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Abstract. The aim of this paper is to provide an overview on the newest
results regarding the security of identity-based encryption schemes from
quadratic residuosity. It is shown that the only secure schemes are the
Cocks and Boneh-Gentry-Hamburg schemes (except of anonymous vari-
ations of them).

1 Introduction

Identity-based cryptography (IBC) was proposed in 1984 by Adi Shamir
[19] who formulated its basic principles but he was unable to provide
a solution to it, except for an identity-based signature (IBS) scheme. A
standard scenario on using identity-based encryption (IBE) is as follows.
Whenever Alice wants to send a message m to Bob, she encrypts m by
using Bob’s identity ID(B). In order to decrypt the message received
from Alice, Bob asks the Private-Key Generator PKG to deliver him the
private key associated to ID(B).

In 2000, Sakai, Ohgishi and Kasahara [17] have proposed an identity-
based key agreement (IBKM) scheme, and one year later, Cocks [7] and
Boneh and Franklin [5] have proposed the first IBE schemes. Cocks’ so-
lution is based on quadratic residues. It encrypts a message bit by bit
and requires 2 log n bits of cipher-text per bit of plain-text. The scheme
is quite fast but its main disadvantage is the ciphertext expansion. The
Boneh and Franklin’s solution is based on bilinear maps. Moreover, Boneh
and Franklin also proposed a formal security model for IBE, and proved
that their scheme is secure under the Bilinear Diffie-Hellman (BDH) as-
sumption.

The Cocks IBE scheme attracted the attention of many researchers.
Of course, the main question raised by this scheme was about the space
efficiency: how to extend it to encrypt arbitrarily large sequences of bits



by reasonable large ciphertexts. A very elegant solution to this ques-
tion was proposed by Boneh, Gentry, and Hamburg [6]. Unfortunately,
their solution suffers from a major deficiency: it makes use of a quartic
deterministic time-complexity algorithm to compute solutions to some
quadratic bi-variate congruences. Jhanwar and Barua tried to make a
step further by proposing an efficient probabilistic algorithm [14] to re-
place the deterministic one. Unfortunately, their scheme, as well as some
other variations, were recently shown insecure.

In this paper we review the newest security results on the IBE schemes
based on quadratic residuosity assumption. We thus show that the only se-
cure schemes are the Cocks and Boneh-Gentry-Hamburg schemes (due to
space limitation we do not discuss on variations that provide anonymity).
Our exposition starts with the Goldwasser-Micalli public-key encryption
scheme as a warm-up, advances to the Cocks identity-based encryption
scheme, and then to the Boneh-Gentry-Hamburg scheme. Finally, we fo-
cus on the insecurity of the Jhanwar-Barua scheme as well as variations
of it.

2 Identity-based Encryption

An IBE scheme consists of four probabilistic polynomial-time (PPT) al-
gorithms: Setup, Extract, Encrypt, and Decrypt. The first one takes as
input a security parameter and outputs the system public parameters
together with a master key. The Extract algorithm takes as input an
identity ID together with the public parameters and the master key and
outputs a private key associated to ID. The Encrypt algorithm, starting
with a message m, an identity ID, and the public parameters, encrypts
m into some ciphertext c (the encryption key is ID or some binary string
derived from ID). The last algorithm decrypts c into m by using the
private key associated to ID.

A natural way to define security models for IBE is to extend the ones
for public key encryption (PKE). Recall that for PKE, security models
are obtained by combining security goals and attack models. Three fun-
damental security goals for PKE are:

1. indistinguishability (IND) [13], which means that, given a ciphertext
of one of two plaintexts, the adversary is not able to distinguish which
of the two messages was encrypted;

2. semantic security (SS) [13], which means that the adversary is not able
to obtain any information about the plaintext from a given ciphertext;



3. non-malleability (NM) [8], which means that, given a ciphertext of a
plaintext, the adversary is not able to construct another ciphertext
whose plaintext is meaningfully related to the initial one.

