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Abstract 
Crypto-ransomware has a process to encrypt the 

victim's files, and crypto-ransomware requests the 
victim for money for a key to decrypt the encrypted file. 
In this paper, we present new approaches to prevent 
crypto-ransomware by detecting block cipher 
algorithms for Internet of Things (IoT) platforms.  The 
generic software of the AVR package and the 
lightweight block cipher library (FELICS) written in 
C language was trained through the neural network, 
and then we evaluated the result. Unlike the previous 
technique, the proposed method does not extract 
sequence and frequency characteristics, but considers 
opcodes and opcode sequences as words and 
sentences, performs word embedding, and then inputs 
them to the neural network based on the encoder 
structure of the transformer model. Through this 
approach, the file size was reduced by 0.5 times while 
maintaining a similar level of classification 
performance compared to the previous method. The 
detection success rate for the proposed method was 
evaluated with the F-measured value, which is the 
harmonic mean of precision and recall. In addition to 
achieving 98% crypto-ransomware detection success 
rates, classification by benign firmware and 
lightweight cryptography algorithm, Substitution-
Permutation-Network (SPN) structure, Addition-
Rotation-eXclusive-or structure (ARX) and normal 
firmware classification are also possible. 

Keywords: Deep learning, Cryptography, 
Ransomware, Internet of Things(IoT) 

 
1. Introduction 
 
In 2017,  users of Microsoft Windows were infected 

by Wannacry ransomware virus, since the file sharing 
protocol has the the vulnerability[1]. It is the biggest 
attack in the history of ransomware, with more than 
200,000 computers affected. There are two categories 
of ransomware, including cryptography type or locker 
type. Since the locker type locks the target machine, it 
can no longer be accessible by users[2].  However, the 
data can be copied to other devices and the data can 
be recovered because the data is not encrypted fully. 
On the other hand,  files of devices are encrypted by 
the cryptography ransomware. Since cryptography 
algorithms used to encrypt the victim's files are 
designed to be secure in mathematical assumptions, it 

cannot be recovered without the valid secret key. The 
victim has to pay the ransom to the hacker to recover 
files. Then, the victim can recover original files using 
the secret key. Since most users are moving to 
digitization, the ransomware is a large threat to digital 
devices. In order to prevent ransomware attacks, 
many works devoted to detect the ransomware virus 
and recover damages. Four most common crypto 
ransomware programs are analyzed in [3]. All 
ransomware viruses that rely on the target system's 
available system tools are identified. The file can be 
recovered by shadow copies generated while the tool 
is running.  

The ransomware detection is divided into the 
analysis of data traffic and the function call. In order 
to improve the performance, the machine learning is 
actively studied. In [4], the ransomware virus is 
identified by analyzing ransomware network behavior 
and packet selection. In [5], the light and deep 
networks to detect the ransomware virus were 
evaluated. The dominance of application 
programming interfaces (APIs) is analyzed to 
characterize and differentiate ransomware. In [6], a 
framework for multi-level big data mining is utilized. 
The ransomware is analyzed at different levels such 
as the function call, dynamic link library (DLL), and 
machine code level through supervised machine 
learning. Many researches focused on the 
cryptography function because of the nature of crypto 
ransomware.  

In [7], the collected data through the dynamic 
binary analysis is utilized to characterize a specific 
aspect of cryptographic codes. In [8], an approach is 
presented to automatically identify parameters and 
block cipher algorithms in the binary code, and it is 
based on static. In [9], asymmetric key cryptographic 
(AKC) algorithms are targeted since the ransomware 
performs the public key algorithms to encrypt files. 
The encryption process performed by public-key 
cryptographic algorithms can be detected by 
monitoring integer multiplication instructions. 
However, the architecture of block cipher was paid 
little attention in previous works. Also, there is not 
many works to defend against ransomware in the 
Internet of Things (IoT) environment.  

