
Security Analysis of Coconut, an
Attribute-Based Credential Scheme with

Threshold Issuance

Alfredo Rial and Ania M. Piotrowska

Nym Technologies
{alfredo, ania}@nymtech.net

Abstract. Coconut [NDSS 2019] is an attribute-based credential scheme
with threshold issuance. We analyze its security properties. To this end,
we define an ideal functionality FAC for attribute-based access control
with threshold issuance. We describe a construction ΠAC that realizes
FAC. ΠAC follows Coconut with a few changes. In particular, ΠAC mod-
ifies the protocols for blind issuance of credentials and for credential
show so that user privacy holds against computationally unbounded ad-
versaries. The modified protocols are slightly more efficient than those
of Coconut. ΠAC also extends the public key, which seems necessary to
prove unforgeability.

1 Introduction

Attribute-based credentials (ABC) [1–10], also known as anonymous credentials,
selective-disclosure credentials or minimal disclosure tokens, are cryptographic
schemes used to provide privacy-preserving access control. A credential σ is a
digital signature on one or more user attributes a signed by an authority V.
Through an issuance protocol, a user U obtains a credential σ from V, which is
in charge of verifying that U indeed possesses a. Usually, ABC schemes provide
a blind issuance protocol, which allows U to obtain σ on a without revealing a to
V, while still proving that a fulfills some statements φ. In the show protocol, U
uses her credentials to prove to a service provider P that her attributes satisfy an
access control policy ϕ. The show protocol does not reveal to P more information
about the user attributes than the fact that they satisfy ϕ. ABC schemes provide
unlinkability, i.e. the show of a credential σ by a user cannot be linked to other
shows of σ or to its issuance, even if an adversarial authority and service providers
collude.

Typically, ABC schemes consider a single authority V, which is trusted with
the task of verifying that users possess attributes. In [11], an ABC scheme with
threshold issuance was proposed. This scheme, named Coconut, considers n au-
thorities (V1, . . . ,Vn). In the issuance protocol, U must obtain partial credentials
from at least t authorities to be able to compute a credential σ on an attribute
a that can be used in the show protocol. Therefore, the task of verifying that
U possesses a is distributed among t authorities. Threshold issuance is desirable

2

when ABC schemes are used to provide access control in blockchains, because
blockchains guarantee integrity whenever the number of dishonest authorities is
below a threshold (Byzantine fault tolerance).

Our Contribution. In [11], the security properties satisfied by Coconut are an-
alyzed informally. We provide a security proof in the ideal-world/real-world
paradigm.

First, in Section 5 we give a security definition in the form of an ideal func-
tionality FAC for attribute-based access control with threshold issuance. FAC

follows the universal composability (UC) framework [12], and can be used to
analyze the security of ABC schemes with threshold issuance that are univer-
sally composable. We remark that Coconut is not UC secure, but FAC can be
used to analyze the security of Coconut under sequential composition. We also
remark that the ideal-world protocol defined by FAC provides the unforgeability,
blindness and unlinkability properties described in [11].

Second, in Section 7 we describe a construction ΠAC that realizes FAC. ΠAC

follows Coconut and extends it with the use of three ideal functionalities FNYM,
FKG and FRO:

– In [11], the communication channel between parties is not described. ΠAC

uses an ideal functionality FNYM for a pseudonymous channel. FNYM models
a channel where parties have optional unlikability by using pseudonyms.

– In [11], public and private keys of authorities are generated by an algorithm,
which should be executed by a trusted party. The way each authority re-
trieves its keys is not described, but it is mentioned that the algorithm can
be replaced by a distributed key generation protocol. ΠAC uses a functional-
ity FKG for key generation, which allows authorities to retrieve their secret
keys and any party to retrieve the public keys.

– Coconut uses the random oracle (RO) model, which we model by using a
functionality FRO for random oracles.

In addition to using FNYM, FKG and FRO, we remark that some other
changes are introduced in ΠAC in comparison to Coconut because they were
needed or desirable.

– In order to prove that a user cannot forge credentials, it seems necessary to
add additional elements to the public key.

– The issuance protocol in Coconut provides privacy for the user (blindness)
under the XDH assumption. After adding additional elements to the public
key, it is possible to design an issuance protocol that is both more efficient
and that provides privacy for the user against computationally unbounded
adversaries.

– The show protocol in Coconut does not provide privacy for the user (un-
linkability) against computationally unbounded adversaries. Moreover, it is
necessary that credentials contain at least one random attribute so that
unlinkability holds. ΠAC uses a modified version of the show protocol that
provides user privacy against computationally unbounded adversaries and
that avoids the need of including a random attribute in each credential.

3

We describe more in detail the reason for these changes in Section 3.1.
In Section 8, we show that ΠAC realizes FAC. We use static corruptions.

Coconut uses implicitly a modified version of the Pointcheval-Sanders signature
scheme [13] in the random oracle model. We formalize this modified scheme and
its security definition in Section 6.4, and we prove that ΠAC provides unforge-
ability thanks to this scheme in Section 8.

Outline of the paper. In Section 2, we describe the building blocks used in Co-
conut. In Section 3, we recall the description of Coconut in [11] and discuss
the differences between Coconut and ΠAC. In Section 4, we describe the ideal-
world/real-word paradigm and the notation we use to describe ideal function-
alities. The ideal functionality FAC is depicted in Section 5. In Section 6, we
describe the functionalities FNYM, FKG and FRO, and the Pointcheval-Sanders
signature scheme in the RO model. Section 7 describes the construction ΠAC

and Section 8 analyzes the security of ΠAC. We conclude in Section 9.

2 Building Blocks of Coconut

2.1 Bilinear Maps and Assumptions

Let G, G̃ and Gt be groups of prime order p. A map e : G×G̃→ Gt must satisfy
bilinearity, i.e., e(gx, g̃y) = e(g , g̃)xy; non-degeneracy, i.e., for all generators g ∈
G and g̃ ∈ G̃, e(g , g̃) generates Gt; and efficiency, i.e., there exists an efficient
algorithm G(1k) that outputs the pairing group setup (p,G, G̃,Gt, e, g , g̃) and
an efficient algorithm to compute e(a, b) for any a ∈ G, b ∈ G̃. In type 3 pairings,
G 6= G̃ and there exists no efficiently computable homomorphism f : G̃→ G.

Definition 1. [Assumption 1 [13]] Let (p,G, G̃,Gt, e, g , g̃) be a bilinear group
setting of type 3, with g (respectively g̃) a generator of G (respectively G̃).
For (gx, gy) and (g̃x, g̃y), where x, y ∈ Zp are random, we define the oracle
O(m) on input m ← Zp that chooses a random h ∈ G and outputs the pair

P = (h, hx+my). Given (p,G, G̃,Gt, e, g , g̃ , gy, g̃x, g̃y) and unlimited access to
this oracle, no adversary can efficiently generate such a pair, with h 6= 1G, for a
new scalar m∗ not asked to O.

Definition 2. [Assumption 2 [13]] Assumption 2 is a weaker version of As-
sumption 1. Let (p,G, G̃,Gt, e, g , g̃) be a bilinear group setting of type 3, with g
(respectively g̃) a generator of G (respectively G̃). For (g̃x, g̃y), where x, y ∈ Zp
are random, we define the oracle O(m) on input m← Zp that chooses a random

h ∈ G and outputs the pair P = (h, hx+my). Given (p,G, G̃,Gt, e, g , g̃ , g̃x, g̃y)
and unlimited access to this oracle, no adversary can efficiently generate such a
pair, with h 6= 1G, for a new scalar m∗ not asked to O.

Definition 3. [XDH Assumption [14]] Given (p,G, G̃,Gt, e, g , g̃), the external
Diffie-Hellman assumption states that the decisional Diffie-Hellman problem is
intractable in G.

4

2.2 Zero-Knowledge Proofs of Knowledge

Informally speaking, a zero-knowledge proof of knowledge is a two-party protocol
between a prover and a verifier with two properties. First, it should be a proof
of knowledge, i.e., there should exist a knowledge extractor that extracts the
secret input from a successful prover with all but negligible probability. Second,
it should be zero-knowledge, i.e., for all possible verifiers there exists a simulator
that, without knowledge of the secret input, yields a distribution that cannot be
distinguished from the interaction with a real prover.

To express a zero-knowledge proof of knowledge, we follow the notation intro-
duced by Camenisch and Stadler [15]. For example, ZK{(s) : y = f(s)} denotes
a “zero-knowledge proof of knowledge of the secret input s such that y = f(s)”.
Letters in the parenthesis, in this example s, denote the secret input, while y
and the function f are also known to the verifier.

Σ-protocol and Fiat-Shamir transform. Let L be a language in NP. We
can associate to any NP-language L a polynomial time recognizable relation RL
defining L as L = {x : ∃w s.t. (x,w) ∈ RL}, where |w| ≤ poly(|x|). The string
w is called a witness for membership of x ∈ L.

A protocol Σ = (P,V) for an NP-language L is an interactive proof system.
The prover P and the verifier V know an instance x of the language L. The
prover P also knows a witness w for membership of x ∈ L. Σ-protocols have
a 3-move shape where the first message α, called commitment, is sent by the
prover. The second message β, called challenge, is chosen randomly and sent by
the verifier. The last message γ, called response, is sent by the prover. A Σ-
protocol fulfills the properties of completeness, honest-verifier zero-knowledge,
and special soundness defined in Faust et al. [16].

In Coconut, zero-knowledge arguments of knowledge based on the Fiat-
Shamir transform [17] are used. The Fiat-Shamir transform removes the in-
teraction between the prover P and the verifier V of a Σ protocol by replacing
the challenge with a hash value H(α, x) computed by the prover, where H is
modeled as a random oracle. An argument π consists of (α,H(α, x), γ). The
Fiat-Shamir system is denoted by (PH ,VH) and fulfills the properties of zero-
knowledge and weak simulation extractability defined in Faust et al. [16], which
we recall in Appendix A.1.

2.3 Commitment Schemes

A commitment scheme consists of algorithms CSetup, Com and VfCom. The
algorithm CSetup(1k) generates the parameters of the commitment scheme parc ,
which include a description of the message space M. Com(parc , x) outputs a
commitment com to x and auxiliary information open. A commitment is opened
by revealing (x , open) and checking whether VfCom(parc , com, x , open) outputs
1 or 0.

A commitment scheme should fulfill the correctness, hiding and binding prop-
erties. We recall the definitions of those properties in Appendix A.2.

5

Coconut uses the commitment scheme by Pedersen [18] to commit to elements
x ∈ Zp, where p is a prime. This commitment scheme is perfectly hiding and
computationally binding under the discrete logarithm assumption. The Pedersen
commitment scheme consists of the following algorithms.

CSetup(1k). On input the security parameter 1k, pick random generators g , h of
a group Gp of prime order p. Output parc = (g, h,M), where M = Zp.

Com(parc , x). Check that x ∈ M. Pick random open ∈ Zp, compute com =
gopenhx and output com.

VfCom(parc , com, x′, open ′). Compute com ′ = gopen′hx
′
. If com = com ′ then

output 1 else 0.

The Pedersen commitment scheme can be extended to allow the computation
of commitments to more than one message.

CSetup(1k , l). On input the security parameter 1k and an upper bound l on
the number of elements to be committed, pick l + 1 random generators
h1, . . . , hl, g of a group Gp of prime order p. Output parc = (h1, . . . , hl, g,M),
where M = Zlp.

Com(parc , 〈x1, . . . , xl〉). Pick random open ← Zp, compute com = gopen
∏l
i=1 hxi

i

and output com.

VfCom(parc , com, 〈x′1, . . . , x′l〉, open ′). Compute com ′ = gopen′
∏l
i=1 h

x′i
i . If com =

com ′ then output 1 else 0.

2.4 Public-Key Encryption

An IND-CPA (or semantically) secure Public-Key Encryption (PKE) scheme
consists of three algorithms (Setup,Encrypt,Decrypt) defined as follows.

Setup(1k). On input the security parameter 1k , it outputs a public key pkenc
and a secret key skenc.

Encrypt(m, pkenc). On input a message m and a public key pkenc, it outputs a
ciphertext c.

Decrypt(c, skenc). On input a ciphertext c and a secret key skenc, it outputs m.

A PKE scheme must be correct and satisfy the IND-CPA property. We recall
the correctness and IND-CPA definitions in Appendix A.3.

Coconut uses the ElGamal public-key encryption scheme [19], which is IND-
CPA secure under the Decisional Diffie-Hellman (DDH) assumption. The ElGa-
mal PKE scheme works as follows.

Setup(1k). On input 1k , take a generator g of a cyclic group G of primer order
p. Pick random x ← Zp and set the public key pkenc ← gx and the secret
key skenc ← x.

Encrypt(m, pkenc). On input a message m and a public key pkenc, pick random
r ∈ Zp and output the ciphertext c = (gr,m · (pkenc)r).

Decrypt(c, skenc). On input a ciphertext c = (a, b) and a decryption key skenc,
output m = b · a−skenc .

6

Coconut uses the additively homomorphic ElGamal PKE scheme. A PKE
scheme is additvely homomorphic if there exist two operations ⊕ and � as
follows. Given two ciphertexts c1 ← Encrypt(m1, pkenc) and c2 ← Encrypt(m2,
pkenc), the operation c ← c1 ⊕ c2 produces a ciphertext such that m1 + m2 ←
Decrypt(c, skenc). Given c1 ← Encrypt(m1, pkenc) and m2, the operation c ←
c1 �m2 produces a ciphertext such that m1 ·m2 ← Decrypt(c, skenc).

2.5 Signature Schemes

A signature scheme consists of the algorithms KeyGen, Sign, and VfSig. Algo-
rithm KeyGen(1k) outputs a secret key sk and a public key pk , which include
a description of the message space M. Sign(sk ,m) outputs a signature σ on
message m ∈ M. VfSig(pk , σ,m) outputs 1 if σ is a valid signature on m and 0
otherwise. This definition can be extended to blocks of messages (m1, . . . ,mq).
In this case, KeyGen(1k , q) receives the maximum number of messages as input.

A signature scheme must fulfill the following correctness and existential un-
forgeability properties [20]. We recall the definitions of those properties in Ap-
pendix A.4.

Coconut uses the Pointcheval-Sanders signature scheme [13]. This scheme
is existentially unforgeable under Assumption 2 (see Definition 2). It works as
follows.

KeyGen(1k , q). Run G(1k) to obtain a pairing group setup θ = (p,G, G̃,Gt, e,
g , g̃). Pick random secret key (x, y1, . . . , yq)← Zq+1

p . Output the secret key
sk = (θ, x, y1, . . . yq) and the public key pk = (θ, α, β1, . . . , βq)← (θ, g̃x, g̃y1 ,
. . . , g̃yq).

Sign(sk ,m1, . . . ,mq). Parse sk as (θ, x, y1, . . . , yq). Pick random r ← Zp and set
h← gr. Output the signature σ = (h, s)← (h, hx+y1m1+...+yqmq).

VfSig(pk , σ,m1, . . . ,mq). Parse the public key pk as (θ, α, β1, . . . , βq) and the
signature σ as (h, s). Output 1 if h 6= 1 and e(h, α

∏q
j=1 β

mj

j) = e(s, g̃).
Otherwise output 0.

This signature scheme is randomizable. To randomize a signature σ = (h, s),
pick random r′ ← Zp and compute σ′ = (hr

′
, sr
′
).

3 The Coconut Scheme

We recall the description of the Coconut scheme in Appendix B in [11]. The par-
ties in the protocol are the user U , the authorities (V1, . . . ,Vn) and the provider
P.

Setup. Algorithm Setup(1λ, q) is run by a trusted party. 1λ is the security
parameter in unary notation and q is the number of messages that are signed by
a signature.

– Run (p,G, G̃,Gt, e, g , g̃)← G(1k).
– Compute q generators (h1, . . . , hq) of G.
– Output the system parameters params = (p,G, G̃,Gt, g , g̃ , h1, . . . , hq).

7

Key Generation. Algorithm TTPKeyGen(params, t, n, q) is run by a trusted
party. params are the parameters output by Setup, t is the threshold, n is the
number of authorities, and q is the number of messages that are signed by a
signature.

– Choose (q + 1) polynomials (v, w1, . . . , wq) of degree (t − 1) with random
coefficients in Zp.

– Set (x, y1, . . . , yq)← (v(0), w1(0), . . . , wq(0)).
– For i = 1 to n, set the secret key sk i of each authority Vi as sk i = (xi, yi,1,
. . . , yi,q)← (v(i), w1(i), . . . , wq(i)).

– For i = 1 to n, set the verification key pk i of each authority Vi as pk i = (αi,
βi,1, . . . , βi,q)← (g̃xi , g̃yi,1 , . . . , g̃yi,q).

– Compute the verification key pk = (α, β1, . . . , βq)← (g̃x, g̃y1 , . . . , g̃yq).
– Output (pk , sk1, pk1, . . . , skn, pkn).

Protocol for Issuing a Signature. This protocol consists of four algorithms.
First, the user runs PrepareBlindSign(params,m1, . . . ,mq, φ). params are the pa-
rameters output by Setup, (m1, . . . ,mq) are the messages to be signed in the
signature, and φ are statements to be proven about the messages.

– Generate an ElGamal key pair (d, γ). Pick d← Zp and compute γ ← gd.
– Pick random o← Zp and compute the commitment cm ← go

∏q
j=1 h

mj

j .
– Compute h← H(cm). h is the generator used to compute the signature.
– Compute ElGamal encryptions of each of the messages. For j = 1 to q, pick

random kj ← Zp and set cj = (aj , bj) = (gkj , γkj hmj).
– Compute a ZK argument of knowledge πs via the Fiat-Shamir heuristic for

the relation

πs =NIZK{(d,m1, . . . ,mq, o, k1, . . . , kq) :

γ = gd ∧

cm = go
q∏
j=1

h
mj

j ∧

{aj = gkj ∧ bj = γkj hmj}∀j∈[1,...,q] ∧
φ(m1, . . . ,mq) = 1}

– Output (d, Λ = (γ, cm, c1, . . . , cq, h, πs), φ).

The user sends Λ and φ to t authorities. Each authority Vi runs algorithm
BlindSign(params, sk i, Λ, φ). params are the parameters output by Setup, Λ is
the second output of PrepareBlindSign and φ are statements proven about the
messages.

– Parse Λ as (γ, cm, c1, . . . , cq, h, πs).
– Compute h ′ ← H(cm). Abort if h 6= h ′.
– Verify πs by using φ, params and (γ, cm, c1, . . . , cq, h). Abort if the proof is

not correct.