The attack models for PKE, considered so far, are:

1. chosen plaintext attack (CPA) [13] – under this attack, the adversary
can obtain ciphertexts of plaintexts of its choice (in the public key
setting, giving the adversary the public key suffices to capture these
attacks);

2. non-adaptive chosen ciphertext attack (CCA1) [15] – under this at-
tack, the adversary obtains, in addition to the public key, access to
a decryption oracle. This oracle can be queried only for the period
of time preceding its being given the challenge ciphertext. The term
“non-adaptive” refers to the fact that the decryption queries do not
depend on the challenge ciphertext;

3. adaptive chosen ciphertext attack (CCA2) [16] – under this attack, the
adversary gets, in addition to what it gets under the CCA1 attack, ac-
cess to the decryption oracle after obtaining the challenge ciphertext.
The only restriction is that the adversary may not query the oracle for
the decryption of the challenge ciphertext. The term “adaptive” refers
to the fact that the adversary may adapt its queries after obtaining
the challenge ciphertext.

By combining security goals and attack models we obtain nine security
models for PKE. For instance, indistinguishability against adaptive cho-
sen ciphertext attack, abbreviated IND-CCA2, is the inability of an ad-
versary to distinguish between two ciphertexts arising out of two equal
length messages, although the adversary can adaptively access a decryp-
tion oracle. Relationships between these security notions for PKE have
been deeply studied [13, 3, 4, 11, 20].

The security models for PKE can be adapted to IBE, but some care is
needed because in this case a coalition of valid users (of an IBE scheme)
can launch an attack against another user (of the same scheme) by pulling
together their decryption keys. This aspect is modeled by ensuring the
adversary with access to a key-extraction oracle. As for PKE, combining
the security goals with the attack models we obtain nine security models
for IBE. They are abbreviated by X-ID-Y, where X is a security goal and
Y is an attack model. The relationships between these security models
are pictorially represented in Figure 2 [1]. As one can see, IND-ID-CCA2
is the strongest security model.



NM-ID-CPA NM-ID-CCA1 NM-ID-CCA2

IND-ID-CPA IND-ID-CCA1 IND-ID-CCA2

SS-ID-CPA SS-ID-CCA1 SS-ID-CCA2

Fig. 1. Relationships between security models for IBE

Recall below the security models IND-IDCCA2 and IND-ID-CPA. For
convenience, we will abbreviate IND-ID-CCA2 by IND-ID-CCA. These
security models are best explained by means of a game played between
the adversary A and a challenger.

IND-ID-CCA Game

Setup: The challenger takes a security parameter λ and runs Setup(λ).
It gives the adversary A the resulting system parameters PP , while
keeping the master key msk to itself;

Phase 1: The adversary A issues a finite number of queries, where each
query is of one of the following two forms:
Extraction query(ID): The adversary queries the challenger for the

private key corresponding to the identity ID. The challenger runs
the Extract algorithm to generate the private key corresponding
to ID and sends it to A;

Decryption query(ID, c): The adversary queries the challenger to de-
crypt the ciphertext c with the private key associated to ID. The
challenger runs Extract to obtain the private key associated to
ID and then runs Decrypt to decrypt c. Then, it sends the result
to A;

These queries may be asked adaptively, that is, each query may de-
pends on the replies to the previous queries;

Challenge: Once the adversary decided that Phase 1 is over, it outputs
two equal length plaintexts m0 and m1 and an identity ID∗ which
did not appear in any query in Phase 1 and on which it wishes to be
challenged. The challenger picks a random bit b ∈ {0, 1} and computes
and sends c∗ = Encrypt(PP, ID∗,mb) as a challenge to the adversary
A;

Phase 2: The adversary issues more queries just like in Phase 1, but with
the following constraints: each Extraction query(ID) must satisfy



ID 6= ID∗, and each Decryption query(ID, c) must satisfy (ID, c) 6=
(ID∗, c∗);

Guess : The adversary outputs a guess b′ ∈ {0, 1} and wins the game if
b = b′.

The advantage of an adversary as in the IND-ID-CCA game in attack-
ing an IBE scheme S is defined as a function on the security parameter
λ

AdvA,S(λ) = |P (b = b′)− 1/2|,
where the probability is computed over the random bits used by the
challenger and the adversary A. An IBE scheme S is IND-ID-CCA secure
if for any PPT adversary A, the function AdvA,S(λ) is negligible.

IND-ID-CPA security is defined similarly to IND-ID-CCA security ex-
cept for the fact that the IND-ID-CPA game does not contain decryption
queries.

