
Formalizing Delayed Adaptive Corruptions and the
Security of Flooding Networks

Christian Matt1, Jesper Buus Nielsen∗2, and Søren Eller Thomsen2

1Concordium, Zurich, Switzerland
cm@concordium.com

2Concordium Blockchain Research Center, Aarhus University, Denmark
{jbn, sethomsen}@cs.au.dk

June 27, 2022

Abstract

Many decentralized systems rely on flooding protocols for message dissemination. In such
a protocol, the sender of a message sends it to a randomly selected set of peers. These peers
again send the message to their randomly selected peers, until every network participant
has received the message. This type of protocols clearly fail in face of an adaptive adversary
who can simply corrupt all peers of the sender and thereby prevent the message from being
delivered. Nevertheless, flooding protocols are commonly used within protocols that aim to
be cryptographically secure, most notably in blockchain protocols. While it is possible to
revert to static corruptions, this gives unsatisfactory security guarantees, especially in the
setting of a blockchain that is supposed to run for an extended period of time.

To be able to provide meaningful security guarantees in such settings, we give precise
semantics to what we call δ-delayed adversaries in the Universal Composability (UC) frame-
work. Such adversaries can adaptively corrupt parties, but there is a delay of time δ from
when an adversary decides to corrupt a party until they succeed in overtaking control of the
party. Within this model, we formally prove the intuitive result that flooding protocols are
secure against δ-delayed adversaries when δ is at least the time it takes to send a message
from one peer to another plus the time it takes the recipient to resend the message. To
this end, we show how to reduce the adaptive setting with a δ-delayed adversary to a static
experiment with an Erdős–Rényi graph. Using the established theory of Erdős–Rényi graphs,
we provide upper bounds on the propagation time of the flooding functionality for different
neighborhood sizes of the gossip network. More concretely, we show the following for security
parameter κ, point-to-point channels with delay at most ∆, and n parties in total, with a
sufficiently delayed adversary that can corrupt any constant fraction of the parties: If all
parties send to Ω(κ) parties on average, then we can realize a flooding functionality with
maximal delay O

(
∆ · log(n)

)
; and if all parties send to Ω

(√
κn
)

parties on average, we can
realize a flooding functionality with maximal delay O(∆).

∗Partially funded by The Concordium Foundation; The Danish Independent Research Council under Grant-ID
DFF-8021-00366B (BETHE); The Carlsberg Foundation under the Semper Ardens Research Project CF18-112
(BCM).

1

mailto:cm@concordium.com
cm@concordium.com
mailto:jbn@cs.au.dk
mailto:sethomsen@cs.au.dk

Contents
1 Introduction 3

1.1 Motivation . 3
1.2 Contributions and Results . 4
1.3 Techniques . 6
1.4 Related Work . 7

2 Preliminaries 9
2.1 Notation . 9
2.2 Graphs . 9

2.2.1 Probabilistic Bounds . 9
2.2.2 Basic Definitions . 9
2.2.3 Erdős–Rényi Graphs . 11

2.3 Universally Composable Security . 11
2.3.1 Security Definition . 12
2.3.2 Corruptions . 12
2.3.3 Time . 14

3 Delayed Adversaries within UC 16
3.1 The δ-delay Shell . 16
3.2 Relating Corruption Models . 19

4 Concrete Bounds for Diameters of Erdős–Rényi Graphs 23
4.1 Logarithmic Diameter . 23
4.2 Diameter 2 . 26

5 Functionalities 27
5.1 MessageTransfer . 27
5.2 Flood . 28

6 Implementations of Flood 29
6.1 Naive Flood . 29
6.2 Efficient Flood . 30
6.3 Reducing from πERFlood to Erdős–Rényi Graphs 34

6.3.1 Relating Games . 34
6.3.2 Proving πGossip Secure . 50

7 Conclusion and Future Work 51

Appendix A Expansion of Erdős–Rényi Graphs 52

References 55

2

1 Introduction

1.1 Motivation

In Nakamoto-style blockchains (NSBs) such as Bitcoin [Nak08], several parties continuously try
to solve cryptographic puzzles. The first party solving the puzzle “wins” the right to create a
new block extending the previously longest chain. This block is then distributed to all other
parties, who continue solving puzzles to create the next block. Extensive research has shown
for different variation of NSBs that security can be guaranteed if a majority of the puzzles
are solved by honest parties and if blocks can be propagated fast enough to ensure with high
probability that the next winner has learned about the previous block before creating a new
block [GKL15, GKL17, PSs17, Ren19].

Since future block creators are unpredictable, these protocols have a high resilience against
adaptive corruptions. Intuitively, the only chance to exploit the adaptivity of corruptions is
to corrupt a party after learning that it has solved a puzzle and subsequently prevent this
party from distributing the created block. An adversary with the power to stop messages from
being delivered (or changing the message) by corrupting the sender after sending but before the
message is delivered, is often referred to as strongly adaptive [ACD+19]. On the other hand, if
messages from honest senders are guaranteed to be delivered regardless of whether the sender
gets corrupted before delivery, the adversary is only weakly adaptive, or equivalently, atomic
message send (AMS) [GKKZ11] is assumed.

Indeed, several papers [GKL15, GKL17, PSs17] have proven the security of Bitcoin’s consensus
against adaptive corruptions, and Ouroboros Praos [DGKR18a] has been developed as a proof-
of-stake blockchain with resilience against fully adaptive corruptions as one of the main selling
points. To achieve this, these papers have to assume atomic message dissemination. In reality,
however, NSBs typically use complex peer-to-peer networks to disseminate blocks, in which each
party propagates messages to only a small set of other parties (referred to as their neighbors),
who will then propagate it to their neighbors and so forth. Even if the point-to-point channels
between neighbors allow atomic sends, the overall network will not provide this guarantee because
an adaptive adversary can simply corrupt all neighbors of the sender and thereby stop the block
from being propagated. Hence, when considering the full protocol, which combines a NSB with
a peer-to-peer flooding network, security against fully adaptive corruptions can no longer be
guaranteed.

Formalizing delayed adaptive corruptions. To provide meaningful guarantees to blockchain
protocols including their peer-to-peer network, we observe that intuitively, one needs to restrict the
corruption speed of an adversary such that parties in the peer-to-peer network have enough time to
pass on the block they receive before being corrupted. Based on this observation, we introduce a
precise model for δ-delayed adversaries in the Universal Composability framework [Can01]. Using
this model, one can quantify the minimum amount of time δ it takes from when an adversary
targets and starts attacking a specific party until this party is actually under adversarial control
and prove the security of protocols against such corruptions. This allows us to describe exactly
what kind of adversaries different P2P networks and protocols build on top can withstand.

Note that the corruption speed of an adaptive adversary also has a natural translation to
reality. For an attacker to succeed in attacking some physical machine it necessarily takes some
time from targeting the machine to actually hack into the network (by either physical or digital
means) and take over the computer. Denial-of-service attacks are arguably faster to mount, but
it still takes nonzero time to target a specific machine.

While unstructured peer-to-peer networks for message dissemination are the main focus of
our paper, delayed adversaries have much broader applications and were in fact already used in

3

other works, with varying degree of formality. For example, the original Ouroboros [KRDO17],
in contrast to its successor Ouroboros Praos [DGKR18a], which only requires AMS, needs that
corruptions are sufficiently delayed. The same is true for Snow White [DPS19], another early
proof-of-stake blockchain. Another example is Hybrid Consensus [PS17], which periodically
elects committees using a blockchain and remains secure if corruptions are delayed until the next
committee is selected. The same applies to blockchain sharding proposals [LNZ+16, KJG+18,
ZMR18] in which the members of shards are periodically chosen.

Concrete analysis of flooding networks. As mentioned above, the security of NSBs
crucially relies on the assumption that blocks are with high probability propagated to other
parties before the next winner creates another new block. If an upper bound on the propagation
time is known, the difficulty of the puzzles can be set accordingly to provide this guarantee.
Setting the difficulty based on a too optimistic assumption on the delay jeopardizes the security
of the system, and setting it based on a too loose upper bound degrades efficiency. Knowing a
tight bound on the propagation delay is thus key for the security and efficiency of an NSB.

Even more critical for the security of NSBs are so-called eclipse attacks that prevent some
parties from receiving blocks [HKZG15, MHG18]. Furthermore, for large-scale distributed
systems, the number of neighbors has a significant impact on the required communication. In
particular, it is infeasible to simply send the message directly to everybody. In this work, we
provide constructions for flooding networks with provable security against eclipse attacks in a
well-defined adversarial model and show different trade-offs between the propagation time and
neighborhood sizes.

Terminology. In the literature different terminology has been used for the process of dis-
seminating a message to all parties. Common terminology includes “broadcast”, “flood” and
“multicast”. In this paper, we will use the terminology “flood” for this process. Contrary to
byzantine broadcast, there is no agreement requirement for a flooding network if the sender of a
message is dishonest.

1.2 Contributions and Results

Our contributions are twofold:

1. We give precise semantics to δ-delayed corruptions (introduced in [PS17] as δ-agile cor-
ruptions) within the UC framework [Can20]. We define the semantics via corruption
shells which allows us to prove how this type of corruptions relate to standard adaptive
corruptions.

2. We define a functionality for disseminating information, Flood, that can be used to
implement a secure NSB, and that we implement using a flooding protocol against a
slightly delayed adversary. Importantly, we quantify exactly how much is meant by
“slightly” in terms of guarantees provided by the underlying point-to-point channels. We
provide two instantiations of our protocol with different efficiency trade-offs.

Below we lay out the specifics of the individual contributions and state our results in more
detail.

Precise model for δ-delayed adversaries. We define a δ-delayed adversary as an adversary
which uses at least δ time to perform a corruption. We define this notion precisely within the

4

UC framework using the notion of time from [BDD+21]. We do so by elaborating on the notion
of corruption-shells from [Can20].

Using the idea of corruption shells, we give semantics to both “normal” byzantine adaptive
corruption and δ-delayed corruptions. We capture the semantics of byzantine adaptive corruptions
in a corruption-shell, BReal, for protocols and in a corruption-shell, BIdeal, for ideal functionalities.
Similarly, we capture the semantics of δ-delayed adversaries in a corruption-shell, Dδ

Real, for
protocols and in a corruption-shell, Dδ

Ideal, for ideal functionalities.
Dδ

Real and Dδ
Ideal accepts two inputs: Precorrupt and Corrupt (both indexed by a specific party).

Both shells ensure that at least δ time has passed after receiving Precorrupt before reacting upon
Corrupt. Any Corrupt input that is sent prematurely is ignored.

Having defined the semantics for both standard adaptive corruptions and for δ-delayed
corruptions using corruption shells, we state basic results relating the two models. We show that
a protocol is secure against a standard adaptive adversary iff it is secure against a 0-delayed
adversary (Theorem 1). Furthermore, we show that if a protocol is secure against a “fast”
adversary, then this implies that it is also secure against a “slow” adversary (Theorem 2).
Together these results allow constructions proven secure in the standard model of adaptive
adversaries to be reused when constructing new protocols secure against a δ-delayed adversary,
and to compose protocols that are secure against adversaries with different delays.

Flooding networks. We define a functionality for flooding messages, F∆
Flood. It ensures that

all parties learn messages that an honest party has sent or has received within ∆ time, and is
thereby similar to the flooding functionality assumed in many consensus protocols. We realize
our flooding functionality with both a naive protocol, πNaiveFlood, where everybody simply sends
to everybody, and a more advanced protocol, πERFlood(ρ), where all parties choose to send to
other parties with probability ρ.

In order to realize the flooding functionality, we introduce a functionality for a point-to-point
channel Fσ,∆

MessageTransfer. This functionality is also parameterized by a bound for the delivery
time ∆, and additionally has a parameter σ describing the time an honest party needs to
stay honest after starting to send the message for the delivery guarantee to apply. If σ = 0
then this corresponds to assuming AMS. On the other hand, if σ ≥ δ and we consider δ-
delayed adversaries, then this corresponds to not assuming AMS. However, having the time
quantified allows us to relate this time to the delay we can tolerate when building more advanced
constructions. In particular, we show that πERFlood using Fσ,∆

MessageTransfer implements F∆′
Flood

against a (σ + ∆)-delayed adversary.
In this setting, we provide two different ways to instantiate the probability parameter ρ of

πERFlood, each presenting a different efficiency trade-off. Concretely, let h denote the minimum
number of parties that will stay honest throughout the execution of the protocol, let n denote
the total number of parties, and let κ be the security parameter. We provide the following two
instantiations:

Instantiation 1: Guaranteed delivery within ∆′ := 2 ·∆ for ρ :=
√

κ
h .

Instantiation 2: Guaranteed delivery within ∆′ := ∆ ·
(
5 log

(
n
2κ

)
+ 2

)
for ρ := κ

h .

Both instantiations ensure that the statistical distance between the ideal and the real executions
of πERFlood and F∆′

Flood is negligible in the security parameter. We provide concrete bounds for
the statistical distance in Corollary 1. Furthermore, standard probability bounds ensure that
each instantiation has a neighborhood of O(n · ρ) with high probability.

5

Outline of the paper. In the remainder of this section, we review some selected related
work and provide a high-level overview of our techniques used to prove our technical results.
In Section 2, we recap some basic definitions for random graphs, provide a brief overview of
the elements from UC used in this work, and introduce some basic notation. In Section 3, we
introduce our new model for δ-delayed adversaries, in Section 4 we prove concrete bounds for
the diameter of Erdős–Rényi graphs, and in Section 5 present our ideal functionalities. Finally,
in Section 6 we present our two implementations of the flooding functionality, and in Section 7
we conclude and provide directions for future work.

1.3 Techniques

An Erdős–Rényi graph [ER60] is a graph where each edge appears with an equal and independent
probability. Our flooding protocol πERFlood is strongly inspired by this type of graph. Our main
technical contributions are thus concerned with transporting bounds for Erdős–Rényi graphs to
the cryptographic setting, especially in presence of adaptive adversaries.

Concrete bounds for Erdős–Rényi graphs. The asymptotic behavior of Erdős–Rényi
graphs has been thoroughly studied in the literature (for a comprehensive overview see [Bol01]).
However, bounds about a graph’s behavior when the amount of nodes goes towards infinity is of
little use for protocols that are supposed to be run by a finite number of parties. For a protocol
imitating the behavior of such graphs, we need concrete bounds when a security parameter is
increased. As a technical contribution, we prove such concrete upper-bounds for the diameter of
Erdős–Rényi graphs. The upper-bounds can be found in Section 4.

Applying Erdős–Rényi graph results in the presence of adaptive adversaries. For a
flooding protocol as πERFlood, it is straightforward to apply bounds about the diameter of an
Erdős–Rényi to also bound the probability that a message is not delivered in the protocol in
presence of a static adversary. However, for an adaptive adversary that is capable of preventing
certain nodes from connecting to their neighbors, it is by no means this easy. Our main technical
contribution is to transfer the bounds on the diameter of an Erdős–Rényi graph to our flooding
protocol in presence of an adaptive adversary. We achieve this by relating the protocol execution
to 7 random experiments.

First, we relate the protocol execution to a well-defined game between an adversary and an
oracle, which returns a graph. The rules of the game is that an adversary can query the oracle
to reveal the edges of a node and query the oracle to remove a node from the graph. However,
once either an incoming or outgoing edge to a node has been revealed, the adversary can no
longer remove this node. This game mimics the powers of a slightly delayed adaptive adversary
in the real protocol.

We relate this game to a similar game but with undirected edges, and do a couple of simple
gamehops where we show that an adversary does not gain any additional advantage w.r.t.
increasing the diameter by stopping this game at an early point nor injecting any additional
edges.

As the adversary can only remove nodes for which no information has been revealed, one
might be led to believe that the Erdős–Rényi graph results apply for this game. However, the
adversary can still dynamically control the size of the graph that is returned. At first, this may
seem innocent, but in fact, it is not. Deciding whether or not more nodes are to be included in
the graph, can amplify the probability that the returned graph has a high diameter.

Therefore, we relate this game to a new game, which is similar to the other, except that the
oracle now at random fixes the size of the graph beforehand. The oracle fixes the size of the

6

graph by making a uniform guess in the range of possible sizes. In case of a correct guess (a
guess identical to what the adversary anyway would end up with), the adversary is only left
with the choice of which parties to include in the random graph. Finally, we show that this
game is equally distributed to a game which specifically embeds an Erdős–Rényi graph of the
fixed size. This allows us to apply results bounding diameter of Erdős–Rényi graphs to bound
the probability that a message is not delivered timely.

1.4 Related Work

Hybrid consensus. Hybrid Consensus [PS17] is a consensus protocol that uses a blockchain to
periodically select committees as subsets of the parties participating in the blockchain protocol,
who can subsequently produce blocks more efficiently. Once a committee has been chosen, a
fully adaptive adversary can simply corrupt the majority of its members to break the security of
the protocol. Hence, the protocol is only secure against corruptions that are delayed until the
next committee gets selected.

To prove the security of hybrid consensus, that paper introduces τ -agile corruptions, which
essentially correspond to the capabilities of our τ -delayed adversaries. While that paper also
uses the UC framework, the definitions for the corruption model mostly remain at a high level.
For example, their definitions assume there is some notion of time, which does not exist in the
original UC formalism. There are also no clear definitions of how the delayed corruptions are
precisely embedded in the UC execution model.

In contrast to that, our work provides a precise embedding of the corruption model in the
standard UC framework. This allows us to compose protocols formulated in standard UC with
protocols proven secure against δ-delayed adversaries. It is thus fair to say that the hybrid
consensus paper has introduced the delayed corruption model at an intuitive, semi-formal level,
while our work fills in several missing technical details to provide a precise formalization within
the UC framework.

Time in UC. There has been several suggestions for modeling time in UC.[KMTZ13] models
time using a clock functionality that is local to each protocol. This functionality synchronizes
the parties by only allowing the adversary to advance time when all parties have reported that
they have been activated. As this is a local functionality, other ideal functionalities have no
access to it, and therefore need to provide their own notion of time which can clutter the final
guarantees from the functionality.

[KZZ16] takes a similar approach to Katz et al., but changes the clock to be a global
functionality in GUC [CDPW07]. This enables several different protocols to rely on the same
notion of time when composed and also solves the problem of time not being available to ideal
functionalities. Both functionalities and parties can query the global clock for the current time,
and thus inherently makes any protocol modelled with this a synchronous protocol.

A different approach is taken in [BDD+21]. They take the standpoint that parties should be
oblivious to the passing of time. To allow this they introduce a global functionality, dubbed
a ticker (written ḠTicker), which exposes an interface to learn about the passing of time to
functionalities only. In particular honest parties are oblivious to the passing of time. This
allows time to be modelled without having synchrony as an inherent assumption. The specific
timing-assumptions can then be captured by adding an extra ideal functionality which exposes
relevant information to the parties.

Contrary to [KMTZ13, KZZ16, BDD+21], [CHMV17] focuses on modeling and making real
time available to parties in GUC, and use this to model the expiration of certificates in a
public-key infrastructure. In their modeling, a global clock can be advanced by the environment

7

without restrictions. In this work, our protocols do not rely on real-time, but rather on an
abstract notion of time used to state assumptions and guarantees about the delivery time of
channels and protocols. For the guarantees to be upheld, we rely on restrictions about how time
is advanced (namely that all parties have to be activated once each abstract time step) by the
environment.

We chose to rely on the modeling of time from [BDD+21]. This allows us to model general
timing assumptions on the capabilities of the adversary without tying our modeling to a particular
assumption on synchrony for actual protocols.

Epidemic and gossip protocols. Epidemic algorithms or gossip protocols were first con-
sidered for data dissemination by Demers et al. [DGH+87], and have been studied extensively
since then, see e.g., [BHÖ+99, KSSV00, KMG03, HHL06, CSBB09, HSA+12]. In this line of
work, many different protocols have been considered. Some are very closely related to our
flooding protocol, where parties simply forward to a random set of parties, and some are more
advanced, letting parties keep sending to new random peers until a certain number of recipients
replied that they already knew the message. However, this line of work considers only random
failures [KMG03] or incomplete network topologies [CSBB09, HSA+12] and not adaptive cor-
ruptions of a malicious adversary. Hence, while some of the protocols are applicable to our
setting, their analysis is not. Among other results, [KMG03] showed how random node failures
affect the success probability of a flooding process similar to ours. For this setting, they derive
connectivity bounds similar to the bounds for logarithmic diameter we present in this work.

