.
Next, the adversary sends some number ℓ of queries pti, t

1
i, π

i
encq to B. The algo-

rithm B computes honest reponses pFi, fiq and sends them to A. The adversary
has probability at least ϵ to succeed in producing ℓ ` 1 valid signatures, which
he sends to B if he indeed succeeds.

Next, algorithm B picks a uniformly random index 1 ď j ď ℓ ` 1, and runs
the extractor E from the membership proof upon reception of the j-th signature
from A. This way, B extracts an index i, a message µ, a vector z and a challenge
difference c̄ such that Az “ c̄pµvi ` wiq. We remind that from key generation,
B also knows z1 “ c̄pµsi ` yiq which verifies the same equation as the extracted
z. Three options are possible :

1. The adversary had an interaction with B on the public key vi,wi for the
message µ, at the end of which the decryption of B’s response Fi, fi is z.
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2. The adversary had an interaction with B on the public key vi,wi for any
message, at the end of which the decryption of B’s response Fi, fi is not z.

3. The adversary never had an interaction with B on the public vi,wi.

Since A had ℓ interactions with B but managed to produce ℓ ` 1 signatures,
at least one of these signatures is in option 2q or 3q. With probability at least
1{pℓ ` 1q ě 1{N, option 2q or 3q happened, otherwise B fails and aborts10.

Option 3) is harder for the adversary than option 2q, so we will only deal with
the latter. Let us assume that i, µ, z, c̄ are from option 2). We assume that the
adversary A is able to collect the masks Y ` ris

T
i ,Y

1 ` esTi ,y
2 ` e1sTi . We

gather these 3 equations in the form ω ` Psi “ x, where ω,x P R5αpm`n`1q
q ,

and P is the matrix of the linear function that depends on r, e, e1 such that
Ps “ ps1r s2r . . . s1e s2e . . . s1e

1 s2e
1 . . . q. Both P and x are known to the

adversary. Since the adversary is able to reconstruct Fi, fi from X, we claim that
this assumption is without loss of generality.

The vector z ´ z1 (remind that z1 “ c̄pµsi ` yiq is informally B’s signature of µ
times c̄) is B’s candidate for MSISα,5α,B . Indeed,

Apz ´ z1q “ c̄pµvi ` wiq ´ c̄pµAsi ` Ayiq “ 0.

Remains to prove i) that the probability that z “ z1 is not negligibly close to
1, and ii) that z ´ z1 is shorter than B. First, for i), we introduce the following
lattice coset

Λ “

$

’

’

’

&

’

’

’

%

ps,y,ωq P R5α
q ˆ R5α

q ˆ Rpn`m`1q5α
q ,

$

’

’

’

&

’

’

’

%

As “ vi

Ay “ wi

µis ` yi “ zi

PsT ` ω “ x

,

/

/

/

.

/

/

/

-

.

We claim that all of A’s information on psi,yiq is contained in the statement that

psi,yi,ωq are drawn from χ, which is D5α
σs

ˆ D5α
σy

ˆ D
pm`n`1q5α
σ1 restricted to Λ.

Let ps1
i,y

1
i,ω

1q be random variables following χ, and let ζps1
i,y

1
i,ω

1q “ µs1
i ` y1

i.
Notice that for some ζ˚ P R5α

q , there can be only one tuple ps˚,y˚,ω˚q in the
support of χ such that ζ˚ “ µs˚ ` y˚. We have

Ppz “ z1q “ Ppz “ ζpsi,yi,ωiqq

ď Ppζps1
i,y

1
i,ω

1q “ ζpsi,yi,ωiqq

ď Ppps1
i,y

1
i,ω

1
iq “ psi,yi,ωiqq

ď χpsi,yi,ωiq.

