
Transformer encoder-based Crypto-Ransomware Detection for
Low-Power Embedded Processors

Hyun-Ji Kim*, Se-Jin Lim*, Yea-Jun Kang*, Won-Woong Kim*, Hwa-Jeong Seo*

*IT Department, Hansung University, Seoul
{khj1594012, dlatpwls834, etus1211, dnjsdndeee, hwajeong84}@gmail.com

Abstract
Crypto-ransomware has a process to encrypt the

victim's files, and crypto-ransomware requests the
victim for money for a key to decrypt the encrypted file.
In this paper, we present new approaches to prevent
crypto-ransomware by detecting block cipher
algorithms for Internet of Things (IoT) platforms. The
generic software of the AVR package and the
lightweight block cipher library (FELICS) written in
C language was trained through the neural network,
and then we evaluated the result. Unlike the previous
technique, the proposed method does not extract
sequence and frequency characteristics, but considers
opcodes and opcode sequences as words and
sentences, performs word embedding, and then inputs
them to the neural network based on the encoder
structure of the transformer model. Through this
approach, the file size was reduced by 0.5 times while
maintaining a similar level of classification
performance compared to the previous method. The
detection success rate for the proposed method was
evaluated with the F-measured value, which is the
harmonic mean of precision and recall. In addition to
achieving 98% crypto-ransomware detection success
rates, classification by benign firmware and
lightweight cryptography algorithm, Substitution-
Permutation-Network (SPN) structure, Addition-
Rotation-eXclusive-or structure (ARX) and normal
firmware classification are also possible.

Keywords: Deep learning, Cryptography,
Ransomware, Internet of Things(IoT)

1. Introduction

In 2017, users of Microsoft Windows were infected

by Wannacry ransomware virus, since the file sharing
protocol has the the vulnerability[1]. It is the biggest
attack in the history of ransomware, with more than
200,000 computers affected. There are two categories
of ransomware, including cryptography type or locker
type. Since the locker type locks the target machine, it
can no longer be accessible by users[2]. However, the
data can be copied to other devices and the data can
be recovered because the data is not encrypted fully.
On the other hand, files of devices are encrypted by
the cryptography ransomware. Since cryptography
algorithms used to encrypt the victim's files are
designed to be secure in mathematical assumptions, it

cannot be recovered without the valid secret key. The
victim has to pay the ransom to the hacker to recover
files. Then, the victim can recover original files using
the secret key. Since most users are moving to
digitization, the ransomware is a large threat to digital
devices. In order to prevent ransomware attacks,
many works devoted to detect the ransomware virus
and recover damages. Four most common crypto
ransomware programs are analyzed in [3]. All
ransomware viruses that rely on the target system's
available system tools are identified. The file can be
recovered by shadow copies generated while the tool
is running.

The ransomware detection is divided into the
analysis of data traffic and the function call. In order
to improve the performance, the machine learning is
actively studied. In [4], the ransomware virus is
identified by analyzing ransomware network behavior
and packet selection. In [5], the light and deep
networks to detect the ransomware virus were
evaluated. The dominance of application
programming interfaces (APIs) is analyzed to
characterize and differentiate ransomware. In [6], a
framework for multi-level big data mining is utilized.
The ransomware is analyzed at different levels such
as the function call, dynamic link library (DLL), and
machine code level through supervised machine
learning. Many researches focused on the
cryptography function because of the nature of crypto
ransomware.

In [7], the collected data through the dynamic
binary analysis is utilized to characterize a specific
aspect of cryptographic codes. In [8], an approach is
presented to automatically identify parameters and
block cipher algorithms in the binary code, and it is
based on static. In [9], asymmetric key cryptographic
(AKC) algorithms are targeted since the ransomware
performs the public key algorithms to encrypt files.
The encryption process performed by public-key
cryptographic algorithms can be detected by
monitoring integer multiplication instructions.
However, the architecture of block cipher was paid
little attention in previous works. Also, there is not
many works to defend against ransomware in the
Internet of Things (IoT) environment.

