
Algebraic Reductions of Knowledge

Abhiram Kothapalli

Carnegie Mellon University

akothapalli@cmu.edu

Bryan Parno

Carnegie Mellon University

parno@cmu.edu

Abstract

We introduce reductions of knowledge, a generalization of arguments of knowledge, which
reduce checking knowledge of a witness in one relation to checking knowledge of a witness in
another (simpler) relation. Reductions of knowledge unify a growing class of modern techniques
as well as provide a compositional framework to modularly reason about individual steps in
complex arguments of knowledge. As a demonstration, we simplify and unify recursive argu-
ments over linear algebraic statements by decomposing them as a sequence of reductions of
knowledge. To do so, we develop the tensor reduction of knowledge, which generalizes the cen-
tral reductive step common to most recursive arguments. Underlying the tensor reduction of
knowledge is a new information-theoretic reduction, which, for any modules U , U1, and U2

such that U ∼= U1 ⊗ U2, reduces the task of evaluating a homomorphism in U to evaluating a
homomorphism in U1 and evaluating a homomorphism in U2.

Contents

1 Introduction 2
1.1 Reductions of Knowledge . 3
1.2 A Theory of Composition for Arguments of Knowledge 4
1.3 A Unified Theory for Recursive Algebraic Arguments 5
1.4 Overview of the Upcoming Sections . 8

2 Technical Overview 8
2.1 First Example: Vector Commitment Argument . 8
2.2 Second Example: Folding Schemes . 11

3 Preliminaries 12
3.1 Module Theory . 12
3.2 Cryptographic Preliminaries . 13

4 Reductions of Knowledge 14
4.1 Defining Reductions of Knowledge . 15
4.2 Composing Reductions of Knowledge . 16
4.3 Knowledge Soundness from Tree Extraction . 17

5 The Tensor Reduction of Knowledge 18
5.1 Tensor Evaluation Statements . 18
5.2 The Tensor Reduction . 19
5.3 The Tensor Reduction of Knowledge . 21

6 Instantiating the Tensor Reduction of Knowledge 23
6.1 Vector Commitments and Linear Forms . 23
6.2 Bilinear Forms . 24
6.3 Instantiating Spaces . 26

7 An Argument of Knowledge for NP 26

Acknowledgements 28

References 29

A Supplementary Definitions 32

B Deferred Proofs 33

C Recovering the Sum-Check Protocol 41

1 Introduction

Arguments of knowledge [GMR89] are powerful cryptographic primitives that allow a verifier to
efficiently check that a prover knows a satisfying witness for a claimed statement. Such argu-
ments provide strong integrity and privacy guarantees that enable a large class of cryptographic
applications [DLFKP16,SCG+14,KMS+16,ZKP15,TKPS21].

However, a growing body of work challenges the traditional paradigm by describing interactions
in which the verifier does not fully resolve the prover’s statement to true or false, but rather reduces
it to a simpler statement to be checked:

• The well-studied inner-product argument [BCC+16] (along with subsequent optimizations
[BBB+18] and generalizations [BMM+21,BCS21]) relies on recursively applying an interactive
reduction from the task of checking knowledge of size n vectors to the task of checking
knowledge of size n/2 vectors.

• Aggregation schemes for polynomial commitments [BGH19,BDFG20] and unbounded aggrega-
tion schemes for linear-map vector commitments [CNR+22] can both be viewed as interactive
reductions from checking proofs of several openings to a commitment to checking a proof of
a single opening to a commitment.

• Split-accumulation schemes [BCL+21] can be viewed as interactive reductions from checking
several proofs of knowledge and several accumulators to checking a single accumulator. Fold-
ing schemes [KST22] can be viewed as interactive reductions from checking knowledge of two
instances in a relation to checking knowledge of a single instance in the relation.

• As observed by Ràfols and Zapico [RZ21], most argument systems with a universal and
updatable trusted setup (e.g., [CHM+20, KMP20, Set20, CFF+21]) construct an interactive
reduction from the task of checking knowledge of a preimage of a matrix evaluation to the
task of checking knowledge of a preimage of a vector evaluation.

Such interactive reductions, although central to modern arguments, lack a unifying theoretical
foundation. As evidenced above, these reductions typically have case-by-case security definitions
(if any at all) that are tailored towards the larger systems that rely on them. The lack of a common
language makes it difficult to relate comparable techniques hidden under incomparable abstractions.
Moreover, stitching together various techniques requires remarkably delicate (and often tedious)
reasoning for how the soundness of the larger protocol reduces to the soundness of each subprotocol.

Contributions Towards a unifying language, we formalize the notion of an interactive reduc-
tion over statements of knowledge, in which the verifier reduces the task of checking the original
statement to the task of checking a new (simpler) statement. We refer to such a protocol as a
reduction of knowledge. We prove that reductions of knowledge can be composed sequentially and
in parallel. As such, reductions of knowledge serve as both a crisp abstraction and a theory of com-
position. In particular, they can be stitched together to modularly construct complex arguments
of knowledge. Under this treatment, each step of an argument is instilled with a meaningful (and
composable) soundness guarantee. This enables significantly simpler soundness proofs and allows
each subcomponent to be reused independently in other protocols.

As a technical contribution, we employ reductions of knowledge to unify recursive algebraic
arguments and simplify the corresponding analysis. In particular, we develop the tensor reduction

2

of knowledge as a generalization of the central recursive step for arguments in this class. By
instantiating and recursively composing the tensor reduction of knowledge over appropriate spaces,
we derive both new and existing arguments of knowledge for various linear algebraic structures.
Most notably, we derive a new argument of knowledge for bilinear forms which are expressive
enough to encode weighted (and permuted) inner-products and more generally any degree-two gate
over vectors of inputs.

Throughout our development, we provide various examples to demonstrate how reductions of
knowledge offer a promising route towards taming the complexity of modern arguments. Most
notably, we compose our linear algebraic reductions to construct an argument of knowledge for NP
with logarithmic communication with minimal additional reasoning.

1.1 Reductions of Knowledge

Recall that arguments of knowledge are defined over a relation R and allow a prover to show
for some statement u that it knows witness w such that (u,w) ∈ R. In contrast, a reduction of
knowledge is defined over a pair of relations R1 and R2, and enables a verifier to reduce the task of
checking knowledge of a satisfying witness for a statement in R1 to the task of checking knowledge
of a satisfying witness for a new statement in R2.

Definition 1 (Reduction of Knowledge, Informal). A reduction of knowledge from R1 to R2

is an interactive protocol between a prover and a verifier. Both parties take as input a claimed
statement u1 to be checked, and the prover additionally takes as input a corresponding witness
w1 such that (u1, w1) ∈ R1. After interaction, the prover and verifier together output a new
statement u2 to be checked in place of the original statement, and the prover additionally outputs a
corresponding witness w2 such that (u2, w2) ∈ R2. A reduction of knowledge satisfies the following
properties.

(i) Completeness: If the prover is provided a satisfying witness w1 for the verifier’s input state-
ment u1, then the prover outputs a satisfying witness w2 for the verifier’s output statement
u2.

(ii) Knowledge Soundness: If an arbitrary prover provides a satisfying witness w2 for the verifier’s
output statement u2, then the prover almost certainly knows a satisfying witness w1 for the
verifier’s input statement u1.

We write Π : R1 → R2 to denote that protocol Π is a reduction of knowledge from R1 to R2.

There are two ways to conceptually reconcile reductions of knowledge with arguments of knowl-
edge. First, arguments of knowledge can be viewed as a special case of reductions of knowledge
where the second relation R2 is fixed to encode true or false. This interpretation helps naturally
translate existing tooling used to study arguments of knowledge to study reductions of knowledge.
For instance, we can expect reductions of knowledge to be compatible with idealized soundness
models such as the random oracle model [BR93] and the algebraic group model [FKL18], idealized
communication models such as interactive oracle proofs [BSCS16] and variants [BFS20, CHM+20,
CFF+21], and heuristic transformations such as Fiat-Shamir [FS86].

Second, reductions of knowledge can be interpreted as arguments for conditional statements in
which a prover shows for some u1 that it knows w1 such that (u1, w1) ∈ R1 contingent on the fact
that for u2 output by the verifier it knows w2 such that (u2, w2) ∈ R2. Put more plainly, reductions

3

of knowledge are arguments for statements of the form “If you believe that I know a witness for
statement u2 in R2, then you should believe that I know a witness for statement u1 in R1”. This
interpretation helps characterize the sorts of statements that reductions of knowledge can handle
more naturally than arguments of knowledge.

Reductions of knowledge can also be viewed as a probabilistic variant of Levin reductions (i.e.,
Karp reductions that map witnesses as well as statements) that verifiably proceed through inter-
action. Under this interpretation, Levin reductions can be understood as deterministic reductions
of knowledge with no interaction. Just as standard reductions are used for principled algorithm
design, reductions of knowledge are intended for principled argument design.

Under any interpretation, we are interested in proving that reductions of knowledge can be
composed sequentially and in parallel. Such a requirement holds immediately for standard notions
of reductions, but requires subtle reasoning when considering knowledge soundness: To ensure that
sequential composability holds, we additionally require that reductions of knowledge are publicly
reducible. That is, given the input statement u1 and the interaction transcript, any party should be
able to reconstruct the output statement u2. As we detail in Section 4, this seemingly innocuous
requirement becomes the linchpin in arguing sequential composability. With public reducibility, we
have the following.

Theorem 1 (Sequential Composition, Informal). Consider relations R1, R2, and R3. For
reductions of knowledge Π1 : R1 → R2 and Π2 : R2 → R3 we have that Π2 ◦ Π1 is a reduction of
knowledge from R1 to R3 where Π2 ◦ Π1 denotes the protocol that results from first running Π1,
and then running Π2 on the statement and witness output by Π1.

By parallel composition, we do not mean running both protocols at the same time, but rather
we mean that the composed protocol takes as input instance-witness pairs in parallel and and
outputs instance-witness pairs in parallel. For relations R1 and R2, let relation R1 ×R2 be such
that ((u1, u2), (w1, w2)) ∈ R1 ×R2 if and only if (u1, w1) ∈ R1 and (u2, w2) ∈ R2. Then, we have
the following.

Theorem 2 (Parallel Composition, Informal). Consider relations R1, R2, R3, and R4. For
reductions of knowledge Π1 : R1 → R2 and Π2 : R3 → R4 we have that Π1 × Π2 is a reduction of
knowledge from R1 ×R3 to R2 ×R4 where Π1 ×Π2 denotes the protocol that results from running
Π1 on the statement-witness pair in R1, running Π2 on the statement-witness pair in R3, and
outputting the pair of results.

1.2 A Theory of Composition for Arguments of Knowledge

Reductions of knowledge can be viewed as the first compositional framework that can feasibly
capture and tame the growing complexity of modern arguments. Regardless of how reductions are
stitched together, our composition results abstract out the pedantic reasoning for how exactly to
use the extractors for each subcomponent to build an extractor for the composed reduction. We
develop several examples to concretely demonstrate how the reductions of knowledge framework
opens up new possibilities.

In more detail, the requirement that the prover “knows” a witness is formally stated as an
extractability property: Given an expected polynomial-time prover that can produce a satisfying
interaction, there must exist a corresponding expected polynomial-time extractor that can extract
the alleged witness (e.g., by running and rewinding the prover internally). This definition, while

4

undoubtedly natural, requires subtle reasoning when constructing large arguments which rely on
several sub-arguments: In general, the soundness analysis must meticulously detail how to use the
successful prover to construct successful provers for each sub-argument and then use the corre-
sponding extractors to derive an extractor for the overall argument.

In the public-coin setting (where the verifier only sends random challenges), Bootle et al. [BCC+16]
abstract away some low-level reasoning by proving that tree special soundness implies the standard
notion of knowledge soundness. Tree special soundness holds when a tree of accepting transcripts
contains sufficient information to reconstruct the witness, with each path representing a unique
transcript and each branch representing diverging verifier randomness. Both Lee [Lee21] and At-
tema and Cramer [AC20] show that tree special soundness implies modularity by observing that
tree special sound protocols can be sequentially composed to produce a tree special sound protocol.

As demonstrated by these works, tree special soundness is a remarkably useful abstraction
for simplifying sequentially composed, uniformly structured arguments (e.g., arguments that re-
cursively invoke themselves). However, when dealing with larger arguments that invoke various
independent sub-arguments, such as modern arguments for NP, tree special soundness is no longer
an appropriate abstraction: having a single transcript that weaves through all such sub-arguments
and globally forks with each local challenge undermines the intended semantics and unnecessarily
blows up the knowledge error (i.e., the extractors failure probability).

Reductions of knowledge are designed precisely to reason about such arguments. Unlike prior
work, our parallel composition operator enables us to capture arguments with arbitrary dependence
topologies. For instance, most argument systems for NP, such as Spartan [Set20], Poppins [KMP20],
and Marlin [CHM+20], reduce a statement in an NP-complete relation such as R1CS [GGPR13]
to several simpler linear algebraic statements (such as inner-product and polynomial evaluation
claims), each of which is then checked using a tailored argument [RZ21]. As a concrete example,
we show that an argument for NP can be captured modularly in our framework by utilizing both
sequential and parallel composition.

Moreover, because we demonstrate that any two publicly verifiable reductions can be com-
posed, this opens up the ability to modularly reason about knowledge-assumption-based non-
interactive arguments such as SNARKs [BCCT12, GW11] and incrementally verifiable computa-
tion [Val08], which currently fall back on composing extractors in intricate ways [KMP20,KST22,
BCL+21]. As a concrete example, we demonstrate how to succinctly express non-interactive `-
folding schemes [KST22, RZ22] (i.e, folding schemes reducing ` initial instances) by utilizing a
tree-like dependence topology in our reductions of knowledge framework.

In the public-coin setting, we incorporate prior progress into our framework by proving that
tree special soundness implies our notion of knowledge soundness. As such, analysis for public-coin
reductions can proceed using standard techniques.

1.3 A Unified Theory for Recursive Algebraic Arguments

Reductions of knowledge provide the necessary abstraction to view various techniques under a
unifying lens. As a demonstration, we consolidate recursive arguments over homomorphic structures
by recasting their central recursive step as instantiations of the tensor reduction of knowledge.

In more detail, modern arguments are designed around leveraging homomorphic structure to
achieve better asymptotics and concrete efficiency. An influential line of work [BCC+16,BBB+18,
Lee21, AC20, ACR20] studies the consequences of arguments over structurally nested homomor-
phic objects such as vectors, matrices and hypercubes. A key insight is that such objects contain

5

sufficient algebraic structure for recursive arguments in which larger composed statements can be
reduced to smaller constituent statements of the same form. For instance, Bootle et al. [BCC+16]
show that the task of checking an inner-product over committed size n vectors can be split into the
task of checking two inner-products over committed size n/2 vectors which can then be “folded”
into the task of checking a single inner-product over committed size n/2 vectors. Homomorphic
structures that enable recursive techniques have become a staple in constructing efficient argument
systems for NP [Set20,WTS+18,BBB+18,KMP20]. However, while arguments over recursive homo-
morphic structures have become an essential tool in practice, the literature detailing such techniques
is becoming increasingly dissonant with sparse progress on unifying the disparate approaches.

Bünz et al. [BMM+21] initiate the study of a unified theory by observing that existing inner-
product arguments [BCC+16, BBB+18] only require a commitment scheme that is homomorphic
over both the commitment keys and messages. Thus, such inner-product arguments can be viewed
as instantiations of a generic inner-product argument that only leverages these properties. Bootle,
Chiesa, and Sotiraki [BCS21] further relax this requirement by observing that split-and-fold style
techniques in general [BBB+18, AC20, BMM+21, BFS20] only require a commitment scheme that
can be computed by summing over a hypercube. Leveraging this insight, Bootle et al. show that
such techniques can be interpreted as instantiations of the familiar sum-check protocol [LFKN92].