10 It seems that A could send directly the index of the unexpected signature to B. This
would save a factor 1{N in the winning probability of B while seemingly keeping the
hardness of the forgery the same.
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To finish the proof of i), we prove that

max
ps1

i,y
1
i,ω

1
iq
χps1

i,y
1
i,ω

1
iq ď δ, (26)

for some constant δ that is not negligibly close to 1. This fact follows from
Theorem 3.3 applied to the rotations of the matrices A, and

M “

»

–

I5α
´µI5α

´P

fi

fl .

The reason is we have

χps˚
i ,y

˚
i ,ω

˚
i q “

ρσsps˚
i qρσypy˚

i qρσ1 pω˚
i q

ř

z“pz1,z2,z3qPΛ

ρσspz1qρσypz2qρσ1 pz3q
.

Now, note that for every u P ΛKpAq, the vector Mu is such that ps˚
i ,y

˚
i ,ω

˚
i q `

Mu P Λ. This means that rotpMq is a valid matrix for Theorem 3.3. If we
take σs ě 2 ` q1{5

a

pm ` n ` 3q, σy ě 2 ` q1{5
a

pm ` n ` 3qd and σ1 ě 2 `

q1{5
a

pm ` n ` 3qγd, then Theorem 3.3 ensures δ ď 1{2.

We now prove ii) : z has the length of the extracted vector from the set member-
ship proof. With BP the bound on the norm verification of the membership proof,
we have }z} ď 2BP. On the other hand, B’s private signature z1 “ c̄pµsi ` yiq is
such that }z1} ď 24κPpdσs `σyq, where κP is a bound on the Hamming weight of
the challenge difference c̄ of the membership proof. Pluging together the inequal-
ities yields ii), which in turn completes the One-More Unforgeability proof.

Remark on standard deviation bounds. Theorem 3.3 gives lower bounds on the
standard deviation of the secrets such that the maximum probability of the secret
distribution (which is a multi-dimensionnal Gaussian) is 1{2. As it turns out in
our case, there is another lower bound on the standard deviations σs and σy

given by the smoothing parameter for trapdoor sampling, which is greater than
the one for one-more unforgeability. Therefore, the actual maximum probability
is lower than 1{2, which gives us some more room to decrease the standard
deviation σ1 of the hints. We leave this remark as a possible optimization of
the parameters, that would slightly reduce the communication cost of the blind
signature.

6 Parameter Selection

In this section we instantiate our blind signature for at most N “ 218 signing
queries and aim for 128-bit security (see Fig. 3 and 4). To this end, we measure
the hardness of MSIS and MLWE with the root Hermite factor δ and aim for
δ « 1.0043. For computing hardness of the latter problem, we use the LWE
Estimator by Albrecht et al. [APS15]. We refer to [LNS21a, Section 3.3] and
[LNS21b, Appendix C] for a detailed explanation on the parameter selection for
πenc and πP respectively.
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Parameter Definition Instantiation

N maximum number of signing queries 218

d dimension of the ring R 128
q modulus for the blind signature « 264

q1 modulus for the encryption « 2128

α height of the matrix A “ rA1
|A1R ´ Gs 21

σy standard deviation for sampling y « 230

σs standard deviation for sampling s « 230

n height of the encryption public key matrix B 80
m width of the encryption public key matrix B 40
γ maximum coefficient of the x, r and errors e, e1 4
p additional prime number, less than q1, used for encryption « 243

σ1 standard deviation used to sample maskings Y,Y1 and y2
« 226

Fig. 3. Definition and concrete numbers for parameters used in the blind signature
construction.

Dimensions and moduli. Firstly, we choose the ring dimension d “ 128 and
moduli pq, q1q “ p« 264,« 2128q 11. Next, we want to make sure that A “

rA1|A1R ´ Gs is indistinguishable from a random matrix over Rq. Hence, we
choose α “ 21 such thatMLWEα,α,S1

is hard. Then, in order to apply Micciancio-
Peikert trapdoor sampling [MP12], we need the standard deviations σs, σy to be

at least 2ps1pRq ` 1q

b

P

q2{3
T

` 1 where s1 is the operator norm. Similarly as

in [dPLS18, Section 2.6], we found experimentally that for a structured matrix
R P S2αˆ3α

1 , s1pRq ď 6
?
αd with a high probability. Note that the other lower

bound for σy, σs in Theorem 5.4 is smaller than the one necessary for trapdoor

sampling. Hence, in this scenario we will set σ :“ σs “ σy “ 13
b

αd
`P

q2{3
T

` 1
˘

.

