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Abstract

Arguments of knowledge are powerful cryptographic primitives that allow a prover to demon-
strate that it knows a satisfying witness to a prescribed statement. Tremendous progress has
been made in developing efficient argument systems by leveraging homomorphic structure in an
increasingly composable and recursive manner. However, the extent to which homomorphisms
can be composed and manipulated in the service of efficient argument systems is still not well
understood. To this end, we introduce reductions of knowledge, a generalization of arguments of
knowledge, which reduce checking a statement in one relation to checking a derived statement
in another, and better capture the composable and recursive nature of arguments over homo-
morphisms. We construct and study the tensor reduction, which is capable of reducing any
homomorphic statement composed via the tensor product, and provides knowledge soundness
unconditionally when working over vector spaces. We show that tensor reductions generalize a
large class of prior recursive techniques including the ubiquitous sumcheck protocol. We addi-
tionally show that tensor reductions can be employed to construct reductions of knowledge with
logarithmic communication for familiar linear algebraic statements, and in turn, these can be
composed to recover a reduction of knowledge for NP with logarithmic communication.
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1 Introduction

Arguments of knowledge [GMR89] are powerful cryptographic primitives that allow a prover to
demonstrate (in zero-knowledge) to a verifier that it knows a satisfying witness for a prescribed
statement. Such a pattern of interaction has been shown to provide strong integrity and privacy
guarantees that enable a large class of cryptographic applications [DLFKP16, SCG+14, KMS+16,
ZKP15]. Since the foundational works in arguments of knowledge [GMR89,GKR15,Kil92,BOGG+88],
consistent progress has been made in optimizing both asymptotics [GGPR13, GKR15, KMP20,
Set20,CHM+20,MBKM19,GWC19], and practical performance [WTS+18,PHGR13,BBB+18], un-
der various cryptographic assumptions.

Modern arguments are designed to leverage homomorphic structure to achieve better asymp-
totics and concrete efficiency. For example, a variety of arguments [CHM+20,Set20,KMP20,RZ21]
leverage matrix representations of NP to compress constraints via random linear combinations.
Batching techniques leverage the homomorphic properties of commitments to compress checks
over polynomials [CHM+20,KMP20], vectors [BBB+18], and even NP instances [KST21,BCL+21,
BGH19, BDFG20]. A central body of work [BCC+16, Lee20, BMMV19, AC20, BCS21] studies the
consequences of arguments over structurally nested homomorphic objects such as hypercubes and
matrices. A key insight is that such objects present sufficient algebraic structure for recursive ar-
guments in which larger composed statements can be reduced to smaller constituent statements of
the same form. Homomorphic structures that enable recursive techniques have become a staple in
constructing efficient argument systems [Set20,WTS+18,BBB+18,KMP20,SL20]. However, while
homomorphic structures have become an essential tool in practice, the full extent to which homo-
morphisms in general can be composed and manipulated to create efficient arguments of knowledge
is not yet well understood.

Hence, we formalize and study reductions of knowledge, a generalization of arguments of knowl-
edge, which better capture the compositional and recursive nature of modern argument systems.
A central observation in this work is that a large class of existing techniques can be viewed as
a sequence of reductions (of knowledge) over homomorphic statements. We design the tensor re-
duction as a generalization of such techniques. Specifically, any homomorphic statement equipped
with an appropriate decomposition rule can be reduced via the tensor reduction. When working
over vector spaces in particular, tensor reductions provide knowledge soundness unconditionally.
We show that instantiating the tensor reduction over (linearized) multivariate polynomials decom-
posed as univariate polynomials recovers the sumcheck protocol [LFKN92], a cornerstone technique
in the literature. We further employ the tensor reduction to construct reductions of knowledge with
sublinear communication for several linear algebraic statements by simply providing appropriate
tensor representations and decomposition rules. We compose such statements to create a reduction
of knowledge for NP with sublinear communication.

1.1 Reductions of Knowledge

Recall that arguments of knowledge are defined over a relation R and allow a prover to show
for some statement u that it knows witness w such that (u,w) ∈ R. In contrast, a reduction of
knowledge is defined over a pair of relations (R1,R2), and allows a prover to show for some u1 that
it knows w1 such that (u1, w1) ∈ R1 contingent on the fact that for some derived u2 it knows w2

such that (u2, w2) ∈ R2. In effect, this allows a prover to reduce the task of proving knowledge of
a satisfying witness for a statement in R1 to the task of proving knowledge of a satisfying witness
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for new a statement in R2.
Reductions of knowledge provide a common language to reason about a large class of techniques:

Arguments of knowledge can be naturally viewed as reductions of knowledge where R2 is set to
be a canonical empty relation. More interestingly, reductions of knowledge can capture individual
steps in a larger argument system: For instance, argument systems such as Spartan [Set20] and
Marlin [CHM+20] reduce the task of checking matrix-vector products to inner-products.

Reductions of knowledge are particularly useful for reasoning about recursive techniques. Re-
ductions of knowledge can be seen as generalizing a large class of recursive split-and-fold tech-
niques [BCC+16,BBB+18,BMMV19,Lee20], which iteratively reduce a statement over size n vec-
tors to a statement over size n/2 vectors. Reductions of knowledge also readily capture more general
recursive techniques such as accumulation schemes [BCL+21], folding schemes [KST21], and aggre-
gation schemes [BDFG20], all of which iteratively reduce the task of checking an arbitrary number
of structurally similar NP instances into checking a single NP instance of the same size. Reductions
of knowledge allow for independent reasoning about knowledge soundness for each recursive step.
We show that such local reasoning is sufficient to prove global soundness properties by utilizing a
general composition theorem.

Theorem 1 (Composition, Informal). Consider relations R1, R2, and R3. Let Π(1,2) be a
reduction of knowledge for (R1,R2) and let Π(2,3) be a reduction of knowledge for (R2,R3). Then
Π(2,3) ◦Π(1,2) is a reduction of knowledge for (R1,R3).

1.2 The Tensor Reduction

In this work, we focus our attention on generalizing techniques which can be cast as reductions (of
knowledge) over homomorphic statements. We start by defining a general tensor-based language to
capture homomorphic statements and then discuss how to compose such statements via the tensor
product. We then introduce the the tensor reduction as an abstract protocol to reduce composed
homomorphic statements into constituent statements.

Tensor-Based Statements We study algebraic statements for which arguments of knowledge
can be decomposed into a sequence of reductions of knowledge. Existing arguments that fit such
a pattern are built around statements over linear algebraic objects such as matrices, vectors, poly-
nomials, and homomorphisms. We generalize such objects by turning towards a central object in
module theory: tensors. Tensors provide a unifying algebraic framework for describing both func-
tions (when viewed as homomorphisms) and objects (when viewed as elements of a vector space).
In light of this, we study statements of the form t(u) ∼= v for tensors t, u, and v. Because such
statements are purely algebraic, they can be readily manipulated using operations such as linear
combinations and scalar multiplication. More interestingly, they can be composed and decom-
posed using two powerful operators, the tensor product and direct sums, which provide a notion of
multiplication and addition over entire spaces.

The Tensor Product The tensor product in particular is an abstract operation characterized
by its universality property: The tensor product of any two vector spaces U and V must result in
a new vector space, denoted U ⊗ V , such that any bilinear mapping ϕ ∈ U × V → W induces a
unique homomorphism ϕ̃ ∈ U ⊗ V → W such that ϕ̃(u ⊗ v) = ϕ(u, v). This property gives us a
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natural way to compose two linear statements (which form a bilinear statement) into a new linear
statement.

In practice, much like how abstract groups and rings must be instantiated with concrete objects
such as elliptic curves and polynomials, the tensor product must be instantiated with a concrete
operation that respects the prescribed universality property. For instance, the outer-product would
be an appropriate notion of multiplication that respects the universality property with respect to
vectors. Similarly, the Kronecker product would be an appropriate notion of multiplication that
respects the universality property with respect to matrices. The tensor product corresponds with
the standard notion of multiplication for objects with multiplication built in, such as rings and
fields.

Reducing Tensor-Based Statements We develop a protocol to reduce a statement composed
via the tensor product into statements over constituent spaces which we refer to as a tensor re-
duction. At a high level, the tensor reduction is an interactive protocol which reduces the task of
checking arbitrary rank tensors (which cannot be decomposed) into checking rank-1 tensors (which
can be decomposed) by taking linear combinations of elements in the constituent spaces based on
the verifier’s random challenges.

Theorem 2 (Tensor Reduction). For tensors t =
∑

i ri ⊗ si ∈ (U ⊗ V ) → (X ⊗ Y ) of rank I,
w =

∑
j uj ⊗ vj : U ⊗ V of rank J , and z : X ⊗ Y over ring R, the tensor reduction reduces the

task of checking

t(w) ∼= z (1)

to the task of checking(∑
i

αiri

)(∑
j

βjuj

)
∼= x and

(∑
i

αisi

)(∑
j

βjvj

)
∼= y (2)

for verifier output (α, β, x, y). Formally, if (1) is true, then (2) is true with probability 1, and if (1)
is false, then (2) is false with probability at least 1− IJ

|Q| . The prover complexity, verifier complexity,
and communication complexity are all proportional to IJ .

Under the interpretation that the tensor product is an abstract operation that remains to
be instantiated, the tensor reduction can be viewed as an abstract protocol in which both the
underlying modules and the composition operation between them remain to be instantiated. Such
an abstraction allows us to specify reductions over algebraic objects equipped only with an abstract
decomposition rule, without having to reason with respect the particular operation needed to
perform this decomposition. For example, existing split-and-fold techniques reduce a statement
over a vector v ∈ Fn by splitting the vector into two equal halves v1 ∈ Fn/2 and v2 ∈ Fn/2 and
then reasoning about how to combine checks over these two halves into a smaller statement over a
vector v′ ∈ Fn/2. In contrast, we can observe that Fn ∼= Fn/2⊗F2 and apply the tensor reduction in
a black-box manner with respect to this decomposition to get a statement over Fn/2 and a (trivial)
statement over F2. Later we can instantiate ⊗ with the outer-product.

1.3 Representing New and Existing Techniques as Tensor Reductions

Given a general language to compose statements expressed as tensors, and a general reduction for
such statements, we turn our attention towards expressing existing techniques as tensor reductions.
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1.3.1 Universality of Linearization

We first leverage the universality property of the tensor product to show that any arbitrary polyno-
mial over modules can be expressed as a tensor composed with a universal non-linear map. While
this does not guarantee tensors that can be reduced via the tensor reduction, it does guarantee
linear statements which can be composed into larger statements that can be reduced by the tensor
reduction.