In this paper, we propose a new approach to prevent 
ransomware viruses by classifying the encryption 
process of block ciphers in low-end embedded 



processors. By analyzing the cryptographic algorithm 
opcode on the target embedded processor, it is 
classified into cryptographic ransomware and normal 
software. For this, an artificial neural network is used, 
and the block cipher algorithm of FELICS (Fair 
Evaluation of Lightweight Cryptographic Systems) 
and the binary code of the normal program of Alf and 
Vegard's RISC (AVR) processor package are learned 
and evaluated. The proposed method is based on the 
encoder structure of the transformer. The opcodes 
extracted from the binary file correspond to the words 
constituting the sentence. That is, the opcode 
sequence becomes one sentence in which words are 
listed, and the corresponding opcodes are expressed in 
a vector by word embedding, and then input into the 
neural network to learn information such as 
correlation, order, and pattern between opcodes. We 
can classify by inputting the binary file of the file 
encryption process or benign firmware to the trained 
model. The proposed method successfully classified 
the encryption process and detected the ransomware 
virus.  

This paper is an extension of our previous work[10]. 
In previous work, after extracting the opcode 
sequence and opcode frequency from the binary file, 
training through two different neural networks. Then 
late fusion to classify each cryptographic algorithms, 
benign firmware, and crypto-ransomware is 
performed. 

In Chapter 2 of this paper, related work is explained. 
Then, we propose and evaluate a new method to 
prevent crypto-ransomware in Section 3 and Section 
4. Finally, we conclude this paper in Chapter 5. 

 
2. Related Works 
 

2.1 Ransomware on IoT Environments 
 
Due to the rapid development of IoT, ransomware 

virus prevention and security enhancement are being 
established as basic components of IoT-based services 
[11]. For a safe IoT environment, many studies are 
being conducted as follows. In [12] presents a 
machine learning-based ransomware detection 
method. After monitoring the power consumption 
patterns of some processes, it detects malicious 
ransomware in benign applications. In [13], a deep 
learning-based method for detecting malicious code 
using an opcode sequence is presented, and the 
opcode is converted into a vector space and then 
learned. In [14] proposes a behavior-based approach. 
It extracts the Transmission Control Protocol/Internet 
Protocol (TCP/IP) header and puts it on the command 
and control (C&C) server blacklist to detect 
ransomware attacks. In [15], the sequence of 
instruction is transformed into an image, and then the 
multiple classes are separated using dimensionality 
reduction and statistical methods. However, these 
approaches have focused on advanced IoT platforms 

and low-end microcontrollers are used for IoT 
services to collect data from a distance. Therefore, in 
order to improve the security of IoT-based services, a 
ransomware detection mechanism for low-end 
microcontrollers is required. In this study, we propose 
a new mechanism to detect cryptographic ransomware 
in a resource-constrained, low-end IoT environment. 

 
2.2 Ransomware Detection Methods based on 
Cryptographic Function Call 

 
Crypto-ransomware uses encryption to encrypt the 

victim's files, so to detect it, you need to detect the 
encryption function. Table 1 compares the 
ransomware detection method based on the 
encryption function call. In [7], symmetric key and 
public key cryptography were detected through the 
features of encryption functions. This approach used 
a heuristic based on the target architecture. In [8] 
utilizes a data flow graph extracted from a binary file, 
and cryptographic function calls are identified using 
subgraph isoforms. In Reference [9], the 
multiplication instruction frequently called in the 
Rivest-Shamir-Adleman (RSA) algorithm was 
monitored to detect the public key encryption 
algorithm. Recently, the work[16] showed that deep 
learning algorithms can improve malware detection. 
However, this method does not target crypto-
ransomware, and the high-end desktop is the target 
platform. In this paper, we present an crypto-
ransomware detection mechanism targeting 
microcontrollers. 

 
Table 1 Comparison of Ransomware Detection 

Techniques Based on Cryptographic Function 
Calls (SKC and AKC mean Symmetric Key 
Cryptography and Asymmetric Key 
Cryptography, respectively) 

Category [7] [8] [9] This 
Work 

Crypto 
graphy 

SKC and 
AKC 

SKC AKC SKC 

Approach Dynamic Static 
 

Dynamic Static 

Algorithm Heuristics Data 
graph 
flow 

 