We considerably sharpen the sufficient conditions with the following observation: Protocols such
as the sumcheck protocol and the inner-product argument only require that the underlying linear-
algebraic objects (e.g., polynomials, vectors, and matrices) form a module (i.e., have a notion
of addition and scalar multiplication). Abstracting away the specific details of the associated
modules, all such protocols reduce a claim in a “tensored” module to claims in constituent modules.
Leveraging this insight, we design an information-theoretic protocol, the tensor reduction, as a
sweeping generalization of protocols in this class. Conceptually, the tensor reduction explains why
such a broad class of protocols look different but feel the same.

Theorem 3 (Tensor Reduction, Informal). For modules U , U1, and U2 such that U ∼= U1 ⊗
U2, there exists an interactive reduction between a prover and a verifier that reduces the task of
evaluating a homomorphism in U to the task of evaluating a homomorphism in U1 and evaluating
a homomorphism in U2.

We explain in detail how the tensor reduction generalizes familiar patterns in Section 5. Essen-
tially, the versatility of the tensor reduction stems from its ability to work over any pair of modules
and any valid notion of a tensor product between these modules. In particular, the tensor product
can be defined as any operator that satisfies the prescribed universality property: the tensor prod-
uct of any two modules U1 and U2 must result in a new module, denoted U1 ⊗ U2, such that any
bilinear mapping ϕ : U1 × U2 → V induces a unique homomorphism ϕ̃ : U1 ⊗ U2 → V such that
ϕ̃(u1 ⊗ u2) = ϕ(u1, u2).

For instance, for field F, let the tensor product denote the outer product and consider an
arbitrary vector in Fn. This vector can be interpreted as a matrix in F(n/2)×2 or equivalently as an
element of Fn/2⊗ F2 which consists of sums of outer products of vectors in Fn/2 and F2. Thus, the
tensor reduction can reduce a claim over a vector in Fn to a claim over a vector in Fn/2 and a vector
in F2. Similarly, by taking the tensor product to be polynomial multiplication, the tensor reduction
can reduce a claim over a degree (m,n) bivariate polynomial in F[X,Y] ∼= F[X]⊗ F[Y] to a claim
over a degree m univariate polynomial in F[X] and a degree n univariate polynomial in F[Y]. By
taking the tensor product to be the Kronecker product, the tensor reduction can reduce a claim

6

Structure Module Decomposition

k = 2 k = 4
√
n

Vector Commitment PO Groups [BCC+16] X

Bil Groups [BCS21] X

Linear Forms PO Groups [AC20] [AC20]

Bil Groups [ACR20] X

Bilinear Forms Bil Groups X X

Table 1: Protocols synthesized by instantiating the tensor reduction of knowledge. We denote previously
unexplored protocols with X. PO Group indicates prime order groups. Bil Group indicates symmetric bilinear
groups. k denotes the number of chunks tensors are decomposed into in the tensor reduction of knowledge.
For vectors of size n, k = 2 results in protocols with O(log n) rounds of communication and O(1) messages
per round. k = 4

√
n results in protocols with O(1) rounds of communication and O(

√
n) messages per round.

over a matrix in Fmp×nq to a claim over a matrix in Fm×n and a matrix in Fp×q. Alternatively, by
taking the tensor product to be a pairing operation mapping groups G1 and G2 to GT, the tensor
reduction can reduce a claim over GT to claims regarding G1 and G2.

Just as the sum-check protocol can be used to design arguments of knowledge, the tensor
reduction can be used to design reductions of knowledge. By instantiating the tensor reduction
over vector spaces, we derive the tensor reduction of knowledge, an unconditionally secure protocol
that generalizes the central reductive step common to most recursive algebraic arguments.

Theorem 4 (Tensor Reduction of Knowledge, Informal). For any vector space (W → V),
denoting homomorphisms from vector space W to vector space V , and length n, there exists a
reduction of knowledge that reduces the task of checking knowledge of a preimage of a vector in
(Wn → V) to the task of checking knowledge of a preimage of a vector in (W → V).

Leveraging our composition result, we show that tensor reductions of knowledge can be re-
cursively composed to recover various recursive arguments. In particular, we appropriately in-
stantiate the vector spaces to recover a family of reductions of knowledge for vector commit-
ments [BCC+16,BCS21,BDFG20], and linear forms [AC20,ACR20]. Table 1 summarizes the con-
crete protocols synthesized under the various instantiations of the tensor reduction of knowledge.

We also develop a new family of arguments for bilinear forms which falls out naturally from our
prior generalizations. In particular, consider prime order group G and corresponding scalar field
F. For public key (G,H) ∈ (Gm,Gn), public matrix M ∈ Fm×n, commitments (A,B) ∈ (G,G),
and scalar σ ∈ F, a bilinear forms argument allows a verifier to check that a prover knows (A,B) ∈
(Fm,Fn) such that A>MB = σ, 〈G,A〉 = A, and 〈H,B〉 = B.

In practice, the matrix M in the bilinear forms relation can encode a variety of constraints. For
instance, if M is the identity matrix then the verifier can check the inner-product of A and B (and
more generally the inner product of any rearrangement of A and B). If instead M assigns weights
to the diagonal, then the verifier can check a weighted inner-product [CHJ+22, BMM+21]. More
generally, M can encode any degree-two custom-gate [GWC19] enabling an expressive constraint
system for NP as we show in Section 7.

7

1.4 Overview of the Upcoming Sections

The remainder of this work formally treats all of the introduced concepts. In Section 2, we study
two concrete examples, the vector commitment argument [BCC+16] and `-folding schemes [KST22,
RZ22], to both preface the tensor reduction of knowledge and demonstrate how our framework sim-
plifies the corresponding analysis. In Section 4, we formally treat reductions of knowledge and the
corresponding composition results. In Section 5, we formally introduce the tensor reduction, fol-
lowed by the tensor reduction of knowledge as a generalization of the core reductive step common to
most recursive algebraic arguments. In Section 6, we instantiate the tensor reduction of knowledge
arguments for vector commitments, linear forms, and bilinear forms. In Section 7, we show that
the linear algebraic reductions derived from the tensor reduction of knowledge can be composed to
derive an argument of knowledge for NP with minimal effort.

2 Technical Overview

In this section, we demonstrate how reductions of knowledge can be used to modularly reason
about the vector commitment argument of Bootle et al. [BCC+16] and folding schemes [KST22]
in the non-interactive setting [RZ22]. The former example, being a special case of the tensor
reduction of knowledge, provides an introductory overview of its mechanics. The latter example
demonstrates how the reductions of knowledge framework can significantly simplify arguments
with non-linear dependence topologies. We additionally demonstrate how reductions of knowledge
provide a unifying language by formally defining arguments of knowledge and folding schemes as
particular types of reductions.

2.1 First Example: Vector Commitment Argument

The vector commitment argument allows a prover to show that it knows the opening to a Pedersen
vector commitment [Ped91]. In particular, consider group G of prime order p where the discrete
logarithm is hard and corresponding scalar field F = Zp. Consider some public key G ∈ Gn where
n = 2i for some i ∈ N. Suppose a prover would like to succinctly demonstrate to a verifier that it
knows A ∈ Fn such that 〈G,A〉 = A. That is, we would like to design an argument of knowledge
for the following relation.

Definition 2 (Vector Commitment Relation). The vector commitment relation is defined as
RVC(n) = {((G,A), A) ∈ ((Gn,G),Fn) | 〈G,A〉 = A}.

Bootle et al. [BCC+16] provide an argument system with sublinear communication cost for the
above relation. At a high level, the verifier splits the task of checking knowledge of vector A into the
task of checking knowledge of the first and second half of A. Instead of checking each separately,
the verifier “folds” the two checks into a single check using a random linear combination. The
prover computes the corresponding random linear combination of the first and second half of A to
produce a folded witness vector that is half the original size. This folding procedure is recursively
run until the length of the vector to be checked is 1. At this point the prover directly sends the
vector to the verifier.

While the vector commitment argument can be described in a straightforward manner, prov-
ing its soundness is considerably more involved. Recursive arguments typically require recursive
extractors and the vector commitment argument is no exception. To prove knowledge soundness,

8

the full malicious prover, which produces a length 1 witness vector as its final message, is used to
build an extractor that can produce a length 2 folded witness vector (which is allegedly the result
of folding the original witness vector log n− 1 times). Such an extractor is used to produce an ex-
tractor that can produce a length 4 vector, and so on. Ensuring that the extractor can successively
unfold the witness vector in each recursive step while also ensuring that it’s runtime remains ex-
pected polynomial-time requires tedious low-level reasoning. Bootle et al. [BCC+16], and following
works [BBB+18, Lee21, AC20] work with tree special soundness precisely to avoid such low-level
reasoning.

We show that the reductions of knowledge framework is equally as effective in simplifying the
analysis for the vector commitment argument. In particular, we start with the simpler goal of
designing a reduction of knowledge that reduces the task of checking knowledge of a size n vector
to checking knowledge of a size n/2 vector. We can recursively compose such a reduction to design
an argument of knowledge for the vector commitment relation.

Construction 1 (Vector Commitment Reduction of Knowledge). We construct a reduction
of knowledge from RVC(n) to RVC(n/2) for n = 2i where i ≥ 1. Suppose that the prover P and
verifier V take as input statement (G,A) ∈ (Gn,G) and that the prover additionally takes as input
alleged witness vector A ∈ Fn such that

((G,A), A) ∈ RVC(n).

The reduction proceeds as follows.

1. P: Let G1 and G2 (respectively A1 and A2) denote the first and second half of vector G
(respectively A). The prover begins by sending Aij ← 〈Gi, Aj〉 for i, j ∈ {1, 2}. Here, A11

and A22 represent the first and second “half” of the original commitment A, and A12 and A21

represent cross terms which will assist the verifier in folding the original statement.

2. V: The verifier first checks the consistency of A11 and A22 with A by checking that A11+A22 =
A. The verifier must still check that the prover knows A1 and A2 such that A11 = 〈G1, A1〉
and A22 = 〈G2, A2〉. Instead of checking each individually, the verifier folds them into a single
check by using a random linear combination. In particular, the verifier sends random r ∈ F
to P.

3. P,V: Together, the prover and verifier output the folded key and corresponding commitment
(G′, A

′
) ∈ (Gn/2,G) where G′ ← G1 + r ·G2 and A

′ ← A11 + r · (A12 +A21) + r2 ·A22.

4. P: The prover outputs the folded witness A′ ∈ Fn/2 where A′ ← A1 + r ·A2.

Now, to check the original statement, it is sufficient for the verifier to check that the prover knows
A′ such that

((G′, A
′
), A′) ∈ RVC(n/2).

To prove knowledge soundness, we must show that given a prover that produces a witness for
the output statement with non-negligible probability we can derive an extractor that can use this
prover to derive a witness for the input statement with nearly the same probability. Because the
above reduction is public-coin, by our tree extractability lemma (Lemma 6), it is sufficient to show
that there exists an extractor that can derive a satisfying input witness given a tree of transcripts

9

and corresponding satisfying outputs. Intuitively, the original extractor can generate such a tree by
repeatedly rewinding the prover and collecting transcripts in which the prover outputs a satisfying
witness.

Lemma 1 (Vector Commitment Reduction of Knowledge). For n = 2i where i ≥ 1, Con-
struction 1 is a reduction of knowledge from RVC(n) to RVC(n/2).

Proof. We reason via tree extractability (Lemma 6). Suppose an extractor is provided with a tree
of transcripts which consists of three transcripts where the kth transcript has the same initial
message Aij for i, j ∈ {1, 2}, random challenge rk, and satisfying output instance-witness pairs

((G′k, A
′
k), A

′
k). Using any two transcripts, the extractor solves for A0 and A1 such that A1+rk ·A2 =

A′k and outputs the unfolded witness A← (A1, A2). By the discrete logarithm assumption, we must
have that the extractor derives the same A1 and A2 for all pairs of transcripts because otherwise,
for some k ∈ {1, 2, 3}, we have that the extractor can derive two different preimages for the same

commitment A
′
k with respect to key G′k. Then, because

〈G1 + rk ·G2, A1 + rk ·A2〉 = 〈G′k, A′k〉 = A
′
k = A11 + rk · (A12 +A21) + r2k ·A22

for k ∈ {1, 2, 3}, we have that 〈G1, A1〉 = A11 and 〈G2, A2〉 = A22. Therefore, we have that

〈G,A〉 = 〈G1, A1〉+ 〈G2, A2〉 = A11 +A22 = A.

Later, in Section 6, we show that the vector commitment reduction of knowledge is precisely
the tensor reduction of knowledge from homomorphisms in Gn ∼= (Gn/2)2 to homomorphisms in
Gn/2 thereby further demonstrating that knowledge soundness holds unconditionally.

We are still tasked with isolating the base case of the original vector commitment argument.
Below we specify an argument of knowledge forRVC(1). An argument of knowledge can be succinctly
formalized as a reduction of knowledge that reduces to the relation R> encoding true. A verifier
reducing to R> can output true if it accepts and any other string (e.g., false) otherwise.

Definition 3 (Argument of Knowledge). Let R> = {(true,⊥)}. An argument of knowledge
for relation R is a reduction of knowledge from R to R>.

Construction 2 (Base Case). We construct an argument of knowledge for RVC(1). Given
statement (G,A) and corresponding witness A, the prover sends A directly to the verifier. The
verifier outputs true if 〈G,A〉 = A.

We can compose the above reductions to modularly recover the original argument of knowledge
for the vector commitment relation. By formalizing each step as a reduction of knowledge, our
composition result abstracts away the brunt of the proof effort. In particular, the following corollary
holds immediately.

Corollary 1 (Vector Commitment Argument of Knowledge). Let ΠVC denote a reduction
of knowledge from RVC(n) to RVC(n/2) and let Πbase denote an argument of knowledge for RVC(1).
Then

Πbase ◦ΠVC ◦ . . . ◦ΠVC︸ ︷︷ ︸
logn times

is an argument of knowledge for RVC(n) where n = 2i for i ∈ N.

10

2.2 Second Example: Folding Schemes

The vector commitment reduction of knowledge can be further decomposed into two reductions of
knowledge: The first reduction of knowledge splits the original instance into two half-sized instances
(i.e., a reduction from RVC(n) to RVC(n/2)×RVC(n/2)). The second folds the two instances into
a single instance of the same size (i.e., a reduction from RVC(n/2)×RVC(n/2) to RVC(n/2)).

Kothapalli, Setty, and Tzialla [KST22] abstract the latter pattern to arbitrary relations and refer
to such protocols as folding schemes. In particular, a folding scheme is an interactive protocol that
reduces the task of checking two instances in a relation to the task of checking a single instance in
the relation. Folding schemes provide a minimal abstraction for various protocols in the literature.
For instance, Kothapalli et al. show that there exists a folding scheme for NP instances with some
fixed size and show that such a construction implies incrementally verifiable computation [Val08].

More recently, Ràfols and Zacharakis [RZ22] provide non-interactive `-folding schemes (i.e.,
folding schemes for ` initial statements) for the vector commitment relation, inner-product relation,
and polynomial commitment relation. Such folding schemes help amortize the verifier’s work over
multiple instances in larger non-interactive arguments of knowledge which typically involve checking
multiple instances of the same form.

As these folding schemes rely on knowledge assumptions rather than interaction, prior tech-
niques cannot help modularize the corresponding soundness analysis. As promised, we can still
achieve modularity by decomposing them as a sequence of non-interactive reductions of knowledge.
Formally, a non-interactive reduction of knowledge is one in which the interaction only consists
of messages from the prover. Non-interactive `-folding schemes can be succinctly formalized as a
particular class of non-interactive reductions of knowledge. Letting R` denote R × . . . × R for `
times, we define the following.