In this paper, we propose a new approach to prevent
ransomware viruses by classifying the encryption
process of block ciphers in low-end embedded

processors. By analyzing the cryptographic algorithm
opcode on the target embedded processor, it is
classified into cryptographic ransomware and normal
software. For this, an artificial neural network is used,
and the block cipher algorithm of FELICS (Fair
Evaluation of Lightweight Cryptographic Systems)
and the binary code of the normal program of Alf and
Vegard's RISC (AVR) processor package are learned
and evaluated. The proposed method is based on the
encoder structure of the transformer. The opcodes
extracted from the binary file correspond to the words
constituting the sentence. That is, the opcode
sequence becomes one sentence in which words are
listed, and the corresponding opcodes are expressed in
a vector by word embedding, and then input into the
neural network to learn information such as
correlation, order, and pattern between opcodes. We
can classify by inputting the binary file of the file
encryption process or benign firmware to the trained
model. The proposed method successfully classified
the encryption process and detected the ransomware
virus.

This paper is an extension of our previous work[10].
In previous work, after extracting the opcode
sequence and opcode frequency from the binary file,
training through two different neural networks. Then
late fusion to classify each cryptographic algorithms,
benign firmware, and crypto-ransomware is
performed.

In Chapter 2 of this paper, related work is explained.
Then, we propose and evaluate a new method to
prevent crypto-ransomware in Section 3 and Section
4. Finally, we conclude this paper in Chapter 5.

2. Related Works

2.1 Ransomware on IoT Environments

Due to the rapid development of IoT, ransomware

virus prevention and security enhancement are being
established as basic components of IoT-based services
[11]. For a safe IoT environment, many studies are
being conducted as follows. In [12] presents a
machine learning-based ransomware detection
method. After monitoring the power consumption
patterns of some processes, it detects malicious
ransomware in benign applications. In [13], a deep
learning-based method for detecting malicious code
using an opcode sequence is presented, and the
opcode is converted into a vector space and then
learned. In [14] proposes a behavior-based approach.
It extracts the Transmission Control Protocol/Internet
Protocol (TCP/IP) header and puts it on the command
and control (C&C) server blacklist to detect
ransomware attacks. In [15], the sequence of
instruction is transformed into an image, and then the
multiple classes are separated using dimensionality
reduction and statistical methods. However, these
approaches have focused on advanced IoT platforms

and low-end microcontrollers are used for IoT
services to collect data from a distance. Therefore, in
order to improve the security of IoT-based services, a
ransomware detection mechanism for low-end
microcontrollers is required. In this study, we propose
a new mechanism to detect cryptographic ransomware
in a resource-constrained, low-end IoT environment.

2.2 Ransomware Detection Methods based on
Cryptographic Function Call

Crypto-ransomware uses encryption to encrypt the

victim's files, so to detect it, you need to detect the
encryption function. Table 1 compares the
ransomware detection method based on the
encryption function call. In [7], symmetric key and
public key cryptography were detected through the
features of encryption functions. This approach used
a heuristic based on the target architecture. In [8]
utilizes a data flow graph extracted from a binary file,
and cryptographic function calls are identified using
subgraph isoforms. In Reference [9], the
multiplication instruction frequently called in the
Rivest-Shamir-Adleman (RSA) algorithm was
monitored to detect the public key encryption
algorithm. Recently, the work[16] showed that deep
learning algorithms can improve malware detection.
However, this method does not target crypto-
ransomware, and the high-end desktop is the target
platform. In this paper, we present an crypto-
ransomware detection mechanism targeting
microcontrollers.