Lemma 1 (Universality of Linearization, Informal). Let R be a commutative ring, and let
V be an R-module. There exists a universal non-linear map ι such that for an arbitrary polynomial
ϕ ∈ Rn → V , there exists a unique corresponding tensor ϕ̃ such that ϕ̃ ◦ ι = ϕ.

1.3.2 Recovering the Sumcheck Protocol

We leverage the universality of linearization to show that the sumcheck protocol [LFKN92] can be
expressed as a sequence of tensor reductions. Consider ring R, arbitrary R-module V , and subset
H ⊆ R. Recall that for some P ∈ Rn → V , and claimed sum σ ∈ V , the sumcheck protocol
(generalized over modules [BCS21]) allows a verifier to recursively reduce the task of checking∑

x1,...,xn∈H
P (x1, . . . , xn) = σ

to the task of checking for some P ′ ∈ Rn−1 → V and σ′ ∈ V∑
x1,...,xn−1∈H

P ′(x1, . . . , xn−1) = σ′

Starting with [GKR15], sumcheck protocols have proven to be a powerful building block for con-
structing argument systems [Set20,WTS+18,CMT12,ZXZS20,ZGK+17]. We show that the tensor
reduction recovers the sumcheck protocol when instantiated over multivariate polynomials decom-
posed as univariate polynomials. We make this notion precise by showing that each step of the
sumcheck protocol can be simulated by first linearizing the polynomial (via the universality of lin-
earization), running the tensor reduction, and then mapping the resulting statement back into the
original space.

Theorem 3 (Structural Equivalence, Informal). Consider ring R, R-module V , subset H ⊆ R,
and degree bound K−1. Let ΠSC represent the sumcheck protocol and ΠLSC represent a linearized
variant of the sumcheck protocol afforded by the tensor reduction. Additionally let Φ denote the
isomorphism that linearizes its input via the tensor product. Then, for an arbitrary sumcheck
statement (P, σ), the following diagram commutes.

(P, σ) (P ′, σ′)

(P,σ) (P′,σ′)

ΠSC

Φ

ΠLSC

Φ−1
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When formally stating the above theorem (Theorem 8), we are careful to also show that the
transcript generated by the linearized sumcheck protocol can be used to recover the transcript
produced by the sumcheck protocol. This result is particularly useful because it shows that the
tensor reduction, when instantiated with isomorphic algebraic objects, is structurally equivalent
to the sumcheck protocol. Structural equivalence is a stronger notion than functional equivalence
because it allows us to show that the tensor reduction can be used in protocols which leverage both
the functional and structural properties of the sumcheck protocol.

[BCS21] leverage the structural properties of the sumcheck protocol to show that a large class
of arguments with sublinear communication, including proofs of knowledge over vectors, inner-
products, folding techniques, delegating polynomial evaluation, batching, and arguments for NP,
built using a variety of cryptographic tooling (e.g., discrete logarithms, pairings, groups of unknown
order, and lattices), can be encoded as sumcheck protocols. Our equivalence theorem shows that
all of the above results extend to tensor reductions.

1.3.3 A Canonical Reduction of Knowledge over Tensors

Much like how the sumcheck protocol may or may not be used in the context of arguments of
knowledge, tensor reductions may or may not be used in the context of reductions of knowledge. To
add a knowledge component to the statement, there needs to be a meaningful notion of a witness.
Given statements of the form u(w) ∼= v for tensors u, w, and v, we define the canonical tensor
relation to be one in which (u, v) is treated as the public statement and w is treated as the witness.
Because w is now witnessed, we must also specify a rank bound.

Definition 1 (Canonical Tensor Relation). Consider modules W , V , and U ∼= (W → V ), i.e.,
the module of homomorphisms from W to V . Let the corresponding canonical tensor relation be
defined as

R((U, V ),W ) =

 ((u, v), w)

∣∣∣∣∣∣
u ∈ U, v ∈ V,w ∈W,
u(w) = v,
rank(w) ≤ J


for some implicit rank bound J .

When considering vector spaces specifically (as opposed to modules), we can leverage tensor
reductions to construct a reduction of knowledge for the canonical relation over homomorphisms
composed by the tensor product.

Theorem 4 (A Canonical Reduction of Knowledge over Tensors, Informal). Consider
field F, length parameter n, F-modules W ∼= W ′ ⊗ Fn, V ∼= V ′ ⊗ F, and U ∼= U ′ ⊗ (F∗)n where
U ′ ∼= (W ′ → V ′). There exists a reduction of knowledge for(

R((U, V ),W ), R((U ′, V ′),W ′)
)
.

A notable implication of the above theorem is that knowledge soundness comes unconditionally
when applying the tensor reduction to canonical relations over vector spaces. In other words, there
exists a reduction of knowledge for any statement that can be expressed in the appropriate form. We
also note that the above theorem holds orthogonally to any computational hardness assumptions.
In particular, we could trivially prove that knowledge soundness holds for relations where the
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witness can be efficiently computed given only the statement. Thus, knowledge soundness is only
a meaningful notion when it is assumed to be computationally difficult to compute a satisfying
witness given only the statement.

1.3.4 A Reduction of Knowledge for NP

The canonical reduction of knowledge over tensors abstracts both protocol design and corresponding
knowledge-soundness reasoning. To produce a reduction of knowledge for statements of interest,
we are largely tasked with providing a corresponding tensor-based representation equipped with
an appropriate decomposition rule. We show that both linear-forms relations and bilinear-forms
relations over fields can be naturally expressed in such a form. We compose the corresponding
tensor reductions of knowledge to build a modular reduction of knowledge for NP with sublinear
communication.

A Reduction of Knowledge for Linear Forms We start by constructing an argument of
knowledge for linear forms with sublinear communication that resembles a similar protocol derived
by [AC20]. Consider group G where the discrete logarithm problem is hard and corresponding field
F. For public key G ∈ Gn, public vector B ∈ Fn, commitment A ∈ G, and scalar σ ∈ F, a linear-
forms argument allows a prover shows that it knows A ∈ Fn such that 〈B,A〉 = σ and 〈G,A〉 = A.
We observe that this statement can be expressed as the corresponding tensor statement

(G⊕B)(A) = A⊕ σ

where ⊕ denotes the direct sum (i.e., a Cartesian product). We reduce this statement via the
canonical reduction to an identical statement over size n/2 vectors under the decomposition rule
Gn ∼= Gn/2⊗F2, Fn ∼= Fn/2⊗F2. This corresponds to existing reduction techniques which decompose
vectors into their first and second half [BCC+16,BBB+18,Lee20,BMMV19].

A Reduction of Knowledge for Bilinear Forms Next, we construct a reduction of knowledge
from bilinear forms to linear forms with sublinear communication. For public keys (G,H) ∈
(Gm,Gn), public matrix M ∈ Fm×n, commitments A,B ∈ G, and scalar σ ∈ F, a bilinear-forms
argument allows a prover to show that it knows A,B ∈ Fn such that A>MB = σ, 〈G,A〉 = A,
and 〈H,B〉 = B. Under the hardness of the discrete logarithm assumption and double pairing
assumption [AFG+10], we observe that this statement can be expressed as the corresponding tensor
statement

(G⊗H ⊕M)(A⊗B) = (A⊗B ⊕ σ) (3)

We reduce this statement to an identical statement over a size m×n/2 matrix under the observation
that M ∈ (Fm ⊗ Fn) ∼= (Fm ⊗ Fn/2) ⊗ F2, G ⊗ H ∈ (Gm ⊗ Gn) ∼= (Gm ⊗ Gn/2) ⊗ F2, and
A ⊗ B ∈ (Fm ⊗ Fn) ∼= (Fm ⊗ Fn/2) ⊗ F2. In the base case we have a statement over a size m × 1
matrix, which we show can be reduced to checking a linear-forms statement. The computational
hardness assumptions are a critical detail for arguing that checking Equation (3) is sufficient to
check the original relation: The knowledge soundness property of the canonical reduction only
guarantees that the prover knows some satisfying witness in Fm ⊗ Fn which may be of the form∑

iAi ⊗ Bi. While this is a valid witness for the corresponding tensor statement, it is not a valid
witness for the original statement. Here, we must invoke the appropriate assumptions to show that
it is infeasible for the extractor to retrieve a witness that is not of the form A⊗B.
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A Reduction of Knowledge for NP [KMP20] observe that an instance in NP can be checked
using a sequence of (sparse) bilinear forms over the same two vectors (each of which represents a
constraint). We leverage this characterization of NP to represent an instance in NP as a sequence
of tensor statements representing bilinear forms. We then take advantage of the inherent linearity
of these statements to compress all of the checks into a single bilinear-forms check via a random
linear combination. Putting everything together we recover the following theorem.

Theorem 5 (A Reduction of Knowledge for NP, Informal). For NP statements expressed
over n variables, m = O(n) bilinear constraints, and ` < n public input values, there exists a
reduction of knowledge from the task of checking m bilinear forms over vectors of size n, and `
linear forms over vectors of size n, to the task of checking the trivial relationship. The prover and
verifier time complexity is O(n). The communication complexity is O(log n).

We additionally expect that our reductions of knowledge are compatible with standard opti-
mization techniques in the literature. For instance, techniques such as checkable subspace sam-
pling [RZ21] and polynomial commitments [KZG10, WTS+18, ZGK+17] can be used to achieve a
sublinear verifier. We do not discuss these optimizations because they are unrelated to our primary
goal of studying reductions of knowledge and the corresponding tensor reduction.

1.4 Related Work

Split-and-Fold Techniques Initiated by [BCC+16], a line of work [BBB+18,KMP20,WTS+18]
focuses on developing inner-product arguments and corresponding applications based on Pedersen
commitments under the discrete logarithm assumption. In each round a size n vector is split into
two size n/2 vectors and folded onto itself using a random linear combination to create a new
statement over size n/2 vectors. Such techniques are generalized to matrices using two-tiered com-
mitments [BMMV19,Lee20]. Reductions of knowledge can be seen as a definitional generalization
of these styles of protocols, and tensor reductions can be seen as a generalization of the underlying
split-and-fold technique. All split-and-fold techniques must work over objects with a natural no-
tion of a first and second half such as vectors and matrices. Such a restriction is lifted for tensor
reductions, which can be viewed as splitting one tensor with respect to the structure of another.