Definition 4 (`-Folding Schemes). A (non-interactive) `-folding scheme for relation R is a
(non-interactive) reduction of knowledge from R` to R.

Ràfols and Zacharakis achieve `-folding schemes for various relations by recursively composing
2-folding schemes in a tree-like fashion. In particular, ` instances are treated as leaves in a tree.
A 2-folding scheme is then used to fold each pair of adjacent instances to produce a total of `/2
instances. These `/2 instances are once more folded in a pairwise fashion to produce `/4 instances
and so on until a single instance remains.

Once again, as demonstrated by Ràfols and Zacharakis, while the tree-folding protocol can
be stated in a straightforward manner, the corresponding knowledge soundness analysis requires
careful attention to detail. In particular, the corresponding proof involves demonstrating that the
malicious prover induces a corresponding expected polynomial-time extractor that unfolds once.
Such an extractor is then shown to induce a pair of expected polynomial-time malicious provers for
the previous layer of the tree, and so on. Alternatively, by working in the reductions of knowledge
framework, nearly all of this reasoning is abstracted away. Indeed, we condense the original three-
page proof into several lines.

Lemma 2 (`-Folding Scheme). Consider a (non-interactive) 2-folding scheme ΠTF for relation
R and ` = 2i for i ∈ N where i ≥ 1. Then, Π`, inductively defined as follows, is a (non-interactive)
`-folding scheme for R.

Π` = ΠTF ◦ (Π`/2 ×Π`/2)

Π2 = ΠTF

11

Proof. We reason inductively over i. In the base case, suppose i = 1. Then, by construction, Π2

is a 2-folding scheme. Suppose instead i ≥ 2. Suppose that for ` = 2i we have that Π`/2 is a

(`/2)-folding scheme. Then, Π`/2×Π`/2 is a reduction of knowledge from R`/2×R`/2 = R` to R2.

Thus, ΠTF ◦ (Π`/2 ×Π`/2) is a reduction of knowledge from R` to R.

3 Preliminaries

3.1 Module Theory

In this section, we introduce our notation, intuit the direct sum and tensor product, and recall
several useful properties of these operations. In Appendix A, we present formal definitions for
rings, modules, direct sums, and tensor products.

Notation (Modules). We assume finite, unital, commutative rings and modules with a finite basis
throughout. We use ∼= to denote that two modules are isomorphic. For ring R and R-modules W ,
V , let W → V denote the module of homomorphisms from W to V . For n ∈ N we let Wn denote
W ⊗ Rn (equivalently W ⊕ . . .⊕W for n times). We use {δi} to denote an orthonormal basis. We
refer to elements of modules as tensors. As we use tensors to represent both homomorphisms and
objects, for tensors g and a, we use g(a) to denote evaluating the homomorphism tensor g on the
object tensor a. For n ∈ N, let [n] denote {1, 2, . . . , n} and let [i, n] for i ≤ n denote {i, i+1, . . . , n}
When summing over a variable, we will omit the bounds when clear from context.

Modules Intuitively, modules are vector spaces over rings. That is, they support a notion of
addition and can be scaled by ring elements. We say a module is an R-module if it is scaled by ring
R. Vectors, polynomials, matrices, tensors and scalars all form modules.

The Direct Sum Intuitively, a direct sum of two R-modules U and V , forms a new R-module
denoted U⊕V , which is essentially a Cartesian product of the original modules. Elements of U⊕V
consist of pairs of elements in U and V which are denoted as u ⊕ v for u ∈ U and v ∈ V . For
example, for field F, if U ∼= Fn and V ∼= Fm we have that U ⊕ V ∼= Fn+m. We have that U ⊕ V
forms a module because we can naturally compute u1 ⊕ v1 + u2 ⊕ v2 = (u1 + u2) ⊕ (v1 + v2) and
r · (u⊕ v) = (r · u)⊕ (r · v) for r ∈ R.

The Tensor Product Intuitively, the tensor product, denoted ⊗, can be considered a generalized
outer-product that distributes with respect to the direct sum. The tensor product of two modules
U and V , forms a new module denoted U ⊗V . Elements of U ⊗V include simple tensors which are
outer products of elements in U and V and are denoted as u⊗ v for u ∈ U and v ∈ V . The module
U ⊗ V also contains arbitrary sums of these simple tensors, which are denoted as

∑
i∈[`] ui ⊗ vi for

u1, . . . , u` ∈ U and v1, . . . , v` ∈ V . If U ∼= Fn and V ∼= Fm we have that U ⊗V ∼= Fn×m (i.e., n×m
matrices over F). Simple tensors in Fn ⊗ Fm consist of outer products of vectors in Fn and Fm,
however, the entire space is generated by sums over such outer products. We have that U⊗V forms
a module because we can naturally add two sums and compute r ·

∑
i ui ⊗ vi =

∑
i(r · ui) ⊗ vi =∑

i ui ⊗ (r · vi).

12

The Direct Sum and Tensor Product as Abstract Operations Formally, the particular
definitions of the direct sum and tensor product depend on the particular modules they are working
over. For instance, the tensor product could mean the outer product when working over vectors
and the Kronecker product when working over matrices. Even for a fixed pair of modules, there
could exist multiple valid definitions. For instance, for vectors v1, v2 ∈ Fn, we can define v1 ⊕ v2
to be a vector in F2n or a matrix in F2×n. To account for these considerations, we treat the direct
sum and tensor product as abstract operations that can be implemented by any concrete operations
that satisfy certain axioms (which we detail in Appendix A). In practice, much like how abstract
groups and rings must be instantiated with concrete objects such as elliptic curves and polynomials,
the direct sum and tensor product must be instantiated with concrete operations that respect the
prescribed properties.

For the majority of our development, we are interested in taking the direct sum and tensor
product of homomorphisms (represented as tensors). In this situation, we do not need to invoke
the abstract definitions of these operations, but rather the identities that follow from their axioms.

Lemma 3 (Direct Sum of Homomorphisms). Homomorphisms r ∈ (U1 → V) and s ∈ (U2 →
V) over R-modules (where R is a commutative ring) induce a homomorphism r⊕s ∈ (U1⊕U2)→ V
such that (r ⊕ s)(u1 ⊕ u2) = r(u1) + s(u2). Symmetrically, homomorphisms r ∈ (U → V1) and
s ∈ (U → V2) over R-modules induce a homomorphism r⊕s ∈ U → (V1⊕V2) such that (r⊕s)(u) =
r(u)⊕ s(u).

Example 1 (Direct Sum of Homomorphisms). Consider group G of prime order p and corre-
sponding scalar field F ∼= Zp. We can interpret Gn as the module of homomorphisms from Fn to G.
In particular, for g ∈ Gn we can define g(a) = 〈g, a〉 for a ∈ Fn. Then, for g ∈ Gn and h ∈ Gm we
have that g ⊕ h ∈ Gn ⊕Gm ∼= Gn+m can be interpreted as a map from Fn+m ∼= Fn ⊕ Fm to G. By
definition, for u ∈ Fn and v ∈ Fm, we have (g⊕h)(u⊕v) = 〈g⊕h, u⊕v〉 = 〈g, u〉+〈h, v〉 = g(u)+h(v).

Lemma 4 (Tensor Product of Homomorphisms). Homomorphisms r ∈ (U → X) and s ∈
(V → Y) over R-modules (where R is a commutative ring) induce a homomorphism r ⊗ s ∈
(U ⊗ V)→ (X ⊗ Y), such that (r ⊗ s)(u⊗ v) = r(u)⊗ s(v).

Example 2 (Tensor Product of Homomorphisms). Let ⊗ denote the outer product. For
prime p and field F ∼= Zp we can interpret Fn as the module of homomorphisms from Fn to F. In
particular, for f ∈ Fn we can define f(a) = 〈f, a〉 for a ∈ Fn. Then, f ∈ Fn and g ∈ Fm induce a
new map f ⊗ g ∈ Fn⊗Fm ∼= Fnm from Fnm to F⊗F ∼= F. By definition, for u ∈ Fn and v ∈ Fm, we
have (f ⊗ g)(u⊗ v) = (f · g1⊕ . . .⊕ f · gm)(u · v1⊕ . . .⊕u · vm) =

∑
j∈[m] f(u) · gi(vi) = f(u)⊗ g(v).

Lemma 5 (Useful Identities). For commutative ring R and R-modules U, V,W , we have that
(U ⊗ V) ⊗ W ∼= U ⊗ (V ⊗ W), U ⊗ V ∼= V ⊗ U , U ⊗ (V ⊕ W) ∼= (U ⊗ V) ⊕ (U ⊗ W), and
R⊗ U ∼= U ⊗ R ∼= U .

3.2 Cryptographic Preliminaries

Notation (Cryptographic Variables). We use λ globally to denote the security parameter, and
negl(λ) to denote negligible functions. For events A and B, we let Pr[A] ≈ Pr[B] denote that
|Pr[A]− Pr[B]| = negl(λ).

13

For soundness to hold when randomly sampling over rings, the set of admissible values must be
constrained. We define a valid sampling set over rings.

Definition 5 (Sampling Set [BCS21]). For ring R and R-module M , subset Q ⊆ R is a sampling
set for M if for every q1, q2 ∈ Q, the map ϕq1,q2(m) = (q1 − q2) ·m for m ∈M is injective.

For certain relations, to be able to prove knowledge soundness, we will need to rely on compu-
tational hardness assumptions. We adapt the bilinear relation assumption [BCS21], which can be
viewed as a generalization of the discrete logarithm assumption, and the double pairing assump-
tion [AFG+10].

Definition 6 (Bilinear Relation Assumption). For ring R, length parameter n, and security
parameter λ, consider R-modules U and V such that |U | = O(2λ) and |V | = O(2λ). The bilinear
relation assumption holds for (U, V) (w.r.t. tensor product ⊗) if given random u1, . . . , un ∈ U , there
exists no polynomial-time algorithm to find non-trivial v1, . . . , vn ∈ V such that

∑
i∈[n] ui ⊗ vi = 0.

Symmetrically, we can consider composite spaces such that given elements from both of the
constituent spaces, it is easy to check that they satisfy the above relation. This ensures that that
the verifier is able to perform its requisite checks efficiently. Throughout our development, we
assume the coset equality assumption holds as necessary.

Definition 7 (Coset Equality Assumption). For ring R and length parameter n consider R-
modules U and V . The coset equality assumption holds for (U, V) (w.r.t. tensor product ⊗) if
for any u1, . . . , un ∈ U and v1, . . . , vn ∈ V , there exists a polynomial-time algorithm to check∑

i∈[n] ui ⊗ vi = 0.

Example 3 (Bilinear Relation Assumption). Suppose U is a group of prime order p and V is
the corresponding scalar field Zp. Let the tensor product between these two modules be defined as
scalar multiplication. In this setting, the bilinear relation assumption is equivalent to the discrete
logarithm assumption. Alternatively, suppose U and V are prime order groups such that there
exists a corresponding pairing operation e from U × V into some target group. Let the tensor
product be defined as this pairing operation. In this setting, the bilinear relation assumption is
equivalent to the double pairing assumption.

4 Reductions of Knowledge

Recall that in contrast to arguments of knowledge, reductions of knowledge are defined over a pair of
relations R1 and R2. A prover can use a reduction of knowledge to show for some u1 that it knows
w1 such that (u1, w1) ∈ R1 contingent on the fact that it knows w2 for some statement u2 (derived
from its interaction with the verifier) such that (u2, w2) ∈ R2. We start by intuiting the desired
notion of knowledge soundness needed to capture such an interaction before presenting a formal
definition (Definition 8). We show that any two reductions of knowledge that respect this definition
can be composed sequentially and in parallel (Theorems 5 and 6). We then observe that a more
restricted — but simpler — notion of soundness, known as tree extractability, implies our definition
of knowledge soundness (Lemma 6). In the following sections, we leverage this observation to prove
that our reductions of knowledge for linear-algebraic statements are secure.

14

4.1 Defining Reductions of Knowledge

Intuitively, we would like that if a prover is able to convince a verifier on input u1 to output some
derived statement u2 such that it knows a corresponding satisfying witness w2, then it must have
known a corresponding satisfying witness w1 for u1. We can capture this notion formally by stating
that if a malicious prover can output a satisfying witness w2 for the verifier’s output statement u2,
then there must exist a corresponding extractor that can output a satisfying witness w1 for the
verifier’s input statement u1.

While this presents a stand-alone notion of knowledge soundness, we require a more nuanced
definition to capture technical difficulties that arise when reasoning about sequential composability.
In particular, existing definitions implicitly assume that the environment is provided access to the
inputs and outputs of the prover and the verifier, and that some of this material (such as an
adversarially chosen statement) is forwarded to the extractor. Unfortunately, when composing
such arguments, we end up in situations where intermediate inputs expected by the extractor are
never exposed to the environment.

Concretely, consider a reduction of knowledge Π1 with prover P1, verifier V1, and extractor E1,
and a second reduction of knowledge Π2 with corresponding P2, V2, and E2. Ideally, we would want
to use E1 and E2 in a black-box manner to construct an extractor E for Π2◦Π1. A typical knowledge
soundness definition would dictate that the statement provided to the verifier is forwarded to the
extractor as well. Unfortunately, in the composed setting, the statement u2 output by V1 as input to
V2 is never exposed to the environment, and thus it is unclear how E can simulate the intermediate
statement u2 expected by E2.

To alleviate this issue, we stipulate an additional requirement that the verifier’s output state-
ment can be deterministically recovered from the mutual view of both the prover and verifier.
Specifically, the mutual view consists of the public parameters, initial input statement, and inter-
action transcript. We refer to this property as public reducibility, which can be viewed as analogous
to the public verifiability property common to most modern arguments. With public reducibility,
we are afforded sequential composability.

We formally define reductions of knowledge as interactive protocols in the common reference
string model.1

Definition 8 (Reduction of Knowledge). Consider binary relations R1 and R2. A reduction
of knowledge from R1 to R2 is defined by PPT algorithms (G,P,V) denoting the generator, the
prover, and the verifier respectively with the following interface.

• G(λ)→ pp: Takes as input security parameter λ. Outputs public parameters pp.

• P(pp, u1, w1) → (u2, w2): Takes as input public parameters pp, and statement-witness pair
(u1, w1) ∈ R1. Interactively reduces the statement (u1, w1) ∈ R1 to a new statement (u2, w2) ∈
R2.

• V(pp, u1) → u2: Takes as input public parameters pp, and statement u1 associated with
R1. Interactively reduces the task of checking u1 to the task of checking a new statement u2
associated with R2.

1The formal definition allows for an adversarially chosen statement, which, according to our constructions also
includes public parameters. We implicitly assume that the verifier in such reductions checks that the honestly
generated public parameters are consistent with the statement.

15

Let 〈P,V〉 denote the interaction between P and V. We treat 〈P,V〉 as a function that takes as
input (pp, u1, w1) and runs the interaction on prover input (pp, u1, w1) and verifier input (pp, u1).
At the end of the interaction, 〈P,V〉 outputs the verifier’s statement u2 and the prover’s witness
w2. A reduction of knowledge (G,P,V) satisfies the following conditions.

(i) Completeness: For any PPT adversary A, given pp ← G(λ) and (u1, w1) ← A(pp) such that
(u1, w1) ∈ R1, we have that the prover’s output statement is equal to the verifier’s output
statement and that

〈P,V〉(pp, u1, w1) ∈ R2.

(ii) Knowledge Soundness: For any expected polynomial-time adversaries A and P∗, there exists
an expected polynomial-time extractor E such that given pp← G(λ) and (u1, st)← A(pp), we
have that

Pr[(u1, E(pp, u1, st)) ∈ R1] ≈ Pr[〈P∗,V〉(pp, u1, st) ∈ R2].