Table 1 Comparison of Ransomware Detection

Techniques Based on Cryptographic Function
Calls (SKC and AKC mean Symmetric Key
Cryptography and Asymmetric Key
Cryptography, respectively)

Category [7] [8] [9] This
Work

Crypto
graphy

SKC and
AKC

SKC AKC SKC

Approach Dynamic Static

Dynamic Static

Algorithm Heuristics Data
graph
flow

System
monitor

Deep
learning

Architecture Desk
top

Desk
top

Desk
top

Embedded
Processor

2.3 Fair Evaluation of Lightweight Cryptographic
Systems (FELICS)

In 2015, the University of Luxembourg published

the Cryptographic Benchmarking Framework
(FELICS) [17], and cryptographic engineers around
the world submitted several block cipher
implementations for embedded processors to FELICS.
In this paper, the block cipher implementation of
FELICS was used as data, and the target

microcontroller used ATmega128, an 8-bit AVR
widely used in low-end IoT environments. The
microcontroller is an 8-bit single chip based on a
modified Harvard architecture and uses registers and
instructions in units of 8 bits. In addition, block
ciphers targeted in this paper can be classified into two
types as follows. There are Addition, Rotation,
Bitwise eXclusive-or (ARX) and Substitution-
Permutation-Network (SPN), the two architectures
can be characterized with different operations and
overall structures. In this paper, binary codes are
classified according to the characteristics of the two
architectures.

3. Proposed Method

In this paper, we propose an artificial neural

network-based crypto-ransomware detection method
for low-end IoT devices. In general, low-end IoT
devices are used as leaf nodes to collect sensor data,
etc. The base station (firmware server) manages the
devices and updates the firmware of IoT devices
regularly for better service. At this time, there is a risk
of crpyto-ransomware being inserted into IoT devices,
and the base station or the devices must detect the
crypto-ransomware virus. The proposed method uses
an artificial neural network to classify crypto-
ransomware and benign firmware according to
whether the encryption process is executed or not
before the firmware is distributed to the device. We
propose a method based on the encoder structure of
the transformer, utilizing data extracted from binary
code. Since ransomware encrypts the victim's files,
the encryption process can be a characteristic of
ransomware. The proposed method targets a
lightweight block cipher algorithm to determine
whether the encryption process is executed or not. If
you compile the source code of the lightweight block
cipher algorithm, we can get a binary file of the source
code, and in the binary file, there are opcodes for
various functions such as encryption, decryption, and
key schedule. Since different cryptographic
algorithms perform different operations, the core
operation used by each algorithm can be characterized.
Therefore, the opcodes of key functions that perform
encryption are extracted from each algorithm and used
as a feature to detect the encryption process. In
addition, it enables neural network inference on low-
end devices through the Tensorflow Lite model.

3.1 Transformers encoder-based crypto-ransomware
detection

In this section, we propose a transformer encoder-
based crypto-ransomware detection technique. Figure
1 is the overall system structure diagram. Extract the
core function from the binary file of each encryption
algorithm, and extract the opcode from the function.
In this proposed method, string-type opcodes are used

as words in sentences. That is, it does not convert to
decimal, and after embedding each opcode as a vector,
the vector is used as input data. Unlike previous
research results, learning and reasoning are performed
by configuring a single network, and it is classified
into benign firmware and encryption algorithms, and
the encryption algorithm is determined as crypto-
ransomware.

Figure 1 Diagram of transformer encoder-based
crypto-ransomware detection system

3.2 Data generation and preprocessing

A binary file can be obtained by compiling the

source code of the lightweight block cipher algorithm.
Since the encryption process is a characteristic of
ransomware, the function that performs encryption is
extracted from the binary file, and the opcode is
extracted for each function. Also, since the opcodes
for each function become the characteristics of the
function, as shown in Figure 2, each opcode is labeled
with the name of the cryptographic algorithm
including the function to which it belongs.

Figure 2 Extracting and labeling opcode sequences

After extracting the core function of each algorithm

from the binary file, the opcode within the function is
extracted. The extracted opcodes are listed in order
and become time series data. In this proposed method,
a transformer network is used to learn such time-series
data. Therefore, we consider of each opcode as a word
and the opcode sequence as a sentence. In order to
input such data to the network, a preprocessing
process through word embedding is required. Figure
3 shows the embedding of opcode for pre-processing.