3 IBE Schemes Based on Quadratic Residues

The first IBE scheme not using pairings was proposed by Clifford Cocks
in December 2001 [7], shortly after Dan Boneh and Matthew Franklin an-
nounced their IBE scheme in August 2001 [5] 1. The Cocks scheme is very
elegant and per se revolutionary. It is based on the standard quadratic
residuosity assumption modulo an RSA composite (in the random ora-
cle model). In order to understand the Cocks’ IBE scheme, as well as
other IBE schemes based on the quadratic residuosity assumption, it is
a good idea to start with the Goldwasser-Micali public key encryption
(PKE) scheme [13]. But let us first recall a few concepts and notations
on quadratic residues.

The Jacobi symbol of an integer a modulo an integer n is denoted
by

(
a
n

)
. Jn stands for the set of integers in Z∗n whose Jacobi symbol is

1, QRn denotes the set of quadratic residues in Z∗n, and SQRTn(a) is
the set of square roots modulo n of a. Zn[x] is the ring of polynomials
over Zn. The QR advantage of an adversary A against an RSA generator
RSAgen(λ) is denoted by QRAdvA,RSAgen(λ) (λ is a security parameter).
If this advantage is negligible for all adversaries A, we say that the QR
assumption holds for RSAgen. Given a pseudorandom function (PRF) F ,
PRFAdvA,F stands for the PRF advantage of A against F . F is secure
if PRFAdvA,F is negligible for all A.

1 It was revealed that Clifford Cocks, a mathematician in the United Kingdom’s cryp-
tography agency GCHQ, had years earlier devised his IBE scheme, but this was
classified by the UK government.



3.1 The Goldwasser-Micali PKE Scheme

The main idea behind the Goldwasser-Micali PKE scheme is the following:

– each bit is viewed as one of the integers -1 or 1 (this can be simply
done by encoding b ∈ {0, 1} by (−1)b);

– sending the bit 1 is equivalent to sending a quadratic residue c = r2

modulo a Blum integer n = pq, while sending the bit −1 is equivalent
to sending c = −r2 mod n;

– the decryption of c requires to decide whether c is a quadratic residue
modulo n. This can efficiently be done if the factorization of n is
known; otherwise, it is hard to distinguish between a quadratic residue
and a quadratic non-residue (remark that the Jacobi symbol

(
c
n

)
can

efficiently be computed and it is always 1 due to the fact that n is a
Blum integer).

Goldwasser-Micali PKE scheme [13]

Setup(λ): Generate (p, q) ← Blum gen(λ) and compute n = pq. Then,
output the public key n, while the factorization (p, q) of n is the private
key;

Encrypt(m,n): To encrypt a bit m ∈ {−1, 1} by the public key n, choose
at random r ∈ Z∗n and output the ciphertext c = r2 ·m mod n;

Decrypt(c, (p, q)): Return m = 1 if c ∈ QRn, and −1, otherwise. This

can efficiently be done by testing whether
(
c
p

)
= 1 and

(
c
q

)
= 1.

Theorem 1. [13] The Goldwasser-Micali PKE scheme is IND-CPA se-
cure under the QR assumption for Blum gen.

3.2 The Cocks PKE and IBE Schemes

The decryption in the Goldwasser-Micali scheme needs the factorization
of n. The scheme below proposed by Cocks [7] is based on a similar idea
but the decryption does not depend on the factorization of n. Moreover,
n can be an RSA modulus and not necessarily a Blum integer as in the
Goldwasser-Micali scheme.

Cocks PKE scheme [7]

Setup(λ): Generate (p, q)← Blum gen(λ) and compute n = pq. Choose
uniformly at random a private key r ∈ Z∗n and output the public key
(n, a), where a = r2 mod n;



Encrypt(m, (n, a)): To encrypt a bitm ∈ {−1, 1} by the public key (n, a),
choose at random t ∈ Z∗n such that

(
t
n

)
= m and output the ciphertext

c = t+ at−1 mod n;

Decrypt(c, r): Output
(
c+2r
n

)
.

The generation of t ∈ Z∗n with
(
t
n

)
= m can be done by repetition

because the probability of success for a random choice of t is 1/2. The
correctness of the Cocks public key encryption scheme simply follows from
the congruence

c+ 2r ≡n t(1 + 2rt−1 + (rt−1)2) ≡n t(1 + rt−1)2

which shows that
(
c+2r
n

)
=

(
t
n

)
= m.

Theorem 2. [7] The Cocks PKE scheme is IND-CPA secure under the
QR assumption for Blum gen.