(iii) Public Reducibility: There exists a deterministic polynomial-time function ϕ such that for any
PPT adversary A and expected polynomial-time adversary P∗, given pp ← G(λ), (u1, st) ←
A(pp), and (u2, w2)← 〈P∗,V〉(pp, u1, st) with interaction transcript tr, we have that ϕ(pp, u1, tr) =
u2.

We write Π : R1 → R2 to denote that protocol Π is a reduction of knowledge from relation R1 to
relation R2.

Definition 9 (Public-Coin). A reduction of knowledge is public-coin if the verifier only sends
uniformly random challenges to the prover.

4.2 Composing Reductions of Knowledge

We now prove a sequential and parallel composition theorem for reductions of knowledge. This
allows us to construct complex arguments by stitching together simpler reductions sequentially
and in parallel. In the case of sequential composition, much like recursive composition tech-
niques [BCCT13, Val08, KST22, BCL+21], each composition step induces a polynomial blowup in
the corresponding extractor. Thus, sequential composition cannot be used more than a constant
number of times without additional computational assumptions.2 Our parallel composition oper-
ator is not parallel in the sense that both protocols are being run at the same time, but rather
parallel in the sense that the composed protocol takes incoming instance-witness pairs in parallel
and produces outgoing instance-witness pairs in parallel.

Theorem 5 (Sequential Composition). Consider binary relations R1, R2, and R3. For reduc-
tions of knowledge Π1 = (G1,P1,V1) : R1 → R2 and Π2 = (G2,P2,V2) : R2 → R3, we have that
Π2 ◦Π1 = (G,P,V) is a reduction of knowledge from R1 to R3 where

G(λ) = (G1(λ),G2(λ))

P((pp1, pp2), u1, w1) = P2(pp2,P1(pp1, u1, w1))

V((pp1, pp2), u1) = V2(pp2,V1(pp1, u1, w1))

2We recommend Bitansky et al. [BCCT13, Remark 6.3] for a detailed discussion on such assumptions.

16

Proof Intuition. Completeness and public reducibility follow by observation. As for knowledge
soundness, assume there exists an adversarial prover P∗ for Π that succeeds in producing an
accepting witness w3 with non-negligible probability. Using the second half of P∗ (i.e. the part that
interacts with V2) we can construct an adversary P∗∗2 for Π2 that succeeds in producing an accepting
witness w3 with the same probability. By the knowledge soundness of Π2 this implies an extractor
E2 that succeeds in producing an intermediate witness w2 with nearly the same probability. We
can then leverage E2 to construct an adversary P∗∗1 for Π1 that succeeds in producing an accepting
witness w2 with nearly the same probability: In particular P∗∗1 first runs the first half of P∗ and
then runs extractor E2 on the intermediate statement u2 (derived by the public reducibility of Π1)
and the intermediate state of P∗ to produce the output w2. By the knowledge soundness of Π1 this
implies the desired extractor E1 that succeeds in producing the witness w1 with nearly the same
probability. We present a formal proof in Appendix B.1.

Definition 10 (Relation Pair). Consider relations R1 and R2. We define the relation R1×R2 =
{((u1, u2), (w1, w2)) | (u1, w1) ∈ R1, (u2, w2) ∈ R2}. We let R` denote R× . . .×R for ` times.

Theorem 6 (Parallel Composition). Consider relations R1, R2, R3, R4. For reductions of
knowledge Π1 = (G1,P1,V1) : R1 → R2 and Π2 = (G2,P2,V2) : R3 → R4, we have that Π1 ×Π2 =
(G,P,V) is a reduction of knowledge from R1 ×R3 to R2 ×R4 where

G(λ) = (G1(λ),G2(λ))

P((pp1, pp2), (u1, u3), (w1, w3)) = (P1(pp1, u1, w1),P2(pp2, u3, w3))

V((pp1, pp2), (u1, u3)) = (V1(pp1, u1),V2(pp2, u3))

Proof Intuition. For i ∈ {1, 2}, we leverage A and P∗ to construct expected polynomial time
adversaries Ai and P∗i for protocol Πi that succeeds in producing a satisfying output witness with
the same probability. By the knowledge soundness of Πi, this implies an expected polynomial-time
extractor Ei that succeeds in producing a satisfying input witness with nearly the same probability.
These extractors imply the desired extractor E . We present a formal proof in Appendix B.2.

4.3 Knowledge Soundness from Tree Extraction

When proving constructions secure, reasoning about knowledge soundness directly is typically cum-
bersome. To alleviate this issue, prior work [BCC+16] observes that most protocols are algebraic:
The corresponding extractor typically runs the malicious prover multiple times with refreshed veri-
fier randomness to retrieve accepting transcripts, which can be interpolated to retrieve the witness.
Leveraging this insight, Bootle et al. [BCC+16] provide a general extraction lemma, which states
that to prove knowledge soundness for algebraic protocols, it is sufficient to show that there exists
an extractor that can produce a satisfying witness when provided a tree of accepting transcripts
with refreshed verifier randomness at each layer. This proof technique has been adapted to various
settings [BCL+21,KST22,BBB+18,BCS21], and we similarly provide the corresponding lemma for
reductions of knowledge.

Definition 11 (Tree of Transcripts). Consider an m-round public-coin interactive protocol
(G,P,V) that satisfies the interface described in Definition 8. A (n1, . . . , nm)-tree of accepting
transcripts for statement u1 is a tree of depth m where each vertex at layer i has ni outgoing edges

17

such that (1) each vertex in layer i ∈ [m] is labeled with a prover message for round i; (2) each
outgoing edge from layer i ∈ [m] is labeled with a different choice of verifier randomness for round
i; (3) each leaf is labeled with an accepting statement-witness pair output by the prover and verifier
corresponding to the interaction along the path.

Lemma 6 (Tree Extraction [BCS21]). Consider an m-round public-coin interactive protocol
(G,P,V) that satisfies the interface described in Definition 8 and satisfies completeness. Then
(G,P,V) is a reduction of knowledge if there exists a PPT extractor χ that, for all instances u1,
outputs a satisfying witness w1 with probability 1− negl(λ), given an (n1, . . . , nm)-tree of accepting
transcripts for u1 where the verifier’s randomness is sampled from space Q such that |Q| = O(2λ),
and

∏
i ni = poly(λ).

Proof Intuition. Our proof closely follows that of Bootle et al. [BCC+16]. At a high level, we
construct an expected polynomial-time extractor E that repeatedly runs the malicious prover P∗
and collects corresponding accepting transcripts and associated output statement-witness pairs.
The extractor then passes these collected transcripts to χ which retrieves the desired witness by
assumption. We present a formal proof in Appendix B.3.

5 The Tensor Reduction of Knowledge

We start by defining a general tensor-based language to capture a large class of linear algebraic
statements. We then design a general reduction, the tensor reduction, for such statements, by
extending the sum-check protocol [LFKN92]. Next, we leverage the tensor reduction to construct
the tensor reduction of knowledge, which, for any length vector space of homomorphisms (W → V)
and length n, reduces the task of checking knowledge of a preimage of a vector in (Wn → V) to
checking knowledge of a preimage in (W → V).

5.1 Tensor Evaluation Statements

We observe that arguments of knowledge built around statements over linear algebraic objects —
such as matrices, vectors, polynomials, and homomorphisms — typically share hints of symmetry.
Our goal is to generalize such statements, and more interestingly generalize interactive reductions
for such statements.

Regardless of the underlying “linear-algebraic” objects, arguments over them tend to only rely
on the fact they support some notion of addition and that they can be scaled by elements in a field
(and more generally rings). This seems to suggest that designing a reduction over the most general
objects that support these operations, namely tensors, would give a single universal protocol for
such objects. From an algebraic standpoint, tensors unify objects such as scalars, vectors, matrices,
and polynomials. More generally, tensors provide a unifying algebraic object for describing both
functions (when viewed as homomorphisms) and objects (when viewed as elements of a module).

Take for instance the vector commitment relation: Given a prime order group G and an under-
lying scalar field Fn, a prover claims that for public commitment key G ∈ Gn and commitment A,
it knows a vector A ∈ Fn such that 〈G,A〉 = A. As the spaces Gn, Fn and G are all modules, we
can build a corresponding “tensor evaluation” statement

G(A) = A

18

where G is a tensor in Gn that maps tensors in Fn to tensors in G.
Alternatively, suppose in addition to claiming that it knows a vector A underlying a commitment

A with respect to commitment key G, the prover additionally claims that taking the inner-product
of A against some public vector B ∈ Fn results in a scalar σ ∈ F. Following our prior reasoning,
this can be represented as two tensor evaluation statements: A claim that G(A) = A and a claim
that B(A) = σ. But, under the rules of the direct sum (which can be interpreted as a Cartesian
product), this is equivalent to applying the tensor G ⊕ B ∈ Gn ⊕ Fn to A and checking that this
results in A ⊕ σ ∈ G ⊕ F. Namely, we have that the composite statement can be encoded as the
following tensor evaluation statement:

(G⊕B)(A) = A⊕ σ.

The flexibility of tensor evaluation statements becomes more salient with the sum-check proto-
col [LFKN92]. In the sum-check protocol, the prover claims for multivariate polynomial P ∈ Fn → F
with degree d in each variable that ∑

x1,...,xn∈{0,1}

P (x1, . . . , xn) = σ (1)

for some claimed sum σ ∈ F. For i ∈ [n] consider the tensor
⊕

j∈[0,d] x
j
i which is just shorthand

for the vector (x0i , x
1
i , . . . , x

d
i). Now, consider

⊗
i∈[n]

⊕
j∈[0,d] x

j
i , which is an n-dimensional matrix

populated with all possible products of powers of x1, . . . , xn. We can now define a tensor X =∑
x1,...,xn∈{0,1}

⊗
i∈[n]

⊕
j∈[0,d] x

j
i ∈ (Fd)n which encodes all desired evaluation points. Additionally,

let P ∈ (Fd)n denote an n-dimensional tensor constituting of the coefficients of P . Specifically, let
P contain at index (j1, . . . , jn) the coefficient of P associated with term xj11 x

j2
2 . . . xjnn . Now, we

have that checking the original sum-check statement is equivalent to checking the tensor evaluation
statement

P(X) = σ.

The three examples above suggest that seemingly disparate linear-algebraic claims can be uni-
formly viewed as tensor evaluation claims. In light of this, we are interested in designing a reduction
for statements of the form u(w) = v for tensors u, w, and v.

5.2 The Tensor Reduction

To design a general reduction for tensor statements of the form u(w) = v, we start by generalizing
the sum-check protocol for tensor evaluation statements. Recall that the sum-check protocol reduces
the task of checking the claim in Equation (1) to the task of checking a sum-check claim over a
polynomial with one less variable. In particular, the prover begins by sending

p(X) =
∑

x1,...,xn−1∈{0,1}

P (x1, . . . , xn−1, X)

The verifier then checks that p(0) +p(1) = σ. The verifier must now check that p is consistent with
P . To do so, the verifier samples a random r ← F, and reduces to checking∑

x1,...,xn−1

P (x1, . . . , xn−1, r) = p(r).

19

In essence, the sum-check protocol leverages the nested structure of polynomials to reduce the
task of checking n-variate polynomials to (n− 1)-variate polynomials. This intuition can be more
lucidly expressed with the corresponding tensor evaluation statements: the sum-check protocol
reduces the task of checking the evaluation of P ∈ (Fd)n ∼= (Fd)n−1 ⊗ Fd (representing P) to
the task of checking the evaluation of Pr ∈ (Fd)n−1 (representing P evaluated on r) and p ∈ Fd
(representing p). That is, the sum-check protocol factors the original statement with respect to the
tensor product.

The tensor reduction, which we detail below, follows from generalizing the involved spaces to
handle arbitrary tensor evaluation statements: for any modules U , U1, and U2 such that U ∼=
U1 ⊗ U2, we derive a mechanism to reduce an evaluation claim in U to an evaluation claim in U1

and an evaluation claim in U2. In Appendix C, we show that we can recover the sum-check protocol
when instantiating the tensor reduction over multivariate polynomials.

Construction 3 (Tensor Reduction). Suppose for tensors u ∈ (W1 → V1)⊗ (W2 → V2) of rank
I, w ∈W1 ⊗W2 of rank J , and v ∈ V1 ⊗ V2 over ring R, a verifier would like to check

u(w) = v (2)

where u =
∑

i∈[I] u1,i⊗u2,i, and w =
∑

j∈[J]w1,j ⊗w2,j . By definition, the verifier can check (2) by
checking

∑
i,j u1,i(w1,j) ⊗ u2,i(w2,j) = v. Therefore, the prover begins by computing and sending

v1,ij ← u1,i(w1,j) and v2,ij ← u2,i(w2,j) for all i ∈ [I], j ∈ [J]. The verifier directly checks∑
i∈[I],j∈[J]

v1,ij ⊗ v2,ij = v.

The verifier must still check that v1,ij = u1,i(w1,j) and v2,ij = u2,i(w2,j) for all i, j. To do so, the
verifier takes a random linear combination of these checks by sending random α, β from a valid
sampling set Q ⊆ R, and computing v1 =

∑
i,j α

iβjv1,ij and v2 =
∑

i,j α
iβjv2,ij . The verifier then

outputs (α, β, v1, v2), reducing the original check to the task of checking(∑
i

αiu1,i

)(∑
j

βjw1,j

)
= v1 and

(∑
i

αiu2,i

)(∑
j

βjw2,j

)
= v2.

Theorem 7 (Tensor Reduction). For tensors u =
∑

i u1,i ⊗ u2,i ∈ (W1 → V1) ⊗ (W2 → V2) of
rank I, w =

∑
j w1,j ⊗w2,j ∈W1⊗W2 of rank J , and v ∈ V1⊗V2 over ring R, the tensor reduction

reduces the task of checking

u(w) = v

to the task of checking(∑
i

αiu1,i

)(∑
j

βjw1,j

)
= v1 and

(∑
i

αiu2,i

)(∑
j

βjw2,j

)
= v2

for verifier output (α, β, v1, v2). Formally, if the former is true, then the latter is true with prob-
ability 1, and if the former is false, then the latter is false with probability at least 1 − IJ

|Q| . The
prover complexity, verifier complexity, and communication complexity are all proportional to IJ .

Proof. This follows from the Schwartz-Zippel Lemma [Sch80] extended to modules [BCS21].

20

At first glance, it may seem that the communication cost of the tensor reduction is greater than
the size of the witness: the witness only consists of J elements in W1 ⊗W2, but the prover sends
IJ elements in V1 and V2. This is reconciled by the fact that elements of V1 and V2 are intended
to be significantly smaller than elements in W1 ⊗W2. For instance, elements in W1 ⊗W2 may be
long vectors that are mapped to short commitments in V1 and V2.

To build intuition for where tensor reductions are useful, we explain how to instantiate the tensor
reduction to reconstruct the vector commitment reduction of knowledge presented in Section 2.

Example 4 (Vector Commitment Reduction of Knowledge). We construct a reduction of
knowledge from RVC(n) to RVC(n/2) for n = 2i where i ≥ 1. Consider group G of prime order
p where the discrete logarithm problem is hard, and corresponding scalar field F ∼= Zp. Consider
some public key G ∈ Gn. Suppose a verifier would like to check for some commitment A ∈ G, that
the prover knows vector A ∈ Fn such that G(A) = A where G(A) is defined to be 〈G,A〉.

We observe that Gn ∼= Gn/2⊗F2 and Fn ∼= Fn/2⊗F2. Let {δ1, δ2} be an orthonormal basis for F2

(i.e., we have that δi(δj) = 1 when i = j and 0 otherwise). Then, we have that G = G1⊗δ1+G2⊗δ2
and A = A1⊗δ1+A2⊗δ2 for some G1, G2 ∈ Gn/2 and A1, A2 ∈ Fn/2. These terms can be interpreted
as the first and second half of vectors G and A. Therefore, the verifier can equivalently check(∑

i

Gi ⊗ δi
)(∑

j

Aj ⊗ δj
)

= A.