This is the process of representing a single word,
opcode, as a dimensional vector. Since there are a total
of 256 opcodes, in case of one-hot encoding, one
opcode is expressed as a 256-dimensional vector. The
embedding dimension was set to 8 dimensions
through experiments, and the number of words was
set to 256, the number of opcodes. By reducing the
embedding dimension from 256 dimensions to 8
dimensions, memory usage can be reduced, which is
an advantage for inference in low-end IoT devices.
Also, before the embedding process, the length of the
array should be adjusted to 1,000 through zero
padding. Since each opcode sequence array
constructed has a different length, the length must be
unified in order to be input to the neural network. For
all sequence arrays, the minimum length is 14 and the
maximum length is 13,859 (unless functions are used
for all operations). Most of the source codes are
written using functions, and they are only two in the
total data. As a result of calculating the percentile, the
case of length 878 occupies 90% of the total data.
Therefore, the maximum length of the opcode
sequence array is set to 1000. If the length is less than
1000, the remaining part is filled with zeros, and if the
length is long, it is truncated to 1000.

This pre-processing process can be performed
through various embedding techniques, and in this
study, the embedding layer was used. Therefore, by
attaching the corresponding layer to the front of the
encoder structure of the transformer, it is used as an
input layer of the neural network, and the embedding
value is adjusted with the gradient during
backpropagation in the learning process.

Figure 3 Opcode embedding process for input data
pre-processing

3.3 Neural network architecture and training phase

Figure 4 is a schematic diagram of the neural

network of the proposed method. Only the encoder is
used among the transformer models, and a classifier
for multi-class classification is added at the end of the
encoder. By using the transformer model, the
sequential processing of time series data learning is
eliminated and input data is processed at once, so
parallel processing is possible and efficiency is
improved.

First, the embedding vector through the
preprocessing process is input to the network. At this
time, since it is time series data, 'Positional Encoding'
is performed to consider order information. The
process is encoded as a value between –1 and 1
through the sine(sin) and cosine(cos) functions, which
can predict the distance between tokens, express long
sentences, and predict position values. When the
entire dimension is 𝑑 dimension, a matrix containing
position information is generated by applying sin to
an even number and cos to an odd number to the
position information value of each opcode. Thereafter,
the matrix indicating the input embedded opcode and
the element-by-element addition are performed.
Through this, order information of the input opcodes
is learned.

The value to which the location information is
added is input to the encoder of the transformer model
and then input to the classifier. That is, the proposed
method uses only the encoder among the encoders and
decoders of the transformer model. Through this, the
correlation of all elements of the input opcode
sequence is analyzed, and overall information and
characteristics of the context are extracted. When it is
input to the encoder, it goes through ‘Multi-head self-
attention’ as shown in the figure. This part is the part
that performs multiple attention, and the attention
technique calculates how much each key affects based
on the query, and then adjusts the weight required for
learning by reflecting the result. At this time, since
each opcode becomes a Query or Key, the association
between opcodes and various features can be learned.
Also, since each head is divided into different Value,
Key, and Query, different results are obtained. That is,
by using multiple heads, various relationships and
characteristics for each opcode can be learned, and the
number of heads was set to two through experiments.
Also, the unit of the ‘Dense’ layer for feed-forward is
set to 4. In addition, there are hyperparameters of the
layer for normalization.

In the case of the proposed method, it is judged to
be a more efficient and suitable method because the
entire opcode sequence is input at once and the
association between the entire context and elements is
learned through the encoder.

Figure 4 Diagram of transformer encoder-based
neural network

After going through the encoder part of the

transformer as above, input data is entered to the
network for classification. The two parts are not
separate networks, they input the encoder's output to
the 'Convolution 1D' layer. The layer has fewer
parameters because it shares weights through filters,
and time-series data can be considered. After
flattening it into a one-dimensional vector through the
‘Flatten’ layer, it is input to the output layer and
classified into 12 classes. Table 2 is the
hyperparameter of the proposed method, and the
corresponding values were set through experiments.