The Cocks public key encryption scheme can now easily be trans-
formed into an IBE scheme. Let h : {0, 1}∗ → Jn be a truly random
function which maps identities into integers with the Jacoby symbol 1
modulo n. Now, the only subtlety is that we cannot detect whether the
output of h is a quadratic residue modulo n or not (recall that the output
of h is conceived as a public key). However, it can be easily seen that
if a = h(ID) is not a quadratic residue, then −a is (recall that n is a
Blum integer and, therefore, −1 is a quadratic non-residue). The solution
is then to encrypt a bit m ∈ {−1, 1} both by a and −a. The private
key of the decryptor will be a square root of a, if a ∈ QRn, or of −a, if
−a ∈ QRn.

One may also remark that−a can be replace by any product e·a mod n
between a public quadratic non-residue e and a. Moreover, in this case
n is not required to be a Blum integer. Thus, we arrive at the following
general version of the Cocks IBE scheme.

Cocks IBE scheme [7]

Setup(λ): Generate (p, q)← RSAgen(λ) and compute n = pq. Generate
uniformly at random e ∈ Jn−QRn and output the public parameters
PP = (n, e, h), where h is a hash function that maps identities to
J(n). The master key is the factorization of n, namely (p, q);

Extract(p, q, ID): Let a = h(ID). If a ∈ QR(n), set the private key as a
random square root r of a; otherwise set the private key as a random
square root r of ea;



Encrypt(PP, ID,m): Let a = h(ID). To encrypt a bit m ∈ {−1, 1},
randomly choose t1, t2 ∈ Z∗n such that

(
t1
n

)
=

(
t2
n

)
= m. Compute

then c1 = t1 + at−1
1 mod n and c2 = t2 + eat−1

2 mod n and output the
pair (c1, c2) as being the ciphertext associated to m;

Decrypt((c1, c2), r): Set c = c1 if r2 ≡ a mod n, and c = c2, otherwise.
Then, m =

(
c+2r
n

)
.

The correctness of the Cocks IBE scheme follows in the same way as
for the Cocks public key encryption scheme.

Theorem 3. [7, 12] The Cocks IBE scheme is IND-CPA secure in the
random oracle model under the QR assumption for RSAgen.

The Cocks IBE scheme encrypts a message bit by bit, and each bit is
encrypted by 2 log n bits, where n is the RSA integer used by the scheme.
Therefore, the Cocks IBE scheme can be considered very bandwidth con-
suming. As Cocks remarked in his paper [7], the scheme can be used
in practice to encrypt short session keys in which case it becomes very
attractive.

3.3 The Boneh-Gentry-Hamburg IBE Scheme

In the Cocks IBE scheme, t1 and t2 are generated such that
(
t1
n

)
=

(
t2
n

)
=

m. Therefore, we may say that t1 and t2 encrypt m, and they are trans-
mitted to the recipient in a hidden way: t1 and t2 are encapsulated into
c1 and c2, respectively. One may think to another way of encrypting
the bit m. Namely, generate at random t1, t2 ∈ Z∗n and encrypt m by
(c1, d1, c2, d2), where c1 = m ·

(
t1
n

)
, c2 = m ·

(
t2
n

)
, d1 = t1 + at−1

1 mod n,
and d2 = t2 + eat−1

2 mod n, where e ∈ Jn \QRn is public. The decryption

can be simply performed by computing c1 ·
(
d1+2r
n

)
or c2 ·

(
d2+2r
n

)
, de-

pending on whether a or ea is a quadratic residue modulo n. The scheme
obtained in this way is less efficient than the Cocks IBE scheme but, a
positive answer to the following question would change things: is there
any way to (efficiently) compute, from the public parameters, two pairs
of polynomials (f, g) and (f̄ , ḡ) such that the following property holds(

g(s)f(r)

n

)
=

(
ḡ(s)f̄ r

n

)
= 1

for some s known only by the encryptor and some r known only by the
decryptor? If this question would have a positive answer, than one could

encrypt the bit m by (c, c̄), where c = m ·
(
g(s)
n

)
and c̄ = m ·

(
ḡ(s)
n

)
. The



decryption would be obtained by multiplying c by
(
f(r)
n

)
or c̄ by

(
f̄(r)
n

)
(r would play the role of a private key).

The above idea was exploited by Boneh, Gentry, and Hamburg in [6].

Definition 1. Let n be a positive integer, a, S ∈ Z∗n, and f, g ∈ Zn[x]. We
say that (f, g) is a pair of (a, S)-associated polynomials if the following
properties hold:

1. if a, S ∈ QRn, then f(r)g(s) ∈ QRn, for all r ∈ SQRTn(a) and
s ∈ SQRTn(S);

2. if a ∈ QRn, then f(r)f(−r)S ∈ QRn, for all r ∈ SQRTn(a).