Applying the tensor reduction with respect to this decomposition, we have that the prover sends
to the verifier Gi(Aj), δi(δj) for i, j ∈ {1, 2}. Explicitly, letting Aij = Gi(Aj), the prover sends the
terms (A11, 1), (A12, 0), (A21, 0), and (A22, 1). We recognize that the first and last terms correspond
with the first and second half of commitment A, and the middle two terms are cross terms.

Upon receiving these terms, the verifier checks that

A11 ⊗ 1 +A12 ⊗ 0 +A21 ⊗ 0 +A22 ⊗ 1 = A.

The verifier then samples and sends random α, β ← F, and sets the new statements to be checked
to be (G1 +αG2)(A1 +βA2) =

∑
i,j∈{1,2}Aij ·αiβj and (δ1 +αδ2)(δ1 +βδ2) = 1+(β+α) ·0+αβ ·1.

The latter check holds immediately. As for the former check, the prover and verifier compute and
output the new statement G′ ← G1 + αG2 ∈ Gn/2 and A ←

∑
i,j∈{1,2}Aij · αiβj . The prover

privately computes and outputs the new witness vector A′ ← A1 +βA2 ∈ Fn/2. Now, it is sufficient
for the verifier to check that the prover knows A′ ∈ Fn/2 such that

G′(A′) = A
′
.

5.3 The Tensor Reduction of Knowledge

By generalizing Example 4 for arbitrary tensor statements, we arrive at the tensor reduction of
knowledge, which we show to be unconditionally secure. We start by defining the tensor relation
which fixes the homomorphism and image as a statement and the preimage as the witness. We then
construct the tensor reduction of knowledge, which for a vector space of homomorphisms U and
length n, reduces the task of checking knowledge of a preimage of a homomorphism in Un to the
task of checking knowledge of a preimage of a homomorphism in U . In the upcoming section, we
show that the tensor reduction of knowledge can be instantiated to derive reductions of knowledge
for various linear algebraic statements.

21

Recall that the tensor relation statement consists of a homomorphism and an image, and a
witness consists of the corresponding preimage. We first recall the formal definition for the tensor
relation.

Definition 12 (Tensor Relation). For R-modules U , W and V , such that U ∼= (W → V) we
define the tensor relation for U as follows

R(U) =

{
((u, v), w)

∣∣∣∣∣ u ∈ U, v ∈ V,w ∈W,u(w) = v

}

Construction 4 (Tensor Reduction of Knowledge). Consider field F, length parameter n,
and F-modules W and V . We construct a reduction of knowledge from R(Wn → V) to R(W → V).
Let {δi} be an orthonormal basis for Fn. Suppose the prover and verifier are provided statement
u =

∑
i ui ⊗ δi ∈ (Wn → V), and v ∈ V . Additionally, suppose the prover is provided an alleged

witness w =
∑

j wj ⊗ δj ∈Wn such that

((u, v), w) ∈ R(Wn → V).

The prover and verifier run a single tensor reduction on the equivalent statement(∑
i∈[n]

ui ⊗ δi
)(∑

j∈[n]

wj ⊗ δj
)

= v.

At the end of tensor reduction, the verifier outputs (α, β, v′, c) where c ∈ F. The prover and
verifier compute u′ =

∑
i α

i ·ui and set the output statement to be (u′, v′). The prover additionally
computes the output witness w′ =

∑
j β

j · wj as dictated by the tensor reduction. Now, to check
the original statement, it is sufficient for the verifier to check that the prover knows w′ such that

((u′, v′), w′) ∈ R(W → V).

Theorem 8 (Tensor Reduction of Knowledge). For field F, length parameter n, and F-modules
W and V , Construction 4 is a reduction of knowledge from R(Wn → V) to R(W → V).

Proof Intuition. Consider instance u =
∑

i∈[n] ui ⊗ δi and v. We prove knowledge soundness via
tree extraction (Lemma 6). That is, we construct extractor χ that outputs w such that u(w) = v
given a tree of accepting transcripts and corresponding output prover witnesses.

Suppose the extractor χ is provided with n2 accepting transcripts τmk with the same prover’s
first message {(v1,ij , v2,ij)|i, j ∈ [n]} and with randomness (αm, βmk) for m ∈ [n], k ∈ [n]. Let
w′mk ∈ W ′ for k ∈ [n2] denote the corresponding satisfying witnesses. For m ∈ [n], the extractor

solves for wmj ∈ W for j ∈ [n] such that
∑

j∈[n] β
j
mkwmj = w′mk for k ∈ [n] using an inverse

Vandermonde matrix (where invertibility is afforded by working over a field). The extractor then
computes amj for all m ∈ [n], j ∈ [n] such that for all i ∈ [n],

∑
m∈[n] α

i
mamj = v2,ij . Next, the

extractor computes

w ←
∑
l∈[n]

∑
m∈[n]

∑
j∈[n]

amj · αlm · wmj ⊗ δl.

By textbook algebra, we can show that w is indeed a satisfying witness. We present a formal proof
in Appendix B.4.

22

6 Instantiating the Tensor Reduction of Knowledge

In this section, we demonstrate a unifying view of existing recursive algebraic arguments by deriving
them by instantiating the tensor reduction of knowledge over the appropriate structures. We
additionally derive new reductions of knowledge for bilinear forms by extending our techniques.
We additionally discuss concrete modules each of these reductions can be instantiated over. In
Section 7, we show how to stitch together these reductions to derive an argument for NP.

6.1 Vector Commitments and Linear Forms

We start by generalizing the vector commitment relation from Section 2 and then discuss how suc-
cinctly derive the vector commitment reduction of knowledge via the tensor reduction of knowledge.
We then augment the vector commitment reduction for the linear forms relation. The high level
approach for both reductions is to first split all checks over size n vectors into k checks over size
n/k vectors. These checks are then folded using a random linear combination. How exactly the
vectors are split and folded is abstracted away by the tensor reduction of knowledge.

Consider size parameter n ∈ N, and consider F-modules G and H for field F such that G ∼=
H → G ⊗ H. For public key G ∈ Gn ∼= Hn → G ⊗ H, and commitment H ∈ G ⊗ H, suppose a
verifier would like to check that a prover knows H ∈ Hn such that

∑
iGi ⊗Hi = H. For example,

suppose G is a group of prime order p where the discrete logarithm is hard, H and F are Zp, and
⊗ represents scalar multiplication. Then, this amounts to checking knowledge of the opening for
a Pedersen commitment. Recall that the prover’s claim can be expressed as a tensor statement
G(H) = H. Therefore, we can define the generalized vector commitment relation as the tensor
relation over homomorphisms in Gn.

Definition 13 (Generalized Vector Commitment Relation). For length n ∈ N and group G,
the vector commitment relation is defined to be R(Gn).

Construction 5 (Vector Commitment Reduction of Knowledge). Because Gn ∼= (Gn/k)k,
we can directly apply the tensor reduction of knowledge to get a reduction from R(Gn) to R(Gn/k).

Suppose that in addition to checking that the prover knows a vector opening to a commitment,
the verifier would like to additionally check some public linear combination of the provers opening.
In particular, for public vector A ∈ Fn, and σ ∈ H the suppose verifier would like to additionally
check that A(H) = σ where A(H) is defined to be

∑
i∈[n]Ai ⊗ Hi. For example, if ⊗ represents

scalar multiplication, then this amounts to checking an inner-product. Recall, from Section 5, that
this is equivalent to checking (G⊕ A)(H) = H ⊕ σ. Therefore, because G⊕ A ∈ Gn ⊕ Fn, we can
define the linear forms relation as the tensor relation over Gn ⊕ Fn.

Definition 14 (Linear Forms Relation). For length n and F-module G for field F, let LFn =
Gn ⊕ Fn. The linear forms relation is defined to be R(LFn).

Construction 6 (Linear Forms Reduction of Knowledge). Consider n, k ∈ N such that k
divides n. We construct a reduction of knowledge from R(LFn) to R(LFn/k). In particular, we have
that

LFn = (G⊕ F)n ∼= (G⊕ F)(n/k)·k = (LFn/k)
k.

Therefore, the prover and verifier can apply the tensor reduction of knowledge with respect to
this decomposition to reduce the task of checking a statement in R(LFn) to the task of checking a
statement in R(LFn/k).

23

Lemma 7 (Linear Forms Reduction of Knowledge). For n, k ∈ N such that k divides n,
Construction 6 is a reduction of knowledge from LFn to LFn/k with O(n) prover and verifier time
complexity and O(k2) communication complexity.

As discussed in Section 2, we can construct a base case argument for LF1 where the prover
directly sends its witness to the verifier. Thus, we have the following.

Corollary 2 (Linear Forms Argument of Knowledge). Consider n, k ∈ N such that k divides
n. Let ΠLF be a reduction of knowledge from R(LFn) to R(LFn/k). Let Πbase be an argument of
knowledge for R(LF1). Then

Πbase ◦ΠLF ◦ . . . ◦ΠLF︸ ︷︷ ︸
logk n times

is an argument of knowledge for LFn with O(n) prover and verifier time complexity and O(k2 ·logk n)
communication complexity.

6.2 Bilinear Forms

We extend our methodology to encode vector commitments and linear forms as tensor relations to
develop a new reduction for bilinear forms. Recall from Section 1 that we define the bilinear forms
relation, RBil(m,n), as follows.

Definition 15 (Bilinear Forms, Original). Consider F-modules G and H for field F. We define
the bilinear forms relation, RBil, characterized by m rows and n columns.

RBil(m,n) =

 ((G,H,M,A,B, σ), (A,B))

∣∣∣∣∣∣∣∣
G ∈ Gm, H ∈ Hn, (A,B) ∈ (G,H),

M ∈ Fm×n, σ ∈ F,
A>MB = σ,G(A) = A,H(B) = B


Unlike vector commitments and linear forms, the bilinear forms relation cannot directly be

encoded as a tensor evaluation statement. Our approach is to encode the original statement as the
related statement,

(G⊗H ⊕M)(A⊗B) = (A⊗B ⊕ σ), (3)

where M ∈ Fm ⊗ Fn is a tensor such that M(A ⊗ B) = A>MB. The tensor-based statement
implies checking the original statement so long as we additionally stipulate that the bilinear relation
assumption holds for (G,F), (H,F), and (G,H). Then, we can utilize the tensor reduction of
knowledge to reduce the corresponding tensor relation R(Gm ⊗Hn ⊕ Fm ⊗ Fn).

In practice, G and H can be prime order bilinear groups with the pairing operation acting as
the tensor product between G and H and G ⊗ H denoting the target group. In this setting, the
bilinear relation assumptions are equivalent to the discrete logarithm assumption over G and H
and the double pairing assumption [AFG+10] over (G,H).

The computational hardness assumptions are a critical detail for arguing that checking Equa-
tion (3) is sufficient to check the original relation: the unconditional knowledge soundness property
of the tensor reduction of knowledge only guarantees that the prover knows some satisfying witness
in Fm ⊗ Fn which may be of the form

∑
iAi ⊗ Bi (i.e., not a simple tensor). While this is a valid

witness for the corresponding tensor statement, it is not a valid witness for the original statement.

24

However, by assuming that the commitment scheme is computationally binding, we can argue that
all Ai values must be the same. Leveraging this, we can show that the prover must know a single A
and B vector that satisfies the statement. Formally, we define the bilinear forms relation as follows.

Definition 16 (Bilinear Forms, Tensor). Consider size parameters n,m ∈ N, and consider
F-modules G and H for field F such that the bilinear relation assumption holds for (G,F), (H,F),
and (G,H). Let BFm,n = (Gm ⊗ Hn) ⊕ (Fm ⊗ Fn). We define the (tensor-based) bilinear form
relation as the corresponding tensor relation R(BFm,n).

Next, we show how to recursively reduceRBil(m,n) toR(LFm). To do so, we construct a reduction
fromRBil(m,n) toRBil(m,n/k), which internally uses the tensor reduction of knowledge fromR(BFm,n)
to R(BFm,n/k). We then construct a base case reduction from RBil(m,1) to R(LFm).

Construction 7 (Bilinear Forms Reduction of Knowledge). Consider n, k ∈ N such that k
divides n. We construct a reduction of knowledge from RBil(m,n) to RBil(m,n/k).

Consider the following input statement-witness pair.

((G,H,M,A,B, σ), (A,B)) ∈ RBil(m,n)

The prover and verifier begin by encoding the statement and witness as

((G⊗H ⊕M, A⊗B ⊕ σ), A⊗B) ∈ R(BFm,n)

where M ∈ Fm ⊗ Fn is a tensor such that M(A⊗B) = A>MB.
We observe that

BFm,n = Gm ⊗Hn ⊕ Fm ⊗ Fn ∼= (Gm ⊗Hn/k ⊕ Fm ⊗ Fn/k)k = (BFm,n/k)
k.

Therefore, the prover and verifier can apply the tensor reduction of knowledge with respect to this
decomposition and reduce to the task of checking a statement in R(BFm,n/k). At a high level, the
tensor reduction prover and verifier section M and H into k sets of columns and the prover sections
B into k corresponding sets of rows. The prover and verifier then fold these sets using a random
linear combination. By linearity, we have that the output statement is of the form

((G⊗H ′ ⊕M′, A⊗B′ ⊕ σ′), A⊗B′) ∈ R(BFm,n/k)

for some H ′ ∈ Hn/k, M ′ ∈ Fm ⊗ Fn/k, B′ ∈ H, σ′ ∈ F, and B′ ∈ Fn/k. Together, the prover and
verifier output the decoded statement witness pair

((G,H ′,M ′, A,B
′
, σ′), (A,B′)) ∈ RBil(m,n/k).

Lemma 8 (Bilinear Forms Reduction of Knowledge). For n, k ∈ N such that k divides
n, Construction 7 is a reduction of knowledge form RBil(m,n) to RBil(m,n/k) with O(n) prover and
verifier time complexity and O(k2) communication complexity.

Proof Intuition. Completeness, prover and verifier time complexity, and communication complexity
follow from the corresponding properties of the tensor reduction of knowledge. By the composability
of reductions (Theorem 5), the extractor can retrieve a satisfying witness

∑
iA
′
i ⊗ B′i ∈ Fn ⊗ Fm

for the underlying tensor reduction of knowledge. By the bilinear relation assumption over (H,F)
and (G,H), the witness must be of the form A ⊗ B for some efficiently computable A ∈ Fm and
B ∈ Fn. We provide a formal proof in Appendix B.5.

25

Construction 8 (Bilinear Forms Base Case). We construct a reduction of knowledge from
RBil(m,1) to R(LFm). Consider statement (G,H,M,A,B, σ) and alleged witness (A,B). The prover
begins the reduction by directly sending B to the verifier. The verifier immediately checks that
H(B) = B. Additionally, as M ∈ Fm and B ∈ F, the verifier computes the vector V ←M ·B. The
verifier is left with checking that the prover knows A ∈ Fm such that G(A) = A and V (A) = σ. This
is equivalent to checking that the prover knows A ∈ Fm such that ((G⊕ V,A⊕ σ), A) ∈ R(LFm).

Lemma 9 (Bilinear Forms Base Case). Construction 8 is a reduction of knowledge from
RBil(m,1) to R(LFm) with O(m) prover and verifier time complexity and O(1) communication com-
plexity.

Corollary 3 (Bilinear Forms to Linear Forms). Consider n, k ∈ N such that k divides n.
Let ΠBil be the reduction of knowledge from RBil(m,n) to RBil(m,n/k). Let Πbase be the reduction of
knowledge from R(Bil(m, 1)) to R(LFm). Then

Πbase ◦ΠBil ◦ . . . ◦ΠBil︸ ︷︷ ︸
logk n times

is a reduction of knowledge from RBil(m,n) to R(LFm) with O(n + m) prover and verifier time
complexity and O(k2 · logk n) communication complexity.