Encryption scheme. We now focus on parameters for the encryption scheme.
In order to ensure the property that both the public key and the ciphertext
are indistinguishable from random, we need MLWEm,n´m,Sγ

and MLWEn`1,m,Sγ

to be hard. We set n “ 2m and thus these two problems are almost equally
hard. Since q1 « 2128, we pick pn,mq “ p80, 40q and γ “ 4. Then we set p “

12dσs ` 12σy and σ1 “ 2 ` q1{5
a

pm ` n ` 3qγd. For such a large q1 « 2128,
correctness conditions from Lemma 5.1 follow easily.

Verifiable encryption. We turn to computing the proof sizes for πenc and πP.
Let us focus on the former one first. Let ñ :“ m ` pn ` 1q ` 1 be the number
polynomials in the vector pr, e, e1, µq and α̃ “ 2γ ` 112. Then, in order to prove

11 More specifically, we choose q « 264 for which Xd
` 1 splits into quadratic terms

modulo q. This makes sure the one-out-of-many proof πP from [LNS21b] does not
need any repetitions.

12 Intuitively, α̃ represents how many garbage polynomials we need to prove that co-
efficients a polynomial are exactly between ´γ and γ. For example, if one wants to
prove ternary coefficients, we need three garbage polynomials.
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πenc (see Section 2.6), we apply the framework from [LNS21a]. As discussed
in [LNS21a, Section 3.3], the proof with soundness error 1{q1 « 2´128, i.e. no
repetitions, has size upper-bounded by:

pñ ` κ̃ ` α̃ ` 1qd log q1 ` pλ̃ ` ñ ` κ̃ ` α̃qd logp12sq bits13.

The standard deviation s is set as s “ d

b

pλ̃ ` ñ ` κ̃ ` α̃qd. Then, κ̃ and λ̃ are

chosen such that MSISκ̃,λ̃`ñ`κ̃`α̃,8dβ and MLWEñ`κ̃`α̃,λ̃,χd are hard 14, where

β “ s

b

2pλ̃ ` ñ ` κ̃ ` α̃qd and χ is the distribution on t´1, 0, 1u where ˘1 both

have probability 5{16 and 0 has probability 6{16. To further reduce the proof
size, we apply the Dilithium compression described in [LNS21a, Appendix B].

Communication complexity. In order to compute total communication size,
we calculate the total size of public key and ciphertexts sent by both the user
U and the signer S. Note that U sends m ` n ` 1 elements in Rq. On the other
hand, S outputs back 5αpn ` 1q polynomials. Hence, the total communication
size, excluding πenc, is

pm ` p5α ` 1qpn ` 1qq log q1 bits.

Signature size. Finally, to estimate the signature size, we need to look at the
one-out-of-many proof πP. Let us set m1 “ 2, i.e. plog qqm

1
`1 “ 218 “ N . As

described in [LNS21b, Appendix C], the proof size of πP can be bounded by:

pκ1 ` α ` 2m1 ` 2qd log q ` 5αd logp12s1q ` pκ1 ` λ1 ` α ` 2m1 ` 2qd logp12s2q

bits. We set s1 “ dpd`1qσ
?
10αd and s2 “ d

a

pκ1 ` λ1 ` α ` 2m1 ` 2qd. Then, κ1

and λ1 are chosen such thatMSISκ1,κ1`λ1`α`2m1`2,8dβ2 andMLWEκ1`α`2m1`2,λ1,χd

are hard where β2 “ s2
a

2pκ1 ` λ1 ` α ` 2m1 ` 2qd. Eventually, in order to en-
sure one-more-unforgeability, we check that MSIS

α,5α,2s1
?