8

– For j = 1 to q, parse cj as (aj , bj).
– Compute c̃ = (

∏q
j=1 a

yj
j , h

x
∏q
j=1 b

yj
j).

– Output the blinded signature share σ̃i = (h, c̃).

Each authority Vi sends σ̃i to the user. For all the signature shares re-
ceived, the user then executes Unblind(params, d, Λ, σ̃i, pk i,m1, . . . ,mq). params
are the parameters output by Setup, d is the secret key of ElGamal output by
PrepareBlindSign, Λ is the tuple output by PrepareBlindSign, σ̃i is the signature
share output by BlindSign, and (m1, . . . ,mq) are the signed messages.

– Parse Λ as (γ, cm, c1, . . . , cq, h, πs).

– Parse σ̃i as (h ′, c̃) and c̃ as (ã, b̃). Abort if h 6= h ′.
– Compute σi = (h, si)← (h, b̃(ã)−d).
– Parse pk i as (αi, βi,1, . . . , βi,q) and verify the signature share. Abort if the

equality e(h, αi
∏q
j=1 β

mj

i,j) = e(si, g̃) does not hold.
– Output the signature share σi.

Let S ∈ [1, n] be the set of indices of authorities that provided signature
shares. The user executes AggCred(params, 〈σi〉i∈S, pk ,m1, . . . ,mq). params are
the parameters output by Setup, 〈σi〉i∈S are the t signature shares output by t
executions of Unblind, pk is the verification key output by TTPKeyGen, and (m1,
. . . ,mq) are the signed messages.

– For all i ∈ S, parse σi as (h, si).
– For all i ∈ S, evaluate at 0 the Lagrange basis polynomials

li = [
∏

j∈S,j 6=i
(0− j)][

∏
j∈S,j 6=i

(i− j)]−1 mod p

– Compute the signature σ = (h, s)← (h,
∏
i∈S s

li
i).

– Parse pk as (α, β1, . . . , βq) and verify the signature. Abort if the equality
e(h, α

∏q
j=1 β

mj

j) = e(s, g̃) does not hold.
– Output σ.

Protocol for Proving Signature Possession. This protocol consists of two
algorithms. First, the user runs ProveCred(params, pk ,m1, . . . ,mq, σ, φ

′). params
are the parameters output by Setup, pk is the verification key output by algo-
rithm TTPKeyGen, (m1, . . . ,mq) are the signed messages, σ is the signature
output by AggCred and φ′ are statements to be proven about the messages.

– Parse σ as (h, s).
– Parse pk as (α, β1, . . . , βq).
– Pick random r ← Zp and r′ ← Zp.
– Compute h ′ ← hr

′
and s′ ← sr

′
.

– Compute κ← α
∏q
j=1 β

mj

j g̃r.
– Compute ν ← (h ′)r.

9

– Compute the ZK argument of knowledge πv via the Fiat-Shamir heuristic.

πv =NIZK{(m1, . . . ,mq, r) :

κ = α

q∏
j=1

β
mj

j g̃r ∧

ν = (h ′)r ∧
φ′(m1, . . . ,mq) = 1}

– Set Θ = (κ, ν, h ′, s′, πv).
– Output (Θ,φ′).

The user sends (Θ,φ′) to the provider. The provider runs the algorithm
VerifyCred(params, pk , Θ, φ′). params are the parameters output by Setup, pk is
the verification key output by TTPKeyGen, and (Θ,φ′) is the output of ProveCred.

– Parse Θ as (κ, ν, h ′, s′, πv).
– Verify πv by using φ′, params, pk , h ′, s′, κ and ν. Output false if the proof

is not correct.
– Output false if h ′ = 1.
– Output false if e(h ′, κ) = e(s′ν, g̃) does not hold.
– Output true.

3.1 Discussion of Differences between Coconut and ΠAC

In order to prove the security of ΠAC, we have modified Coconut as follows:

– Coconut uses as building block the Pointcheval-Sanders signature scheme.
A natural way to prove that Coconut fulfills the unforgeability property
would be to describe a reduction to the unforgeability of Pointcheval-Sanders
signatures, i.e. to show that, if an adversarial user is able to show a signature
that signs attributes that the adversary was not issued, then that means that
we can break the unforgeability property of Pointcheval-Sanders signatures.
Such a reduction would receive the public key from the challenger of the
unforgeability game and assign that public key to an authority. The reduction
would then interact with an adversarial user by simulating both the authority
during the issuance phase and the provider during the show phase. In order
to simulate the authority, the reduction would extract the attributes whose
issuance the adversary requests by running the Fiat-Shamir extractor for
proof πs. The reduction would submit them to the signing oracle provided
by the challenger of the unforgeability game. Then the reduction would use
the signature sent by the oracle to produce the blinded signature share σ̃i =
(h, c̃), where c̃ = (ã, b̃) = (

∏q
j=1 a

yj
j , h

x
∏q
j=1 b

yj
j), that needs to be sent to

the adversary.
However, it does not seem possible for the reduction to compute the value
ã =

∏q
j=1 a

yj
j . The reduction does not know the values yj of the secret

10

key. The signature received from the oracle is of the form σ = (h, s) ←
(h, hx+y1m1+...+yqmq), and seemingly cannot be used to compute ã either.
To solve this issue, ΠAC extends the public key pk = (α, β1, . . . , βq) ←
(g̃ , g̃x, g̃y1 , . . . , g̃yq) by adding the values (gy1 , . . . , gyq). This implies that
unforgeability in ΠAC holds under Assumption 1 in Definition 1 rather than
the weaker Assumption 2 in Definition 2. We remark that Pointcheval and
Sanders [13] also propose an ABC scheme with a single authority based
on their signature scheme, and unforgeability for that scheme holds under
Assumption 1, despite the fact that unforgeability for the signature scheme
holds under Assumption 2.

– In the issuance protocol in Coconut, blindness holds under the XDH as-
sumption (Definition 3) because of the use of the ElGamal PKE scheme.
After extending the public key as described above, it is possible to modify
the issuance protocol so that blindness holds against unbounded adversaries.
The modified protocol, used in ΠAC, is also more efficient.

– In the show protocol in Cococut, a valid signature is revealed to the verifier.
Therefore, unlinkability requires that signatures sign at least one random
attribute. Additionally, unlinkability cannot be proven against unbounded
adversaries. As can be seen, an adversary able to solve the discrete logarithm
problem can compute the value r from ν, and later compute α

∏q
j=1 β

mj

j

from κ. The value α
∏q
j=1 β

mj

j can be used to trace all the shows of the
same credential.
In ΠAC, a modified version of the show protocol is used. This show protocol
provides unlinkability against unbounded adversaries and removes the need
of having a random attribute signed in each credential. Additionally, it is
slightly more efficient.

In addition to the changes mentioned above, ΠAC uses the functionalities
FNYM to model the communication channel between parties, FKG to model key
generation and distribution, and FRO to model hash functions. Those function-
alities are defined in Section 6.

4 Security Framework

We prove our protocol secure in the ideal-world/real-world paradigm [12]. This
paradigm allows one to define and analyze the security of cryptographic protocols
so that security is retained under arbitrary composition with other protocols. The
security of a protocol is defined by means of an ideal protocol that carries out
the desired task. In the ideal protocol, all parties send their inputs to an ideal
functionality F for the task. F locally computes the outputs of the parties and
provides each party with its prescribed output.

The security of a protocol ϕ is analyzed by comparing the view of an environ-
ment Z in a real execution of ϕ against that of Z in the ideal protocol defined
in Fϕ. Z chooses the inputs of the parties and collects their outputs. In the real
world, Z can communicate freely with an adversary A who controls both the

11

network and any corrupt parties. In the ideal world, Z interacts with dummy
parties, who simply relay inputs and outputs between Z and Fϕ, and a simulator
S. We say that a protocol ϕ securely realizes Fϕ if Z cannot distinguish the real
world from the ideal world, i.e., Z cannot distinguish whether it is interacting
with A and parties running protocol ϕ or with S and dummy parties relaying
to Fϕ.

More formally, indistinguishability is defined as follows. Two binary distri-
bution ensembles X = {X(k, a)}k∈N,a∈{0,1}∗ and Y = {Y (k, a)}k∈N,a∈{0,1}∗ are
indistinguishable (X ≈ Y) if for any c, d ∈ N there exists k0 ∈ N such that for
all k > k0 and all a ∈ ∪κ≤kd{0, 1}κ, |Pr[X(k, a) = 1] − Pr[Y (k, a) = 1]| < k−c.
Let REALϕ,A,Z(k, a) denote the distribution given by the output of Z when ex-
ecuted on input a with A and parties running ϕ, and let IDEALFϕ,S,Z(k, a)
denote the output distribution of Z when executed on input a with S and
dummy parties relaying to Fϕ. We say that the protocol ϕ securely realizes
Fϕ if, for all polynomial-time A, there exists a polynomial-time S such that, for
all polynomial-time Z, REALϕ,A,Z ≈ IDEALFϕ,S,Z .

A protocol ϕG securely realizes F in the G-hybrid model when ϕ is allowed
to invoke the ideal functionality G. Therefore, for any protocol ψ that securely
realizes G, the composed protocol ϕψ, which is obtained by replacing each in-
vocation of an instance of G with an invocation of an instance of ψ, securely
realizes F .

In the ideal functionalities described in this paper, we consider static corrup-
tions. When describing ideal functionalities, we use the following conventions as
in [21].

Interface Naming Convention. An ideal functionality can be invoked by us-
ing one or more interfaces. The name of a message in an interface consists
of three fields separated by dots, e.g., ac.setup.ini in FAC in Section 5. The
first field indicates the name of the functionality and is the same in all in-
terfaces of the functionality. This field is useful for distinguishing between
invocations of different functionalities in a hybrid protocol that uses two
or more different functionalities. The second field indicates the kind of ac-
tion performed by the functionality and is the same in all messages that
the functionality exchanges within the same interface. The third field dis-
tinguishes between the messages that belong to the same interface, and can
take the following different values. A message ac.setup.ini is the incoming
message received by the functionality, i.e., the message through which the
interface is invoked. A message ac.setup.end is the outgoing message sent by
the functionality, i.e., the message that ends the execution of the interface.
The message ac.setup.sim is used by the functionality to send a message to
S, and the message ac.setup.rep is used to receive a message from S.

Network vs local communication. The identity of an interactive Turing ma-
chine instance (ITI) consists of a party identifier pid and a session identifier
sid . A set of parties in an execution of a system of interactive Turing ma-
chines is a protocol instance if they have the same session identifier sid .
ITIs can pass direct inputs to and outputs from “local” ITIs that have the

12

same pid . An ideal functionality F has pid = ⊥ and is considered local to
all parties. An instance of F with the session identifier sid only accepts in-
puts from and passes outputs to machines with the same session identifier
sid . Some functionalities require the session identifier to have some struc-
ture. Those functionalities check whether the session identifier possesses the
required structure in the first message that invokes the functionality. For
the subsequent messages, the functionality implicitly checks that the session
identifier equals the session identifier used in the first message. Communi-
cation between ITIs with different party identifiers must take place over the
network. The network is controlled by A, meaning that he can arbitrarily
delay, modify, drop, or insert messages.

Query identifiers. Some interfaces in a functionality can be invoked more than
once. When the functionality sends a message ac.setup.sim to S in such an
interface, a query identifier qid is included in the message. The query identi-
fier must also be included in the response ac.setup.rep sent by S. The query
identifier is used to identify the message ac.setup.sim to which S replies with
a message ac.setup.rep. We note that, typically, S in the security proof may
not be able to provide an immediate answer to the functionality after receiv-
ing a message ac.setup.sim. The reason is that S typically needs to interact
with the copy of A it runs in order to produce the message ac.setup.rep, but
A may not provide the desired answer or may provide a delayed answer. In
such cases, when the functionality sends more than one message ac.setup.sim
to S, S may provide delayed replies, and the order of those replies may not
follow the order of the messages received.

Aborts. When an ideal functionality F aborts after being activated with a mes-
sage sent by a party, we mean that F halts the execution of its program and
sends a special abortion message to the party that invoked the functionality.
When an ideal functionality F aborts after being activated with a message
sent by S, we mean that F halts the execution of its program and sends
a special abortion message to the party that receives the outgoing message
from F after F is activated by S.

5 Ideal Functionality FAC

We depict our functionality FAC for attribute-based access control with threshold
issuance in Figure 1 and Figure 2. FAC interacts with authorities (V1, . . . ,Vn),
any number of users Uj and any number of providers Pk. FAC consists of the
following interfaces:

1. Vi uses the ac.setup interface to set up FAC. FAC stores the fact that Vi
has run the setup interface. FAC enforces that each authority runs the setup
interface only once. The simulator S is allowed to learn that Vi has run the
setup interface.

2. Uj uses the ac.request interface to send an attribute a, a statement φ, the
identifier of an authority Vi and a pseudonym P to FAC. FAC checks that
the attribute a fulfills the statement φ, which we represent by 1 = φ(a). FAC

13

also checks that Vi has run the setup interface. FAC stores the request under
a request identifier reqid and sends φ, P and reqid to Vi.

3. Vi uses the ac.issue interface to send a request identifier reqid to FAC. FAC

checks that there is a request pending for reqid . Then FAC records that the
authority Vi issues the attribute a to the user Uj and informs the user that
Vi issued the attribute a.

4. Uj uses the ac.show interface to send a statement ϕ, a pseudonym P , and
the identifier of a provider Pk to FAC. By using an algorithm Find, FAC

checks that there is a set A of attributes issued to Uj that fulfills ϕ, which
we represent by 1 = ϕ(A). Each of the attributes in the set must have been
issued by at least t authorities. Then FAC sends ϕ and P to the provider
Pk.

The session identifier sid has the structure (V1, . . . ,Vn, sid ′). This allows any
authorities (V1, . . . ,Vn) to create an instance of FAC. After the first invocation
of FAC, FAC implicitly checks that the session identifier in a message is equal to
the one received in the first invocation.

When invoked by an authority Vi or a user Uj , FAC first checks the correctness
of the input. FAC aborts if any of the inputs does not belong to the correct
domain. FAC also aborts if an interface is invoked at an incorrect moment in
the protocol. For example, an authority Vi cannot invoke the ac.issue interface
on input a request identifier reqid if that authority did not receive a request
associated with reqid . Similar abortion conditions are listed when FAC receives
a message from the simulator S.

Before FAC queries S, FAC saves its state, which is recovered when receiving
a response from S. When an interface, e.g. ac.request, can be invoked by a party
more than once, FAC creates a query identifier qid , which allows FAC to match
a query to S to a response from S. Creating qid is not necessary if an interface,
such as ac.setup, can be invoked only once by each authority, and the authority
identifier is revealed to S.

The information that FAC reveals to S is information that an adversary that
controls the network but does not corrupt any party is allowed to learn. For
example, in the ac.setup interface, S learns the authority identifier Vi, and thus
a construction for FAC does not need to hide that from the adversary.

Compared to other ideal functionalities, FAC looks more complex. The reason
is that we list all the conditions for abortion and that FAC saves state informa-
tion before querying S and recovers it after receiving a response from S. These
operations are also required but have frequently been omitted in the description
of ideal functionalities in the literature.

Below we describe and discuss FAC more in detail.

1. The ac.setup interface is invoked by an authority Vi. FAC aborts if the session
identifier sid does not have the correct structure. FAC also aborts if Vi
already invoked the ac.setup interface. If FAC does not abort, FAC records
that Vi invoked the setup interface and queries the simulator S on input the
authority identifier Vi. When prompted by S, FAC aborts if Vi did not invoke
the setup interface or if the setup interface was already run for authority Vi.

14

Functionality FAC

FAC runs with authorities (V1, . . . ,Vn), users Uj and providers Pk. FAC is param-
eterized by a threshold t, a security parameter k , a universe of attributes Ua, a
universe of statements for issuance Uφ, a universe of statements for shows Uϕ, a
universe of pseudonyms Up, and a deterministic algorithm Find.

1. On input (ac.setup.ini, sid) from an authority Vi:
– Abort if sid 6= (V1, . . . ,Vn, sid ′), or if Vi /∈ sid , or if n < t.
– Abort if (sid ,Vi, 0) is already stored.
– Store (sid ,Vi, 0).
– Send (ac.setup.sim, sid ,Vi) to S.

S. On input (ac.setup.rep, sid ,Vi) from the simulator S:

– Abort if (sid ,Vi, 0) is not stored or if (sid ,Vi, 1) is already stored.
– Store (sid ,Vi, 1).
– Send (ac.setup.end, sid) to Vi.

2. On input (ac.request.ini, sid , a, φ,Vi,P) from a user Uj :
– Abort if sid 6= (V1, . . . ,Vn, sid ′) or if Vi /∈ sid .
– Abort if a /∈ Ua, or if φ /∈ Uφ, or if P /∈ Up.
– Abort if 1 6= φ(a).
– Create a fresh qid and store (qid ,Uj , a, φ,Vi,P).
– If this is the first request sent by Uj , set b← 1, else set b← 0.
– Send (ac.request.sim, sid , qid , b) to the simulator S.

S. On input (ac.request.rep, sid , qid) from the simulator S:

– Abort if (qid ′,Uj , a, φ,Vi,P) such that qid ′ 6= qid is not stored.
– Abort if (sid ,Vi, 1) is not stored.
– If there is a tuple (sid ,U ′

j , a
′, φ′,Vi,P , reqid , b) such that Uj = U ′

j , a = a ′

and φ = φ′, take reqid from that tuple, else pick random fresh reqid ←
[0, 1]k .

– Store (sid ,Uj , a, φ,Vi,P , reqid , 0).
– Delete (qid ,Uj , a, φ,Vi,P).
– Send (ac.request.end, sid , φ,P , reqid) to Vi.

Fig. 1. Description of functionality FAC: interfaces ac.setup and ac.request

15

Functionality FAC

3. On input (ac.issue.ini, sid , reqid) from an authority Vi:
– Abort if a tuple (sid ,Uj , a, φ,V ′

i,P , reqid
′, 0) such that reqid ′ = reqid and

V ′
i = Vi is not stored.

– Create a fresh qid and store (qid ,Uj , a,Vi,P , φ, reqid).
– Store (sid ,Uj , a, φ,Vi,P , reqid , 1) and delete (sid ,Uj , a, φ,Vi,P , reqid , 0).
– Send (ac.issue.sim, sid , qid) to the simulator S.

S. On input (ac.issue.rep, sid , qid) from the simulator S:

– Abort if (qid ′,Uj , a,Vi,P , φ, reqid) such that qid ′ 6= qid is not stored.
– If Uj is honest, set U ′

j ← Uj , else set U ′
j ← A.