Sumcheck Arguments [BCS21] show that a large class of split-and-fold techniques can be
viewed as a special case of sumcheck protocols over commitments, which they call sumcheck argu-
ments. We show the converse of this result: That is, we show that tensor reductions, which can
be interpreted as an abstracted folding technique, generalize sumcheck protocols. [BCS21] further
show that sumcheck arguments can be instantiated with any commitment scheme which satisfies
a certain structural decomposability property, and thus show that sumcheck arguments general-
ize folding techniques over prime-order groups, bilinear groups, unknown-order groups and ideal
lattices. These results translate to our setting via our generalization result.

Proof Batching Schemes Several works focus on batching proofs for arguments of knowledge
over NP [HN10, Dru15, BHK17]. This approach has been recently popularized by [BGH19] and
generalized by [BDFG20], who show that statements can be efficiently compressed by performing
a small local check at each step and aggregating the remaining expensive computation into a poly-
nomial evaluation statement, which can be checked in batch. This approach can be viewed as a
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reduction of knowledge from checking an NP statement and a polynomial-evaluation statement to
checking a polynomial-evaluation statement. [BCL+21] generalize the above approach for any rela-
tion (in particular NP) for which there exists a succinct statement accumulator (and corresponding
witness accumulator). This approach can be viewed as a reduction of knowledge from checking a
statement and an accumulator to checking an accumulator. [KST21] present folding schemes, which
fold two NP instance-witness pairs into a single NP instance-witness pair. Folding schemes can be
viewed as a reduction of knowledge from checking the satisfiability of two statements to checking
the satisfiability of a single statement. An open question left by our work is whether the underlying
techniques for proof batching schemes can be efficiently expressed as tensor reductions.

Compressed Sigma Protocol Theory [AC20] generalize (and simplify) split-and-fold style
arguments as a recursive Sigma protocol over linear forms that compresses the statement in each
round. They additionally provide a technique to linearize bilinear relations over Pedersen com-
mitments (and over bilinear groups [ACR20]). We recover similar protocols for linear forms and
bilinear forms via the tensor reduction.

Other Tensor-Based Protocols [Mei13] designs a sumcheck protocol over tensor codes to re-
cover IP = PSPACE. [BCG20] leverage this protocol to efficiently query tensor codes at structured
random points. [RZ21] suggest that checkable subspace sampling can be suitably generalized to
efficiently and randomly compress tensors along a dimension. We view these techniques as comple-
mentary to ours, as they could be composed with tensor reductions to achieve a sublinear verifier.

1.5 Open Questions

Many of the open questions left by our work revolve around fully characterizing the structural prop-
erties of tensor reductions. While we show that tensor reductions generalize sumcheck protocols, it
would be interesting to characterize the class of reductions generalized by tensor reductions using
a similar proof technique (thereby providing a universality property for tensor reductions).

Conversely, it is unclear whether tensor reductions can be expressed as sumcheck protocols.
Such an equivalence would provide structural insights about both techniques. It is also unclear
whether tensor reductions can be expressed under other general frameworks such as compressed
sigma protocols.

While reductions of knowledge definitionally capture techniques that batch the satisfiability of
entire NP instances, it is unclear whether such techniques can be viewed as efficient tensor reduc-
tions. Finally, while we provide a reduction of knowledge with sublinear communication for NP
via tensor reductions, further study is needed in composing tensor reductions with existing tech-
niques (e.g., checkable subspace sampling [RZ21], Fiat-Shamir transform [FS86], randomization)
to achieve properties such as verifier succinctness, non-interactivity, and zero-knowledge.

2 Preliminaries

2.1 Module Theory

Notation 1 (R-Modules). We assume finite, unital, commutative rings and finite modules (i.e.,
have a finite basis) throughout. For ring R and R-modules U , V , let (U → V ) denote the module
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of homomorphisms from U to V . We let U∗ denote the dual-space of U , that is U∗ ∼= (U → R).
We use {bi} to denote a module basis and use {δi} to denote a dual basis.

The definitions and corresponding lemmas below are adapted from Dummit and Foote [DF04].
We start by defining the tensor product and direct sum operations for modules over rings, which
will be used throughout our development.1

Definition 2 (Direct Sum). The direct sum of R-modules U and V represents a new module
denoted U ⊕ V consisting of elements of the form u⊕ v for u ∈ U and v ∈ V , such that

r · (u⊕ v) = (ru⊕ rv)

u1 ⊕ v1 + u2 ⊕ v2 = (u1 + u2)⊕ (v1 + v2)

for elements u⊕ v, u1 ⊕ v1, u2 ⊕ v2 ∈ U ⊕ V and r ∈ R.

The tensor product can be viewed as an abstract notion of multiplication that is characterized
by the only required property, bilinearity.

Definition 3 (Tensor Product). The tensor product of R-modules U and V represents a new
module denoted U ⊗ V consisting of finite (formal) sums of elements of the form u ⊗ v for u ∈ U
and v ∈ V , such that

u1 ⊗ v + u2 ⊗ v = (u1 + u2)⊗ v
u⊗ v1 + u⊗ v2 = u⊗ (v1 + v2)

(r · u)⊗ v = u⊗ (r · v)

for u, u1, u2 ∈ U , v, v1, v2 ∈ V , and r ∈ R.

An immediate consequence of the above definition is that any bilinear operation can be ex-
pressed as a homomorphism composed with the tensor product. This property is formally known
as universality and can be naturally extended to multilinear maps.

Lemma 2 (Universality of the Tensor Product). Let R be a commutative ring, and let U1,
U2, and V be R-modules. Define the map ι(U1, U2) 7→ U1 ⊗ U2. Then, an arbitrary bilinear map
ϕ ∈ U1 × U2 → V induces a homomorphism ϕ̃ ∈ (U1 ⊗ U2 → V ) such that ϕ̃ ◦ ι = ϕ. In other
words, the following diagram commutes2.

U1 × U2 V

U1 ⊗ U2

ϕ

ι
ϕ̃

Direct sums and tensor products afford a notion of addition and multiplication over modules
(and thus give us a notion of addition and multiplication over homomorphisms).

1See Appendix A for definitions of rings and modules.
2A diagram is said to commute if all paths along the arrows lead to the same result.
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Definition 4 (Direct Sum of Homomorphisms). The direct sum of two homomorphisms
r ∈ (U1 → V ), s ∈ (U2 → V ) over R-modules (where R is a commutative ring) produces a new
homomorphism denoted r ⊕ s ∈ (U1 ⊕ U2)→ V , and defined as

(r ⊕ s)(u1 ⊕ u2) 7→ r(u1) + s(u2).

Symmetrically, the direct sum of two homomorphisms r ∈ (U → V1), s ∈ (U → V2) over R-modules
produces a new homomorphism denoted r ⊕ s ∈ U → (V1 ⊕ V2), and defined as

(r ⊕ s)(u) 7→ r(u)⊕ s(u).

Definition 5 (Tensor Product of Homomorphisms). The tensor product of two homomor-
phisms r ∈ (U → X), s ∈ (V → Y ) over R-modules (where R is a commutative ring) produces a
new homomorphism, denoted r ⊗ s ∈ (U ⊗ V )→ (X ⊗ Y ), and defined as

(r ⊗ s)(u⊗ v) 7→ r(u)⊗ s(v).

We refer to homomorphisms over R-modules in this context as tensors. r⊗s is itself an R-module,
and thus, tensors can be viewed as homomorphisms from tensors to tensors.

We additionally recall several useful identities which will help us identify necessary isomorphisms
throughout our development.

Lemma 3 (Commutativity and Associativity). For R-modules U, V,W (where R is a com-
mutative ring), the tensor product is commutative and associative up to isomorphism. That is
(U ⊗ V )⊗W ∼= U ⊗ (V ⊗W ) and U ⊗ V ∼= V ⊗ U .

Lemma 4 (Distributivity). For ring R and R-modules U1, U2, V1, V2

(U1 ⊕ U2)⊗ V ∼= (U1 ⊗ V )⊕ (U2 ⊗ V )

U ⊗ (V1 ⊕ V2) ∼= (U ⊗ V1)⊕ (U ⊗ V2).

Lemma 5 (Scalar Multiplication). For ring R and R-module U , R⊗ U ∼= U ⊗ R ∼= U .

2.2 Cryptographic Preliminaries

Notation 2 (Cryptographic Variables). For n ∈ N, let [n] denote {1, . . . , n}. When summing
over a variable, we will omit the bounds when clear from context. We use λ globally to denote the
security parameter, and negl(λ) to denote negligible functions.

Typically, for soundness to hold when randomly sampling over rings, the set of admissible values
must be constrained. We start by defining a valid sampling set over rings.

Definition 6 (Sampling Set [BCS21]). For ring R and R-moduleM , subsetQ ⊆ R is a sampling
set for M if for every q1, q2 ∈ Q, the map ϕ(m) 7→ (q1 − q2)m for m ∈M is injective.

To have a meaningful notion of knowledge soundness, we will need to rely on computational
hardness assumptions. We adapt the bilinear relation assumption [BCS21], which can be viewed as
a generalization of the discrete logarithm assumption, and the double pairing assumption [AFG+10].
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Definition 7 (Bilinear Relation Assumption). For ring R, length parameter n, and security
parameter λ, consider R-modules U and V such that |U | = O(2λ) and |V | = O(2λ). The bilinear
relation assumption holds for U and V if given randomly sampled u1, . . . , un ∈ U , there exists
no polynomial-time algorithm to find non-trivial v1, . . . , vn ∈ V such that∑

i∈[n]

ui ⊗ vi ∼= 0.

We say the reverse bilinear relation assumption holds for U and V if given randomly sampled
v1, . . . , vn ∈ V there exists no polynomial-time algorithm to find non-trivial u1, . . . , un ∈ U such
that the above equation holds.

Dually, we can consider composite spaces such that given elements from both of the constituent
spaces, it is easy to check that they satisfy the above relation. This ensures that that the verifier
in the tensor reduction is able to perform its requisite checks efficiently.

Definition 8 (Coset Equality Assumption). For ring R, length parameter n, and security
parameter λ, consider R-modules U and V such that |U | = O(2λ) and |V | = O(2λ). The coset
equality assumption holds for U and V if for any u1, . . . , un ∈ U and v1, . . . , vn ∈ V , there exists
a polynomial-time algorithm to check ∑

i∈[n]

ui ⊗ vi ∼= 0.