2pκ1`λ1`α`2m1`2qd
is a

hard problem. As before, we apply the Dilithium compression technique when
computing the signature/proof size.

Reducing the public key size. We observe that the public key contains
the matrix A1R which cannot be generated from the seed. It consists of 3α2

polynomials in Rq and for parameters selected above, the total public key size is
above 1MB as presented in Fig. 4. In order to reduce the public key size, we apply
the technique by Lyubashevsky et al. [LNPS21] where one can decrease the value

13 For simplicity, we neglect the size of a challenge polynomial since it has a negligible
impact on the total proof size.

14 Actually, the zero-knowledge property of the protocol in [LNS21a] reduces to the
so-called Extemded-MLWE problem. However, as argued in [LNS21a], this problem
should still be almost as hard as the plain MLWE.
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Public key Secret key Signature Communication

1.3MB 75KB 150KB 16MB

Fig. 4. Public key, user secret key, signature sizes and communication complexity of
our blind signature scheme.

of α at the cost of increasing the ring dimension d15. Then, one observes that the
equations over Rq which we are interested in, can be equivalently written over
the ring ZqrXs{pX128`1q and then proven using e.g. [ALS20, LNS21a]. However,
as a drawback of having a large ring dimension, we would obtain slightly larger
signatures and communication complexity.

Acknowledgements

We would like to thank anonymous reviewers for the useful feedback. This work
was supported by the EU H2020 ERC Project 101002845 PLAZA.

References

ABB20. Nabil Alkeilani Alkadri, Rachid El Bansarkhani, and Johannes Buchmann.
BLAZE: practical lattice-based blind signatures for privacy-preserving ap-
plications. In Financial Cryptography, volume 12059 of Lecture Notes in
Computer Science, pages 484–502. Springer, 2020.

ALS20. Thomas Attema, Vadim Lyubashevsky, and Gregor Seiler. Practical product
proofs for lattice commitments. In CRYPTO (2), volume 12171 of Lecture
Notes in Computer Science, pages 470–499. Springer, 2020.

APS15. Martin R. Albrecht, Rachel Player, and Sam Scott. On the concrete hardness
of learning with errors. Cryptology ePrint Archive, Report 2015/046, 2015.
https://eprint.iacr.org/2015/046.

AR04. Dorit Aharonov and Oded Regev. Lattice problems in NP cap conp. In
FOCS, pages 362–371. IEEE Computer Society, 2004.
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Seiler. Shorter lattice-based group signatures via ”almost free” encryption
and other optimizations. In ASIACRYPT (4), volume 13093 of Lecture
Notes in Computer Science, pages 218–248. Springer, 2021.

LNS20. Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Gregor Seiler. Practical
lattice-based zero-knowledge proofs for integer relations. In CCS, pages
1051–1070. ACM, 2020.

LNS21a. Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Gregor Seiler. Shorter
lattice-based zero-knowledge proofs via one-time commitments. In Public
Key Cryptography (1), volume 12710 of Lecture Notes in Computer Science,
pages 215–241. Springer, 2021.

LNS21b. Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Gregor Seiler. SMILE:
set membership from ideal lattices with applications to ring signatures and
confidential transactions. In CRYPTO (2), volume 12826 of Lecture Notes
in Computer Science, pages 611–640. Springer, 2021.

29



LS15. Adeline Langlois and Damien Stehlé. Worst-case to average-case reductions
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A Proof of Corollary 2.4

Take arbitrary x˚ P Rn and t˚ P ΛzΛ1. If t˚ ‰ x˚ mod Λ1 then clearlyD1px˚, t˚q “

D2px˚, t˚q “ 0. Hence, assume that t˚ “ x˚ mod Λ1.
First, we observe that D1px˚, t˚q “ DΛ,σpx˚q. On the other hand, we have

D2px˚, t˚q “ Pr rx “ x˚|t “ t˚s ¨ Pr rt “ t˚s

“ Pr
“

x “ x˚|t˚ “ x mod Λ1
‰

¨
1

|ΛzΛ1|

“
Pr rt˚ “ x mod Λ1|x “ x˚s ¨ Pr rx “ x˚s

Pr rt˚ “ x mod Λ1s
¨

1

|ΛzΛ1|

“
DΛ,σpx˚q

Pr rt˚ “ x mod Λ1s
¨

1

|ΛzΛ1|
.