– If a tuple (sid ,U ′
j ,DB) is not stored, store (sid ,U ′

j ,DB), where DB is a
(initially empty) database with entries of the form [reqid , a,V].

– If there is not an entry [reqid , a,V] in DB such that reqid ′ = reqid , add
an entry [reqid , a, ∅] to DB.

– If Uj or Vi are honest, replace the entry [reqid , a,V] in DB by [reqid , a,
V ∪ {Vi}].

– Delete (qid ,Uj , a,Vi,P , φ, reqid).
– Send (ac.issue.end, sid , a, φ,Vi) to Uj .

4. On input (ac.show.ini, sid , ϕ,P ,Pk) from a user Uj :
– Abort if ϕ /∈ Uϕ, or if P /∈ Up.
– If Uj is honest, set U ′

j ← Uj , else set U ′
j ← A.

– If a tuple (sid ,U ′
j ,DB) is not stored, store (sid ,U ′

j ,DB), where DB is a
(initially empty) database with entries of the form [reqid , a,V].

– Evaluate A ← Find(ϕ,DB). The algorithm Find outputs a set A of at-
tributes such that both 1 = ϕ(A) and, for each a ∈ A, the entry [reqid , a,
V] ∈ DB is such that |V| ≥ t′, where t′ = t, if Uj is honest, and t′ = t− t̃,
if Uj is corrupt. (t̃ < t is the number of corrupt authorities.)

– Abort if A = ∅.
– Create a fresh qid and store (qid , ϕ,P ,Pk).
– If this is the first show received by Pk, set b← 1, else set b← 0.
– Send (ac.show.sim, sid , qid , b) to S.

S. On input (ac.show.rep, sid , qid) from S:

– Abort if a tuple (qid ′, ϕ,P ,Pk) such that qid 6= qid ′ is not stored.
– Delete (qid , ϕ,P ,Pk).
– Send (ac.show.end, ϕ,P) to Pk.

Fig. 2. Description of functionality FAC: interfaces ac.issue and ac.show

16

If FAC does not abort, FAC records that the setup interface is already run
for Vi and sends a message to Vi.
The fact that FAC queries the simulator S and only concludes the execution
of the setup interface when prompted by the simulator allows an adversary
in the real world to delay the execution of the setup interface or prevent it
from being finalized. We recall that, in the real world, the adversary controls
the network, and thus it can arbitrarily delay or drop messages, thereby
delaying or preventing the finalization of the execution. Therefore, FAC must
allow S to do that in the setup interface and in other interfaces. The only
exception, which does not happen in FAC, would be an interface whose
execution is intended to be local, i.e., an interface where a party is invoked by
the environment on some input and produces an output to the environment
without sending any message.
FAC allows each authority Vi to run the setup interface independently of
other authorities, i.e. the execution of the setup interface for one authority
can be finalized without involvement of other authorities. Therefore, FAC

is realizable by protocols where authorities run the setup interface indepen-
dently of each other. For example, protocols where each authority creates
its own keys, or protocols where authorities obtain their keys from a trusted
third party that generates them. FAC can be modified so that it is realiz-
able by protocols in which the setup interface requires interaction between
authorities, e.g. protocols that use a distributed key generation protocol as
building block.

2. The ac.request interface is invoked by a user Uj on input an attribute a, a
statement φ, an authority identifier Vi, and a pseudonym P . FAC aborts if Vi
is not included in the session identifier sid . FAC also aborts if a, φ or Vi do
not belong to their respective domains, or if the attribute a does not fulfill
the statement φ. If FAC does not abort, FAC saves the request under a query
identifier and queries the simulator. The bit b sent to the simulator reveals
whether this is the first request by Uj or not. Construction ΠAC reveals this
information because, in the first request, the user needs to obtain the keys.
When the simulator replies, FAC aborts if the query identifier sent by the
simulator is not stored. FAC also aborts if the authority Vi has not run the
setup interface. Otherwise FAC records the request under a request identifier
reqid and sends φ, P and reqid to Vi.
We remark that FAC enforces that requests from the same user for the same
attribute and statement to different authorities are linkable through reqid .
The reason is that such linkability is required in the Coconut protocol and in
construction ΠAC. Namely, in Coconut the commitment cm sent to different
authorities to request the issuance of an attribute needs to be equal, or
otherwise the user would not be able to aggregate the signature shares from
different authorities. For other cases, users can choose whether their requests
are linkable or unlinkable by choosing appropriate pseudonyms.
We also remark that FAC only considers the case in which users prove the
same statement to different authorities to request the issuance of a certain
attribute. FAC and ΠAC can easily be generalized to allow users to prove

17

different statements to each of the authorities to request the issuance of the
same attribute.

3. The ac.issue interface is invoked by an authority Vi on input a request
identifier reqid . FAC aborts if a request (sid ,Uj , a, φ,Vi,P , reqid ′) such that
reqid ′ = reqid was not sent to Vi. If FAC does not abort, FAC records that Vi
wishes to issue the attribute corresponding to that request. FAC queries the
simulator. After being prompted by the simulator, FAC updates a database
DB for user Uj to record that Vi issued the attribute a to Uj . We remark
that, if Vi had already issued a to Uj for a certain reqid , then the database
is not updated. The database is not updated either when both Vi and Uj
are corrupt. In the ac.show interface, it is assumed that corrupt authorities
have issued any attributes to corrupt users.

4. The ac.show interface is invoked by a user Uj on input a statement ϕ, a
pseudonym P and the identifier of a provider Pk. FAC aborts if ϕ or P do
not belong to their respective universes. We remark that ϕ differs from φ in
that ϕ may involve more than one attribute. FAC finds a set A of attributes
that were issued to Uj and that satisfy ϕ. If Uj is honest, the attributes
need to be issued by t authorities. If Uj is corrupt and there are t̃ corrupt
authorities, the attributes need to be issued by t− t̃ honest authorities. FAC

aborts if a set A cannot be found. Otherwise FAC queries the simulator. The
bit b sent to the simulator reveals whether this is the first show received
by Pk. Construction ΠAC reveals this information because, in the first show
received, Pk retrieves the keys. After being prompted by the simulator, FAC

sends ϕ and P to the provider Pk.
We remark that, FAC does not enforce that pseudonyms are unique. There-
fore, users can optionally link executions of the show interface or an execution
of the show interface with an execution of the request interface.
We also remark that FAC does not take into account the case where t or
more authorities are corrupt. We will analyze the security of construction
ΠAC under the assumption that at most t− 1 authorities are corrupt.

FAC guarantees the following security properties, which are described in [11]:

Unforgeability. FAC ensures that any attribute that is used to prove that the
user’s attributes satisfy the statement ϕ needs to be issued at least t − t̃
times, where t̃ is the number of corrupt authorities. Therefore, under the
assumption that t̃ ≤ t − 1, at least one honest authority needs to issue the
attribute to the user so that the user can employ it to satisfy ϕ.

Blindness. FAC ensures that, in the request interface, an authority learns that
the attribute a satisfies the statement φ, but no further information about
a is revealed to the authority.

Unlinkability. In the request and show interfaces, a user receives a pseudonym
as input. This pseudonym will determine whether the requests are linkable
with each other, and whether shows are linkable with each other or with
requests. Generally, FAC does not impose requirements on the value of the
pseudonyms, thereby providing optional unlinkability. The only exception
is that requests for the same attribute and statement by the same user to

18

different authorities need to be linkable. This linkability is established by
using the same request identifier reqid .

6 Building Blocks of ΠAC

6.1 Ideal Functionality FKG

In Coconut, key generation involves creating a key pair for the Pointcheval-
Sanders signature scheme in such a way that the shares of the secret key are given
to n authorities, so that t ≤ n authorities are needed to produce a signature.
Key generation could be conducted by either a trusted party, which computes
the keys and gives each authority its share, or via a distributed key generation
protocol [22, 23], which avoids the need of a trusted party. In ΠAC, the authorities
obtain their secret keys through the ideal functionality for key generation FKG

in Figure 3. Alternatively, we could replace FKG by an ideal functionality for
distributed key generation. With that replacement, ΠAC would realize a modified
version of FAC where authorities cannot finalize the execution of the setup phase
without involvement of other authorities, as discussed in Section 5.
FKG interacts with n authorities (V1, . . . ,Vn). FKG consists of two interfaces

kg.getkey and kg.retrieve. The interface kg.getkey is used by Vi to obtain its public
key pki and secret key ski , as well as the public key pk . The interface kg.retrieve
is used by any party P to obtain the public key pk and the public keys 〈pki〉ni=1

of each of the authorities.

6.2 Ideal Functionality FNYM

ΠAC uses the functionality FNYM for a secure idealized pseudonymous chan-
nel. We use FNYM to describe ΠAC for simplicity, in order to hide the details
of real-world pseudonymous channels. FNYM is similar to the functionality for
anonymous secure message transmission in [24]. FNYM interacts with senders
T and receivers R. FNYM is parameterized by a message space M, a security
parameter k , a universe of pseudonyms Up, and a leakage function l , which leaks
the message length. FNYM consists of two interfaces nym.send and nym.reply.

1. T uses the nym.send interface to send a message m ∈M, a pseudonym P ∈
Up and a receiver identifier R to FNYM. FNYM sends l(m) to the simulator
S. After receiving a response from S, FNYM creates a send identifier sendid
and sends m, P and sendid to R.

2. R uses the nym.reply interface to send a message m ∈M and a send identifier
sendid to FNYM. FNYM checks if there is a reply pending for send identifier
sendid . In that case, FNYM sends l(m) to S. After receiving a response from
S, FNYM sends m and P to T .

R does not learn the identifier T . R learns a pseudonym P chosen by T and can
reply to messages received from T . T can choose different pseudonyms to make
the messages sent unlinkable towards R.

19

Functionality FKG

FKG is parameterized by a probabilistic algorithm KeyGen and a security param-
eter 1k and a maximum number q of messages to be signed.

1. On input (kg.getkey.ini, sid) from an authority Vi:
– Abort if sid 6= (V1, . . . ,Vn, sid ′) or if Vi /∈ sid .
– If (sid , pk , 〈pki , ski〉ni=1) is not stored, run algorithm (pk , 〈pki , ski〉ni=1) ←

KeyGen(1k , q) and store (sid , pk , 〈pki , ski〉ni=1).
– Create a fresh qid and store (qid ,Vi).
– Send (kg.getkey.sim, sid , qid , pk , 〈pki〉ni=1) to S.

S. On input (kg.getkey.rep, sid , qid) from the simulator S:

– Abort if (qid ,Vi) such that qid 6= qid ′ is not stored.
– Delete (qid ,Vi).
– Send (kg.getkey.end, sid , pk , pki , ski) to Vi.

2. On input (kg.retrieve.ini, sid) from any party P:

– Abort if sid 6= (V1, . . . ,Vn, sid ′).
– If (sid , pk , 〈pki , ski〉ni=1) is stored, set v ← (pk , 〈pki〉ni=1), else set v ← ⊥.
– Create a fresh qid and store (qid ,P, v).
– Send (kg.retrieve.sim, sid , qid , v) to S.

S. On input (kg.retrieve.rep, sid , qid) from S:

– Abort if (qid ′,P, v) such that qid ′ 6= qid is not stored.
– Delete the record (qid ,P, v).
– Send (kg.retrieve.end, sid , v) to P.

Fig. 3. Description of functionality FKG

20

Functionality FNYM

FNYM is parameterized by a message spaceM, a security parameter k , a universe
of pseudonyms Up, and a leakage function l , which leaks the message length.

1. On input (nym.send.ini, sid ,m,P ,R) from T :

– Abort if m /∈M, or if P /∈ Up.
– Create a fresh qid and store (qid ,P , T ,m,R).
– Send (nym.send.sim, sid , qid , l(m)) to S.

S. On input (nym.send.rep, sid , qid) from S:

– Abort if (qid ′,P , T ,m,R) such that qid = qid ′ is not stored.
– Create random fresh sendid ← [0, 1]k and store (sid , T ,P , sendid).
– Delete the record (qid ,P , T ,m,R).
– Send (nym.send.end, sid ,m,P , sendid) to R.

2. On input (nym.reply.ini, sid ,m, sendid) from R:

– Abort if m /∈M.
– Abort if there is not a tuple (sid , T ,P , sendid ′) stored such that sendid =

sendid ′.
– Create a fresh qid and store (qid ,P , T ,m).
– Delete the tuple (sid , T ,P , sendid).
– Send (nym.reply.sim, sid , qid , l(m)) to S.

S. On input (nym.reply.rep, sid , qid) from S:

– Abort if (qid ′,P , T ,m) such that qid = qid ′ is not stored.
– Delete the record (qid ,P , T ,m).
– Send (nym.reply.end, sid ,m,P) to T .

Fig. 4. Description of functionality FNYM

21

6.3 Ideal Functionality FRO

ΠAC uses the functionality FRO for a random oracle [25]. FRO models an idealized
hash function. FRO interacts with parties P and is parameterized by an output
space S and a message spaceMro. FRO consists of an interface ro.query. A party
P uses the ro.query interface on input a message m. FRO checks whether m has
been received before. If that is not the case, FRO generates a random response
h, records (m, h) and sends h to P. Otherwise FRO sends the recorded h to P.

Functionality FRO

FRO is parameterized by an output space S and a message space Mro.

1. On input (ro.query.ini, sid ,m) from P:

– Abort if m /∈Mro.
– If a tuple (sid ,m ′, h) such that m ′ = m is not stored, pick random h ← S

such that there is no stored tuple (sid ,m, h ′) with h = h ′ and store (sid ,
m, h).

– Take the stored tuple (sid ,m ′, h) such that m ′ = m and send the message
(ro.query.end, sid , h) to P.

Fig. 5. Description of functionality FRO

6.4 Pointcheval-Sanders Signatures in the Random Oracle Model

In the Pointcheval-Sanders signature scheme (see Section 2.5), to compute a
signature, the signer picks a random generator h ∈ G. In Coconut, this random
generator is computed by evaluating a hash function on input a commitment
to the messages to be signed (see Section 3). This is necessary so that every
authority uses the same random generator h to compute a signature share, which
allows the user to aggregate those shares.

Construction ΠAC uses the same idea as Coconut. In order to formalize
this idea and analyze the security of ΠAC, we describe a modified version of
Pointcheval-Sanders signatures in the random oracle model.

First, we modify the syntax of algorithm Sign as follows. Sign uses a random
oracle H :Mro → S. Sign(sk ,m1, . . .mq, r , st) receives as input a secret key sk ,
a tuple of messages (m1, . . . ,mq), a value r ∈ Mro and state information st ,
which stores tuples of the form (m1, . . . ,mq, r). Sign outputs a signature σ on
(m1, . . . ,mq) if st does not contain a tuple (m ′1, . . . ,m

′
q, r
′) such that (m1, . . . ,

mq) 6= (m ′1, . . . ,m
′
q) and r = r ′. Sign also outputs updated state information st ′.

The modified Pointcheval-Sanders signature scheme works as follows. Algo-
rithms KeyGen and VfSig remain unmodified.

22

Sign(sk ,m1, . . . ,mq, r , st). Parse sk as (θ, x, y1, . . . , yq). If st contains a tuple
(m ′1, . . . ,m

′
q, r
′) such that (m1, . . . ,mq) 6= (m ′1, . . . ,m

′
q) and r = r ′, output

σ = ⊥ and st ′ = st . Otherwise compute h ← H(r) and output the signature
σ = (h, s)← (h, hx+y1m1+...+yqmq) and the updated state information st ′ =
st ∪ {(m1, . . . ,mq, r)}.

Definition 4 (Existential Unforgeability in the RO). For any ppt adver-
sary A, existential unforgeability is the RO is defined as follows.

Pr

[
(sk , pk)← KeyGen(1k); (m, σ)← A(pk)Os(sk ,·,·),H(·) :
1 = VfSig(pk , σ,m) ∧ m ∈M ∧ m /∈ Ss

]
≤ ε(k)

Os(sk , ·, ·) works as follows. On input sk, a message m = (m1, . . . ,mq) and the
value r, Os runs (σ, st ′)← Sign(sk ,m1, . . . ,mq, r , st). Os replaces st by st ′ and
returns (σ, st ′) to A. (st is empty in the first invocation of Os.) Ss is a set that
contains the messages sent to Os.

In comparison to the definition of existential unforgeability (see Definition 11),
A has access to the random oracle H, and the signing oracle is modified to follow
the new syntax.

The modified Pointcheval-Sanders scheme is existentially unforgeable under
Assumption 2 (see Definition 2), like the original scheme. It suffices to observe
that the value h output by the random oracle is random, and that it is different
for each signed message tuple (m1, . . . ,mq). The latter is ensured by checking in
st that the input to H is different for different message tuples.

In Coconut and in ΠAC, the authorities that sign messages do not receive
as input the messages to be signed and thus cannot keep state information st .
However, H receives as input a commitment to a tuple of messages, and the
binding property of the commitment scheme ensures that users are not able to
open a commitment to two different tuples of messages, which ensures that the
value h is different for each tuple of messages signed (see the security analysis
in Section 8.3).

7 Construction ΠAC

We describe construction ΠAC for FAC. ΠAC runs with authorities (V1, . . . ,Vn),
any number of users Uj and any number of providers Pk. ΠAC is parameterized
by a threshold t, a security parameter k , a universe of attributes Ua = Zqp, a
universe of statements for issuance Uφ and a universe of statements for shows
Uϕ that are CNF/DNF formulae for proofs of knowledge of discrete logarithms
and representations, a universe of pseudonyms Up, and an algorithm Find.

ΠAC uses the ideal functionalities FNYM, FKG and FRO. It also uses the Ped-
ersen commitment scheme. ΠAC uses the signature scheme by Pointcheval and
Sanders [13], and non-interactive zero-knowledge proofs of knowledge computed
via the Fiat-Shamir heuristic. We describe those proofs by using the notation
in Section 2.2. We remark that the computation and verification of those proofs
involve calls to FRO, but they are not depicted in our description of ΠAC.

23

1. On input (ac.setup.ini, sid), Vi does the following:

– Abort if sid 6= (V1, . . . ,Vn, sid ′), or if Vi /∈ sid , or if n < t.
– Send (kg.getkey.ini, sid) to FKG. FKG executes an algorithm (pk , 〈pki ,

ski〉ni=1)← KeyGen(1k , q), which works as follows:

• Run (p,G, G̃,Gt, e, g , g̃)← G(1k).
• Pick q random generators (h1, . . . , hq)← G.