Table 2 Hyperparameters for Transformer

encoder-Based Networks
Hyperparameter Description
The number of

labels
12

Sequence max
length

1,000

The number of
words

256(0~255 opcodes)

Embedding
dimension

8

The number of
heads

2

The number of
encoder

1

Epsilon of
normalization

1e-6

Feed Forward
unit

4

Conv1D filters 16
Conv1D kernel

size
8

Conv1D kernel
size

1

Batch size 32
Epochs 70

Loss Sparse categorical crossentropy
Optimizer Adam (lr = 0.0002)
Activation ReLu (hidden), Softmax

(output)

3.4 Detection of crypto-ransomware

Figure 5 shows the crypto-ransomware detection

process in low-end IoT devices. After converting the
trained network into a TFLite model that can be

inferred from IoT devices, it is distributed. After
writing the code to encrypt the file through the given
encryption algorithm, and extracting 1,000 opcodes
from the beginning of the binary file obtained by
compiling, the opcodes are pre-processed through the
proposed method. After that, if it is input to the
learned neural network, it can be classified into
normal firmware and each encryption algorithm.

Figure 5 System diagram of transformer encoder-
based crypto-ransomware detection for detection
phase

4. Experiment and evaluations

In this experiment, Google Collaboratory, a cloud-

based service, was used, and Intel Xeon CPU (13GB
RAM), Nvidia GPU (12GB RAM) and Ubuntu
18.04.5 LTS are supported. Python 3.7.11 and
Tensorflow 2.6.0 were used as programming
environments. Also, ATmega128 was targeted as the
target board, and GCC-AVR compiler was used.

4.1 Dataset

As mentioned in Chapter 3, when the crypto-

ransomware is executed, unlike the benign firmware,
it performs an encryption process, so the encryption
operation is set as a characteristic of the ransomware.
Table 3 is the dataset used in this experiment. It
consists of a lightweight block cipher algorithm that
corresponds to the substitution-permutation-network
(SPN) and addition-rotation-exclusive-or (ARX)
structures, which are symmetric key cryptographic
algorithms, and general firmware in the IoT
environment. Cryptographic algorithms belonging to
SPN and ARX are cryptographic modules written in
C language during the implementation of FELICS.
And as the benign firmware, RFID (Radio-Frequency
Identification), WiFi, xBee, Bluetooth, etc. are used.
The value in parentheses is the number of data, and in
the detection phase, the binary file of the lightweight
block cipher belonging to the test set and the benign
firmware are cut and used by 1,000 from the
beginning.

Table 3 Details of dataset
Architecture Examples

SPN (88) RECTANGLE(5), PRIDE(25),
PRINCE(33), PRESENT(10), and

AES(15)
ARX (191) SPECK(37), RC5(12), LEA(9),

SIMON(19), HIGHT(58), and
SPARX(56)

Benign (66) XBee, GPS, WiFi, Bluetooth, and
RFID

4.2 Transformers encoder-based crypto-ransomware
detection

This experiment aimed to classify cryptographic

algorithms and benign firmware and detect crypto-
ransomware using a network composed of encoders
and classifiers of transformers. Among the
hyperparameters mentioned in Chapter 3, experiments
were carried out according to the embedding
dimension, the number of layers of the classifier, and
the number of neurons in order to reduce the
complexity of the model and make it lighter. In
addition, there are factors such as the number of heads
of multi-head self-attention and the number of units in
the dense layer corresponding to the feed forward, and
these factors were also set through hyperparameter
tuning. In addition, after measuring the capacity of the
tflite model for distribution to IoT devices, it was
compared with previous work.

Also, in this experiment, the performance is
measured using the F-measure, which is the harmonic
average of precision and recall. In addition, since we
use an unbalanced dataset in which the number of data
is not the same for all classes, we evaluate using micro
F-measure (considering the number of data in each
class) for each experiment. and the corresponding
result is the average value of 10 experiments.
Validation F-measure and Test F-measure are the
results of experiments through Validationset and
Testset, respectively, and Detection F-measure is the
result of testing after applying the pre-processing of
the detection step rather than the pre-processing of
training.

In addition, each evaluation is performed using
'Each algorithm vs. Benign firmware', 'SPN vs. ARX
vs. Benign firmware', and 'Crypto-ransomware vs.
Benign firmware' that is divided. Each experiment is
an experiment to classify individual encryption
algorithms and normal firmware, an experiment to
classify an SPN structure encryption algorithm and
ARX structure encryption algorithm and normal
firmware, and an experiment to classify the
encryption algorithm as crypto-ransomware.