System 
monitor 

Deep 
learning 

Architecture Desk 
top 

Desk 
top 

Desk 
top 

Embedded 
Processor 

 
2.3 Fair Evaluation of Lightweight Cryptographic 
Systems (FELICS) 

 
In 2015, the University of Luxembourg published 

the Cryptographic Benchmarking Framework 
(FELICS) [17], and cryptographic engineers around 
the world submitted several block cipher 
implementations for embedded processors to FELICS. 
In this paper, the block cipher implementation of 
FELICS was used as data, and the target 



microcontroller used ATmega128, an 8-bit AVR 
widely used in low-end IoT environments. The 
microcontroller is an 8-bit single chip based on a 
modified Harvard architecture and uses registers and 
instructions in units of 8 bits. In addition, block 
ciphers targeted in this paper can be classified into two 
types as follows. There are Addition, Rotation, 
Bitwise eXclusive-or (ARX) and Substitution-
Permutation-Network (SPN), the two architectures 
can be characterized with different operations and 
overall structures. In this paper, binary codes are 
classified according to the characteristics of the two 
architectures. 

 
3. Proposed Method 
 
In this paper, we propose an artificial neural 

network-based crypto-ransomware detection method 
for low-end IoT devices. In general, low-end IoT 
devices are used as leaf nodes to collect sensor data, 
etc. The base station (firmware server) manages the 
devices and updates the firmware of IoT devices 
regularly for better service. At this time, there is a risk 
of crpyto-ransomware being inserted into IoT devices, 
and the base station or the devices must detect the 
crypto-ransomware virus. The proposed method uses 
an artificial neural network to classify crypto-
ransomware and benign firmware according to 
whether the encryption process is executed or not 
before the firmware is distributed to the device. We 
propose a method based on the encoder structure of 
the transformer, utilizing data extracted from binary 
code. Since ransomware encrypts the victim's files, 
the encryption process can be a characteristic of 
ransomware. The proposed method targets a 
lightweight block cipher algorithm to determine 
whether the encryption process is executed or not. If 
you compile the source code of the lightweight block 
cipher algorithm, we can get a binary file of the source 
code, and in the binary file, there are opcodes for 
various functions such as encryption, decryption, and 
key schedule. Since different cryptographic 
algorithms perform different operations, the core 
operation used by each algorithm can be characterized. 
Therefore, the opcodes of key functions that perform 
encryption are extracted from each algorithm and used 
as a feature to detect the encryption process. In 
addition, it enables neural network inference on low-
end devices through the Tensorflow Lite model. 

 
3.1 Transformers encoder-based crypto-ransomware 
detection 
 

In this section, we propose a transformer encoder-
based crypto-ransomware detection technique. Figure 
1 is the overall system structure diagram. Extract the 
core function from the binary file of each encryption 
algorithm, and extract the opcode from the function. 
In this proposed method, string-type opcodes are used 

as words in sentences. That is, it does not convert to 
decimal, and after embedding each opcode as a vector, 
the vector is used as input data. Unlike previous 
research results, learning and reasoning are performed 
by configuring a single network, and it is classified 
into benign firmware and encryption algorithms, and 
the encryption algorithm is determined as crypto-
ransomware. 

 

 
Figure 1 Diagram of transformer encoder-based 
crypto-ransomware detection system 

 
3.2 Data generation and preprocessing 

 
A binary file can be obtained by compiling the 

source code of the lightweight block cipher algorithm. 
Since the encryption process is a characteristic of 
ransomware, the function that performs encryption is 
extracted from the binary file, and the opcode is 
extracted for each function. Also, since the opcodes 
for each function become the characteristics of the 
function, as shown in Figure 2, each opcode is labeled 
with the name of the cryptographic algorithm 
including the function to which it belongs. 

 

 
Figure 2 Extracting and labeling opcode sequences 

 
After extracting the core function of each algorithm 

from the binary file, the opcode within the function is 
extracted. The extracted opcodes are listed in order 
and become time series data. In this proposed method, 
a transformer network is used to learn such time-series 
data. Therefore, we consider of each opcode as a word 
and the opcode sequence as a sentence. In order to 
input such data to the network, a preprocessing 
process through word embedding is required. Figure 
3 shows the embedding of opcode for pre-processing. 