• Set the parameters par ← (p,G, G̃,Gt, e, g , g̃ , h1, . . . , hq).
• Choose (q + 1) polynomials (v, w1, . . . , wq) of degree (t − 1) with

random coefficients in Zp.
• Set (x, y1, . . . , yq)← (v(0), w1(0), . . . , wq(0)).
• For i = 1 to n, set the secret key ski of each authority Vi as ski =

(xi, yi,1, . . . , yi,q)← (v(i), w1(i), . . . , wq(i)).
• For i = 1 to n, set the verification key pki of each authority Vi as

pki = (α̃i, βi,1, β̃i,1, . . . , βi,q, β̃i,q) ← (g̃xi , gyi,1 , g̃yi,1 , . . . , gyi,q , g̃yi,q).
(In comparison to Coconut, ΠAC extends the public key to provide
an issuance protocol with unconditional privacy for the users and to
make the protocol provably unforgeable.)
• Compute the verification key pk = (par , α̃, β1, β̃1, . . . , βq, β̃q)← (par ,

g̃x, gy1 , g̃y1 , . . . , gyq , g̃yq).
• Output (pk , 〈pki , ski〉ni=1).

– Receive (kg.getkey.end, sid , pk , pki , ski) from FKG.
– Store (sid , pk , pki , ski).
– Output (ac.setup.end, sid).

2. On input (ac.request.ini, sid , a, φ,Vi,P), user Uj and authority Vi do the
following:

– Uj aborts if sid 6= (V1, . . . ,Vn, sid ′) or if Vi /∈ sid .
– Abort if a /∈ Ua, or if φ /∈ Uφ, or if P /∈ Up.
– Abort if φ(a) 6= 1.
– If (sid , a ′, o1, . . . , oq,P , Λ = (com, com1, . . . , comq, h, πs), φ

′, reqid) such
that a ′ = a and φ′ = φ is not stored, do the following:

• If (sid , pk , 〈pki〉ni=1) is not stored, do the following:

∗ Send (kg.retrieve.ini, sid) to FKG.
∗ Receive (kg.retrieve.end, sid , v) from FKG.
∗ Abort if v = ⊥.
∗ Parse v as (pk , 〈pki〉ni=1) and store (sid , pk , 〈pki〉ni=1).

• Parse pk as (par , α̃, β1, β̃1, . . . , βq, β̃q) and par as (p,G, G̃,Gt, e, g , g̃ ,
h1, . . . , hq).
• Parse a as (m1, . . . ,mq). Pick random open = o← Zp and compute

com = go
∏q
j=1 h

mj

j .
• Send (ro.query.ini, sid , com) to FRO and receive (ro.query.end, sid , h)

from FRO.
• Compute commitments to each of the messages. For j = 1 to q,

pick random oj ← Zp and set comj = goj hmj . (These commitments
replace the ElGamal ciphertexts used in Coconut to provide uncon-
ditional privacy for the users.)

24

• Compute a ZK argument of knowledge πs via the Fiat-Shamir heuris-
tic for the following relation:

πs =NIZK{(m1, . . . ,mq, o, o1, . . . , oq) :

com = go
q∏
j=1

h
mj

j ∧

{comj = goj hmj}∀j∈[1,q] ∧
φ(m1, . . . ,mq) = 1}

• Pick random fresh reqid ← [0, 1]k .
• Store (sid , a, o1, . . . , oq,P , Λ = (com, com1, . . . , comq, h, πs), φ, reqid).

– Store (sid , reqid ,Vi).
– Send (nym.send.ini, sid , 〈Λ, φ, reqid〉,P ,Vi) to FNYM. (We recall that P

is a pseudonym.)
– Vi receives (nym.send.end, sid , 〈Λ, φ, reqid〉,P , sendid) from FNYM.
– Abort if (sid , pk , pki , ski) is not stored.
– Send (ro.query.ini, sid , com) to FRO and receive (ro.query.end, sid , h) from
FRO. Abort if h 6= h ′.

– Verify πs by using φ, pk and (com, com1, . . . , comq, h). Abort if the proof
πs is not correct.

– Store (sid ,P , reqid , com, com1, . . . , comq, h, sendid).
– Output (ac.request.end, sid , φ,P , reqid).

3. On input (ac.issue.ini, sid , reqid), authority Vi and user Uj do the following:

– Vi aborts if sid 6= (V1, . . . ,Vn, sid ′) or if Vi /∈ sid .
– Abort if a tuple (sid ,P , reqid ′, com, com1, . . . , comq, h, sendid) such that

reqid ′ = reqid is not stored.
– Abort if (sid , pk , pki , ski) is not stored.
– Parse ski as (xi, yi,1, . . . , yi,q).
– Compute c = hxi

∏q
j=1 com

yi,j
j .

– Set the blinded signature share σ̂i = (h, c).
– Send (nym.reply.ini, sid , 〈Vi, σ̂i, reqid〉, sendid) to FNYM.
– Uj receives (nym.reply.end, sid , 〈Vi, σ̂i, reqid〉,P) from FNYM.
– Abort if (sid , reqid ′,V ′i) such that reqid = reqid ′ and Vi = V ′i is not

stored.
– Take the tuple (sid , a, o1, . . . , oq,P , Λ = (com, com1, . . . , comq, h, πs), φ,

reqid ′) such that reqid = reqid ′.
– Parse σ̂i as (h ′, c). Abort if h 6= h ′.
– Parse pki as (α̃i, βi,1, β̃i,1, . . . , βi,q, β̃i,q).

– Compute σi = (h, si)← (h, c
∏q
j=1 β

−oj
i,j).

– Parse a as (m1, . . . ,mq). Abort if e(h, α̃i
∏q
j=1 β̃

mj

i,j) = e(si, g̃) does not
hold.

– If a tuple (sid ,DB) is not stored, store (sid ,DB), where DB is a (initially
empty) database with entries of the form [reqid , a,V, σ].

– If there is not an entry [reqid ′, a,V, σ] in DB such that reqid ′ = reqid ,
add an entry [reqid , a, ∅,⊥] to DB.

25

– Replace the entry [reqid , a,V, σ] in DB by [reqid , a,V ∪ {Vi, σi}, σ]. If
σ = ⊥ and |V| ≥ t, do the following:
• Let S ∈ [1, n] be a set of t indices of authorities in V.
• For all i ∈ S, evaluate at 0 the Lagrange basis polynomials

li = [
∏

j∈S,j 6=i
(0− j)][

∏
j∈S,j 6=i

(i− j)]−1 mod p

• For all i ∈ S, take σi = (h, si) from V and compute the signature
σ = (h, s)← (h,

∏
i∈S s

li
i).

• Parse pk as pk = (par , α̃, β1, β̃1, . . . , βq, β̃q) and abort if the equality

e(h, α̃
∏q
j=1 β̃

mj

j) = e(s, g̃) does not hold, else replace [reqid , a,V,⊥]
by [reqid , a,V, σ].

– Output (ac.issue.end, sid , a, φ,Vi).
4. On input (ac.show.ini, sid , ϕ,P ,Pk), user Uj and provider Pk do the follow-

ing:

– Uj aborts if sid 6= (V1, . . . ,Vn, sid ′).
– Abort if ϕ /∈ Uϕ, or if P /∈ Up.
– Abort if a tuple (sid ,DB) is not stored.
– Evaluate A ← Find(ϕ,DB). The algorithm Find outputs a set A = [al,
σl]

L
l=1 of attributes-signature pairs such that the attributes satisfy ϕ.

– Abort if A = ∅.
– For l = 1 to L, do the following:

• Parse σl as (hl, sl).
• Retrieve the stored tuple (sid , pk , 〈pki〉ni=1) and parse pk as (par , α̃,
β1, β̃1, . . . , βq, β̃q).
• Pick random rl ← Zp and r′l ← Zp.
• Compute σ′l = (h ′l , s

′
l) ← (h

r′l
l , s

r′l
l (h ′l)

rl). (The value ν = (h ′l)
rl in

Coconut is not present in ΠAC. Instead, it is used to compute s′l.
This modification allows the design of a show protocol that provides
unconditional privacy for the users.)
• Parse al as (ml,1, . . . ,ml,q). Compute κl ← α̃

∏q
j=1 β̃

ml,j

j g̃rl .

– Compute the ZK argument of knowledge πv via the Fiat-Shamir heuris-
tic.

πv =NIZK{(〈ml,1, . . . ,ml,q, rl〉Ll=1) :

{κl = α̃

q∏
j=1

β̃
ml,j

j g̃rl}Ll=1 ∧

ϕ(〈ml,1, . . . ,ml,q〉Ll=1) = 1}

– Send (nym.send.ini, sid , 〈{κl, σ′l}Ll=1, πv, ϕ〉,P ,Pk) to FNYM.
– Pk receives (nym.send.end, sid , 〈{κl, σ′l}Ll=1, πv, ϕ〉,P , sendid) from FNYM.
– Pk aborts if sid 6= (V1, . . . ,Vn, sid ′).
– If (sid , pk) is not stored, do the following:

26

• Send (kg.retrieve.ini, sid) to FKG.
• Receive (kg.retrieve.end, sid , v) from FKG.
• Abort if v = ⊥.
• Parse v as (pk , 〈pki〉ni=1) and store (sid , pk).

– For l = 1 to L, parse σ′l as (h ′l , s
′
l) and abort if h ′l = 1 or if e(h ′l , κl) =

e(s′l, g̃) does not hold.
– Verify πv by using ϕ, pk and {κl}Ll=1. Abort if the proof is not correct.
– Output (ac.show.end, ϕ,P).

In the following, we explain the interfaces of ΠAC.

1. In the ac.setup interface, an authority Vi queries FKG to obtain a key pk for
signature verification, and (pki , ski), which is a signing key pair for authority
Vi.
FKG computes the keys. The main idea is that FKG needs to generate the
keys (pki , ski) of authorities in such a way that, if a user possesses at least
t ≤ n signatures σi from t different authorities Vi (each authority uses his key
ski to compute the signature σi), then those signatures σi can be aggregated
by the user to obtain a signature σ that can be verified with the key pk .
ΠAC considers attributes a that consist of at most q fields (m1, . . . ,mq). In
the Pointcheval-Sanders signature scheme, a secret key for signing q messages
consists of q + 1 elements (xi, yi,1, . . . , yi,q) in Zp.
FKG uses q + 1 random polynomials of degree t − 1 to generate the keys.
The key pki of each authority Vi is the evaluation of those q+ 1 polynomials
on input i, while the secret key sk corresponding to the verification key pk
is the evaluation of those polynomials on input 0. Thanks to polynomial
interpolation, it is possible to reconstruct a polynomial of degree t− 1 with
t evaluations of that polynomial. Therefore, t secret keys ski are enough to
compute the key sk corresponding to pk .
In the ac.issue interface, the user first obtains t signatures σi computed on
input ski by t different authorities Vi. Then the user uses polynomial inter-
polation in order to aggregate those t signatures σi into a signature σ that
is verifiable with the verification key pk , i.e., as if σ was signed with sk .

2. In the ac.request interface, the user Uj sends a request to an authority Vi in
order to obtain a signature σi on an attribute a = (m1, . . . ,mq). Uj would
need to run the ac.request interface at least t times with t different authorities
to be able to obtain a signature σ on (m1, . . . ,mq) verifiable with the key
pk .
In each request, Uj may receive as input a description φ of statements that
the attribute (m1, . . . ,mq) must fulfill, which we denote as φ(m1, . . . ,mq) =
1. (If φ = ⊥, then no statements need to be proven.) Intuitively, Uj needs to
compute a request in such a way that Vi will be able to sign (m1, . . . ,mq)
without learning (m1, . . . ,mq) and, if required, to verify that (m1, . . . ,mq)
fulfills φ(m1, . . . ,mq) = 1. Uj proceeds as follows:
– Uj computes a commitment com to (m1, . . . ,mq) using a random opening

open. The hiding property ensures that com does not reveal any informa-
tion about (m1, . . . ,mq). The binding property ensures that com cannot
be opened to a different message.

27

– Uj queries the random oracle H on input com to obtain an output h.
The reason why this is done is the following. In the Pointcheval-Sanders
signature scheme [13], computing a signature on a message requires the
signer to generate a random value h that is part of the signature. In ΠAC,
Uj needs that each authority produces a signature σi on (m1, . . . ,mq)
signed with his secret key ski . After obtaining t signatures from t au-
thorities, Uj needs to aggregate those signatures σi to get a signature σ
verifiable with verification key pk . For that aggregation to be possible,
it is necessary that all the authorities use the same random value h to
compute σi. However, it is undesirable that authorities need to commu-
nicate with each other to agree on a common random value. To solve
this issue, a random oracle is used instead.

Therefore, requests for the same attribute to different authorities need to
use the same commitment com, and thus they are linkable. FAC allows
this linkability.

– Uj computes q commitments to the messages (m1, . . . ,mq). The hiding
property ensures that authorities do not learn any information about
the committed message beyond its length. The reason why Uj computes
these commitments is the following. Uj needs that each authority com-
putes a signature σi on (m1, . . . ,mq) without learning (m1, . . . ,mq). A
Pointcheval-Sanders signature has the form (h, hxi+y1,im1+...+yq,imq). To
allow an authority to sign (m1, . . . ,mq), Uj commits to mi, for i ∈ [1, q],
and uses h as part of the commitment parameters. Then the authority
will, roughly speaking, sign the committed messages.

– Uj sends com and (com1, . . . , comq) to Vi, along with a non-interactive
zero-knowledge proof of knowledge πs. πs proves that com and (com1,
. . . , comq) are well-formed. It also proves that (m1, . . . ,mq) committed
in com are the same as the messages committed in (com1, . . . , comq).
Finally, it proves that (m1, . . . ,mq) satisfy φ.

We remark that, if there is already a request computed for attribute a and
statement φ, Uj reuses the request to send it to other authorities. We note
that FAC and ΠAC only consider the case in which the user needs to prove the
same statement to different authorities to be issued an attribute. Therefore,
if φ changes, a new request is computed even if the attribute was the same
in a previous request. FAC and ΠAC can easily be modified to consider the
case in which users need to prove different statements to different authorities
to request the issuance of an attribute.

Vi receives through FNYM a message com, (com1, . . . , comq), h, πs, φ and
reqid . The request identifier reqid is included so that the user can link this
request to the reply sent later by Vi in the ac.issue interface.

After receiving the message, Vi recomputes the value h by evaluating the
random oracle on input com. Vi verifies the proof πs by using φ, pk and
(com, com1, . . . , comq, h). If the proof is correct, Vi outputs φ, P and reqid .
The pseudonym P and the request identifier reqid are received from FNYM.
reqid is needed by Vi to reply to Uj in the ac.issue interface.

28

3. In the ac.issue interface, an authority Vi receives as input reqid . Vi retrieves
the values (com, com1, . . . , comq), h and sendid associated with the request
reqid .
Vi takes his signing secret key ski = (xi, y1,i, . . . , yq,i) and turns (com1, . . . ,
comq) into a value c that can be seen as a commitment to xi+y1,im1 + . . .+
yq,imq. To do that, Vi uses the homomorphic properties of the commitment
scheme.
Vi sets σ̂i = (h, c) and sends pki , σ̂i and reqid to Uj through FNYM. Uj
retrieves the data for the request associated with reqid and the authority
associated with pki , which contains the openings (o1, . . . , oj) for the com-
mitments. Then Uj uses the openings to obtain hxi+y1,im1+...+yq,imq from c.
Uj sets the signature σi = (h, hxi+y1,im1+...+yq,imq), which is a Pointcheval-
Sanders signature on (m1, . . . ,mq) verifiable by the verification key pki .
If Uj possesses t signatures σi from t different authorities, Uj aggregates
them into a signature σ verifiable with verification key pk . For this purpose,
the user uses polynomial interpolation. Uj verifies σ on input the verification
key pk and the signed attribute (m1, . . . ,mq).
Finally, Uj outputs a, φ and Vi. This means that Vi issued the attribute a
to Uj .

4. In the ac.show interface, Uj receives as input statements ϕ, a pseudonym P
and the identity of a provider Pk. First Uj runs an algorithm Find to find
out whether she has been issued a set of attributes A that satisfies ϕ, i.e.,
Uj checks whether he possesses signatures σl verifiable with pk that sign all
the attributes al in the set A.
Uj then proves to Pk that she has been issued such a set of attributes and
that the attributes satisfy ϕ. For privacy reasons, Pk should not be able to
link the use of a signature σl in two executions of the ac.show interface, or
to the executions of the ac.issue interface in which the signature was issued.
(We remark that Uj can optionally link those executions by choosing P
appropriately.) To this end, Uj proceeds as follows:

– Uj picks random values r′l, rl and uses them to compute σ′l = (h ′l , s
′
l).

σ′l can be seen as a signature that signs an additional random attribute
under a dummy public key g̃ .

– Uj computes the values κl on input the public key pk , the attributes
(ml,1, . . . ,ml,q), and the random values rl. The reason κl are necessary
is the following. Uj sends σ′l to the provider Pk. However, Uj does not
send the attributes (ml,1, . . . ,ml,q) to Pk (to preserve unlinkability). To
allow Pk to verify σ′l without knowing (ml,1, . . . ,ml,q), Uj computes the
values κl. We note that κl is computed on input (ml,1, . . . ,ml,q), but
thanks to using the random value rl, κl does not reveal any information
about (ml,1, . . . ,ml,q).

– Additionally, Uj computes a non-interactive zero-knowledge proof of
knowledge πv that proves that the values κl are correctly computed.
I.e., πv proves that Uj knows the attributes (ml,1, . . . ,ml,q) and that κl
is well-formed and computed on input (ml,1, . . . ,ml,q) and rl. πv also
proves that (ml,1, . . . ,ml,q) used to compute κl fulfill the statements ϕ.

29

Uj sends a message 〈{κl, σ′l}Ll=1, πv, ϕ〉 to Pk through FNYM. Pk verifies the
proof πv. Then Pk verifies σ′l. To this end, Pk uses a modified version of the
verification equation of Pointcheval-Sanders signatures in which the signed
attributes (ml,1, . . . ,ml,q) and the verification key pk are replaced by the val-
ues κl. This modified verification equation, along with the proof πv that κl
are correctly computed, guarantee that the user possesses a valid signature
verifiable with pk . We recall that pk is used to compute κl. If both the ver-
ification of πv and of each σ′l are successful, Pk outputs ϕ and a pseudonym
P received from FNYM.