Roughly speaking, the integer a will play the role of public key, while
each r ∈ SQRTn(a) will be a private key. The square roots of S are
used to randomize the encryption. Thus, the first condition in Definition

1, which is equivalent to
(
g(s)
n

)
=

(
f(r)
n

)
, guarantees the correctness of

the decryption process: a bit m is encrypted by multiplying it by
(
g(s)
n

)
,

and the result is decrypted by multiplying the ciphertext by
(
f(r)
n

)
. The

second condition in Definition 1 is less intuitive: it is necessary to prove
security.

The following IBE scheme, called BasicIBE, was proposed in [6].

BasicIBE scheme [6]
% In this scheme, D is an unspecified deterministic algorithm that on
% input (n, a, S) outputs a pair (f, g) of (a, S)-associated polynomials,
% where n is a positive integer and a, S ∈ Z∗n.

Setup(λ): Generate (p, q) ← RSAgen(λ), compute n = pq, generate
e ∈ Jn \QRn, and choose a hash function h : {0, 1}∗×{1, . . . , `} → Jn
for some integer ` ≥ 1. Output the public parameters PP = (n, e, h);
the master key msk = (p, q,K) is the factorization of n together with
a random key K of some pseudo-random function FK : {0, 1}∗ ×
{1, . . . , `} → {0, 1, 2, 3} (FK chooses one of the four square roots
of h(ID, i) or eh(ID, i), depending on which of them is a quadratic
residue);

Extract(msk, ID): For each j ∈ {1, . . . , `}, let aj = h(ID, j) and ij =
FK(ID, j). If r0, r1, r2, r3 is a fixed total ordering of the square roots
of aj or eaj (depending on which of them is a quadratic residue), then
the private key is r = (ri1 , . . . , ri`);

Encrypt(PP, ID,m): Assume m = m1 · · ·m` ∈ {−1, 1}` is the `-bit se-
quence to be encrypted. The encryption process is as follows:



– Generate at random s ∈ Z∗n and set S = s2 mod n;

– For j := 1 to ` do

• Compute aj = h(ID, j);

• Compute (fj , gj) = D(n, aj , S) and (f̄j , ḡj) = D(n, eaj , S);

• Compute cj = mj ·
(
gj(s)
n

)
and c̄j = mj ·

(
ḡj(s)
n

)
;

– Return (c, c̄, S), where c = c1 · · · c` and c̄ = c̄1 · · · c̄`;
Decrypt((c, c̄, S), r): The decryption process is as follows:

– For j := 1 to ` do

• Compute aj = h(ID, j);

• If aj ∈ QRn then a′j = aj else a′j = eaj ;

• Compute (f ′j , g
′
j) = D(n, a′j , S);

• Compute mj = cj ·
(
f ′j(rij )

n

)
;

– Return m = m1 · · ·m`.

The following theorem clarifies the security of the BasicIBE scheme.

Theorem 4. [6] For any efficient IND-ID-CPA adversary A attacking
the BasicIBE scheme, there exist two efficient algorithms B1 and B2,
whose running time is about the same as that of A, such that:

IBEAdvA,BasicIBE(λ) ≤ 2 ·QRAdvB1,RSAgen(λ) + PRFAdvB2,F (λ),

provided that h is modeled as a random oracle, the QR assumption holds
for RSAgen, and F is a secure pseudo-random function.

We emphasize that the BasicIBE scheme is an abstract IBE scheme
because no concrete algorithm D to compute (a, S)-associated polynomi-
als is presented. In [6], the method proposed to construct such polynomials
is based on the congruence QCn(a, S) given by

ax2 + Sy2 ≡ 1 mod n, (1)

where n = pq is an RSA modulus and a, S ∈ Z∗n. Any solution (x0, y0) to
QCn(a, S) gives rise to two polynomials f and g

f(r) = x0r + 1 mod n

g(s) = 2(y0s+ 1) mod n

that are (a, S)-associated (see [6] for details).



The BasicIBE scheme is more space efficient than the Cocks IBE
scheme: ` bits are encrypted by 2` + log n bits. The time complexity of
the BasicIBE scheme depends on the time complexity of the algorithm
D. If this implements the method described above, then the encryptor
must solve 2` equations of the form QCn(ai, S) and QCn(eai, S), for all
1 ≤ i ≤ `. The decryptor needs to solve only ` of these equations.