The above assumptions can be used to construct a generalized version of the Pedersen vector
commitment scheme [Ped91] which we use to develop reductions of knowledge for linear-algebraic
relations.

Definition 9 (Commitment Scheme). For ring R, R-modules G and H, length parameter n,
and security parameter λ, a commitment scheme over key-space Gn and message-space Hn is
defined over polynomial-time algorithms Gen, Com, and Open where

• pp ← Gen(λ, n): Takes as input security parameter λ and length parameter n. Produces
public parameters pp

• C ← Com(pp,v): Takes as input public parameters pp and vector v ∈ Hn. Outputs commit-
ment C.

• {0, 1} ← Open(pp, C,v): Takes as input public parameters pp, commitment C and vector v.
Outputs 1 if C = Com(pp,v).

A commitment scheme is said to be binding if it is hard for an adversary to open a commitment
to two distinct vectors. That is, for any PPT adversary A,

Pr

 Open(pp, C,v1) = 1,
Open(pp, C,v2) = 1,
v1 6= v2

∣∣∣∣∣∣ pp← Gen(λ, n),
(C,v1,v2)← A(pp)

 = negl(λ).
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Construction 1 (Generalized Pedersen Vector Commitments). For ring R, length parame-
ter n, and security parameter λ, let G and H be R-modules such that the bilinear relation assump-
tion and the coset equality assumption hold for (G,H). Then, the generalized Pedersen vector
commitment for key-space Gn and message-space Hn is defined as follows:

Gen(λ, n) 7→ g
$← Gn

Com(g,v) 7→
∑
i

gi ⊗ vi

and Open is defined canonically.

Lemma 6 (Generalized Pedersen Vector Commitment Scheme). Construction 1 is a bind-
ing commitment scheme.

Proof. Binding holds due to the bilinear relation assumption. Efficiency of Open holds due to the
coset equality assumption.

3 Reductions of Knowledge

Recall that in contrast to arguments of knowledge, reductions of knowledge are defined over a pair
of relations (R1,R2). A prover can use a reduction of knowledge to show for some u1 that it
knows w1 such that (u1, w1) ∈ R1 contingent on the fact that it knows w2 for some statement u2
(derived from its interaction with the verifier) such that (u2, w2) ∈ R2. Correctness and soundness
definitions follow naturally.

An appropriate extractor definition that captures knowledge-soundness requires more consider-
ation. Intuitively, we would like that if a prover is able to convince a verifier on input u1 to output
some derived statement u2 such that it knows a corresponding satisfying witness w2, then it must
have known a corresponding satisfying witness w1 for u1. Unfortunately, this intuitive definition
is circular: We would like to define what it means to know w1 with respect to the definition of
knowing w2. Prior approaches [Lee20, AC20] require that if the prover can output some auxiliary
information aux such that a subsequent malicious prover P∗ARG(aux) can convince a verifier that it
knows a valid witness to statement u2 using a standard argument of knowledge, then there must
exist an extractor that can produce w1 given oracle access to P∗ARG(aux) and the next message
function of P∗. However, this requires holding on to two definitions of extractability when proving
the soundness of a reduction of knowledge.

Alternatively, we can simply say that knowledge soundness holds if a malicious prover P∗ can
output a satisfying witness w2 then there exists an extractor that can output w1 provided oracle
access to P∗ (which includes its output w2). At first glance, this seems like a weaker notion of
soundness; however, we can show that this definition implies the prior definition. In particular,
we can show that if there exists an extractor E that can retrieve w1 given oracle access to P∗
which outputs w2, then there must exist an extractor E ′ that can retrieve w1 given oracle access
to P∗ARG(aux) where aux is output by P∗. Indeed, E ′ can run E and provide it oracle access to P∗.
When E eventually requests the output w2, E ′ runs the extractor for the argument system EARG
(with oracle access to P∗ARG(aux)) to retrieve w2, providing E all the information it needs to extract
w1.

12



Therefore, it is sufficient to say that knowledge soundness holds if there exists an extractor that
can extract a satisfying w1 provided the malicious prover manages to output a satisfying w2. We
formally define reductions of knowledge in the common reference string model.

Definition 10 (Reduction of Knowledge). Consider binary relations R1 and R2 over tuples
consisting of statement-witness tuples. A reduction for (R1,R2) consists of PPT setup algorithm
G, called the generator, and PPT interactive algorithms P and V, called the prover and verifier
respectively, with the following structure

• G(λ)→ pp: Takes as input security parameter λ; outputs public parameters pp

• P(pp, u1, w1) → (u2, w2): Takes as input public parameters pp, and statement-witness pair
(u1, w1) ∈ R1. Interactively reduces the statement (u1, w1) ∈ R1 to a new statement
(u2, w2) ∈ R2.

• V(pp, u1)→ u2: Takes as input public parameters pp, and statement u1 associated with R1.
Interactively reduces the task of checking u1 to the task of checking a new statement u2
associated with R2.

Let (u2, w2)← 〈P(w1),V〉(pp, u1) denote the verifier’s output statement u2 and the prover’s output
witness w2 after interacting on common inputs pp, u1, and additional prover input w1. Likewise,
let tr ← 〈P(w1),V〉(pp, u1) denote the interaction transcript. A reduction satisfies completeness
if for all PPT adversaries A

Pr

 (u2, w2) ∈ R2

∣∣∣∣∣∣
pp← G(λ),
(u1, w1) ∈ R1 ← A(pp),
(u2, w2)← 〈P(w1),V〉(pp, u1)

 = 1.

A reduction satisfies soundness if for all PPT adversaries P∗

Pr

 6 ∃ w1 s.t. (u1, w1) ∈ R1 ∧
∃ w2 s.t. (u2, w2) ∈ R2

∣∣∣∣∣∣
pp← G(λ),
u1 ← P∗(pp),
u2 ← 〈P∗,V〉(pp, u1)

 = negl(λ).

A reduction satisfies knowledge soundness if there exists an expected polynomial-time extractor
E such that for any polynomial-time adversary A∣∣∣∣∣∣∣∣∣∣∣∣∣

Pr

 (u2, w2) ∈ R2

∣∣∣∣∣∣
pp← G(λ),
(u1, st)← A(pp),
(u2, w2)← 〈A(st),V(pp, u1)〉

−
Pr

 (u1, w1) ∈ R1

∣∣∣∣∣∣
pp← G(λ),
(u1, st)← A(pp),

w1 ← E〈A(st),V(pp,u1)〉(pp)



∣∣∣∣∣∣∣∣∣∣∣∣∣
= negl(λ).

where E has oracle access to the interaction 〈A(st),V(u1)〉 which permits rewinding to any point
with refreshed verifier randomness. At the end of interaction, E is provided the witness w2 output
by A. We call a reduction that satisfies knowledge soundness a reduction of knowledge. A
reduction is public-coin if all messages sent from V to P are chosen uniformly at random.
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With a definition in hand, we can now prove a general composition theorem for reductions of
knowledge. This greatly simplifies soundness proofs for protocols that compose (or recursively em-
ploy) reductions of knowledge. Like other recursive techniques [BCCT13,Val08,KST21,BCL+21],
each recursive step induces a polynomial blowup in the corresponding extractor, and thus compo-
sition cannot be used more than a logarithmic number of times without additional computational
assumptions. We recommend [BCCT13] for a detailed discussion on such assumptions.

Theorem 6 (Composition). Consider binary relationsR1,R2,R3. Let (G1,P1,V1) be a reduction
of knowledge for (R1,R2). Let (G2,P2,V2) be a reduction of knowledge for (R2,R3). Then (G,P,V)
is a reduction of knowledge for (R1,R3) where

G(λ) := (G1(λ),G2(λ))

P(pp, u1, w1) := P2(pp2,P1(pp1, u1, w1))

V(pp, u1) := V2(pp2,V1(pp1, u1)).

Proof. Correctness follows by observation. As for knowledge soundness, consider arbitrary adver-
sary A attacking the knowledge soundness of (G,P,V). Let pp ← G(λ) and let (u1, st) ← A(pp).
We must construct an extractor E such that on input pp and with oracle access to 〈A(st),V(u1)〉
produces w1 such that (u1, w1) ∈ R1 with nearly the same success probability as A.

Our high level approach is as follows: We initially construct A2 which attacks the knowledge
soundness of Π2 = (G2,P2,V2) using A. The knowledge soundness of Π2 guarantees a corresponding
extractor E2. We then construct adversary A1 which uses E2 to attack the knowledge soundness of
Π1 = (G1,P1,V1). Once again, the knowledge soundness of Π1 guarantees a corresponding extractor
E1. The desired extractor E then uses E1 to produce w1.

We first construct polynomial-sized adversary A2 attacking Π2 as follows

Adversary A2 :

1. Assuming that A has already interacted with V1 continue the interaction between A and
V2: On a query from V2, query A and respond with the response of A.

2. Output the witness w3 output by A.

Let ε2 be the success probability of A2. By the knowledge soundness of Π2, there exists a
corresponding expected polynomial-time extractor E2 such that on input pp2 and oracle access to
〈A2,V2(u2)〉 produces w2 such that (u2, w2) ∈ R2 with probability ε2 − negl(λ).

We now construct a polynomial-sized adversary A1 attacking Π1 as follows

Adversary A1(pp2) :

1. On a query from V1, query A and respond with the response of A

2. Once V1 finishes querying, run E〈A2,V〉
2 (pp2) to retrieve and output w2.

Let ε1 be the success probability of A1. By the knowledge soundness of Π1, there exists a
corresponding expected polynomial-time extractor E1 such that on input pp1 and oracle access to
〈A1,V1〉 produces w1 such that (u1, w1) ∈ R1 with probability ε1 − negl(λ).

Given extractor E1 we can construct E as follows

14



Extractor E((pp1, pp2)) :

1. Run E1 on input pp1 giving it oracle access to 〈A1(pp2),V〉 to retrieve and output w1.

Let ε be the success probability of A in outputting w3 that satisfies u3 output by V. Because A2 is
always run after the first half of A has interacted with the first half of V, by construction, we have
that A2 succeeds with the same probability as A. This means that E2 succeeds with probability
ε − negl(λ). However, by construction, this means that A1 succeeds with probability ε − negl(λ).
In turn, this means that E succeeds in outputting w1 that satisfies u1 input to V with probability
ε− negl(λ).