Kadcast. Kadcast [RT19] is a structured peer-to-peer network for blockchains. The paper
claims that unstructured networks are inherently inefficient because many superfluous messages
are sent to parties who already received the message from other peers. They instead propose
a structured network based on Kademlia [MM02], in which every node has O(log n) neighbors
and the diameter of the graph is also O(log n). Additionally, their protocol includes a parameter
for controlling the redundancy and thus the resistance to attacks. Due to the structured nature,
the suggested network is, however, not secure against adaptive corruptions of any kind.

The hidden graph model. Chandran et al. [CCG+15a] consider communication locality
of multi-party computation (MPC) protocols, which corresponds to the maximal number of
parties each honest party needs to interact with. They construct an MPC protocol with poly-
logarithmic communication locality that is secure against adaptive corruptions and that runs
in a poly-logarithmic number of rounds. Their protocol uses a random communication graph,
similar to our flooding protocols. To be secure against adaptive corruptions, they however need
to assume that the communication graph between honest parties remains hidden, i.e., they allow
honest parties to communicate securely without an adversary learning who is communicating
with whom. Furthermore, they only prove very loose bounds on the locality and diameter of the
obtained graph by showing that both are poly-logarithmic. In Appendix A, we replicate this
result but with concrete bounds.

Message dissemination relying on resource assumptions. Recently, the problem of
disseminating messages assuming a constant fraction of honest resources (computational power,
stake, etc.) instead of assuming a constant fraction of honest parties (as assumed in this
work) has received attention. Extending on results from this work, [LZMM+22] provides an
efficient flooding protocol relying on a constant fraction of the resources behaving honestly.
Their protocols achieve an asymptotic efficiency similar to the protocol presented in this work.
[CKMR22] presents a block dissemination protocol for the Ouroboros Praos protocol [DGKR18b]

8

that also relies on the majority of honest stake assumption. By using long-lived connections
between parties, they prevent a specific denial-of-service attack possible in the protocol. However,
this comes at the cost of allowing a small fraction of honest parties to be eclipsed.

2 Preliminaries

2.1 Notation

We use the infix notation “:=” for assigning a variable a (new) value, the infix notation “≜” to
emphasize that a concept is being defined formally for the first time, the infix notation “==”
to denote an equality test returning a boolean value, and the infix notation “::” to denote
list-extension. In our proofs we will use the acronyms LHS and RHS to refer to respectively the
left-hand side and the right-hand side of an equality.

When describing functionalities we let P be a set of unique party identifiers (PIDs) and will
leave out session-identifiers for clarity of presentation.

As a convention we use the variable t ∈ N to denote the maximal number of parties an
adversary can corrupt, use the variable n := |P| to denote the total number of parties in a
protocol (except when we state and prove general results about graphs) and h := n− t to denote
the minimal number of honest parties. Whenever we refer to honest parties we will refer to
parties that have not received any precorrupt or corrupt tokens.

2.2 Graphs

In this section we provide a brief recap of basic graph concepts and derive several concrete
bounds for the diameter of Erdős–Rényi graphs.

2.2.1 Probabilistic Bounds

For completeness we record the Chernoff bound which states that the sum of independent
random variables concentrate around their mean.

Lemma 1 (Chernoff bound). Let X1, . . . , Xn be independent random variables with Xi ∈ {0, 1}
for all i, and let µ := E

[∑n
i=1 Xi

]
. We then have for all δ ∈ [0, 1],

Pr
[

n∑
i=1

Xi ≤ (1− δ)µ
]
≤ e− δ2µ

2 and Pr
[

n∑
i=1

Xi ≥ (1 + δ)µ
]
≤ e− δ2µ

3 .

2.2.2 Basic Definitions

We start out by defining undirected graphs, a node’s neighborhood, a node’s reachables and it’s
degree.

Definition 1 (Undirected graph). A undirected graph consists of a set of vertices V and a set of
edges E ⊆ V × V . For two vertices v, u ∈ V we interpret the edge {v, u} as being an undirected
edge from v to u. For a G which consist of the nodes V and the edges E we write G = (V, E).

Definition 2 (Neighbors, reachables and degrees). For a graph G = (V, E) we define the
neighborhood of a node v ∈ V to be

Γ(v) ≜ {u | {v, u} ∈ E} ∪ {v}.

9

We overload the notation to also work with any subset of vertices S ⊆ V and write

Γ(S) ≜
⋃

v∈S

Γ(v).

Applying the function Γ i times yields Γi, the set of vertices that can be reached from v in at
most i steps,

Γ0(v) ≜ {v} and Γi+1(v) ≜ Γ(Γi(v)).
We further define the set of nodes that can be reached from a node v ∈ V in exactly i steps
recursively as

θ(v, 0) ≜ {v}
θ(v, i + 1) ≜ Γi+1(v) \ Γi(v).

We finally define the degree v ∈ V as

deg(v) ≜ |Γ(v)| − 1.

Remark 1. Note that Γt(v) = ⋃t
i=0 θ(v, i).

We also define some of the notions for directed graphs.

Definition 3 (Directed graph). A directed graph (digraph) consists of a set of vertices V and a
set of edges E ⊆ V ×V . For two vertices v, u ∈ V we interpret the edge (v, u) as being a directed
edge from v to u. For a digraph G with nodes V and edges E we write G = (V, E).

We will use the same symbol Γ to denote the neighbors of a node or a subset of nodes for a
directed graph as well as each time we use the function it will be clear from the context if the
graph is directed or undirected.

Definition 4 (Neighbors for directed graphs). For a digraph G = (V, E) we define the outgoing
neighborhood of a node v ∈ V to be

Γ(v) ≜ {u | (v, u) ∈ E} ∪ {v}.

We overload the notation to also work with any subset of vertices S ⊆ V similarly to how it is
done for undirected graphs.

Furthermore, we define the distance between two nodes for both directed and directed graphs.

Definition 5 (Distance between nodes). Let G = (V, E) be a directed or undirected graph and
let v1, v2 ∈ V. We define the distance from v1 to v2, dist(v1, v2) as the minimum d such that
v2 ∈ Γd(v1). If no such d exists, we define dist(v1, v2) to be ∞.

Finally, we define two properties of graphs which we will use extensively to prove our results.

Definition 6 (Distance from node). Let G be a directed or undirected graph, v be a node in
the graph and d ∈ N be a distance. The property ϕDist(v, G, d) decides if all nodes in G are
within distance d of v. Formally,

ϕDist(v, G, d) ≜ ∀v′ ∈ G, dist(v, v′) ≤ d.

Definition 7 (Diameter). Let G = (V, E) be a graph. We define the diameter of a graph to be
the smallest d ∈ N s.t. ∀v1, v2 ∈ V we have that dist(v1, v2) ≤ d. We define the property that a
graph has diameter at most d as

ϕDiam(G, d) ≜ ∀v ∈ V, ϕDist(v, G, d).

10

2.2.3 Erdős–Rényi Graphs

A particular type of random-graphs where the edges are chosen from a uniform distribution is
called Erdős–Rényi graphs.

Definition 8 (Erdős–Rényi graphs). An Erdős–Rényi graph is an undirected graph G = (V, E)
where all possible edges are present with probability ρ. That is for any v, u ∈ V, we have
Pr[{v, u} ∈ E] = ρ. When G is such a graph and |V| = n, we write G

$← G(n, ρ).

Remark 2 (Expected degree). If G = (V, E) $← G(n, p) and p = d
n , then the expected degree of

each node is d, i.e., for all v ∈ V,
E[deg(v)] = d. (1)

Following from Chernoff Lemma 1, the degree of all nodes in Erdős–Rényi graphs concentrates
around the expected value.

Lemma 2 (Maximum degree of Erdős–Rényi Graph). Let n, d ∈ N, ρ := d
n , G = (V, E) $←

G(n, p). For any δ ∈ [0, 1] we have

Pr[max
v∈V

deg(v) ≥ (1 + δ)d] ≤ n · e− δ2d
3 . (2)

Proof. Let us look at a particular node v ∈ V. For each u ∈ V we introduce a random variable
Xv,u indicating if there is {v, u} ∈ E. We have that

E[Xv,u] = ρ, (3)

which again implies that
E[deg(v)] =

∑
u∈V

E[Xv,u] = n · ϕ = d. (4)

Chernoff (Lemma 1) now implies that

Pr[deg(v) ≥ (1 + δ)d] ≤ e− δ2d
3 . (5)

By a union bound we get that

Pr[max
v∈V

deg(v) ≥ (1 + δ)d] ≤
∑
v∈V

Pr[deg(v) ≥ (1 + δ)d] ≤ ne− δ2d
3 . (6)

2.3 Universally Composable Security

The UC framework is a general framework for describing and proving cryptographic protocols
secure. Its main selling point is that protocols can be described and proven secure in a modular
manner while ensuring that the protocol in question remains secure independently of how one
may compose the protocol in question with other protocols. We build upon the journal version
of UC [Can20] and refer to this for details about the framework.

In this section, we first provide a brief overview of the security notion of UC.1 Next, we recap
two peculiarities of the framework that are important for our modeling of delayed adversaries
(Section 3).

1We do not aim to provide an exhaustive presentation of the framework and all of it subtleties, but merely
wish to present just enough intuition such that this paper can be understood. For details, please consult the
original work [Can20].

11

2.3.1 Security Definition

A protocol is a collection of programs that is to be executed in a distributed setting. In UC
the ideal behavior of a protocol is described via. another program that is dubbed an ideal
functionality. Contrary to a protocol, an ideal functionality is intended to be executed on just a
single machine with which multiple different parties interact. Intuitively, a protocol is secure if
for any adversary that performs an attack against the protocol, there exists another adversary
attacking the ideal functionality such that the observable behavior of the protocol and the
functionality are indistinguishable.

To make the notion of “observable behavior” precise, the UC framework introduces an
environment Z which is to provide inputs to the protocol/ideal functionality when it executes
and finally outputs a bit which can be interpreted as a guess upon whether or not the environment
is interacting with the real protocol or the ideal functionality. For the detailed execution semantics,
we refer the reader to [Can20].

Definition 9 (Execution of protocols (informal)). Let π be a protocol, A an adversary and
Z an environment. The random variable EXEC(Z,A, π) is defined as the binary output that Z
gives when executing π against A.

A functionality can also be viewed as protocol. This definition therefore allows one to
formally define what it means for a protocol to implement a functionality.

Definition 10 (UC emulation). Let π be a protocol, F an ideal functionality, and ≈ mean that
the statistical distance is negligible in the security parameter. The protocol π emulates F if

∀A ∃S ∀Z, EXEC(Z,A, π) ≈ EXEC(Z,S,F).

Protocols are allowed to call ideal functionalities within their implementation. The UC
framework comes with a universal composition theorem which ensures that if a protocol π1
UC-emulates an ideal functionality F1 using an ideal functionality F2, then exchanging all calls
to F2 within π1 with calls a protocol π2 that UC-emulates F2 preserves the security.

Below we will refer to a protocol that calls an ideal functionality as being in the “hybrid
world” and to independent ideal functionalities as being in the “ideal world”.

2.3.2 Corruptions

The UC framework has no built-in semantics for corruption of parties in a protocol. Instead, it
is up to each individual protocol description to describe the semantics of corruptions whenever
the adversary signals that a specific party should be corrupted. Having no built-in corruption
model in UC makes the composition theorem independent of a particular corruption model.
This allows several different corruption models to be captured within the framework. Some
machinery is however common for many different types of corruptions.

The corruption aggregation ITI. The intuition behind UC-security is to translate an attack
on the protocol to an attack on the specification (the ideal functionality) and thereby show that
an adversary does not gain any capabilities interacting with an implementation that another
adversary did not have interacting with the ideal functionality. That is to show that any attack
is not really an attack as it was already allowed by the specification. This translation between
attacks is what is known as a simulator.

For this intuition to make sense when active corruptions are possible, the translation between
attacks on the protocol and the specification necessarily needs to be corruption preserving.
That is, it should not require more corruptions to attack the ideal functionality than what

12

it takes to attack the real protocol. In order to ensure this, an additional Interactive Turing
Machine Instance (ITI) called the corruption aggregation ITI is run aside the parties in protocol.
Whenever a party is corrupted, it registers as corrupted by the corruption aggregation ITI.
The environment can then query the corruption aggregation ITI in order to get an overview
of who is currently corrupted. Similarly, the ideal functionality makes information about who
is corrupted available to the environment. Note that the corruption aggregation ITI is only
present for modeling purposes and thus not present when deploying a protocol. In that way, if
the simulator corrupts differently than the adversary, the environment is immediately able to
distinguish. A depiction of the flow of information about corruptions can be found in Figure 1.

The Hybrid World The Ideal World

Figure 1: A depiction of how corruptions are propagated in both the hybrid world and the
ideal world. Corruption requests are passed along the red arrows, and corruption information
is propagated along the blue arrows. In the hybrid world the adversary can corrupt either a
party (p1, . . . , pn) or a part of the sub-functionality G. If the adversary corrupts a party pi by
sending a message on the backdoor-tape of this party, the party directly informs the corruption
aggregation ITI, CAggregation, which makes this information available to the environment. If
the adversary corrupts a sub-part of the functionality G, this information is recorded in G.
Furthermore, when the corruption aggregation ITI, CAggregation, is queried for information by
the environment, it firsts queries G for its corruption status and merge this information with its
own information, before responding the environment with the aggregated information. In order
for this behavior to be mimicked in the ideal world, the simulator S needs to make corruption
requests to the functionality F s.t. the information that F makes available to the environment
matches the information the environment obtains by queering CAggregation in the hybrid world.
Furthermore, the simulator needs to make corruption information available to the environment
that corresponds to the information available from the functionality G in the hybrid world.

Identity masking function and PIDs. The UC framework allows for a very fine-grained
control over what knowledge about corruptions is leaked to the environment, by parameterizing
the corruptions using an identity-masking-function, which parties will apply to the information
that they send to the corruption aggregation ITI. This can allow an adversary to corrupt only
sub-protocols of a party instead of an entire party. We leave this out of the definitions below for
clarity as we will always consider corruptions of entire parties (known as PID-wise corruptions
within the framework).

13

Standard corruption models within UC. Canetti presents among others how adaptive
corruptions and static corruptions can be modelled within UC. A brief recap of this modeling is
provided below.

Instant adaptive corruptions: When an adversary inputs Corrupt on the backdoor-tape of a
party, this party is immediately overtaken by the adversary and the environment is notified
via the corruption aggregation ITI

Static corruptions: If a party receives Corrupt on the backdoor-tape as the first message, this
party is immediately overtaken by the adversary and the environment is notified via the
corruption aggregation ITI. If a Corrupt is received later, it is ignored.

2.3.3 Time

There is no built-in notion of time in UC. However, the flexibility of the framework allows to
model a notion of time using an ideal functionality. In this work we adopt the notion of time
presented in TARDIS [BDD+21].

In TARDIS time is modelled via a global functionality dubbed a ticker (written ḠTicker).
The ticker’s job is to keep track of time and enforce that any party has enough time to perform
the actions that it wishes to perform between any two time-steps. It does so by allowing parties
to register by the functionality and only allows the environment to progress time once it has
heard that this is okay from all registered parties.

Functionalities can query the ticker and get an answer to whether or not time has passed since
the last time they asked the ticker. Importantly, this query can only be made by functionalities
and not parties. That is, this modeling of time does not tie the protocols to be designed under a
specific synchrony assumption, as parties are oblivious to time. The only way that they can
observe the passing of time is by asking functionalities. This parallels the real world in that we
do not have raw access to time, only clocks. The level of information functionalities provide to
parties about time is what determines possible assumptions about synchrony.

For completeness, the ticker functionality as described in TARDIS is referenced below.

Functionality ḠTicker

The functionality keeps track of a set of registered parties P , a set of registered functionalities
F , a set of activated parties LP and a set of functionalities LF that have been informed
about the current tick. Initially, P = F = LP = LF := ∅.

Party registration: Upon receiving (Register) from honest party pi add pi to P and send
(Registered) to pi.

Functionality registration: Upon receiving (Register) from functionality F , add F to F
and send (Registered) to F .

Tick: Upon receiving (Tick) from the environment, do the following: If P == LP , reset
LP := ∅ and LF := ∅ and send (Ticked) to the adversary. Else send (NotTicked) to the
environment.

Ticked request: Upon receiving (Ticked?) from F ∈ F if F ∈ LF , send (NotTicked) to F ,
else add F to LF and send (Ticked) to F .

Record party activation: Upon receiving (Activated) from party pi ∈ P , add pi ∈ LP and
send (Recorded) to pi.

14

Ticked?-convention. In the remainder of this paper, we adopt the convention (also used
in [BDD+21]) that when describing ideal functionalities we omit Ticked? queries to ḠTicker from
the description. Functionalities are instead assumed to make this query whenever they are
activated and in case of a positive answer perform whatever action that is described by Tick.
We furthermore adopt the convention that for brevity we leave out registration of functionalities
and parties by the global ticker. All of the functionalities and protocols we consider will upon
initialization as the first thing register by the global ticker.

How to prevent fast-forwarding? A thing to note about the ticker is that it does not
notify ideal functionalities when time progresses. Instead, it is up to functionalities to query
the ticker to figure out whether or not time has passed. Nor does the ticker wait to hear from
functionalities before progressing time.

One could worry that this allows the environment to fast-forward time by activating the
parties without activating ideal functionalities and thereby prevent them from enforcing timing-
based properties. How would a time-bounded channel enforce that messages are delivered timely
if it is not activated often enough to notice that time passes?

This kind of “attack” is prevented separately in the real and ideal world:

Real world: In the real world, it is up to the protocol designer to ensure that the attack cannot
happen. This can be done by ensuring that parties activate the respective functionalities
before passing (Activated) to the ticker. Intuitively, this corresponds to that if a protocol is
expected to work correctly, then sub-protocols that depend upon time should be activated
regularly such that they can check whether or not time has passed.

Ideal world: This attack is particularly troublesome in the ideal world. Here, the environment
can simply tell dummy parties to pass on time, and there is no mechanism to prevent this.
Note, however, that when the ticker progresses time, it notifies the adversary about this.
In the ideal world, the adversary is a simulator and is therefore programmed when proving
the protocol secure. The simulator can therefore simply ensure to activate functionalities
correspondingly to their activation pattern in the real protocol. Intuitively, if one thinks
of the simulator as a translation of attacks on the real world to the ideal world, then it is
a part of the translation of an attack to ensure that activations are provided in a similar
pattern in the ideal world.

Global functionalities within plain UC. Technically, the ticker functionality in TARDIS
is defined within the GUC framework [CDPW07]. However, as pointed out in [BCH+20], the
GUC framework has not been updated since its introduction, even though that it relies on
the UC framework which has been revised and updated several times since. Furthermore,
[BCH+20] points out that several technical subtleties of the composition theorem of GUC are
under-specified which at best leaves its correctness unproven. The compatibility with the latest
version of UC which we use in this work is thus unclear.

However, [BCH+20] introduces machinery to handle “global subroutines”, which can be used
to model similar global setup assumptions to global functionalities, and extends the composition
theorem of UC to cover such “global subroutines” directly within the version of UC also adapted
for this work. Additionally, they show how examples of global functionalities that instead can
be modelled as global subroutines. One of their examples [BCH+20, Section 4.3] of such a
transformation is, that they show that [BMTZ17] that implements a transaction ledger using
a global clock (similar to the one from [KMTZ13]), instead could have been done directly
within UC, by modeling the clock as a global subroutine instead of a global functionality. We
note that ḠTicker is regular (informally, it does not spawn new ITIs) and as all of the protocols

15

considered in this work are ḠTicker-subroutine respecting (informally, all subroutines except ḠTicker
only communicate with ITIs within the session). Therefore, we can use the same approach
as [BCH+20, Section 4.3] (in particular can adopt the same identity bound for the environment
to ensure that the ticker works as expected) to keep our modeling within plain UC.