An improvement at the decryptor side can be obtained starting from
the remark that if (x1, y1) is a solution to QCn(a, S) and (x2, y2) is a
solution to QCn(e, S), then (x3, y3) is a solution to QCn(ea, S), where
x3 = x1x2

Sy1y2+1 mod n and y3 = y1+y2
Sy1y2+1 mod n.

Therefore, the encryptor only needs to solve the equations QCn(ai, S)
for all 1 ≤ i ≤ `, and the equation QCn(e, S). This means `+ 1 equations
instead of 2` equations.

The algorithm proposed in [6] to find solutions to QCn(a, S) is quar-
tic in the security parameter, making thus the BasicIBE scheme more
expensive than all standard IBE and public key encryption schemes.

3.4 Jhanwar-Barua’s IBE Scheme and Other Variations

A significant step in computing solutions toQCn(a, S) was made by Barua
and Jhanwar [14, 2] who have established the following characterization
result for the solutions in Z2

n to the congruence QCn(a, S).

Theorem 5. [14, 2] Let n be an RSA modulus and a, S ∈ Z∗n. The solu-
tions to the congruence QCn(a, S) satisfy the following properties:

1. If S ∈ QRn then, for any s ∈ SQRTn(S) and any t ∈ Z∗n with (a +
St2, n) = 1, the pair (x, y) of integers given by

x =
−2st

a+ St2
mod n and y =

a− St2

s(a+ St2)
mod n (2)

is a solution in Z∗n × Zn to the congruence QCn(a, S).
Moreover, any solution (x, y) ∈ Z∗n×Zn to the congruence QCn(a, S)
is as above, for some s ∈ SQRTn(S) and t ∈ Z∗n with (a+St2, n) = 1.

2. If a ∈ QRn then, for any r ∈ SQRTn(a) and any t ∈ Z∗n with (S +
at2, n) = 1, the pair (x, y) of integers given by

x =
S − at2

r(S + at2)
mod n and y =

−2rt

S + at2
mod n (3)

is a solution in Zn × Z∗n to the congruence QCn(a, S).
Moreover, any solution (x, y) ∈ Zn×Z∗n to the congruence QCn(a, S)
is as above, for some r ∈ SQRTn(a) and t ∈ Z∗n with (S+at2, n) = 1.



Theorem 5 leads to the following simple probabilistic algorithmQ(n, a, S)
to compute solutions to the congruence QCn(a, S), when S ∈ QRn and a
square root s of S is known (of course, the algorithm can be correspond-
ingly rephrased for the case when a ∈ QRn).

Scheme 1 : Q(n, a, S)
Input: n, a, S, and s as above
Output: a solution (x0, y0) to QCn(a, S)

1: randomly choose t ∈ Z∗n such that a + St2 ∈ Z∗n;
2: output x0 = −2st(a + St2)−1 mod n and y0 = (tx0 + s−1) mod n.

We emphasize that the probabilistic algorithm Q described above can
not directly be used as an instantiation for the deterministic algorithm
D in the BasicIBE scheme because it does not guarantee a correct de-
cryption. Jhanwar and Barua have used it via a way to combine solutions
differently than the one in [6].

Lemma 1. [14] If (x1, y1) ∈ Z2
n is a solution to the congruence QCn(a, S1)

and (x2, y2) ∈ Z2
n is a solution to the congruence QCn(a, S2), then (x1,2, y1,2) ∈

Z2
n is a solution to the congruence QCn(a, S1S2), where

x1,2 =
x1 + x2

ax1x2 + 1
mod n and y1,2 =

y1y2

ax1x2 + 1
mod n, (4)

provided that (ax0x1 + 1, n) = 1.
Moreover, x1,2 ∈ Z∗n if and only if (x1 + x2, n) = 1.

Now we are able to describe the IBE scheme proposed by Jhanwar
and Barua [14]. In this scheme, Q(n, a, S) is the probabilistic algorithm
described above to find solutions to congruences QCn(a, S)).