When proving constructions secure, reasoning about knowledge-soundness directly is typically
cumbersome. To alleviate this issue, prior work [BCC+16] observes that most protocols are alge-
braic: The corresponding extractor typically runs the malicious prover multiple times with refreshed
verifier randomness to retrieve accepting transcripts, which can be interpolated to retrieve the wit-
ness. Leveraging this insight, [BCC+16] provide a general extraction lemma, which states that
to prove knowledge-soundness for algebraic protocols, it is sufficient to show that there exists an
extractor that can produce a satisfying witness when provided a tree of accepting transcripts with
refreshed verifier randomness at each layer. This proof technique has been adapted to various
settings [BCL+21,KST21,BBB+18,BCS21], and we similarly provide the corresponding lemma for
reductions of knowledge.

Definition 11 (Tree of Transcripts). Consider a m-round reduction (G,P,V). For n1, . . . , nm ∈
N, an (n1, . . . , nm)-tree accepting of transcripts for fixed statement u1 comprises of n1 partial
transcripts with fresh randomness in the verifier’s first message; and for each such transcript, n2
partial transcripts with fresh randomness in the verifier’s second message; and so on, for a total
of
∏
i ni leaves comprising of accepting transcripts and corresponding witnesses w2 output by the

prover.

Lemma 7 (Tree Extraction [BCS21]). An m-round reduction (G,P,V) satisfies knowledge
soundness if there exists an PPT extractor χ such that for all instances u1, outputs a satisfying
witness w1 with probability 1 − negl(λ), given an (n1, . . . , nm)-tree of accepting transcripts where∏
i ni = poly(λ).

Proof (Sketch). The proof of Lemma 7 is similar to that of [KST21], which considers the setting
in which an extractor repeatedly runs the malicious prover with refreshed verifier randomness to
produce both a tree of accepting transcripts and a tree of corresponding prover outputs.

4 Tensor Reductions

Recall that the tensor reduction reduces the task of checking the evaluation of a tensor to checking
the evaluation of tensors in constituent spaces via random linear combinations. Such a pattern
can be viewed as generalization of recursive split-and-fold techniques introduced by [BCC+16], and
expanded upon in various settings [BBB+18,BMMV19,BCS21].
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Construction 2 (Tensor Reduction). Suppose for tensors t ∈ (U → X)⊗ (V → Y ) of rank I,
w ∈ U ⊗ V of rank J , and z ∈ X ⊗ Y over ring R, a verifier would like to check

t(w) ∼= z (4)

where t, w can be decomposed as follows:

t =
∑
i∈[I]

ri ⊗ si

w =
∑
j∈[J ]

uj ⊗ vj .

By definition, the verifier can check (4) by checking
∑

i,j ri(uj)⊗ si(vj) ∼= z. Therefore, the prover
begins by computing and sending xij ← ri(uj) and yij ← si(vj) for all i ∈ [I], j ∈ [J ]. The verifier
checks ∑

i∈[I],j∈[J ]

xij ⊗ yij ∼= z.

The verifier must still check that xij = ri(uj) and yij = si(vj) for all i, j. To do so, the verifier takes
a random linear combination of these checks by sending random α, β from sampling set Q ⊆ R,
and computing x =

∑
i,j α

iβjxij , y =
∑

i,j α
iβjyij . The verifier then outputs (α, β, x, y), reducing

the original check to the task of (recursively) checking(∑
i

αiri

)(∑
j

βjuj

)
∼= x and

(∑
i

αisi

)(∑
j

βjvj

)
∼= y.

Theorem 7 (Tensor Reduction, Theorem 2 Restated). For tensors t =
∑

i ri⊗si ∈ (U⊗V )→
(X ⊗ Y ) of rank I, w =

∑
j uj ⊗ vj : U ⊗ V of rank J , and z : X ⊗ Y over ring R, the tensor

reduction reduces the task of checking

t(w) ∼= z (5)

to the task of checking(∑
i

αiri

)(∑
j

βjuj

)
∼= x and

(∑
i

αisi

)(∑
j

βjvj

)
∼= y (6)

for verifier output (α, β, x, y). Formally, if (5) is true, then (6) is true with probability 1, and if (5)
is false, then (6) is false with probability at least 1− IJ

|Q| . The prover complexity, verifier complexity,
and communication complexity are all proportional to IJ .

Proof. This follows from the properties of a sampling set and the Schwartz-Zippel Lemma [Sch80]
extended to modules.

Example 1 (Knowledge Argument). In order to build intuition for the mechanics of the ten-
sor reduction, we detail how an argument of knowledge3 for Pedersen commitments [Ped91] with

3See Appendix A, Definition 15
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sublinear communication can be expressed as a tensor reduction. The resulting protocol is nearly
identical to the recursive knowledge argument presented by [BCC+16]. Consider group G of prime
order p where the discrete logarithm problem is hard and field F = Zp, and treat both as F-modules.
Consider some public key G ∈ Gn. We can interpret elements g ∈ G as a function mapping from
F to G given by g(a) 7→ ga. Suppose a verifier would like to check for some commitment C ∈ G,
that the prover knows vector A ∈ Fn such that

G(A) = C. (7)

We show how to recursively reduce via the tensor reduction the task of checking Equation (7) to
the task of checking a single scalar multiplication.

In the base case, when n = 20, the prover simply sends A and the verifier checks G(A) = C.
Suppose now that n = 2i. We have that

Gn ∼= Gn/2 ⊗ (F∗)2

and

Fn ∼= Fn/2 ⊗ (F)2.

Let {δ0, δ1} and {b0, b1} be bases for (F∗)2 and (F)2 respectively. Then, we have that

G = G0 ⊗ δ0 +G1 ⊗ δ1
A = A0 ⊗ b0 +A1 ⊗ b1

for some G0, G1 ∈ Gn/2 and A0, A1 ∈ Fn/2. These terms could be interpreted as the first and
second half of vectors G and A. Therefore, checking Equation (7) is equivalent to checking(∑

i

Gi ⊗ δi
)(∑

j

Aj ⊗ bj
)

= C ⊗ 1.

Stepping through the tensor reduction with respect to this decomposition, we have that the
prover sends to the verifier (Gi)(Aj), δi(bj) for i, j ∈ {0, 1}. Explicitly, the prover sends the terms
(G0(A0), 1), (G0(A1), 0), (G1(A0), 0), and (G1(A1), 1). We recognize that the first and last terms
correspond with the first and second half of commitment C, and the middle two terms are cross
terms. This pattern is standard among protocols that employ recursive “folding” [KST21,BBB+18,
BCS21].

Upon receiving these terms, the verifier checks that∑
i,j∈{0,1}

Gi(Aj)⊗ δi(bj) ∼= C,

which holds because

G0(A1)⊗ 1 +G0(A1)⊗ 0 +G1(A0)⊗ 0 +G1(A1)⊗ 1 = (G0(A0) +G1(A1))⊗ 1
∼= C.

The verifier then samples and sends random α, β ← F, and sets the new statements to be
checked to be

(G0 + αG1)(A0 + βA1) = G0(A0) + βG0(A1) + αG1(A0) + αβG1(A1)
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and

(δ0 + αδ1)(b0 + βb1) = 1 + β · 0 + α · 0 + αβ · 1

The latter check is trivial and can be done immediately by the verifier. As for the former check,
because (G0 + αG1) ∈ Gn/2 and (A0 + βA1) ∈ Fn/2, it can be recursively reduced by invoking a
knowledge argument over vectors of size n = 2i−1.

5 Representing New and Existing Techniques as Tensor Reduc-
tions

5.1 Universality of Linearization

We start by showing that any non-linear computation can be expressed as a linear computation
(i.e., a tensor) composed with a universal non-linear transformation. This result becomes pivotal
later when showing that tensor reductions generalize sumcheck protocols. To build intuition, we
start by considering the concrete setting of univariate polynomials over a field F. Consider degree
k polynomial P . Then for some coefficients c0, . . . , ck ∈ F, P can be expressed as

P (x) = c0 + c1x+ c2x
2 + . . .+ ckx

k

P is clearly non-linear in x; however, we observe that the non-linear transformation on x does not
depend on the coefficients of P . In particular we can define non-linear map ι : F→ Fk as follows:

ι(x) 7→ (1, x, x2, . . . , xk)

and then define a linear map P̃ that takes as input ι(x) and computes an inner-product with the
vector of coefficients (c0, . . . , ck). That is,

P̃ ((1, x, . . . , xk)) 7→ 〈(c0, . . . , ck), (1, x, . . . , xk)〉.

and thus we have that P = P̃ ◦ ι where ι is a universal non-linear map, and P̃ is a homomor-
phism. We generalize this approach to construct homomorphisms from multilinear polynomials
over modules (Theorem 8).

Lemma 8 (Universality of Linearization). Let R be a commutative ring, and let V be an
R-module. For degree bounds K1, . . . ,Kn, let the map ι ∈ Rn → ⊗j∈[n]RKj be defined as follows:

ι(u1, . . . , un) 7→
⊗
j∈[n]

⊕
k∈[Kj ]

ukj .

Then, an arbitrary polynomial ϕ ∈ Rn → V induces a homomorphism ϕ̃ mapping from ⊗i∈[n]RKi

to V such that ϕ̃ ◦ ι = ϕ. In other words, the following diagram commutes.

Rn V

⊗jRKj

ϕ

ι
ϕ̃
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Proof. Because ϕ is a polynomial, we have that

ϕ(u1, . . . , un) =
∑
i

vi ⊗ ϕi,1(u1)⊗ . . .⊗ ϕi,n(un)

for polynomials ϕ1,j , . . . , ϕn,j where ϕi,j maps from Uj to R, and vi ∈ V . Then for some degree
bounds K1, . . . ,Kn, we have

ϕ(u1, . . . , un) =
∑
i

vi ⊗
⊗
j

∑
k∈{0,...,Kj}

ri,j,k(u
k
j )

for ri,j,k ∈ R. Aggregating the inputs, we have

ϕ(u1, . . . , un) =

(∑
i

vi ⊗
⊗
j

⊕
k∈{0,...,Kj}

ri,j,k

)(⊗
j

⊕
k∈{0,...,Kj}

ukj

)

where homomorphism ⊕k∈{0,...Kj}ri,j,k mapping from RKj to R is defined as( ⊕
k∈{0,...,Kj}

ri,j,k

)( ⊕
k∈{0,...,Kj}

ukj

)
7→

∑
k∈{0,...,Kj}

ri,j,k(u
k
j )

Let

ϕ̃ :=

(∑
i

vi ⊗
⊗
j

⊕
k∈[Kj ]

ri,j,k

)
.