8 Security Analysis of Coconut

To prove that construction ΠAC securely realizes the ideal functionality FAC,
we have to show that for any environment Z and any adversary A there exists
a simulator S such that Z cannot distinguish between whether it is interacting
with A and the protocol in the real world or with S and FAC. The simulator
thereby plays the role of all honest parties in the real world and interacts with
FAC for all corrupt parties in the ideal world.
S runs a copy of any adversary A, which is used to provide to Z a view

that is indistinguishable from the view given by A in the real world. To achieve
that, S must simulate the real-world protocol towards the copy of A, in such a
way that A cannot distinguish an interaction with S from an interaction with
the real-world protocol. S uses the information provided by FAC to provide a
simulation of the real-world protocol.

Our simulator S runs copies of the functionalities FNYM, FKG and FRO.
When any of the copies of these functionalities aborts, S implicitly forwards
the abortion message to the adversary if the functionality sends the abortion
message to a corrupt party.
S also runs copies of the extractors Es and Ev and simulators Ss and Sv for

the non-interactive zero-knowledge arguments of knowledge πs and πv, which
are computed through the Fiat-Shamir transform. We remark that they involve
calls to the random oracle and rewinding of the adversary. For simplicity, we
omit those details.

In Section 8.1, we analyze the security of construction ΠAC when up to t− 1
authorities Vi are corrupt. In Section 8.2, we analyze the security of construction
ΠAC when (a subset of) service providers Pk are corrupt. In Section 8.3, we
analyze the security of construction ΠAC when (a subset of) users Uj are corrupt.
Finally, in Section 8.4, we analyze the security of ΠAC when up to t−1 authorities
Vi, (a subset of) service providers Pk and (a subset of) users Uj are corrupt.

8.1 Security Analysis of ΠAC when Vi is Corrupt

Intuition. When up to t − 1 authorities Vi are corrupt, we need to construct a
simulator S that simulates the honest users towards a copy of any adversary that
controls the corrupt authorities. S needs to simulate the request messages that

30

honest users send to authorities with the information given by FAC. FAC does
not disclose to authorities the identity of honest users and the attribute used to
compute a request. Therefore, S must be able to compute request messages that
are indistinguishable from those computed by honest users in the real protocol,
without knowing the identity of honest users or the attributes.

We show that the honest user identities are hidden from authorities thanks
to the use of FKG and FNYM. FNYM guarantees that messages sent by users
to authorities do not reveal the user identifier. FKG guarantees that all users
receive the same public keys and public parameters.

We also show that attributes used to compute requests are hidden from
authorities thanks to the hiding property of the commitment scheme and the
zero-knowledge property of the non-interactive proof of knowledge scheme.

Simulator. We describe the simulator S for the case in which up to t − 1 au-
thorities Vi are corrupt. S simulates the protocol by running the users’ side of
protocol ΠAC and copies of the ideal functionalities involved.

Honest authority Vi starts setup. When FAC sends (ac.setup.sim, sid ,Vi),
S runs a copy of FKG on input (kg.getkey.ini, sid). When FKG sends the
message (kg.getkey.sim, sid , qid , pk , 〈pki〉ni=1), S forwards that message to A.

Honest authority Vi ends setup. When A sends (kg.getkey.rep, sid , qid), S
runs FKG on that input. When FKG sends (kg.getkey.end, sid , pk , pki , ski),
S sends (ac.setup.rep, sid ,Vi) to FAC.

A requests keys. When a corrupt authority Ṽi sends (kg.getkey.ini, sid), S
runs a copy of FKG on input that message. When FKG sends (kg.getkey.sim,
sid , qid , pk , 〈pki〉ni=1), S forwards that message to Ṽi.

A receives keys. When Ṽi sends (kg.getkey.rep, sid , qid), S runs FKG on in-
put that message. When FKG sends (kg.getkey.end, sid , pk , pki , ski), S sends
(ac.setup.ini, sid) to FAC. When FAC sends (ac.setup.sim, sid , Ṽi), S sends
(ac.setup.rep, sid , Ṽi) to FAC. When FAC sends (ac.setup.end, sid), S sends
(kg.getkey.end, sid , pk , pki , ski) to Ṽi.

Honest user requests keys. When FAC sends (ac.request.sim, sid , qid , b), if
b = 1, the simulator S runs FKG on input (kg.retrieve.ini, sid). When FKG

sends (kg.retrieve.sim, sid , qid , v), S forwards that message to A.
Honest user receives keys. When A sends (kg.retrieve.rep, sid , qid), S runs
FKG on input that message. When FKG sends (kg.retrieve.end, sid , v), S
proceeds with the “Honest user sends request” item.

Honest user sends request. When FAC sends (ac.request.sim, sid , qid , b), if
b = 0 or otherwise if the “Honest user requests keys” item has been run, the
simulator S sends (nym.send.sim, sid , qid , l(m)) to A, where l(m) is equal
to the length of the message that the honest user sends to an authority
in the ac.request interface. When A sends (nym.send.rep, sid , qid), S sends
(ac.request.rep, sid , qid) to FAC.

A receives request. When FAC sends (ac.request.end, sid , φ,P , reqid) to a cor-
rupt authority Ṽi, S runs a copy of a user on input (ac.request.ini, sid , a ′, φ,
Ṽi,P), where, if the copy of the user stores a tuple (sid , a, o1, . . . , oq,P , Λ =

31

(com, com1, . . . , comq, h, πs), φ, reqid ′) such that reqid ′ = reqid , then a ′ = a,
else a ′ is a random attribute. (The copy of the user sets reqid to the value
received from FAC.) When running the copy of the user, S uses the simu-
lator Ss to compute a simulated proof πs. When the copy of the user sends
the message (nym.send.ini, sid , 〈Λ = (com, com1, . . . , comq, h, πs), φ, reqid〉,
P , Ṽi) to FNYM, S runs FNYM on input that message. When FNYM sends
(nym.send.sim, sid , qid , l(m)), S runs FNYM on input (nym.send.rep, sid , qid).
When FNYM sends (nym.send.end, sid , 〈Λ = (com, com1, . . . , comq, h, πs), φ,
reqid〉,P , sendid), S forwards that message to A.

A queries random oracle. When A sends (ro.query.ini, sid , com), S runs the
functionality FRO on that input. When FRO sends (ro.query.end, sid , h), S
forwards that message to A.

Honest authority issues attribute. When FAC sends (ac.issue.sim, sid , qid),
S sends (nym.reply.sim, sid , qid , l(m)) to A, where l(m) is the length of the
message that an honest authority sends in the ac.issue interface.

Honest user receives issuance from honest authority. When the adver-
sary A sends (nym.reply.rep, sid , qid), S sends (ac.issue.rep, sid , qid) to FAC.

A issues attribute. When a corrupt authority Ṽi sends (nym.reply.ini, sid , 〈Ṽi,
σ̃i, reqid〉, sendid), S runs FNYM on input that message. When FNYM sends
(nym.reply.sim, sid , qid , l(m)), S sends that message to A.

Honest user receives issuance from A. When A sends (nym.reply.rep, sid ,
qid), the simulator S runs FNYM on input that message. When the function-
ality FNYM sends (nym.reply.end, sid , 〈Ṽi, σ̂i, reqid〉,P), S runs the copy of
the user on input that message. We remark that the copy of the user finds
the request identifier reqid associated with this issuance message, or aborts
if it is not found. When the copy of the user outputs (ac.issue.end, sid , a, φ,
Vi), S sends (ac.issue.ini, sid , reqid) to FAC. When FAC sends (ac.issue.sim,
sid , qid), S sends (ac.issue.rep, sid , qid) to FAC.

Honest user shows credential. When FAC sends (ac.show.sim, sid , qid , b), S
sends (nym.send.sim, sid , qid , l(m)) to A, where l(m) is the length of the
message 〈{κl, σ′l}Ll=1, πv, ϕ〉 sent by honest users.

Honest provider receives credential show. When A sends (nym.send.rep,
sid , qid), if b = 0 in the message (ac.show.sim, sid , qid , b) received from FAC,
S sends (ac.show.rep, sid , qid) to FAC, else S proceeds with the “Honest
provider requests keys” item.

Honest provider requests keys. When FAC sends (ac.show.sim, sid , qid , b),
if b = 1, after running the “Honest user shows credential” item, the simulator
S runs FKG on input (kg.retrieve.ini, sid). When FKG sends (kg.retrieve.sim,
sid , qid , v), S forwards that message to A.

Honest provider receives keys. When A sends (kg.retrieve.rep, sid , qid), S
runs FKG on input that message. When FKG sends (kg.retrieve.end, sid , v),
S sends (ac.show.rep, sid , qid) to FAC.

Theorem 1. When up to t−1 authorities Vi are corrupt, the construction ΠAC

securely realizes FAC in the (FKG,FNYM,FRO)-hybrid model if the commitment
scheme is hiding and the non-interactive proof of knowledge scheme is zero-
knowledge.

32

Proof of Theorem 1. We show by means of a series of hybrid games that the envi-
ronment Z cannot distinguish between the ensemble REALΠAC,A,Z and the en-
semble IDEALFAC,S,Z with non-negligible probability. We denote by Pr[Game i]
the probability that the environment distinguishes Game i from the real-world
protocol.

Game 0: This game corresponds to the execution of the real-world protocol.
Therefore, Pr[Game 0] = 0.

Game 1: This game proceeds as Game 0, except that in Game 1 the non-
interactive proofs of knowledge πs are replaced by simulated proofs computed
by the simulator Ss. Under the zero-knowledge property of the proof system
(see Definition 5), we have that |Pr[Game 1]− Pr[Game 0]| ≤ Advzk

A .

Game 2: This game proceeds as Game 1, except that in Game 2 the values
(com1, . . . , comq) in each request are replaced by random values in G. At this
point, the proofs πs are simulated proofs of false statements. Since the values
(com1, . . . , comq) are randomly distributed, this change does not alter the
view of the environment and we have that |Pr[Game 2]−Pr[Game 1]| = 0.

Game 3: This game proceeds as Game 2, except that in Game 3 the com-
mitments to attributes a = (m1, . . . ,mq) are replaced by commitments to
random messages. Under the hiding property of the commitment scheme (see
Definition 7), we have that |Pr[Game 3] − Pr[Game 2]| ≤ Advhid

A · Nreq,
where Nreq is the number of different requests computed by honest users.
Since the Pedersen commitment scheme is information theoretically hiding,
we have that |Pr[Game 3]− Pr[Game 2]| = 0.

Proof sketch. The proof uses a sequence of hybrid games Game 2.i, for i = 0
to Nreq + 1. In Game 2.i, the parameters of the commitment scheme parc
are received from the challenger of the hiding game and they are used to
set up the values (g , h1, . . . , hq) in the parameters par in FKG. The commit-
ments for the first i − 1 requests are computed on input random messages,
whereas the commitments for the requests from i+ 1 to Nreq are computed
on input the attribute values. The commitment for request i is the challenge
commitment computed by the challenger after receiving the correct attribute
value. Therefore, Game 2.0 is equal to Game 2, whereas Game 2.(Nreq+1)

is equal to Game 3. Given the advantage Advhid
A of the adversary against

the hiding property, the probability of distinguishing between Game 2.i and
Game 2.(i+1) is bound by Advhid

A . Therefore, the probability of distinguish-
ing between Game 2 and Game 3 is bound by Advhid

A ·Nreq.

The distribution of Game 3 is identical to that of our simulation. In Game 3,
the request of an honest user is computed on input a random attribute instead
of the correct attribute received as input from the environment. The overall
advantage of the environment to distinguish between the real and the ideal
protocol is |Pr[Game 3] − Pr[Game 0]| ≤ Advzk

A . This concludes the proof
of Theorem 1.

33

8.2 Security Analysis of ΠAC when Pk is Corrupt

Intuition. When (a subset of) providers Pk are corrupt, we need to construct a
simulator S that simulates the honest users towards a copy of any adversary that
controls the corrupt providers. S needs to simulate the credential show messages
that honest users send to providers with the information given by FAC. FAC

does not disclose to providers the identity of honest users or the attributes used
to compute a credential show. Therefore, S must be able to compute credential
show messages that are indistinguishable from those computed by honest users in
the real protocol, without knowing the identity of honest users or the attributes.

We show that the honest user identities are hidden from providers thanks
to the use of FKG and FNYM. FNYM guarantees that messages sent by users to
providers do not reveal the user identifier. FKG guarantees that all users receive
the same public keys and public parameters.

We also show that the attributes used to compute credential show messages
are hidden from providers thanks to the zero-knowledge property of the non-
interactive proof of knowledge scheme.

Simulator. We describe the simulator S for the case in which (a subset of)
providers Pk are corrupt. S simulates the protocol by running the users’ side of
protocol ΠAC and copies of the ideal functionalities involved.

Honest authority Vi starts setup. When FAC sends (ac.setup.sim, sid ,Vi),
S runs a copy of FKG on input (kg.getkey.ini, sid). When FKG sends the
message (kg.getkey.sim, sid , qid , pk , 〈pki〉ni=1), S forwards that message to A.

Honest authority Vi ends setup. When A sends (kg.getkey.rep, sid , qid), S
runs FKG on that input. When FKG sends (kg.getkey.end, sid , pk , pki , ski),
S sends (ac.setup.rep, sid ,Vi) to FAC.

Honest user requests keys. When FAC sends (ac.request.sim, sid , qid , b), if
b = 1, the simulator S runs FKG on input (kg.retrieve.ini, sid). When FKG

sends (kg.retrieve.sim, sid , qid , v), S forwards that message to A.
Honest user receives keys. When A sends (kg.retrieve.rep, sid , qid), S runs
FKG on input that message. When FKG sends (kg.retrieve.end, sid , v), S
proceeds with the “Honest user sends request” item.

Honest user sends request. When FAC sends (ac.request.sim, sid , qid , b), if
b = 0 or otherwise if the “Honest user requests keys” item has been run, the
simulator S sends (nym.send.sim, sid , qid , l(m)) to A, where l(m) is equal to
the length of the message that the honest user sends to an authority in the
ac.request interface.

Honest authority receives request. When A sends (nym.send.rep, sid , qid),
S sends (ac.request.rep, sid , qid) to FAC.

Honest authority issues credential. When the functionality FAC sends the
message (ac.issue.sim, sid , qid), S sends (nym.reply.sim, sid , qid , l(m)) to A,
where l(m) is equal to the length of the message that the honest authority
sends to a user in the ac.issue interface.

Honest user receives issuance. When A sends (nym.reply.rep, sid , qid), the
simulator S sends (ac.issue.rep, sid , qid) to FAC.

34

Honest user shows credential. When FAC sends (ac.show.sim, sid , qid , b), S
sends (nym.send.sim, sid , qid , l(m)) to A, where l(m) is the length of the mes-
sage 〈{κl, σ′l}Ll=1, πv, ϕ〉 sent by honest users. When A sends (nym.send.rep,
sid , qid), if b = 0 in the message (ac.show.sim, sid , qid , b) received from FAC,
S sends (ac.show.rep, sid , qid) to FAC, else S proceeds with the “Honest
provider requests keys” item.

Honest provider requests keys. When FAC sends (ac.show.sim, sid , qid , b),
if b = 1, after running the “Honest user shows credential” item, the simulator
S runs FKG on input (kg.retrieve.ini, sid). When FKG sends (kg.retrieve.sim,
sid , qid , v), S forwards that message to A.

Honest provider receives keys. When A sends (kg.retrieve.rep, sid , qid), S
runs FKG on input that message. When FKG sends (kg.retrieve.end, sid , v),
S sends (ac.show.rep, sid , qid) to FAC.

A receives credential show. When FAC sends (ac.show.end, ϕ,P) to a cor-
rupt provider P̃k, S sets the message to be sent to the adversary as follows.
For l = 1 to L:
– Pick random rl ← Zp and r′l ← Zp.
– Compute σ′l = (h ′l , s

′
l)← (gr

′
l , grlr

′
l).

– Compute κl ← g̃rl .
S runs the simulator Sv to compute a simulated proof πv. S sends the mes-
sage (nym.send.end, sid , 〈{κl, σ′l}Ll=1, πv, ϕ〉,P , sendid) to A.

A requests keys. When A sends (kg.retrieve.ini, sid), S runs a copy of FKG on
input that message. When FKG sends (kg.retrieve.sim, sid , qid , v), S forwards
that message to A.

A receives keys. When A sends (kg.retrieve.rep, sid , qid), S runs FKG on input
that message. When FKG sends (kg.retrieve.end, sid , v), S sends that message
to A.

Theorem 2. When (a subset of) providers Pk are corrupt, ΠAC securely real-
izes FAC in the (FKG,FNYM,FRO)-hybrid model if the non-interactive proof of
knowledge scheme is zero-knowledge.

Proof of Theorem 2. We show by means of a series of hybrid games that the envi-
ronment Z cannot distinguish between the ensemble REALΠAC,A,Z and the en-
semble IDEALFAC,S,Z with non-negligible probability. We denote by Pr[Game i]
the probability that the environment distinguishes Game i from the real-world
protocol.

Game 0: This game corresponds to the execution of the real-world protocol.
Therefore, Pr[Game 0] = 0.

Game 1: This game proceeds as Game 0, except that in Game 1 the non-
interactive proofs of knowledge πv are replaced by simulated proofs computed
by the simulator Sv. Under the zero-knowledge property of the proof system
(Definition 5), we have that |Pr[Game 1]− Pr[Game 0]| ≤ Advzk

A .
Game 2: This game proceeds as Game 1, except that in Game 2, for l = 1 to

L, the values σ′l and κl are computed as follows:

35

– Pick random tl ← Zp and t′l ← Zp.
– Set σ′l = (h ′l , s

′
l)← (gt

′
l , gtlt

′
l).

– Set κl ← g̃tl .
Those values follow the same distribution as the ones computed by the honest
user in the real-world protocol. Observe that the honest user computes the
following:
– Pick random rl ← Zp and r′l ← Zp.
– Set σ′l = (h ′l , s

′
l) ← (h

r′l
l , s

r′l
l (h ′l)

rl) = (h
r′l
l , h

(x+ml,1y1+...+ml,qyq+rl)r
′
l

l) =

(gulr
′
l , g(x+ml,1y1+...+ml,qyq+rl)ulr

′
l).

– Set κl ← α
∏q
j=1 β

ml,j

j g̃rl = g̃x+ml,1y1+...+ml,qyq+rl .
Therefore, tl corresponds to (x+ml,1y1 +. . .+ml,qyq+rl) and t′l corresponds
to ulr

′
l, where ul is a random value such that hl = gul . Both (x + ml,1y1 +

. . . + ml,qyq + rl) and ulr
′
l are random. Observe as well that the verifica-

tion equation e(h ′l , κl) = e(s′l, g̃) still holds because e(gt
′
l , g̃tl) = e(gtlt

′
l , g̃).