3 Delayed Adversaries within UC
In this section we describe the semantics of delayed corruptions within the UC framework. First,
we introduce the semantics for δ-delayed corruptions via corruption shells. Next, we revisit the
standard adaptive corruptions using corruption-shells. Finally, we relate the standard notion of
adaptive corruptions to a 0-delayed adversary.

We define the notion of a delayed adversary precisely within the UC-model via what we call
δ-delayed corruptions or a δ-delayed adversary. For such an adversary, it takes at least δ time to
execute a corruption. The delay can be thought of as either the time it takes to hack into the
system or the time it takes to physically orchestrate and attack on the specific property that
hosts the system. To capture this within UC we introduce an additional token that an adversary
has to use when wanting to corrupt a party. The two corruption tokens that can be passed to a
party are the Precorrupt token and the Corrupt token. When receiving a Precorrupt token, the party
notes the time it received this token, t, and ignores all Corrupt tokens that are received before
t + δ. When a Corrupt token is received at or after time t + δ, the party becomes corrupted in the
usual manner.

Below we give a more precise description of how this corruption model can be captured
within the UC framework.

3.1 The δ-delay Shell

It is tedious and error-prone to include code that models corruption behavior in each protocol
description and ideal functionality description. We therefore separate the concern of describing
corruption behaviors to that of describing the protocol, by introducing protocol transformers,
dubbed shells, which extend a protocol that does not handle corruption tokens into one that
obeys a particular corruption behavior. In particular we provide the following two shells for
δ-delayed corruptions:

Dδ
Real: This a wrapper around a protocol π. It ensures that the protocol respects δ-delayed

corruptions. The wrapper preserves the functionality of π but additionally ensures that
corruptions are executed as expected.

Dδ
Ideal: This is a wrapper around an ideal functionality F . It ensures that the functionality

respects δ-delayed corruptions and preserves the functionality of F but additionally ensures
that corruptions are executed as expected.

Both shells intuitively work in the same way: They keep track of when Precorrupt tokens are
delivered and only accept corruption tokens for a particular party δ time later. Having two
different shells is, however, necessary as the protocol shell needs to wrap the individual ITMs
actually executing the protocol, whereas the ideal shell needs to wrap only the ITM running the
ideal functionality.

Additionally, both shells allow the first message that is sent to a specific party to initialize
the precorruption time. The delay shells for real parties ensure to use this initialization option
when an inner protocol sends a message to a sub-routine for the first time. This ensures that the

16

time of precorruption is inherited when new sub-routines are spawned and thereby induces the
natural behavior for PID-wise corruptions, i.e., that any sub-routine can be corrupted no later
than the routine that spawned it. The initialized precorruption time is allowed to be negative.
This allows the environment to start the protocol in a state where some parties are precorrupted
in the past, and hence be able to immediately corrupt these parties at the start of the protocol
(similar to letting some parties be statically corrupted).

The shells that wrap the individual party’s ITMs do not have access to query the ticker
for the time, whereas the ideal shells can do this freely. We solve this by additionally letting
the DReal spawn a corruption-clock (written FCorruptionClock) which exactly allows the shells to
access time. Importantly, this does not reintroduce a global synchrony assumption as our shells
prevent the inner protocols from communicating with the corruption clock. The corruption clock
is therefore only an artifact of our modeling and will not appear when actually running the
protocol.

Functionality FCorruptionClock

The functionality maintains a counter Time. Initially, Time := 0.

Time?: When receiving (Time?) from a party pi ∈ P it returns (Time, Time) to pi.

Tick: It updates Time := Time + 1.

When describing DReal we will leave out calls to FCorruptionClock for brevity, but these happens
each time the shell uses any notion of time.

We amend the corruption aggregation ITI presented in [Can20] to also make information
about the precorruptions an adversary have used, available to the environment (and similarly
the ideal functionalities). This prevents a simulator from using more precorruption tokens or
corrupting faster than the real adversary.

Aside from ensuring the protocol corruption delays are respected the DIdeal additionally prop-
agates both precorruption and corruption-tokens to the “inner functionality” (the functionality
that the shell is a wrapper around). This is done in order to ensure that the simulator appended
to the ideal functionalities can actually gain functionality-specific powers when performing a
corruption. For example it might be that a certain channel does not need to respect delivery
guarantees when the sender gets corrupted (for an example of this see Section 5.1).

Below we provide formal descriptions of both shells.

Function Dδ
Real(π)

The shell wraps each party pi ∈ P in a small wrapper that maintains a variable
PrecorruptionTimei. Initially, PrecorruptionTimei := ⊥. When receiving precorrup-
tions and corruptions the wrapper has the behavior described below. The wrapper also
filters out any communication with FCorruptionClock and on all other inputs it simply forwards
the inputs/outputs to/from the original protocol.

Initialization: If pi receives (Initialize, τ) as the first message, then the party updates
PrecorruptionTimei := τ and if τ ̸= ⊥ then also notifies the corruption-aggregation
ITI.

Precorruption: If pi ∈ P receives Precorrupt at time τ , then the party first notifies the
corruption-aggregation ITI by sending (Precorrupt, pi) to this machine. It then updates

17

PrecorruptionTimei := τ .

Corruption: When pi receives Corrupt at time τ , then pi checks if PrecorruptionTimei+δ ≤
τ . If that is not the case the request is ignored. Otherwise the party first notifies
the corruption-aggregation ITI by sending (Corrupt, pi) to this machine and then it
corrupts pi by forwarding Corrupt to π. Each time pi is activated after this it sends its
entire local state of the inner protocol to the adversary and furthermore forwards all
messages m (assuming that m includes both content and recipient) that are written
on the backdoor tape of pi.

Whenever the shell of pi detects that the inner protocol sends a message to a new sub-
routine for the first time, it sends (Initialize, PrecorruptionTimei) to the subroutine before
forwarding the message of the inner protocol.
Furthermore, the shell starts a separate corruption aggregation ITI. It maintains two lists
Precorrupted and Corrupted that initially are both empty. The corruption aggregation
ITI has the following behavior:

Precorruption Registration: When receiving a (Precorrupt, p) from a party p it sets
Precorrupted := p :: Precorrupted.

Corruption Registration: When receiving a (Corrupt, p) from a party p it sets
Corrupted := p :: Corrupted.

Corruption Status: When receiving CorruptionStatus from the environment it queries
all sub-functionalities of the protocol for their corruption status and up-
dates the Precorrupted and Corrupted-lists accordingly. Finally, it sends
(Precorrupted, Corrupted) back to the environment.

Function Dδ
Ideal(F)

The shell wraps the functionality in a wrapper which maintains two lists Precorrupted
and Corrupted that initially are both empty. Furthermore, it has a map
PrecorruptionTimeMap : P → Time and a counter to keep track of time Time which
initially is instantiated to be 0. When receiving precorruptions, corruptions and corruption-
status requests it has the following behavior and on all other inputs/outputs it forwards
the inputs to/from F .

Initialization: If the functionality receives (Initialize, τ) at the port belonging to p as the
first message for this party, then the party updates PrecorruptionTimeMap[p] := τ .
If τ ̸= ⊥ then it also updates Precorrupted := p :: Precorrupted, and forwards
(Initialize, τ) to the inner functionality.

Precorruption: When receiving (Precorrupt, p) and p is a valid PID of a dummy party then
it adds the current time, Time, to PrecorruptionTimeMap[p] := Time and updates
Precorrupted := p :: Precorrupted. Furthermore, it propagates (Precorrupt, p) to F .

Corruption: When receiving (Corrupt, p) where p is a valid PID of a dummy party then
the functionality checks if PrecorruptionTimeMap[p] + δ ≤ Time. If that is the case
it updates Corrupted := p :: Corrupted and returns to the adversary all the values
received from p and output to p so far. From now on inputs from p are ignored but

18

The Hybrid World The Ideal World

Figure 2: A depiction of the security statement for a protocol that implements an ideal
functionality F using the functionality G against a δ-delayed adversary.

are instead given via the backdoor tape by the adversary. Furthermore, it propagates
(Corrupt, p) to F .
If the request is send too early, it is ignored.

Inputs: If the functionality receives (Input, p, v) from the adversary and p ∈ Corrupted,
then v is forwarded to F as if it was directly input by p to F .

Corruption Status: When receiving CorruptionStatus from the environment it sends
(Precorrupted, Corrupted) back to the environment.

Tick: The functionality updates Time := Time + 1.

The additional (Input, p, v) command accepted by the ideal shell allows an adversary to
input a message v on behalf of party p if p is corrupted. This follows how standard byzantine
corruptions are treated and modelled in the UC framework.

We next formally define what it means for a protocol to securely implement a functionality
against a δ-delayed adversary, see also Figure 2 for a graphical depiction.

Definition 11 (UC-security against delayed adversaries). Let δ ∈ N. We say that a protocol
π securely implements an ideal functionality F against a δ-delayed adversary when Dδ

Real(π)
securely implements Dδ

Ideal(F) in the usual UC sense [Can20], i.e., if

∀A ∃S ∀Z, EXEC(Z,A,Dδ
Real(π)) ≈ EXEC(Z,S,Dδ

Ideal(F)).

Note that security against a delayed adversary is defined both for functionalities that have
special behavior defined for receiving precorruptions and functionalities that do not have any
such behavior defined, as the default for protocols/functionalities is to ignore any unrecognized
inputs.

3.2 Relating Corruption Models

In this section we relate the notion of a 0-delayed adversary to the standard notion of an adaptive
adversary in UC. We further show that any protocol that is secure against a fast adversary is also

19

secure against a slower adversary. These results allow us to reuse cryptographic constructions
which are already proven secure modularly when implementing larger constructions.

Byzantine corruptions and 0-delayed corruptions. To showcase the generality of the
δ-delayed corruption model, we relate this model to the standard model of adaptive Byzantine
corruptions as defined in UC. To be able to precisely quantify how these notions relate, we
introduce two Byzantine shells similar to the delay shells. The byzantine-shells are meant to
precisely encapsulate the corruption model as presented in [Can20]. We believe that these are of
independent interest as by using these it can be avoided to clutter the protocol and functionality
description with a specific corruption model.

Function BReal(π)

The shell adds the following behavior to each party pi ∈ P . If any other inputs are received
than the ones below, it is the original code of the party that is executed.

Corruption: If pi ∈ P receives Corrupt then the party first notifies the corruption-
aggregation ITI by sending (Corrupt, pi) to this machine.
Each time pi is activated after this it sends its entire local state of the inner protocol
to the adversary and furthermore forwards all messages m (assuming that m includes
both content and recipient) that are written on the backdoor tape of pi.

Furthermore the shell runs a separate corruption-aggregation ITI. It maintains a list
Corrupted which initially is set to be the empty list and has the following behavior:

Registration: When receiving a (Corrupt, p) from a party p it sets Corrupted := p ::
Corrupted.

Corruption Status: When receiving CorruptionStatus from the environment it queries
all sub-functionalities of the protocol for their corruption status and updates the
Corrupted-list accordingly. Finally, it sends Corrupted back to the environment.

Function BIdeal(F)

The functionality maintains a list of corrupted parties, Corrupted, which initially is set to
be the empty list. Upon receiving the following

Corruption: If the functionality receives (Corrupt, p) from the adversary and p is a valid
PID of the dummy parties, it updates Corrupted := p :: Corrupted and returns to
the adversary all the values received from p and output to p so far. From now on
inputs from p are ignored but are instead given via the backdoor tape by the adversary.
Furthermore it propagates (Corrupt, p) to F .

Inputs: If the functionality receives (Input, p, v) from the adversary and p ∈ Corrupted
then v is forwarded to F as if it was directly input by p to F .

Corruption Status: When receiving CorruptionStatus from the environment it sends
Corrupted back to the environment.

Security against 0-delayed adversary implies security in the standard model and vice versa

20

if the functionality that is implemented ignores precorruption and initialization tokens. We
encapsulate this intuition in the theorem below.

Theorem 1. Let π be a protocol and F an ideal functionality that ignores precorruptions and
initializations. BReal(π) securely implements BIdeal(F) if and only if D0

Real(π) securely implements
D0

Ideal(F).
Formally,

∀A ∃S ∀Z, EXEC(Z,A,BReal(π)) ≈ EXEC(Z,S,BIdeal(F))
⇐⇒ ∀A′ ∃S ′∀Z ′, EXEC(Z ′,A′,D0

Real(π)) ≈ EXEC(Z ′,S ′,D0
Ideal(F)).

(7)

Proof Sketch. We prove the two directions of the implication individually.

“=⇒”: We let A′ be any adversary and construct an adversary A by wrapping A′ with a shell
that forwards all inputs/outputs except precorruptions to/from A′. Whenever A receives
a Precorrupt directed to pi from A′ it forwards (Precorrupt, pi) to the environment instead.
We now use the LHS of Equation (7) to obtain a simulator S s.t.

∀Z, EXEC(Z,A,BReal(π)) ≈ EXEC(Z,S,BIdeal(F)). (8)

Given S we construct S ′ by running S inside S ′. Each time S outputs (Precorrupt, pi) to
the environment then S ′ outputs (Precorrupt, pi) to D0

Ideal(F). All other inputs and outputs
are forwarded to and from S directly. Note that precorruptions are ignored by F and
therefore F does not change its behavior based upon these.
Let us now for the sake of contradiction assume that there exists some environment Z ′

that can distinguish against A′ and S ′, i.e.,

EXEC(Z ′,A′,D0
Real(π)) ̸≈ EXEC(Z ′,S ′,D0

Ideal(F)) (9)

Let us now show how to construct an environment, Z, that can distinguish for the byzantine
setting and thereby contradict Equation (8).
We build Z by running Z ′ inside, and forward all inputs and outputs to Z ′. Z only
deviates from Z ′ in the two cases below:

• Whenever a CorruptionStatus command is issued by Z ′ to the corruption aggregation
ITI, we amend the answer with an additional list of precorruptions which we have
received from A so far.

• Whenever a (Initialize, τ) command is send to some party it is not forwarded by Z but
instead recorded as a precorruption of this party. This does not change the behavior
of the protocol nor the ideal functionality as these are ignored.

In particular, Z simply forwards the guess on which world it is placed in from Z ′.
We observe that

EXEC(Z,S,BIdeal(F)) ≈ EXEC(Z ′,S ′,D0
Ideal(F)), (10)

and
EXEC(Z,A,BReal(π)) ≈ EXEC(Z ′,A′,D0

Real(π)). (11)

Together with Equation (9) this contradicts Equation (8) and thus concludes the case.

21

“⇐=”: The proof of this case mirrors the other case. We are now given A and construct A′

by sending Precorrupt-tokens just before Corrupt-tokens. From the RHS of Theorem 1 we
get a simulator S ′ which we use to construct S by forwarding everything except Precorrupt-
tokens. Finally, we assume for the sake of contradiction that there exists a Z that is
able to distinguish, build an environment Z ′ using this (removing Precorrupt-tokens and
initializations), and derive a contradiction similarly to the other case.

Note that the above theorem allows reusing constructions that are proven secure against a
standard adaptive adversary when building complex systems that are to be secure against a
0-delayed adversary.

Lifting security to weaker adversaries. If protocols that are proven secure within different
corruption models are composed, it gets hard to identify the final security guarantee that is
provided by the composed construction. Intuitively, one would presume that a protocol that
is proven secure against an adversary able to do “fast” corruptions is also secure against an
adversary only able to do “slow” corruptions. Using precise shells to quantify corruption-speed
allows us to capture this intuition in the lemma below.

Theorem 2 (Lifting Security to Slower Corruptions). Let δ, δ′ ∈ N, s.t. δ ≤ δ′, let π be a
protocol, and let F be an ideal functionality. If Dδ

Real(π) securely implements Dδ
Ideal(F), then

Dδ′
Real(π) securely implements Dδ′

Ideal(F).
Formally,

∀A,∃S,∀Z, EXEC(Z,A,Dδ
Real(π)) ≈ EXEC(Z,S,Dδ

Ideal(F))
=⇒ ∀A′, ∃S ′,∀Z ′, EXEC(Z ′,A′,Dδ′

Real(π)) ≈ EXEC(Z ′,S ′,Dδ′
Ideal(F)).

(12)

Proof. Let H be the hypothesis (LHS of the implication), and let A′ be an adversary. We define
Filter(A, δ) to be a wrapper around an adversary that simply filters out corruption request that
are to early w.r.t. δ.

Using H we know that there exists a simulator S s.t.

∀Z, EXEC(Z, Filter(A′, δ′),Dδ
Real(π)) ≈ EXEC(Z,S,Dδ

Ideal(F)). (13)

Let us now show,

∀Z, EXEC(Z, Filter(A′, δ′),Dδ
Real(π)) ≈ EXEC(Z,S,Dδ′

Ideal(F)). (14)

Assume for the sake of contradiction that there exists an environment Z that is able to
distinguish in Equation (14). We use this to build an environment Z ′ which is able to distinguish
in Equation (13) with at least as big an advantage. Z ′ works by forwarding everything to and
from Z. Except if at any point in time there is a Precorrupt-token followed by a Corrupt send with
strictly less than δ′ between them, then Z ′ immediately guesses that it is in the ideal case.

As every time that this happens the environment is correct, and every time this does not
happen the execution is exactly similar to that of Equation (13) this implies Equation (14).

We now define S ′ ≜ S and let Z ′ be any environment. We specialize Equation (14) with Z ′

and obtain
EXEC(Z ′, Filter(A′, δ′),Dδ

Real(π)) ≈ EXEC(Z ′,S,Dδ′
Ideal(F)). (15)

Furthermore,

EXEC(Z ′, Filter(A′, δ′),Dδ
Real(π)) ≈ EXEC(Z ′, Filter(A′, δ′),Dδ′

Real(π)) (16)

22

≈ EXEC(Z ′,A′,Dδ′
Real(π)). (17)

Equation (16) holds as if early corruptions are ignored, then Dδ
Real(π) and Dδ′

Real(π) are identically
distributed. Equation (17) holds as it is not observable by the environment if the corruption is
ignored by the filter or the shell. Together Equations (15) and (17) finishes the proof.

Note that if one considered a simpler model with just one corruption token and a subsequent
automatic effectuation of the corruption a certain time after such the token was input (instead
of a model like ours with separate tokens for precorruptions and corruptions), then Theorem 2
would not hold. The reason is that in such a model a fast adversary would not have the ability
to imitate a slow adversary. Hence, in such a model a fast adversary would not be strictly
“stronger” than a slow adversary.

Theorems 1 and 2 together imply that any protocol that is secure against a standard adaptive
adversary in UC, is also secure against any δ-delayed adversary.

4 Concrete Bounds for Diameters of Erdős–Rényi Graphs
The proofs in this section are inspired by proofs in [BHK20].

4.1 Logarithmic Diameter

This section is dedicated to proving that an Erdős–Rényi graph with a constant average degree d
has a logarithmic diameter except with a probability negligible in the degree d.