By observation, homomorphisms mapping to R are closed under direct sums and tensor products,
and therefore ϕ̃ is a homomorphism. Additionally, we have by definition(⊗

j

⊕
k∈[Kj ]

ukj

)
= ι(u1, . . . , un).

And therefore, we have that

ϕ(u1, . . . , un) = (ϕ̃ ◦ ι)(u1, . . . , un).

5.2 Recovering the Sumcheck Protocol

The previous sections give us a general methodology to linearize any polynomial over modules. We
take advantage of this result to express the sumcheck protocol as a tensor reduction over (linearized)
polynomials. As a result, we have that a large class of split-and-fold techniques [BCC+16, AC20,
BBB+18] instantiated under a variety of cryptographic assumptions (e.g., discrete log, groups of
unknown order, lattices, pairings) can be expressed as tensor reductions via the results of Bootle
et al. [BCS21].

Our high level approach is as follows: First, we recall a simplified definition of the sumcheck
protocol. Next, we define a linearized sumcheck protocol which represents running the tensor reduc-
tion on linearized multivariate polynomials decomposed as univariate polynomials. This effectively

19



fixes the modules and decomposition rules necessary to fully specify the tensor reduction. Finally,
we prove that a single step of the sumcheck protocol is structurally equivalent to a single step of
the linearized sumcheck protocol.

We begin by recalling the sumcheck protocol generalized to modules [BCS21]. We make several
simplifications for the sake of a more lucid presentation: First, we only define and consider a single
recursive step of the sumcheck and prove that it is structurally equivalent to a single recursive step
of the tensor reduction instantiated over multivariate polynomials. Equivalence between the full
sumcheck protocol and the full recursive tensor reduction follows by induction. Second, we have
the verifier immediately compute the statement polynomial in each recursive step, as opposed to
deferring this computation until the end. The purpose of this modification is to avoid having to
carry the randomness generated by both the tensor reduction and sumcheck protocol throughout
all the rounds in a global statement. Finally, we assume that both protocols use the standard
monomial basis. Similar results hold for an arbitrary basis.

Relation 1 (Sumcheck Relation). Consider ring R, R-module V , and subset H ⊆ R. The
sumcheck relation RSC, characterized by the number of variables n, is defined to be

RSC(n) =

{
((P, σ),⊥)

∣∣∣∣ P ∈ Rn → V, σ ∈ V,∑
x1,...,xn∈H P (x1, . . . , xn) = σ.

}
For notational simplicity, we omit ⊥.

Construction 3 (Sumcheck Protocol [LFKN92,BCS21]). Consider ring R, R-module V , and
subset H ⊆ R. Suppose for some polynomial P ∈ Rn → V with degree K − 1 in each variable, and
claimed sum σ ∈ V , the verifier would like to check

(P, σ) ∈ RSC(n)

The prover sends to the verifier evaluations of degree K − 1 polynomial

p(X) =
∑

x1,...,xn−1∈H
P (x1, . . . , xn−1, X).

The verifier checks ∑
xn∈H

p(xn) = σ.

The verifier then samples and sends α from a sampling set Q in R and computes

σ′ ← p(α)

P ′(X1, . . . , Xn−1)← P (X1, . . . , Xn−1, α),

reducing the original task to the task of checking

(P ′, σ′) ∈ RSC(n− 1).

Lemma 9 (Sumcheck Protocol [LFKN92, BCS21]). The sumcheck protocol is a reduction
for (RSC(n),RSC(n− 1)).
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Next we describe a linearized sumcheck statement and a corresponding linearized sumcheck
protocol which leverages the tensor reduction.

Relation 2 (Linearized Sumcheck Relation). Consider ring R, R-module V , and subset H ⊆ R.
Suppose for some polynomial map P ∈ Rn → V with degree K − 1 in each variable, and claimed
sum σ ∈ V , the verifier would like to check∑

u1,...,un∈H
P (u1, . . . , un) = σ. (8)

By the universality of linearization (Theorem 8), there exists tensor P ∈ V ⊗
⊗

i∈[n] R
K such that

P = P ◦ ι. Because P is linear in its inputs, by letting

U =
∑

u1,...,un∈H
ι(u1, . . . , un),

the verifier can check equation (8) by checking

P(U) ∼= σ.

This motivates defining the corresponding linearized sumcheck relation

RLSC(n) =

 ((P,σ),⊥)

∣∣∣∣∣∣
P ∈ V ⊗

⊗
i∈[n] R

K ,σ ∈ V,
U =

∑
u1,...,un∈H ι(u1, . . . , un),

P(U) = σ


For notational simplicity, we omit ⊥.

Construction 4 (Linearized Sumcheck Protocol). For arbitrary ring R, R-module V , subset
H ⊆ R, and degree bound K, we build a reduction for (RLSC(n),RLSC(n − 1)). Let {δ1, . . . , δK}
represent a canonical basis for RK and let H = {h1, . . . , hm}. For (P,σ) ∈ RLSC(n), and U =∑

u1...,un∈H ι(u1, . . . , un) we have that

P =
∑
i∈[K]

Pi ⊗ δi ∈
(
V ⊗

( ⊗
`∈[n−1]

RK
))
⊗ RK

for some Pi, and

U =
∑
j∈[m]

U′ ⊗ hj ∈
( ⊗
`∈[n−1]

RK
)
⊗ RK .

where U′ =
∑

u1,...,un−1∈H ι(u1, . . . , un−1), and hj = (h0j , . . . , h
K−1
j ). Applying the tensor reduction

with respect to this decomposition reduces the verifier’s task of checking the original check to the
task of checking (∑

i

αiδi

)(∑
j

βjhj

)
= x

which the verifier checks immediately and(∑
i

αiPi

)((∑
j

βj
)
U′
)

= y

for α, β, x, y ∈ R generated during the reduction. Thus, the verifier computes P′ = (
∑

i α
iPi) and

σ′ = y/(
∑

j β
j) and reduces the original check to the task of checking (P′,σ′) ∈ RLSC(n− 1).
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Given constructions for both the sumcheck protocol and the linearized sumcheck protocol, we
can now prove that the two are structurally equivalent. To do so we will show that a single iteration
of the sumcheck protocol is equivalent to first linearizing the statement polynomials, running the
linearized sumcheck protocol and mapping the resulting statement back into the original space,
and additionally show that the generated transcript from the linearized sumcheck protocol can be
used to recover the transcript produced by the standard sumcheck protocol. It is important to
note that we cannot show that the linearized sumcheck protocol transcript is equivalent to the
sumcheck protocol transcript. This is because the tensor reduction transcript inherently contains
more structural information, which must be thrown out to recover the sumcheck protocol transcript.

Theorem 8 (Structural Equivalence). Consider ring R, R-module V , subsetH = {h1, . . . , hm} ⊆
R, and degree bound K − 1. Define the isomorphism Φ from a statement in RSC to a statement in
RLSC as follows

Φ((P, σ)) 7→ (P, σ)

where P is the tensor guaranteed by the universality of linearization such that P = P ◦ ι. Addi-
tionally, define the map τ from a transcript of 〈PSC,VSC(ρ)〉 to a transcript of 〈PLSC,VLSC(ρ)〉 as
follows

τ
({
rij , sij

∣∣i ∈ [K], j ∈ [m]
}
, α, β

)
7→
{∑

i

rij · sij
∣∣j ∈ [m]

}
, α.

Then, the following diagram commutes.

(P, σ) ∈ RSC(n) (P ′, σ′) ∈ RSC(n− 1), trSC

(P,σ) ∈ RLSC(n) (P′,σ′) ∈ RLSC(n− 1), trLSC

〈PSC,VSC(ρ)〉

Φ

〈PLSC,VLSC(ρ)〉

Φ−1, τ

for identical verifier randomness ρ.

Proof. Consider arbitrary (P, σ) ∈ RSC(n). Let

P (X1, . . . , Xn) = P1(X1, . . . , Xn−1) ·X0
n + . . .+ PK(X1, . . . , Xn−1) ·XK−1

n

Then, by linearity of Φ, we have

P = P1 ⊗ δ1 + P2 ⊗ δ2 + . . .+ PK ⊗ δK

where P = Φ(P ) and Pi = Φ(Pi). Thus, for hj = (h0j , . . . , h
K
j ), PLSC sends to VLSC

{Pi(U
′), δi(hj)|i ∈ [K], j ∈ [m]} = {Pi(U

′), hij |i ∈ [K], j ∈ [m]}

However this means

τ({Pi(U
′), hij |i ∈ [K], j ∈ [m]}) =

{∑
i

Pi(U
′) · hij |j ∈ [m]

}
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=
{ ∑
x1,...,xn

P (x1, . . . , xn−1, hj)|j ∈ [m]
}

which is precisely equal to the set of evaluations of p(X) that PSC sends to VSC. Additionally, by
assumption both VLSC, and VSC are initialized with the same randomness. This means that trLSC
and trSC contain the same challenge α sent by the verifier. Therefore we have that τ(trLSC) = trSC.

Next, we observe that

Φ−1(P′) = Φ−1
(∑

i

Pi · αi
)

=
∑
i

Φ−1(Pi) · αi =
∑
i

Pi · αi = P ′.

Additionally, we observe that

σ′ =
∑
i,j

αiβjPi(U
′)/
(∑

j

βj
)

=
∑
i

αiPi(U
′) =

∑
x1,...,xn

P (x1, . . . , xn−1, α) = σ′

Therefore, we have also have that Φ−1(P′,σ′) = (P ′, σ′).

Corollary 1 (Linearized Sumcheck Protocol). The linearized sumcheck protocol is a reduction
for (RLSC(n),RLSC(n− 1)).

Proof. Completeness follows from Theorem 8. Soundness follows from the soundness of the tensor
reduction.

5.3 A Canonical Reduction of Knowledge over Tensors

Recall that the canonical relation for a statement of the form u(w) ∼= v treats (u, v) as the statement
and w as the witness. In a corresponding reduction of knowledge, a prover argues that it knows
w such that u(w) ∼= v. We first recall the formal definition for the canonical relation over tensor
statements. We then construct the corresponding canonical reduction of knowledge (when working
over vector spaces in particular), which becomes a central building block in reductions of knowledge
for NP.

Definition 12 (Canonical Tensor Relation, Definition 1 Restated). For modules W , V ,
and U ∼= (W → V ), let the corresponding canonical tensor relation be defined as

R((U, V ),W ) =

 ((u, v), w)

∣∣∣∣∣∣
u ∈ U, v ∈ V,w ∈W,
u(w) = v,
rank(w) ≤ J


for some implicit rank bound J .