Since the values are distributed identically, we have that |Pr[Game 2] −
Pr[Game 1]| = 0.

The distribution of Game 2 is identical to that of our simulation. In Game 2, the
credential show is computed without knowledge of the signature or the attributes
shown by the honest user. The overall advantage of the environment to distin-
guish between the real and the ideal protocol is |Pr[Game 2]−Pr[Game 0]| ≤
Advzk

A . This concludes the proof of Theorem 2.

8.3 Security Analysis of ΠAC when Uj is Corrupt

Intuition. When (a subset of) users Uj are corrupt, we need to construct a
simulator S that simulates the honest authorities and providers towards a copy
of any adversary that controls the corrupt users. S needs to simulate the issue
messages that honest authorities send to users with the information given by
FAC.
S must be able to extract from corrupt users the attributes for which they

request credentials during the issuance phase, and the attributes they use to
prove statements during the show phase, in order to be able to send them to FAC.
To this end, S uses the extractability property of the Fiat-Shamir transform.

Additionally, S must ensure that corrupt users are not able to show attributes
if they did not obtain a credential for those attributes from at least t authorities.
For this purpose, we prove that corrupt users that are able to do that can
be used against the existential unforgeability of Pointcheval-Sanders signatures.
This reduction also relies on the binding property of the commitment scheme,
which is necessary to ensure that the random generators h, which are output
by functionality FRO on input commitments, and which are used to compute
signatures, are random and unique for each message tuple signed.

Simulator. We describe the simulator S for the case in which (a subset of) users
Uj are corrupt. S simulates the protocol by running the authority and provider
sides of protocol ΠAC and copies of the ideal functionalities involved.

36

Honest authority Vi starts setup. When FAC sends (ac.setup.sim, sid ,Vi),
S runs a copy of FKG on input (kg.getkey.ini, sid). When FKG sends the
message (kg.getkey.sim, sid , qid , pk , 〈pki〉ni=1), S forwards that message to A.

Honest authority Vi ends setup. When A sends (kg.getkey.rep, sid , qid), S
runs FKG on that input. When FKG sends (kg.getkey.end, sid , pk , pki , ski),
S sends (ac.setup.rep, sid ,Vi) to FAC.

Honest user requests keys. When FAC sends (ac.request.sim, sid , qid , b), if
b = 1, the simulator S runs FKG on input (kg.retrieve.ini, sid). When FKG

sends (kg.retrieve.sim, sid , qid , v), S forwards that message to A.

Honest user receives keys. When A sends (kg.retrieve.rep, sid , qid), S runs
FKG on input that message. When FKG sends (kg.retrieve.end, sid , v), S
proceeds with the “Honest user sends request” item.

Honest user sends request. When FAC sends (ac.request.sim, sid , qid , b), if
b = 0 or otherwise if the “Honest user requests keys” item has been run, the
simulator S sends (nym.send.sim, sid , qid , l(m)) to A, where l(m) is equal to
the length of the message that the honest user sends to an authority in the
ac.request interface.

Honest authority receives request. When A sends (nym.send.rep, sid , qid),
S sends (ac.request.rep, sid , qid) to FAC.

A requests keys. When A sends (kg.retrieve.ini, sid), S runs a copy of FKG on
input that message. When FKG sends (kg.retrieve.sim, sid , qid , v), S forwards
that message to A.

A receives keys. When A sends (kg.retrieve.rep, sid , qid), S runs FKG on input
that message. When FKG sends (kg.retrieve.end, sid , v), S sends that message
to A.

A queries random oracle. When A sends (ro.query.ini, sid , com), S runs the
functionality FRO on that input. When FRO sends (ro.query.end, sid , h), S
forwards that message to A.

A requests credential. When A sends (nym.send.ini, sid , 〈Λ = (com, com1,
. . . , comq, h, πs), φ, reqid〉,P ,Vi), S runs FNYM on input that message. When
FNYM sends (nym.send.sim, sid , qid , l(m)), S sends that message to A.

Honest authority receives request from A. When A sends (nym.send.rep,
sid , qid), S runs FNYM on input that message. When FNYM sends the mes-
sage (nym.send.end, sid ,m,P , sendid), S parses the message m as 〈Λ = (com,
com1, . . . , comq, h, πs), φ, reqid〉 and does the following:

– Abort if the authority Vi did not end the setup.

– If A had already sent that message before, then retrieve the stored
tuple (〈Λ = (com, com1, . . . , comq, h, πs), φ, reqid ,P ,Vi〉, 〈m1, . . . ,mq, o,
o1, . . . , oq〉). Else do the following:

• Run FRO on input (ro.query.ini, sid , com) and receive (ro.query.end,

sid , ĥ) from FRO. If ĥ 6= h abort.
• Verify πs by using φ, pk and (com, com1, . . . , comq, h). Abort if the

proof πs is not correct.
• Run the extractor Es to extract the witness 〈m1, . . . ,mq, o, o1, . . . ,
oq) from πs.

37

• If there is a tuple (〈Λ = (com ′, com ′1, . . . , com ′q, h
′, π′s), φ

′, reqid ′,P ′,
V ′i〉, 〈m′1, . . . ,m′q, o′, k′1, . . . , k′q〉) stored such that com ′ = com but
(m′1, . . . ,m

′
q) 6= (m1, . . . ,mq), S outputs failure.

• Store the tuple (〈Λ = (com, com1, . . . , comq, h, πs), φ, reqid ,P ,Vi〉,
〈m1, . . . ,mq, o, o1, . . . , oq〉).

S sets a ← (m1, . . . ,mq) and sends (ac.request.ini, sid , a, φ,Vi,P) to FAC.
When FAC sends (ac.request.sim, sid , qid , b), S sends (ac.request.rep, sid , qid)
to FAC.

Honest authority issues attribute. When the functionality FAC sends the
message (ac.issue.sim, sid , qid), S sends (nym.reply.sim, sid , qid , l(m)) to A,
where l(m) is equal to the length of the message that the honest authority
sends to a user in the ac.issue interface. When A sends (nym.reply.rep, sid ,
qid), the simulator S sends (ac.issue.rep, sid , qid) to FAC.

A receives issuance. When FAC sends the message (ac.issue.end, sid , a, φ,Vi),
S finds the stored tuple (〈Λ = (com, com1, . . . , comq, h, πs), φ

′, reqid ,P ,V ′i〉,
〈m1, . . . ,mq, o, o1, . . . , oq〉) such that a = (m1, . . . ,mq), φ

′ = φ and V ′i = Vi.
S uses the secret key ski = (xi, yi,1, . . . , yi,q) to compute c = hxi

∏q
j=1 com

yi,j
j

and set the blinded signature share σ̂i = (h, c) as in ΠAC. The simulator S
stores a tuple (sid ,m1, . . . ,mq, φ,Vi) and sends (nym.reply.end, sid , 〈Vi, σ̂i,
reqid〉,P) to A.

Honest user shows credential. When FAC sends (ac.show.sim, sid , qid , b), S
sends (nym.send.sim, sid , qid , l(m)) to A, where l(m) is the length of the
message 〈{κl, σ′l}Ll=1, πv, ϕ〉 sent by honest users.

Honest provider receives credential show. When A sends (nym.send.rep,
sid , qid), if b = 0 in the message (ac.show.sim, sid , qid , b) received from FAC,
S sends (ac.show.rep, sid , qid) to FAC, else S proceeds with the “Honest
provider requests keys” item.

Honest provider requests keys. When FAC sends (ac.show.sim, sid , qid , b),
if b = 1, after running the “Honest user shows credential” item, the simulator
S runs FKG on input (kg.retrieve.ini, sid). When FKG sends (kg.retrieve.sim,
sid , qid , v), S forwards that message to A.

Honest provider receives keys. When A sends (kg.retrieve.rep, sid , qid), S
runs FKG on input that message. When FKG sends (kg.retrieve.end, sid , v),
S sends (ac.show.rep, sid , qid) to FAC.

A initiates credential show. When the adversary A sends (nym.send.ini, sid ,
〈{κl, σ′l}Ll=1, πv, ϕ〉,P ,Pk), S runs FNYM on input that message. When FNYM

sends the message (nym.reply.sim, sid , qid , l(m)), S sends that message to A.
Honest provider receives show from A. When the adversary A sends the

message (nym.reply.rep, sid , qid), the simulator S runs FNYM on input that
message. When the functionality FNYM sends (nym.send.end, sid , 〈{κl, σ′l}Ll=1,
πv, ϕ〉,P , sendid), S follows construction ΠAC to verify the values σ′l (for
l = 1 to L) and the proof πv. Then S proceeds as follows:
– S runs the extractor Ev to extract the witness (〈ml,1, . . . ,ml,q, rl〉Ll=1)

from the proof πv.
– For l = 1 to L, S parses σ′l as (h ′l , s

′
l) and computes σ̂l = (ĥl, ŝl) = (h ′l ,

s′l(h
′
l)
−rl).

38

– For l = 1 to L, S runs the verification equation e(ĥl, α̃
∏q
j=1 β̃

mj

j) = e(ŝl,
g̃) of the Pointcheval-Sanders signature scheme. If for any signature σ̂l
the verification equation does not hold, S outputs failure.

– For l = 1 to L, S checks that there are at least t tuples (sid ,ml,1, . . . ,
ml,q, φ,Vi) stored for t different authorities. If for any l that is not the
case, S outputs failure.

S sends (ac.show.ini, sid , ϕ,P ,Pk) to FAC. When FAC sends (ac.show.sim,
sid , qid , b), if b = 1, S proceeds with the “Honest provider requests keys”
item, else S sends (ac.show.rep, sid , qid) to FAC.

Theorem 3. When (a subset of) users Uj are corrupt, ΠAC securely realizes
FAC in the (FKG,FNYM,FRO)-hybrid model if the non-interactive proof of knowl-
edge scheme is extractable, the commmitment scheme is binding, and the signa-
ture scheme by Pointcheval-Sanders is unforgeable.

Proof of Theorem 3. We show by means of a series of hybrid games that the envi-
ronment Z cannot distinguish between the ensemble REALΠAC,A,Z and the en-
semble IDEALFAC,S,Z with non-negligible probability. We denote by Pr[Game i]
the probability that the environment distinguishes Game i from the real-world
protocol.

Game 0: This game corresponds to the execution of the real-world protocol.
Therefore, Pr[Game 0] = 0.

Game 1: This game proceeds as Game 0, except that Game 1 runs the ex-
tractors Es and Ev for the the non-interactive proofs of knowledge πs and
πv. Under the weak simulation extractability property of the proof system
(Definition 6), we have that |Pr[Game 1]− Pr[Game 0]| ≤ Advext

A .
Game 2: This game proceeds as Game 1, except that Game 2 outputs failure

if two request messages were received with commitments com ′ and com and
proofs π′s and πs such that com ′ = com but, after extraction of the witnesses
from π′s and πs, (m′1, . . . ,m

′
q) 6= (m1, . . . ,mq). Under the binding property

of the commitment scheme, we have that |Pr[Game 2] − Pr[Game 1]| ≤
Advbin

A . We omit a formal proof of this claim.
Game 3: This game proceeds as Game 2, except that, after extracting the

witness (〈ml,1, . . . ,ml,q, rl〉Ll=1) from the proof πv, for l = 1 to L, Game 3

parses σ′l received in the request as (h ′l , s
′
l) and computes σ̂l = (ĥl, ŝl) = (h ′l ,

s′l(h ′l)
−rl). Then Game 3 outputs failure if any σ̂l is not a valid signature.

We observe that, after extraction from πv is successful, each value κl is of
the form κl ← α̃

∏q
j=1 β̃

ml,j

j g̃rl . We also know that the following equality
holds

e(h ′l , κl) = e(s′l, g̃)

If we replace κl by α̃
∏q
j=1 β̃

ml,j

j g̃rl , we have that

e(h ′l , α̃

q∏
j=1

β̃
ml,j

j g̃rl) = e(s′l, g̃)

39

If we now multiply the two sides of the equality by e(h ′l , g̃
−rl), we have that

e(h ′l , α̃

q∏
j=1

β̃
ml,j

j g̃rl)e(h ′l , g̃
−rl) = e(s′l, g̃)e(h ′l , g̃

−rl)

and this gives us

e(h ′l , α̃

q∏
j=1

β̃
ml,j

j) = e(s′l(h
′
l)
−rl , g̃)

which is the verification equation of the Pointcheval-Sanders signature scheme
for the signature (h ′l , s

′
l(h
′
l)
−rl). Therefore, the computation σ̂l = (ĥl, ŝl) =

(h ′l , s
′
l(h
′
l)
−rl) always produces a valid signature, and thus |Pr[Game 3] −

Pr[Game 2]| = 0.
Game 4: This game proceeds as Game 3, except that Game 4 outputs fail-

ure if, after computing the signatures σ̂l = (ĥl, ŝl) = (h ′l , s
′
l(h
′
l)
−rl) on

(ml,1, . . . ,ml,q〉Ll=1), it is the case that, for at least one index l, the adver-
sary was not issued at least t signatures from t different authorities on the
messages (ml,1, . . . ,ml,q). Under the unforgeability property of Pointcheval-
Sanders signatures in the random oracle model, we have that |Pr[Game 4]−
Pr[Game 3]| ≤ Advunf

A · (n!/((t− 1)!(n− t+ 1)!)), where n is the number of
authorities.

Proof. We construct an algorithm B that interacts with the challenger of
the existential unforgeability game in the RO model (Definition 4) and the
adversary A and that shows that, if A makes Game 4 output failure with
non-negligible probability, then A can be used by B to break the existential
unforgeability property in the RO model of Pointcheval-Sanders signatures.
B receives a public key (θ, α̃, β1, β̃1 . . . , βq, β̃q) from the challenger. To set
up the keys when running functionality FKG, B proceeds as follows.
– B picks a random index i′ ∈ [1, n] and assigns that public key to author-

ity Vi′ , i.e. pk i′ ← (α̃, β1, β̃1 . . . , βq, β̃q).
– To compute the secret keys and public keys of the first t−1 authorities (if
i′ ≥ t) or of authorities Vi such that i ∈ [1, t] and i′ 6= i (if i′ ∈ [1, t−1]),
B picks random (xi, yi,1, . . . , yi,q) ← Zp and computes pki = (α̃i, βi,1,

β̃i,1, . . . , βi,q, β̃i,q)← (g̃xi , gyi,1 , g̃yi,1 , . . . , gyi,q , g̃yi,q).
– Let S be the set of indices of authorities whose public key has already

been computed. We note that |S| = t. To compute the public key pk =
(α̃, β1, β̃1, . . . , βq, β̃q), B does the following.
• For all i ∈ S, evaluate at 0 the Lagrange basis polynomials

li = [
∏

j∈S,j 6=i
(0− j)][

∏
j∈S,j 6=i

(i− j)]−1 mod p

• For all i ∈ S, take (α̃i, βi,1, β̃i,1, . . . , βi,q, β̃i,q) and then compute

(α̃, β1, β̃1, . . . , βq, β̃q) = (
∏
i∈S α̃

li
i ,
∏
i∈S β

li
i,1,
∏
i∈S β̃

li
i,1, . . . ,

∏
i∈S β

li
i,q,∏

i∈S β̃
li
i,q).

40

– To compute the public keys of the remaining authorities, i.e. the author-
ities in the set D = [1, n] \ S, B does the following. For all d ∈ D:
• For all i ∈ S, evaluate at d the Lagrange basis polynomials

li = [
∏

j∈S,j 6=i
(d− j)][

∏
j∈S,j 6=i

(i− j)]−1 mod p

• For all i ∈ S, take (α̃i, βi,1, β̃i,1, . . . , βi,q, β̃i,q) and then compute

pkd = (α̃d, βd,1, β̃d,1, . . . , βd,q, β̃d,q) = (
∏
i∈S α̃

li
i ,
∏
i∈S β

li
i,1,
∏
i∈S β̃

li
i,1,

. . . ,
∏
i∈S β

li
i,q,
∏
i∈S β̃

li
i,q).

We remark that the public keys computed this way are identically dis-
tributed to the ones computed in ΠAC.

To reply the random oracle queries of A, B forwards the query com to the
random oracle provided by the challenger and sends A the response h given
by the challenger.
When A sends a valid request 〈Λ = (com, com1, . . . , comq, h, πs), φ, reqid〉, B
runs the extractor Es to extract the witness 〈m1, . . . ,mq, o, o1, . . . , oq) from
πs. B outputs failure if two request messages were received with commit-
ments com ′ and com and proofs π′s and πs such that com ′ = com but, after
extraction of the witnesses from π′s and πs, (m′1, . . . ,m

′
q) 6= (m1, . . . ,mq).

Like in Game 2, the probability that B fails is negligible if the commitment
scheme is binding.
If the request 〈Λ = (com, com1, . . . , comq, h

′, πs), φ, reqid〉 is sent to an au-
thority Vi such that i ∈ S and i 6= i′, B computes an issuance message
by following ΠAC and stores (m1, . . . ,mq,Vi). (We note that in this case B
knows the secret key of the authority.) If the request is sent to Vi′ or to Vd
such that d ∈ D, B proceeds as follows:
– B submits the message tuple (m1, . . . ,mq) that was extracted by Es and

the commitment com to the signing oracle provided by the challenger.
The challenger sends a signature σi′ = (h, si′) and state information st ′.

– If the request was sent to authority Vi′ , B takes σi′ = (h, si′) sent by
the challenger, computes σ̂i′ = (h, si′

∏q
j=1 β

oj
i′,j) and includes σ̂i′ in the

issuance message sent to A. B stores (m1, . . . ,mq,Vi′).
– If the request was sent to an authority Vd such that d ∈ D, B proceeds

as follows:
• For all i ∈ S such that i 6= i′, B computes a signature σi = (h, si) by

using the secret keys of authorities in S.
• For all i ∈ S, B evaluates at d the Lagrange basis polynomials

li = [
∏

j∈S,j 6=i
(d− j)][

∏
j∈S,j 6=i

(i− j)]−1 mod p

• B computes the signature σd = (h, sd)← (h,
∏
i∈S s

li
i). We note that

in this computation the signature sent by the challenger is used.
• B computes σ̂d = (h, sd

∏q
j=1 β

oj
d,j) and includes it in the issuance

message sent to A. B stores (m1, . . . ,mq,Vd).