We want to estimate Pr rt˚ “ x mod Λ1s. By Lemma 2.3 we have

ρσpΛq “
ÿ

tPΛzΛ1

ρσpt ` Λ1q “
ÿ

tPΛzΛ1

ρσ,´tpΛ1q ď
ÿ

tPΛzΛ1

ρσpΛ1q “ |ΛzΛ1| ¨ ρσpΛ1q.

Similarly, we obtain ρσpΛq ě 1´ε
1`ε ¨ |ΛzΛ1| ¨ ρσpΛ1q. Then, again by Lemma 2.3:

Pr
“

t˚ “ x mod Λ1
‰

“
ρσ,´t˚ pΛ1q

ρσpΛq
ě

1 ´ ε

1 ` ε
¨
ρσpΛ1q

ρσpΛq
ě

1 ´ ε

1 ` ε
¨

1

|ΛzΛ1|

and

Pr
“

t˚ “ x mod Λ1
‰

ď
ρσpΛ1q

ρσpΛq
ď

1 ` ε

1 ´ ε
¨

1

|ΛzΛ1|
.
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This implies that

D2px˚, t˚q P

„

1 ´ ε

1 ` ε
,
1 ` ε

1 ´ ε

ȷ

¨ DΛ,spx˚q

and thus

|D1px˚, t˚q ´ D2px˚, t˚q| ď
2ε

1 ´ ε
DΛ,σpx˚q ď 4εDΛ,σpx˚q.

Finally, we conclude that

∆pD1, D2q ď
ÿ

t˚PΛzΛ1

ÿ

x˚Pt˚`Λ1

4εDΛ,σpx˚q “ 4ε
ÿ

t˚PΛzΛ1

DΛ,σpt˚ ` Λ1q “ 4ε.

B Proof of Theorem 3.1

In order to prove correctness, we observe that for y Ð Dmd
σy

, s Ð Dmd
σs

and
µ P Rq being a polynomial with binary coefficients we have

}y ` µs} ď }y} ` }µs} ď }y} ` d}s} ď pσy ` dσsq
?
2md

with probability at least

1 ´ 2 ¨

ˆ

2

e

˙
md
2

ą 1 ´ 2 ¨ 2´ md
6 ą 1 ´ 2λ.

by applying Lemma 2.5 for k “
?
2. Finally, z :“ y ` ms satisfies:

Az “ Ay ` µAs “ w ` µv.

For the unforgeability argument, we follow the proof strategy from [LM18].
Suppose there is an adversary A which succeeds in breaking the strong unforge-
ability game of the one-time signature scheme with probability γ. We use A to
construct an algorithm B which solves MSIS. Namely, B does the following:

1. Given a uniformly random matrix A Ð Rnˆm
q , it samples y Ð Dmd

σy
, s Ð

Dmd
σs

and sets w “ Ay,v “ As. Finally, B outputs pA,v,wq to A.
2. Once A queries on input µ P t0, 1ud, B returns z “ y ` µs.
3. At the end, A outputs a forgery pµ̃, z̃q. If Az̃ ‰ w ` µ̃v or }z̃} ą pσy `

dσsq
?
2md, then B manually sets µ̃ “ µ and z̃ “ z. Then, B outputs a MSIS

solution y ` µ̃s ´ z̃.

Let us define the following events:

success “ py ` µ̃s ´ z̃ ‰ 0q ^ p}y ` µ̃s ´ z̃} ď 2pσy ` dσsq
?
2md

and
forgery “ ppµ̃, z̃q ‰ pµ, zqq .