Lemma 3 (Erdős–Rényi graphs with logarithmic diameter). Let n ∈ N, d ∈ R, γ, δ1, δ2 ∈ [0, 1],

and ρ := d
n . Furthermore, let α ∈ R, let G = (V, E) $← G(n, ρ), and let t0 :=

log
(

γn
(1−δ1)d

)
log((1−δ2)α) + 1. If

e−dγ + γα

1− γ
≤ 1 and (1− δ2) · α > 1, (18)

then
Pr[¬ϕDiam(G, t0 + 1)] ≤ n

(
e−

δ2
1d

2 + t0e−
δ2

2α(1−δ1)d

2

)
+ e−n·(dγ2−2). (19)

Proof. First, we bound the probability that a single node cannot reach a constant fraction of
all nodes within a logarithmic number of steps. For v ∈ V let Dv := (|Γt0(v)| < γ · n) i.e., the
event that v does not reach at least a γ-fraction of the nodes within t0 steps. Our goal is now to
bound Pr[Dv]. Let

A0 := (deg(v) > (1− δ1)d) (20)

i.e., the event that v’s degree is less than (1− δ1)d, and let

Bi := (|θ(v, i + 1)| > (1− δ2)α|θ(v, i)|) , Ci :=
(
|Γi(v)| > γn

)
, and Ai := Bi ∨ Ci, (21)

for i = 1, . . . , t0 − 1. We note that

t0 =
log

(
γn

(1−δ1)·d

)
log((1− δ2)α) + 1 ⇐⇒ (1− δ1)d((1− δ2)α)t0−1 = γn. (22)

23

Therefore, if A0 and B1, . . . , Bt0−1 holds, then

|Γt0(v)| =
t0∑

i=0
|θ(v, i)|

= 1 +
t0∑

i=1
|θ(v, i)|

= 1 +
t0−1∑
i=0
|θ(v, i + 1)|

≥ 1 +
t0−1∑
i=0

((1− δ2)α)i|θ(v, 1)|

≥ 1 + (1− δ1)d
t0−1∑
i=0

((1− δ2)α)i

≥ (1− δ1)d((1− δ2)α)t0−1

= γn.

(23)

Similarly, if just some Ci holds then we get that |Γt0(v)| > γn. Therefore, by contraposition we
have that (

t0−1∧
i=0

Ai =⇒ ¬Dv

)
⇐⇒

(
Dv =⇒

t0−1∨
i=0
¬Ai

)
. (24)

Hence, we get the following:

Pr[Dv] ≤ Pr
[

t0−1⋃
i=0
¬Ai

]

≤
t0−1∑
i=0

Pr

¬Ai |
⋂
j<i

Aj


= Pr[¬A0] +

t0−1∑
i=1

Pr

¬Ai |
⋂
j<i

Aj


= Pr[¬A0] +

t0−1∑
i=1

Pr

¬Bi ∩ ¬Ci |
⋂
j<i

Aj


= Pr[¬A0] +

t0−1∑
i=1

Pr

¬Bi |
⋂
j<i

Aj ∩ ¬Ci

 · Pr

¬Ci |
⋂
j<i

Aj


≤ Pr[¬A0] +

t0−1∑
i=1

Pr

¬Bi |
⋂
j<i

Aj ∩ ¬Ci


= Pr[¬A0] +

t0−1∑
i=1

Pr

¬Bi |
⋂

1≤j<i

Bj ∩ ¬Ci ∩A0

 .

(25)

We now state and prove a bound on the individual probabilities inside the sum.

Claim 1 (Fast expansion to small fraction). For any i ∈ {1, . . . , t0 − 1} we have

Pr

¬Bi |
⋂

1≤j<i

Bj ∩ ¬Ci ∩A0

 ≤ e−
δ2

2α(1−δ1)d

2 . (26)

24

Proof. We look at the probability space where ⋂1≤j<i Bj ∩ ¬Ci ∩ A0 holds. Let r := |θ(v, i)|
and let U := V \ Γi(v). For each u ∈ U we introduce a random variable Xu which describes if u
is in θ(v, i + 1). As the probability that there is an edge between any two nodes is independent
of other edges,

Pr[Xu = 1] = 1− (1− ρ)r ≥ 1− e−ρr. (27)

The size of θ(v, i + 1) is the sum of these independent variables, i.e.,

|θ(v, i + 1)| =
∑
u∈U

Xu. (28)

As we are looking at the case where ¬Ci, we have |U | ≥ (1−γ)n which by linearity of expectations
gives us that

E[|θ(v, i + 1)|] ≥ n(1− γ)
(
1− e−ρr) . (29)

For α ∈ N, we subtract α · r on each side of the inequality above and get

E[|θ(v, i + 1)|]− αr ≥ n(1− γ)
(

1− e−ρr − αr

n(1− γ)

)
= n(1− γ)

(
1− e−d r

n − αr

n(1− γ)

)
.

(30)

We let x = r
n and set f(x) = 1− e−dx − x α

(1−γ) . We differentiate this twice and find f ′′(x) =
−d2e−dx ≤ 0 which implies that f is concave which again implies that the minimum values are
at one of the endpoints of the function. As x ∈ [0, γ] it is enough to check that f(0) ≥ 0 and
f(γ) ≥ 0 which will imply that E[|θ(v, i + 1)|] ≥ α · |θ(v, i)|.

f(0) = 1− e−d·0 − 0 = 0. (31)

f(γ) = 1− e−dγ − γα

1− γ
≥ 0 ⇐⇒ e−dγ + γα

1− γ
≤ 1. (32)

We now use Chernoff (Lemma 1) to bound the probability that this is not the case which means
that for any δ2 ∈ [0, 1] we get that

Pr[|θ(v, i + 1)| ≤ (1− δ2)α|θ(v, i)|] ≤ e−
δ2

2α|θ(v,i)|
2 . (33)

However, ⋂j<i Bj ∩A0 and (1− δ2) · α ≥ 1 ensures that

|θ(v, i)| ≥ ((1− δ2)α)i · (1− δ1)d
≥ (1− δ1)d.

(34)

Hence, within the probability space where ⋂1≤j<i Bj ∩ ¬Ci ∩A0 holds we have that

Pr[|θ(v, i + 1)| ≤ (1− δ2)α|θ(v, i)|] ≤ e−
δ2

2α(1−δ1)d

2 . (35)

Using Claim 1 and Chernoff (Lemma 1) to bound A0 we get that

Pr[Dv] ≤ e−
δ2

1d

2 +
t0−1∑
i=1

e−
δ2

2α(1−δ1)d

2

≤ e−
δ2

1d

2 + t0e−
δ2

2α(1−δ1)d

2 .

(36)

25

Furthermore, by the union-bound we get that

Pr[there exists v ∈ V s.t. Dv] = Pr
[⋃

v∈V
Dv

]
≤
∑
v∈V

Pr [Dv]

≤ n ·
(

e−
δ2

1d

2 + t0e−
δ2

2α(1−δ1)d

2

)
.

(37)

We now continue to show that for any two non-overlapping sets S, S′ ⊆ V where |S| ≥ γn and
|S′| ≥ γn we have with very high probability that there is an edge between S and S′.

Pr[No edges from S to S′] ≤ ((1− ρ)γn)γn

=
((

1− d

n

)n)γ2n

≤ e−d·nγ2

(38)

We now bound the probability that there exist any two such sets of size γn with no edges
between them. There are less than 22n such pairs of sets. Hence, by the union bound we get that

Pr[exist two non-overlapping sets of size ≥ γn that are not connected]
≤ 22ne−d·nγ2

≤ e−n·(dγ2−2).

(39)

A final union-bound on the probabilities for all of the bad events concludes the proof which
shows that such a graph has diameter t0 + 1 except with negligible probability.

4.2 Diameter 2

Below we show that an Erdős–Rényi graph can achieve a constant diameter (a diameter of just
2 to be precise) by selecting a square root number of neighbors.

Lemma 4 (Erdős–Rényi graphs with diameter 2). Let n ∈ N, k ∈ R, and ρ :=
√

k
n . For

G = (V, E) $← G(n, ρ) then

Pr[¬ϕDiam(G, 2)] ≤ n2 · e−k· (n−2)
n . (40)

Proof. We look at a pair of vertices v, u ∈ V and let Xv,u indicate if u is not reachable from
v in two steps. Let w ∈ V be an intermediary node. We have Pr[{v, w} ∈ E] = ρ and
Pr[{w, u} ∈ E] = ρ and thus the probability that either of these are missing is 1− ρ2. As there
are n− 2 possible intermediary nodes we get by the exponential inequality that

Pr[Xv,u = 1] = (1− ρ2)n−2

≤ e−ρ2·(n−2)

= e−k· (n−2)
n .

(41)

26

There are
(n

2
)

such pairs of nodes which by the union bound gives that:

Pr[exists v, u ∈ V s.t.Xv,u = 1] ≤
∑

v,u∈V
Pr[Xv,u = 1]

=
(

n

2

)
· e−ρ2·(n−2)

≤ n2 · e−k· (n−2)
n

(42)

If there are no such pairs then all vertices can be reached from all vertices in at most 2 steps.

5 Functionalities
In this section we define a time-bounded channel between parties as well as a flooding functionality.
The functionalities that we present are:

MessageTransfer: A functionality that allows one party to send messages to another party. This
is modeling a point-to-point channel.

Flood: A functionality that allows all honest parties to disseminate to all other parties.

Conventions for ideal functionalities. Our functionalities needs to maintain a counter
which is incremented each time a tick happens (similarly to what DIdeal does). For clarity of
presentation, we describe our functionalities without explicitly mentioning this, but instead
describe them as having direct access to time. Furthermore, we define the functionalities without
specifying the corruption model as we will make use of the shells described in Section 3 to make
the corruption-model explicit when implementing the functionalities.

Additionally, the behavior of both our functionalities depend on which parties are precorrupted
and which parties are corrupted. Therefore they both maintain two sets: Precorrupted and
Corrupted which are initially empty. These are updated by the following activation rules which
we do not make explicit in the functionalities below for clarity of presentation.

Precorrupt: Upon receiving (Precorrupt, pi) or an initialization that changes party pi’s status
to precorrupted, it sets Precorrupted := Precorrupted ∪ {pi}.

Corrupt: Upon receiving (Corrupt, pi) it sets Corrupted := Corrupted ∪ {pi}.

Furthermore, both of our ideal functionalities are parameterized by a type of messages that
can be propagated which we denote Messages.

5.1 MessageTransfer
In this section we present a basic functionality that allows a party to send messages to other
parties. This is similar to the point-to-point channel presented in [BDD+21], but instead of
hardcoding whether we assume AMS (as done in [BDD+21]) or not, we introduce an additional
parameter which is the time an honest party needs to stay honest for ensuring delivery of the
message.

27

Functionality Fσ,∆
MessageTransfer(ps, pr)

The functionality is parameterized by two parties ps (the sender) and pr (the receiver),
and a time σ which parties needs to stay honest for the delivery guarantee ∆ to apply. It
maintains a mailbox for pr, Mailbox : Messages.

Initialize: Initially, Mailbox := ∅.

Send: After receiving (Send, m) from ps it leaks (Leak, ps, m) to the adversary.

Get Messages: After receiving (GetMessages) from pr it outputs Mailbox to party pr.

Set Message: After receiving (SetMessage, m) from the adversary, the functionality sets
Mailbox := Mailbox ∪ {m}.

At any time the functionality automatically enforces the following property:

1. Let m be a message that is input for the first time by an honest party ps ̸∈ Corrupted
at some time τ . If ps ̸∈ Corrupted at time τ + σ, then by time τ + ∆ it is ensured
that m ∈ Mailbox.

The property is ensured by the functionality automatically making the minimal possible
additional calls with SetMessage.

Note that building a construction using F0,∆
MessageTransfer exactly corresponds to assuming AMS

whereas assuming Fσ,∆
MessageTransfer against a δ-delayed adversary with δ < σ corresponds to not

assuming AMS.

5.2 Flood
The ideal functionality that we present here provides the guarantees of flooding network, i.e.,
that all information some honest party knows is disseminated to all other parties within a
bounded time.

Functionality F∆
Flood

The functionality is parameterized by a set of parties P, and a delivery guarantee ∆.

Furthermore, it keeps track of a set of messages for each party Mailbox : P →Messages.
These sets contain the messages that each party will receive after fetching.

Initialize: Initially, Corrupted := ∅ and Mailbox[pi] := ∅ for all pi ∈ P.

Send: After receiving (Send, m) from pi it leaks (Leak, pi, m) to the adversary.

Get Messages: After receiving (GetMessages) from pi it outputs Mailbox[pi] to party pi.

Set Message: After receiving (SetMessage, m, pi) from the adversary, the functionality sets
Mailbox[pi] := Mailbox[pi] ∪ {m}.

At any time after all parties have been initialized the functionality automatically enforces
the following two properties:

28

1. Let m be a message that is input for the first time to an honest party pi ̸∈
Precorrupted ∪ Corrupted at some time τ . By time τ + ∆ it is ensured that
∀pj ∈ P \ (Corrupted ∪ Precorrupted) it holds that m ∈ Mailbox[pj].

2. Let m be a message at some time τ is in the mailbox of an honest party pi ̸∈
Precorrupted ∪ Corrupted i.e., m ∈ Mailbox[pi]. By time τ + ∆ it is distributed to
all honest mailboxes, i.e., for any party pj ∈ P \ (Corrupted∪Precorrupted) it holds
that m ∈ Mailbox[pj].

The properties are ensured by the functionality automatically making the minimal possible
additional calls with SetMessage.

6 Implementations of Flood
In this section we will present the following protocols that implement Flood:
πNaiveFlood: Everybody simply sends to everybody.

πERFlood: Everybody sends to each other party with some fixed probability ρ.
We provide two types of implementations for Flood. A naive approach where everybody

sends to everybody and a more efficient one where each party sends to their neighbors with
probability ρ. The latter construction allows us to reuse the theoretic foundation of Erdős–Rényi
graphs in the distributed systems setting and achieve a variety of properties.

6.1 Naive Flood
We present here a protocol that implements Flood with a message complexity that is quadratic
in the number of messages that is input to the system.

The protocol πNaiveFlood works straightforwardly by a peer sending and relaying any non-
relayed message to all other parties. As everybody sends to everybody the protocol achieves a
very small diameter and resilience against fairly fast adaptive adversaries at the cost of a large
communication overhead and neighborhood.

Protocol πNaiveFlood

Each pair of parties pi, pj ∈ P has access to a channel Fσ,∆
MessageTransfer(pi, pj). Each party

pi ∈ P keeps track of a set of relayed messages Relayedi.
Initialize: Initially, all parties initialize their channel between them and set Relayedi := ∅.

Send: When pi receives (Send, m) they now forward inputs (Send, m) to Fσ,∆
MessageTransfer(pi, pj)

for all pj ∈ P and set Relayedi := Relayedi ∪ {m}.

Get Messages: When pi receives (GetMessages) they let M be the union of the messages
they achieve by calling (GetMessages) to Fσ,∆

MessageTransfer(pi, pj) for all pj ∈ P, and
outputs M .

Furthermore, once in every activation each honest pi let M be the union of the messages they
achieve by calling (GetMessages) to Fσ,∆

MessageTransfer(pi, pj). For any m ∈M\Relayedi, pi inputs
(Send, m) to Fσ,∆

MessageTransfer(pi, pj) for all pj ∈ P, and sets Relayedi := Relayedi ∪ {m}.

29

An obvious attack on this protocol an adversary might try to perform is to try to corrupt the
sender between the time τ that a message is sent and time τ + σ where the delivery guarantee
from the underlying Fσ,∆

MessageTransfer applies. An adversary that succeeds with this can violate
both Properties 1 and 2 of F∆

Flood. However, σ-delayed adversaries do not have sufficient time to
succeed with this as the properties only needs to be upheld for parties that are neither corrupted
nor precorrupted when they try to send the message. Below we explicitly2 prove that against
such adversaries the naive protocol actually realizes F∆

Flood.

Lemma 5. Let σ, ∆ ∈ N. The protocol πNaiveFlood perfectly realizes F∆
Flood in the Fσ,∆

MessageTransfer-
hybrid model against a σ-delayed adversary.

Proof. We construct a simulator S.

1. S simulates all parties pi ∈ P inside it self.

2. When receiving (Leak, pi, m) from F∆
Flood the simulator inputs (Send, m) to pi (running

inside S).

3. When receiving (SetMessage, m) from the adversary on the port belonging to functionality
Fσ,∆

MessageTransfer(pi, pj), S forwards (SetMessage, m, pj) to F∆
Flood.

4. Whenever A corrupts some pi ∈ P , S corrupts pi and sends the simulated internal state to
A. From then on the simulated pi (inside S) follows A’s instructions.

5. Whenever the ḠTicker notifies S about the passing of time, S ensures to activate F∆
Flood.

As protocol, functionality, and simulator are all deterministic it is enough to argue that the
I/O behavior of A interacting with πNaiveFlood is equal to the I/O behavior of S interacting
with F∆

Flood to argue perfect indistinguishability. The send command is invoked at the exact
same times in the real execution and in the execution inside S this produces the exact same
behavior. Furthermore, for any send command that is invoked at time τ by an honest party
(neither precorrupted nor corrupted) there will be a set-message command within τ + ∆ for all
honest parties in the real protocol as a σ-delayed adversary does not have time to violate the
delivery property of the underlying Fσ,∆

MessageTransfer(pi, pj), and therefore Property 1 is upheld.
Similarly, the relaying of messages in the real protocol ensure that messages will be delivered by
the adversary according to the properties of F∆

Flood in the real protocol (inside S and therefore
also in the ideal) which ensures Property 2.

6.2 Efficient Flood
We now present a more efficient version of Flood. The idea is simple: Instead of relaying messages
to all parties, each party flips a coin for each neighbor that decides if a particular message
should be relayed to this party. Compared to the naive implementation of Flood presented in
previous section the protocol presented here will have significantly smaller neighborhoods at the
cost of larger diameter in the communication graph (the parameter ∆ of Flood). Furthermore,
the construction is only able to tolerate adversaries that are slightly more delayed than those
the naive protocol can tolerate.

2In [Nie03, Chapter 3, p. 111], it is shown that it is enough to argue correct realization to achieve secure
realization for any protocol which leaks all I/O behavior to the adversary. One may be lead to believe that this
result directly applies to πNaiveFlood, but as (GetMessages) inputs (and corresponding outputs) are hidden from the
adversary this is not the case.

30

The protocol πERFlood works by letting all parties relay and send messages to a different
random subset of parties for each message that is to be sent/relayed. By letting the random
subset be large enough we ensure that we establish a connected graph with low diameter for
all messages. As the subset of parties each party chooses to send to is random, the protocol
achieves quite some robustness against adaptive adversaries, as a slightly delayed adversary
cannot predict whom to corrupt in order to eclipse some specific parties.

Protocol πERFlood(ρ)

Each pair of parties pi, pj ∈ P has access to a channel Fσ,∆
MessageTransfer(pi, pj). Each party

pi ∈ P keeps track of a set of relayed messages Relayedi : Messages.

Initialize: Initially, all parties initialize their channel between them and set Relayedi := ∅.

Send: When pi receives (Send, m), they input (Send, m) to Fσ,∆
MessageTransfer(pi, pj) with prob-

ability ρ for each party pj ∈ P. Finally they set Relayedi := Relayedi ∪ {m}.

Get Messages: When pi receives (GetMessages) they let M be the union of the messages
they achieve by calling (GetMessages) to Fσ,∆

MessageTransfer(pi, pj) for all pj ∈ P, and
outputs M .

Furthermore, once in each activation each honest pi let M be the union of the messages
they achieve by calling (GetMessages) to Fσ,∆

MessageTransfer(pi, pj) for all pj ∈ P. For any
m ∈ M \ Relayedi, pi inputs (Send, m) to Fσ,∆

MessageTransfer(pi, pj) with probability ρ for all
pj ∈ P, and sets Relayedi := Relayedi ∪ {m}.

Depending on the parameter ρ the protocol πERFlood can achieve a variety of properties. We
provide two different instantiations that uses the channel Fσ,∆

MessageTransfer and all works against
a (σ + ∆)-delayed adversary. Before going into detail with the actual proof, we provide some
intuition for why the protocol is secure against exactly a (σ + ∆)-delayed adversary. The main
intuition is that such an adversary cannot influence how the communication graph between the
parties that are honest are created. If a party decides to send a message at some time τ then
the set of parties that receives this message will have completed forwarding the message at time
τ + σ + ∆, which is the earliest point on this party can be corrupted based upon this party’s role
in the specific communication graph. Therefore an adversary cannot make use of the adaptive
corruptions to disrupt the propagation of a message.

Each of the instantiations that are presented below provides a trade-off between the diameter
of the graph, the average size of the neighborhood and the probability that the graph in fact has
these properties. Instantiation 1 ensures a diameter of 2 with a neighborhood of just Ω (

√
nκ)

and Instantiation 2 ensures a logarithmic diameter with a neighborhood of average size Ω (κ).