6.3 Instantiating Spaces

In practice, we are tasked with instantiating the underlying vector spaces and corresponding tensor
product. This also instantiates the corresponding computational assumptions. Because F has
multiplication built in, when considering the tensor product against vectors over the underlying
field, ⊗ always corresponds to the outer product: For instance, Gm ⊗ Fn is equivalent to Gmn.
Thus, our remaining task is to instantiate G, H, and G⊗H. We highlight two options.

• Prime Order Groups: We can set G to be a group of prime order p and set H to be the
underlying field F = Zp. In this setting, ⊗ corresponds to group scalar multiplication, and
G ⊗ H ∼= G. The corresponding computational assumption (if needed) corresponds to the
discrete logarithm assumption.

• Bilinear Groups: We can set G = H to be a symmetric bilinear group with target group G>.
In this case ⊗ corresponds to the pairing operation e : G × G → G>, and G ⊗ H ∼= G>.
The corresponding computational assumption, (if needed) corresponds to the double-pairing
assumption [AFG+10].

We note that instantiating bilinear forms over prime order groups reverts back down to linear
forms over prime order groups. In particular, we have that BFm,n ∼= Gm ⊗ Fn ⊕ Fm ⊗ Fn ∼=
Gmn ⊕ Fmn ∼= LFmn.

7 An Argument of Knowledge for NP

In this section, we develop an argument of knowledge for NP with logarithmic communication
by leveraging our reductions of knowledge for linear algebraic statements. In particular, we first
show that an NP-complete relation, RACS, can be encoded as a sequence of linear and bilinear

26

forms constraints over the same commitment. We then develop helper reductions of knowledge
that reduce the task of checking many linear forms (respectively bilinear forms) over the same
commitment to a single linear form (respectively bilinear form). We then apply our reductions of
knowledge for linear forms and bilinear forms.

Definition 17 (NP-Complete Relation [KMP20]). Consider group G and corresponding field F
such that the bilinear relation assumption holds for (G,F) and (G,F). We define the NP-complete
algebraic constraint relation, RACS, characterized by n variables, m = O(n) constraints, and `
inputs as follows. The statement consists of public key G ∈ Gn, m sparse constraint matrices
M1, . . . ,Mm ∈ Fn×n such that the total number of non-zero values in all matrices combined is
O(n), public inputs and outputs vector X ∈ F`, and witness commitment Z ∈ G. A witness vector
W ∈ Fn−` is satisfying if for Z = (X,W), Z>MiZ = 0 for all i ∈ [m], and G(Z) = Z.

We can encode RACS to tensor relations as follows: First, the verifier can check that ((G ⊕
δi, Z ⊕ Xi), Z) ∈ R(LFn) for all i ∈ [`] to ensure that Z contains public vector X. To check
the commitment and constraints, it is sufficient for the verifier to check that the prover knows
Z1, Z2 ∈ Fn such that ((G,G,Mi, Z, Z, 0), (Z1, Z2)) ∈ RBil(n,n) for all i ∈ [m]. The bilinear relation
assumptions ensure that Z, Z1 and Z2 are equal.

Next, we leverage the fact that all linear form checks and all bilinear form checks are over the
same commitment to reduce these checks. We formally capture the set of linear form checks over the
same commitment (respectively bilinear forms) as the multiple linear forms relation (respectively
multiple bilinear forms relation).

Definition 18 (Multiple Linear Forms). We define RMLF(n,`) such that

((G, (V1, . . . , V`), (σ1, . . . , σ`), Z), Z) ∈ RMLF(n,`)

if and only if
((G⊕ Vi, Z ⊕ σi), Z) ∈ R(LFn)

for all i in [`].

Definition 19 (Multiple Bilinear Forms). We define RMBil(m,n,`) such that

((G,H, (M1, . . . ,M`), (σ1, . . . , σ`), Z1, Z2), (Z1, Z2)) ∈ RMBil(m,n,`)

if and only if
((G,H,Mi, Z1, Z2, σi), (Z1, Z2)) ∈ RBil(m,n)

for all i in [`].

With these relations, the above encoding can be captured as a reduction of knowledge in which
the prover and verifier do not interact but rather take as input an RACS statement-witness pair
and output the corresponding tensor-based statements and witnesses in the multiple linear forms
and bilinear forms relations. This step can be interpreted as a Levin reduction.

Lemma 10 (Encoding NP as Tensor Relations). There exists a reduction of knowledge from
RACS(m,n,`) to RMBil(n,n,m)×RMLF(n,`) with O(n) prover and verifier complexity, and no communi-
cation.

27

Because all ` checks for RMLF(n,`) concern the same committed value, we observe that they
can be batched into a single check for R(LFn) using a random linear combination. In particular,
the verifier can send a random challenge r ∈ F. Together the prover and verifier can compute
V ←

∑
i Vi · ri and σ ←

∑
i σi · ri and reduce to checking that the prover knows Z such that

((G ⊕ V,Z ⊕ σ), Z) ∈ R(LFn). Similarly, we can reduce multiple bilinear forms over the same
commitment to a single bilinear form. Formally, we have the following reductions.

Lemma 11 (Linear Forms Batch Reduction). For n,m, ` ∈ N, there exists a reduction of
knowledge from RMLF(n,`) to RLF(n) with O(n`) prover and verifier time complexity, and O(1)
communication complexity.

Lemma 12 (Bilinear Forms Batch Reduction). For n,m, ` ∈ N, there exists a reduction of
knowledge from RMBil(m,n,`) to RBil(m,n) with O(mn`) prover and verifier time complexity, and O(1)
communication complexity.

Putting everything together, we arrive at an argument of knowledge for NP.

Corollary 4 (An Argument of Knowledge for NP). Let Πencode be the reduction of knowledge
from RACS(n,m,`) to RMBil(n,n,m) ×RMLF(n,`) (Lemma 10). Let ΠbatchLF be the batching scheme for
linear forms (Lemma 11). Let ΠbatchBil be the batching scheme for bilinear forms (Lemma 12). Let
ΠLFn be the argument of knowledge for R(LFn) with decomposition parameter k (Construction 2).
Let ΠBil(n,n) be the reduction of knowledge from RBil(n,n) to RLF(n) with decomposition parameter k
(Corollary 3). Let Πid be the identity reduction of knowledge (i.e., the prover and verifier output
their inputs). Let ΠfoldBool be a 2-folding scheme for R> (i.e., the verifier outputs true if both its
inputs are true). Then

ΠfoldBool ◦ (Πid ×ΠLFm) ◦ (ΠLFn ×ΠBil(n,n)) ◦ (ΠbatchLF ×ΠbatchBil) ◦Πencode

is an argument of knowledge for RACS(n,m,`) with O(n) prover and verifier time complexity, and
O(k2 logk n) communication complexity.

Acknowledgments

We thank Jonathan Bootle, Quang Dao, Vipul Goyal, Yael Kalai, Jonathan Lee, Srinath Setty,
Elaine Shi, and Zoe Wellner for comments on earlier versions of this work. Abhiram Kothapalli
was supported by a fellowship from Protocol Labs, a gift from Bosch, NSF Grant No. 1801369, and
by the CONIX Research Center, one of six centers in JUMP, a Semiconductor Research Corporation
(SRC) program sponsored by DARPA.

28

References

[AC20] Thomas Attema and Ronald Cramer. Compressed sigma-protocol theory and practical
application to plug & play secure algorithmics. In Annual International Cryptology
Conference, pages 513–543. Springer, 2020.

[ACR20] Thomas Attema, Ronald Cramer, and Matthieu Rambaud. Compressed sigma-
protocols for bilinear group arithmetic circuits and applications. Technical report,
Cryptology ePrint Archive, Report 2020/1447, 2020.

[AFG+10] Masayuki Abe, Georg Fuchsbauer, Jens Groth, Kristiyan Haralambiev, and Miyako
Ohkubo. Structure-preserving signatures and commitments to group elements. In
Annual Cryptology Conference, pages 209–236. Springer, 2010.

[BBB+18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and
Greg Maxwell. Bulletproofs: Short proofs for confidential transactions and more. In
IEEE S&P, 2018.

[BCC+16] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and Christophe Petit.
Efficient zero-knowledge arguments for arithmetic circuits in the discrete log setting.
In EUROCRYPT, 2016.

[BCCT12] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From extractable
collision resistance to succinct non-interactive arguments of knowledge, and back again.
In ITCS, 2012.

[BCCT13] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive compo-
sition and bootstrapping for snarks and proof-carrying data. In Proceedings of the
forty-fifth annual ACM symposium on Theory of computing, pages 111–120, 2013.

[BCL+21] Benedikt Bünz, Alessandro Chiesa, William Lin, Pratyush Mishra, and Nicholas
Spooner. Proof-carrying data without succinct arguments. In Annual International
Cryptology Conference, pages 681–710. Springer, 2021.

[BCS21] Jonathan Bootle, Alessandro Chiesa, and Katerina Sotiraki. Sumcheck arguments and
their applications. In Advances in Cryptology–CRYPTO 2021, 2021.

[BDFG20] Dan Boneh, Justin Drake, Ben Fisch, and Ariel Gabizon. Halo infinite: Recursive zk-
snarks from any additive polynomial commitment scheme. Cryptology ePrint Archive,
Report 2020/1536, 2020.

[BFS20] Benedikt Bünz, Ben Fisch, and Alan Szepieniec. Transparent SNARKs from DARK
compilers. In EUROCRYPT, 2020.

[BGH19] Sean Bowe, Jack Grigg, and Daira Hopwood. Recursive proof composition without a
trusted setup. Cryptol. ePrint Arch., Tech. Rep, 1021:2019, 2019.

[BMM+21] Benedikt Bünz, Mary Maller, Pratyush Mishra, Nirvan Tyagi, and Psi Vesely. Proofs
for inner pairing products and applications. In Advances in Cryptology–ASIACRYPT
2021, 2021.

29

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In Proceedings of the 1st ACM Conference on Computer
and Communications Security, pages 62–73, 1993.

[BSCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive oracle proofs.
In TCC, 2016.

[CFF+21] Matteo Campanelli, Antonio Faonio, Dario Fiore, Anäıs Querol, and Hadrián
Rodŕıguez. Lunar: a toolbox for more efficient universal and updatable zksnarks
and commit-and-prove extensions. In International Conference on the Theory and
Application of Cryptology and Information Security, pages 3–33. Springer, 2021.

[CHJ+22] Heewon Chung, Kyoohyung Han, Chanyang Ju, Myungsun Kim, and Jae Hong Seo.
Bulletproofs+: Shorter proofs for a privacy-enhanced distributed ledger. IEEE Access,
10:42067–42082, 2022.

[CHM+20] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah Vesely, and
Nicholas Ward. Marlin: Preprocessing zkSNARKs with universal and updatable SRS.
In EUROCRYPT, 2020.

[CNR+22] Matteo Campanelli, Anca Nitulescu, Carla Rafols, Alexandros Zacharakis, and Aran-
txa Zapico. Linear-map vector commitments and their practical applications. Cryp-
tology ePrint Archive, 2022.

[DLFKP16] Antoine Delignat-Lavaud, Cédric Fournet, Markulf Kohlweiss, and Bryan Parno. Cin-
derella: Turning shabby X. 509 certificates into elegant anonymous credentials with
the magic of verifiable computation. In IEEE S&P, 2016.

[FKL18] Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model and its
applications. In CRYPTO, 2018.

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In EUROCRYPT, 1986.

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span
programs and succinct NIZKs without PCPs. In EUROCRYPT, 2013.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of
interactive proof systems. SICOMP, 18(1), 1989.

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from
all falsifiable assumptions. In STOC, 2011.

[GWC19] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. Plonk: Permutations over
lagrange-bases for oecumenical noninteractive arguments of knowledge. Cryptology
ePrint Archive, Report 2019/953, 2019.

[KMP20] Abhiram Kothapalli, Elisaweta Masserova, and Bryan Parno. Poppins: A direct con-
struction for asymptotically optimal zkSNARKs. Cryptology ePrint Archive, Report
2020/1318, 2020.

30

[KMS+16] Ahmed Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos Papamanthou.
Hawk: The blockchain model of cryptography and privacy-preserving smart contracts.
In IEEE S&P, 2016.

[KST22] Abhiram Kothapalli, Srinath Setty, and Ioanna Tzialla. Nova: Recursive zero-
knowledge arguments from folding schemes. In Advances in Cryptology–CRYPTO,
2022.

[Lee21] Jonathan Lee. Dory: Efficient, transparent arguments for generalised inner products
and polynomial commitments. In Theory of Cryptography: 19th International Confer-
ence, TCC 2021, 2021.

[LFKN92] Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan. Algebraic methods
for interactive proof systems. JACM, 39(4), 1992.

[Ped91] Torben Pryds Pedersen. Non-interactive and information-theoretic secure verifiable
secret sharing. In Annual international cryptology conference, 1991.

[RZ21] Carla Ràfols and Arantxa Zapico. An algebraic framework for universal and updatable
snarks. In Advances in Cryptology–CRYPTO 2021, 2021.

[RZ22] Carla Ràfols and Alexandros Zacharakis. Folding schemes with selective verification.
Cryptology ePrint Archive, Paper 2022/1576, 2022.

[SCG+14] Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,
Eran Tromer, and Madars Virza. Zerocash: Decentralized anonymous payments from
Bitcoin. In IEEE S&P, 2014.

[Sch80] Jacob T Schwartz. Fast probabilistic algorithms for verification of polynomial identi-
ties. JACM, 27(4), 1980.

[Set20] Srinath Setty. Spartan: Efficient and general-purpose zkSNARKs without trusted
setup. In Advances in Cryptology–CRYPTO, 2020.

[TKPS21] Ioanna Tzialla, Abhiram Kothapalli, Bryan Parno, and Srinath Setty. Transparency
dictionaries with succinct proofs of correct operation. Cryptology ePrint Archive, 2021.

[Val08] Paul Valiant. Incrementally verifiable computation or proofs of knowledge imply
time/space efficiency. In TCC, 2008.

[WTS+18] Riad S Wahby, Ioanna Tzialla, Abhi Shelat, Justin Thaler, and Michael Walfish.
Doubly-efficient zkSNARKs without trusted setup. In IEEE S&P, 2018.

[ZKP15] Yupeng Zhang, Jonathan Katz, and Charalampos Papamanthou. IntegriDB: Verifiable
SQL for outsourced databases. In CCS, 2015.

31

A Supplementary Definitions

We start by defining rings and modules. We then define the direct sum and tensor product opera-
tions for modules over rings, which is used throughout our development.

Definition 20 (Ring). A ring is a set R together with two binary operations + and · over R that
satisfy the following conditions.

(i) (R,+) is a commutative group.

(ii) Associativity: For all a, b, c ∈ R, (a · b) · c = a · (b · c).

(iii) Distributivity: For all a, b, c ∈ R, (a+ b) · c = (a · c) + (b · c) and a · (b+ c) = (a · b) + (a · c).

The ring is commutative if a · b = b · a for all a, b ∈ R. The ring is unital if it contains an identity
element (denoted 1) such that 1 · a = a · 1 = a for all a ∈ R.

Definition 21 (Module). Consider commutative ring R. An R-module is a set M together with
binary operations + from M×M to M and · from R×M to M that satisfy the following conditions.

(i) (M,+) is a commutative group.

(ii) For all r, s ∈ R and m,n ∈M , we have that (r+ s) ·m = r ·m+ s ·m, (r · s) ·m = r · (s ·m),
and r · (m+ n) = r ·m+ r · n.

(iii) If R is unital, then 1 ·m = m for all m ∈M .

Given the definition of rings and modules, we define the direct sum and tensor product opera-
tions over rings and modules via their universality properties.