In a resource-constrained environment such as a
low-end device, a model with a small size and fast
inference is used even if the performance is slightly
lower. Recently, many studies have been conducted to
reduce the size of the model while maintaining the
model performance as much as possible. Therefore,

the experiment was conducted to find an efficient
network in consideration of the performance and
model complexity, and the performance according to
the embedding dimension, the number of layer
neurons of the classifier, and the kernel size were
compared. Except for the above three factors, the
remaining hyperparameters were set through
optimization, and finally, the hyperparameters in
Table 3 were used. In addition, through the
experimental results in Section 3, the F-measure for
classifying 11 encryption algorithms and normal
firmware was the lowest and the crypto-ransomware
detection performance was the highest, so this
experiment was conducted with ‘Each algorithm vs.
Measure validation F-measure for 'Benign firmware'.
After performing the other two experiments with the
values determined through the experiment, the results
were analyzed. Table 4 and Table 5 show the number
of F-measures and parameters according to the
embedding dimension, the number of units of the
convolutional layer, and the kernel size. Performance
of 0.94 or more was achieved in all combinations, and
the maximum difference was 0.03. There was no
significant difference for each hyperparameter
combination, and in the case of achieving the highest
performance, the kernel size was 8, the number of
units of the Conv1D layer was 16, and the embedding
dimension was 8. By reducing the embedding
dimension from 256 to 8 and minimizing the number
of filters, the number of parameters was significantly
reduced, and the number of parameters at this time
was 202,432. This is a result suitable for targeting
low-end IoT devices because it has the highest
performance while having a small number of
parameters compared to other cases.

Table 4 When the embedding dimension is 128,

the validation F-measure and the number of
parameters according to the number of units of the
Conv1D layer and the kernel size (expressed as F-
measure (number of parameters))

Embedding
dimension =

128

The number of units of Conv1D
64 32 16

kernel
size

8 0.95
(1,122,640)

0.95
(708,528)

0.96
(501,472)

16 0.94
(1,182,032)

0.95
(738,224)

0.95
(516,320)

Table 5 When the embedding dimension is 8, the

validation F-measure and the number of
parameters according to the number of units of the
Conv1D layer and the kernel size (expressed as F-
measure (number of parameters))

Embedding
dimension = 8

The number of units of Conv1D
64 32 16

kernel
size

8 0.96
(777,520)

0.95
(394,128)

0.97
(202,432)

16 0.95
(775,472)

0.94
(393,104)

0.95
(201,920)

Table 6 shows each algorithm vs. Benign firmware,
SPN vs. ARX vs. Benign firmware, Crypto-
ransomware vs. This is the result of performing an
experiment on Benign firmware. As a result of
analyzing the results of classification and detection,
there was no misclassification of ARX and SPN
structures, and there were cases of misclassifying
SPECK and SPARX, and LEA and SPECK. In other
words, SPN and ARX have different opcode patterns
used in structure and have distinct characteristics.
Also, in the case of crypto-ransomware detection,
misclassification for SPECK and benign firmware
occurred.

Table 6 F-measure of Transformer Encoder-

based Networks
Category Training Detection

Validation
F-Measure

Test
F-Measure

F-measure

Each
algorithm vs.

Benign
firmware

0.97 0.95 0.85

SPN vs. ARX
vs. Benign
firmware

1.00 0.98 0.98

Crypto-
ransomware
vs. Benign
firmware

1.00 0.98 0.98

4.4 Comparison with previous work

Table 7 shows the file size and F-measure of the

proposed method and the results of the previous
method. Unlike the previous method, the proposed
method in which the encoder structure of the
transformer is applied by matching opcodes to words
and opcodes appearing in a function to a sentence
consisting of words does not include frequency
information. But this approach can learn the relation
and context of each opcode, and then a 0.01 higher F-
measure was achieved. In addition, the file size of the
convolutional fusion network to which pruning is
applied is 1.96 times that of the transformer encoder-
based network. Although the performance difference
is not significant, the proposed method based on the
transformer encoder structure is more effective in
detecting cryptographic ransomware in a resource-
constrained environment when the file size is
compared.