Theorem 3. Let ∆ ∈ N be any delay, let σ ∈ N, let t < n be the maximum number of parties
an adversary can corrupt, and let κ ∈ R be the security parameter. The protocol πERFlood(ρ)
securely implements F∆′

Flood against a (σ + ∆)-delayed adversary using Fσ,∆
MessageTransfer. More

precisely when r is an upper bound on the number of different messages input (either via Send or
via SetMessage), the statistical distance between the real and ideal executions is bounded by the
probability pbad for either of the following instantiations:

31

1. Let ρ :=
√

κ
h and let ∆′ := 2∆ then

pbad ≤ r · (t + 1) · n2 · e−κ· (h−2)
h . (43)

2. Let α ∈ R, γ, δ1, δ2 ∈ [0, 1], and ρ := κ
h . Furthermore, let t0 :=

log
(

γn
(1−δ1)κ

)
log((1−δ2)α) + 1 and

∆′ := ∆ · (t0 + 1). If

e−κγ + γα

1− γ
≤ 1,

γn

(1− δ1)κ > 1, and (1− δ2) · α > 1, (44)

then
pbad ≤ r · (t + 1) ·

(
n ·
(

e−
δ2

1κ

2 + t0e−
δ2

2α(1−δ1)κ

2

)
+ e−h·(κγ2−2)

)
. (45)

Proof Sketch. For an adversary we construct a simulator similar to how it is done in the proof
of Lemma 5. The only times this is not a perfect simulation is when one of the properties of
F∆′

Flood are violated in πERFlood which will never happen when the environment interacts with
F∆′

Flood. The main idea of the proof is to argue about the probability that a message m, that is
input via either Send or SetMessage, is not propagated to all parties within ∆′ time. We will argue
about this via 7 random experiments:

FloodToER1: An experiment where an adversary interacts with an oracle to learn edges in a
directed graph. Only nodes that have an edge to them can have their edges revealed to
the adversary but the adversary can inject additional edges in order to be able to reveal
more nodes. The adversary has the possibility to remove up to t nodes, but at the point
of removal the adversary cannot have learned any edges connecting to the removed node.
If at any point there is a cut in the graph the adversary can stop the game.

FloodToER2: An experiment similar to FloodToER1 except now the edges are undirected.

FloodToER3: An experiment similar to FloodToER2 except the adversary cannot stop the game
before all parties have been revealed.

FloodToER4: An experiment similar to FloodToER3 except the adversary cannot inject edges
between parties.

FloodToER5: An experiment similar to FloodToER4 except that the oracle secretly and uniformly
predetermines the size of the returned graph, s ∈ {h, . . . , n}. The adversary can however
still decide whether or not to remove a particular node given that it does not violate the
size that the oracle has determined.

FloodToER6: An experiment similar to FloodToER5 except now the oracle also predetermines a
Erdős–Rényi graph of the predetermined size and embeds this into the final graph that is
returned.

Erdős–Rényi: An experiment that chooses a graph of a certain size and includes each edge
independently with probability ρ.

Let d := ∆′

∆ . We now argue via the following steps:

1. If there is an adversary that prevents timely delivery of m in the real world with some
probability, then there exists an adversary that can make FloodToER1 return a graph
where the distance from the sender to some node is larger than d with at least as high a
probability.

32

2. If any adversary can make FloodToER1 return a graph with a diameter larger than d with
probability p, then there exists some adversary that can make FloodToER2 return a graph
where the distance from the sender to some node is larger than d with at least as high a
probability.

3. If any adversary can make FloodToER2 return a graph with a diameter larger than d with
probability p, then there exists some adversary that can make FloodToER3 return a graph
where the distance from the sender to some node is larger than d with at least as high a
probability.

4. If any adversary can make FloodToER3 return a graph with a diameter larger than d with
probability p, then there exists some adversary that can make FloodToER4 return a graph
with a diameter larger than d with at least as high a probability.

5. If any adversary can make the FloodToER4 game return a graph with a diameter larger
than d with probability p, then the same adversary can make FloodToER5 return a graph
with a diameter larger than d with probability at least p · (t + 1).

6. The experiments FloodToER5 and FloodToER6 are distributed identically.

7. The probability that FloodToER6 returns a graph with larger diameter than d must be less
than the probability that an Erdős–Rényi graph with the worst size has a larger diameter
than d.

8. We can now use the Erdős–Rényi graph results from Section 2.2 (in particular Lemmas 3
and 4) to bound the probability that an adversary can prevent the delivery of m in the
real world.

We finally do a union bound over the number of different messages that is input to the functionality.
The detailed proof can be found in Section 6.3.

As the results in Theorem 3 are hard to interpret we additionally provide the following
corollary which instantiates some of the many constants and makes some simplifying but non-
optimal estimates. We emphasize that if one wants to optimize for a particular use-case (i.e.,
small diameter or very small failure probability) then Theorem 3 can be used to obtain tighter
bounds.

Corollary 1. Let ∆ ∈ N be any delay, let σ ∈ N, let t < n be the maximum number of parties
an adversary can corrupt, and let κ ∈ R be the security parameter. The protocol πERFlood(ρ)
securely implements F∆′

Flood against a (σ + ∆)-delayed adversary using Fσ,∆
MessageTransfer. More

precisely when r is an upper bound on the number of different messages input (either via Send or
via SetMessage), the statistical distance between the real and ideal executions is bounded by the
probability pbad for either of the following instantiations:

1. Let ρ :=
√

κ
h and let ∆′ := 2∆ then

pbad ≤ r · (t + 1) · n2 · e−κ· (h−2)
h . (46)

2. Let ρ := κ
h , and ∆′ := ∆ · (5 log

(
n
2κ

)
+ 2), if n

2κ > 1 then

pbad ≤ r · (t + 1) ·
(

7n log
(

n

2κ

)
e− κ

18 + e− h(κ−18)
9

)
. (47)

33

Proof. Instantiation 1 immediately follows from Theorem 3 (Instantiation 1). To derive instanti-
ation Instantiation 2 we again use Theorem 3 (Instantiation 2) and select

δ1 := δ2 := γ := 1
3 and α := 7

4 .

With these parameters we see that Equation (44) is fulfilled when κ ≥ 1. Furthermore, we see
that

pbad ≤ r · (t + 1) ·
(

n ·
(

e− κ
18 +

(
5 log

(
n

2κ

)
+ 1

)
e− 7κ

108

)
+ e− h(κ−18)

9

)
≤ r · (t + 1) ·

(
7n log

(
n

2κ

)
e− κ

18 + e− h(κ−18)
9

)
.

(48)

In Section 2.2.3 we provide Lemma 2 which shows that the number of neighbors any party
will need to send to when they send/relay a message in πERFlood(ρ) concentrates around n · ρ.
This follows from Chernoff and union-bound. Concretely, for Instantiation 1 we get that the
number of neighbors is upper-bounded by O (

√
κn) except with a negligible probability, and

for Instantiation 2 we get that the number of neighbors is upper-bounded by O (κ) except with
a negligible probability.

A note on changing from TCP to UDP. Results about Erdős–Rényi graphs can be
transferred to a setting without reliable message-transmission. Let us, instead of reliable
transmission assume that there is an independent failure probability β for each message that is
send via FMessageTransfer and ρ is an instantiation of πERFlood(ρ) that ensures a certain diameter
assuming reliable transfer. If we let ρ′ := ρ

1−β then πERFlood(ρ′) with unreliable transfer is
ensured to have the same diameter as πERFlood(ρ) with reliable transfer. This is because that the
probability for a successful propagation from party pi to pj will then be ρ′ · (1− β) = ρ, which
ensures that we in this more difficult setting inherent the original results for πERFlood(ρ).

6.3 Reducing from πERFlood to Erdős–Rényi Graphs

In this section we prove Theorem 3. Our goal is to show that the probability that a message
from πERFlood is not delivered timely, is only a small factor off from the probability that an
Erdős–Rényi graph has a large diameter. This allows us to prove bounds on the delivery time
for a message by porting results about the diameter of a Erdős–Rényi-graph and we therefore
believe that this is a technique of general interest.

We will show this by relating a series of random experiments via simulations. Our methodology
for going from one game to the next is to construct a new adversary (using the old adversary)
which has as a good a probability of attacking the game as the old one has. A depiction of this
approach can be found in Figure 3.

In Table 1, we provide an overview of the different experiments we consider and which
properties that are bounded in the game.

6.3.1 Relating Games

We now present the games and prove several lemmas about how the different games relate. The
first game we consider directly reflects an adversary’s capabilities when a message has been
input for the first time to a particular sender ps in the protocol πGossip.

34

Output

Figure 3: A depiction of the proof methodology for bounding that “something bad” happens
when Ai interacts with the oracle Oi by the probability that there exists an Aj which can make
“something bad” when interacting with Oj . The idea as that Aj runs Ai inside it self while
interacting with a simulated Oi which outputs are correlated with the outputs from the oracle
Oj .

Game FloodToER1(P, ρ,A, ps)

The game is parameterized by a set of parties P , an edge probability ρ, an adversary A and
a node that is the original sender ps. The adversary plays a game against an oracle, O1,
which we define below.
O1 maintains five sets: a set of nodes that can be removed by the adversary Killables,
a set of nodes that had their edge set revealed Revealed, a set of nodes that cannot be
removed but have not yet had their edges revealed Pending, a set of removed nodes Killed,
and a set of directed edges Edges.
Initially, Revealed := ∅, Pending := {ps}, Killables := P \ {ps}, Killed := ∅, and
Edges := ∅. The oracle accepts the following inputs from the adversary:

Reveal: On input (Reveal, pi) the oracle checks if pi ∈ Pending and otherwise ignores the
input. The oracle now continues by adding pi to Revealed and removing pi from
Pending. Furthermore, it adds an edge (pi, pj) with probability ρ to Edges for all
pj ∈ Pending∪Killables∪Revealed. Additionally, for any pj ∈ Killables it checks
if (pi, pj) ∈ Edges and if so moves pj to Pending.
Finally, the set of edges is returned to the adversary.

Kill: On input (Kill, pi), the oracle checks if pi ∈ Killables and if |Killed| < t. The
oracle then removes pi from Killables and sets Killed := Killed ∪ {pi}. If not the
input is ignored.

Inject: On input (Inject, pi, pj) the oracle checks if pi ∈ Revealed and pj ∈ Killables. If
that is the case adds an edge (pi, pj) to Edges and pj is moved to Pending. If not the
input is ignored.

Stop: When receiving (Stop) the oracle checks if Pending == ∅. If that is the case the
oracle stops the game and return G = (Revealed ∪ Killables, Edges). If not the
input is ignored.

Next, we relate this game to the execution of the actual protocol, πGossip.

Lemma 6. Let ∆, ∆′, σ ∈ N, and ρ ∈ [0, 1]. Let A be a (σ + ∆)-delayed adversary, Z an
environment, m a message that is input (either by the send command or by letting it be send
from some dishonest party) to some honest party Ps for the first time at time τ in the protocol

35

Game Description Bounded Property
πGossip The real protocol. Everybody receives a message no later

than ∆′ after it was sent.
FloodToER1 Directed graph with variable size, in-

ject of edges, a specific sender, and
early stopping.

Maximum distance from sender to any
node is less than ∆′

∆ .

FloodToER2 Undirected graph with variable size,
inject of edges, a specific sender, and
early stopping.

Maximum distance from sender to any
node is less than ∆′

∆ .

FloodToER3 Undirected graph with variable size,
inject of edges, and a specific sender.

Maximum distance from sender to any
node is less than ∆′

∆ .
FloodToER3 Undirected graph with variable size,

inject of edges, and a specific sender.
Diameter of graph is less than ∆′

∆ .

FloodToER4 Undirected graph with variable size. Any property.
FloodToER5 Undirected graph with fixed size. Monotone property.
FloodToER6 Undirected graph with fixed size that

explicitly embeds an Erdős–Rényi
graph.

Any property.

Erdős–Rényi Undirected Erdős–Rényi graph. Monotone property that is preserved
under renaming.

Table 1: Overview of the different games in our reduction in order to bound the statistical
difference between the protocol πERFlood(ρ) and the ideal functionality F∆′

Flood against a (σ + ∆)-
delayed adversary using Fσ,∆

MessageTransfer. FloodToER3 appears twice as we in separate lemmas
bound the distance from a particular sender by the diameter of the graph.

πGossip(ρ) using Fσ,∆
MessageTransfer against A and Z.

Let pbad be the probability that there exists some party at time τ + ∆′ that is honest and
have not yet received m. Furthermore let d := ∆′

∆ . There exists an adversary A′ s.t. if
GFloodToER1

$← FloodToER1(P, ρ,A′, ps) then

pbad ≤ Pr[¬ϕDist(ps, GFloodToER1 , d)]. (49)

Proof. The adversary A′ simulates the execution of πGossip(ρ) against A and Z insides its head
and monitors the execution. A′ maintains the same sets as O1 and updates them according to
the outputs of O1.

• Initially, A′ inputs (Kill, pi) for all corrupted or precorrupted parties pi ∈ Precorrupted ∪
Corrupted to the oracle.

• Whenever A inputs Precorrupt to some party pi at time τ ′ then A′ checks if m is guaranteed
to be delivered to pi before time τ ′ + ∆. If that is not the case then A′ inputs (Kill, pi) to
the oracle.

• Whenever a party pi which has not previously been removed from the graph is activated
the first time after the message is delivered in one of their inboxes, then A′ runs the
following two ordered checks:

1. If pi ∈ Killables then A′ finds the party pj in Revealed that is furthest away from
the sender ps. It then inputs (Inject, pj , pi).

36

2. If pi ∈ Pending then A′ inputs (Reveal, pi) to the oracle and receives a set of edges E.
A′ now makes pi input (Send, m) to Fσ,∆

MessageTransfer(pi, pj) for any party pj for which
there is an edge in (pi, pj) ∈ E. Additionally, for any party pj ∈ Killed, (Send, m) is
input to Fσ,∆

MessageTransfer(pi, pj) with probability ρ.

• If at any point Pending == ∅ then A′ inputs Stop to the oracle.

• At time τ + ∆′ + 1 the adversary A′ tries to finish the game by revealing all pending nodes
continuously until the set of pending nodes is empty and then it inputs Stop to the oracle.

Let GFloodToER1 = (V, E) $← FloodToER1(P, ρ,A′, ps) and let the set of nodes that are honest at
time τ + ∆′ be denoted H.

First, we observe that all inputs A obtain from A′ is distributed identically to those the
adversary would see in a real execution of the protocol. It is therefore enough to argue
that if there exists an honest party that have not received the message at time τ + ∆′ then
¬ϕDist(ps, GFloodToER1 , d).

We first observe the following invariant.

Claim 2. Let pi be a party that is added to Pending at time τ ′ then party pi will at the latest
be in Revealed at time τ ′ + ∆.

Proof. Let us look at how pi was added to Pending.
If pi = ps then the claim is trivially true as the game must have started at τ ′ and the time

won’t progress before ps is activated. Therefore A′ will also input (Reveal, ps) at time τ ′.
Otherwise pi can only be added to Pending when an edge from a party pj in the graph has

been added to the set of edges. Let us do a case distinction on how this edge was added.

(Reveal, pj): When an edge is added by a reveal command this makes pj input (Send, m) to
Fσ,∆

MessageTransfer(pi, pj) at time τ ′. However, any party which has not been removed from
the graph is not precorrupted early enough to prevent delivery the party from forwarding
the message to their neighbors, as A is (σ + ∆′)-delayed. Therefore, it is ensured that pi

at the latest will have m in its inbox at time τ ′ + ∆ which ensures that a (Reveal, pi) will
be input and pi moved to Revealed.

(Inject, pj , pi): This command only happens when pi is immediately afterwards revealed.

We now make the following claim and prove it.

Claim 3. For any r ∈ N it holds that

A) if a party pj ∈ Γr(ps) then it has at the latest been revealed at time τ + r ·∆;

B) and if the game has not stopped at time τ ′ := τ + r ·∆ then there exists some party pj

which has been revealed before or at τ ′ and is at least r distance away from the sender, i.e.,
pj ̸∈ Γr−1(ps). 3

Proof. We prove this by induction in r. For r = 0 we have that Γ0(ps) = {ps}, and that ps is
revealed at time τ by definition which ensures both Claims A) and B).

Let us now assume that the claim holds for r and let us prove that it also holds for r + 1.
Let us first prove Claim B). By the induction hypothesis we know that there exists a party pi

that has been revealed before or at time τ + r ·∆ and pi ̸∈ Γr−1(ps). The induction hypothesis
also gives us that all parties in Γr(ps) have been revealed before or at time τ + r ·∆. Therefore

3We define Γ−1(pi) := ∅ for any pi.

37

any party that is revealed in the time-span (τ + r · ∆; τ + (r + 1) · ∆] cannot be in Γr(ps),
and it suffices to show that some party is revealed in the time-span. Assume for the sake of
contradiction that no party has been revealed in the time-span (τ + r ·∆; τ + (r + 1) ·∆], this
implies that either Pending = ∅ for the time-span which would make A′ stop the game and we
are done, or there is some party pj ∈ Pending at time τ + r ·∆. However, Claim 2 guarantees
that this party is revealed before or at time τ + (r + 1) ·∆, which proves the claim.

We now turn our attention to prove Claim A) for the induction case. Let pi ∈ Γr+1(ps) and
let us consider two cases:

pi ∈ Γr(ps): For this case the induction hypothesis gives us that pi was revealed before τ + r ·∆.
As this is certainly also before τ + (r + 1) ·∆, we are done.

pi ∈ Γr+1(ps) \ Γr(ps): There must exist some party pj ∈ Γr s.t. (pj , pi) ∈ E. This edge may
have been added by A′ having issued one of following two commands:

(Reveal, pj): As pj ∈ Γr the induction hypothesis ensures that this command is issued
before or at time τ + r ·∆. Moreover, note that this implies that pi ∈ Pending at time
τ + r ·∆. Claim 2 therefore ensures that pi is revealed not later than τ + (r + 1) ·∆.

(Inject, pj , pi): As A′ always follows an inject up with a reveal, we are done if the inject
happens before or at τ + (r + 1) · ∆. If the inject happens after that time then
Claim B)4 ensures that there exists some party pv that has been revealed and is not
in Γr−1(ps). However, A′ only issues (Inject, pj , pi) when pj is the party furthest away
from the sender. Therefore we can also conclude that pj ̸∈ Γr−1(ps) and therefore
party pi cannot be in Γr(ps) which is a contradiction to our original assumption.

Let pi be an honest party that have not received the message at time τ + ∆′ in the simulated
execution. First, we observe that H ⊆ V, as only precorrupted nodes are ever killed. Hence,
pi ∈ V . It therefore suffices to show that pi ̸∈ Γd(ps) to show ¬ϕDist(ps, GFloodToER1 , d). We now
make a case distinction on whether or not pi has been revealed by A′.

pi ∈ Revealed: It must be that pi ∈ Killables when A′ gave the input Stop to the oracle.
Furthermore, only parties that have no incoming edges can be in Killables, as whenever
an edge is added to a killable party, this party will be moved to Pending by the oracle.
Therefore pi ̸∈ Γd(ps).

pi ∈ Revealed: The time that pi was revealed must be τ + ∆′ + 1. The reason is that before this
time parties are only revealed by A′ when they actually got m in their inbox in the protocol
which would contradict the assumption that the delivery guarantee was violated for pi.
However, Claim 3 A) ensures that any party in Γd(ps) must have been revealed before
time τ + d ·∆. To show that pi ̸∈ Γd(ps) it is therefore suffices to show that ∆′ + 1 ≥ d ·∆.
However, d ·∆ = ∆′

∆ ·∆ = ∆′ and the inequality is therefore trivially satisfied by definition
of d.

Next, we present a undirected version of the same game but where edges are only added to
all parties that have not been revealed before. Furthermore, an adversary has the possibility of
revealing any node and not just those that have an edge to them in this game.

4Note that the argument is not cyclic as the proof of Claim B) does not rely on Claim A).