Definition 22 (Direct Sum). Consider R-modules U1 and U2. A direct sum for U1 and U2,
denoted ⊕, is any operation mapping from U1 ×U2 into a new module, denoted U1 ⊕U2, such that
for natural embedding ιi ∈ Ui → U1⊕U2 (where ι1(u1) 7→ u1⊕ 0 and ι2(u2) 7→ 0⊕ u2), there exists
a unique linear map ϕ ∈ U1 ⊕ U2 → V such that for any linear maps ϕi ∈ Ui → V the following
diagram commutes 3 for i ∈ {1, 2}.

Ui V

U1 ⊕ U2

ϕi

ιi
ϕ

Example 5 (Direct Sum). Consider field F and vector spaces Fm and Fn. Vector concatenation
mapping u1 ∈ Fm and u2 ∈ Fn to (u1, u2) ∈ Fm+m is valid direct sum over Fm and Fn. This is
because for any linear maps ϕ1 and ϕ2, we have that for ϕ = (ϕ1, ϕ2)

ϕ ◦ ι1(u1) = (ϕ1, ϕ2)(u1, 0) = ϕ1(u1)

ϕ ◦ ι2(u2) = (ϕ1, ϕ2)(0, u2) = ϕ2(u2).

3A diagram is said to commute if all paths along the arrows lead to the same result

32

Definition 23 (Tensor Product). Consider R-modules U1 and U2. A tensor product for U1 and
U2, denoted ⊗, is any operation mapping from U1 × U2 into a new module, denoted U1 ⊗ U2, such
that for any bilinear map ϕ ∈ U1 × U2 → V there exists a unique linear map ϕ̃ ∈ U1 ⊗ U2 → V
such that the following diagram commutes.

U1 × U2 V

U1 ⊗ U2

ϕ

⊗
ϕ̃

Example 6 (Tensor Product). Consider field F and vector spaces Fm and Fn. The outer-product
mapping u1 ∈ Fm and u2 ∈ Fn to matrix u1u

>
2 ∈ Fm×n is a valid tensor product over Fm and Fn.

This is because for any bilinear map from vectors (u1, u2), we can derive a corresponding linear
map from the matrix u1u

>
2 that behaves identically.

B Deferred Proofs

B.1 Proof of Theorem 5 (Sequential Composition)

Theorem. Consider binary relations R1, R2, and R3. For reductions of knowledge Π1 = (G1,P1,V1) :
R1 → R2 and Π2 = (G2,P2,V2) : R2 → R3, we have that Π2 ◦ Π1 = (G,P,V) is a reduction of
knowledge from R1 to R3 where

G(λ) = (G1(λ),G2(λ))

P((pp1, pp2), u1, w1) = P2(pp2,P1(pp1, u1, w1))

V((pp1, pp2), u1) = V2(pp2,V1(pp1, u1, w1))

Proof. Completeness and public reducibility follow by observation. As for knowledge soundness,
consider arbitrary expected polynomial-time adversaries A and P∗. Let pp = (pp1, pp2) ← G(λ)
and let (u1, st)← A(pp). Suppose that

Pr[〈P∗,V〉(pp, u1, st) ∈ R3] = ε. (4)

We must construct an expected polynomial-time extractor E such that

Pr[(u1, E(pp, u1, st)) ∈ R1] = ε− negl(λ).

At a high level, we proceed as follows: We leverage A and P∗ to construct expected polynomial-
time adversaries A2 and P∗∗2 for protocol Π2 that succeed in producing a satisfying witness w3

with probability ε. By the knowledge soundness of Π2, this implies an expected polynomial-time
extractor E2 that succeeds in producing a satisfying intermediate witness w2 with probability ε −
negl(λ). We then leverage E2 (in addition to A and P∗) to construct expected polynomial-time
adversaries A1 and P∗∗1 for protocol Π1 that succeed in producing a satisfying witness w2 with
probability ε − negl(λ). This implies an expected polynomial-time extractor E1 that succeeds in
producing witness w1 with probability ε− negl(λ).

33

Indeed, we start by constructing adversaries A2 and P∗∗2 for Π2. By construction, we have that
V first runs V1 to produce an intermediate statement u2 and then runs V2 with input u2. As such,
we have that P∗ first runs some P∗1 and then runs some P∗2 such that P∗1 interacts with V1 and
then passes some state to P∗2 which interacts with V2 before the two parties collectively produce
the output (u3, w3). Therefore, for (u2, st2)← 〈P∗1 ,V1〉(pp1, u1, st), by Equation (4) we have that

Pr[〈P∗2 ,V2〉(pp2, u2, st2) ∈ R3] = ε. (5)

Thus, we define A2 and P∗∗2 as follows.

A2(pp2)→ (u2, st2):

1. Compute pp1 ← G1(λ).

2. Compute (u1, st)← A((pp1, pp2)).

3. Compute (u2, st2)← 〈P∗1 ,V1〉(pp1, u1, st).

4. Output (u2, st2).

P∗∗2 (pp2, u2, st2)→ (u3, w3):

1. Run P∗2 (pp2, u2, st2), which, at the end of interaction, produces output (u3, w3).

2. Output (u3, w3).

Suppose now that pp2 ← G2(λ) and (u2, st2) ← A2(pp2). By construction, A2 produces the
same distribution of outputs as 〈P∗1 ,V1〉(pp1, u1, st). Then, because P∗∗2 runs P∗2 , by Equation (5),
we have that

Pr[〈P∗∗2 ,V2〉(pp2, u2, st2) ∈ R3] = ε. (6)

Then, by the knowledge soundness of Π2, Equation (6) implies that there exists expected polynomial-
time extractor E2 such that

Pr[(u2, E2(pp2, u2, st2)) ∈ R2] = ε− negl(λ). (7)

We leverage E2 to construct adversaries A1 and P∗∗1 for Π1 as follows.

A1(pp1)→ (u1, st1):

1. Compute pp2 ← G2(λ).

2. Compute (u1, st)← A((pp1, pp2)).

3. Let st1 ← (st, pp2)

4. Output (u1, st1).

P∗∗1 (pp1, u1, st1)→ (u3, w3):

1. Parse st1 as (st, pp2).

34

2. Run P∗1 (pp1, u1, st), which, at the end of interaction produces intermediate state st2. Record
the corresponding interaction transcript as tr.

3. Use deterministic polynomial-time function ϕ guaranteed by the public reducibility property
of Π1 to compute u2 ← ϕ(pp1, u1, tr).

4. Compute w2 ← E2(pp2, u2, st2).

5. Output (u2, w2).

Suppose now that pp1 ← G1(λ) and (u1, st1) ← A1(pp1). By construction of A1 and P∗∗1 ,
the extractor E2 run by P∗∗1 is provided the same distribution of inputs as the extractor E2 in
Equation (7). Thus, by Equation (7), we have that

Pr[〈P∗∗1 ,V1〉(pp1, u1, st1) ∈ R2] = ε− negl(λ). (8)

Then, by the knowledge soundness of Π1, Equation (8) implies that there exists expected polynomial-
time extractor E1 such that

Pr[(u1, E1(pp1, u1, st1)) ∈ R1] = ε− negl(λ). (9)

Thus, we can construct the desired extractor E as follows.

E(pp, u1, st)→ w1:

1. Parse pp as (pp1, pp2).

2. Let st1 ← (st, pp2)

3. Compute w1 ← E1(pp1, u1, st1).

4. Output w1.

Suppose now that pp ← G(λ) and (u1, st) ← A(pp). By construction of E , the extractor E1
run by E is provided the same distribution of inputs as the extractor E1 in Equation (9). Thus, by
Equation (9), we have that

Pr[(u1, E(pp, u1, st)) ∈ R1] = ε− negl(λ).

B.2 Proof of Theorem 6 (Parallel Composition)

Theorem. Consider relations R1, R2, R3, R4. For reductions of knowledge Π1 = (G1,P1,V1) :
R1 → R2 and Π2 = (G2,P2,V2) : R3 → R4, we have that Π1 × Π2 = (G,P,V) is a reduction of
knowledge from R1 ×R3 to R2 ×R4 where

G(λ) = (G1(λ),G2(λ))

P((pp1, pp2), (u1, u3), (w1, w3)) = (P1(pp1, u1, w1),P2(pp2, u3, w3))

V((pp1, pp2), (u1, u3)) = (V1(pp1, u1),V2(pp2, u3))

35

Proof. Completeness and public reducibility follow by observation. As for knowledge soundness,
consider arbitrary expected polynomial-time adversaries A and P∗. Let pp = (pp1, pp2) ← G(λ)
and let (u1, u3)← A(pp). Suppose that

Pr[〈P∗,V〉(pp, (u1, u3), st) ∈ R2 ×R4] = ε.

We must construct expected polynomial-time extractor E such that

Pr[((u1, u3), E(pp, (u1, u3), st)) ∈ R1 ×R3] = ε− negl(λ).

At a high level, we proceed as follows: For i ∈ {1, 2}, we leverage A and P∗ to construct
expected polynomial time adversaries Ai and P∗i for protocol Πi that succeeds in producing a
satisfying output witness with probability ε. By the knowledge soundness of Πi, this implies an
expected polynomial-time extractor Ei that succeeds in producing a satisfying input witness with
probability ε− negl(λ). Together these extractors imply the desired extractor E .

Indeed, we construct adversaries A1 and P∗1 as follows.

A1(pp1)→ (u1, st1):

1. Compute pp2 ← G2(λ).

2. Compute ((u1, u3), st)← A((pp1, pp2)).

3. Output statement u1 and state st1 ← (pp2, u3, st).

P1(pp1, u1, st1)→ (u2, w2):

1. Parse st1 as (pp2, u3, st).

2. Run P∗((pp1, pp2), (u1, u3), st). At the end of interaction P∗ produces statement pair (u2, u4)
and corresponding witness pair (w2, w4).

3. Output (u2, w2).

Suppose now that pp1 ← G1(λ) and (u1, st1)← A1(pp1). By construction, we have that

Pr[〈P∗1 ,V1〉(pp1, u1, st1) ∈ R2] = ε. (10)

Then, by the knowledge soundness of Π1, Equation 10 implies that there exists expected polynomial-
time extractor E1 such that

Pr[(u1, E1(pp1, u1, st1)) ∈ R1] = ε− negl(λ). (11)

Similarly, we can design adversaries A2 and P∗2 for Π2 such that P∗2 succeeds with probability ε.
Then, by the knowledge soundness of Π2, there exists expected polynomial-time extractor E2 such
that for pp2 ← G(λ) and (u3, st2)← A2(pp2) we have that

Pr[(u3, E2(pp2, u3, st2)) ∈ R3] = ε− negl(λ). (12)

Thus, we can construct the desired extractor E as follows.

E((pp1, pp2), (u1, u3), st)→ (w1, w3):

36

1. Compute w1 ← E1(pp1, u1, (pp2, u3, st)).

2. Compute w3 ← E2(pp2, u2, (pp1, u1, st)).

3. Output (w1, w3).

Suppose now that pp ← G(λ) and ((u1, u3), st) ← A(pp). By construction of E the extractors
E1 and E2 are provided the same distribution of inputs as the extractors in Equations (11) and (12)
respectively. Therefore, by Equations (11) and (12), we have that

Pr[((u1, u3), E(pp, (u1, u3), st)) ∈ R1 ×R3] = ε− negl(λ).

B.3 Proof of Lemma 6 (Tree Extraction)

Lemma. Consider an m-round public-coin interactive protocol (G,P,V) that satisfies the interface
described in Definition 8 and satisfies completeness. Then (G,P,V) is a reduction of knowledge if
there exists PPT extractor χ such that for all instances u1, outputs a satisfying witness w1 with
probability 1−negl(λ), given an (n1, . . . , nm)-tree of accepting transcripts for u1 where the verifier’s
randomness is sampled from space Q such that |Q| = O(2λ), and

∏
i ni = poly(λ).

Proof. Public reducibility follows from the completeness and public-coin properties. As for knowl-
edge soundness, our proof closely follows that of [KST22] and [BCC+16]. At a high level, we
construct an expected polynomial-time extractor E that repeatedly runs the malicious prover P∗
and collects corresponding accepting transcripts and associated output statement-witness pairs.
The extractor then passes these collected transcripts to χ which retrieves the desired witness by
assumption.

In more detail, consider an m-round public-coin interactive protocol (G,P,V) that presumably
reduces from R1 to R2. Suppose there exists adversary P∗ that succeeds with probability ε and
extractor χ that succeeds with probability 1− negl(λ). We are tasked with constructing extractor
E that succeeds with probability ε − negl(λ). Indeed, let pp ← G(λ), and (u1, st) ← A(pp). We
construct extractor E as follows.

E(pp)→ w1:

1. Compute tree← TreeGen(1).

2. If tree is not a valid (n1, . . . , nm)-tree (i.e., there are collisions in the verifier’s randomness),
output ⊥.

3. Output w1 ← X (tree)

where we define function TreeGen as follows.

TreeGen(i)→ tree:

1. Sample fresh verifier randomness ri for round i.

2. Compute the interaction 〈P∗,V〉(pp, u1, st) up to round i.

37

3. If i = m, then the interaction is complete. Let tr be the corresponding transcript. Let
(u2, w2) be the verifier’s output statement and the prover’s corresponding output witness. If
(u2, w2) ∈ R2, output {(tr, (u2, w2))}. Otherwise output ⊥.

4. Compute tree← TreeGen(i+ 1). If tree = ⊥, then return ⊥.

5. Repeatedly run TreeGen(i+ 1) to retrieve ni+1− 1 additional accepting subtrees. Append all
results to tree and output tree.

We now argue that E succeeds with probability ε− negl(λ). Let Enempty denote the event that
TreeGen outputs tree 6= ⊥ in less than T time steps (we will specify T later). Given Enempty, let
Evalid denote the event that tree is valid (i.e., there are no collisions in the verifer’s randomness).
Given Enempty and Evalid, let Eext denote the event that χ successfully extracts a valid witness with
input tree. Then, we have that E succeeds with probability

PE = Pr[Enempty] · Pr[Evalid] · Pr[Eext].

We will compute each of these probabilities.
To compute Pr[Enempty] we observe that TreeGen(1) succeeds so long as its first call to TreeGen(2)

succeeds. Likewise, TreeGen(2) succeeds so long as its first call to TreeGen(3) succeeds. Chaining
these assertions, we have that TreeGen(1) succeeds if TreeGen(m) succeeds, which happens with
with probability ε. Moreover, the expected number of times TreeGen(i) calls TreeGen(i+ 1) is

1 + Pr[First call to TreeGen(i+ 1) succeeds] · ni+1 − 1

Pr[TreeGen(i+ 1) succeeds]

= 1 + ε · ni+1 − 1

ε
= ni+1.

Hence, the total runtime of TreeGen(1) is expected to be t = O(
∏m
i=1 ni) which is bounded by

poly(λ) by assumption. Then, by Markov’s inequality, we have that TreeGen(1) runs for time T > t
with probability t

T . Thus, we have that

Pr[Enempty] =

(
1− t

T

)
· ε

Given Enempty, we have that TreeGen(1) runs for at most T steps. But this means that there
are at most T random challenges produced for the verifier implying that the probability of collision
is at most T 2

|Q| . Thus, we have

Pr[Evalid] = 1− T 2

|Q|
.

Finally, given Enempty and Evalid, we have that Pr[Eext] is 1− negl(λ) by assumption.
Now, setting T = 3

√
|Q|, we have

PE = Pr[Enempty] · Pr[Evalid] · Pr[Eext]

=

(
1− t

T

)
· ε ·

(
1− T 2

|Q|

)
· (1− negl(λ))

38

=

(
1− t

3
√
|Q|

)
· ε ·

(
1− 1

3
√
|Q|

)
· (1− negl(λ))

= ε− negl(λ).

Thus, we have that (G,P,V) satisfies knowledge soundness.