Table 7 Comparison with previous work (File

size and F-measure of detection phase)
Model File Size Detection

F-measure
Convolution
Fusion [10]

TFLite 1.74MB 0.97
Pruned
TFLite

1.64MB 0.97

Transformer
encoder

TFLite 0.83MB 0.98

4.5 Comparison with other techniques

Table 8 is a table comparing the proposed method

with other methods. For other studies,
implementations of cryptographic algorithms such as
OpenSSL and Cryptopp libraries were used. Since the
proposed method is an 8-bit AVR environment, the
source code implemented in C in FELICS was used.

Crypto-ransomware mainly uses AES and RSA
algorithms. Therefore, these two algorithms must be
detectable. Grobert et al. [7] have three approaches:
chains, mnemonic-const, and verifier. Among them,
the validator identification method has the best
performance by checking the existence and
parameters of the symmetric encryption process, and
the validator method achieved a detection success rate
of 0.946 in AES. However, the MD5 (Message-
Digest) algorithm and RSA could not be detected, and
both AES and RSA can be detected using the chains
method. Caballero et al. [18] consider the key
scheduling process, which is another factor that can
identify the existence of the encryption process. The
method can detect AES, Data Encryption Standard
(DES), RC4, MD5 and RSA with a simple mechanism.
The method proposed in this paper can handle more
various encryption algorithms. Lightweight block
cipher detection for low-end embedded processor
environments was possible. Therefore, it can be used
to detect cryptographic ransomware for IoT
environments.

Table 8 Comparison with other method

 [7] [17] This
Work

Algorithm Heuristic Field
semantics
inference

Deep
learning

Implementation OpenSSL,
Cryptopp,
Beecrypt

OpenSSL,
Cryptopp,
Beecrypt

FELICS

Description AES, DES,
RC4, and

RSA

AES, DES,
RC4, MD5,

and RSA

See table
3

5. Conclusion

In this paper, we propose a new method to identify

potential crypto-ransomware by classifying block
cryptographic modules and normal firmware for
embedded processors. For this, the lightweight
cryptography implemented in C language among the
implementations of FELICS was targeted, and the
case where the encryption process was detected was
classified as crypto-ransomware. A technique focused
on reducing the size of the model in consideration of
the resource-constrained environment while
achieving a similar level of performance to the
existing research results was proposed. After
matching the opcode extracted from the binary file to
the word constituting the sentence, it is converted into
a vector through word embedding. It is trained after
inputting the transformed data into the neural network

based on the encoder structure of the transformer. By
using this structure, the entire input data can be
processed simultaneously instead of sequentially. In
addition, sequences can be considered, and
correlations and features between opcodes can be
extracted and learned to classify successfully. In
addition, through this proposed technique, a separate
neural network considering frequency characteristics
is no need to construct, and the size of the network
was minimized by reducing the embedding dimension
through experiments. This approach has a file size of
0.509 times that of the convolutional fusion network-
based technique, and the F-measure achieved 0.98. It
is 0.01 higher than previous work.

As future work, we will consider the key scheduling
process, which is characteristic of another encryption
process, and classification methods for other
encryption modules, including public key encryption
and hash functions. In addition, we plan to construct a
more efficient neural network by utilizing various
word embedding techniques.