38

Game FloodToER2(P, ρ,A, ps)

The game is parameterized by a set of parties P , an edge probability ρ, an adversary A and
a node that is the original sender ps. The adversary plays a game against an oracle, O2
which we define below.
O2 maintains five sets: a set of nodes that can be removed by the adversary Killables,
a set of nodes that had their edge set revealed Revealed, a set of nodes that cannot be
removed but have not yet had their edges revealed Pending, a set of removed nodes Killed,
and a set of undirected edges Edges.
Initially, Revealed := ∅, Pending := {ps}, Killables := P \ {ps}, Killed := ∅, and
Edges := ∅. The oracle accepts the following inputs from the adversary:

Reveal: On input (Reveal, pi) the oracle checks if pi ∈ Pending ∪ Killables and otherwise
ignores the input. The oracle now continues by adding pi to Revealed and removes pi

from Pending or Killables (depending on where it originally was). Furthermore, it
adds an edge {pi, pj} with probability ρ to Edges for all pj ∈ Pending ∪ Killables.
Additionally, for any pj ∈ Killables it checks if {pi, pj} ∈ Edges and if so moves pj

to Pending.
Finally, the set of edges is returned to the adversary.

Kill: On input (Kill, pi), the oracle checks if pi ∈ Killables and if |Killed| ≤ t. The
oracle then removes pi from Killables and sets Killed := Killed ∪ {pi}. If not the
input is ignored.

Inject: On input (Inject, pi, pj) the oracle checks if pi ∈ Revealed and pj ∈ Killables. If
that is the case adds an edge {pi, pj} to Edges and then pj is moved to Pending. If
not the input is ignored.

Stop: When receiving (Stop) the oracle checks if Pending == ∅. If that is the case the
oracle stops the game and returns G = (Revealed ∪ Killables, Edges). If not the
input is ignored.

We now relate FloodToER1 to FloodToER2 via a simulation argument.

Lemma 7. Let A be an adversary, ps ∈ P, d ∈ N and ρ ∈ [0, 1]. Furthermore let
GFloodToER1

$← FloodToER1(P, ρ,A, ps). There exists an adversary A′ s.t. if GFloodToER2
$←

FloodToER2(P, ρ,A′, ps) then

Pr[¬ϕDist(ps, GFloodToER1 , d)] ≤ Pr[¬ϕDist(ps, GFloodToER2 , d)]. (50)

Proof. Again we define A′ in terms of A by letting A′ play the role of an oracle when interacting
with A. We let Revealed2, Pending2, Killables2, Killed2 and Edges2 be the sets maintained
by O2, and let A′ maintain similar sets indexed with 1 which will be presented to A similar to
the sets the oracle O1 in FloodToER1 presents to A.

The adversary additionally maintains a set HiddenEdges which will be a set of edges that
have been constructed in the game FloodToER2 but not yet revealed to A, and a map, Flipped :
P × P → B, that keeps track of which edges that has already been added with probability
ρ. Initially, Revealed1 := ∅, Pending1 := {ps}, Killables1 := P \ {ps}, Killed1 := ∅,
HiddenEdges = ∅ and Flipped the empty map. Furthermore, we let Γ1 be the neighborhood
function for GFloodToER1 , and let Γ2 be the neighborhood function for GFloodToER2 . Similar we

39

subscript the distance function with either 1 or 2 to indicate which graph the function calculates
the distance on.

• On input (Reveal, pi) from A the adversary makes a set ETmp := ∅ and does the following:

1. For pj ∈ Pending the adversary checks if the distance dist2(ps, pi) changes if the
edge {pi, pj} was added to Edges2. If so it sets Flipped(pj , pi) := ⊤ and otherwise
Flipped(pj , pi) := ⊥.

2. For pj ∈ Pending, if Flipped(pj , pi) the adversary A′ sets ETmp := ETmp ∪ {(pi, pj)}
with probability ρ.

3. A′ forwards (Reveal, pi) to the oracle of FloodToER2. Let E be the set of edges that
are returned on that request. Now, for every new edge, {pi, pj} ∈ E, the adversary
does the following:

– If Flipped(pj , pi) then HiddenEdges := HiddenEdges ∪ {(pj , pi)}.
– Else the adversary adds an edge (pi, pj) to ETmp.

4. The adversary A′ sets ETmp := ETmp ∪ {(pi, pj) | pj ∈ P ∧ (pi, pj) ∈ HiddenEdges}.
5. Now, for all pj ∈ Revealed where ¬Flipped(pi, pj) an edge (pi, pj) is added to ETmp

with probability ρ.
6. Finally, Edges1 := Edges1 ∪ ETmp, the sets maintained by A′ are updated similarly

to how the oracle in FloodToER1 would have updated them, and the set Edges1 is
returned to A.

• On input (Inject, pi, pj) the adversary forwards the request to the oracle. If the oracle adds
an edge {pi, pj} to Edges2, then the adversary A′ adds an edge (pi, pj) to Edges1.

• All other inputs are forwarded directly to the oracle, and A′ updates the sets accordingly.

Let us first prove that all inputs A obtain from A′ is distributed identically to those the
adversary would see when interacting with the oracle from game FloodToER1. We state this in
the claim below.

Claim 4. Let c be the number of commands executed by A′ and let any set with superscript c
denote the set after having executed the c’th command. For any c ∈ N we have that Revealedc

1 =
Revealedc

2, Pendingc
1 = Pendingc

2, Killablesc
1 = Killablesc

2, and Killedc
1 = Killedc

2. More-
over, the output A receives after inputting the c’th command to A′ is identically distributed to
the output A would have received when inputting the same c commands to FloodToER1.

Proof. We prove this by induction in the number of commands. For the base case c = 0 we see
that Pending0

1 = Pending0
2 = {ps}, Killables0

1 = Killables0
2 = P \ {ps}, and all other sets

are empty.
Let us now assume that the statement holds after having executed c′ commands and show

that it also holds after having executed c = c′ + 1 commands. We do a case distinction based on
the command given by A:

(Reveal, pi): The adversary, A expects that for any pj ∈ Revealedc′
1 ∪ Pendingc′

1 ∪ Killablesc′
1

the probability to see (pi, pj) should be ρ. We again analyse this case-wise based upon
which set pj was in just before command number c was executed:

pj ∈ Killablesc′
1 : As sets are synchronized we have that pj ∈ Killablesc′

2 . The oracle
therefore returns an edge {pi, pj} with probability ρ. If such an edge is returned by
the oracle, the edge never changes the distance to party pj as this is the first edge
ever added to it, and therefore A′ directly adds an edge (pi, pj) to Edges1.

40

pj ∈ Pendingc′
1 : Let us calculate the probability to see (pi, pj) ∈ ETmp just before Edges1

is returned to A. By the law of total probabilities for conditional events we have that

Pr[(pi, pj) ∈ ETmp]
= Pr[(pi, pj) ∈ ETmp | Flipped(pj , pi)] · Pr[Flipped(pj , pi)]

+ Pr[(pi, pj) ∈ ETmp | ¬Flipped(pj , pi)] · Pr[¬Flipped(pj , pi)].
(51)

Let E be the set of edges returned by the oracle in FloodToER2. For any pj ∈ Pending
with Flipped(pj , pi) the adversary A′ adds an edge (pi, pj) to ETmp with probability
ρ. If ¬Flipped(pj , pi) then (pi, pj) ∈ ETmp if and only if E. Therefore we have that

Pr[(pi, pj) ∈ ETmp | Flipped(pj , pi)]
= Pr[(pi, pj) ∈ ETmp | ¬Flipped(pj , pi)]
= Pr[(pi, pj) ∈ E]
= ρ.

(52)

Furthermore, as Pr[Flipped(pj , pi)] + Pr[¬Flipped(pj , pi)] = 1 we can conclude that
the probability to see (pi, pj) in the outputted edges is ρ.

pj ∈ Revealedc′
1 : This implies that there previously has been a command (Reveal, pj) that

was input by A. When this command was input was the only time Flipped(pj , pi)
was changed. Let us calculate the probability to see (pi, pj) ∈ ETmp just before Edges1
is returned to A. By the law of total probabilities for conditional events we have that

Pr[(pi, pj) ∈ ETmp]
= Pr[(pi, pj) ∈ ETmp | Flipped(pj , pi)] · Pr[Flipped(pj , pi)]

+ Pr[(pi, pj) ∈ ETmp | ¬Flipped(pj , pi)] · Pr[¬Flipped(pj , pi)].
(53)

If Flipped(pj , pi) then an edge (pi, pj) was added to HiddenEdges with probability
ρ when (Reveal, pj) was given as input. Such an edge always end in ETmp. On the
other hand, if ¬Flipped(pj , pi) then an edge (pi, pj) is directly added to ETmp with
probability ρ by A′. Hence,

Pr[(pi, pj) ∈ ETmp | Flipped(pj , pi)]
= Pr[(pi, pj) ∈ ETmp | ¬Flipped(pj , pi)]
= ρ.

(54)

Furthermore, as Pr[Flipped(pj , pi)] + Pr[¬Flipped(pj , pi)] = 1 we can conclude that
the probability to see (pi, pj) in the outputted edges is ρ.

(Kill, pi): As the sets are in synchrony for c′ commands any kill command that would be valid in
FloodToER1 is also valid in FloodToER2. Therefore the sets stay synchronized.

(Inject, pi, pj): As the sets are in synchrony for c′ commands any inject command that would be
valid in FloodToER1 is also valid in FloodToER2. Therefore the sets stay synchronized.

(Stop): This command doesn’t change any of the involved sets.

41

Given the above claim it suffices to show that ¬ϕDist(ps, GFloodToER1 , d) implies
¬ϕDist(ps, GFloodToER2 , d). To show this we let GFloodToER1 = (V1, E1) and let GFloodToER2 =
(V2, E2).

Now, let pi ∈ V1 s.t. pi ̸∈ Γd
1(ps) and let us show that pi ∈ V2 and pi ̸∈ Γd

2(ps). First, we
observe that V1 = V2 as we at all times have that all sets are kept synchronized. This ensures
that Pi ∈ V2. What is left is thus only to show that pi ̸∈ Γd

2(ps). We show the lemma below.

Claim 5. For any k ∈ N we have that Γk
2(ps) ⊆ Γk

1(ps).

Proof. We proceed by induction in k. For the base case, k = 0, we have that Γ0
1(ps) = Γ0

2(ps) =
{ps}. For the induction case, k = k′ + 1, let pi be party in Γk

2(ps). We do a case distinction:

pi ∈ Γk−1
2 (ps): By the induction hypothesis we have that pi ∈ Γk−1

1 . By definition we furthermore
have Γk−1

1 ⊆ Γk
1 which concludes the case.

pi ∈ Γk
2(ps) \ Γk−1

2 (ps): There must exists some party pj ∈ Γk−1
2 (ps) where {pj , pi} ∈ Edges2

was the first edge that made pi ∈ Γk
2(ps). Now note that by the induction hypothesis we

have pj ∈ Γk−1
1 (ps). Let us distinguish on how this edge was added to Edges2:

(Reveal, pi): We note that if {pj , pi} was added to Edges2 with this command, then pj ∈
Pending2 when the command was executed. We note that if {pi, pj} changes the
distance from the sender to pi, then it is saved in HiddenEdges as the directed edge
(pj , pi). Later when pj is revealed (which it must necessarily be at some point before
the game is stopped) then we get that (pj , pi) ∈ Edges1 and therefore that pj ∈ Γk

1(ps).
(Reveal, pj): If the edge was added by this command then as it was the first edge that made

pi ∈ Γk
2(ps) this cannot have changed the distance of pj , and therefore it must be that

¬Flipped(pi, pj). Therefore the edge (pj , pi) is also added to Edges1 and again we
get that pj ∈ Γk

1(ps) by the induction hypothesis.
(Inject, pj , pi): This implies that A′ adds (pj , pi) to Edges1, which by the induction hypoth-

esis implies that pj ∈ Γk
1(ps).

(Inject, pi, pj): This command is only valid if pj is in Killables2. However, any party that
is killable has no edges going to it. Therefore this contradicts that this is the first
edge that was revealed that made pi ∈ Γk

2(ps).

Now assume for the sake of contradiction that pi ∈ Γd
2(ps). Claim 5 implies that pi ∈ Γd

1(ps)
which contradicts with the original assumption which was that pi ̸∈ Γd

1(ps).

Next, we present a version of the game which cannot be stopped before all notes are either
revealed or killed.

Game FloodToER3(P, ρ,A, ps)

The game is identical to FloodToER2(P, ρ,A, ps) except that the oracle in this game ignores
any (Stop) inputs from the adversary. All other inputs are treated identically to how the
oracle from FloodToER2(P, ρ,A, ps) treats them.
When Killables ∪ Pending = ∅ the game ends by the oracle returning G =
(Revealed, Edges).

42

Lemma 8. Let A be an adversary, ps ∈ P, d ∈ N and ρ ∈ [0, 1]. Furthermore let
GFloodToER2

$← FloodToER2(P, ρ,A, ps). There exists an adversary A′ s.t. if GFloodToER3
$←

FloodToER3(P, ρ,A′, ps) then

Pr[¬ϕDist(ps, GFloodToER2 , d)] ≤ Pr[¬ϕDist(ps, GFloodToER3 , d)]. (55)

Proof. We define A′ in terms of A by letting A′ play the role of an oracle when interacting with
A.

• On input (Stop), A′ checks if this stop command would make the oracle from
FloodToER2(P, ρ,A, ps) end the game (i.e., if Pending == ∅). If that is the case the
adversary inputs (Reveal, pi) for any party pi that was in Killables at that time. Otherwise
the input is ignored.

• All other inputs and responses are forwarded directly between A and the oracle.

First, we observe that all inputs A receives from A′ are distributed identically to those that
the adversary would expect to see from the oracle in FloodToER2(P, ρ,A, ps). It therefore
suffices to show that ¬ϕDist(ps, GFloodToER2 , d) implies ¬ϕDist(ps, GFloodToER3 , d). We make a case
distinction based on if there has been any (Stop) input from A that is not ignored by A′ before
FloodToER3(P, ρ,A, ps) ends. If no such input is given we have that GFloodToER2 = GFloodToER3

and we are done.
If there is a (Stop) input from A that is not ignored by A′ before FloodToER3(P, ρ,A, ps)

ends, then there must have been a point in time, τ , where Pending = ∅ and Killables ̸= ∅.
Let Revealedτ denote the set of revealed parties at this time and Killablesτ denote the set
of killable nodes at the time. There will not be any edges between any pi ∈ Revealedτ and
any party pj ∈ Killablesτ as the oracle does not add edges to parties that have already been
revealed. As Killablesτ ≠ ∅ there exists some party pi ∈ Killablesτ which will be a party
of the final graph. The party ps must however be in Revealedτ as it is initially pending and
Pendingτ = ∅. This allows us to conclude that dist(ps, pk) =∞ which concludes the proof.

That the distance from a specific node is less than some distance, d, is a strictly weaker
property than the diameter of a graph being less than d. The below lemma follows immediately.

Lemma 9. Let A be an adversary, ps ∈ P, d ∈ N, ρ ∈ [0, 1], and let GFloodToER3
$←

FloodToER3(P, ρ,A, ps). We have that

Pr[¬ϕDist(ps, GFloodToER3 , d)] ≤ Pr[¬ϕDiam(GFloodToER3 , d)]. (56)

Next, we present a version of the game where there are no specific node that starts being
pending and the adversary can no longer inject additional edges to the graph.

Game FloodToER4(P, ρ,A)

The game is identical to FloodToER3 except two things:

• Initially, Pending := ∅ and Killables := P.

• The oracle ignores any (Inject, pi, pj) inputs from the adversary.

All other inputs are treated identically to how the oracle from FloodToER3 treats them.

Before relating FloodToER4(P, ρ,A) to FloodToER3(P, ρ,A, ps) we define a special kind of
graph properties called monotone properties.

43

Definition 12 (Monotone graph property). Let G = (V, E) be a graph and ϕ be a property.
We say that a property is monotone if for any additional set of edges A ⊆ V × V we have that

ϕ(G) =⇒ ϕ(V, E ∪A).

Lemma 10. Let A be an adversary, ps ∈ P, d ∈ N, ρ ∈ [0, 1], and let ϕ be a monotone graph
property. Furthermore let GFloodToER3

$← FloodToER3(P, ρ,A, ps). There exists an adversary A′

s.t. if GFloodToER4
$← FloodToER4(P, ρ,A′) then

Pr[¬ϕ(GFloodToER3)] ≤ Pr[¬ϕ(GFloodToER4)]. (57)

Proof. We define A′ in terms of A by letting A′ play the role of an oracle when interacting
with A. We let Revealed4, Pending4, Killables4, Killed4 and Edges4 be the sets maintained
by the oracle in game FloodToER4, and let A′ maintain similar sets indexed with 3 which
will be presented to A similar to the sets the oracle in FloodToER3 presents to A. Initially
Pending3 := {ps} and Killables3 = P \ {ps}.

• On input (Inject, pi, pj), A′ checks if pi ∈ Revealed3 and pj ∈ Killables3. If that is the
case the adversary adds {pi, pj} to Edges3 and moves pj to Pending3. Otherwise the input
is ignored.

• All other inputs are checked if they should be ignored with the sets indexed by 3 that are
maintained by A′ (using the rules the oracle uses in FloodToER3). If they should not be
ignored by these rules, then inputs and responses are forwarded directly between A and
the oracle.

We observe that all inputs A receives from A′ are distributed identically to those that the
adversary would expect to see from the oracle in FloodToER3(P, ρ,A, ps). We have this because
at any time during the execution we have that Killables3 ⊆ Killables4 and therefore any
input that passes the check from the A′ is a valid input to FloodToER4.

Moreover, we have that Edges4 ⊆ Edges3. Therefore if ϕ(GFloodToER4) then, as ϕ is monotone,
ϕ(GFloodToER3).

The game FloodToER4(P, ρ,A) has the property that the probability that any two nodes
will have an edge between them given that they are in the final graph returned by the game is
more than or equal to ρ. This is however not sufficient to be able to reduce the game to the
Erdős–Rényi setting. The reason is that the adversary is able to dynamically choose the size of
the graph. A hypothetical example where this is useful is in a situation where all but two nodes
have been revealed and the remaining two nodes are killable. If the adversary’s goal is to obtain
a graph with an isolated node it is definitely a better strategy to kill one and reveal the other
compared to revealing/killing both.

To bound this advantage we define an additional random experiment, which fixes the size of
the random graph a priori and in particular without influence of the adversary.

Game FloodToER5(P, ρ,A)

The game is identical to FloodToER4 except two things:

• Initially, the oracle makes a uniform guess on the size of the final graph, s
$←

U({h, . . . , n})a.

• If at any point in time either |Revealed|+ |Pending| > s or n− |Killed| < s, then

44

the oracle sets Revealed := {p1, . . . , ps} and Edges := Revealed× Revealed before
immediately ending the game by outputting G = (Revealed, Edges).b

All other behavior is identical to the oracle from FloodToER4.
aU(S) denotes the uniform distribution on a set S.
bIf the game ends by this rule we say that the game ended by quick quit.

In this game it is worth noticing that the game can only terminate by quick quit if the guess
the oracle did on the size was incorrect. If the guess on the final size of the graph was too low
quick quit can be activated by the adversary directly revealing a node or by revealing a node
which creates edges to a node that should be in the final kill set and cannot be moved away
from there. If the guess on the final size of the graph was too high quick quit happens by the
adversary trying to kill a party which cannot be swapped with any party in the final kill set.

Lemma 11. Let ϕ be a graph property. For any adversary A, let GFloodToER4
$←

FloodToER4(P, ρ,A), and let GFloodToER5
$← FloodToER5(P, ρ,A). We have that

Pr[ϕ(GFloodToER4)] ≤ Pr[ϕ(GFloodToER5)] · (t + 1). (58)

Proof. Let O4 and O5 be the oracles from the respective games.
The core idea of the proof is now to observe that given that O5 by luck did a good guess on

the final size of the kill set, then the random experiments have equal distributions, and that the
adversary cannot influence whether or not the guess is correct.