By assumption, we have that Prrforgerys “ γ. Clearly, y ` µ̃s ´ z̃ is a MSIS
solution to A. Hence, we are interested in computing the probability of success.
To do so, we consider a similar algorithm B˚ which does the following:
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1. Given a uniformly random matrix A Ð Rnˆm
q , it samples y Ð Dmd

σy
, s Ð

Dmd
σs

and sets w “ Ay,v “ As. Finally, B outputs pA,v,wq to A.
2. Once A queries on input µ P t0, 1ud, B picks a bit b such that Prrb “ 0s “ 1{3

and Prrb “ 1s “ 2{3. If b “ 0, it sets y˚ “ y and s˚ “ s. Otherwise,
B˚ samples py˚, s˚q P D2md

σ conditioned on Ay˚
“ Ay,As˚

“ As and
y˚ ` µs˚ “ y ` µs. In other words, py˚, s˚q Ð DΛK

q pXq,σ,c where

X “

¨

˝

A 0
0 A

1 ¨ Im µ ¨ Im

˛

‚P R3mˆ2m
q and c “ ´

ˆ

y
s

˙

P R2m
q .

Then, it returns z “ y ` µs to A.
3. At the end, A outputs a forgery pµ̃, z̃q. If Az̃ ‰ w ` µ̃v or }z̃} ą pσy `

dσsq
?
2md, then B manually sets µ̃ “ µ and z̃ “ z. Then, B outputs a MSIS

solution y˚ ` µ̃s˚ ´ z̃.

Note that the algorithm B˚ is not necessarily efficient. However, the key distri-
bution of py˚, s˚q is identical to py, sq in B given A,v,w, µ and z. Thus, the
output distribution of B˚ is identical to the one by B. In particular, if we define
the following event:

success˚ “ py˚ ` µ̃s˚ ´ z̃ ‰ 0q ^ p}y˚ ` µ̃s˚ ´ z̃} ď pσy ` dσsq
?
2md

then we have Prrsuccesss “ Prrsuccess˚s and similarly, the event forgery˚
“

ppµ̃, z̃q ‰ pµ, zqq defined for B˚ satisfies Prrforgery˚
s “ γ.

For the remainder of the proof, we assume that y,y˚ and s, s˚ have L2 norm
bounded by σy

?
2md and σs

?
2md respectively. Indeed, the probability that one

of these vectors has the norm larger than these bounds is negligible by Lemma
2.5. Then, we can already drop the event }y˚ ` µ̃s˚ ´ z̃} ď 2pσy ` dσsq

?
2md

from the definition of success˚ since

}y˚ ` µ̃s˚ ´ z̃} ď }y˚} ` d}s˚} ` }z̃} ď 2pσy ` dσsq
?
2md.

Now, we break the probability Prrsuccess˚s into three parts:

Prrsuccess˚s “ Prrsuccess˚ ^ µ “ µ̃s

` Prrsuccess˚ ^ µ ‰ µ̃ ^ z̃ ‰ y ` µ̃ss

` Prrsuccess˚ ^ µ ‰ µ̃ ^ z̃ “ y ` µ̃ss.

In the following, we will use the observation that the bit b is independent of
z, z̃, µ, µ̃ and y, s.

We focus on upper-bounding the first term. Note that

Prrsuccess˚ ^ µ “ µ̃s ě Prrsuccess˚ ^ µ “ µ̃ ^ b “ 0s

ě Prrz̃ ‰ y ` µ̃s ^ µ “ µ̃s ¨
1

3

ě Prrpµ, zq ‰ pµ̃, z̃q ^ µ “ µ̃s ¨
1

3

ě Prrforgery˚
^ µ “ µ̃s ¨

1

3
.