Construction 5 (Canonical Reduction of Knowledge over Tensors). Consider field F,
length parameter n, F-modules W ∼= W ′ ⊗ Fn, V ∼= V ′ ⊗ F, and U ∼= U ′ ⊗ (F∗)n where U ′ ∼=
(W ′ → V ′). We construct a reduction of knowledge for (R((U, V ),W ),R((U ′, V ′),W ′)). Let {bi}
be a basis for Fn and let {δi} be the corresponding dual basis. Suppose the prover and verifier are
provided statement u =

∑
i ui ⊗ δi ∈ U , and v ∈ V . Additionally, suppose the prover is provided

satisfying witness w =
∑

j wj ⊗ bi ∈ W . The prover and verifier run the tensor reduction on the
statement

u(w) ∼= v.
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At the end of interaction, the verifier outputs (α, β, v′, c) where c ∈ F. The prover and verifier
compute u′ =

∑
i α

iui and the prover additionally computes w′ =
∑

j β
jwj as dictated by the

tensor reduction. The prover and verifier set the new check to be ((u′, v′), w′) ∈ R((U ′, V ′),W ′).

Theorem 9 (Canonical Reduction of Knowledge over Tensors). Consider field F, length
parameter n, F-modules W ∼= W ′ ⊗ Fn, V ∼= V ′ ⊗ F, and U ∼= U ′ ⊗ (F∗)n where U ′ ∼= (W ′ → V ′).
Construction 5 is a reduction of knowledge for(

R((U, V ),W ), R((U ′, V ′),W ′)
)
.

Proof. Consider instance u =
∑

i∈[I] ui⊗δi and v. We prove knowledge soundness via tree extraction
(Lemma 7). That is, we construct extractor χ that outputs w such that u(w) ∼= v given a tree of
accepting transcripts and corresponding output prover witnesses.

Indeed, let I be the rank of the statement, and J be the implicit rank bound specified by the
relation. Suppose the extractor χ is provided with IJ accepting transcripts τmk with the same
prover’s first message

{(v1,ij , v2,ij)|i ∈ [I], j ∈ [J ]}

and with randomness (αm, βmk) for m ∈ [I], k ∈ [J ]. Let w′mk ∈ W ′ for k ∈ [IJ ] denote the
corresponding satisfying witnesses. For m ∈ [I], the extractor solves for wmj ∈W ′ for j ∈ [J ] such
that ∑

j∈[J ]

βjmkwmj
∼= w′mk (9)

for k ∈ [J ] using an inverse Vandermonde matrix (where invertibility is afforded by working over a
field). Because w′mk is a satisfying witness, for all m ∈ [I], k ∈ [J ] we have that(∑

i

αimui

)(
w′mk

)
∼=
(∑

i,j

αimβ
j
mkv1,ij

)
.

Then, by Equation (9) we have for all m ∈ [I], k ∈ [J ](∑
i

αimui

)(∑
j

βjmkwmj

)
∼=
(∑

i,j

αimβ
j
mkv1,ij

)
.

This in turn implies that for all m ∈ [I] and j ∈ [J ](∑
i

αimui

)(
wmj

)
∼=
(∑

i

αimv1,ij

)
. (10)

To compute a satisfying witness, the extractor first computes anj for all m ∈ [I], j ∈ [J ] such
that for all i ∈ {0, . . . , I − 1} ∑

m∈[I]

αimamj
∼= v2,ij . (11)
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Next, the extractor computes

w ←
∑
l∈[I]

∑
m∈[I]

∑
j∈[J ]

amj · αlm · wmj ⊗ bl (12)

We will now show that w is a satisfying witness. Indeed, we have

u(w) ∼=
(∑

i

ui ⊗ δi
)(∑

l,m,j

amj · αlm · wmj ⊗ bl
)

By (12).

∼=
∑
i,l,m,j

amj · αlm · ui(wmj)⊗ δi(bl)

∼=
∑
i,m,j

amj · αim · ui(wmj) By δi(bl) ∼= 0 for i 6= l.

∼=
∑
m,j

amj ·
∑
i

αim · ui(wmj)

∼=
∑
m,j

amj ·
∑
i

αim · v1,ij By (10).

∼=
∑
i,j

v1,ij ·
∑
m

αimamj

∼=
∑
i,j

v1,ij · v2,ij By (11).

∼= v. By the verifier’s check.

5.4 A Reduction of Knowledge for NP

We demonstrate that the canonical tensor reduction of knowledge can be used to construct reduc-
tions of knowledge for various linear-algebraic relations. We first construct a reduction of knowledge
for linear-forms that is reminiscent of a similar protocol derived by [AC20]. We then construct a
reduction of knowledge from bilinear-forms to linear-forms, which in turn enables a reduction of
knowledge for NP. We start by defining a trivial relation to represent arguments of knowledge as
reductions of knowledge.

Relation 3 (Boolean Relation). Let Rbool = {(true,⊥)}. A reduction of knowledge that reduces
toRbool can be seen as reducing a statement to either true or false. This corresponds to the standard
notion of an argument of knowledge.

Relation 4 (Linear Forms). Consider group G of prime order p and field F = Zp such that the
bilinear relation and the coset equality assumptions hold for (G,F), and treat both as F-modules.
Consider public key G ∈ Gn. Suppose the verifier would like to check for some commitment A ∈ G,
public vector B ∈ (F∗)n, and scalar σ ∈ F that the prover knows vector A ∈ Fn such that

G(A) = A and B(A) = σ. (13)

We define homomorphism G⊕B ∈ Gn ⊕ (F∗)n as follows

(G⊕B)(A) 7→ G(A)⊕B(A).
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Then, checking Equation (13) is equivalent to checking

(G⊕B)(A) ∼= A⊕ σ.

Therefore, by defining

LFn = ((LF∗n, LF
ᵀ
n), LFn)

= ((Gn ⊕ (F∗)n,G⊕ F),Fn),

a linear form can be checked by checking membership in the corresponding canonical relation
R(LFn).

Construction 6 (Linear Forms Knowledge Reduction). For n = 2i where i ≥ 0, we construct
a reduction of knowledge for (R(LFn),Rbool) by recursively composing reductions of knowledge for
(R(LFn),R(LFn/2)) with a base case reduction of knowledge for (R(LF1),Rbool).

In the base case, when n = 20, the prover simply sends witness A ∈ F. The verifier then outputs
true if A satisfies the relation.

For n = 2i where i ≥ 1, we leverage the tensor reduction to construct a knowledge reduction
for (R(LFn),R(LFn/2)). Indeed, we have that

LF∗n
∼= (Gn ⊕ (F∗)n) ∼= (Gn/2 ⊕ (F∗)n/2)⊗ (F∗)2 ∼= LF∗n/2 ⊗ (F∗)2,

and

LFn ∼= Fn ∼= Fn/2 ⊗ F2 ∼= LFn/2 ⊗ F2.

Additionally, we have that

LFᵀn
∼= (G⊕ F) ∼= (G⊕ F)⊗ F ∼= LFᵀn/2 ⊗ F.

Therefore, applying the canonical reduction with respect to this decomposition reduces the task of
checking membership in R(LFn) to the task of checking membership in R(LFn/2).

Lemma 10 (Linear Forms Knowledge Reduction). Construction 6 is a reduction of knowl-
edge for (R(LFn),Rbool). The prover and verifier time complexity is O(n). The communication
complexity is O(log n).

Proof. Completeness follows by observation and knowledge soundness holds by the knowledge
soundness of the underlying canonical reduction. In recursive call i, the verifier and prover take
O(2i) time to compute the new statement. The prover additionally takes O(2i) time to compute
the new witness and the values to send to the verifier. Because (F∗)2 and F2 each have a basis of
size 2, the degree bound J can be set to 2, and the verifier can have the prover only send 4 values.
Because there are a total of log(n) recursive calls, the total prover and runtime is O(n), and the
total communication complexity is O(log n).

Relation 5 (Bilinear Forms). Consider group G of prime order p and corresponding field F = Zp
such that the bilinear relation assumption holds for (G,F) and (G,G), and treat both as F-modules.
Consider public keysG,H ∈ Gm,Gn. Suppose the verifier would like to check for some public matrix
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M ∈ Fm×n, commitments A,B ∈ G, and scalar σ ∈ F, that the prover knows vectors A,B ∈ Fm,Fn
such that

A>MB = σ (14)

G(A) = A (15)

H(B) = B. (16)

By the universality of the tensor product (Lemma 2), there exists homomorphism M ∈ (F∗)m⊗(F∗)n
such that M(A⊗B) = A>MB. Therefore, to check Equation (14), it is sufficient to check M(A⊗
B) = σ. To check Equations (15) and (16), due to the bilinear relation assumption, it is sufficient
to check (G⊗H)(A⊗B) = A⊗B. We define homomorphism G⊗H⊕M ∈ Gm⊗Gn⊕(F∗)m⊗(F∗)n
as follows

(G⊗H ⊕M)(A⊗B) 7→ G(A)⊗H(B)⊕M(A⊗B).

By the previous assertions, checking Equations (14), (15), and (16) is equivalent to checking

(G⊗H ⊕M)(A⊗B) ∼= A⊗B ⊕ σ.

Therefore, by defining

BFm,n = ((BF∗m,n,BF
ᵀ
m,n),BFm,n)

= ((Gn ⊗Gn ⊕ (F∗)m ⊗ (F∗)n,G⊗G⊕ F),Fm ⊗ Fn)

a bilinear form can be checked by checking membership in the corresponding canonical relation
R(BFm,n).4

Construction 7 (Bilinear Forms Knowledge Reduction). For n = 2i where i ≥ 0, we
construct a reduction of knowledge for (R(BFm,n),R(LFm)) by recursively composing reductions of
knowledge for (R(BFm,n),R(BFm,n/2)) with a base case reduction of knowledge for (R(BFm,1),R(LFm)).

Consider instance G⊗H ⊕M ∈ BF∗m,n and A⊗B ⊕ σ ∈ BFᵀm,n.
In the base case, when n = 20 the prover simply sends B ∈ F. The verifier is tasked with

checking

(G⊗H)(A⊗B) ∼= A⊗B and M(A⊗B) ∼= σ.

The verifier checks H(B) ∼= B to reduce the former check to the task of checking G(A) ∼= A. The
verifier then partially evaluates M ∈ (F∗)m ⊗ F∗ on B to retrieve V ∈ (F∗)m which reduces the
latter check to the task of checking V(A) = σ. Aggregating, the verifier is tasked with checking
the following linear form

(G⊕V)(A) ∼= A⊕ σ.