Formally, we let GG (abbreviating “good guess”) be the event that O5 did not terminate by
quick quit (corresponding to that the guess on the final size of the graph was “correct”). By the
law of total probabilities we have

Pr[ϕ(GFloodToER5)] = Pr[ϕ(GFloodToER5) | GG] · Pr[GG] + Pr[ϕ(GFloodToER5) | ¬GG] · Pr[¬GG]
≥ Pr[ϕ(GFloodToER5) | GG] · Pr[GG].

(59)

We now note that the adversary cannot influence the probability that a guess is correct, as the
behavior of O5 is exactly equal to the behavior of O4 until the game terminates. When this
happens it is anyway to late for the adversary to influence. Therefore, as O5’s guess on the size
of the final kill set is picked uniformly at random, the probability to see GG is

Pr[GG] = (t + 1)−1. (60)

By Equations (59) and (60) it is sufficient to show that

Pr[ϕ(GFloodToER5) | GG] = Pr[ϕ(GFloodToER4)]. (61)

Now note that if GG then the outputs that O5 provides to A are distributed exactly as the
outputs of O4. Therefore the adversary’s inputs must be identically distributed as well.

Game FloodToER6(P, ρ,A)

The game is parameterized by a set of parties P, an edge probability ρ, and an adversary
A. The adversary plays a game against an oracle which we define below.
The oracle maintains five sets: a set of nodes that can be removed by the adversary

45

Killables, a set of nodes that had their edge set revealed Revealed, a set of nodes that
cannot be removed but have not yet had their edges revealed Pending, a set of removed
nodes Killed, and a set of undirected edges Edges.
Before the game starts the oracle makes a uniform guess on the size of the final graph,
s

$← U({h, . . . , n}), and then samples a graph Gs = (V, E) $← G(s, ρ).
Initially, Revealed := ∅, Pending := ∅, Killables := P, Killed := ∅, Edges := ∅. Addi-
tionally, the oracle maintains a map Naming : P → {1, . . . , s} and a set of available names
AvailableNames. The map starts out being empty and AvailableNames := {1, . . . , s}.
The oracle accepts the following inputs from the adversary:

Reveal: On input (Reveal, pi) the oracle checks if pi ∈ Pending ∪ Killables and otherwise
ignores the input. If pi ∈ Pending ∪ Killables then the oracle does the following:

1. If pi ∈ Killables then the oracle samples η
$← U(AvailableNames), sets

Naming[pi] := η, and sets AvailableNames := AvailableNames \ {η}.
2. The oracle now continues by adding pi to Revealed and removes pi from Pending

or Killables (depending on where it originally was).
3. Now, for any e ∈ {{Naming[pi], j} ∈ E | j ∈ {1, . . . , s}} let e = {Naming[pi], j}

for some j and do the following:

(a) If Naming−1[j] == ⊥ then the oracle samples p
$← U(Killables), sets

Naming[p] := j, and sets AvailableNames := AvailableNames \ {j}, and
moves p from Killables to Pending.

(b) Set Edges := Edges ∪ {{pi, Naming−1[j]}}.
4. Now for each {1, . . . , n−s−|Killed|} the oracle flips a coin that comes out head

with probability ρ. If head, then the oracle samples a party p
$← U(Killables)

and a name η
$← U(AvailableNames), removes η from AvailableNames, updates

the naming Naming[p] := η, moves p from Killables to Pending and adds an
edge {pi, p} to Edges.

5. Finally, the set of edges is returned to the adversary.

Kill: On input (Kill, pi), the oracle checks if pi ∈ Killables and if |Killed| ≤ t. The
oracle then removes pi from Killables and sets Killed := Killed ∪ {pi}. If not the
input is ignored.

If at any point in time either |Revealed|+ |Pending| > s or n− |Killed| < s or the oracle
tries to make a draw from an empty set, then the oracle sets Revealed := {p1, . . . , ps}
and Edges := Revealed × Revealed before immediately ending the game by outputting
G = (Revealed, Edges).
When Killables ∪ Pending = ∅ the game ends by the oracle returning G =
(Revealed, Edges).

Lemma 12. Let ρ ∈ [0, 1]. For any adversary A,

FloodToER5(P, ρ,A) ≈ FloodToER6(P, ρ,A). (62)

Proof. Let O5 be the oracle from FloodToER5 and let O6 be the oracle from FloodToER6. We let
Revealed5, Pending5, Killables5, Killed5 and Edges5 be the sets maintained by the O5, and

46

let similarly named sets indexed with 6 be the one maintained by O6. Moreover, let G = (V, E)
be the Erdős–Rényi graph that O6 holds. Let c be the number of commands input by A and let
any set with superscript c denote the set after having executed the c’th command.

We now state and prove two claims that are needed for the main result.

Claim 6. For any c ∈ N if O6 did not stop early we have that ∀pi ∈ Pendingc
6 ∪

Revealedc
6, Namingc[pi] ∈ V.

Proof. The claim follows by induction in c as each time a party is moved from Killables6 to
Revealed6 a name is assigned to the party and each time a party is moved from Killables to
Pending it is also assigned a name.

Claim 7. For any c ∈ N if O6 did not stop early we have that |AvailableNamesc| = s −
(|Pendingc

6|+ |Revealedc
6|).

Proof. We do induction in c. For the base case c = 0 we have that

|AvailableNames0| = |{1, . . . , s}| = s. (63)

We now argue about the induction case c = c′ + 1. As (Kill, pi) inputs doesn’t change any of the
sets, it is sufficient to argue about the case where the c’th command is of the form (Reveal, pi). If
pi ̸∈ Pendingc′

6 ∪ Killablesc′
6 the command is ignored and none of the sets changes. We do a

case distinction on the remaining two possibilities:

pi ∈ Pendingc′
6 : First pi is moved from pending parties to revealed parties which does not change

the invariant. Afterwards for each party pj that is moved from killable parties to pending
parties a name is also removed from the available names and thus maintains the invariant.

pi ∈ Killablesc′
6 : First pi is assigned a name (which decreases the number of available names)

and next it is moved from killables to revealed parties. This maintains the invariant. The
remaining operations are similar to the case pi ∈ Pendingc′

6 .

Claim 8. For any c ∈ N we have that if neither O5 nor O6 stopped early, then Revealedc
1 =

Revealedc
2, Pendingc

1 = Pendingc
2, Killablesc

1 = Killablesc
2, and Killedc

1 = Killedc
2. More-

over, the output A receives in the two games are identically distributed.

Proof. We do induction in the number of commands. For the base case, c = 0, the claim is
trivially true as all sets are initialised to be the same. Let us now assume the claim holds for
c′ ∈ N and let us show that it holds for c = c′ + 1. If the command input is (Kill, pi) then the
claim follows by the induction hypothesis. It is therefore sufficient to look at the case when
(Reveal, pi) is input. Furthermore, as sets are updated identically based upon the output of the
command for both oracles it is sufficient to argue about the output distribution of the edges.
We do a case distinction based upon where pi is located before the command is executed:

pi ∈ Revealedc′
5 : By the induction hypothesis we have that pi ∈ Revealedc′

6 and therefore O5
and O6 both ignore the command.

pi ∈ Pendingc′
5 : By the induction hypothesis we have that pi ∈ Pendingc′

6 . O5 adds an edge with
probability ρ to all parties in Pendingc′

5 ∪ Killablesc′
5 \ {pi} and moves all parties that

had an edge added to it to Pendingc
5. Let us now argue that O6 does the same. We let

pj ∈ Pendingc′
5 ∪ Killablesc′

5 \ {pi} and do a case distinction to show that Pr[{pi, pj} ∈
Edgesc

6] = ρ.

47

pj ∈ Pendingc′
5 : By the induction hypothesis we have that pj ∈ Pendingc′

6 . Furthermore,
Claim 6 ensures that Naming[pj] ∈ V. As G is an Erdős–Rényi graph there is a
probability of ρ that {Naming[pi], Naming[pj]} ∈ E and if it is the case it then {pi, pj}
will be added to Edgesc

6.
pj ∈ Killablesc′

5 : By the induction hypothesis we have that pj ∈ Killablesc′
6 . There

are two different possibilities for an edge {pi, pj} to be added to Edges. It can
either be added based upon the edges from the underlying Erdős–Rényi graph that
goes to a node that have not yet had assigned an edge, or it can be added by the
additional flips made afterwards. For any node v ∈ AvailableNames (which is exactly
those that have not yet have a name assigned), we see that there is a probability
of Pr[Naming[pi], v] = ρ. If this edge exists v is uniformly assigned to a node from
Killablesc′

6 and Killables6 is updated. With the additional n− s− |Killedc′
6 | coin

flips for extra edges that are mapped in the same way afterwards, we have in total
|AvailableNames|+ (n− s− |Killedc′

6 |) such random variables that might result in
an edge {pi, pj}. By Claim 7 we have that

|AvailableNames|+ (n− s− |Killedc′
6 |)

= s− (|Revealedc′
6 + |Pendingc′

6 ||) + n + s− |Killedc′
6 |

= n− |Revealedc′
6 | − |Pendingc′

6 | − |Killedc′
6 |

= |Killablesc′
6 |.

(64)

As there are exactly |Killablesc′
6 | such random draws and for any outcome of the

draws a uniform bijective mapping is constructed into Killablesc′
6 we can conclude

that Pr[{pi, pj} ∈ Edgesc
6] = ρ.

pi ∈ Killablesc′
5 : Follows by a similar argument to the case pi ∈ Pendingc′

5 .

pi ∈ Killedc′
5 : By the induction hypothesis we have that pi ∈ Killedc′

6 and therefore O5 and
O6 both ignore the command.

Claim 8 ensures that the outputs of the two oracles are synchronized until one of them stops
early. If neither stops we are done. It is therefore sufficient to argue that O5 only stops early if
and only if O6 stops early. However, as the sets are synchronized until one stops (Claim 8) and
O6 rules for early stopping is a super set of the rules O5 has for early stopping, it is sufficient to
argue that if O6 stops by any of the additional stopping rules then it would anyway stop by one
of the other rules (and thereby O5 would also stop).

By Claim 7 the set of available names is only empty when |Revealed6| + |Pending6| = s,
and therefore O6 only tries to draw a name from the empty set if it would anyway right after
have that |Revealed6|+ |Pending6| > s.

Let us now argue that O6 only makes a draw from an empty set of killables if n−|Killed6| < s.
Let us assume that Killables = ∅ and n− |Killed6| ≥ s. We have that:

n− |Killed6|
= |Revealed6|+ |Pending6|+ |Killables6|+ |Killed6| − |Killed6|
= |Revealed6|+ |Pending6|.

(65)

However, as Naming is injective, we have by Claim 6 that |Revealed6|+ |Pending6| ≤ s which
combined with our assumption gives us that |Revealed6|+ |Pending6| = s. Moreover, as Naming

48

is injective there cannot be any nodes j ∈ V for which Naming−1 == ⊥ and therefore there are no
draws from Killables when O6 samples edges from E. Finally, we have that n−s−|Killed| = 0
so the oracle does not flip any additional coins, which ensures that there are no draws from
Killables6.

Let us now relate the probability that an adversary can produce a graph with an undesirable
property in the FloodToER6-game to the probability that an Erdős–Rényi graph has the property.
This is however only true for a restricted class of properties which we define below.

Definition 13 (Properties preserved under renaming of nodes). Let G = (V, E) be a graph.
We say that ϕ is preserved under renaming of nodes if for any injective function, r : V → V ′, we
have that

ϕ(G) =⇒ ϕ(({r(v) | v ∈ V}, {{r(v), r(u)} | {v, u} ∈ E})).

Lemma 13. Let ϕ be a monotone graph property that is preserved under renaming and let
Gs

$← G(s, ρ) for any s ∈ N. For any adversary A let GFloodToER6
$← FloodToER6(P, ρ,A) then

Pr[¬ϕ(GFloodToER6)] ≤ max
s∈{h,...,n}

Pr[¬ϕ(Gs)]. (66)

Proof. Let G = (V, E) $← FloodToER6(P, ρ,A). By law of total probabilities we have

Pr[¬ϕ(G)] =
n∑

s=h

Pr[¬ϕ(G) | s = |G|] · Pr[s = |G|]

≤
(

max
s∈{h,...,n}

Pr[¬ϕ(G) | s = |G|]
)
·

n∑
s=h

Pr[s = |G|]

= max
s∈{h,...,n}

Pr[¬ϕ(G) | s = |G|].

(67)

Let s0 := argmaxs∈{h,...,n} Pr[¬ϕ(G) | s = |G|]. As

max
s∈{h,...,n}

Pr[¬ϕ(Gs)] ≥ Pr[¬ϕ(Gs0)], (68)

it suffices to show that
Pr[¬ϕ(Gs0)] ≥ Pr[¬ϕ(G) | s0 = |G|]. (69)

As Pr[¬ϕ(Gs0)] = 1− Pr[ϕ(Gs0)] and Pr[¬ϕ(G) | s0 = |G|] = 1− Pr[ϕ(G) | s0 = |G|] it suffices
to show:

Pr[ϕ(Gs0)] ≤ Pr[ϕ(G) | s0 = |G|]. (70)

Let G′ = (V ′, E′) be the Erdős–Rényi graph held internally by the oracle in FloodToER6.
Clearly, Pr[ϕ(Gs0)] = Pr[ϕ(G′) | s0 = |G|], as then Gs0 are actually drawn from the same
distribution. It is therefore sufficient to show that ϕ(G′) =⇒ ϕ(G).

WLOG assume that there is some graph of size s0 that has the property (otherwise Equa-
tion (70) is trivially fulfilled as both sides are equal to 0). Therefore, if the game ended early
then ϕ(G) as the full graph is returned. Otherwise, if the game did not end early then let
G′′ = (V ′′, E′′) = (Naming−1(V), Naming−1(E)). As ϕ is preserved under renaming we have that
ϕ(G′′). Furthermore, V ′′ = V and E′′ ⊆ E, which ensures ϕ(G) (as ϕ is monotone).

49

6.3.2 Proving πGossip Secure

We are now finally ready to prove our main result.

Theorem 3. Let ∆ ∈ N be any delay, let σ ∈ N, let t < n be the maximum number of parties
an adversary can corrupt, and let κ ∈ R be the security parameter. The protocol πERFlood(ρ)
securely implements F∆′

Flood against a (σ + ∆)-delayed adversary using Fσ,∆
MessageTransfer. More

precisely when r is an upper bound on the number of different messages input (either via Send or
via SetMessage), the statistical distance between the real and ideal executions is bounded by the
probability pbad for either of the following instantiations:

1. Let ρ :=
√

κ
h and let ∆′ := 2∆ then

pbad ≤ r · (t + 1) · n2 · e−κ· (h−2)
h . (43)

2. Let α ∈ R, γ, δ1, δ2 ∈ [0, 1], and ρ := κ
h . Furthermore, let t0 :=

log
(

γn
(1−δ1)κ

)
log((1−δ2)α) + 1 and

∆′ := ∆ · (t0 + 1). If

e−κγ + γα

1− γ
≤ 1,

γn

(1− δ1)κ > 1, and (1− δ2) · α > 1, (44)

then
pbad ≤ r · (t + 1) ·

(
n ·
(

e−
δ2

1κ

2 + t0e−
δ2

2α(1−δ1)κ

2

)
+ e−h·(κγ2−2)

)
. (45)

Proof. We let A be an adversary and construct a simulator S similar to how the simulator is
constructed in the proof of Lemma 5.

1. S simulates all parties pi ∈ P running the protocl πERFlood(ρ) inside itself.

2. When receiving (Leak, pi, m) from F∆′
Flood the simulator inputs (Send, m) to pi (running

inside S).

3. When receiving (SetMessage, m) from the adversary on the port belonging to functionality
Fσ,∆

MessageTransfer(pi, pj), S forwards (SetMessage, m, pj) to F∆′
Flood.

4. Whenever A corrupts some pi ∈ P , S corrupts pi and sends the simulated internal state to
A. From then on the simulated pi follows A’s instructions.

We note that the only time this is not a perfect simulation is when one of properties of the
ideal functionality is violated in πERFlood(ρ). In this case the ideal functionality will enforce the
properties it self where as the real protocol will not, and it will be trivial for an environment to
distinguish.

To bound the probability that a property is violated we let M be the set of messages that is
sent throughout the execution of the protocol (either via Send or via SetMessage). For any message
m ∈M that was input at time τ for the first time (either by the send command or by letting it
be send from some dishonest party) to some honest party we let NoDelivery(m) be the event
that m was not delivered at time τ + ∆′. By a union bound we have that

pbad ≤ Pr
[⋃

m∈M

NoDelivery(m)
]

≤
∑

m∈M

Pr [NoDelivery(m)] .
(71)

50

Now let us look at any message m ∈ M that is input at time τ for the first time (either by
the send command or by letting it be send from some dishonest party) to some honest party
ps. Now, for d := ∆′

∆ , Lemma 6 ensures that there exists an adversary A1 s.t. if GFloodToER1
$←

FloodToER1(P, ρ,A1, ps) then

Pr[NoDelivery(m)] ≤ Pr[¬ϕDist(ps, GFloodToER1 , d)]. (72)

Lemma 7 ensures that there exists an adversary A2 s.t. if GFloodToER2
$← FloodToER2(P, ρ,A2, ps)

then
Pr[¬ϕDist(ps, GFloodToER1 , d)] ≤ Pr[¬ϕDist(ps, GFloodToER2 , d)]. (73)

Lemmas 8 and 9 ensures that there exists an adversary A3 s.t. if GFloodToER3
$←

FloodToER3(P, ρ,A3, ps) then

Pr[¬ϕDist(ps, GFloodToER2 , d)] ≤ Pr[¬ϕDist(ps, GFloodToER3 , d)]
≤ Pr[¬ϕDiam(GFloodToER3 , d)].

(74)

As ϕDist is monotone, Lemma 10 ensures that there exists an adversary A4 s.t. if GFloodToER4
$←

FloodToER4(P, ρ,A4) then

Pr[¬ϕDiam(GFloodToER3 , d)] ≤ Pr[¬ϕDiam(GFloodToER4 , d)]. (75)

Lemma 11 ensures that if GFloodToER5
$← FloodToER5(P, ρ,A4) then

Pr[¬ϕDiam(GFloodToER4 , d)] ≤ Pr[¬ϕDiam(GFloodToER5 , d)] · (t + 1). (76)

Furthermore, as ϕDiam is also preserved under renaming, Lemmas 12 and 13 ensures that if
Gs

$← G(s, ρ) then

Pr[¬ϕDiam(GFloodToER5 , d)] ≤ max
s∈{h,...,n}

Pr[¬ϕDiam(Gs, d)]. (77)

Combining Equations (71) to (77) and using that |M | = r we get that

pbad ≤ r · (t + 1) · max
s∈{h,...,n}

Pr[¬ϕDiam(Gs, d)]. (78)

We now look at the individual instantiations to bound maxs∈{h,...,n} Pr[¬ϕDiam(Gs)]. For In-
stantiation 1 we obtain Equation (43) using Lemma 4. For Instantiation 2 we obtain Equation (45)
using Lemma 3.

7 Conclusion and Future Work
We have formally defined the model of δ-delayed adversaries within the UC framework. This
has allowed us to precisely characterize and prove the security guarantees of the flooding
protocol, πERFlood. Thereby, we have taken a first step at putting the widely assumed flooding
functionalities on firm ground.

Several interesting directions for future work remain. In this work, we have explored a
particular type of flooding protocol based upon Erdős–Rényi graphs. However, as discussed
earlier, there exist several more complex constructions for different gossip networks in the
literature. Analyzing such protocols against δ-delayed corruptions could potentially yield

51

protocols that are even more efficient than what is presented here while also providing a well-
understood security guarantee. Another direction could be to optimize for security instead of
efficiency. The flooding protocol that we have presented is only secure against adversaries that
are delayed by at least (σ + ∆). An interesting question that arises is whether this is inherent
for flooding networks, or whether it is possible to implement a flooding network that is secure
against a 0-delayed adversary.