(27)
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For the second term, we observe that:

Prrsuccess˚ ^ µ ‰ µ̃ ^ z̃ ‰ y ` µ̃ss

ě Prrsuccess˚ ^ µ ‰ µ̃ ^ z̃ ‰ y ` µ̃s ^ b “ 0s

ě Prrµ ‰ µ̃ ^ z̃ ‰ y ` µ̃ss ¨
1

3

ě Prrpµ, zq ‰ pµ̃, z̃q ^ µ ‰ µ̃ ^ z̃ ‰ y ` µ̃ss ¨
1

3

ě Prrforgery˚
^ µ ‰ µ̃ ^ z̃ ‰ y ` µ̃ss ¨

1

3
.

(28)

Finally, we focus on the last term. For readability, let us define the event E as:

E “ pµ ‰ µ̃q ^ pz̃ “ y ` µ̃sq ^ pb “ 1q.

Then, we have

PrrEs ě Prrµ ‰ µ̃ ^ z̃ “ y ` µ̃ss ¨
2

3

ě Prrforgery˚
^ µ ‰ µ̃ ^ z̃ “ y ` µ̃ss ¨

2

3

and also

Prrsuccess˚ ^ µ ‰ µ̃ ^ z̃ “ y ` µ̃ss ě Prry ` µ̃s ‰ y˚ ` µ̃s˚|Es ¨ PrrEs.

Hence, we need to upper-bound Prry ` µ̃s “ y˚ ` µ̃s˚|Es. First, we claim that

Prry ` µ̃s “ y˚ ` µ̃s˚|Es “ Prry “ y˚ ^ s “ s˚|Es.

Clearly, y “ y˚ ^ s “ s˚ implies y ` µ̃s “ y˚ ` µ̃s˚. Now, suppose that
given E and y ` µ̃s “ y˚ ` µ̃s˚ hold. By definition of y˚ and s˚ we have
y˚ `µs˚ “ z “ y`µs. Thus, pµ´ µ̃qps´ s˚q “ 0. Now, by assumption we have
}s ´ s˚} ď 2σs

?
2md. Therefore

}pµ ´ µ̃qps ´ s˚q}8 ď 2dσs

?
2md ă q{2.

We conclude that pµ ´ µ̃qps ´ s˚q “ 0 over R. Since we assumed that µ ‰ µ̃, we
must have s “ s˚. Then, we also get y “ y˚.

Now, we want to upper-bound Prry˚ “ y ^ s˚ “ s|Es, i.e.

Prry˚ “ y ^ s˚ “ s|Es “ DΛK
q pXq,σ,cp0,0q “

ρσpy, sq

ρσppy, sq ` ΛK
q pXqq

Note for every u P ΛK
Rq

pAq, we have pµu,´uq P ΛK
q pXq. Therefore,

ρσpy, sq

ρσppy, sq ` ΛK
q pXqq

ď
ρσpy, sq

ř

uPΛK
Rq

pAq ρσ

ˆ

py, sq `

„

µ ¨ Im
´Im

ȷ

u

˙ .
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Since we set σy ě qn{m
?
2ed ` 2, σs ě qn{m

?
2e ` 2, we can apply Theorem 3.3

for σ “ pσy, . . . , σy, σs, . . . , σsq,

A :“ RotpAq P Zndˆmd
q and M :“ Rot

ˆ„

µ ¨ Im
´Im

ȷ˙

P Z2mdˆmd16.

Thus, we conclude that

Prry “ y˚ ^ s “ s˚|Es ď
1

2

and therefore

Prrsuccess˚ ^µ ‰ µ̃^ z̃ “ y` µ̃ss ě Prrforgery˚
^µ ‰ µ̃^ z̃ “ y` µ̃ss ¨

1

3
. (29)

By combining Equations 27,28 and 29, we obtain:

Prrsuccess˚s ě
1

3
¨ Prrforgery˚

s ´ neglpλq

ě
1

3
γ ´ neglpλq.

16 We need to work with rotation matrices since Theorem 3.3 only considers matrices
over integers.
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