References

[1] Mohurle, S.; Patil, M. A brief study of Wannacry threat:
Ransomware attack 2017. International Journal of
Advanced Research in Computer Science 2017, 8.
[2] Kharaz, A.; Arshad, S.; Mulliner, C.; Robertson, W.;
Kirda, E. UNVEIL: A large-scale, automated approach to
detecting ransomware. 25th USENIX Security Symposium
(USENIX Security 16), 2016, pp. 757–772.
[3] Weckstén, M.; Frick, J.; Sjöström, A.; Järpe, E. A novel
method for recovery from Crypto Ransomware infections.
2016 2nd IEEE International Conference on Computer and
Communications (ICCC). IEEE, 2016, pp. 1354–1358.
[4] Tseng, A.; Chen, Y.; Kao, Y.; Lin, T. Deep learning for
ransomware detection. IEICE Tech. Rep. 2016, 116, 87–92.
[5] Vinayakumar, R.; Soman, K.; Velan, K.S.; Ganorkar, S.
Evaluating shallow and deep networks for ransomware
detection and classification. 2017 International Conference
on Advances in Computing, Communications and
Informatics (ICACCI). IEEE, 2017, pp. 259–265.
[6] Poudyal, S.; Dasgupta, D.; Akhtar, Z.; Gupta, K. A
multi-level ransomware detection framework using natural
language processing and machine learning. 14th
International Conference on Malicious and Unwanted
Software” MALCON, 2019.
[7] Gröbert, F.; Willems, C.; Holz, T. Automated
identification of cryptographic primitives in binary
programs. International Workshop on Recent Advances in
Intrusion Detection. Springer, 2011, pp. 41–60.
[8] Lestringant, P.; Guihéry, F.; Fouque, P.A. Automated
identification of cryptographic primitives in binary code
with data flow graph isomorphism. Proceedings of the 10th
ACM Symposium on Information, Computer and
Communications Security, 2015, pp. 203–214.
[9] Kiraz, M.S.; Genç, Z.A.; Öztürk, E. Detecting large
integer arithmetic for defense against crypto ransomware.
Tech. Rep. 2017.
[10] Kim, H.; Park, J.; Kwon, H.; Jang, K.; Seo, H.
Convolutional Neural Network-Based Cryptography
Ransomware Detection for Low-End Embedded Processors.

Mathematics 2021, 9, 705.
https://doi.org/10.3390/math9070705
[11] Yaqoob, I.; Ahmed, E.; ur Rehman, M.H.; Ahmed,
A.I.A.; Al-garadi, M.A.; Imran, M.; Guizani, M. The rise of
ransomware and emerging security challenges in the
Internet of Things. Computer Networks 2017, 129, 444–458.
[12] Azmoodeh, A.; Dehghantanha, A.; Conti, M.; Choo,
K.K.R. Detecting crypto-ransomware in IoT networks
based on energy consumption footprint. Journal of Ambient
Intelligence and Humanized Computing 2018, 9, 1141–
1152.
[13] Azmoodeh, A.; Dehghantanha, A.; Choo, K.K.R.
Robust malware detection for internet of (battlefield) things
devices using deep eigenspace learning. IEEE Transactions
on Sustainable Computing 2018, 4, 88–95
[14] Zahra, A.; Shah, M.A. IoT based ransomware growth
rate evaluation and detection using command and 410
control blacklisting. 2017 23rd International Conference on
Automation and Computing (ICAC). IEEE, 411 2017, pp.
1–6.
[15] Karimi, A.; Moattar, M.H. Android ransomware
detection using reduced opcode sequence and image
similarity. 2017 7th International Conference on Computer
and Knowledge Engineering (ICCKE). IEEE, 2017, pp.
229–234.
[16] Kumar, R.; Xiaosong, Z.; Khan, R.U.; Ahad, I.; Kumar,
J. Malicious code detection based on image processing
using deep learning. Proceedings of the 2018 International
Conference on Computing and Artificial Intelligence, 2018,
pp. 81–85.
[17] Dinu, D.; Biryukov, A.; Großschädl, J.; Khovratovich,
D.; Le Corre, Y.; Perrin, L. FELICS–fair evaluation of
lightweight cryptographic systems. NIST Workshop on
Lightweight Cryptography, 2015, Vol. 128.
[18] Caballero, J.; Poosankam, P.; Kreibich, C.; Song, D.
Dispatcher: Enabling Active Botnet Infiltration Using
Automatic Protocol Reverse-Engineering. Proceedings of
the 16th ACM Conference on Computer and
Communications Security; Association for Computing
Machinery: New York, NY, USA, 2009; CCS ’09, p. 621–
634. doi:10.1145/1653662.1653737.