Furthermore, this work has considered adaptive but not mobile adversaries, which can again
uncorrupt parties. For some notion of mobility, it seems that πERFlood could be secure even in
the presence of such mobile adversaries. Extending the model of δ-delayed adversaries to include
some notion of mobility would be useful in order to better understand guarantees of blockchain
protocols that are supposed to run for a very long time.

Acknowledgements. We thank Ran Canetti for explaining a subtle detail of the UC framework,
Sabine Oechsner for discussions in the initial phase of the project, and the anonymous reviewers
of Eurocrypt and Crypto for their feedback.

Appendix A Expansion of Erdős–Rényi Graphs
In this section we reprove Corollary 6 from [CCG+15b] in order to obtain concrete bounds
comparable to our other results.

Before doing so we prove a couple of elementary graph results about a particular type of
graph where all small subsets of nodes in a graph are very strongly connected to the remaining
part of the graph.

Definition 14 (Expanders). A graph G = (V, E) is an α-edge-expander if for any S ⊆ V where
|S| ≤ |V|

2 we have that

α|S| ≤ |{{v, u} ∈ E | v ∈ S ∧ u ∈ V \ S}|.

We say that G is just an α-expander if for any S ⊆ V where |S| ≤ |V|
2 we have that

α|S| ≤ |Γ(S)|.

Lemma 14 (Edge-expansion ⇒ vertex-expansion). Let G = (V, E) be a graph and set d :=
maxv∈V deg(v). If G is an α-out-edge-expander, it is an (1 + α

d)-expander.

Proof. Let S ⊆ V s.t. |S| ≤ |V |
2 . We want to show that (1 + α

d)|S| ≤ |Γ(S)|. Note that S ⊆ Γ(S)
which means that it is enough to show that α

d |S| ≤ |Γ(S) \ S|.
Γ(S) \S is exactly the set of vertices that S is connected to. We know that there are at least

α|S| edges out of S as G is α-edge-expander and as each node has at most d incoming edges,
this implies that α

d |S| ≤ |Γ(S) \ S|, which is what we wanted to show.

Lemma 15 (Diameter of an α-expander). If G = (V, E) is an α-expander then the diameter of

G is at most 2 · log
(|V|

2 +1
)

log(α) .

Proof. Consider any two vertices v, u ∈ V. The set of vertices that is at most distance t from
v is given by Γt(v). As G is a α-expander, we have |Γt(v)| ≥ min(|V|

2 + 1, αt). Hence, we have
|Γt(v)| ≥ |V|

2 + 1 if

αt ≥ |V|2 + 1 ⇐⇒ t ≥
log

(
|V|
2 + 1

)
log(α) . (79)

52

We now analogously consider the set of nodes that can reach u in t steps. This set is given by
Γt(u). As G is an α-expander the size of this set is |Γt(v)| ≥ min(|V|

2 + 1, αt) which again implies
that when Equation (79) is satisfied, we have |Γt(v)| ≥ |V|

2 + 1. This implies that for t satisfying
Equation (79), we have that Γt(v) ∩ Γt(u) ̸= ∅ and the distance from v to u is therefore at most

2 · log
(|V|

2 +1
)

log(α) .

Lemma 16 (Edge-expansion of Erdős–Rényi graphs). Let n ∈ N, ϵ > 0, d := logϵ+1(n), ρ := d
n ,

α ∈ [0, 1− 1√
2], and c := 1

4 + α2

2 − α. The probability that a graph G = (V, E) $← G(n, ρ) is not

a αd-edge-expander is less than n−c logϵ(n)+1

1−n−c logϵ(n)+1 .

Proof. We look at a subset of vertices S ⊆ V where r := |S| ≤ n
2 and let S := V \ S. Let us

introduce a random variable for each pair of nodes v ∈ S and u ∈ S, Xv,u which indicates if
there is an {u, v} ∈ E. For each such variable Xv,u we have

E[Xv,u] = ρ. (80)

Furthermore, the expected amount of edges between S and S is

E

 ∑
v∈S,u∈S

Xv,u

 =
∑

v∈S,u∈S

E[Xv,u] = ρ|S||S|. (81)

Chernoff (Lemma 1) gives us that for δ ∈ [0, 1]

Pr

 ∑
v∈S,u∈S

Xv,u ≤ (1− δ)ρ|S||S|

 ≤ e− δ2ρ|S||S|
2 . (82)

We let α ∈ [0, 1
2) and let δ := 1− α

d(n−r) ∈ [0, 1] (as n− r ≥ n
2) which implies that

Pr

 ∑
v∈S,u∈S

Xv,u ≤ αd|S|

 ≤ e−

(
1− αn

(n−r)

)2
dr(n−r)

n·2

= e

−

((
1− αn

(n−r)

)2
(n−r)

n·2

)dr

= e
−
(

n−r
2n

+ α2n
2(n−r) −α

)dr

.

(83)

As r ≤ n
2 we have

n− r

2n
+ α2n

2(n− r)− α
≥ 1

4 + α2

2 − α =: c. (84)

If α < 1− 1√
2 this is larger than 0 and we have

Pr

 ∑
v∈S,u∈S

Xv,u ≤ αd|S|

 ≤ e−cdr
. (85)

53

We now bound the probability that any such S ⊆ V, |S| ≤ n
2 exists by union bound

Pr[exists S ⊆ V ∧ |S| ≤ n

2 ∧
∑

v∈S,u∈S

Xv,u ≤ αd|S|]

≤
n
2∑

r=1

∑
S,|S|=r

Pr

 ∑
v∈S,u∈S

Xv,u ≤ αd|S|


≤

n
2∑

r=1

∑
S,|S||=r

e−cdr

≤
n
2∑

r=1

(
n

r

)
e−cdr

.

(86)

Now for d := log1+ϵ(n) we have (e−c)log1+ϵ(n) = n−c logϵ(n). Using that
(n

r

)
≤ nr this implies

Pr[exists S ⊆ V ∧ |S| ≤ n

2 ∧
∑

v∈S,u∈S

Xv,u ≤ αd|S|]

≤
n
2∑

r=1

(
n

r

)(
n−c logϵ(n)

)r

≤
n
2∑

r=1
nr
(
n−c logϵ(n)

)r

=
n
2∑

r=1

(
n−c logϵ(n)+1

)r

=
n
2 −1∑
r=0

(
n−c logϵ(n)+1

)r+1

=
n
2 −1∑
r=0

n−c logϵ(n)+1
(
n−c logϵ(n)+1

)r

<
n−c logϵ(n)+1

1− n−c logϵ(n)+1 .

(87)

The last inequality holds due to the convergence of a geometric sum.

Lemma 17 (Vertex-expansion of Erdős–Rényi graphs). Let n ∈ N, ϵ > 0, d := logϵ+1(n), ρ := d
n ,

α ∈ [0, 1− 1√
2], c := 1

4 + α2

2 −α, and δ ∈ [0, 1]. The probability that a graph G = (V, E) $← G(n, ρ)
is not a

(
1 + α

1+δ

)
-expander is less than

n−c logϵ(n)+1

1− n−c logϵ(n)+1 + n− δ2 logϵ(n)
3 +1. (88)

Proof. Lemma 16 ensures that G is an αd-edge-expander unless with

n−c logϵ(n)+1

1− n−c logϵ(n)+1 . (89)

54

Lemma 2 ensures that for any δ ∈ [0, 1] we have the probability

Pr[max
v∈V

deg(v) ≥ (1 + δ)d] ≤ n · e− δ2d
3 = n · e− δ2 log1+ϵ(n)

3 = n− δ2 logϵ(n)
3 +1. (90)

Using union-bound and Lemma 14 we get that G is an
(
1 + α

1+δ

)
-expander except with the

desired probability.

As a consequence of this and Lemma 15 we can conclude that Erdős–Rényi-graphs with an
average polylogarithmic degree achieves a logarithmic diameter except with probability negligible
in the amount of nodes in the graph.

References
[ACD+19] Ittai Abraham, T.-H. Hubert Chan, Danny Dolev, Kartik Nayak, Rafael Pass, Ling

Ren, and Elaine Shi. Communication complexity of byzantine agreement, revisited.
In PODC, pages 317–326. ACM, 2019.

[BCH+20] Christian Badertscher, Ran Canetti, Julia Hesse, Björn Tackmann, and Vassilis
Zikas. Universal composition with global subroutines: Capturing global setup
within plain UC. In TCC (3), volume 12552 of Lecture Notes in Computer Science,
pages 1–30. Springer, 2020.

[BDD+21] Carsten Baum, Bernardo David, Rafael Dowsley, Jesper Buus Nielsen, and Sabine
Oechsner. TARDIS: A foundation of time-lock puzzles in UC. In EUROCRYPT
(3), volume 12698 of Lecture Notes in Computer Science, pages 429–459. Springer,
2021.

[BHK20] Avrim Blum, John Hopcroft, and Ravindran Kannan. Foundations of Data Science.
Cambridge University Press, 2020.

[BHÖ+99] Kenneth P. Birman, Mark Hayden, Öznur Özkasap, Zhen Xiao, Mihai Budiu, and
Yaron Minsky. Bimodal multicast. ACM Trans. Comput. Syst., 17(2):41–88, 1999.

[BMTZ17] Christian Badertscher, Ueli Maurer, Daniel Tschudi, and Vassilis Zikas. Bitcoin as
a transaction ledger: A composable treatment. In CRYPTO (1), volume 10401 of
Lecture Notes in Computer Science, pages 324–356. Springer, 2017.

[Bol01] Béla Bollobás. Random graphs. Number 73 in Cambridge studies in advanced
mathematics. Cambridge University Press, 2 edition, 2001.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd FOCS, pages 136–145, Las Vegas, NV, USA, October 14–17,
2001. IEEE Computer Society Press.

[Can20] Ran Canetti. Universally composable security. J. ACM, 67(5):28:1–28:94, 2020.

[CCG+15a] Nishanth Chandran, Wutichai Chongchitmate, Juan A. Garay, Shafi Goldwasser,
Rafail Ostrovsky, and Vassilis Zikas. The hidden graph model: Communication
locality and optimal resiliency with adaptive faults. In Tim Roughgarden, editor,
ITCS 2015, pages 153–162, Rehovot, Israel, January 11–13, 2015. ACM.

55

[CCG+15b] Nishanth Chandran, Wutichai Chongchitmate, Juan A. Garay, Shafi Goldwasser,
Rafail Ostrovsky, and Vassilis Zikas. The hidden graph model: Communication
locality and optimal resiliency with adaptive faults. In ITCS, pages 153–162. ACM,
2015.

[CDPW07] Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Universally compos-
able security with global setup. In TCC, volume 4392 of Lecture Notes in Computer
Science, pages 61–85. Springer, 2007.

[CHMV17] Ran Canetti, Kyle Hogan, Aanchal Malhotra, and Mayank Varia. A universally
composable treatment of network time. In CSF, pages 360–375. IEEE Computer
Society, 2017.

[CKMR22] Sandro Coretti, Aggelos Kiayias, Cristopher Moore, and Alexander Russell. The
generals’ scuttlebutt: Byzantine-resilient gossip protocols. Cryptology ePrint
Archive, Report 2022/541, 2022. https://ia.cr/2022/541.

[CSBB09] Sérgio Crisóstomo, Udo Schilcher, Christian Bettstetter, and João Barros. Analysis
of probabilistic flooding: How do we choose the right coin? In ICC, pages 1–6.
IEEE, 2009.

[DGH+87] Alan J. Demers, Daniel H. Greene, Carl Hauser, Wes Irish, John Larson, Scott
Shenker, Howard E. Sturgis, Daniel C. Swinehart, and Douglas B. Terry. Epidemic
algorithms for replicated database maintenance. In Fred B. Schneider, editor, 6th
ACM PODC, pages 1–12, Vancouver, BC, Canada, August 10–12, 1987. ACM.

[DGKR18a] Bernardo David, Peter Gazi, Aggelos Kiayias, and Alexander Russell. Ouroboros
praos: An adaptively-secure, semi-synchronous proof-of-stake blockchain. In Jes-
per Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part II, volume
10821 of LNCS, pages 66–98, Tel Aviv, Israel, April 29 – May 3, 2018. Springer,
Heidelberg, Germany.

[DGKR18b] Bernardo David, Peter Gazi, Aggelos Kiayias, and Alexander Russell. Ouroboros
praos: An adaptively-secure, semi-synchronous proof-of-stake blockchain. In EU-
ROCRYPT (2), volume 10821 of Lecture Notes in Computer Science, pages 66–98.
Springer, 2018.

[DPS19] Phil Daian, Rafael Pass, and Elaine Shi. Snow white: Robustly reconfigurable
consensus and applications to provably secure proof of stake. In Ian Goldberg and
Tyler Moore, editors, FC 2019, volume 11598 of LNCS, pages 23–41, Frigate Bay,
St. Kitts and Nevis, February 18–22, 2019. Springer, Heidelberg, Germany.

[ER60] P. Erdős and A Rényi. On the evolution of random graphs. In PUBLICATION
OF THE MATHEMATICAL INSTITUTE OF THE HUNGARIAN ACADEMY
OF SCIENCES, pages 17–61, 1960.

[GKKZ11] Juan A. Garay, Jonathan Katz, Ranjit Kumaresan, and Hong-Sheng Zhou. Adap-
tively secure broadcast, revisited. In Cyril Gavoille and Pierre Fraigniaud, editors,
30th ACM PODC, pages 179–186, San Jose, CA, USA, June 6–8, 2011. ACM.

[GKL15] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone
protocol: Analysis and applications. In Elisabeth Oswald and Marc Fischlin,
editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 281–310, Sofia,
Bulgaria, April 26–30, 2015. Springer, Heidelberg, Germany.

56

https://ia.cr/2022/541

[GKL17] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone
protocol with chains of variable difficulty. In Jonathan Katz and Hovav Shacham,
editors, CRYPTO 2017, Part I, volume 10401 of LNCS, pages 291–323, Santa
Barbara, CA, USA, August 20–24, 2017. Springer, Heidelberg, Germany.

[HHL06] Zygmunt J. Haas, Joseph Y. Halpern, and Li Li. Gossip-based ad hoc routing.
IEEE/ACM Trans. Netw., 14(3):479–491, 2006.

[HKZG15] Ethan Heilman, Alison Kendler, Aviv Zohar, and Sharon Goldberg. Eclipse attacks
on bitcoin’s peer-to-peer network. In Jaeyeon Jung and Thorsten Holz, editors,
USENIX Security 2015, pages 129–144, Washington, DC, USA, August 12–14, 2015.
USENIX Association.

[HSA+12] Ruijing Hu, Julien Sopena, Luciana Arantes, Pierre Sens, and Isabelle M. Demeure.
Fair comparison of gossip algorithms over large-scale random topologies. In SRDS,
pages 331–340. IEEE Computer Society, 2012.

[KJG+18] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly, Ewa
Syta, and Bryan Ford. OmniLedger: A secure, scale-out, decentralized ledger via
sharding. In 2018 IEEE Symposium on Security and Privacy, pages 583–598, San
Francisco, CA, USA, May 21–23, 2018. IEEE Computer Society Press.

[KMG03] Anne-Marie Kermarrec, Laurent Massoulié, and Ayalvadi J. Ganesh. Probabilistic
reliable dissemination in large-scale systems. IEEE Trans. Parallel Distributed
Syst., 14(3):248–258, 2003.

[KMTZ13] Jonathan Katz, Ueli Maurer, Björn Tackmann, and Vassilis Zikas. Universally
composable synchronous computation. In TCC, volume 7785 of Lecture Notes in
Computer Science, pages 477–498. Springer, 2013.

[KRDO17] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov.
Ouroboros: A provably secure proof-of-stake blockchain protocol. In Jonathan
Katz and Hovav Shacham, editors, CRYPTO 2017, Part I, volume 10401 of LNCS,
pages 357–388, Santa Barbara, CA, USA, August 20–24, 2017. Springer, Heidelberg,
Germany.

[KSSV00] Richard M. Karp, Christian Schindelhauer, Scott Shenker, and Berthold Vöcking.
Randomized rumor spreading. In 41st FOCS, pages 565–574, Redondo Beach, CA,
USA, November 12–14, 2000. IEEE Computer Society Press.

[KZZ16] Aggelos Kiayias, Hong-Sheng Zhou, and Vassilis Zikas. Fair and robust multi-party
computation using a global transaction ledger. In EUROCRYPT (2), volume 9666
of Lecture Notes in Computer Science, pages 705–734. Springer, 2016.

[LNZ+16] Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal Baweja, Seth Gilbert, and
Prateek Saxena. A secure sharding protocol for open blockchains. In Edgar R.
Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai
Halevi, editors, ACM CCS 2016, pages 17–30, Vienna, Austria, October 24–28,
2016. ACM Press.

[LZMM+22] Chen-Da Liu-Zhang, Christian Matt, Ueli Maurer, Guilherme Rito, and Søren Eller
Thomsen. Practical provably secure flooding for blockchains. Cryptology ePrint
Archive, Paper 2022/608, 2022.

57

[MHG18] Yuval Marcus, Ethan Heilman, and Sharon Goldberg. Low-resource eclipse attacks
on Ethereum’s peer-to-peer network. Cryptology ePrint Archive, Report 2018/236,
2018. https://eprint.iacr.org/2018/236.

[MM02] Petar Maymounkov and David Mazières. Kademlia: A peer-to-peer information
system based on the XOR metric. In Peter Druschel, M. Frans Kaashoek, and
Antony I. T. Rowstron, editors, Peer-to-Peer Systems, First International Workshop,
IPTPS 2002, Cambridge, MA, USA, March 7-8, 2002, Revised Papers, volume
2429 of Lecture Notes in Computer Science, pages 53–65. Springer, 2002.

[Nak08] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.

[Nie03] Jesper Buus Nielsen. On protocol security in the cryptographic model. PhD thesis,
Aarhus University, 2003.

[PS17] Rafael Pass and Elaine Shi. Hybrid consensus: Efficient consensus in the per-
missionless model. In Andréa W. Richa, editor, 31st International Symposium
on Distributed Computing, DISC 2017, October 16-20, 2017, Vienna, Austria,
volume 91 of LIPIcs, pages 39:1–39:16. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2017.

[PSs17] Rafael Pass, Lior Seeman, and abhi shelat. Analysis of the blockchain protocol in
asynchronous networks. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors,
EUROCRYPT 2017, Part II, volume 10211 of LNCS, pages 643–673, Paris, France,
April 30 – May 4, 2017. Springer, Heidelberg, Germany.

[Ren19] Ling Ren. Analysis of Nakamoto consensus. Cryptology ePrint Archive, Report
2019/943, 2019. https://eprint.iacr.org/2019/943.

[RT19] Elias Rohrer and Florian Tschorsch. Kadcast: A structured approach to broadcast
in blockchain networks. In Proceedings of the 1st ACM Conference on Advances
in Financial Technologies, AFT 2019, Zurich, Switzerland, October 21-23, 2019,
pages 199–213. ACM, 2019.

[ZMR18] Mahdi Zamani, Mahnush Movahedi, and Mariana Raykova. RapidChain: Scaling
blockchain via full sharding. In David Lie, Mohammad Mannan, Michael Backes,
and XiaoFeng Wang, editors, ACM CCS 2018, pages 931–948, Toronto, ON, Canada,
October 15–19, 2018. ACM Press.

58

https://eprint.iacr.org/2018/236
https://eprint.iacr.org/2019/943

	Introduction
	Motivation
	Contributions and Results
	Techniques
	Related Work

	Preliminaries
	Notation
	Graphs
	Probabilistic Bounds
	Basic Definitions
	Erdős–Rényi Graphs

	Universally Composable Security
	Security Definition
	Corruptions
	Time

	Delayed Adversaries within UC
	The -delay Shell
	Relating Corruption Models

	Concrete Bounds for Diameters of Erdős–Rényi Graphs
	Logarithmic Diameter
	Diameter 2

	Functionalities
	MessageTransfer
	Flood

	Implementations of Flood
	Naive Flood
	Efficient Flood
	Reducing from _ERFlood to Erdős–Rényi Graphs
	Relating Games
	Proving _Gossip Secure

	Conclusion and Future Work
	Appendix Expansion of Erdős–Rényi Graphs
	References