41

After A sends a valid credential show 〈{κl, σ′l}Ll=1, πv, ϕ〉, B proceeds as
follows.
– B runs the extractor Ev to extract the witness (〈ml,1, . . . ,ml,q, rl〉Ll=1)

from the proof πv.
– For l = 1 to L, B parses σ′l as (h ′l , s

′
l) and computes σ̂l = (ĥl, ŝl) = (h ′l ,

s′l(h
′
l)
−rl).

– For l = 1 to L, B runs the verification equation e(ĥl, α̃
∏q
j=1 β̃

mj

j) = e(ŝl,
g̃) of the Pointcheval-Sanders signature scheme. If for any signature σ̂l
the verification equation does not hold, B outputs failure. As shown in
Game 3, the probability that B outputs failure is 0.

– For l = 1 to L, B checks that there are at least t tuples (ml,1, . . . ,
ml,q,Vi) stored for t different authorities. If that is the case for any l,
B does nothing because A was issued enough signatures to compute the
credential show. Else, if for some l A received less than t signatures from
different authorities, but A did receive a signature from Vi′ or from an
authority Vd such that d ∈ D, B fails. However, if for some l A received
less than t signatures from different authorities, and all those authorities
Vi are such that i 6= i′ and i ∈ S, B does the following.
• For all i ∈ S such that i 6= i′, B computes t − 1 signatures σi =

(h, si) = (ĥl, si) using the secret keys of authorities Vi. B also sets

σ0 = (h, s0) = (ĥl, ŝl).
• Set S′ = (S\{i′})∪{0}. For all i ∈ S′, B evaluates at i′ the Lagrange

basis polynomials

li = [
∏

j∈S,j 6=i
(i′ − j)][

∏
j∈S,j 6=i

(i− j)]−1 mod p

• B computes

σi′ = (h,
∏
i∈S′

slii)

We note that the signature σ̂l is used in this computation.
• B sends σi′ to the challenger to win the existential unforgeability

game.
The probability that B fails can be bound as follows. B needs to query
the signing oracle of the challenger whenever A requests a signature from
authority Vi′ or from an authority Vd such that d ∈ D. Therefore, when
A is able to show a signature without receiving t signatures shares from t
different authorities, B fails whenever A did request a signature from Vi′ or
from an authority Vd such that d ∈ D. In the worst case, A received t − 1
signatures from t− 1 authorities. In that worst case, B only succeeds when
those t − 1 authorities are those authorities Vi such that i ∈ S and i 6= i′.
The probability that B succeeds, i.e. the probability that A picks those t−1
authorities from the set of n authorities is given by the inverse of the number
of (t− 1)-element combinations of n objects taken without repetition

(t− 1)!(n− t+ 1)!

n!

42

We remark that, in the frequent case in which t = n, then B succeeds with
probability 1/t.

The distribution of Game 4 is identical to that of our simulation. In Game 4, the
user attributes are extracted from the request and show messages and can be sent
to FAC. Additionally, it is guaranteed that users cannot show attributes for which
they did not receive credentials from at least t authorities. The overall advantage
of the environment to distinguish between the real and the ideal protocol is
|Pr[Game 4]−Pr[Game 0]| ≤ Advext

A +Advbin
A +Advunf

A ·(n!/((t−1)!(n−t+1)!)).
This concludes the proof of Theorem 3.

8.4 Security Analysis of ΠAC when Vi, Pk and Uj are Corrupt

Intuition. When a subset of users Uj , a subset of providers Pk and up to t − 1
authorities are corrupt, we need to construct a simulator S that simulates the
honest parties towards a copy of any adversary that controls the corrupt parties,
by using the information given by FAC.
S must be able to compute request messages from honest users to corrupt

authorities that are indistinguishable from those computed by honest users in
the real protocol, without knowing the identity of honest users or the attributes
that they request. Similarly, S must be able to compute credential show messages
from honest users to corrupt providers that are indistinguishable from those
computed by honest users in the real protocol, without knowing the identity of
honest users or the attributes used to prove statements. The use of FNYM, the
zero-knowledge property of the Fiat-Shamir transform and the hiding property
of commitments allow the simulator to do that.

Additionally, S must be able to extract from corrupt users the attributes
for which they request credentials during the issuance phase, and the attributes
they use to prove statements during the show phase, in order to be able to send
them to FAC. To this end, S uses the weak simulation extractability property
of the Fiat-Shamir transform.

Finally, S outputs failure if a corrupt user is able to show an attribute but
the user did not obtain signatures shares for that attribute from at least t− |T|
authorities, where |T| is the number of corrupt authorities. The binding property
of the commitment scheme and the existential unforgeability of Pointcheval-
Sanders signatures in the RO model allows us to prove that S fails with negligible
probability.

Simulator. We describe the simulator S for the case in which a subset of users
Uj , a subset of providers Pk and up to t− 1 authorities are corrupt. S simulates
the honest parties in the protocol ΠAC and runs copies of the ideal functionalities
involved.

Honest authority Vi starts setup. When FAC sends (ac.setup.sim, sid ,Vi),
S runs a copy of FKG on input (kg.getkey.ini, sid). When FKG sends the
message (kg.getkey.sim, sid , qid , pk , 〈pki〉ni=1), S forwards that message to A.

43

Honest authority Vi ends setup. When A sends (kg.getkey.rep, sid , qid), S
runs FKG on that input. When FKG sends (kg.getkey.end, sid , pk , pki , ski),
S sends (ac.setup.rep, sid ,Vi) to FAC.

Corrupt authority Ṽi starts setup. When a corrupt authority Ṽi sends the
message (kg.getkey.ini, sid), S runs a copy of FKG on input that message.
When FKG sends the message (kg.getkey.sim, sid , qid , pk , 〈pki〉ni=1), S for-
wards that message to Ṽi.

Corrupt authority Ṽi ends setup. When Ṽi sends (kg.getkey.rep, sid , qid), S
runs FKG on input that message. When FKG sends (kg.getkey.end, sid , pk ,
pki , ski), S sends (ac.setup.ini, sid) to FAC. When FAC sends (ac.setup.sim,
sid , Ṽi), S sends (ac.setup.rep, sid , Ṽi) to FAC. When FAC sends the message
(ac.setup.end, sid), S sends (kg.getkey.end, sid , pk , pki , ski) to Ṽi.

Honest user requests keys. When FAC sends (ac.request.sim, sid , qid , b), if
b = 1, the simulator S runs FKG on input (kg.retrieve.ini, sid). When FKG

sends (kg.retrieve.sim, sid , qid , v), S forwards that message to A.

Honest user receives keys. When A sends (kg.retrieve.rep, sid , qid), S runs
FKG on input that message. When FKG sends (kg.retrieve.end, sid , v), S
proceeds with the “Honest user sends request” item.

Honest user sends request. When FAC sends (ac.request.sim, sid , qid , b), if
b = 0 or otherwise if the “Honest user requests keys” item has been run, the
simulator S sends (nym.send.sim, sid , qid , l(m)) to A, where l(m) is equal to
the length of the message that the honest user sends to an authority in the
ac.request interface.

Honest authority receives request from honest user. When A sends the
message (nym.send.rep, sid , qid), S sends (ac.request.rep, sid , qid) to FAC.

Corrupt authority receives request from honest user. When FAC sends
(ac.request.end, sid , φ,P , reqid) to a corrupt authority Ṽi, S runs a copy of
a user on input (ac.request.ini, sid , a ′, φ, Ṽi,P), where, if the copy of the
user stores a tuple (sid , a, o1, . . . , oq,P , Λ = (com, com1, . . . , comq, h, πs),
φ, reqid ′) such that reqid ′ = reqid , then a ′ = a, else a ′ is a random attribute.
(The copy of the user sets reqid to the value received from FAC.) When run-
ning the copy of the user, S uses the simulator Ss to compute a simulated
proof πs. When the copy of the user sends the message (nym.send.ini, sid , 〈Λ
= (com, com1, . . . , comq, h, πs), φ, reqid〉,P , Ṽi) to FNYM, S runs FNYM on
input that message. When FNYM sends (nym.send.sim, sid , qid , l(m)), S runs
FNYM on input (nym.send.rep, sid , qid). When FNYM sends (nym.send.end,
sid , 〈Λ = (com, com1, . . . , comq, h, πs), φ, reqid〉,P , sendid), S forwards that
message to A.

Corrupt user requests keys. When A sends (kg.retrieve.ini, sid), S runs a
copy of FKG on input that message. When FKG sends (kg.retrieve.sim, sid ,
qid , v), S forwards that message to A.

Corrupt user receives keys. When A sends (kg.retrieve.rep, sid , qid), S runs
FKG on input that message. When FKG sends (kg.retrieve.end, sid , v), S
sends that message to A.

44

A queries random oracle. WhenA sends (ro.query.ini, sid , com), S runs func-
tionality FRO on that input. When FRO sends (ro.query.end, sid , h), S for-
wards that message to A.

Corrupt user requests credential. When A sends (nym.send.ini, sid , 〈Λ =
(com, com1, . . . , comq, h, πs), φ, reqid〉,P ,Vi), S runs FNYM on input that
message. When FNYM sends (nym.send.sim, sid , qid , l(m)), S sends that mes-
sage to A.

Honest authority receives request from corrupt user. When the adver-
sary A sends (nym.send.rep, sid , qid), S runs FNYM on input that message.
When FNYM sends the message (nym.send.end, sid ,m,P , sendid), S parses
the message m as 〈Λ = (com, com1, . . . , comq, h, πs), φ, reqid〉 and does the
following:
– Abort if the authority Vi did not end the setup.
– If A had already sent that message before, then retrieve the stored

tuple (〈Λ = (com, com1, . . . , comq, h, πs), φ, reqid ,P ,Vi〉, 〈m1, . . . ,mq, o,
o1, . . . , oq〉). Else do the following:
• Run FRO on input (ro.query.ini, sid , com) and receive (ro.query.end,

sid , ĥ) from FRO. If ĥ 6= h abort.
• Verify πs by using φ, pk and (com, com1, . . . , comq, h). Abort if the

proof πs is not correct.
• Run the extractor Es to extract the witness 〈m1, . . . ,mq, o, o1, . . . ,
oq) from πs.
• If there is a tuple (〈Λ = (com ′, com ′1, . . . , com ′q, h

′, π′s), φ
′, reqid ′,P ′,

V ′i〉, 〈m′1, . . . ,m′q, o′, k′1, . . . , k′q〉) stored such that com ′ = com but
(m′1, . . . ,m

′
q) 6= (m1, . . . ,mq), S outputs failure.

• Store the tuple (〈Λ = (com, com1, . . . , comq, h, πs), φ, reqid ,P ,Vi〉,
〈m1, . . . ,mq, o, o1, . . . , oq〉).

S sets a ← (m1, . . . ,mq) and sends (ac.request.ini, sid , a, φ,Vi,P) to FAC.
When FAC sends (ac.request.sim, sid , qid , b), S sends (ac.request.rep, sid , qid)
to FAC.

Honest authority issues attribute. When FAC sends (ac.issue.sim, sid , qid),
S sends (nym.reply.sim, sid , qid , l(m)) to A, where l(m) is the length of the
message that an honest authority sends in the ac.issue interface.

Honest user receives issuance from honest authority. When the adver-
sary A sends (nym.reply.rep, sid , qid), S sends (ac.issue.rep, sid , qid) to FAC.

Corrupt user receives issuance. When FAC sends (ac.issue.end, sid , a, φ,Vi),
S finds the stored tuple (〈Λ = (com, com1, . . . , comq, h, πs), φ

′, reqid ,P ,V ′i〉,
〈m1, . . . ,mq, o, o1, . . . , oq〉) such that a = (m1, . . . ,mq), φ

′ = φ and V ′i = Vi.
S uses the secret key ski = (xi, yi,1, . . . , yi,q) to compute c = hxi

∏q
j=1 com

yi,j
j

and set the blinded signature share σ̂i = (h, c) as in construction ΠAC. S
stores a tuple (sid ,m1, . . . ,mq, φ,Vi) and sends the message (nym.reply.end,
sid , 〈Vi, σ̂i, reqid〉,P) to A.

Corrupt authority issues attribute. When a corrupt authority Ṽi sends the
message (nym.reply.ini, sid , 〈Ṽi, σ̃i, reqid〉, sendid), S runs FNYM on input that
message. When FNYM sends (nym.reply.sim, sid , qid , l(m)), S sends that mes-
sage to A.

45

Honest user receives issuance from corrupt authority. When the adver-
sary A sends the message (nym.reply.rep, sid , qid), the simulator S runs
FNYM on input that message. When FNYM sends (nym.reply.end, sid , 〈Ṽi,
σ̂i, reqid〉,P), S runs the copy of the user on input that message. We re-
mark that the copy of the user finds the request identifier reqid associated
with this issuance message, or aborts if it is not found. When the copy of
the user outputs (ac.issue.end, sid , a, φ,Vi), S sends (ac.issue.ini, sid , reqid)
to FAC. When FAC sends (ac.issue.sim, sid , qid), S sends (ac.issue.rep, sid ,
qid) to FAC.

Honest user shows credential. When FAC sends (ac.show.sim, sid , qid , b), S
sends (nym.send.sim, sid , qid , l(m)) to A, where l(m) is the length of the
message 〈{κl, σ′l}Ll=1, πv, ϕ〉 sent by honest users.

Honest provider receives credential show. When A sends (nym.send.rep,
sid , qid), if b = 0 in the message (ac.show.sim, sid , qid , b) received from FAC,
S sends (ac.show.rep, sid , qid) to FAC, else S proceeds with the “Honest
provider requests keys” item.

Honest provider requests keys. When FAC sends (ac.show.sim, sid , qid , b),
if b = 1, after running the “Honest user shows credential” item, the simulator
S runs FKG on input (kg.retrieve.ini, sid). When FKG sends (kg.retrieve.sim,
sid , qid , v), S forwards that message to A.

Honest provider receives keys. When A sends (kg.retrieve.rep, sid , qid), S
runs FKG on input that message. When FKG sends (kg.retrieve.end, sid , v),
S sends (ac.show.rep, sid , qid) to FAC.

Corrupt provider receives credential show. When FAC sends (ac.show.end,
ϕ,P) to a corrupt provider P̃k, S sets the message to be sent to the adversary
as follows. For l = 1 to L:
– Pick random rl ← Zp and r′l ← Zp.
– Compute σ′l = (h ′l , s

′
l)← (gr

′
l , grlr

′
l).

– Compute κl ← g̃rl .
S runs the simulator Sv to compute a simulated proof πv. S sends the mes-
sage (nym.send.end, sid , 〈{κl, σ′l}Ll=1, πv, ϕ〉,P , sendid) to A.

Corrupt provider requests keys. When A sends (kg.retrieve.ini, sid), S runs
a copy of FKG on input that message. When FKG sends (kg.retrieve.sim, sid ,
qid , v), S forwards that message to A.

Corrupt provider receives keys. When A sends (kg.retrieve.rep, sid , qid), S
runs FKG on input that message. When FKG sends (kg.retrieve.end, sid , v),
S sends that message to A.

Corrupt user initiates credential show. When the adversary A sends the
message (nym.send.ini, sid , 〈{κl, σ′l}Ll=1, πv, ϕ〉,P ,Pk), S runs FNYM on input
that message. When FNYM sends the message (nym.reply.sim, sid , qid , l(m)),
S sends that message to A.

Honest provider receives show from corrupt user. When the adversary
A sends the message (nym.reply.rep, sid , qid), the simulator S runs FNYM

on input that message. When the functionality FNYM sends (nym.send.end,
sid , 〈{κl, σ′l}Ll=1, πv, ϕ〉,P , sendid), S follows construction ΠAC to verify the
values σ′l (for l = 1 to L) and the proof πv. Then S proceeds as follows:

46

– S runs the extractor Ev to extract the witness (〈ml,1, . . . ,ml,q, rl〉Ll=1)
from the proof πv.

– For l = 1 to L, S parses σ′l as (h ′l , s
′
l) and computes σ̂l = (ĥl, ŝl) = (h ′l ,

s′l(h
′
l)
−rl).

– For l = 1 to L, S runs the verification equation e(ĥl, α̃
∏q
j=1 β̃

mj

j) = e(ŝl,
g̃) of the Pointcheval-Sanders signature scheme. If for any signature σ̂l
the verification equation does not hold, S outputs failure.

– For l = 1 to L, S checks that there are at least t− |T| tuples (sid ,ml,1,
. . . ,ml,q, φ,Vi) stored for t − |T| different authorities, where |T| is the
number of corrupt authorities. If for any l that is not the case, S outputs
failure.

S sends (ac.show.ini, sid , ϕ,P ,Pk) to FAC. When FAC sends (ac.show.sim,
sid , qid , b), if b = 1, S proceeds with the “Honest provider requests keys”
item, else S sends (ac.show.rep, sid , qid) to FAC.

Theorem 4. When a subset of users Uj, a subset of providers Pk and up to t−1
authorities are corrupt, ΠAC securely realizes FAC in the (FKG,FNYM,FRO)-
hybrid model if the non-interactive proof of knowledge scheme is zero-knowledge
and provides weak simulation extractability, the signature scheme by Pointcheval-
Sanders is unforgeable, and the commmitment scheme is hiding and binding.

Proof of Theorem 4. We show by means of a series of hybrid games that the envi-
ronment Z cannot distinguish between the ensemble REALΠAC,A,Z and the en-
semble IDEALFAC,S,Z with non-negligible probability. We denote by Pr[Game i]
the probability that the environment distinguishes Game i from the real-world
protocol.

Game 0: This game corresponds to the execution of the real-world protocol.
Therefore, Pr[Game 0] = 0.

Game 1: This game proceeds as Game 0, except that Game 1 runs the ex-
tractors Es and Ev for the the non-interactive proofs of knowledge πs and
πv. Under the weak simulation extractability property of the proof system
(Definition 6), we have that |Pr[Game 1]− Pr[Game 0]| ≤ Advext

A .
Game 2: This game proceeds as Game 1, except that Game 2 outputs failure

if two request messages were received with commitments com ′ and com and
proofs π′s and πs such that com ′ = com but, after extraction of the witnesses
from π′s and πs, (m′1, . . . ,m

′
q) 6= (m1, . . . ,mq). Under the binding property

of the commitment scheme, we have that |Pr[Game 2] − Pr[Game 1]| ≤
Advbin

A . We omit a formal proof of this claim.
Game 3: This game proceeds as Game 2, except that, after extracting the

witness (〈ml,1, . . . ,ml,q, rl〉Ll=1) from the proof πv, for l = 1 to L, Game 3

parses σ′l received in the request as (h ′l , s
′
l) and computes σ̂l = (ĥl, ŝl) =

(h ′l , s
′
l(h
′
l)
−rl). Then Game 3 outputs failure if any σ̂l is not a valid signa-

ture. As shown in the proof of Theorem 3, the computation σ̂l = (ĥl, ŝl) =
(h ′l , s

′
l(h
′
l)
−rl) always produces a valid signature, and thus |Pr[Game 3] −

Pr[Game 2]| = 0.