Jhanwar-Barua IBE (JB IBE) scheme [14]

Setup(λ): Generate (p, q)← RSAgen(λ), compute n = pq, generate e ∈
Jn \ QRn, and choose a hash function h : {0, 1}∗ → Jn. Output the
public parameters PP = (n, e, h); the master key msk = (p, q,K) is
the factorization of n together with a random key K of some pseudo-
random function FK : {0, 1}∗ → {0, 1, 2, 3} (FK chooses one of the
four square roots of h(ID) or eh(ID));

Extract(msk, ID): The private key is r = rj , where j = FK(ID) and
r0, r1, r2, r3 is an ordering of the square roots modulo n of h(ID) or
eh(ID), depending on which of them is a quadratic residue modulo
n;



Encrypt(PP, ID,m): Assume m = m0 · · ·m`−1 is the `-bit sequence to
be encrypted. The encryption process is as follows:

– Compute a = h(ID);

– Compute k = d
√
`e;

– For i := 0 to k − 1 do

• Randomly choose si ∈ Z∗n and compute Si = s2
i mod n;

• Compute (xi, yi)← Q(n, a, Si) and (x̄i, ȳi)← Q(n, ea, Si);

• Compute ci = mi ·
(

2siyi+2
n

)
and c̄i = mi ·

(
2siȳi+2

n

)
;

– For i := k to `− 1 do

• Compute 1 ≤ α ≤ k−1 and 0 ≤ β ≤ k−1 such that i = α·k+β;

• Use Lemma 1 to compute yi from (xα, yα) and (xβ, yβ), and ȳi
from (x̄α, ȳα) and (x̄β, ȳβ);

• Set si = sαsβ mod n;

• Compute ci = mi ·
(

2siyi+2
n

)
and c̄i = mi ·

(
2siȳi+2

n

)
;

– Return (c, c̄, x, x̄), where c = c0 · · · c`−1, c̄ = c̄0 · · · c̄`−1, x = (x0, . . . , xk−1),
and x̄ = (x̄0, . . . , x̄k−1);

Decrypt((c, c̄, x, x̄), r): The decryption process is as follows:

– Compute a = h(ID);

– Compute k = d
√
`e;

– For i := 0 to k − 1 do

• If ai ∈ QRn then mi = ci ·
(
xirj+1
n

)
else mi = c̄i ·

(
x̄irj+1
n

)
;

– For i := k to `− 1 do

• Compute 1 ≤ α ≤ k−1 and 0 ≤ β ≤ k−1 such that i = α·k+β;

• Use Lemma 1 to compute either xi from xα and xβ, or x̄i from
x̄α and x̄β, depending on weather a or ea is a quadratic residue;

• If ai ∈ QRn then mi = ci ·
(
xirj+1
n

)
else mi = c̄i ·

(
x̄irj+1
n

)
;

– Return m = m0 · · ·m`−1.

The soundness of JB IBE scheme follows easily from how associated
polynomials can be computed from solutions to congruences QCn(a, S)
and from Lemma 1.



As one can see, in the JB IBE scheme the encryptor needs to solve
2k congruences, where k = d

√
`e, while the decryptor solves none. The

ciphertext length is 2`+ 2k log n bits for a plaintext of ` bits.
Regarding the security of the JB IBE scheme, it was argued in [14]

that the scheme is IND-ID-CPA secure. More precisely, it was shown the
following.

Theorem 6. [14] For any efficient IND-ID-CPA adversary A against the
JB IBE scheme there exist efficient algorithms B1 and B2, whose running
time is about the same as that of A, such that

IBEAdvA,JB IBE(λ) ≤ PRFAdvB1,F (λ) + 2 ·QRAdvB2,RSAgen(λ) +
1

2k
,

provided that h is modeled as a random oracle, the QR assumption holds
for RSAgen, and F is a secure pseudo-random function.

Unfortunately, the JB IBE scheme is totally insecure. The first secu-
rity flaw was remarked in [9] and it can simply described as follows. If
i = α · k + β and j = β · k + α, then yi = yj (according to Lemma 1).
Therefore, the bits mi and mj are encrypted by using the same Jacobi
symbol. This allows an adversary to easily win the IND-ID-CPA security
game (in the challenge phase, the adversary chooses two messages m0 and
m1 such that m0 has identical bits on the positions i and j, while m1 has
different bits on these positions). This security flaw can be overcame if
we choose k larger than d

√
`e and we combine (xi, yi) with (xj , yj) only

for i ≤ j [9]. In fact, k should be the least integer satisfying k(k+3)
2 ≥ `.