This is the process of representing a single word, 
opcode, as a dimensional vector. Since there are a total 
of 256 opcodes, in case of one-hot encoding, one 
opcode is expressed as a 256-dimensional vector. The 
embedding dimension was set to 8 dimensions 
through experiments, and the number of words was 
set to 256, the number of opcodes. By reducing the 
embedding dimension from 256 dimensions to 8 
dimensions, memory usage can be reduced, which is 
an advantage for inference in low-end IoT devices. 
Also, before the embedding process, the length of the 
array should be adjusted to 1,000 through zero 
padding. Since each opcode sequence array 
constructed has a different length, the length must be 
unified in order to be input to the neural network. For 
all sequence arrays, the minimum length is 14 and the 
maximum length is 13,859 (unless functions are used 
for all operations). Most of the source codes are 
written using functions, and they are only two in the 
total data. As a result of calculating the percentile, the 
case of length 878 occupies 90% of the total data. 
Therefore, the maximum length of the opcode 
sequence array is set to 1000. If the length is less than 
1000, the remaining part is filled with zeros, and if the 
length is long, it is truncated to 1000. 

This pre-processing process can be performed 
through various embedding techniques, and in this 
study, the embedding layer was used. Therefore, by 
attaching the corresponding layer to the front of the 
encoder structure of the transformer, it is used as an 
input layer of the neural network, and the embedding 
value is adjusted with the gradient during 
backpropagation in the learning process. 

 

 
Figure 3 Opcode embedding process for input data 
pre-processing 

3.3 Neural network architecture and training phase 
 
Figure 4 is a schematic diagram of the neural 

network of the proposed method. Only the encoder is 
used among the transformer models, and a classifier 
for multi-class classification is added at the end of the 
encoder. By using the transformer model, the 
sequential processing of time series data learning is 
eliminated and input data is processed at once, so 
parallel processing is possible and efficiency is 
improved. 

First, the embedding vector through the 
preprocessing process is input to the network. At this 
time, since it is time series data, 'Positional Encoding' 
is performed to consider order information. The 
process is encoded as a value between –1 and 1 
through the sine(sin) and cosine(cos) functions, which 
can predict the distance between tokens, express long 
sentences, and predict position values. When the 
entire dimension is 𝑑 dimension, a matrix containing 
position information is generated by applying sin to 
an even number and cos to an odd number to the 
position information value of each opcode. Thereafter, 
the matrix indicating the input embedded opcode and 
the element-by-element addition are performed. 
Through this, order information of the input opcodes 
is learned. 

The value to which the location information is 
added is input to the encoder of the transformer model 
and then input to the classifier. That is, the proposed 
method uses only the encoder among the encoders and 
decoders of the transformer model. Through this, the 
correlation of all elements of the input opcode 
sequence is analyzed, and overall information and 
characteristics of the context are extracted. When it is 
input to the encoder, it goes through ‘Multi-head self-
attention’ as shown in the figure. This part is the part 
that performs multiple attention, and the attention 
technique calculates how much each key affects based 
on the query, and then adjusts the weight required for 
learning by reflecting the result. At this time, since 
each opcode becomes a Query or Key, the association 
between opcodes and various features can be learned. 
Also, since each head is divided into different Value, 
Key, and Query, different results are obtained. That is, 
by using multiple heads, various relationships and 
characteristics for each opcode can be learned, and the 
number of heads was set to two through experiments. 
Also, the unit of the ‘Dense’ layer for feed-forward is 
set to 4. In addition, there are hyperparameters of the 
layer for normalization. 

In the case of the proposed method, it is judged to 
be a more efficient and suitable method because the 
entire opcode sequence is input at once and the 
association between the entire context and elements is 
learned through the encoder. 

 



 
Figure 4 Diagram of transformer encoder-based 
neural network  

 
After going through the encoder part of the 

transformer as above, input data is entered to the 
network for classification. The two parts are not 
separate networks, they input the encoder's output to 
the 'Convolution 1D' layer. The layer has fewer 
parameters because it shares weights through filters, 
and time-series data can be considered. After 
flattening it into a one-dimensional vector through the 
‘Flatten’ layer, it is input to the output layer and 
classified into 12 classes. Table 2 is the 
hyperparameter of the proposed method, and the 
corresponding values were set through experiments. 