Suppose now that n = 2i for i ≥ 1. We have that

BF∗m,n
∼= (Gm ⊗Gn)⊕ ((F∗)m ⊗ (F∗)n)

4Alternatively we can encode bilinear forms with BFm,n = LFm ⊗ LFn which is more structurally satisfying but
leads to a reduction of knowledge that is both more complicated and concretely more expensive.
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∼=
(
(Gm ⊗Gn/2)⊕ ((F∗)m ⊗ (F∗)n/2)

)
⊗ (F∗)2

∼= BFm,n/2 ⊗ (F∗)2.

and

BFm,n ∼= Fm ⊗ Fn ∼= (Fm ⊗ Fn/2)⊗ F2 ∼= BFm,n/2 ⊗ F2.

Additionally, we have that

BFᵀm,n
∼= G⊗G⊕ F ∼= (G⊗G⊕ F)⊗ F ∼= BFᵀm,n/2 ⊗ F.

Therefore, the prover and verifier can recursively apply the canonical reduction with respect to this
decomposition.

Lemma 11 (Bilinear Forms Knowledge Reduction). Construction 7 is a reduction of knowl-
edge for (R(BFm,n),R(LFm)). The prover and verifier time complexity is O(n). The communication
complexity is O(log n).

Proof. Completeness follows by observation. The prover and verifier communication and compu-
tation complexity follow from a similar argument as Lemma 10.

As for knowledge soundness, consider instance G ⊗H ⊕M ∈ BF∗m,n and A ⊗ B ⊕ σ ∈ BFᵀm,n.
We must construct an extractor that, when provided with oracle access to the interaction between
the prover and verifier, outputs a witness A⊗B ∈ Fn ⊗ Fm such that

(G⊗H ⊕M)(A⊗B) ∼= A⊗B ⊕ σ.

Indeed, we have for each rewinded interaction the prover outputs witness A such that

(G⊕V)(A) ∼= A⊕ σ.

By the bilinear relation assumption over (G,F) we must have that all of these witnesses are equiva-
lent with overwhelming probability. Let A = (a1, . . . , an) denote this witness. Knowledge soundness
of the base case follows by observation. Thus, by the knowledge soundness of the canonical ten-
sor reduction and composability of knowledge soundness (Theorem 6), the extractor can retrieve
witness

∑
iA
′
i ⊗B′i ∈ Fn ⊗ Fm such that(

G⊗H ⊕M
)(∑

i

A′i ⊗B′i
)
∼= A⊗B ⊕ σ.

We will show that due to the bilinear relation assumption over (G,F) and (G,G), the witness must
be of the form A⊗B for some efficiently computable B. Indeed, rearranging we have that∑

i

A′i ⊗B′i ∼=
∑
i

δi ⊗Bi

for canonical basis {δi} for Fn, and some Bi ∈ Fm. Then, we have(
G⊗H

)(∑
i

δi ⊗Bi
)
∼=
∑
i

Gi ⊗Bi
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where Bi = H(Bi). Additionally, we have

A⊗B ∼=
(∑

i

ai ·Gi
)
⊗B ∼=

∑
i

Gi ⊗ (ai ·B).

By the bilinear relation assumption over (G,G) we have Bi
∼= ai ·B for all i ∈ [n] with overwhelming

probability. This in turn implies H(a−1i · Bi) ∼= B for all i ∈ [n]. Then, by the bilinear relation
assumption over (G,F), we have that

a−11 ·B1
∼= . . . ∼= a−1n ·Bn

with overwhelming probability. Let B = a−1i ·Bi denote the above value. Then we have that A⊗B
is a satisfying witness because

A⊗B ∼=
∑
i

ai · δi ⊗B ∼=
∑
i

δi ⊗Bi ∼=
∑
i

A′i ⊗B′i.

Relation 6 (NP Relation). [KMP20] present an algebraic constraint system to encode arithmetic
circuits where each constraint is a bilinear form. We can take advantage of this formulation to
encode arguments for NP as linear statements. Consider group G of prime order and corresponding
field F such that the bilinear relation assumption holds for (G,F).

For n variables and m = O(n) constraints, the constraint system consists of m sparse matrices
M1, . . . ,Mn ∈ Fn×n such that the total number of non-zero values in all matrices combined is O(n),
and public vector X ∈ F`. A vector W ∈ Fn−` is considered a satisfying witness if

Z>MiZ = 0 ∀i ∈ [m]

where Z = (X,W ). We formulate satisfiability of the above constraint system as an argument of
knowledge as follows: Consider public key G ∈ Gn and a commitment Z ∈ G. Suppose a verifier
would like to check that a prover knows Z ∈ Fn such that

(Z1, . . . , Z`) = X

Z>MiZ = 0 ∀i ∈ [k]

G(Z) = Z.

The first check is equivalent to checking ` linear forms over the same witness

(G⊕ δi)(Z) ∼= Z ⊕Xi ∀i ∈ [`]

As for the latter checks, recall for each Mi there exists a corresponding tensor Mi ∈ Fn⊗Fn. Then,
performing the latter two checks is equivalent to checking m bilinear forms over the same witness
and image

(G⊗G⊕Mi)(Z ⊗ Z) ∼= Z ⊗ Z ⊕ 0 ∀i ∈ [m]
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Construction 8 (A Reduction of Knowledge for NP). Suppose an NP instance with n vari-
ables, m constraints, and an `-sized public vector is expressed as m bilinear forms in BFn,n with
the same witness and image, and ` linear forms in LFn with the same witness. We construct a
reduction of knowledge that reduces the task of checking such an instance into the task of checking
membership in Rbool.

We first construct a reduction of knowledge that reduces the task of checking m bilinear forms
and ` linear forms to the task of checking a single bilinear form and a single linear form. The
verifier can encode ` linear forms as a single linear form by taking a random linear combination.
In more detail, suppose the verifier is tasked with checking

(G⊕ δi)(Z) ∼= Z ⊕Xi ∀i ∈ [`], (17)

where (G ⊕ δi) ∈ LF∗n, Z ∈ LFn, and Z ⊕ Xi ∈ LFᵀn. The verifier samples and sends α
$← F, and

reduces the task of checking Equation (17) to the task of checking the following linear form.(∑
i

αi(G⊕ δi)
)

(Z) ∼=
∑
i

αi(Z ⊕Xi). (18)

Similarly, the verifier can encode m bilinear forms as a single bilinear form by taking a random
linear combination. In particular, suppose the verifier is tasked with checking

(G⊗G⊕Mi)(Z ⊗ Z) ∼= Z ⊗ Z ⊕ 0 ∀i ∈ [m] (19)

where (G⊗G⊕Mi) ∈ BF∗n,n, Z ⊗ Z ∈ BFn,n, and (Z ⊗ Z ⊕ 0) ∈ BFᵀn,n. The verifier samples and

sends β
$← F, and reduces the task of checking Equation (19) to the task of checking the following

bilinear form (∑
i

βi(G⊗G⊕Mi)
)

(Z ⊗ Z) ∼=
(∑

i

βi
)

(Z ⊗ Z ⊕ 0) (20)

To check Equation (18), the prover and verifier run a reduction of knowledge for linear forms.
To check Equation (20), The prover and verifier run a reduction of knowledge from bilinear forms
to linear forms and then a reduction of knowledge for linear forms.

Theorem 10 (A Reduction of Knowledge for NP). For arbitrary n = 2i,m = 2j , ` ∈ N for
i, j ∈ N, Construction 8 is a reduction of knowledge from the task of checking m bilinear forms in
BFn,n and ` linear forms in LFn representing an NP instance to the task of checking membership in
Rbool. The prover and verifier time complexity is O(n). The communication complexity is O(log n).

Proof (Sketch). Completeness and knowledge soundness follow from the completeness and knowl-
edge soundness of the underlying reductions of knowledge. Communication and computational
complexity similarly follow.
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A Supplementary Definitions

Definition 13 (Ring [DF04]). A ring R is a set together with two binary operations + and ×
satisfying the following axioms:

(i) (R,+) is a commutative group,

(ii) × is associative:

(a× b)× c = a× (b× c) for all a, b, c ∈ R,

(iii) multiplication distributes over addition:

(a+ b)× c = (a× c) + (b× c) and a× (b+ c) = (a× b) + (a× c)

for all a, b, c ∈ R.

The ring R is commutative if multiplication is commutative. The ring R is said to have an identity
(denoted 1) if there is an element 1 ∈ R such that

1× a = a× 1 = a for all a ∈ R.

Definition 14 (Module [DF04]). Consider commutative ring R. An R-module is a set M
together with

(i) A binary operation + such that (M,+) is a commutative group,

(ii) A map R×M →M , denoted by rm, for all r ∈ R, m ∈M such that

(r + s)m = rm+ sm

(rs)m = r(sm)

r(m+ n) = rm+ rn

for all r, s ∈ R and m,n ∈M .

(iii) In the case that R has a 1,

1m = m

for all m ∈M .

Definition 15 (Argument of Knowledge). Consider ternary relation R over tuples consisting
of public parameters, statement, and witness. An argument for R consists of PPT setup algorithm
G called the generator and PPT interactive algorithms P and V, called the prover and verifier
respectively, with the following structure

• G(λ)→ pp: Takes as input security parameter λ, outputs public parameters pp

• P(pp, u, w): Takes as input public pameters pp, statement u, and witness w. Interactively
proves that (pp, u, w) ∈ R.
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• V(pp, u) → {0, 1}: Takes as input public parameters pp, and statement u. Outputs 0 for
reject and 1 for accept.

Let 〈P(w),V〉(pp, u) = b denote the verifier’s output bit b after interacting with prover on common
inputs pp, u, and additional prover input w.

An argument satisfies perfect completeness if

Pr
[
〈P(w),V〉(pp, u) = 1

∣∣ (pp, u, w) ∈ R
]

= 1.

An argument satisfies knowledge soundness if for any PPT adversary P∗ there exists a PPT
extractor E such that for all instances u associated with R

Pr

[
(pp, u, w) ∈ R

∣∣∣∣ pp← G(λ),
w ← E(pp, u, ρ)

]
≥

Pr
[
〈P∗(ρ),V〉(pp, u) = 1

∣∣ pp← G(λ)
]
− negl(λ)

where ρ denotes the input randomness for P∗.
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