Although we correct the JB IBE scheme as above, the JB IBE scheme

is still insecure because from x0, . . . , xk−1 one can compute
(

2siyi+2
n

)
for

all i [18]. Indeed, let (x1, y1) be a solution to QCn(a, S1) and (x2, y2)
be a solution to QCn(a, S2). By Lemma 1, (x1,2, y1,2) is a solution to
QCn(a, S1S2), where x1,2 and y1,2 are as in the lemma. Then, if a ∈ QRn
and r ∈ SQRTn(a) we obtain

(x1r + 1)(x2r + 1) ≡n ax1x2 + 1 + r(x1 + x2) ≡n (ax1x2 + 1)(x1,2r + 1)

which leads to(
x1,2r + 1

n

)
=

(
x1r + 1

n

)(
x2r + 1

n

)(
ax1x2 + 1

n

)
(5)

Moreover, if S1, S2 ∈ QRn, s1 ∈ SQRTn(S1), and s2 ∈ SQRTn(S2) we
also have(

2s1s2y1,2 + 2

n

)
=

(
2s1y1 + 2

n

)(
2s2y2 + 2

n

)(
ax1x2 + 1

n

)
(6)



no matter a is a quadratic residue or not (see [18] for more details).
Now, it is straightforward to show that the JB IBE scheme is not

IND-ID-CPA.

In [9], Elashry, Mu, and Susilo tried to improve the upper bound in
Theorem 6 by dropping the factor 1/2k by using Damgard’s assumption.
This assumption says that it is hard to predict the Jacobi symbol of the
next integer of a polynomial length sequence of consecutive integers. More
precisely, given a λ-bit RSA modulus n and an integer a, it is hard to

predict
(
a+poly(λ)+1

n

)
knowing

(a
n

)
,

(
a+ 1

n

)
, . . . ,

(
a+ poly(λ)

n

)
where poly is a polynomial.

In [9], Damgard’s assumption is used as follows. Let (x1, y1) be a so-
lution to QCn(a, S1) and (x2, y2) be a solution to QCn(a, S2). By using
Lemma 1, these two solutions can be combined into a solution (x1,2, y1,2)
to QCn(a, S1S2). Then, the authors claimed that, by Damgard’s assump-
tion, the probability of getting the Jacobi symbol(

2s1s2y3 + 2

n

)
(7)

from the sequence (
2s1y1 + 2

n

)
,

(
2s2y2 + 2

n

)
(8)

is 1/2 (s1 and s2 are square roots of S1 and S2, resp.). Apart from the
fact that the authors in [9] consider Damgard’s assumption as a proved
result (which is not the case), Damgard’s assumption cannot be applied
to this case because in between 2s1y1 + 2 and 2s2y2 + 2 may exist an
exponential (in the security parameter λ) number of integers. Moreover,
(6) shows clearly that the Jacobi symbol (7) can easily be obtained from
the Jacobi symbols in (8) (recall that a can be publicly computed and x1

and x2 are known either from the ciphertext or can be computed from
the ciphertext).

Later [10], the same authors (Elashry, Mu, and Susilo) tried to reduce
more the number of congruences to be solved in order to get associated
polynomials, and proposed a JB IBE-like scheme. As they have used
Lemma 1 to combine solutions, the flaw described above ([18]) still re-
mains.



4 Conclusions

Designing an IBE scheme from quadratic residuosity, more space efficient
than the Cocks scheme, is an interesting and valuable objective. The solu-
tion proposed by Boneh, Gentry, and Hamburg comes with a very elegant
idea: associated polynomials. Unfortunately, their solution uses a quar-
tic time-complexity deterministic algorithm to compute such polynomials
from congruences of the form ax2 +Sy2 ≡ 1 mod n. The characterization
proposed by Jhanwar and Barua for the solutions to such congruences is a
valuable mathematical achievement that leads to efficient probabilistic al-
gorithms to compute solutions. Unfortunately again, this probabilistic al-
gorithm cannot be used in conjunction with the Boneh-Gentry-Hamburg
scheme. The way it can be used to obtain IBE schemes, proposed by Jhan-
war and Barua, leads to insecure schemes. The insecurity is generated by
the fact that the Jacobi symbol of a solution obtained by combining two
solutions can be derived from public elements from the Jacobi symbols of
the corresponding solutions.

Summing up, the only secure IBE schemes from quadratic residuosity
are the Cocks and Boneh-Gentry-Hamburg (BasicIBE) schemes (due
to space limitation, our exposition did not take into consideration the
anonymous variants of these schemes).
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