 
Table 2 Hyperparameters for Transformer 

encoder-Based Networks 
Hyperparameter Description 
The number of 

labels 
12 

Sequence max 
length 

1,000 

The number of 
words 

256(0~255 opcodes) 

Embedding 
dimension 

8 

The number of 
heads 

2 

The number of 
encoder 

1 

Epsilon of 
normalization 

1e-6 

Feed Forward 
unit 

4 

Conv1D filters 16 
Conv1D kernel 

size 
8 

Conv1D kernel 
size 

1 

Batch size 32 
Epochs 70 

Loss Sparse categorical crossentropy 
Optimizer Adam (lr = 0.0002) 
Activation ReLu (hidden), Softmax 

(output) 
 
3.4 Detection of crypto-ransomware 

 
Figure 5 shows the crypto-ransomware detection 

process in low-end IoT devices. After converting the 
trained network into a TFLite model that can be 

inferred from IoT devices, it is distributed. After 
writing the code to encrypt the file through the given 
encryption algorithm, and extracting 1,000 opcodes 
from the beginning of the binary file obtained by 
compiling, the opcodes are pre-processed through the 
proposed method. After that, if it is input to the 
learned neural network, it can be classified into 
normal firmware and each encryption algorithm. 

 

 
Figure 5 System diagram of transformer encoder-
based crypto-ransomware detection for detection 
phase 

 
4. Experiment and evaluations 
 
In this experiment, Google Collaboratory, a cloud-

based service, was used, and Intel Xeon CPU (13GB 
RAM), Nvidia GPU (12GB RAM) and Ubuntu 
18.04.5 LTS are supported. Python 3.7.11 and 
Tensorflow 2.6.0 were used as programming 
environments. Also, ATmega128 was targeted as the 
target board, and GCC-AVR compiler was used. 
 
4.1 Dataset 

 
As mentioned in Chapter 3, when the crypto-

ransomware is executed, unlike the benign firmware, 
it performs an encryption process, so the encryption 
operation is set as a characteristic of the ransomware. 
Table 3 is the dataset used in this experiment. It 
consists of a lightweight block cipher algorithm that 
corresponds to the substitution-permutation-network 
(SPN) and addition-rotation-exclusive-or (ARX) 
structures, which are symmetric key cryptographic 
algorithms, and general firmware in the IoT 
environment. Cryptographic algorithms belonging to 
SPN and ARX are cryptographic modules written in 
C language during the implementation of FELICS. 
And as the benign firmware, RFID (Radio-Frequency 
Identification), WiFi, xBee, Bluetooth, etc. are used. 
The value in parentheses is the number of data, and in 
the detection phase, the binary file of the lightweight 
block cipher belonging to the test set and the benign 
firmware are cut and used by 1,000 from the 
beginning. 

 



Table 3 Details of dataset 
Architecture Examples 

SPN (88) RECTANGLE(5), PRIDE(25), 
PRINCE(33), PRESENT(10), and 

AES(15) 
ARX  (191) SPECK(37), RC5(12), LEA(9), 

SIMON(19), HIGHT(58), and 
SPARX(56) 

Benign (66) XBee, GPS, WiFi, Bluetooth, and 
RFID 

 
4.2 Transformers encoder-based crypto-ransomware 
detection 

 
This experiment aimed to classify cryptographic 

algorithms and benign firmware and detect crypto-
ransomware using a network composed of encoders 
and classifiers of transformers. Among the 
hyperparameters mentioned in Chapter 3, experiments 
were carried out according to the embedding 
dimension, the number of layers of the classifier, and 
the number of neurons in order to reduce the 
complexity of the model and make it lighter. In 
addition, there are factors such as the number of heads 
of multi-head self-attention and the number of units in 
the dense layer corresponding to the feed forward, and 
these factors were also set through hyperparameter 
tuning. In addition, after measuring the capacity of the 
tflite model for distribution to IoT devices, it was 
compared with previous work. 

Also, in this experiment, the performance is 
measured using the F-measure, which is the harmonic 
average of precision and recall. In addition, since we 
use an unbalanced dataset in which the number of data 
is not the same for all classes, we evaluate using micro 
F-measure (considering the number of data in each 
class) for each experiment. and the corresponding 
result is the average value of 10 experiments. 
Validation F-measure and Test F-measure are the 
results of experiments through Validationset and 
Testset, respectively, and Detection F-measure is the 
result of testing after applying the pre-processing of 
the detection step rather than the pre-processing of 
training. 