47

Game 4: This game proceeds as Game 3, except that Game 4 outputs failure
if, after computing the signatures σ̂l = (ĥl, ŝl) = (h ′l , s

′
l(h ′l)

−rl) on (ml,1, . . . ,
ml,q〉Ll=1), it is the case that, for at least one index l, the adversary was not
issued at least t − |T| signatures from t − |T| different authorities on the
messages (ml,1, . . . ,ml,q). Under the unforgeability property of Pointcheval-
Sanders signatures in the random oracle model, we have that |Pr[Game 4]−
Pr[Game 3]| ≤ Advunf

A · ((n − |T|)!/((t − 1 − |T|)!(n − t + 1)!)), where n is
the number of authorities.

Proof. This proof follows the proof of unforgeability given in the proof of
Theorem 3 with a few changes. B receives a public key (θ, α̃, β1, β̃1 . . . , βq,

β̃q) from the challenger. To set up the keys when running functionality FKG,
B proceeds as follows.

– Let T be the set of indices of corrupt authorities. B picks a random index
i′ ∈ [1, n] \T and assigns that public key to authority Vi′ , i.e. pk i′ ← (α̃,
β1, β̃1 . . . , βq, β̃q).

– Let U be a set of indices of size t−1−|T| picked at random from [1, n]\T.
To compute the secret keys and public keys of authorities Vi in T ∪ U,
B picks random ski = (xi, yi,1, . . . , yi,q) ← Zp and computes pki = (α̃i,

βi,1, β̃i,1, . . . , βi,q, β̃i,q)← (g̃xi , gyi,1 , g̃yi,1 , . . . , gyi,q , g̃yi,q).

– Let S ← T ∪ U ∪ {i′} and let D = [1, n] \ S. From this point on, the
verification key and the public keys of authorities Vd such that d ∈ D are
set as in the proof of Theorem 3. We remark that, because the maximum
number of corrupt authorities is t − 1, B always knows the secret keys
of corrupt authorities.

The rest of the proof works very similarly as the proof in Theorem 3, by
using the new definitions of D and S. The only changes are the following.
B sends the secret key ski to an authority Vi such that i ∈ T (a corrupt
authority) when the adversary requests it. After that, B does not need to
reply to attribute issuance requests to corrupt authorities from the adversary.
Later, when the adversary shows credentials and B checks if the adversary
was issued enough signature shares, B checks that the adversary received at
least t− T shares, instead of t shares.

Finally, the probability that B fails can be bound as follows. B needs to
query the signing oracle of the challenger whenever A requests a signature
from authority Vi′ or from an authority Vd such that d ∈ D. Therefore, when
A is able to show a signature without receiving t−|T| signatures shares from
t−|T| different authorities, B fails whenever A did request a signature from
Vi′ or from an authority Vd such that d ∈ D. In the worst case, A received
t− 1− |T| signatures from t− 1− |T| authorities. In that worst case, B only
succeeds when those t−1−|T| authorities are those authorities Vi such that
i ∈ S and i 6= i′. The probability that B succeeds, i.e. the probability that A
picks those t− 1− |T| authorities from the set of n− |T| authorities is given
by the inverse of the number of (t− 1− |T|)-element combinations of n− |T|

48

objects taken without repetition

(t− 1− |T|)!(n− t+ 1!)

(n− |T|)!
We remark that, in the frequent case in which t = n, then B succeeds with
probability 1/(t− |T|).

Game 5: This game proceeds as Game 4, except that in Game 5 the non-
interactive proofs of knowledge πs and πv that are sent to the adversary
are replaced by simulated proofs computed by the simulator Ss. Under the
zero-knowledge property of the proof system (see Definition 5), we have that
|Pr[Game 5]− Pr[Game 4]| ≤ Advzk

A .
Game 6: This game proceeds as Game 5, except that in Game 6 the values

(com1, . . . , comq) in each request are replaced by random values in G. At this
point, the proofs πs are simulated proofs of false statements. Since the values
(com1, . . . , comq) are randomly distributed, this change does not alter the
view of the environment and we have that |Pr[Game 6]−Pr[Game 5]| = 0.

Game 7: This game proceeds as Game 6, except that in Game 7 the com-
mitments to attributes a = (m1, . . . ,mq) are replaced by commitments to
random messages. Under the hiding property of the commitment scheme (see
Definition 7), we have that |Pr[Game 7] − Pr[Game 6]| ≤ Advhid

A · Nreq,
where Nreq is the number of different requests computed by honest users.
Since the Pedersen commitment scheme is information theoretically hiding,
we have that |Pr[Game 7]− Pr[Game 6]| = 0.

Game 8: This game proceeds as Game 7, except that in Game 8, for l = 1 to
L, the values σ′l and κl are computed as follows:
– Pick random tl ← Zp and t′l ← Zp.
– Set σ′l = (h ′l , s

′
l)← (gt

′
l , gtlt

′
l).

– Set κl ← g̃tl .
Those values follow the same distribution as the ones computed by the honest
user in the real-world protocol, as explained in the proof of Theorem 2.
Since the values are distributed identically, we have that |Pr[Game 8] −
Pr[Game 7]| = 0.

The distribution of Game 8 is identical to that of our simulation. In Game 8,
the request message is computed without knowledge of the attributes requested
by the honest user. The credential show is computed without knowledge of the
signatures or the attributes shown by the honest user. Additionally, it is guar-
anteed that corrupt users cannot show attributes unless they obtained enough
signatures shares from different authorities. The overall advantage of the envi-
ronment to distinguish between the real and the ideal protocol is |Pr[Game 8]−
Pr[Game 0]| ≤ Advext

A +Advbin
A +Advunf

A · ((n−|T|)!/((t−1−|T|)!(n− t+1)!))+
Advzk

A . This concludes the proof of Theorem 4.

9 Conclusion and Future Work

We have described and ideal functionality FAC for attributed-based credentials
(ABC) with threshold issuance and a construction ΠAC, based on Coconut [11],

49

that realizes FAC. Future work could extend ABC with threshold issuance with
functionalities such as revocation, inspection and limited spending, or could
also improve the efficiency of ΠAC by, e.g., providing a credential show protocol
whose complexity does not grow linearly with the number of messages signed in
a credential.

Acknowledgements. We thank George Danezis and Alberto Sonnino for their
valuable comments.

References

1. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In Pfitzmann, B., ed.: Ad-
vances in Cryptology - EUROCRYPT 2001, International Conference on the The-
ory and Application of Cryptographic Techniques, Innsbruck, Austria, May 6-10,
2001, Proceeding. Volume 2045 of Lecture Notes in Computer Science., Springer
(2001) 93–118

2. Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials
from bilinear maps. In Franklin, M.K., ed.: Advances in Cryptology - CRYPTO
2004, 24th Annual International Cryptology Conference, Santa Barbara, California,
USA, August 15-19, 2004, Proceedings. Volume 3152 of Lecture Notes in Computer
Science., Springer (2004) 56–72

3. Belenkiy, M., Chase, M., Kohlweiss, M., Lysyanskaya, A.: P-signatures and non-
interactive anonymous credentials. In Canetti, R., ed.: Theory of Cryptography,
Fifth Theory of Cryptography Conference, TCC 2008, New York, USA, March
19-21, 2008. Volume 4948 of Lecture Notes in Computer Science., Springer (2008)
356–374

4. Belenkiy, M., Camenisch, J., Chase, M., Kohlweiss, M., Lysyanskaya, A., Shacham,
H.: Randomizable proofs and delegatable anonymous credentials. In Halevi, S., ed.:
Advances in Cryptology - CRYPTO 2009, 29th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 16-20, 2009. Proceedings. Volume
5677 of Lecture Notes in Computer Science., Springer (2009) 108–125

5. Camenisch, J., Groß, T.: Efficient attributes for anonymous credentials. ACM
Trans. Inf. Syst. Secur. 15(1) (2012) 4:1–4:30

6. Baldimtsi, F., Lysyanskaya, A.: Anonymous credentials light. In Sadeghi, A.,
Gligor, V.D., Yung, M., eds.: 2013 ACM SIGSAC Conference on Computer and
Communications Security, CCS’13, Berlin, Germany, November 4-8, 2013, ACM
(2013) 1087–1098

7. Chase, M., Meiklejohn, S., Zaverucha, G.: Algebraic macs and keyed-verification
anonymous credentials. In Ahn, G., Yung, M., Li, N., eds.: Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security, Scottsdale,
AZ, USA, November 3-7, 2014, ACM (2014) 1205–1216

8. Camenisch, J., Dubovitskaya, M., Haralambiev, K., Kohlweiss, M.: Composable
and modular anonymous credentials: Definitions and practical constructions. In
Iwata, T., Cheon, J.H., eds.: Advances in Cryptology - ASIACRYPT 2015 - 21st
International Conference on the Theory and Application of Cryptology and Infor-
mation Security, Auckland, New Zealand, November 29 - December 3, 2015, Pro-
ceedings, Part II. Volume 9453 of Lecture Notes in Computer Science., Springer
(2015) 262–288

50

9. Libert, B., Ling, S., Mouhartem, F., Nguyen, K., Wang, H.: Signature schemes
with efficient protocols and dynamic group signatures from lattice assumptions.
In Cheon, J.H., Takagi, T., eds.: Advances in Cryptology - ASIACRYPT 2016 -
22nd International Conference on the Theory and Application of Cryptology and
Information Security, Hanoi, Vietnam, December 4-8, 2016, Proceedings, Part II.
Volume 10032 of Lecture Notes in Computer Science. (2016) 373–403

10. Fuchsbauer, G., Hanser, C., Slamanig, D.: Structure-preserving signatures on
equivalence classes and constant-size anonymous credentials. J. Cryptol. 32(2)
(2019) 498–546

11. Sonnino, A., Al-Bassam, M., Bano, S., Meiklejohn, S., Danezis, G.: Coconut:
Threshold issuance selective disclosure credentials with applications to distributed
ledgers. In: 26th Annual Network and Distributed System Security Symposium,
NDSS 2019, San Diego, California, USA, February 24-27, 2019, The Internet So-
ciety (2019)

12. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: 42nd Annual Symposium on Foundations of Computer Science,
FOCS 2001, 14-17 October 2001, Las Vegas, Nevada, USA. (2001) 136–145

13. Pointcheval, D., Sanders, O.: Short randomizable signatures. In Sako, K., ed.:
Topics in Cryptology - CT-RSA 2016 - The Cryptographers’ Track at the RSA
Conference 2016, San Francisco, CA, USA, February 29 - March 4, 2016, Pro-
ceedings. Volume 9610 of Lecture Notes in Computer Science., Springer (2016)
111–126

14. Ballard, L., Green, M., de Medeiros, B., Monrose, F.: Correlation-resistant storage
via keyword-searchable encryption. IACR Cryptol. ePrint Arch. (2005) 417

15. Camenisch, J., Stadler, M.: Proof systems for general statements about discrete
logarithms. Technical Report TR 260, Institute for Theoretical Computer Science,
ETH Zürich (March 1997)

16. Faust, S., Kohlweiss, M., Marson, G.A., Venturi, D.: On the non-malleability of the
fiat-shamir transform. In: Progress in Cryptology-INDOCRYPT 2012. Springer
(2012) 60–79

17. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and
signature problems. In Odlyzko, A.M., ed.: CRYPTO ’86. Volume 263., Springer
Verlag (1987) 186–194

18. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In Feigenbaum, J., ed.: CRYPTO. Volume 576 of Lecture Notes in Com-
puter Science., Springer (1991) 129–140

19. Gamal, T.E.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Inf. Theory 31(4) (1985) 469–472

20. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17(2) (1988) 281–308

21. Camenisch, J., Dubovitskaya, M., Rial, A.: UC commitments for modular protocol
design and applications to revocation and attribute tokens. In: Advances in Cryp-
tology - CRYPTO 2016 - 36th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 14-18, 2016, Proceedings, Part III. (2016) 208–239

22. Kate, A., Huang, Y., Goldberg, I.: Distributed key generation in the wild. IACR
Cryptol. ePrint Arch. 2012 (2012) 377

23. Groth, J.: Non-interactive distributed key generation and key resharing. Cryptol-
ogy ePrint Archive, Report 2021/339 (2021) https://eprint.iacr.org/2021/339.

24. Camenisch, J., Lehmann, A., Neven, G., Rial, A.: Privacy-preserving auditing for
attribute-based credentials. In Kutylowski, M., Vaidya, J., eds.: Computer Security

51

- ESORICS 2014 - 19th European Symposium on Research in Computer Security,
Wroclaw, Poland, September 7-11, 2014. Proceedings, Part II. Volume 8713 of
Lecture Notes in Computer Science., Springer (2014) 109–127

25. Camenisch, J., Drijvers, M., Gagliardoni, T., Lehmann, A., Neven, G.: The won-
derful world of global random oracles. Cryptology ePrint Archive, Report 2018/165
(2018) https://ia.cr/2018/165.

A Security Definitions of Coconut Building Blocks

A.1 Fiat-Shamir Transform

Definition 5 (Zero-Knowledge). Define the zero knowledge simulator S as
follows. S is a stateful algorithm that can operate in two modes: (hi, st) ←
S(1, st, qi) answers random oracle queries qi, while (π, st)← S(2, st, x) outputs
a simulated proof π for an instance x. S(1, · · ·) and S(2, · · ·) share the state st
that is updated after each operation.

Let L be a language in NP. Denote with (S1,S2) the oracles such that S1(qi)
returns the first output of (hi, st) ← S(1, st, qi) and S2(x,w) returns the first
output of (π, st) ← S(2, st, x) if (x,w) ∈ RL. A protocol (PH ,VH) is a non-
interactive zero-knowledge proof for the language L in the random oracle model
if there exists a ppt simulator S such that for all ppt distinguishers D we have

Pr[DH(·),PH(·,·)(1k) = 1] ≈ Pr[DS1(·),S2(·,·)(1k) = 1],

where both P and S2 oracles output ⊥ if (x,w) /∈ RL.

Definition 6 (Weak Simulation Extractability). Let L be a language in
NP. Consider a non-interactive zero-knowledge proof system (PH ,VH) for L
with zero-knowledge simulator S. Let (S1,S ′2) be oracles returning the first output
of (hi, st)← S(1, st, qi) and (π, st)← S(2, st, x) respectively. (PH ,VH) is weakly
simulation extractable with extraction error ν and with respect to S in the random
oracle model, if for all ppt adversaries A there exists an efficient algorithm EA
with access to the answers (TH , T) of (S1,S ′2) respectively such that the following
holds. Let

acc = Pr[(x∗, π∗)← AS1(·),S′2(·)(1k; ρ) : (x∗, π∗) /∈ T ;VS1(x∗, π∗) = 1]

ext = Pr[(x∗, π∗)← AS1(·),S′2(·)(1k; ρ);

w∗ ← EA(x∗, π∗; ρ, TH , T) : (x∗, π∗) /∈ T ; (x∗, w∗) ∈ RL],

where the probability space in both cases is over the random choices of S and the
adversary’s random tape ρ. Then, there exists a constant d > 0 and a polynomial
p such that whenever acc ≥ ν, we have ext ≥ (1/p)(acc− ν)d.

A.2 Commitment Schemes

Correctness requires that VfCom accepts all commitments created by algorithm
Com, i.e., for all x ∈M

Pr

[
parc ← CSetup(1k); (com, open)← Com(parc , x) :

1 = VfCom(parc , com, x , open)

]
= 1 .

52

The hiding property ensures that a commitment com to x does not reveal
any information about x , whereas the binding property ensures that com cannot
be opened to another value x ′.

Definition 7 (Hiding Property). For any ppt adversary A, the hiding prop-
erty is defined as follows:

Pr

parc ← CSetup(1k);
(x0, st)← A(parc);
x1 ←M;
b ← {0, 1}; (com, open)← Com(parc , xb);
b′ ← A(st , com) :
x0 ∈M ∧ x1 ∈M ∧ b = b′

 ≤
1

2
+ ε(k) .

Definition 8 (Binding Property). For any ppt adversary A, the binding
property is defined as follows:

Pr

parc ← CSetup(1k); (com, x , open, x ′, open ′)← A(parc) :
x ∈M ∧ x ′ ∈M ∧ x 6= x ′ ∧ 1 = VfCom(parc , com, x , open)
∧ 1 = VfCom(parc , com, x ′, open ′)

 ≤ ε(k) .

A.3 Public-Key Encryption Schemes

Correctness requires that, for all pairs (pkenc, skenc) ∈ Setup, for all messages
m in the message space and all ciphertexts c output by Encrypt(pkenc,m), the
algorithm Decrypt(c, skenc) outputs m with overwhelming probability.

Definition 9 (IND-CPA). The PKE scheme is said to be IND-CPA (or se-
mantically) secure if for any ppt adversary A, there exists a negligible function
ν(·) such that the following is satisfied for any two messages m0,m1 in the mes-
sage space and for b ∈ {0, 1}:

|Pr
[
A(1k ,Encrypt(m0, pkenc)) = b

]
−

Pr
[
A(1k ,Encrypt(m1, pkenc)) = b

]
| ≤ ν(k).

A.4 Signature Schemes

Definition 10 (Correctness). Correctness ensures that the algorithm VfSig
accepts the signatures created by the algorithm Sign on input a secret key com-
puted by algorithm KeyGen. More formally, correctness is defined as follows.

Pr

[
(sk , pk)← KeyGen(1k); m ←M;
σ ← Sign(sk ,m) : 1 = VfSig(pk , σ,m)

]
= 1

Definition 11 (Existential Unforgeability). The property of existential un-
forgeability ensures that it is not feasible to output a signature on a message
without knowledge of the secret key or of another signature on that message. Let

53

Os be an oracle that, on input sk and a message m ∈ M, outputs Sign(sk ,m),
and let Ss be a set that contains the messages sent to Os. More formally, for
any ppt adversary A, existential unforgeability is defined as follows.

Pr

[
(sk , pk)← KeyGen(1k); (m, σ)← A(pk)Os(sk ,·) :
1 = VfSig(pk , σ,m) ∧ m ∈M ∧ m /∈ Ss

]
≤ ε(k)