B.4 Proof of Theorem 8 (Tensor Reduction of Knowledge)

Theorem (Tensor Reduction of Knowledge). Consider field F, length parameter n, and F-
modules W and V . Construction 4 is a reduction of knowledge for

(R(Wn → V),R(W → V)).

Proof. Consider instance u =
∑

i∈[n] ui⊗δi and v. We prove knowledge soundness via tree extraction
(Lemma 6). That is, we construct extractor χ that outputs w such that u(w) ∼= v given a tree of
accepting transcripts and corresponding output prover witnesses.

Suppose the extractor χ is provided with n2 accepting transcripts τmk with the same prover’s
first message

{(v1,ij , v2,ij)|i ∈ [n], j ∈ [n]}

and with randomness (αm, βmk) for m, k ∈ [n]. Let w′mk ∈ W for m, k ∈ [n] denote the corre-
sponding satisfying witnesses. For m ∈ [n], the extractor solves for wmj ∈ W for j ∈ [n] such
that ∑

j∈[n]

βjmkwmj = w′mk (13)

for k ∈ [n] using an inverse Vandermonde matrix (where invertibility is afforded by working over a
field). Because w′mk is a satisfying witness, by construction of the tensor reduction, for all m, k ∈ [n]
we have that (∑

i

αimui

)(
w′mk

)
=
(∑

i,j

αimβ
j
mkv1,ij

)
.

Then, by Equation (13) we have for all m, k ∈ [n](∑
i

αimui

)(∑
j

βjmkwmj

)
=
(∑

i,j

αimβ
j
mkv1,ij

)
.

Rearranging terms, we have that∑
j

(∑
i

αimui(wmj)
)
· βjmk =

∑
j

(∑
i

αimv1,ij

)
· βjmk. (14)

Thus, for each m ∈ [n], we can treat both sides of Equation 14 as polynomials evaluated over
{βmk|k ∈ [n]}. Because equality holds for k ∈ [n] distinct evaluations, we have that for all m, j ∈ [n](∑

i

αimui

)(
wmj

)
=
(∑

i

αimv1,ij

)
. (15)

39

To compute a satisfying witness, the extractor first computes amj for all m, j ∈ [n] such that
for all i ∈ [n] ∑

m∈[n]

αimamj = v2,ij . (16)

Next, the extractor computes

w ←
∑
l∈[n]

∑
m∈[n]

∑
j∈[n]

amj · αlm · wmj ⊗ δl. (17)

We must now show that w is a satisfying witness. Indeed, we have

u(w) =
(∑

i

ui ⊗ δi
)(∑

l,m,j

amj · αlm · wmj ⊗ δl
)

By (17).

=
∑
i,l,m,j

amj · αlm · ui(wmj)⊗ δi(δl)

=
∑
i,m,j

amj · αim · ui(wmj) By δi(δl) = 0 for i 6= l.

=
∑
m,j

amj ·
∑
i

αim · ui(wmj)

=
∑
m,j

amj ·
∑
i

αim · v1,ij By (15).

=
∑
i,j

v1,ij ·
∑
m

αimamj

=
∑
i,j

v1,ij · v2,ij By (16).

= v. By the verifier’s check.

B.5 Proof of Lemma 8 (Bilinear Forms Reduction of Knowledge)

Lemma. For n, k ∈ N such that k divides n, Construction 7 is a reduction of knowledge form
RBil(m,n) to RBil(m,n/k) with O(n) prover and verifier time complexity and O(k2) communication
complexity.

Proof. Completeness, prover time complexity, verifier time complexity and communication com-
plexity follow by the corresponding properties of the tensor reduction of knowledge.

As for knowledge soundness, consider statement (G,H,M,A,B, σ). Suppose a malicious prover
P∗ succeeds in producing an accepting reduced witness with probability ε. We must construct an
extractor E that succeeds with probability ε− negl(λ).

By translating statements between RBil and R(BF) as described in Construction 7, Prover P∗
implies a malicious prover P∗∗ that succeeds with probability ε for the underlying tensor reduction
of knowledge. Thus, E runs the corresponding extractor for the tensor reduction of knowledge
which succeeds with probability ε − negl(λ). By construction, the tensor reduction extractor is

40

provided a tree of accepting transcripts. Any branch, after appropriate translation of statements,
can be parsed to retrieve A,B′ ∈ Fm,Fn/k such that

((G,H,M ′, A,B, σ′), (A,B′)) ∈ RBil(m,n).

for some M ′ ∈ Fm ⊗ Fn/2, B′ ∈ H, and σ′ ∈ F. By the bilinear relation assumption over (G,F) the
vector A in any given branch is the same with probability 1− negl(λ). Let A = (a1, . . . , an).

With probability ε−negl(λ), the tensor reduction extractor succeeds in producing
∑

iA
′
i⊗B′i ∈

Fn ⊗ Fm such that (
G⊗H ⊕M

)(∑
i

A′i ⊗B′i
)

= A⊗B ⊕ σ

with probability ε− negl(λ). We will show that due to the bilinear relation assumption over (H,F)
and (G,H), the witness must be of the form A ⊗ B for some efficiently computable B. Indeed,
rearranging we have that ∑

i

A′i ⊗B′i =
∑
i

δi ⊗Bi

for canonical basis {δi} for Fn and some Bi ∈ Fm. Then, we have(
G⊗H

)(∑
i

δi ⊗Bi
)

=
∑
i

Gi ⊗Bi

where Bi = H(Bi). Additionally, we have

A⊗B =
(∑

i

ai ·Gi
)
⊗B =

∑
i

Gi ⊗ (ai ·B).

By the bilinear relation assumption over (G,H) we have Bi = ai ·B for all i ∈ [n] with overwhelming
probability. This in turn implies H(a−1i · Bi) = B for all i ∈ [n]. Then, by the bilinear relation
assumption over (H,F), we have that

a−11 ·B1 = . . . = a−1n ·Bn

with overwhelming probability. Let B = a−1i ·Bi denote the above value. Then we have that A⊗B
is a satisfying witness because

A⊗B =
∑
i

ai · δi ⊗B =
∑
i

δi ⊗Bi =
∑
i

A′i ⊗B′i.

C Recovering the Sum-Check Protocol

In this section, we show how to express the sum-check protocol as a tensor reduction over (linearized)
polynomials.

41

Bootle, Chiesa, and Sotiraki [BCS21] show that a large class of split-and-fold techniques can be
viewed as a special case of sum-check protocols over commitments, which they call sum-check argu-
ments. We loosely show the converse of this result: That is, we show that tensor reductions, which
can be interpreted as an abstracted folding technique, generalize sum-check protocols. Bootle et al.
further show that sum-check arguments can be instantiated with any commitment scheme which
satisfies a certain structural decomposability property, and thus show that sum-check arguments
generalize folding techniques over prime-order groups, bilinear groups, and unknown-order groups.
The following generalization lemma formally interprets these results as tensor reductions.

Our high level approach is as follows: First, we recall a simplified definition of the sum-check
protocol. Next, we define a linearized sum-check protocol which represents running the tensor
reduction on linearized multivariate polynomials decomposed as univariate polynomials. This ef-
fectively fixes the modules and decomposition rules necessary to fully specify the tensor reduction.
Finally, we prove that a single step of the sum-check protocol is structurally equivalent to a single
step of the linearized sum-check protocol.

We begin by recalling the sum-check protocol generalized to modules [BCS21]. We make several
simplifications for the sake of a more lucid presentation: First, we only define and consider a single
recursive step of the sum-check and prove that it is structurally equivalent to a single recursive step
of the tensor reduction instantiated over multivariate polynomials. Equivalence between the full
sum-check protocol and the full recursive tensor reduction follows by induction. Second, we have
the verifier immediately compute the statement polynomial in each recursive step, as opposed to
deferring this computation until the end. The purpose of this modification is to avoid having to
carry the randomness generated by both the tensor reduction and sum-check protocol throughout
all the rounds in a global statement. Finally, we assume that both protocols use the standard
monomial basis. Similar results hold for an arbitrary basis.

Definition 24 (Sum-Check Relation). Consider ring R, R-module V , and subset H ⊆ R. The
sum-check relation RSC, characterized by the number of variables n, is defined to be

LSC(n) =

{
((P, σ),⊥)

∣∣∣∣∣ P ∈ Rn → V, σ ∈ V,∑
x1,...,xn∈H P (x1, . . . , xn) = σ.

}

For notational simplicity, we omit ⊥.

Construction 9 (Sum-check Protocol [LFKN92, BCS21]). Consider ring R, R-module V ,
and subset H = {h1, . . . , hm} ⊆ R. Suppose for some polynomial P ∈ Rn → V with degree K − 1
in each variable, and claimed sum σ ∈ V , the verifier would like to check

(P, σ) ∈ RSC(n)

The prover sends to the verifier degree K − 1 polynomial

p(X) =
∑

x1,...,xn−1∈H
P (x1, . . . , xn−1, X).

The verifier checks ∑
xn∈H

p(xn) = σ.

42

The verifier then samples and sends α from a sampling set Q in R. The prover and verifier then
compute

σ′ ← p(α)

P ′(X1, . . . , Xn−1)← P (X1, . . . , Xn−1, α),

reducing the original task to the task of checking

(P ′, σ′) ∈ RSC(n− 1).

Lemma 13 (Sum-check Protocol [LFKN92,BCS21]). The sum-check protocol is a reduction
from RSC(n) to RSC(n− 1).

Next we describe a linearized sum-check statement and a corresponding linearized sum-check
protocol which leverages the tensor reduction.

Consider ring R, R-module V , and subset H ⊆ R. Suppose for some polynomial map P ∈ Rn →
V with degree K − 1 in each variable, and claimed sum σ ∈ V , the verifier would like to check∑

u1,...,un∈H
P (u1, . . . , un) = σ. (18)

By the universality of the tensor product (Definition 23), there exists tensor P ∈ V ⊗
⊗

i∈[n] R
K

such that P = P ◦ ι where ι is defined to be

ι(u1, . . . , un) =
⊗
j∈[n]

⊕
k∈[Kj]

ukj .

Because P is linear in its inputs, by letting

U =
∑

u1,...,un∈H
ι(u1, . . . , un),

the verifier can check equation (18) by checking

P(U) = σ.

This motivates defining the corresponding linearized sum-check relation.

Definition 25 (Linearized Sum-Check Relation). Consider ring R, R-module V , and subset
H ⊆ R. The linearlized sum-check relation RLSC, characterized by the number of variables n, is
defined to be

RLSC(n) =

 ((P,σ),⊥)

∣∣∣∣∣∣∣∣
P ∈ V ⊗

⊗
i∈[n] R

K ,σ ∈ V,
U =

∑
u1,...,un∈H ι(u1, . . . , un),

P(U) = σ


For notational simplicity, we omit ⊥.

43

Construction 10 (Linearized Sum-Check Protocol). For arbitrary ring R, R-module V ,
subset H ⊆ R, and degree bound K, we build a reduction for (RLSC(n),RLSC(n − 1)). Let
{δ1, . . . , δK} represent a canonical basis for RK and let H = {h1, . . . , hm}. For (P,σ) ∈ RLSC(n),
and U =

∑
u1...,un∈H ι(u1, . . . , un) we have that

P =
∑
i∈[K]

Pi ⊗ δi

for some (n− 1)-dimensional tensors Pi, and

U =
∑
j∈[m]

U′ ⊗ hj

where U′ =
∑

u1,...,un−1∈H ι(u1, . . . , un−1), and hj = (h0j , . . . , h
K−1
j). Applying the tensor reduction

with respect to this decomposition reduces the verifier’s task of checking the original check to the
task of checking (∑

i

αiδi

)(∑
j

βjhj

)
= x

which the verifier checks immediately and(∑
i

αiPi

)((∑
j

βj
)
U′
)

= y

for α, β, x, y ∈ R generated during the reduction. Thus, the verifier computes P′ =
∑

i α
iPi and

σ′ = y/(
∑

j β
j) and reduces the original check to the task of checking (P′,σ′) ∈ RLSC(n− 1).

Lemma 14 (Linearized Sum-Check Protocol). The linearized sum-check protocol is a reduc-
tion from RLSC(n), to RLSC(n− 1).

Proof. Completeness and soundness follow from Theorem 7.

Given constructions for both the sum-check protocol and the linearized sum-check protocol, we
can now prove that the two are structurally equivalent. To do so we will show that a single iteration
of the sum-check protocol is equivalent to first linearizing the statement polynomials, running the
linearized sum-check protocol and mapping the resulting statement back into the original space,
and additionally show that the generated transcript from the linearized sum-check protocol can be
used to recover the transcript produced by the standard sum-check protocol. It is important to note
that we cannot show that the linearized sum-check protocol transcript is equivalent to the sum-
check protocol transcript. This is because the tensor reduction transcript inherently contains more
structural information, which must be thrown out to recover the sum-check protocol transcript.

Lemma 15 (Structural Correspondence). Let ΠLSC represent the linearized sum-check protocol
and let ΠSC represent the sum-check protocol. Define the bijection Φ from a statement in RLSC to
a statement in RSC as follows

Φ((P, σ)) = (P, σ)

44

where, given that P ∈ (Fd)n is an n-dimensional tensor, P is a polynomial that encodes the value
at index (j1, . . . , jn) as the coefficient of term xj11 x

j2
2 . . . xjnn . Then, given that ΠLSC and ΠSC are

instantiated on the same verifier randomness, then the following diagram commutes

RLSC(n) RLSC(n− 1)

RSC(n) RSC(n− 1)

ΠLSC

Φ Φ

ΠSC

and there exists PPT simulator S that can simulate the interaction of ΠSC given oracle access to
the interaction of ΠLSC.

Proof. Given a transcript of ΠSC, let the simulator produce a transcript of ΠLSC as follows

S
({
rij , sij

∣∣i ∈ [K], j ∈ [m]
}
, α, β

)
7→ {ri1 | i ∈ [K]}, α

Consider arbitrary (P, σ) ∈ RLSC(n). Let

P = P1 ⊗ δ1 + P2 ⊗ δ2 + . . .+ PK ⊗ δK

Then, by linearity of Φ, we have

P (X1, . . . , Xn) = P1(X1, . . . , Xn−1) ·X0
n + . . .+ PK(X1, . . . , Xn−1) ·XK−1

n

where Φ(P) = P and Φ(Pi) = Pi. Moreover, for hj = (h0j , . . . , h
K
j), the ΠLSC prover sends as its

first message

{Pi(U
′), δi(hj)|i ∈ [K], j ∈ [m]}

This means

S({Pi(U
′), δi(hj)|i ∈ [K], j ∈ [m]}) = {Pi(U

′)|i ∈ [K]}

which, under the monomial basis, is precisely equal to the coefficients of p(X) sent by the ΠSC

prover. Additionally, by assumption both ΠLSC, and ΠSC are initialized with the same verifier
randomness. This means that the challenge α is identical in both transcripts. Therefore, we have
that the simulator produces a transcript identical to the transcript produced by ΠSC.

Next, we observe that

Φ(P ′) = Φ
(∑

i

Pi · αi
)

=
∑
i

Φ(Pi) · αi =
∑
i

Pi · αi = P′

Additionally, we observe that

σ′ =
∑

x1,...,xn

P (x1, . . . , xn−1, α) =
∑
i

αiPi(U
′) =

∑
i,j

αiβjPi(U
′)/
(∑

j

βj
)

= σ′

Therefore, we have also have that Φ(P ′, σ′) = (P′,σ′).

45

	Introduction
	Technical Overview
	Preliminaries
	Reductions of Knowledge
	The Tensor Reduction of Knowledge
	Instantiating the Tensor Reduction of Knowledge
	An Argument of Knowledge for NP
	Acknowledgements
	References
	Supplementary Definitions
	Deferred Proofs
	Recovering the Sum-Check Protocol