In addition, each evaluation is performed using 
'Each algorithm vs. Benign firmware', 'SPN vs. ARX 
vs. Benign firmware', and 'Crypto-ransomware vs. 
Benign firmware' that is divided. Each experiment is 
an experiment to classify individual encryption 
algorithms and normal firmware, an experiment to 
classify an SPN structure encryption algorithm and 
ARX structure encryption algorithm and normal 
firmware, and an experiment to classify the 
encryption algorithm as crypto-ransomware.  

In a resource-constrained environment such as a 
low-end device, a model with a small size and fast 
inference is used even if the performance is slightly 
lower. Recently, many studies have been conducted to 
reduce the size of the model while maintaining the 
model performance as much as possible. Therefore, 

the experiment was conducted to find an efficient 
network in consideration of the performance and 
model complexity, and the performance according to 
the embedding dimension, the number of layer 
neurons of the classifier, and the kernel size were 
compared. Except for the above three factors, the 
remaining hyperparameters were set through 
optimization, and finally, the hyperparameters in 
Table 3 were used. In addition, through the 
experimental results in Section 3, the F-measure for 
classifying 11 encryption algorithms and normal 
firmware was the lowest and the crypto-ransomware 
detection performance was the highest, so this 
experiment was conducted with ‘Each algorithm vs. 
Measure validation F-measure for 'Benign firmware'. 
After performing the other two experiments with the 
values determined through the experiment, the results 
were analyzed. Table 4 and Table 5 show the number 
of F-measures and parameters according to the 
embedding dimension, the number of units of the 
convolutional layer, and the kernel size. Performance 
of 0.94 or more was achieved in all combinations, and 
the maximum difference was 0.03. There was no 
significant difference for each hyperparameter 
combination, and in the case of achieving the highest 
performance, the kernel size was 8, the number of 
units of the Conv1D layer was 16, and the embedding 
dimension was 8. By reducing the embedding 
dimension from 256 to 8 and minimizing the number 
of filters, the number of parameters was significantly 
reduced, and the number of parameters at this time 
was 202,432. This is a result suitable for targeting 
low-end IoT devices because it has the highest 
performance while having a small number of 
parameters compared to other cases. 

 
Table 4 When the embedding dimension is 128, 

the validation F-measure and the number of 
parameters according to the number of units of the 
Conv1D layer and the kernel size (expressed as F-
measure (number of parameters)) 

Embedding 
dimension = 

128 

The number of units of Conv1D 
64 32 16 

kernel 
size 

8 0.95 
(1,122,640) 

0.95 
(708,528) 

0.96 
(501,472) 

16 0.94 
(1,182,032) 

0.95 
(738,224) 

0.95 
(516,320) 

 
Table 5 When the embedding dimension is 8, the 

validation F-measure and the number of 
parameters according to the number of units of the 
Conv1D layer and the kernel size (expressed as F-
measure (number of parameters)) 

Embedding 
dimension = 8 

The number of units of Conv1D 
64 32 16 

kernel 
size 

8 0.96 
(777,520) 

0.95 
(394,128) 

0.97 
(202,432) 

16 0.95 
(775,472) 

0.94 
(393,104) 

0.95 
(201,920) 



Table 6 shows each algorithm vs. Benign firmware, 
SPN vs. ARX vs. Benign firmware, Crypto-
ransomware vs. This is the result of performing an 
experiment on Benign firmware. As a result of 
analyzing the results of classification and detection, 
there was no misclassification of ARX and SPN 
structures, and there were cases of misclassifying 
SPECK and SPARX, and LEA and SPECK. In other 
words, SPN and ARX have different opcode patterns 
used in structure and have distinct characteristics. 
Also, in the case of crypto-ransomware detection, 
misclassification for SPECK and benign firmware 
occurred. 

 
Table 6 F-measure of Transformer Encoder-

based Networks 
Category Training Detection 

Validation 
F-Measure 

Test 
F-Measure 

F-measure 

Each 
algorithm vs. 

Benign 
firmware 

0.97 0.95 0.85 

SPN vs. ARX 
vs. Benign 
firmware 

1.00 0.98 0.98 

Crypto-
ransomware 
vs. Benign 
firmware 

1.00 0.98 0.98 

 
4.4 Comparison with previous work 

 
Table 7 shows the file size and F-measure of the 

proposed method and the results of the previous 
method. Unlike the previous method, the proposed 
method in which the encoder structure of the 
transformer is applied by matching opcodes to words 
and opcodes appearing in a function to a sentence 
consisting of words does not include frequency 
information. But this approach can learn the relation 
and context of each opcode, and then a 0.01 higher F-
measure was achieved. In addition, the file size of the 
convolutional fusion network to which pruning is 
applied is 1.96 times that of the transformer encoder-
based network. Although the performance difference 
is not significant, the proposed method based on the 
transformer encoder structure is more effective in 
detecting cryptographic ransomware in a resource-
constrained environment when the file size is 
compared. 

 
Table 7 Comparison with previous work (File 

size and F-measure of detection phase) 
Model File Size Detection 

F-measure 
Convolution 
Fusion [10] 

TFLite 1.74MB 0.97 
Pruned 
TFLite 

1.64MB 0.97 

Transformer 
encoder 

TFLite 0.83MB 0.98 

4.5 Comparison with other techniques 

 
Table 8 is a table comparing the proposed method 

with other methods. For other studies, 
implementations of cryptographic algorithms such as 
OpenSSL and Cryptopp libraries were used. Since the 
proposed method is an 8-bit AVR environment, the 
source code implemented in C in FELICS was used. 

Crypto-ransomware mainly uses AES and RSA 
algorithms. Therefore, these two algorithms must be 
detectable. Grobert et al. [7] have three approaches: 
chains, mnemonic-const, and verifier. Among them, 
the validator identification method has the best 
performance by checking the existence and 
parameters of the symmetric encryption process, and 
the validator method achieved a detection success rate 
of  0.946 in AES. However, the MD5 (Message-
Digest) algorithm and RSA could not be detected, and 
both AES and RSA can be detected using the chains 
method. Caballero et al. [18] consider the key 
scheduling process, which is another factor that can 
identify the existence of the encryption process. The 
method can detect AES, Data Encryption Standard 
(DES), RC4, MD5 and RSA with a simple mechanism. 
The method proposed in this paper can handle more 
various encryption algorithms. Lightweight block 
cipher detection for low-end embedded processor 
environments was possible. Therefore, it can be used 
to detect cryptographic ransomware for IoT 
environments. 

 
Table 8 Comparison with other method 

 [7] [17] This 
Work 

Algorithm Heuristic Field 
semantics 
inference 

Deep 
learning 

Implementation OpenSSL, 
Cryptopp, 
Beecrypt 

OpenSSL, 
Cryptopp, 
Beecrypt 

FELICS 

Description AES, DES, 
RC4, and 

RSA 

AES, DES, 
RC4, MD5, 

and RSA 

See table 
3 

 
5. Conclusion 
 
In this paper, we propose a new method to identify 

potential crypto-ransomware by classifying block 
cryptographic modules and normal firmware for 
embedded processors. For this, the lightweight 
cryptography implemented in C language among the 
implementations of FELICS was targeted, and the 
case where the encryption process was detected was 
classified as crypto-ransomware. A technique focused 
on reducing the size of the model in consideration of 
the resource-constrained environment while 
achieving a similar level of performance to the 
existing research results was proposed. After 
matching the opcode extracted from the binary file to 
the word constituting the sentence, it is converted into 
a vector through word embedding. It is trained after 
inputting the transformed data into the neural network 



based on the encoder structure of the transformer. By 
using this structure, the entire input data can be 
processed simultaneously instead of sequentially. In 
addition, sequences can be considered, and 
correlations and features between opcodes can be 
extracted and learned to classify successfully. In 
addition, through this proposed technique, a separate 
neural network considering frequency characteristics 
is no need to construct, and the size of the network 
was minimized by reducing the embedding dimension 
through experiments. This approach has a file size of 
0.509 times that of the convolutional fusion network-
based technique, and the F-measure achieved 0.98. It 
is 0.01 higher than previous work. 

As future work, we will consider the key scheduling 
process, which is characteristic of another encryption 
process, and classification methods for other 
encryption modules, including public key encryption 
and hash functions. In addition, we plan to construct a 
more efficient neural network by utilizing various 
word embedding techniques. 
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